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Abstract

Osteoporosis is a widespread and growing clinicablem, and provides the primary
motivation for developing improved methods for thevivo assessment of bone. Such
methods should ideally be easy to use, safe, imsiype, reliable, and, above all, should
provide clinically-useful information. They shoubd sensitive to the early signs of bone
deterioration, so that problems can be detectdg aad the benefits of treatment can be
maximised. As the existing diagnostic methods, thasainly on X-ray absorption, can
only provide information on bone density and geowethere is growing interest in
ultrasonic methods which have the potential to sssspects of the material properties of
bone.

The aim of the present study was to evaluate thsilfdity of using ultrasonic
guided waves for the quantitative assessment oé.bArprototype device was developed
for low frequency ultrasonic transmission measum@siealong human long bones.
Analytical plate and tube models were used for tifleation of the measured wave
modes. The phase velocities of two guided wave madere thereby determined. In
addition, an inversion scheme was developed fagrdening the cortical bone thickness
from guided wave ultrasound data.

Experimental work confirmed that guided waves cdmddexcited and detected in
human bones as well as in bone phantoms. Data &r@amall scale clinical pilot study
indicated increased sensitivity to osteoporosisgoided wave measurements. A large
scale in vivo study in a group of 106 pubertalgyias completed, and this demonstrated
that guided wave measurements were sensitive tolmoie material properties and bone
thickness. A comparative in vitro study for humadius specimens indicated that the
velocity of the fundamental antisymmetric guidedvevecorrelated significantly with
cortical bone mineral density, as did the lateralvev velocities measured with other
devices. However, this guided wave velocity hadadmantage over any lateral wave
measurement in that it was significantly correlateth cortical bone thickness as well as
mineral density. In addition, it was demonstratkdt tthe use of an inversion scheme,
based on plate or tube theory, enables respectifielyassessment of plate or tube wall
thickness. It was shown also, that the use of tumoelel is preferred when analysing
guided wave measurements for thick-walled bones.

Despite the successes listed above, problems hese identified that must be
addressed before guided wave measurements caregsagg a reliable and useful clinical
technique. In the work to date the effects of tbft sssue overlying the bone have been
found to be a major factor. It is proposed thatkég issue in understanding this problem
is to consider wave propagation in a bilayer systeomposed of solid bone and liquid-
like soft tissue. The initial results in immerseahb phantoms suggest that the use of an
adequate bilayer theory can potentially eliminateinhfluence of soft tissue on the in vivo
guided wave measurements. The results for humaesbionvivo are under way of being
analysed.

Based on these results, it is concluded that thesorement of ultrasonic guided
waves in human long bones is indeed feasible amersofadvantages over existing
techniques. However, further modelling of guidedvesis of crucial importance for a
precise and reliable interpretation of clinicaldpd wave measurements in bone.
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Chapter 1

Introduction

Osteoporosis is a widespread and growing clinicablem which most often manifests
itself clinically as fractures of the wrist, spireg hip. Therefore understanding the
determinants of fracture risk is of crucial impoita. The changes seen in osteoporotic
bone include density changes (e.g. reduced tradéneandd cortical bone mineral density),
geometrical changes (e.g. reduced bone thickness @nss-sectional area) and
mechanical changes (e.g. reduced strength andests.

Diagnostic methods based on x-ray absorption aectirent “gold standard” for
guantitative assessment of bone but they provideniplete information. Whilst they can
provide reasonably good data for bone mineral de(BMD) and geometry, they are not
intrinsically sensitive to the mechanical propextier microarchitecture of bone. The
clinical value of such additional information hast yo be conclusively demonstrated, but
there is growing interest in the potential for @ss®g aspects of bone “quality” in addition
to “quantity”. In addition, X-ray technologies agpensive, non-portable and use ionizing
radiation with a consequent health risk. Ultrasoaffdrs an alternative approach to bone
assessment that has a unique potential to chassctke material and structural properties
of bone. Furthermore, ultrasound is safe, relatiecbleap, and portable.

The ultrasonic methods and devices can be divided fwo main categories
according to the type of bone (trabecular or cattisee Chapter 2) to be measured. More
attention has been paid to measuring the trabebolae, at sites such as the heel [35, 28,
23] or finger phalanges [75, 91]. These methodgarerally seen as being more directly
relevant to the sites (hip and spine) where ostejodractures most often occur. It must
be noted, that direct ultrasonic measurement ohtpeand spine is difficult as these sites
are located deep under soft tissue. It has beemrshwwever, that ultrasound attenuation
(referred to as Broadband Ultrasound AttenuatiodABor speed of sound (SOS), as
measured for the heel, predict fractures at hip 8832, 28, 45] and spine [38, 23]. In
addition, the interest in measuring cortical boaiesites such as the tibia or radius, has
increased during recent years. In osteoporosisiéierioration of bone affects adversely
the properties and the effective thickness of tbeia@l bone wall, and it has been
suggested that a multi-site assessment could irepifter diagnostic power of ultrasound
[48, 36]. However, there are devices from only aranufacturer on the market today for
the clinical assessment of long bones. It has becewident that these devices, based on
measuring the so-called lateral waves which projgagbong the interface of periosteal



(outer) bone and soft tissue [16, 11], are rel$tivesensitive to the changes seen in
osteoporosis that occur largely in the endosteakfi) bone region [31, 89].

The so-called guided waves have been a topic fiderable interest in the field of
non-destructive testing, dating back to the 196[1%80, 109, 106]. Guided waves
propagate in bounded media such as plates or hgtnectures, and carry information of
the material properties (e.g. elasticity and dghsis well as the geometry (e.g. thickness)
of this waveguide [32, 87, 106]. The various apmlmns of guided waves include, e.g.,
the defect detection or health monitoring of watigre lines, aircraft wings and different
composite laminates [96, 58, 33, 22, 21, 20, 1gti€al bone is a plate- or tube-like
composite material which might also be expectedupport the propagation of guided
waves. This could thereby yield an improved ultrascassessment of cortical bones,
reflecting aspects of the average bone propertiesughout the cortical layer. Though
only a little attention has been paid to ultrasogutded wave measurements of human
bones [41, 78, 99], recent studies in bone phantants animal bones in vitro reflect
growing interest in this approach [54, 52].

The purpose of this work was to develop an axaigmission device and methods
for measuring guided waves (GW) as well as thet fagiving signal (FAS) at
approximately 200 kHz central frequency in humanndso This frequency was
considerably lower than that used in the curreatlgilable commercial axial transmission
devices, and thus provided new means for assesbmgffects of thickness on the
ultrasound velocities. The effect of thickness wasified by comparing phantom
measurements with analytical plate theory. The otethas tested for the first time on
human bones in vitro and in vivo, verifying theat@nships between ultrasound velocities
and cortical thickness and bone mineral densitynp& plate theory was used here for
developing an inversion scheme for estimating tletical thickness. We also
incorporated the tubular shape of bones in theryheand found thereby a better
correspondence between guided wave results aratthel bone properties. In addition, a
water-solid bilayer model was used qualitatively d@gplain the contribution of an
overlying soft tissue to in vivo guided wave measoents.



Chapter 2

Bone

2.1 Structure and function

Bone as a material can be classified into organitinorganic components. The organic
material mainly consists of type | collagen and grhous substance which contains
glycoproteins and proteoglycans [8]. The inorggract of bone is composed of minerals,
mostly hydroxyapatite (GaPOy)s(OH),) crystals, and represents about 65% of the wet
weight of bone [61, 73]. Together the organic amakganic components form so-called
extracellular bone matrix. Collagen gives boneiligity, toughness and tensile strength,
and also provides loci for nucleation of the mihergstals which give bone its rigidity
and compressive strength [61, 90].

Bone as a tissue consists of cortical and trabeddae. Cortical (compact) bone
forms the majority (approximately 85%) of the banethe body, and is relatively most
abundant is the shafts of the long bones sucheagattius, tibia and femur [68]. Cortical
bone is relatively dense, with an apparent demsigpproximately 1.7-2.0 g/ct{85], and
this is due to its low porosity (typically 5 - 109d), 61]. The shaft (diaphysis) of the long
bones consists of a thick tubular cortex of compacte surrounding the medullary canal
that is filled with bone marrow. The cortical bomell is composed of osteons (see below)
that are aligned parallel to the long axis of b{fig. 2.1). This alignment is due to bone’s
natural ability to organise its structure in ortieioptimise strength according to different
levels of loading applied in different directior@onsequently, cortical bone is anisotropic
having the greatest strength and stiffness in thé1rfoad-bearing direction, and has a
structure designed to resist torsional and bentinges where these occur [14, 61, 101].
Trabecular (cancellous) bone is composed of andotmected network of bone plates,
struts and rods (trabeculae) surrounded by boneomaif rabecular bone has essentially
the same matrix composition and ultrastructureamspact bone [61], but it has a much
higher porosity (50-95%) and consequently a lowgpaaent density. Trabecular bone
absorbs the impact loads and allows bones to bnoadar the articular surfaces without
the need for excessive increase of bone mass. dukabdone can be found at the ends of
long bones and in the cores of flat bones. In ba#es, the trabecular bone is covered by a
thin layer of cortical bone [14].



Bone has a hierarchical architecture with sevenals of structure (Figs. 2.1 and 2.2).
Mineralised collagen forms long fibrils, which pad¢&gether as fibres. In so-called
lamellar, or osteonal, bone, collagen fibres organhemselves into planar arrangements
called lamellae. The sheets of lamellae wrap aseamnic layers around a central canal
forming osteons (Haversian systems) with typicahtkters ranging from 100 to 3Q@n
and length 10 mm. The central canal (Haversian |rarisan osteon has a diameter of
around 50um and contains blood vessels and nerves [61]. nesf can also form so-
called woven bone where fibre orientation is legdl wistinguished. Woven bone occurs
mainly at the early stages of growth and fracteygair. In addition, some of the lamellae
do not wrap but remain as planar layers, and tegetith woven bone form layers of so-
called lamellar bone with thickness ranging tygicélom 150 to 30Qum [86, 14, 61].

The function of bone is to provide mechanical suppar the body, as well as to
serve as a dynamic mineral reserve and to prodeatdlood cells. The type of function
determines the specific structure of each bonefiaerdnt parts of the skeleton [14]. Bone
at the organ level can be classified into two typést bones (skull bones, scapula,
mandible, and lileum) and long bones (tibia, fenmumerus, radius, etc.).

Collagen
molecule

Collagen

Collagen fibril

84 Bone
(% Crystals

10-500 pm

3-7 um
Microstructure Nanostructure

Macrostructure Sub-microstructure Sub-nanostructure

Fig 2.1. Hierarchical structural organisation of bae: (a) cortical and cancellous bone; (b) osteons
with Haversian systems; (c) lamellae; (d) collagefiber assemblies of collagen fibrils; (e) bone minal
crystals, collagen molecules, and non-collagenousofeins (After Rho et al 1998 [86]).
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2.2 Growth, aging and disease

2.2.1 Bone growth

The growth of bone occurs by two different mechasisthe so-called endochondral and
intramembranous ossification. The former conduaéslongitudinal growth, whereas the
latter is responsible of the growth in diametewadl as of the remodelling process of the
bone tissue [77].

Longitudinal growth takes place in the regionseadhlihe growth plate or physis that
are located near each end of long bones. In thethrplate new cartilage is constantly
formed by chondrocytes. On the side of bone smaditlfaphyseal side) the growth plate
mineralises and becomes part of the methaphyseal. liionsequently, the length of bone



shatft is increased while the thickness of the gingelate remains constant. As bones reach
their adult length the growth plates are no longeeded and the physes close by
ossification [77].

The growth in diameter is another type of mecharigrbone formation, which in
addition to growth is also responsible of reshaphmg bones. Bone must be removed in
some places while it is added to others. This ootiis process of bone resorption and
formation is known as modelling and it is respolesibf the changes both in size and
shape. In addition, the architecture of bone mdaptto varying loading conditions and
fatigue damage must be repaired throughout theTliese changes are accomplished by a
similar removal-replacement process, known as rettind. The modelling and
remodelling refer to actions of osteoblasts andadasts, the former being responsible of
formation and the latter of resorption. In modg]lithese bone cells act independently
from each other, whereas remodelling involves cedigictions of these two types of bone
cells [68, 61, 15].

2.2.2 Aging

Bone mass is gained through puberty and riseptak during the second to third decade
[79]. Thereafter, a gradual loss of bone takesepl&¢omen loose about 35-40% of the
cortical bone and 55-60% of the trabecular bonereds in men the bone loss is
somewhat smaller by a factor of about a third. #eslione growth stops in the adulthood,
this is the point where the peak bone mass is eshchfter that, remodelling continues
and the rate of loss of bone depends on the balaetseen bone resorption and
formation. The good coupling between these paralletesses is crucially important in
order to retain bone mass. Mechanical stimulatibthe bone as well as the hormonal
effects play important roles in the quality of theupling. During the normal aging
process the coupling weakens and bone balance &wdgs towards the negative side.
This means that the bone mass begins to slowlyedserfrom that of the peak level
reached during the period of growth [79, 73].

2.2.3 Disease

The most common metabolic bone diseases are ostsipand osteomalalcia. The
currently-accepted definition of osteoporosis, etsosit by the National Institute of Health
Consensus Conference of 1993, is that osteopoi®ss disease characterized by low
bone mass and microarchitectural deteriorationanfebtissue, leading to enhanced bone
fragility and a consequent increase in fracturk’r[2]. Osteoporosis typically develops
over a long period of time without necessarily taginy symptoms. The first symptoms
are fractures caused by minor trauma. The insidnaigare of osteoporosis, coupled with
the absence of effective therapies capable of caygdbone once it has been lost, makes it
a severe and problematic disease.

It has been estimated that 54% of postmenopaustd ¥emales in the United States
have osteopenia (pre-stage of osteoporosis), anithen30% have osteoporosis [103]. In
Finland, the impact of osteoporosis can be seetihénage-adjusted incidence of low-
trauma ankle fractures which rose in both womean(fi66 in 1970 to 174 in 2000, a
164% increase) and men (from 38 in 1970 to 1140002 a 200% increase) [43]. The
most serious complication resulting from osteopigras fracture of the hip. The number
of hip fractures in Finnish people aged 50 or nf@s risen from 1857 in 1970 to 7122 in



1997 [42]. The average 1-year total costs of a patient withipafracture were Euro
14,410, with about one quarter of these costs bekpended on acute care [76]. This
gives some idea of the significance of osteopor@sia public health challenge.

