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Abstract 

Osteoporosis is a widespread and growing clinical problem, and provides the primary 
motivation for developing improved methods for the in vivo assessment of bone. Such 
methods should ideally be easy to use, safe, inexpensive, reliable, and, above all, should 
provide clinically-useful information. They should be sensitive to the early signs of bone 
deterioration, so that problems can be detected early and the benefits of treatment can be 
maximised. As the existing diagnostic methods, based mainly on X-ray absorption, can 
only provide information on bone density and geometry, there is growing interest in 
ultrasonic methods which have the potential to assess aspects of the material properties of 
bone. 

The aim of the present study was to evaluate the feasibility of using ultrasonic 
guided waves for the quantitative assessment of bone. A prototype device was developed 
for low frequency ultrasonic transmission measurements along human long bones. 
Analytical plate and tube models were used for identification of the measured wave 
modes. The phase velocities of two guided wave modes were thereby determined. In 
addition, an inversion scheme was developed for determining the cortical bone thickness 
from guided wave ultrasound data. 

Experimental work confirmed that guided waves could be excited and detected in 
human bones as well as in bone phantoms. Data from a small scale clinical pilot study 
indicated increased sensitivity to osteoporosis for guided wave measurements. A large 
scale in vivo study in a group of 106 pubertal girls was completed, and this demonstrated 
that guided wave measurements were sensitive to both bone material properties and bone 
thickness. A comparative in vitro study for human radius specimens indicated that the 
velocity of the fundamental antisymmetric guided wave correlated significantly with 
cortical bone mineral density, as did the lateral wave velocities measured with other 
devices. However, this guided wave velocity had an advantage over any lateral wave 
measurement in that it was significantly correlated with cortical bone thickness as well as 
mineral density. In addition, it was demonstrated that the use of an inversion scheme, 
based on plate or tube theory, enables respectively the assessment of plate or tube wall 
thickness. It was shown also, that the use of tube model is preferred when analysing 
guided wave measurements for thick-walled bones. 

Despite the successes listed above, problems have been identified that must be 
addressed before guided wave measurements can progress as a reliable and useful clinical 
technique. In the work to date the effects of the soft tissue overlying the bone have been 
found to be a major factor. It is proposed that the key issue in understanding this problem 
is to consider wave propagation in a bilayer system, composed of solid bone and liquid-
like soft tissue. The initial results in immersed bone phantoms suggest that the use of an 
adequate bilayer theory can potentially eliminate the influence of soft tissue on the in vivo 
guided wave measurements. The results for human bones in vivo are under way of being 
analysed. 

Based on these results, it is concluded that the measurement of ultrasonic guided 
waves in human long bones is indeed feasible and offers advantages over existing 
techniques. However, further modelling of guided waves is of crucial importance for a 
precise and reliable interpretation of clinical guided wave measurements in bone. 
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Chapter 1  

Introduction 

Osteoporosis is a widespread and growing clinical problem which most often manifests 
itself clinically as fractures of the wrist, spine or hip. Therefore understanding the 
determinants of fracture risk is of crucial importance. The changes seen in osteoporotic 
bone include density changes (e.g. reduced trabecular and cortical bone mineral density), 
geometrical changes (e.g. reduced bone thickness and cross-sectional area) and 
mechanical changes (e.g. reduced strength and stiffness). 

Diagnostic methods based on x-ray absorption are the current “gold standard” for 
quantitative assessment of bone but they provide incomplete information. Whilst they can 
provide reasonably good data for bone mineral density (BMD) and geometry, they are not 
intrinsically sensitive to the mechanical properties or microarchitecture of bone. The 
clinical value of such additional information has yet to be conclusively demonstrated, but 
there is growing interest in the potential for assessing aspects of bone “quality” in addition 
to “quantity”. In addition, X-ray technologies are expensive, non-portable and use ionizing 
radiation with a consequent health risk. Ultrasound offers an alternative approach to bone 
assessment that has a unique potential to characterise the material and structural properties 
of bone. Furthermore, ultrasound is safe, relatively cheap, and portable. 