Several subtypes of osteoporosis can be distingdismvolutional osteoporosis,
meaning gradual and progressive bone loss, cannbeobtwo types: postmenopausal
osteoporosis and senile osteoporosis [88]. Postpazarsal osteoporosis affects women
and occurs mainly between the ages of 50 and 65.y@4th this condition, resorption of
trabecular bone is accelerated due to oestrogéciatefy associated with the menopause,
and this often manifests in wrist and/or spinetiree=  Senile osteoporosis occurs both in
men and women aged 70 years and older, with aofogsth trabecular and cortical bone,
manifesting in fractures of the hip, proximal huortibia and pelvis [88]. So-called
secondary osteoporosis is osteoporosis that iseddug factors such as chronic diseases,
malabsorption, endocrine disorders, or use of daug$ as corticosteroids. The progress
of osteoporosis can be slowed down by proper mutrdnd physiological exercise as well
as by appropriate medication, such as hormone aeqplant therapy or bisphosphonate
treatment [55].

In osteoporosis, the porosity of bone increasescandequently its apparent density
decreases [25]. In trabecular bone, architectureinges occur such as the loss of
trabecular struts and perforation of plates. Iniicak bone, bone loss occurs mainly in the
endosteal region so that the marrow cavity expaad consequently the effective
thickness of the compact bone decreases [88].

Osteomalacia is also a metabolic bone diseasetitairs as defects in the amount
or quality of the mineralization of bone matrix. Uf) osteomalacia can be characterised
by relative deficiency of mineral in relation tolle@en, which distinguishes it from
osteoporosis in which a normal mineral to collagsro is observed [103]. Deficiencies of
vitamin D, calcium, or phosphorus due to inadequaig&itional intake are the usual
causes of osteomalacia [46].

In addition, there are several skeletal disordersichv related to genetic,
developmental, and dysplastic problems, such asogshesis imperfecta, ostosclerosis,
and fibrous dysplasia. Osteogenesis imperfectaherigable disorder of connective tissue
that is caused by abnormalities in type | collaf@). Consequently the elastic abilities of
the extracellular matrix weaken and bone becomiéedd 05].



2.3 Mechanical properties of bone

The primary function of skeleton is to provide magcical support for the body in
locomotion and static loading. To this end, bonansadaptive tissue and has optimal
mechanical properties, specific to each part ofskedeton. The mechanical properties of
bone can be distinguished as the mechanical bealvawidhe bone tissue as a material and
as the mechanical behaviour of the whole bone asuature. The material behaviour
reflects the intrinsic properties of the bone matetself, being independent of the shape
and size of the actual bone. The material properteen be determined by performing
mechanical tests on standardised specimens. Inti@ddio material properties, the
structure of bone has an important role in termtghefstrength. The structural properties
include the effect of bone geometry as well as rtiserial properties. The structural
properties can be determined by mechanical tesfirige whole bone specimens [37, 13,
61].

In vivo the bone is affected by loading of differenrigins, including external
(ground reaction and impact forces) and internatcde (ligament tension, muscle
contraction and bone-on-bone contact forces) [13].

The purpose of mechanical testing is to determereélationship between loading
(force applied to bone) and the magnitude of comsedeformation. When the bone is
deformed, its response is to the applied stres$ / A, whereA is the cross-sectional
area of the bone. The definition of compressive t@ndile stresses is thereby identical to
that of pressure. However, the loading of solid enat can also be tension, shear or
torsion, yielding the stresses and deformationghi corresponding directions. The
magnitude of a local deformation is given by stra{sompression, tension) g1(shear) as
deformationAl per unit length (Fig 2.3). The stress is generally linearly degamabn the
strain (Fig 2.3b), and the slope gives the elgsticYoung’s) modulus€. This region is
called the elastic region. When the loading is eased, at a certain point the material
begins to undergo permanent deformations, and tteessresponse ceases to be linear.
This point is known as the yield point followed the yield (or plastic) region. The stress
corresponding to the yield point is called the ¢istrengthgy of the material. The load
that causes complete breakage of the materialas/kras the ultimate (or failure) load,
and the corresponding stress as the ultimate strendl3, 61].

When performing structural testing of the whole &oi is typical to measure the
deformation against the applied force directly.sThieasurement yields a corresponding
figure to Fig 2.3, but the stress is replaced bg fbrce and strain by the actual
deformation. The corresponding slope is then cdhedstiffness [13].
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Fig. 2.3. a) A schematic diagram of a tensile loatd) of a standardised specimen. The test specimen,
with length | and cross-sectional area, undergoes deformationAl under loading force F. b) A
schematic representation of typical stress-straindghaviour under mechanical testing.

Mechanical testing is said to be non-destructiveenwlexploring only the linear
elastic region, and the yield point is not reachBue benefit of this approach is that the
same specimen remains available for further testiogvever, the elastic modulus can be
determined more precisely when measuring near igld point. Also, determination of
yield and ultimate strength provides a more conepfatture of the mechanical properties
of the specimen [13].

If the elastic modulus of the material is indeparid# the direction of examination,
the material is said to be isotropic. In corticahb, however, the elastic modulus in the
direction of the long axis of bone (i.e. the difeatof osteons) is approximately two times
higher than those in the transverse directionssThartical bone is anisotropic material.
Particularly, it can be modelled using transverserthotropic isotropy [5, 39, 81]. The
typical longitudinal and transverse elastic modilihuman cortical bone are 17 and 10
GPa, respectively, and the shear modulus is 3.5[GRa61]. The strength properties of
cortical bone depend on the direction also. Howewsilike the elastic moduli, the
strength is greater in compression than in tensioshear. This alone suggests that the
cortical bone has adapted to the conditions wherapcession loading is greater than
tension, and together with the anisotropy, thagitdinally directed loading is greater
than transversely directed loading [13].

Unlike those of cortical bone, the mechanical progs of trabecular bone vary a lot
depending on the site. For instance, at verteboaliels the trabecular bone is fairly
anisotropic whereas in the femoral head it is iyeadtropic. The elastic modulus of
trabecular bone is generally significantly loweantthat of cortical bone, ranging roughly
within 0.01-10 GPa. These differences in the priogeiof trabecular bone can indeed be
understood due to its adaptation to different Ingdionditions at different skeletal sites,
and the wide range in porosity and microarchitectadopted to meet these different
conditions [13].



Chapter 3

Quantitative ultrasound applied to cortical bone

3.1 The basic physics of ultrasound

Ultrasound is propagation of a mechanical distucbam a solid or fluid medium at
frequencies higher than the upper limit of the bledsound range for humans2Q kHz).
The field of ultrasonics dates back to the endhef 19" and the beginning of the 20
century, when piezoelectricity was discovered asdfiist applications were developed
during the World War I. An in vivo application ofobe ultrasound measurement was
reported for the first time by Siegel et al in 1998], who used it for monitoring fracture
healing in tibia. Today ultrasound has a wide raofgmedical uses, including diagnostic,
therapeutic and surgical applications. Diagnodti@sound has several applications, such
as non-invasive imaging of different parts of tloelyp and measurement of tissue motion
or blood flow. Ultrasound imaging techniques ateaative due to the absence of ionising
radiation and the availability of compact devichattprovide real time images at lower
cost compared to other imaging modalities.

An ultrasound wave emerges as a tiny disturbandeeofnedium particles around
their equilibrium positions, as the matter is ea@diby a mechanical impulse or vibration.
The medium can be considered as a model in whids ipaints (particles) are connected
to each other by strings. Due to the string intigoas, the disturbance is transmitted step-
by-step to other parts of the medium. The intrinsiastic properties of the medium,
modelled by the strings and particles, define ttopagation velocity of the acoustic wave
c. In the real life, the string constant correspotadan elastic modulus and particle mass
the mass density of the material, which correspaglgidefine the velocity of the acoustic
wave.

The ultrasonic waves can be divided intmgitudinal (compressionand shear
(transverse) waved he longitudinal wave denotes a wave in whichph#icles oscillate
along the longitudinal axis of wave propagation.evdas the shear wave refers to the
motion that takes place perpendicularly to thedtfiom of propagation. In perfect fluids
(gases or liquids) only longitudinal waves can pggte. Shear waves are not possible
because these materials do not support shear farcdghe particles are free to slide
parallel to each other without any interaction.sftasolids support both compression and
shear motions, thus both of the longitudinal anglastwaves can propagate. In a viscous
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fluid, longitudinal and shear waves can both prepagbut the shear waves are strongly
attenuated. Biological soft tissues have similacimamical properties as viscous fluids,
thus in practice only longitudinal waves can pragagn them. Bone is a hard solid tissue
in which both longitudinal and shear waves can agape [51].

In an isotropic solid the speed of the longitudiwakec, is given by

cL:J Ed-v) (3.1)
pA+v)A-2v)

whereE is Young’s modulusy Poisson’s ratio ang the density. Correspondingly, the
propagation speed of the shear waves given by

_ M
- |H 3.2
cr (3.2)

whereu = E / 2(1+v) is the shear modulusey is typically less than 0.§ . The velocity of
the so-called Rayleigh wave & = 0.9 ¢cr. The Rayleigh wave propagates along the
surface of a semi-infinite medium.

The characteristic acoustic impedance of the medi)ms determined as
Z=pcC. (3.3)

Reflection and refraction will occur at the boundéetween two media with different
acoustic impedances. The refraction is governe8risll’s law,

sing, _ sing,
Cl CZ

, (3.4)

wherec; is the velocity of the incident wave, that of the transmitted wave afdand &
the angles of incidence and transmission, respagtiv

For longitudinal waves on a planar surface of twleai fluids, the (intensity)
reflection and transmission coefficiefandT are given by [104, 51]

2
R:I—’ _[ Z,c0s6, - Z, cost, (3.5)
I Z,cosf, +Z, cosb,
T= lo_ 427, c0sd, cosb, (3.6)
|, (Z,cosf, +Z,c0s8,)” ’

wherel;, I, |1 are the incident, reflected and refracted intessitandZ; andZ; are the
acoustic impedances of the first and second mé&baiously T + R = 1. The amount of
energy in the reflected wave depends upon the nednia acoustic impedance of the two
media. The greater the mismatch, the greater flected energy.

When either or both of the media are solids, thendnergy of the incident wave,
longitudinal or shear, will be converted as regecand refracted longitudinal and shear
waves. The number of possible waves depends dypieeand order of the two media. If a
fluid-solid interface (e.g. soft tissue and boregonsidered, then the incident longitudinal
wave can be reflected only as a longitudinal wawve i@fracted both as longitudinal and
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shear waves. For the fluid-solid case, Eqgs. (36»-&.e only valid at normal incidence. For
other angles of incidence the equations become mmack complex [51].

If the medium is inhomogeneous, the primary ultrsavave interacts with the
boundaries of the particles that have differentgutal properties than the surrounding
medium. This process is called scattering, yieldamgemission of secondary (scattered)
waves. There are three different mechanisms otestag. a) If the dimensions of the
scattering object are significantly larger than uifteasonic wavelength, specular reflection
takes place and Egs. (3.4-3.6) can be utilisedf bpject dimensions are significantly
smaller than the ultrasonic wavelength, then ubwasl is scattered uniformly in all
directions, and the incident wave suffers minortyp&ations due to diffraction at the
edges. c) If the dimensions of the object are efdAme magnitude with the wavelength,
the scattered radiation exhibits a complex pattetmch depends on the acoustic
impedance, shape and dimensions of the object. tidyuseful cases are relatively easy
to calculate: scattering from a sphere and fromliader [65, 100].

The attenuation of an ultrasonic wave is a matgraperty and represents the signal
loss due to absorption and scattering by objedis saales too small to be captured by the
wave. Ultrasound attenuation is characterised bgxaonential decrease of the intensity
with propagation distance

| =1, (3.8)

wherely is the intensity ak = 0 anda(f) is the pressure attenuation coefficient expressed
as a function of frequencfy The factor 2 in the exponent results from tramsfog
pressure into intensity, since intensity is projpoil to the square of pressure for a plane
progressive wave [65, 100, 51]. Other factors sagheflection (interface) losses, beam
spreading (diffraction) and mode conversion maytrdonte to a reduction in the intensity
of the signal, but in experimental measurementseffects of these extrinsic factors
should be removed where possible.
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3.2 Axial transmission

The so-called axial transmission technique has hsex to assess long bones for over
four decades [94, 30, 102, 16]. With this methodulirasonic signal is mediated to bone
at one point, allowed to propagate along the loag af bone, and recorded from the same
side of the bone at a given distancepart from the emitter (Fig. 3.1). Figure (3.2)
illustrates a typical recorded signal as a resptm&xcitation of bone in vitro. The transit
time t of the first arriving signal is determined, eaccording to a certain threshold value,
or the location of the first maximum, and the vélpe; (also called as the apparent speed
of sound) of the first arriving signal (FAS) is abited as the ratio betweemandt.

Transmitter Receiver

Fig. 3.1. Principle of a typical axial transmissiormeasurement: a transmitter is excited by a pulsero
toneburst, a longitudinal wave propagates near thelense periosteal surface of long bone, and this is

received as the first arriving signal (FAS) at thaeceiver.
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Fig. 3.2. Typical recorded axial ultrasound signala) The first arriving signal (FAS) and an
additional “guided wave”. b) FAS in the close-up. Tle time-of-flight can be determined according to
the first maximum, threshold or zero-crossing point (Low-frequency axial transmission scanner,

human radius in vitro).
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Generally, the FAS corresponds to an axial longitaidvave, provided that the wall
thicknessh of bone is greater than the acoustic wavelenigtin bone, the speed of the
axial longitudinal wave is approximately 4000 n88,[81].

As the bone is surrounded by soft tissue, the FétEesponds to the so-called lateral
longitudinal (or P-head) wave, which propagate@lthe interface between these two
media [16]. In this case, the excitation is medidtebone through an overlying soft tissue
and the lateral wave is born as a linear wave frehich connects the refracted
longitudinal wave to the reflected wave. This pded that the incident angk is equal
to or greater than the critical angie= sin’(vsfV1), wherevg is ultrasound velocity in the
soft tissue (approximately 1500 m/s). The velooityhe lateral wave has been shown to
be consistent with that of the longitudinal wavebome [16], and this essentially enables
the clinical measurement of the SOS in bone.

Commercial devices using the axial ultrasound trassion are currently available
only from one manufacturer (Sunlight Medical Ltdel Aviv, Israel). These devices
operate at a central frequency of 1.25 MHz, whiclreasponds approximately to a 3 mm
acoustic wavelength for the longitudinal waves amé. It has been demonstrated that the
FAS measured under these conditions indeed comdspim a longitudinal lateral wave
that propagates along the dense periosteal (oatetical bone [16, 11]. This fact is
confirmed by the close agreement between cliniealasured velocities in the human
tibia [27, 92, 102, 53, 83, 95] and in vitro mea&sunents of the axial longitudinal wave
velocity in human cortical bone specimens [5, 4813.

There is, however, evidence indicating that theaagpt speed of sound (SOS) is
lower than that of the longitudinal wave when tloewstic wavelengthl is greater than
the thickness$ [74]. Recent numerical simulations and measuresnenbone phantoms
suggest that the apparent SOS under this condéius towards that of the fundamental
symmetric guided wave (SO mode) [72, 11, 12]. Wowstudies indeed support this idea
that the apparent SOS measured at low ultrasomiquéncies is sensitive to bone
thickness. When using a device operating at 250 kHz @ = 15 mm), a significant
correlation between the apparent SOS and bonetwekness was obtained, whereas in
another study using a high-frequency devick=at.25 MHz @ = 3 mm), no correlation in
the tibia and only a modest correlation in thewadvas found.

As in the in vivo bone measurements the excitatirst be mediated to bone
through the overlying soft tissue, and recordedsa# tissue at a given distancaway
from the emitter, the consequent delays due taasigassing through the soft tissue must
be eliminated (Fig 3.3). This is achieved simply dpnsidering the difference between
time delayst; andt, obtained from consecutive measurements made atdtfierent
distances; andr,, respectively. Now the inverse wfis given by [60]

1 = E 1 (3.9)

v, dr
where d =t; - t, and @ =r; - ro. The use of multiple transmitter-receiver distance
improves the precision of the velocitythat is determined as an inverse slope through Eq.
(3.9) [60].

As discussed above, the soft tissue on top of time lzontributes to the reliability of
measuring FAS by affecting the timing of the sigrniie delay caused by soft tissue of
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constant thicknesa in the range of consideration can be eliminatadgugq. (3.9) or
linear regression. A linearly changiagcan easily yield a remarkable bias in the obtained
velocities, and this can be reduced using so-cabedirectional approach. The
measurement must be performed in both directiogisliyigv,” andv;’, and the actual; is
given by

1.1 %+i_ cosa , (3.10)
v, 2(v; v

wherea = cos'((a;-ay)/dr) [10]. In addition, soft tissue must be thin enlbwpmpared to
the emitter-receiver distancen order to obtain the fastest signal path viagyomr. for the
given soft tissue thickness distance must be greater thap,, defined by [16]

2{1+ Vt]
V.
o =2 (3.11)

wherevs is ultrasound velocity in the soft tissue.

Transmitter

Receiver

(vs) &maz\

Y bone

S1 r S5 (v1)
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m{ ASS soft tissue f a
<
L

Fig. 3.3. Diagram of an in vivo axial transmissiomeasurement when the thicknesa of the soft tissue
changes linearly.
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3.3 Guided waves and bone

In addition to FAS, completely different types odwve modes can also propagate in the
long bone (Fig. 3.4). These so-called guided wawdan (GW) propagate, not only in the
dense endosteal layer, but throughout the entassesection of cortical bone wall in the
form of bending waves. As it is known that boneorpsion starts in the endosteal bone,
and that the consequent decrease of the solidcabmtall thickness yields increased
fracture risk (Chapter 2), GW techniqgues may yield improved diagnostic bone
assessment. However, very little consideration besen given to measuring the GW in
bone. A few studies have reported low frequencsasitinic measurements< 100 kHz)

of a slow antisymmetric flexural wave in the tibragpping the spatial variation in the
velocity and quantifying changes during weightlessn[41, 78, 99, 62]. In addition, two
recent in vitro studies demonstrated that velogité guided waves measured in animal
bones {= 100 kHz and = 50-500 kHz, respectively) correspond with clageeement to
guided waves in a plate [54, 52].

Transmitter Receiver

Fig. 3.4. Principle of an axial guided wave measument. A guided wave arises from multiple
reflections at the periosteal and endosteal boundass, and propagates as a bending vibration of the
whole cortical layer.

In general, there is a whole family of differenidgpd wave modes (GW). They arise
from reflections, mode conversions and interferepiclongitudinal and shear waves, and
propagate within the boundaries of plate and tuke layered media (Fig 3.4). The
velocities of guided waves are functions of wavgtenfrequency and layer thickness, and
they are in addition determined by the elastic props and density of the material [106].
These relationships will be treated in more detailChapter 4. In terms of the bone
application, the endosteal surface of a long boustine considered as the inner layer and
periosteal as the outer layer of a tubular or pléte structure. If either of these
assumptions can be made, then ultrasonic wavesgatg guided by the bone cortex, and
their characteristics are determined by the cdrtluiakness as well as the elasticity and
density of the bone. Potentially, the most intengsguided wave mode regarding the
bone applications is the fundamental antisymmdkeixural mode (A0). The velocity of
AO saturates to that of Rayleigh wave in thick layédut decreases towards zero with
decreasing cortical wall thickness.

In addition to the guided wave modes, FAS can alsaw dispersive behaviour as
mentioned in Section 3.2. However, FAS cannot lassified as a pure guided wave
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mode, but rather as a complicated transition magtevden the lateral and fundamental
symmetric guided wave (S0), when its wavelengtbfishe order of or greater than the
bone thickness.

The effects of overlying soft tissues are consiolgranore complicated for guided
waves than for FAS, as guided waves cannot usl@lgonsidered as bulk waves but
preferrably as bending motion of the whole soligela The energy propagating in bone
can easily leak to surrounding soft tissues causitgnuation and coupling. Coupling
between bone and soft tissue means that they fojaint bilayer system in which a
guided wave can propagate. Hence, any model afiglesbone layer alone cannot very
accurately explain the dispersion that takes piache in vivo measurement of human
bone. Thus the bilayer model, which takes the ssdue coupling into account, will be
discussed in Section 4.2.



Chapter 4

Theory of Guided Waves

Though the concept of guided ultrasonic waves igehan the field of bone quality
assessment, guided waves have been widely usedafoy years in different applications
of non-destructive testing for the assessmentatep| tubes and more complex structures
[21, 20, 19, 17, 44]. This chapter reviews appreacto the theoretical description of
guided waves with particular emphasis on those cspef the theory relevant to the
applications of guided waves for bone assessment.

The propagation of guided waves in solids is goeédrhy partial differential wave
equations that arise from theory of elasticity. 3¢@overning equations are identical for
guided as well as for bulk longitudinal and sheave@s. The fundamental difference that
distinguishes the guided waves from the bulk wasdkat the latter propagate in the bulk
of a material, independent of the boundaries, wdswethe guided waves are born due to
boundary interactions. Guided waves arise due ftecteon, refraction, and mode
conversion of longitudinal and shear waves at thendaries of the media resulting in
resonant modes whose frequency and propagationl sperespond to standing waves in
the thickness direction of the structure. Matheoadlly, the solution of a guided wave
must satisfy a number of boundary conditions, amal introduction of the boundary
conditions makes the problem of guided waves diffitco solve. In most cases no
analytical solution can be found, and often theafseumerical methods is needed [87].

Classically, the problem of guided waves is assediavith waves in a traction-free
isotropic plate (Lamb waves) [50, 106]. Due to tbhenplexity of guided wave problems, a
solution for the free plate case may be a conveérstmting point for understanding the
actual application. Sometimes it may be possibleawsider the actual structure, e.g. a
tubular bone, as a plate within a sufficient priecig54]. It is possible also to generalise
the problem to deal e.g. with tubular shape, arepgtand multilayer structures [32, 87].
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4.1 Waves in plates

Lamb waves are two-dimensional elastic waves thapggate in a traction-free solid
elastic plate of finite thicknesh. They can be modelled using four partial waves,
downward and upward propagating longitudinal arebshvaves (Fig 4.1).

=0 o
y Kt kr KL ke V4
4 k

\ 4
K Kk k Py
KL ‘% Kt kr

y=h

\ 2

Fig 4.1. Geometry of the free plate problem. Platenickness ish. Lower-casek, 1 are respectively the
wave numbers of the longitudinal and shear partialvaves, capitalK, + are the corresponding vertical
wave numbers, andk is the wave number of the propagating guided wave.

The motion of a homogeneous, linear elastic solid be modelled by Navier's
displacement equations of motion,
(/] +:u)uj,ij + = o0 4.1)

whereu; is the displacement vector,

2
U =— Uy,
Y ox0x,

p is the mass density antland i are the Lamé constants. Summation over a repeated
index is assumed. The displacement vector can bpressed via Helmholtz
decomposition,

0¢ oY,
u=—+=+e, —, 4.2

i 6)(, QJk an ( )
where @ and ¢ are scalar and vector potentials, respectivelg,egnis the permutation
symbol. Substitution of Eq. (4.2) into Eq. (4.1¢lgs two uncoupled wave equations

,_ 1) ,_ 1.0 _
(D (q)zatzJ ’ ’[D (cr)zatzjw o 3

where 0% = 0%9y? + 98%/0Z, c, is the bulk longitudinal velocity and; the bulk shear
velocity. According to the partial wave formalis®i/], the solutions of Eqgs. (4.3) can be
written as

9 =C, eikL[zsin(HL)+ycos(9L)] +C, eikL[zsin(GL)—ycos(HL)] (4.4a)
w - C3 eikT [zsin(ar)+ycos(61r)] + C4 eikT [zsin(HT)—ycos(ar)] ’ (44b)

where
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| k Ak
g =arcsin — |, =arcsin — |,
: {kL] 0T ’(ij

k. is the wavenumber of a longitudinal wave componkenthe wavenumber of a shear
wave component arkdthe wavenumber of a guided wave (in the directibpropagation)
(Fig 4.1). The constants;, C,, C3 andC, are arbitrary unknowns and will be determined
by the boundary conditions.

Both of the potentials in Egs. (4.4) now consisttwb terms, one representing a
downward propagating plane wave (positivein the exponential term) and one
representing an upward propagating plane wave f{ivegg in the exponential term).
Technically we have thus assumed that there arepiame bulk waves in the solid, two
longitudinal and two shear (Fig 4.1).

Displacements; can now be obtained from Eq. (4.2), and stregg@se given by
0; = A9, &, +2U¢; (4.5)

I ?

whered; is the Kronecker delta, the dilationgas= €11 + &2 + &3, and the strains are

b2\ ox,  0x

By requiring traction-free boundary conditions, = oy, = 0 at the free plate
surfacesy = 0 andy = h, whereh is the plate thickness, and ignoring the sheaizbotal
displacements = 0), four equations will be obtained,

(/]kf +2:UKE)[C1 +C2}+2,U|(KT{C3 _C4} =0, (4.7a)

_Z)UkKL{Cl _C2}+,U(KT2 —ZKTZXC3 +C4} =0, (4.7b)

(k2 + 24 fC, € + CLe ™+ 204K, {C e - C e ™} = 0, (4.7¢)

- 21kK {C, e - C e+ (K2 - 2k fc et + Ce " = 0, (4.7d)
where

2
w
LT

andwis the angular frequency.
This system of equations, Egs. (7a-7d), can beesgpd in a matrix form

[GHC}=0, (4.8)
where [5] is the global matrix,
AKZ + 24K 2 AKZ + 21K ? 21KK - 21K+
o]=|, 2K, 2/kK, uk?-22) ok -2x2)
(2 +2uK2)e (M2 +2uK 2™ kK €SN - 2ukK e |

- 2kK " kK e (K2 - 2k2 gk - 2K et
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and vector €} contains the four unknown constar@g i = 1,...,4. The matrix equation
Eq. (4.8) is satisfied when the determinant of maftG] vanishes. The characteristic
equation for a plate in vacuum (with given wavenamk angular frequencyy bulk
velocitiesc,. andcr, and plate thicknedy can thus be written as

det(G(w, k,c, ,cT,h)) =0. (4.9)

The roots of this characteristic (or dispersion)atmpn provide the dispersion relations for
the given structure, and can be solved numeri¢aily59, 80].

The technique described above is known as the bhoatix method. Though not as
elegant as the classical solution for Lamb wavés 96, 32], it is powerful as the global
matrix [G] can easily be extended to different multilayeatpland tube structures. This is
a useful property, for instance, if attempting todal the coupling effects of a soft (e.g.
liquid) overlayer on top of bone or bone phantosee(section 4.2).

Classically, the solutions of Eg. (4.3) are soughiobrms [32]
o= f(y)et),
W =ih(y)e'te), (4.10)

where f(y)=C,;sin(K y)+C,cosK, y)and h(y) =C,sin(K;y)+C,cosK;y). Here
the exponential term represents the propagatingewavhe axial (horizontal) direction,
andf(y) andh(y) standing waves in the vertical direction. Thepllisements, strains and
stresses are obtained from Eqgs. (4.2), (4.6) ambl),(4nd requiring the traction-free
boundary conditionsgry = gy, = 0 at the free plate surfaces = +h/2, for convenience)
consequently yields the classical Rayleigh-Lambudexncy equation

2 +1

tan(2K;h) | 4KLKTk2 0. (4.11)
tan(ZKLh) (k2 - KTZ)

This equation divides in two parts that corresptmaxially symmetric modes (+1) and

antisymmetric modes (-1). The dispersion relatioh&g. (4.11) are identical with those
of Eq. (4.8), and must also be solved numerically.

4.2 Fluid-solid bilayer

The purpose of developing a model for Lamb wavess finid-solid bilayer was to explain
the effect of soft tissue on top of the bone. lis thodel the liquid on top of a solid plate
played the role of soft tissue.

The problem of a fluid-solid bilayer has been dssad comprehensively e.g. by
Yapura and Kinra [111]. At an interface betweeflidsand fluid the energy of guided
waves leaks from solid to fluid in the form of lgakaves. The leaky waves, however, are
reflected back at the top boundary of the thindflaverlayer and propagate back to the
solid substrate. As a consequence the guided wanggmgate, not in the fluid or solid
layer alone, but in the whole bilayer structure.isTleoupling affects strongly the
dispersion characteristics of the guided wave mo#élsghis kind of coupling is expected
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when there is a layer of soft tissue on top of b@m&ivo measurements), a bilayer model
is needed in the analysis of measurement results.