The ultrasonic methods and devices can be divided into two main categories 
according to the type of bone (trabecular or cortical, see Chapter 2) to be measured. More 
attention has been paid to measuring the trabecular bone, at sites such as the heel [35, 28, 
23] or finger phalanges [75, 91]. These methods are generally seen as being more directly 
relevant to the sites (hip and spine) where osteoporotic fractures most often occur. It must 
be noted, that direct ultrasonic measurement of the hip and spine is difficult as these sites 
are located deep under soft tissue. It has been shown, however, that ultrasound attenuation 
(referred to as Broadband Ultrasound Attenuation, BUA) or speed of sound (SOS), as 
measured for the heel, predict fractures at hip [35, 9, 82, 28, 45] and spine [38, 23]. In 
addition, the interest in measuring cortical bone, at sites such as the tibia or radius, has 
increased during recent years. In osteoporosis the deterioration of bone affects adversely 
the properties and the effective thickness of the cortical bone wall, and it has been 
suggested that a multi-site assessment could improve the diagnostic power of ultrasound 
[48, 36]. However, there are devices from only one manufacturer on the market today for 
the clinical assessment of long bones. It has become evident that these devices, based on 
measuring the so-called lateral waves which propagate along the interface of periosteal 
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(outer) bone and soft tissue [16, 11], are relatively insensitive to the changes seen in 
osteoporosis that occur largely in the endosteal (inner) bone region [31, 89]. 

The so-called guided waves have been a topic of considerable interest in the field of 
non-destructive testing, dating back to the 1960’s [110, 109, 106]. Guided waves 
propagate in bounded media such as plates or layered structures, and carry information of 
the material properties (e.g. elasticity and density) as well as the geometry (e.g. thickness) 
of this waveguide [32, 87, 106]. The various applications of guided waves include, e.g., 
the defect detection or health monitoring of water pipe lines, aircraft wings and different 
composite laminates [96, 58, 33, 22, 21, 20, 17]. Cortical bone is a plate- or tube-like 
composite material which might also be expected to support the propagation of guided 
waves. This could thereby yield an improved ultrasonic assessment of cortical bones, 
reflecting aspects of the average bone properties throughout the cortical layer. Though 
only a little attention has been paid to ultrasonic guided wave measurements of human 
bones [41, 78, 99], recent studies in bone phantoms and animal bones in vitro reflect 
growing interest in this approach [54, 52]. 

The purpose of this work was to develop an axial transmission device and methods 
for measuring guided waves (GW) as well as the first arriving signal (FAS) at 
approximately 200 kHz central frequency in human bones. This frequency was 
considerably lower than that used in the currently available commercial axial transmission 
devices, and thus provided new means for assessing the effects of thickness on the 
ultrasound velocities. The effect of thickness was verified by comparing phantom 
measurements with analytical plate theory. The method was tested for the first time on 
human bones in vitro and in vivo, verifying the relationships between ultrasound velocities 
and cortical thickness and bone mineral density. Simple plate theory was used here for 
developing an inversion scheme for estimating the cortical thickness. We also 
incorporated the tubular shape of bones in the theory, and found thereby a better 
correspondence between guided wave results and the actual bone properties. In addition, a 
water-solid bilayer model was used qualitatively to explain the contribution of an 
overlying soft tissue to in vivo guided wave measurements. 

  



 

Chapter 2  

Bone 

2.1 Structure and function 

Bone as a material can be classified into organic and inorganic components. The organic 
material mainly consists of type I collagen and amorphous substance which contains 
glycoproteins and proteoglycans [8]. The inorganic part of bone is composed of minerals, 
mostly hydroxyapatite (Ca10(PO4)6(OH)2) crystals, and represents about 65% of the wet 
weight of bone [61, 73]. Together the organic and inorganic components form so-called 
extracellular bone matrix. Collagen gives bone flexibility, toughness and tensile strength, 
and also provides loci for nucleation of the mineral crystals which give bone its rigidity 
and compressive strength [61, 90]. 