Yapura and Kinra [111] developed a bilayer courdadrpo Eqg. (4.11) using the
classical approach. In the following, however, plagtial wave formalism will be used to
extend the global matrix of the solid plate (E@)4nto the fluid-solid bilayer case [87].

y=0 .
fluid layer Ke | N — i
thickness a K K ; Ke

y=a

K; ke Ky N&
solid elastic layer \an b k 'y X
thicknessh=b - a
KLt 7k K; K;
y=b -

vy

Fig. 4.2. Geometry of the fluid-solid bilayer pla¢ problem. Lower-casek, tr are respectively the
wave numbers of the longitudinal, shear and fluid prtial waves, capitalK,_t¢ are the corresponding
vertical wave numbers, andk is the wave number of the guided wave.

The ideal fluid can be treated similarly than thesec solid, except that fluid only
sustains longitudinal waves. As in the solid we fad partial waves, the fluid overlayer
increases the number of partial waves by two (F23.4

The wave equation for the fluid is given by

»_ 1 0% _
[D (cF)Zatzj% 0, (4.12)

where ¢ is the scalar potentiabs = Ag/o- is the bulk velocity, andlg and g- are
respectively the bulk modulus and density of thedfl The scalar potential can be
expressed analogously to Eq. (4.4a), when replatiagsub-index. with F. The vector
potential ¢ = 0. The corresponding displacemeuis strainsg;r and stressesj= can be
obtained from Egs. (4.2), (4.6) and (4.5).
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The six boundary conditions that must be satisdied

Oy - =0

Uye oy =Yy

UWF‘y:a s (4.13)
Tyl = 0

Jyy‘y:a+h -

Jyz y=a+h =

These boundary conditions yield six boundary caemdiequations that can by expressed
in the matrix form

[G{C}=0, (4.14)
where [5] is the global matrix and@} the vector of six unknown€;, i = 1,...,6. The
elements of the matrix3] are given by

Gy, = Ak G, =0

G,, = A K2 G, =0

G, =0 G,, = —24KK Xt

G,=0 Gy, = 24KkK e

G, =0 Gy = /J(KTZ _ kz)eiKTa

G, =0 | Gy = ﬂ(KTZ _k2)e—iKTa

G,, = K. e"? G, =0

G,, = _KFe—iKFa G., =0

G,, = —K ¥ G, = (/“(E + 2#KE)eiKL(a+h)

G, =K e G, = (AKZ +2uK 2 g @D

Gys = —ke"® Gy = 21KK, glkr(@h

G, = —ke K2 Gy, = _ZM(KTe—iKT(a+h)

G,, = A kZe"+? G, =0

G,, = A kZe™ G, =0

Gy, = _(/“(E + Z/KE)eiKLa Ges = ZIL‘kKLeiKL(aJrh)

Gy, = -[Ik2 + 2u4 2)g e Ge, = —21KK e (4.15)

G, = _ZpkKTeiKTa Gy = _,U(KTZ _ kz)eiKT(a+h)

G, = 24kK. e ka Gq, = —,U(KT2 _ kz)e—iKT(am)_

Equation (4.14) is satisfied when the determindrthe global matrix 5] vanishes. The
dispersion equation for the fluid-solid bilayer ¢hns be written as
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det(G(a), K,Ce,CL,Cr a,h, o ,,0))= 0. (4.16)

wherec, andcr are respectively the bulk longitudinal and shesoeities,p the density,
h the thickness of the solid substrate,the bulk velocity, o the density and the
thickness of the fluid overlayer. The roots of E16) must be solved numerically.

4.3 Effect of anisotropy

The anisotropy of cortical bone has been studiedeweral researchers and experimental
results for the anisotropy of the elastic constdr#tge been reported [5, 39, 81]. Long
bones can be considered transversely isotropicatbotoopic. In addition, the effect of
anisotropy on the propagation of guided waves if Ww®own e.g. in non-destructive
testing of composite laminates [87, 80, 69, 70,. 34pwever, the incorporation of
anisotropy in the guided wave model of bone isegaupexplored.

This study did not include an extensive consideratdf bone anisotropy. We,
however, briefly comment here, how to incorporatsatropy in the Lamb wave theory.

The fundamental difference between the treatmeniva¥e propagation in an
isotropic and an anisotropic medium is that indhesotropic case the governing equations
of motion cannot be expressed as two simple equaties Eqgs. (4.3), by substituting the
displacements; to the equations of motion using the Helmholtzasegosition, Eq. (4.2).
As it is not convenient to use this so-called mdthof potentials (Helmholtz
decomposition is a function of the scalar and wvegotential) for the anisotropic
materials, a more general solution is often comsmi§87].

For zero body forces, the propagation of elastiz’esain anisotropic media is
governed by the equation [87]
0°u 0°u,
C. = k = L 4.17
ijkl anXI p atz ( )

whereCjy is the elastic tensor, which defines the elasticstants and the anisotropy for
the medium. A single guided wave mode in an aropadrplate is composed of six partial
waves (instead of four for an isotropic plate), edalisplacements can be expressed as

u, =a; explik(z+1,y)lexp[iat], (4.18)

where theg; are the amplitudes arg= ky/k; is the ratio of vertical to axial wave number.
Each of these partial waves satisfies the homogenEq. (4.17), and the substitution of
EqQ. (4.18) into Eq. (4.17) allows to determine U%Tor each partial wave modes= 1,

2, ..., 6. Requiring traction-free boundary condifiagy, = ¢y, = gyx = 0 at the upper and
lower boundaries of the plate, then finally yietds characteristic dispersion equation for
an anisotropic plate [87].



25

4.4 Effect of tubular shape

The problem of guided waves in tubes has been ia tdpconsiderable interest in non-
destructive testing [112, 64, 96, 107, 108, 80,418,4, 67, 34], but no extensive studies
have been made considering the bone application.

Fig. 4.3. Geometry of the free tube problema is the inner andb the outer radius.

The exact solutions to the axially propagating gdidvaves in hollow traction-free
tubes were first published by Gazis [29], and fokd e.g. by Graff [32], Pavlakovic [80]
and Rose [87]. In tubes the guided waves must bd#ehaal in three dimensions, whereas
two-dimensional modelling was sufficient for an trepic plate. It is convenient to
consider the tube problem in cylindrical coordisated andz (Fig 4.3).

The traction-free boundary conditions are

0,=0,=0,=0 atr=aandr=h. (4.19)

13

The assumed radial, circumferential and axial dispinent components can respectively
be given by

u, =U, (r)cosnécosit +k2) ,
u, =U,(r)sinnécoset +k2), (4.20)
u, =U,(r)cosndsin(at + kz),

where n = 0, 1, 2, 3, ... is the circumferential ordend U,, Ug and U, are the
corresponding displacement amplitudes composed efs& and modified Bessel
functions.

When considering the axial transmission, i.e. wangpagation along the long axis
of the tube, the guided waves modes can be dividtedhree classes [112, 96]:

longitudinal modes L(0, m) (axisymmetric modes),
torsional modes  T(0,m) (axisymmetric modes),
flexural modes F(n, m) (non-axisymmetric modes).

Heren=1, 2, 3, ... is the circumferential order and- 1, 2, 3, ... is the number of mode
[87]. The counterpart of the fundamental antisymiogilfate mode (AO), which we have
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mostly been interested in regarding the bone agidic, is the fundamental flexural tube
modeF(1,1) (hereafter referred to as F11).

The dispersion equation for the hollow traction-frelee can be expressed as
det{G1)= 0, (4.21)
where [G] is a six-by-six global matrix. The first three rewf the matrix elements are
[87]:
G, =[2n(n-1) - (B* -k*)a’]Z,(aa) + 2y,aaZ,,,(aa),
Gy, = 2KBa°Z,,(B2) ~ 2Kka(n+1)Z,., (),
G, = —2n(n-1Z, (Ba) + 2y,n5aZ,.. (),
G, =[2n(n-1) - (8% -k*)a’W, (aa) + 2aaW,,, (aa),
G, = 2y,kBa’W, (Ba) — 2ka(n + YW, ,, (Fa),
G,; = —2n(n-1)W, (Ba) + 2npaWw,,, (5a),
G,, =2n(n-1)Z (aa) - 2y,naaZ, ., (aa),
Gy, = ~KBa’Z, () + 2ka(n +1)Z,.,(5a),
Gy, =-[2n(n-1) - f*a*1Z,(Ba) - 2y,BaZ,..(/4), (4.22)
G,, = 2n(n-1YW, (aa) - 2naaW,,, (aa),
G,s = —¥,kBa’W, (Ba) + 2ka(n + )W, ,, (Sa),
G, = -[2n(n-1) - B*a°IW, (Ba) - 2aW,,, (a),
G,, = —2nkaZ (aa) + 2y,kaa’Z ., (aa),
G,, =-nfaZ,(Ba) +(B° -k*)a’Z,,.(fa),
G,; = nkaz, (fa),
G,, = —2nkaW (aa) + 2kaa®W.,, (aa),
Gss = —y,nBaW, (Ba) + (87 —k*)a’W, ., (5a),
G, = nkaW,(fa),

where Z, and W, represent incoming and outgoing Bessel functidngs the axial
wavenumbery one of the Lamé constants? =afic® - I, £ = aflci? - I, a = (ja?))*,
and 8 = (|F])”* The remaining matrix elementS,; to Gg, are obtained from elements
G111 to Gze by replacinga with b in Eq. (4.22). The proper criteria for choosing Bessel
functions can be found in Table 4.1. The incoming evdy can be substituted by the
Bessel functiord, or modified Bessel functioh, and the outgoing waw&/, by the Bessel
functionY, or modified Bessel functiol,. Parameterg and s account for differences in
the recurrence relationships of different Bessetfions (Table 4.1).

The roots of Eq. (4.21) yield the dispersion relagioha free tube and they must be
solved numerically. The principle of a numericalui@n routine is described in Section
4.5.



Table 4.1. Criteria for choosing the appropriate Bssel functions.

@>0andf >0 @<0andf >0 @ <0andf <0
yi=1 yi=-1 yi=-1
Y2=1 Y2=1 y2=-1

Zn(ar) = Jn(ar) Zn(ar) =ly(ar) Zn(ar) =ly(ar)

Wh(ar) = Yn(ar) Wh(ar) = Kn(ar) Wh(ar) = Kn(ar)

Zn(fr) = () Zn(fr) = In( ) Zn(fr) = In( )

Wh(S) = Yo(S) Wh(5) = Yo(S) Wh(5) = Kn(A)

27

4.5 Implementation of numerical solution

The dispersion equations of guided waves, such asA(B)j cannot be solved analytically
but a numerical solution must be used. In orddintba point on a dispersion curve, a root
of the characteristic equation (Eq. 4.9) must bedo root corresponds to a point where
the determinant of the complex-valued global maif®} is zero. The coefficients of
matrix [G] depend on the geometry of the system (e.g. paicknessh), material
properties (e.gc. andcy), frequencyf, real wave numbék and attenuation coefficiemt.
The latter thred, k anda, must be varied in order to find valid roots.

If the materials are elastic and the waveguidersitiered as free in the vacuum, as
it was the case in this study, then there is no feaynergy to leave the system and the
attenuation will be zero. This simplifies the roeasch as the roots will be real. In the case
when attenuation is involved, the roots will be bex and a more complicated two-
dimensional root search routine is required. Thegimay part of the complex wave
number corresponds to the attenuation coeffiagent

Figure 4.4 illustrates one example of a surfaceesponding to the magnitude of
det([G]) drawn in logarithmic absolute scale. The minimbserved in this surface
correspond to the rootscy(fi) of the dispersion equation, and they determine th
trajectories of the dispersion curves. The phaseciteds C, can be obtained from the
wave numbers by, = 2mf / k, and it is a matter of choice whether to consither
problem in terms o, ork;.

An efficient method used for tracing the trajeatsriof the dispersion curves was
adopted from Lowe [59] and Pavlakovic [80]. The mauare was started with a frequency
sweep, followed by curve tracing routines. The fexgry sweep sought for the minirha
of abs(det(@])) (Fig. 4.1) for giverc, ork, and then the exatwere determined using the
Newton-Raphson algorithm. The points obtained ftbenfrequency sweep were used as
the starting points in tracing the individual cuisvén the curve tracing routine, the starting
point was used as the first initial guess, andhasnumber of obtained roots increased,
linear or quadratic extrapolation was used for utet) the next points that fall on the



28

trajectory of the sought dispersion curve. The usextrapolation made this process
efficient and robust, increasing the precisionhef initial guess.

The curve trace yielded the dispersion curves imgeof f, k, and c,. The
corresponding group velocities were obtained{sy 2ridf / dk.

Some examples of the dispersion curves for pldted-$olid bilayer and tube
structures are shown in Figure 4.5. The curves wengputed using parameters similar to
those of cortical bone.

2000

2000

Frequency (kHz)
Phase welocity {mis) o o

Fig. 4.4. The magnitude of the determinant of theglobal matrix [G] illustrated in logarithmic
absolute scale. The minima of the surface correspdnto the roots of the dispersion equation and
determine the dispersion curves.
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Chapter 5

Experimental and numerical methods

5.1 Device

Experimental measurements were performed using &b pise transmission scanner
with a pair of unfocussed low-frequency contachsbucers. The transducer diameter was
approximately 5 mm. The transducers were orientagedendicularly to the surface of the
object to be measured and ultrasonic gel was appbea coupling agent. The vertical and
lateral position of each transducer could be adgishanually and the axial position
(scanning direction) using computer controlled gegpmotors. The contact pressures
between the transducers and the specimen were orehitising two precision load cells
(Sensotec Model 31). During the scan, the tranemiths kept fixed and the receiver was
moved away from the transmitter in steps (Fig 5T¥pically the measurement was made
at 40 transmitter to receiver distancesnging from 20 to 50 mm corresponding to step
size of 0.75mm. The receiving transducer was, iacgffdragged along the surface of the
object to be measured with acoustic coupling maiethby the presence of ultrasonic gel
and a near constant contact pressure. Lateral @ositas not adjusted during scans. The
transmitter was excited by a square wave pulsemgipatrics 5077PR) yielding a signal
bandwidth of 50 to 350 kHz (-20dB). The receivedaigvas amplified and then digitised
with a PC-based digital oscilloscope (National imstents 5102) sampling at 10 MHz and
averaging over, typically, 100 acquisitions. Theereed distancer] - time ¢) signal
matrix was then visualised as a so-callet] iagram (Fig 5.2), in which the intensity was
represented conveniently using an absolute-valuey srale.
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Fig. 5.1. a) Schematic diagram of the axial scanndevice, and photographs of b) an in vitro and cjn
Vivo measurement.
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Fig. 5.2. Atypical €,t) diagram (human radius in vitro).
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5.2 Methods of analysis

In the §,t) diagrams two distinct wave modes were consistastiserved (Fig. 5.2). The
first of these (Wave 1) was a fast first arrivingnal (FAS) and the second (Wave 2) was
slower and corresponded to the fundamental antiggtnmnlLamb mode (AO). The
velocities of Wave 1v) and Wave 2\;) were determined in the distance-time plane. In
addition, two-dimensional spectral analysis wasdiuse a more precise determination of
\o.