Bone as a tissue consists of cortical and trabecular bone. Cortical (compact) bone 
forms the majority (approximately 85%) of the bone in the body, and is relatively most 
abundant is the shafts of the long bones such as the radius, tibia and femur [68]. Cortical 
bone is relatively dense, with an apparent density of approximately 1.7-2.0 g/cm3 [85], and 
this is due to its low porosity (typically 5 - 10%) [14, 61]. The shaft (diaphysis) of the long 
bones consists of a thick tubular cortex of compact bone surrounding the medullary canal 
that is filled with bone marrow. The cortical bone wall is composed of osteons (see below) 
that are aligned parallel to the long axis of bone (Fig. 2.1). This alignment is due to bone’s 
natural ability to organise its structure in order to optimise strength according to different 
levels of loading applied in different directions. Consequently, cortical bone is anisotropic 
having the greatest strength and stiffness in the main load-bearing direction, and has a 
structure designed to resist torsional and bending forces where these occur [14, 61, 101]. 
Trabecular (cancellous) bone is composed of an interconnected network of bone plates, 
struts and rods (trabeculae) surrounded by bone marrow. Trabecular bone has essentially 
the same matrix composition and ultrastructure as compact bone [61], but it has a much 
higher porosity (50-95%) and consequently a lower apparent density. Trabecular bone 
absorbs the impact loads and allows bones to broaden near the articular surfaces without 
the need for excessive increase of bone mass. Trabecular bone can be found at the ends of 
long bones and in the cores of flat bones. In both cases, the trabecular bone is covered by a 
thin layer of cortical bone [14]. 
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Bone has a hierarchical architecture with several levels of structure (Figs. 2.1 and 2.2). 
Mineralised collagen forms long fibrils, which pack together as fibres. In so-called 
lamellar, or osteonal, bone, collagen fibres organise themselves into planar arrangements 
called lamellae. The sheets of lamellae wrap as concentric layers around a central canal 
forming osteons (Haversian systems) with typical diameters ranging from 100 to 300 µm 
and length 10 mm. The central canal (Haversian canal) of an osteon has a diameter of 
around 50 µm and contains blood vessels and nerves [61]. The fibres can also form so-
called woven bone where fibre orientation is less well distinguished. Woven bone occurs 
mainly at the early stages of growth and fracture repair. In addition, some of the lamellae 
do not wrap but remain as planar layers, and together with woven bone form layers of so-
called lamellar bone with thickness ranging typically from 150 to 300 µm [86, 14, 61]. 

The function of bone is to provide mechanical support for the body, as well as to 
serve as a dynamic mineral reserve and to produce red blood cells. The type of function 
determines the specific structure of each bone in different parts of the skeleton [14]. Bone 
at the organ level can be classified into two types: flat bones (skull bones, scapula, 
mandible, and lileum) and long bones (tibia, femur, humerus, radius, etc.). 

 

 

 

Fig 2.1.  Hierarchical structural organisation of bone: (a) cortical and cancellous bone; (b) osteons 
with Haversian systems; (c) lamellae; (d) collagen fiber assemblies of collagen fibrils; (e) bone mineral 
crystals, collagen molecules, and non-collagenous proteins (After Rho et al 1998 [86]). 
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Fig 2.2.  Structure of cortical bone (After Buckwalter et al [14]). 

2.2 Growth, aging and disease 

2.2.1 Bone growth 

The growth of bone occurs by two different mechanisms, the so-called endochondral and 
intramembranous ossification. The former conducts the longitudinal growth, whereas the 
latter is responsible of the growth in diameter as well as of the remodelling process of the 
bone tissue [77]. 

Longitudinal growth takes place in the regions called the growth plate or physis that 
are located near each end of long bones. In the growth plate new cartilage is constantly 
formed by chondrocytes. On the side of bone shaft (methaphyseal side) the growth plate 
mineralises and becomes part of the methaphyseal bone. Consequently, the length of bone 
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shaft is increased while the thickness of the growth plate remains constant. As bones reach 
their adult length the growth plates are no longer needed and the physes close by 
ossification [77]. 

The growth in diameter is another type of mechanism of bone formation, which in 
addition to growth is also responsible of reshaping the bones. Bone must be removed in 
some places while it is added to others. This continuous process of bone resorption and 
formation is known as modelling and it is responsible of the changes both in size and 
shape. In addition, the architecture of bone must adapt to varying loading conditions and 
fatigue damage must be repaired throughout the life. These changes are accomplished by a 
similar removal-replacement process, known as remodelling. The modelling and 
remodelling refer to actions of osteoblasts and osteoclasts, the former being responsible of 
formation and the latter of resorption. In modelling these bone cells act independently 
from each other, whereas remodelling involves coupled actions of these two types of bone 
cells [68, 61, 15].  