5.2.1 Distance-time analysis

Determination of the velocity in the distance-timpkne consisted of two phases, a)
detection of the time-of-flight§ at the given distances and b) linear regression in the
detected pointsrt;)). This approach eliminated the delay due to overtpgoft tissue as
discussed in Chapter 3.

The time-of-flights corresponding to Wave 1 were edained using a 25%
threshold of the amplitude of the first detectgidak (Fig 3.1). A robust linear regression
based on the least median of squares was thenfosetbtermining the velocity. The
reason for using the robust regression was thahafbme failure points were involved
among the determined time-of-flights, and this silregression, giving lower weights for
these failure points, determined the velocity nret@bly than the ordinary least-mean-of-
squares algorithm.

Determining the time-of-flights for Wave 2 was cmiesably more difficult than for
Wave 1, as Wave 2 was dispersive and interferetthgr wave modes. Therefore,
different approaches for analysing Wave 2 were ldgesl. The time-of-flights were
always determined according to the maxima of theesponding wave front. Sometimes
Wave 2 was strong enough and the time-of-flightsldde read from the recorded raw
(r,t) diagram. Ther(t) matrix could also be processed using strong lpasd- filtering,
which enabled the measurement of dispersion, o.eletermine the velocity at specific
frequencies. When Wave 2 was weak compared tdeniteg waves, then specific group-
velocity filtering and spectrum analysis methodseveeeded for a proper determination
of va.

Wherev; or v, are given without indication of the correspondingquency, the
frequency range frorh= 250 to 300 kHz was used farand that fronf = 100 to 150 kHz
for v..

5.2.2 Spectral analysis

Two-dimensional fast Fourier transform (2D-FFT) haerb used by several researchers
for analysing distance-time matrices similar to dmes measured with the described low-
frequency axial ultrasound scanner [1, 93, 54]. PieFFT method was developed
specifically for analysing signals which consistoekrlapping wave modes that cannot be
separated in the time history of the signal. The B€farates such wave modes in terms of
frequency and wavenumber. In the wavenumber-fregugtane the intensity maxima
correspond to propagating wave modes, and if guwiaees propagate, the locations of
these intensity maxima are supposed to correspmrichjectories of guided waves (Fig.
5.3). Thus, the two-dimensional spectral analyslswal direct comparison between
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experimental results and theory. Moreover, deteation of the velocities and dispersion
of the identified wave modes is as well possible.

The 2D-FFT was based on the two-dimensional Fotraeisform, as given by [1]

vk B) =[] u(r e drdt, (5.1)
where
u(r,t) = A(w)e' @9 (5.2)

is the displacement on the surface of the structassuming that a harmonic wave is
propagating) A(«) is a frequency-dependent amplitude constant, 27f is the angular
frequencyk is the wave number anfithe phase. The measured)(matrix represented
the displacemeni(r t).

The 2D-FFT made for the,f) matrix was often expressed as functions of phase
velocity and frequency. The transformation from emwmberk to phase velocitg, was
made point-by-point as, = 27f /k (Ref. V) (Fig. 5.3).
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Fig. 5.3. 2D-FFT shows a ridge of intensity maximanat corresponds to a propagating wave mode.
This result is for a free aluminium plate.

5.2.3 Inversion scheme

Inversion schemes have been used successfullpé&tysang guided wave data in different
applications of non-destructive testing (e.g. Kammnal [44]) and also in one bone
measurement study by Lefebvre et al [54]. The psgpof an inversion scheme is to
determine one or more properties of the medium dbase the measured guided wave
ultrasound data. Karim et al introduced a methodlich the dispersion equation of the
given structure was minimised in terms of the &astodulus in a large number of
experimentally measured phase-velocity-frequendaptpolefebvre utilised this method
using plate theory for axial transmission measuregmef bovine bones, and determined
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estimations for the Young’s modulus. These appreschowever, require a broad-band
multi-mode guided wave measurement.

We developed a fairly different approach because seefar, only measured one
genuine guided wave mode (A0) and a reliable ifieation of this mode required the use
of selective time domain filtering. In addition, roessential interest here was to clarify
how well the measured AO Lamb mode could refleetttiickness of a plate or a cortical
wall. Therefore we did not attempt to determine Yfoeing’s modulus, as yet, but made
the inversion in terms of thicknebsvith given material properties (eq. andcy).

While the time-domain (or group-velocity) filteringhcluded adjustable input
parameters, the inversion scheme was actually derexi as a theory based signal
processing feedback loop (Fig. 5.4). The prelinynarput parameters were material
properties (e.gc. andcr), thicknessh and time delayty. The output parameters were
(ve,f), h and ty, wherev. were the experimental phase velocities at cormdipg
frequencied;; andh andty the fitting parameters. The fitting was made byangof the
minimisation

min[ZN:

i=1

Ve(fi ’td)_cp(fi’h)

j, (5.3)

wherec,(fi,h) were the computed theoretical phase velocities. dpproach can be applied
either using an assumed constagptvalue or allowing tocy to vary as a function of
frequency. In general, a constary value was used. The constant was typically
determined according to the average or maximuml levethe corresponding group
velocity curve.

Our inversion scheme was thus tightly connectech wiite identification of an
experimental wave mode, yielding more reliable phaslocity trajectory \i,f;) than the
2D-FFT alone. Therefore we called this process assthe selective 2D-FFT (Ref. V).

(r,t) matrix

tq ¢

4|_> Group velocity
| q filtering
cq(f) or cq <
t 2D-FFT
Computation of ~
C, Ccr,h —P theoretical Ch=alKk
curves (cp,f) matrix
cp(f)l Th . !
Theory fitting Determination of
= intensity maxima

v
(ve',f)

Fig. 5. 4. Principle of the inversion scheme andgsial processing feed back loop.
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5.3 Finite-element simulation

Analytical modelling of guided waves is possiblelyonn simple uniform sample
geometries, such as plates and tubes. Thus thet effesome relevant bone properties,
such as a non-symmetrical shape, porosity and def@cist be modelled using numerical
simulation of wave propagation. The methods of micaé modelling date back to the
1940’s, though the more active interest in theisailon of these methods has arisen
together with the rapid development of computetsrahe 1960’s [113]. There are two
principal approaches of numerical modelling, firdi6ference and finite-element method
(FEM) [1, 24]. Since then, it has been shown tHaWiHs more effective and accurate in
terms of modelling guided waves, as the free boueslare better accommodated with
this method [1, 66, 93]. Also, the axial propagatias the lateral wave in cortical bone has
been modelled using a two-dimensional [11, 72] (Refand three-dimensional finite-
difference method [12]. In contrast with some poeri results, the finite-difference
method (more specifically the so-called Virieuxfelience method) was found as to be the
most accurate approach for simulating the fluidesahteraction in immersed bone
samples [12]. However, it must be noted that comparof these two approaches is not as
simple, as plenty of different modifications of tfieite-difference and finite-element
method have been developed for the needs of vaaigpiscations [24].

Several commercial general-purpose programs arellabka for numerical
modelling, such as ABAQUS/Explicit (ABAQUS Inc., Wack, Rhode Island, USA)
[93], and Wave2000 Pro (CyberLogic Inc., New YdUdSA). Sometimes these programs
may, however, lack features that are required fp@csic wave propagation problems. It
may thus be more flexible to use a custom madejaEed wave propagation code.

Our purpose was to simulate the low-frequency sdiné&c guided wave
measurements in simple two- and three-dimensiommattsres in order to validate the
measurement principle against analytical theord, tanmodel the properties of bone that
affect the measurement but are not possible to madalytically. We started the
simulations using Wave2000 Pro (Ref. 1), based lon finite difference method, but
encountered some difficulties in observing guideav@s. Therefore, we began to seek
custom-made software to handle the two-dimensisimallation of guided waves in a
traction-free isotropic plate. This software waseleped in collaboration with our group
by Erkki Heikkola in a related AKTINUM-project at™M Processes (Jyvaskyla, Finland)
and Numerola Oy (Jyvaskyla, Finland).

The finite-element method was used to simulatevtheation of an isotropic plate.
The plate, denoted b§ , is assumed to be homogeneous and to have unifacknessh
(see Fig. 5.5). Simulations were based on the tweedsional linear elasticity equation

with the plane strain assumption. In this case,displacementi = (ul u2)T Is governed
by the system of equations

0%d
ot?
where A and 4 are the Lamé constants anal the density of the material. These

parameters are connected to the pressure and @begitudinal and transverse) wave
velocities such that

p——uAi-(A+p)0(0m) =0, (5.4)
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A +2,u’ \F (5.5)

The stress tensar(u of the elastic medium is given by
Ty = A0 (1 +€5) + 2ug;, 1, =12 (5.6)

where g; is the Kronecker symbol ang is the linear strain tensor,

5 =it 1=l 1oy Lo (5.7)
oo iz, 2(ox o

The condition on the boundaries of the plate ishefform 7(i)fi = g, where i is
the outward unit normal to the boundary. The rigatd side of the boundary condition is
zero on all other boundaries except the transdinterfacel”, . This case corresponds to
the interface of a solid with air. On the transduicgerface the second component of
vector § is a time-dependent signal corresponding to vidmatf the transducer in the

direction perpendicular to the plate. This sigmaiates the vibration of the plate, and the
frequency band of the signal is bounded to thewatel 00-300 kHz.

The signal in the receiver at timhés measured by computing the following integral
over the receiver interfadg, :

j G(t) | ds (5.8)

Q

Fig. 5.5. The plate and locations of the transducand the receiver.

Attenuation of the vibration is modelled by addimgss proportional damping to
Eq. (5.4). This assumption leads to the systengoétons

‘; 24 20',0? —ubu-(+ p)o(Om) =0, (5.9)

where the attenuation parameter> 0 determines the rate of decay with respect to mass
and velocity deformation.

0

The finite-element method requires the followingnfalation of the elasticity
equation. Find the displacement figidsuch that

2
lpgt?de+ 2a£_[,0‘3?@7dx+jr(u):£(v)dx:jg Wds (5.10)

Q I
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for all displacement fieldsy This equation holds at all timds and time-dependent

simulation is started from the initial conditioi§0) = 0 andaua—g[o) =0,

Spatial discretisation with the finite-element methrequires a triangular mesh for
the plate. The number of nodes in the mesh is éenloy N. Discretisation leads to the
semi-discrete equations of motion

2
OV Loam Y sku =g, (5.11)
ot ot

where the2N x 2N -matrices M and K are the finite-element mass difthass matrices.
The vector G corresponds to the source signaind vector U contains the nodal values of
the displacement components.

M

The standard central-difference method is used isoretise the equation with
respect to time. If we denote the discretisatiaretstep byAt, and the solution U at time
t. =iAt by U,, then the equation for computing the solutldp, from the two previous

time steps is given by
(1+Ata)MU,, =M (2U, -U,,)+AtaMU,, - At’KU, + At G,. (5.12)

Each time step involves the solution of this linsgstem, which is obtained by Cholesky
factorisation of the mass matrix M. The centrafediénce method is second-order
accurate with respect to time, but it is only ctiodially stable. In other words, the time
step At needs to be smaller than a given threshold depgrah the finite-element mesh
density and the wave velocity. If the mesh is mdinalso the time step needs to be
reduced to keep the time iteration stable.



Chapter 6

Results

6.1 Validation of the measurement principle
(2D simulations for plates)

A two-dimensional finite element approach was usedimulate wave propagation in a
free plate. Source and receiver geometry corresgabnal that of the experimental axial
transmission system, and the frequency range oshlogt transmitted pulse was 50-350
kHz (-20 dB). The objective of these simulationsswa investigate the nature of the
propagating signals in the proposed low-frequengyalascanning method. More
specifically, the aims were to measure the velesitof the wave modes present, assess
their dispersion and relation to plate thickness] &0 compare the simulated results to
those expected for Lamb waves in plates.

Material properties corresponding approximatelytiiose of an isotropic bone
(Young’s modulusE = 23.8 GPa, Poisson ratio= 0.3 and density = 2.0 g/cm) were
chosen as the simulation parameters. Accordinggt 8.1) and (3.2), the corresponding
bulk velocities were, (14000 m/s andy 12140 m/s.

Figure 6.1 shows {t) diagrams for simulations in plates with thicknesmsging from
1.0 to 4.0 mm. The fast Wave 1 (First Arriving SigoalFAS) and a slower Wave 2 can
be identified in all diagrams. Wave 1 had a lowaensity than that of Wave 2. The
velocity v; of Wave 1 ranged from 3616 to 4006 m/s for thidgesh = 1 - 10 mm,
respectively (Fig 6.2). The mean frequency of Wawea$ estimated roughly as 300 kHz
by looking at the pulse lengths of the first amiyisignal. Wave 2 was strongly dispersive
in a thin plate, the higher frequency componentw/iag first and the lower frequency
ones arriving later, considerably delayed. In aktlplate dispersion was much weaker, as
expected. The velocity, (100 kHz) ranged from 790 to 1800 m/s for= 1 - 10 mm,
respectively (Fig 6.2).
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Fig. 6.2. FEM simulation results for the phase vetities of Wave 1, Wave 2 and fundamental Lamb
modes as functions of the thickness to wavelengthtio.

Velocity v; was consistent with that of the lateral wave pgapag at the bulk
velocity when thickness to wavelength ratidA) was greater than 0.5. Fofd < 0.5,v;
decreased towards the phase velocity of an SO Laodentor a 1 mm plate = 3616
m/s, corresponding exactly to the saturation l¢ffel 0) cso = (E/(o(1-14)))” 03616 m/s
of the SO mode in the thin plate and low frequenoyts$ [32]. Velocity v, was fairly
consistent with the phase velocity of an A0 Lambdmdadhroughout the simulated
thickness range.

Using 2D-FFT within the frequency ran§e 50 - 350 kHz, clear intensity maxima
curves were obtained (Fig 6.3). The intensity maxif®',f) (diamond markers) were in
excellent agreement with the computed phase vedeaif the AO Lamb mode (solid lines,
computed for the same material parameters and ghliateness as used in the simulation).
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Fig. 6.3. The locus of the intensity maximum inhie (v,,f) plane for FEM simulations of isotropic bone
plates with thicknesses of aj = 1.5 mm and b)h = 4.0 mm.
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6.2 Validation of the measurement system (results forlptes)

The low frequency axial transmission device waslusaneasure a range of acrylic plates
in order to confirm the presence of two propagatwayes, and to assess the velocity of
these waves as a function of frequency and platkrtass.

Perspex acrylico{. = 2730 m/scr = 1325 m/s angh = 1.186 g/cmy corresponding
to Young's modulusE = 5.60 GPa and Poisson ratio= 0.347) was chosen as the
phantom material. Twelve plates with thicknessesgirsg from 2 to 24 mm were
measured. The plate thickneeswas measured using a caliper. For each plate the
ultrasound scan was repeated three times.

The {,t) diagrams for the acrylic plates were similar boge for the numerical
simulations. Two wave modes, Wave 1 and Wave 2¢weéserved consistently (Ref. I).
Wave 1 (estimatetl= 250 kHz) was consistent with the lateral wavéhiok plates and it
tended towards an SO Lamb modetibt < 0.5 (Fig 6.4, cross markers). Wavef 2 (100
kHz) was consistent with an AO Lamb mode fdd < 0.5. However, in thick plates the
observeds, was affected by the SO as well as the AO mode tlandesults were not clear
for h/A > 0.5 if no selective filtering was used (Fig 6léf markers). When using selective
time domain filtering (or group-velocity filteringy. as a function of frequency followed
more precisely the dispersion curve of the AO malde for thick plates (Fig 6.4, circle
markers).

When using the selective 2D-FFT and inversion scheitien the frequency range
= 30 - 350 kHz, clear intensity maxima'(f;) (diamond markers) were obtained for thin as
well as for thicker plates (Fig 6.5). These experntakresults were in a good agreement
with the computed dispersion curves of AO modeiddoies).
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Fig. 6.4. Experimental results for acrylic platesVelocitiesv,, v,, and phase velocity of fundamental
Lamb modes are shown as functions of the thickness wavelength ratio.
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Fig. 6.5. The locus of the intensity maximum inhie (v.,f) plane as measured for acrylic plates with
thicknesses of ahp = 2.2 mm, and b)h = 12 mm. Diamond markers denote the measured velbgc of
Wave 2 as determined from the intensity maxima (whé¢) and the solid lines show the respective phase
velocities of the plate AO mode. Selective 2D-FFT waised.

The inversion scheme used yielded an estirthafer plate thickness, which was in
excellent agreement with the true plate thickriessthe thickness range 2 to 8 mm (Ref.
V). For thicker plates there is less dispersionhia phase velocity in the investigated
frequency range, and therefore thickness estimatasinot as accurate as for thin plates.

6.3 Effect of sample geometry (results for tubes)

The objectives of this study were to clarify hoiuaular shape of the sample affects the
measured velocitieg andv,, and also how reliably the wall thickness of thbe can be
estimated when using plate theory in the inversidreme.

Acrylic was again used as the phantom material. Fallow tubes with an outer
radius ofb = 10.0 mm and a wall thicknessanging from 2.2 to 8.0 mm, were measured
such that each ultrasound scan was repeated thres t
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Fig. 6.6. The velocity of Wave 1 as measured fociglic tubes and plates of varying thickness.
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The velocityv; measured for tubes showed a similar dependenaeatirihickness
as that measured for plates (Fig 6.6). Howewewas about 4% higher for tubes than for
plates when the thickness was less than 6 mm. Whieethickness was 6 mm or greater,
then the difference was not clear between the utededor plates and tubes.

Dispersion curves for velocitieg, were determined using a selective 2D-FFT
assuming plate theory in the inversion scheme. Wherube-wall thickness was small
compared to the outer radius of the tbbéhen the fundamental flexural tube mode (F11)
was fairly consistent with the trajectory of the plate mode in the investigated frequency
range (Fig 6.7). Indeed, the experimental velociteepiare markers) corresponded fairly
well to those of F11 (or AO) when the tube wall vifais (e = 2.2mm). When thickness
increased with respect p thenv, was higher than that of the AO mode. Corresponging
the phase velocity of F11 increased as well, bemgatisfactory agreement with the
experimental results.
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Fig. 6.7. Experimental velocities for Wave 2 as masured for hollow acrylic tubes, and the theoretich
curves computed with the corresponding tube dimensis. Experimental velocities were determined
using a selective 2D-FFT together with an inversionceeme based on plate theory.
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The inversion scheme used also provided wall-trésknestimate$. (Fig 6.8).
When using the plate model (A0 mode), the obtathétknessh, was in good agreement
with the actual wall thicknessonly whene/b was small € = 2.2 mm). For e > 2.2 mrhe
> e, and the error betwedn ande increased with increasing ratsfh, being 60% at =
8mm. When using the tube model (F11 mode) and coingfethe wall-thickness estimate
he agreed, with a difference of at most 10%, withtttue thickness in the thickness range
e=2.2 - 6.0 mm, and with a 15% difference for 8.6 mm. Using variabley improved
the precisions offie slightly. At this stage of method development tise of variabley in
the inversion scheme has not been optimised, haweve

6.4 Effect of irregular cross-section
(results for anatomically shaped bone phantoms)

Measurements were made with the axial transmissievice in phantoms with an
anatomically realistic (non-spherical) cross-sewloshape in order to clarify how cross-
sectional geometry affects the measured veloaiti@dv,, and the thickness estimdtg
(using plate theory).

Polyvinyl chloride (PVC,c. = 2400 m/scr = 1060 m/s angb = 1.4 g/cri) was
chosen as the phantom material as it was easynofa@ure in an anatomical shape. One
drawback of using PVC is that its longitudinal ahéar velocities are substantially lower
than those in bone, and this must be rememberea wherpreting results from such
phantoms. Two tubular bone phantoms had a cirateéatral hole and an outer cross-
sectional profile mimicking that of the human tibfa "thick” and "thin” phantom were
manufactured, having medullary canal diameters5ofmin and 19 mm, respectively. The
cross-sectional profiles of the two phantoms arewshin Fig. 1 of Ref. Ill. Ten
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measurement sites were marked around each phadtbeach measurement site, the
thickness of the phantoms along a line normal ® gbrface of the inner circle was
measured using a caliper (the mean value of thessuarements). In the "thick” phantom
local thickness determined in this way varied frér@ to 13.3 mm, and in the "thin”

phantom it varied from 2.6 to 10.2 mm.

For PVC plates results corresponding to those olddimeacrylic plates were first
measured for calibration purposes.

For anatomically shaped bone phantoms the dependd#ngeon the local radial
wall thickness was confirmed. As expected, decreased with the decreasing wall
thickness (Figs. 2 and 3 of Ref. Ill). The measurgdias found to vary by 17.1% and
21.4% depending on the location of the measuritg aiound the “thick” and “thin”
phantom, respectively. Measured was strongly linearly correlated with the local
thickness 1? = 0.81,p<0.001) (Fig. 3 of Ref. lIl).

Correspondinglyy, (at f=100kHz), as determined using the selective 2D-FFI an
the inversion scheme (plate theory), correlateedality with the local thickness*(= 0.76,
p<0.001). The value of, (at f=100kHz) varied by 18.8% and 33.0% depending on the
location of the measuring site around the “thickd&thin” phantom, respectively. The
local wall thickness estimat®, obtained from the inversion scheme, correlatedally
with the actual local wall thickne$s(r? = 0.78,p<0.001), thougth. was 30% lower than
h (p<0.001) (Fig. 6.9). The trend of this differenisecontradictory with the expected
difference between the plate and tube models (Bigs.6.8), and the explanation remains,
as yet, inconclusive.
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Fig. 6.9. a) Wall thickness estimatels, for the “thick” (diamond markers) and “thin” (squ are
markers) anatomically shaped bone phantom as a fution of measurement site. Corresponding local
thicknessesh are shown by dashed lines. b) Correlation betwedhe ultrasound thicknessh, and local
wall thicknessh (results for two phantoms).



46

6.5 Effect of overlying soft tissue (results for immersd plates)

Immersed plate was measured using the axial trassmni device in order to test if
immersion affects the reliability of measuring Waleto test if plate model yields a
satisfactory interpretation of Wave 2 in this cased to evaluate the usefulness of the
fluid-solid bilayer model so as to provide an imyged interpretation of Wave 2.

Aluminium plate b = 4.0 mm,c. = 5950 m/scr = 3120 m/s angb = 2.7 g/cm,
corresponding to Young’s modullis= 68.9 GPa and Poisson ratic= 0.31) was chosen
as the bone phantom and watgr £ 1500 m/s) on top of the plate played the roleait
tissue. All measurements were made underwateranying immersion depths of 0 to 12
mm. The thickness of the thin overlying water layers carefully adjusted according to
the area of the water tank and the volume of tive water added. Transducers were hold
on top of the water, and their vertical positiorsveantrolled within 0.1 mm.

The velocity of Wave 1 wag = 5383 ¢v = 2.5%) for immersion deptles< 8 mm
(Fig. 6.10). For a > 8 mm, a reliable determinatidrvowas not possible. For a dry
aluminium platev; = 5533 €v = 1.2%). The mean error when measuringfor an
immersed plate was thus -2.7%. The thickness teelgagth ratio wak/A = 4.0 mm[B00
kHz / 5500 m/s = 0.22, thus can be assumed to be lower titarr 5950 m/s and slightly
greater thamso (h,f - 0) = E/(o(1-14))” 05313 m/s [32].
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Fig. 6.10. Velocities, (triangle) and v, (diamond) as functions of overlayer thickness. Ténvelocities
of the SO and AO Lamb modes, computed for similarlptes, are shown for comparison.
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From Eg. (3.12) we recall that the overlayer mustthiener thanamax = rmin [1-
(ceivi)?])” [2(1+(ce/va))] ™, wherece is the sound velocity in the fluid overlayer andthe
signal velocity in solid. Whenmi, = 20 mm,v; = 5500 m/s andg = 1500 m/s, theBmax =
7.6 mm. In practice, howevev; should be determined correctly if it is identifiad the
first arriving signal at least within 2/3 of theasming rangerg;; = 30-50 mm). Thusmi, =
30 mm yieldsamax= 11 mm.

It was not possible to measuxe reliably through a thin overlayer using the
distance-time analysis or ordinary 2D-FFT. Only thee wf the selective 2D-FFT
approach yielded a satisfactory identification \Wéave 2 (Ref. V). Using plate theory and
constantcy in the inversion scheme, the 2D-FFT yielded the mesdocity vo = 1600 m/s
(cv=14 %), af = 100 kHz fora=0 - 12 mm. Foa =0 - 4 mmy, = 1663 m/s¢v= 1.5
%). For a dry platev, = 1705 m/s ¢v = 1.0 %) and the computed phase velocity
(f=100kHz) iscap = 1719 m/s.

The inversion scheme (plate theory) yielded a featisry estimate, of the plate
thickness for up ta = 6mm. For larger immersion deptasthe plate thickness could not
be determined using plate theory in the inversoreme (Ref. V).

The selective 2D-FFT approach was also tested usadjrst wave mode (BL1) of
the water-solid bilayer model. BL1 required the wdea variablecy(f) as the group
velocity changed considerably at the investigateduencies and thicknesses. The plate (
= 4mm) was measured for immersion deptha efl, 3, and 5 mm, and for parametars
andh their known values were used in the selective 2D-Hpding so, the experimental
dispersion curves for, were qualitatively consistent with those of BL1cc#ated using
the corresponding values afandh (Fig 6.11). Use of bilayer theory in the inversion
scheme (i.e. in the determinationhgf is not possible yet, but will soon become possibl
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Fig. 6.11. Velocities of Wave 2 (markers) as detained using the selective 2D-FFT and variable,
when analysing the results for a 4mm aluminium pla¢ immersed at depths of 1, 3 and 5 mm.
Parametersa and h had their known values. The results computed fortte bilayer mode 1 (BL1, solid
lines) at the same depthg, and the plate A0 mode (dashed line) are shown faomparison.
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6.6 Application to real bone (in vitro)

Human radius specimens were measured using thfiedt ultrasonic devices. The
objectives were to show that Wave 1 (FAS) and Wav@@ guided wave) can be
measured also in an actual bone, that the theorglétes can satisfactorily be used in the
interpretation of the guided wave results, and thattheory for tubes can improve the
interpretation. Another purpose was to verify ttiet two ultrasound velocities measured
reflect bone quantities, such as bone mineral de(BMD) and cortical thickness (cTh).

In vitro measurements were made in collaboratictih Whe Laboratoire d’Imagerie
Paramétrique, Université Paris 6. Forty one4() fresh human radius specimens were
measured at the lateral mid-shaft (45% from th&abend). Three repeated measurements
per specimen were made. The radius specimens wweggldition, measured with two
other axial ultrasonometers, Omnisense (Sunlightiéééd.td., Tel Aviv, Israel), and a
bidirectional axial ultrasonometer prototype (Laddoire d’Imagerie Paramétrique,
Université Paris 6, Paris, France). Both of these césvioperated at around 1 MHz
frequency, being considerably higher than thosel us®ur low-frequency axial scanner.
The actual values of bone mineral density (BMD) amdtical thickness (cTh) were
assessed using peripheral quantitative computeadgraphy (pQCT) (Norland/Stratec
XCT 2000, Stratec Medizintechnik, Pforzheim, Germany)

The low-frequency Wave V(= 3799 m/st 179 m/s) and Wave A= 1280 m/st
142 m/s) were both significantly slower than the F&8asured with the 1 MHz axial
ultrasonometersp(< 0.001). Velocitiesv; and v, correlated significantly with cortical
BMD (r=0.40, p<0.01;r=0.67,p<0.001, respectively) and cTh=0.33, p<0.05;r=0.72,
p<0.001, respectively) (Table 3 of Ref. 1V). The spef sound (SOS) measured with the
French prototype device yielded a relatively highrelation with cortical BMD (=0.72,
p<0.001) and also a weak correlation with cTh (r80.8<0.05), whereas that of the
Omnisense only correlated with the cortical BMD Qu50, p<0.001). In multivariate
regression models (step-wise) was determined best by the combination of cTh and
cortical BMD (? = 0.62,p<0.001), or trabecular BMD and cortical BMD? (= 0.62,
p<0.001). However, all of the FAS velocities (inclngithe low-frequency and both of the
1 MHz devices) were best determined by the corti®ID alone. These results are
described in detail in Ref. IV (note the differenehe notations of velocities).

The low-frequency measurements were also analysed) uhe inversion scheme
and spectral analysis approach. The theoretical &ndl plate models were used with=
4000 m/s,cr = 1800 m/s angb = 2.0 g/cm. In the tube model the outer radibsvas
approximated using the mean radius based on thEdaiss-sectional area measured by
pQCT, yieldingb = 6.28 mmt 0.71 mm. The corresponding wall thickness wascTh =
2.53 mmz 0.50 mm, and the thickness-to-radius ratio was= 0.40% 0.07. From the
latter it can be seen that the radius bones ate gtuiongly tubular, justifying the need for
using the tube model (see Fig 6.7).
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The thickness estimate obtained from the inversicmeme, when using the tube
model, wad, = 2.53 mmt 0.67 mm, and it yielded a relatively high corriglatwith cTh
(r=0.71,p<0.001) (Fig 6.12). In comparison, when using thegmodel in the inversion
scheme, the thickness estimalie £ 4.2 mmz 1.8 mm) did not correspond well to the
actual cTh, but correlation with cThH0.67,p<0.001) remained as significant.
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Fig. 6.12. The thickness estimate. (using tube model) versus actual cortical thicknescTh.

6.7 The clinical application (in vivo)

Human tibia was measured using the low-frequenaegl @anner and one commercially
available axial ultrasonometer (Omnisense, Sunhdédical Ltd., Tel Aviv, Israel). The
objective was to demonstrate that Wave 1 and Wacaralso be measured in vivo,
reflecting the aspects of bone properties. Boneeraindensity (BMD) and cortical bone
thickness (cTh) were assessed using peripheral titatare computed tomography
(PQCT) (Norland/Stratec XCT 2000, Stratec MedizintekhPforzheim, Germany) in the
same site where the ultrasound measurements wele ma

Two in vivo studies were made. In a small pilotdsteight healthy normal and eight
osteoporotic female volunteers were measured ([Refhe osteoporotic group had axial
bone mineral density values, as measured usingahey x-ray absorptiometry, more
than two standard deviations below the normal grédumore extensive study was made
in a hundred and six 12-14-year-old girls (Ref. 1)

The velocities of Wave 1 and Wave 2 were lowerhia osteoporotic group (OP)
than in healthy normal group (N) (Fig 6.13). Howewersignificant difference between
these two groups was only obtained for Wave 2omgarison, neither the speed of sound
(SOS) nor cortical BMD discriminated significantlytiveen the two groups.
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Fig. 6.13. Pilotin vivo results in the tibia of gjht osteoporotic (OP) and eight healthy normal (N)
female volunteers (Ref. I).

Table 6.1. Pearson’s correlations between ultrasnd and pQCT variables for the tibia of a hundred
and six pubertal girls (Ref. Il).

Vi Vo SOSiia BUA
cTh 24 * .28 ** ns A3
cBMD AT R A6 .58 *** .30 **
Vi 57 33 ** 24 *
\ 23 * 25*

* p<0.05; ** p<0.01; *** p< 0.007

In the pubertal girls the velocities of Wave 1 aNdve 2 were, = 3713 (182) m/s
andv, = 1720 (92) m/s. Velocity; correlated significantly with, (r=0.57, p<0.001), and
both of these velocities correlated weakly but sigantly with SOS. Velocities; andv,
correlated significantly with cortical BMDr (= 0.47,p < 0.001 and = 0.46,p < 0.001,
respectively) and weakly but significantly with c{th= 0.24,p < 0.05 and = 0.28,p <
0.01, respectively) (Table 6.1) (Ref. II).
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Fig. 6.14. Soft tissue thickness for the good ampaor fit groups for a) tibia and b) radius. The quality
of fitting was based on the visual judgement of howlearly the Wave 2 was seen in the,{) diagrams
and how well the slope of the fitted line thus wasxpected to correspond to the velocity of AO plate
mode.

Two further in vivo studies were performed in Caian females, one for the tibia
(age 32-90 years, n=65) and one for the radius 22983 years, n=107). However, we
encountered difficulties in measuring Wave 2 rdfiaht least in 1/3 of the subjects
measured for the tibia and in 2/5 in those forrdius. The difficulties were identified as
a consequence of too thick soft tissue on top efttbne (Fig 6.14). In the tibia the local
soft tissue thickness (as measured using the pQCiheasite where the ultrasound
measurements were made) ranged from 4 to 14 #ins.¢l.) between the subjects, and in
the radius from 7 mm to 15 mmX s.d.). As the soft tissue was thicker on tophef t
radius, this partly explains why the measuremerggevalso more difficult for the radius
than for the tibia.

Due to these difficulties in measuring through sbé tissue, we began an extensive
program for explaining the effect of soft tissuedkhetically and to develop more efficient
analysis methods in order to eliminate the adveftect of soft tissue. As yet, we have
tested the plate model (AO mode) with the inversidneme and selective spectral analysis
method for the improved determinationwffor the radius in vivo. This method enabled
an automatic determination of the reliability ofidgd wave measurement based on the
quality of the curve fit according to Eq. (10) oéfRV. As a result, the in vivo radius data
was divided, again, as a good fit (small fittingoerbetween plate AO mode amg n=45)
and poor fit group (large fitting error betweentpl®&0 mode and,, n=62). Indeed, the
soft tissue was thinner for the good fit (9.9 mrB.1 mm) than for the poor fit (11.7mm
3.1 mm) sub-set of the radius data (p<0.01).

In the good fit group (n=45), velocity (as defined using the selective 2D-FFT and
plate model) correlated significantly with the ccat BMD as well as cTh (Fig 6.15). No
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correlations betweew, and the bone quantities were found for the pdagrbup (n=62),
but insteady- yielded a strong correlation with the local sefstie thickness (Fig 6.16).
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Fig. 6.15. Guided wave velocity, (as determined using the selective spectral anaigsand plate
theory for the good plate theory fit group) versusbone quantities for the radius in vivo.

(f=100kHz)
1900 | o ©° _
. o g © r=.63
2 p<.001
— 1700} o
>
21707 g
o
g 1500 |
% o
1300 1 1 1 1 1

4 8 12 16 20 24
Local Soft Tissue Thickness (mm)

Fig. 6.16. Guided wave velocity, (as determined using the selective spectral anaigsand plate
theory for the poor plate theory fit group) versuslocal soft tissue thickness for the radius in vivo.

The cortical thickness estimaltg as determined using the inversion scheme (plate
model), was significantly higher than the actuahc@nd the correlation betweépand
cTh (good plate theory fit group) was slightly lawibut significant) than that ag. These
observations were obviously caused by the comfigitilssues between the simple plate
model and the in vivo problem (as the bone haslantsinape and it is overlyed by a layer
of soft tissue). However, the tube or bilayer medefve not yet been tested with the
inversion analysis of the in vivo data. Further wkneeded to optimise the inversion
scheme for in vivo measurements exploring the ddehl® and bilayer models, but this
was outside the scope of the current work. It mlag e necessary to combine the two

into a tubular bilayer model.



Chapter 7

Discussion

In this study we introduced an axial scanner devigperating at low ultrasonic
frequencies f(= 50-350 kHz), and a method for measuring twoastinic wave modes
(Wave 1 and Wave 2) simultaneously in cortical bosiag this device. The measurement
principle was verified with two-dimensional finiedlement simulations as well as with
experimental measurements for bone phantoms. Wawaslshown to be the fast first
arriving signal (FAS) and Wave 2 was consistent whlh fundamental antisymmetric (or
flexural) guided wave (AO). The effects of tubutarnd overlying soft tissue were
investigated theoretically and experimentally, ane€asurements were made on specific
bone phantoms to illustrate the effect of anatohtbome shape. In addition, we reported
guided wave results for human bone in vitro andiwo - to our best knowledge, as the
first group after Jansons et al [41] and Tatariebal [99].

The finite element simulations and the experimemésdults for plates were in
excellent agreement with the theory of Lamb wavesvall as with the previous finite
difference simulation results by Bossy et al [12] degarding the thickness effects of
FAS. Wave 1, corresponding to FAS, was consistent thigHateral longitudinal wave if
thickness-to-wavelength ratio wasl >> 0.5. Whene/A was close to 0.5, then a clear
decrease in the velocity of Wave 1 was observed varene/A << 0.5 Wave 1 was close
to or consistent with the fundamental symmetricdgdi wave (S0). In addition, a slight
increase inv; compared to its high-frequency saturation vatug \fas observed at around
e/A = 0.7-1.0, which was as well in agreement with 8&s results. According to our
measurements for human bone, the cortical thickvased in the range 2.5-6.5 mm in the
tibia and 1.0-4.0 mm in the radius. When measuweaye 1 { = 250-300 kHz), these
ranges correspond roughly é) = 0.2-0.5 ana&/A = 0.1-0.3, respectively, indicating that
Wave 1 is expected to be sensitive to corticakiiness in the tibia, and that in the radius
the thickness sensitivity may be impaired due &igalu of SO. In comparison, the French
prototype devicef(= 1.0 MHz) corresponds respectivelydd = 0.6-1.6 and/A = 0.25-
1.0, and Omnisensé £ 1.25 MHz) toe/A > 0.8-2.0 and&/A = 0.3-1.3. Thus, neither of
these devices is expected to be sensitive to ttiealathickness of the tibia, but especially
the French device may be sensitive to that of tHeisa

Velocity v, of Wave 2 { = 100 kHz), being consistent with AO, saturated to
Rayleigh velocitycr for /A4 > 2 (Figs 6.2, 6.4). Fa@/A < 2,v, began to decrease slightly,
and fore/A < 0.5 strongly with decreasirgA. The cortical thicknesses measured in the
tibia and radius correspond respectivelgtd= 0.1-0.3 an@&/A = 0.2-0.5 when measuring
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Wave 2 aff = 100 kHz (by chance similarly as with Wave 1)u$hv, is expected to be
highly sensitive to cortical thickness in the radas well as in the tibia.

Measurements in vitro confirmed the thickness siitgi of Wave 1 and Wave 2.
The correlation betweew, and cTh was strong and significant, partly coningnthe
consistency between Wave 2 and AO guided wave. Mervg; only yielded a modest
correlation with cTh, which could partly be explthdue to the SO plateau effect at low
e/A. The inferiority ofv; results could also be explained due to impairaghkog of Wave
1, as the low-frequency device is not optimised moeasuring the Wave 1 alone.
Transducers were orientated perpendicularly to dhecimen, whereas properly tilted
transducers would have concentrated more of theygmeto the longitudinal wave. Also,
the resolution of the data acquisition device ¢8,d0 MHz) was limited and it was not
possible to completely filter the digitising noisé the poorly coupled, low-intensity
signals.

The main interest was in the investigation of thesstivity of ultrasonic velocities to
the cortical thickness. Therefore, the thickness alzosen (as an only material property)
as the fitting parameter in the inversion schemmeplates the plate theory inversion
yielded exact thickness estimate$10% precision) for plates thinner than 8 mm, whgh
considered as sufficient regarding the corticatkhesses of human bones. However,
when using the plate theory inversion in tubes aéttmate was exact only when the wall
thicknesse was low compared to the outer radlusf the tube €/b < 0.3), but fore/b
larger than that the error increased with incregslh. It was proposed that the difference
between plate and tube models could explain thenpimenon, and successfully it was
shown that using the tube model inversion, thektiess estimath. corresponded nicely
(10% precision) to the actual tube wall thicknesprovided that/b < 0.8 ande < 8 mm.
This is indeed considered sufficient within thegamf human bone cortical thicknesses.

The inversion for the human radius in vitro (me#im = 0.4) yielded the thickness
estimate rangde matching exactly to that of the actual cTh. Howewbe correlation
betweenh, and cTh was not higher tharn0.71 (p<0.001), and there was clear scattering
in the points seen in Fig 6.11. This can obviousty dxplained due to the choice of
constant tube radius in the inversion model. This was defined according to the mean
radius of the radius bones, thus the variationhef actual radius clearly explains the
scattering of the observed result. In additiorb,téhe elastic properties of the bone were
assumed as constants, and this assumption aftattersng as well.

In addition, it was shown that andv, are dominated by the local rather than
average thickness of anatomically shaped bone phmantThis denotes that the placement
and alignment of an ultrasonic probe on top of bisneritical in order to obtain reliable
and reproducible results. However, when comparireg dcoustic wavelengths between
bone and PVC, the effective size of the anatonyicstiaped phantoms (made of PVC)
matches to that of approximately 1.6 times grehtere. Therefore, as the diameter-to-
wavelength ratio of actual human bones is smallantin these experiments, the
ultrasound velocities may more strongly be affedigdhe mean cortical thickness. This
consideration can justify the use of the mean calrthickness in the pQCT measurements
of bone in vitro and in vivo. The mean thicknessswauch more precise than the local
cortical thickness, which had to be determinedgisirslow manual analysis of the pQCT
images.
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The effect of the material properties (elastic mModwand density) om andv, was
not considered in detail in the simulations or expental measurements in phantoms. In
theory, the material bulk velocities andcr are affected by Young's modulds and
densityp, and Poisson’s ratio according to Egs. (3.1) and (3.2), wheras defined by
cL andcr as

4]

Biomechanical studies indicate thats approximately proportional {d' where estimates
of n range in the literature from 2 to 3 in cortit@ne. From Eq. 3.1 this implies that
velocity should then be function @f" where m should vary from 0.5 tol. This explains
the positive correlations obtained between ultradouelocities and the bone mineral
density (BMD). As velocityv; saturates ta, andv, to cg = 0.9 cr, this defines the
relationships betweew, v, and the elasticity and density via the bulk veiesi of the
material.

v

In general, the bulk velocities alone define thepdrsion curves for a plate, and thus
the inversion from the experimentally measured edid/ave velocities is possible to the
bulk velocities and further to elastic constantsperties of the plate. This inversion
approach has been successfully utilised, e.g., daynKand Mal, Lefebvre et al and Gsell
et al [44, 54, 34]. It is provided, however, thia¢ thickness and density of the plate (or
tube wall) are known. Considering the bone guidestevapplication, the thickness could,
for instance, be measured using a simple pulse-ewasurement, in the contrary to the
complicated guided wave inversion approach discugsethis study. As mentioned in
Section 5.2.3, velocities of several genuine guidedes should be measured within a
broad frequency range in order to successfully thgeelastic modulus inversion. The
thickness inversion approach was the most suifablihis application, as it also helped in
solving the wave identification problems (due ta Ispatial resolution) together with the
selective 2D-FFT method.

Remaining relevant questions that arise in theiegiplity of guided waves in the
assessment of long bones are the effects of erallqsbeosity, bone heterogeneity and
anisotropy. It is known that anisotropy of corticeine can be considered according to
transversely isotropic or orthotropic symmetry [8lf] addition, the analytical guided
wave models (plate and tube) can be expanded sotampic case, though a more general
solution method must be used [87, 80, 34]. Thistnuwiously be made next in the
progress of bone guided waves research.

Endosteal porosity is also a critical issue, adfécts roughness of the inner cortical
layer, and the theory of guided waves providesdaalilayer with smooth top and bottom
surfaces. Clearly, the roughness scatters theapaitrasonic waves, and consequently
affects attenuation of the propagating guided wadbethe size of the scatterers is
significantly smaller than the acoustic wavelengjten only the attenuation (without more
complex effects) takes place and the guided waegpgcted to propagate. As the size of
the pores in endosteal bone is of the order orttems 1 mm, and the acoustic wavelength
of the AO guided wave is of the order of one or teentimetres f(= 100kHz), the
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condition between the pore size and wavelengthatisfed. However, as the frequency
increases, the wavelength decreases. So, conssgtieatpropagation of higher order
guided waves may not be possible in the bone, edlyein osteoporotic bone. The effect
of surface roughness on guided waves has also Istedied theoretically and
experimentally by Lobkis and Chimenti [56, 57]. 8Dnulations in bone [12] indicate that
the increasing endosteal porosity decreases thacityelof the FAS. In addition, the
experimental phantom measurements, made by Tataehaal [98], suggest that the
velocity of flexural guided wave (i.e. AO) is deased by the increased amount of
endosteal porosityf (= 100 kHz). Thus, both Wave 1 and Wave 2 are drpeto be
affected by the porosity, in a manner that theseflequency ultrasonic waves in a way
sense the effective thickness of the compact bAsea conclusion, the low-frequency
guided waves are therefore expected to be goodatuads of the cortical thickness.

The in vivo results in a hundred-and-six pubertdsgvere in an agreement with the
in vitro results, suggesting correlations betwedss guided wave velocitiess( v2) and
bone properties (BMD, cTh). The correlations betwé®e guided wave velocities and
cortical BMD were, in general, as high as expedtech the in vitro study. Velocity;
yielded slightly better correlation in vivo than intro, which may indicate that the
overlying soft tissue improves the coupling of tbegitudinal first arriving wave (Wave
1). Velocity vy, in turn, was slightly lower than its in vitro agerpart. This clearly is the
first sign to indicate the problems in the relialoentification of the fundamental flexural
(or antisymmetric) guided wave (Wave 2) through dkerlying soft tissue. However, the
preliminary results comparing the small group ofeoporotic females with a normal
healthy control group, in spite of the soft tisafiects, only the Wave 2 can significantly
discriminate between osteoporotic and healthy bdhese data suggest that the guided
waves may Yield a clinically relevant bone assess$maed thus justifies the need for more
extensive in vivo measurements and further invastg and development of the method.

Further in vivo measurements were made for the tbgxty five and for the radius
of a hundred and seven subjects. In the analysihede measurements we, however,
encountered serious difficulties in obtaining a @¢di between Wave 2 and AO plate
mode. As a result, we found out that the difficuttyobserving a clear AO like Wave 2
increased with increasing on-site soft-tissue théds. The classification based on the
quality of plate theory fitting yielded the rejemti of 1/3 to 2/3 of the subjects when
choosing the sub-set of good fit data. This classibn helped in obtaining the expected
correlations betweek, and bone quantities in the small good plate thdbrgub-sets.
However, the only strong and clear (negative) datie@n was obtained betweenand the
soft tissue thickness in the sub-set classifieploas plate theory fit group. These findings,
unfortunately, raise also the preliminary positesults into a doubtful light. In the
preliminary phase Wave 2 was analysed using setoiratic line fitting in ¢,t) diagrams,
and thus the human judgement of the proper fittay have had a strong influence on the
obtainedv,. Though being blind on the bone properties, theraatically determined;
was known when determining. Later, different automatic analyses, based deriilg
and line fitting in the distance-time plane or thgectral analysis, were developed to
achieve more reliable determinationvef However, no expected correlations have, as yet,
been obtained. The results do suggest that visdysis of ther,t) diagrams by a human
observer may actually work better than the cureertbmatic processing algorithms. This
gives further confidence that there is valuableugh complicated, information present in
the signals, and that further refinement of theaignalysis procedures is likely to bring



57

improved results. The data also indicate thatafbuman observer, knowledgevafmay
improve the determination ok and this suggests that automatic analysis baseitheon
information from both waves is worth investigating.

These difficulties yielded the motivation for demging the fluid-solid bilayer model
for explaining the effects of the overlying softisie layer. It is obvious to expect that the
guided waves propagate, not in the bone or sdti¢isalone, but in the whole bilayer
system composed of bone and soft tissue. Therafasehighly possible that this bilayer
model could explain the problem of in vivo guidedws measurement. In this model, the
contribution of soft tissue is mostly related te thickness of the soft overlayer (assuming
that the sound speed in soft tissue can be appat&dne.g. with that in water). This
prediction is in close agreement with the experitakyn obtained negative correlation
betweenv, and soft tissue thickness. Therefore, the purpss® use the soft tissue
thicknessa as the known input parameter in the inversion sehand selective spectral
analysis method, and this way to eliminate its afley seeking for the contribution of
bone thicknesé alone (or any bone material parameter) to the raxpeatally measured
bilayer velocities.

The limitations of the suggested solution approgxlthe soft tissue problem are
tightly connected to those of the inversion schame selective two-dimensional spectral
analysis method. The inversion was shown to wortk pwiates, tubes and bones in vitro.
As the thicknes$, was allowed to range over the whole spectrum efrésults, it was
shown that the inversion scheme works provideddahabper theory and input parameters
are chosen. Therefore, the accuracy of this metiebds on the choice of theoretical
model and input parameters. Also, this means thiggfactory in vivo results cannot be
obtained until the theory behind the guided waveppgation problem in vivo can be
modelled and is known well enough. To this endrtfeelelling of the effects of bone as
tube, anisotropy, inhomogeneity and endosteal moegh are warranted. But more
importantly, the effects of the overlying soft tissand interior bone marrow should be
addressed. Modelling the soft tissue or bone maraswideal elastic fluid may not,
however, be sufficient, as the soft tissue and owarare viscous (or visco-elastic)
materials and may strongly affect the dispersiohab®ur of guided waves. Previous
studies, made regarding the effects of viscous twaloe, viscous loading and visco-elastic
bilayer [107, 108, 26, 71, 97], could be used asstarting point in these problems.

A strong limitation of the two-dimensional spectealalysis was the short spatial
scanning length (typically 30 mm). The short scagriength was necessary as to be able
to approximate that there is no significant vatigbin the bone properties within the
scanning range. This, however, yielded flat spégiemks and thus low resolution in
discriminating different wave modes in the phasiecity (or wavenumber) domain. As a
result, joint peaks were formed if two wave modesenoo close to each other (in many
cases already, e.g., the phase velocity differehd®00 m/s was too close). We tested the
adverse effect of the short scanning length (resodit shown here) by finite-element
simulations, and a 200 mm scanning length, foramse, yielded an excellent peak
resolution. The selective 2D-FFT method was develap@dder to eliminate the effect of
other wave modes and thus to improve the relighoit mode identification. The fast
Fourier transform could, however, be replaced withna more efficient spectral analysis
approach, such as the Prony method [108, 47] orixmaéncil method [40, 34]. Also, it
could be worth of trying to try to extend the sdagnlength in order to improve the
resolution. This, however, must be made by the obshcreasing variability of bone
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properties, which obviously may be adverse on tlapgmgation of guided waves. But
being able to measure guided waves over a longgerahen this could yield an average
result reflecting more completely the propertigsefsgth) of bone.

The ultimate question, which arises, is the clihre¢evance of the bone assessment
using the guided ultrasonic waves, a) in generdll@nusing the proposed measurement
approach. Clinically it would be relevant to havethods which can discriminate between
osteoporotic or fractured and a healthy bone. Asajould be warranted to assess the
early signs of bone deterioration and to predietribk for bone fracture at an early phase,
thus maximising the benefit of medication. It may difficult to displace the dual energy
x-ray absorptiometry, the “golden standard” of bassessment, completely. However, in
general ultrasound provides three advantages beeX{ray based methods. Ultrasound is
believed to be tissue safe, as long as intensitgldeare kept below well recognised
maximum permissible levels, and the equipment carblilt as small and easy-to-use
devices with an economy price. But more importgntifrasonic velocity reflects the
material elasticity as well as its density, whertes X-ray absorption is only affected by
the density. Therefore, the comparison betweeasdtric and X-ray methods should be
made bearing in mind that these methods are expéuteeflect quite different properties
of bone. The density takes no account of the uwithgrlhierarchical microstructure that
defines the mechanical properties of bone. Theityetiais yields only a fraction of the
information that is needed to define the strendthame. For instance, disorganised bone,
such as that found in Paget’s disease, may haveahaiensity but dramatically reduced
elastic modulus and is expected to be weak antlfi@easily. However, X-ray absorption
cannot predict this, provided that the density lisgse to the normal level. But the
ultrasonic velocity gives a direct insight into th&tio between elasticity and density.
Therefore, the ultrasonic velocity may reflect hene strength more completely than X-
ray attenuation, lacking, however, informationlod ibsolute magnitude of the density.

The question of guided waves builds up on top afeustanding of the behaviour of
the ultrasonic waves in general, as the guided waveomposed of the conventional
ultrasonic longitudinal and shear waves between bwondaries of a medium. As
discussed in this Thesis, the velocities of thesuead guided waves were strongly related
to the thickness of the waveguide due to disperdtonas also described that the guided
wave is a bending vibration of the whole structufée guided wave velocity can
therefore reflect aspects of the average elastiaitg density throughout the bone
thickness, as well as the effective thickness fits@&l broad-band guided wave
measurement can yield a multivariable inversionbfem, i.e. a set of guided wave
velocities {e,f)), which can with certain approximations be quiteurately inversed as
different material properties of the medium in whitbey were measured from. Therefore,
a single guided wave velocity, e.g. that we haverred to asv,, can reflect only a
fraction of the potential of guided waves. On tli@eo hand it must be acknowledged that
the possibility of measuring additional guided n®d® bone has not yet been confirmed
and hence the prospects for developing a succeasstision scheme for both geometric
and material properties are not clear. Furthermeren if a successful inversion scheme
were possible allowing determination of elasticttyis would still only be a surrogate for
bone strength rather than a direct measurememiaytbe that optimal prediction of bone
strength is to be obtained by combining a rangm@surements including bone density,
cortical thickness and elasticity.
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Finally, however, theoretical considerations canrmt, their own, confirm the
clinical applicability and value of a proposed nbane measurement method. This can
only be made with in vivo measurements in large@amopulations in comparison with
the standard bone densitometry methods. A streoigthis present study was its aim to
collect such clinical evidence in the in vivo measoents. Measurements in girls
confirmed the ability of guided waves to captur@timation on bone thickness in addition
to bone density, in contrast to existing ultrasangasurements of bone. Pilot data from a
small number of older women suggested that guidades may have an enhanced ability
to detect osteoporosis. However, some difficulilese encountered in vivo due to the
overlying soft tissue. In any future work, thesdficlilties should be addressed by
extending the modelling work to include the moadhglof bone as an anisotropic tube, and
the soft tissue and bone marrow respectively asaus liquid layer and core. The large
amounts of in vivo data that have been gathereddyr will be useful in any future work.

As, noted above, future work could thus include degelopment of an appropriate
wave propagation model for a multilayer structureoider to better interpret the in vivo
guided wave measurements in bone. In this model biwvee should preferably be
considered as an anisotropic tube, and the sefidignd bone marrow respectively as a
viscous liquid layer and core. In addition, furthexchnical development of the
measurement system is warranted. The speed ofadapaisition should be increased,
thereby enabling a better precision through in@eéasgnal averaging. Also, it would be
warranted to move the recording position slighities/ays on top of the bone between the
scans in order to seek for an optimal contact agithkresponse. All of these requirements
could be achieved by an array probe in which tleesgary transducer elements were built
inside a single casing, and scanning could be pwdd electronically. Finally, the
ultrasonic guided wave assessment of bone doesetessarily need to be limited in the
transmission principle, but also the measuremeatsgecular reflection spectrum may be
worth investigating. This approach has been sutw@ssised for measuring the guided
wave dispersion curves for composite laminates/[6and it also provided an efficient
implementation of an inversion scheme [44]. A san@&pproach, known as the Ultrasonic
Critical angle Reflectometry (UCR), has been usedietermining the pressure and shear
wave speeds for bone [3, 63]. However, the refdeebased measurement of guided
waves has not yet been reported for bone. Thisoapfrwould be attractive as it provides
a localised point measurement, and allows the samebus measurement of several
guided wave modes.

As a conclusion, it was shown that the methodsdhiced in this Thesis provide
useful information of bone phantoms and bone iroyiand despite of the effects due to
overlying soft tissues, also of bone in vivo. Thessults thereby indicate that the use of
ultrasonic guided waves is a feasible and clinjcalbeful assessment of cortical bone,
providing advantages over the existing axial traession techniques. In addition, this
Thesis forms a firm basis for any future endeavaniimprove the clinical performance of
the guided wave bone assessment by further mogeliark and technical development of
the device and methods of analysis.
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