2.2.2 Aging 

Bone mass is gained through puberty and rises to a peak during the second to third decade 
[79]. Thereafter, a gradual loss of bone takes place. Women loose about 35-40% of the 
cortical bone and 55-60% of the trabecular bone whereas in men the bone loss is 
somewhat smaller by a factor of about a third. As the bone growth stops in the adulthood, 
this is the point where the peak bone mass is reached. After that, remodelling continues 
and the rate of loss of bone depends on the balance between bone resorption and 
formation. The good coupling between these parallel processes is crucially important in 
order to retain bone mass. Mechanical stimulation of the bone as well as the hormonal 
effects play important roles in the quality of the coupling. During the normal aging 
process the coupling weakens and bone balance tends always towards the negative side. 
This means that the bone mass begins to slowly decrease from that of the peak level 
reached during the period of growth [79, 73].  

2.2.3 Disease  

The most common metabolic bone diseases are osteoporosis and osteomalalcia. The 
currently-accepted definition of osteoporosis, as set out by the National Institute of Health 
Consensus Conference of 1993, is that osteoporosis is “a disease characterized by low 
bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone 
fragility and a consequent increase in fracture risk” [2]. Osteoporosis typically develops 
over a long period of time without necessarily causing any symptoms. The first symptoms 
are fractures caused by minor trauma. The insidious nature of osteoporosis, coupled with 
the absence of effective therapies capable of replacing bone once it has been lost, makes it 
a severe and problematic disease.  

It has been estimated that 54% of postmenopausal white females in the United States 
have osteopenia (pre-stage of osteoporosis), and another 30% have osteoporosis [103]. In 
Finland, the impact of osteoporosis can be seen in the age-adjusted incidence of low-
trauma ankle fractures which rose in both women (from 66 in 1970 to 174 in 2000, a 
164% increase) and men (from 38 in 1970 to 114 in 2000, a 200% increase) [43]. The 
most serious complication resulting from osteoporosis is fracture of the hip. The number 
of hip fractures in Finnish people aged 50 or more has risen from 1857 in 1970 to 7122 in 
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1997 [42]. The average 1-year total costs of a patient with a hip fracture were Euro 
14,410, with about one quarter of these costs being expended on acute care [76]. This 
gives some idea of the significance of osteoporosis as a public health challenge.  

Several subtypes of osteoporosis can be distinguished. Involutional osteoporosis, 
meaning gradual and progressive bone loss, can be one of two types: postmenopausal 
osteoporosis and senile osteoporosis [88]. Postmenopausal osteoporosis affects women 
and occurs mainly between the ages of 50 and 65 years. With this condition, resorption of 
trabecular bone is accelerated due to oestrogen deficiency associated with the menopause, 
and this often manifests in wrist and/or spine fracture.  Senile osteoporosis occurs both in 
men and women aged 70 years and older, with a loss of both trabecular and cortical bone, 
manifesting in fractures of the hip, proximal humerus, tibia and pelvis [88]. So-called 
secondary osteoporosis is osteoporosis that is caused by factors such as chronic diseases, 
malabsorption, endocrine disorders, or use of drugs such as corticosteroids. The progress 
of osteoporosis can be slowed down by proper nutrition and physiological exercise as well 
as by appropriate medication, such as hormone replacement therapy or bisphosphonate 
treatment [55]. 

In osteoporosis, the porosity of bone increases and consequently its apparent density 
decreases [25]. In trabecular bone, architectural changes occur such as the loss of 
trabecular struts and perforation of plates. In cortical bone, bone loss occurs mainly in the 
endosteal region so that the marrow cavity expands and consequently the effective 
thickness of the compact bone decreases [88].  

Osteomalacia is also a metabolic bone disease that occurs as defects in the amount 
or quality of the mineralization of bone matrix. Thus, osteomalacia can be characterised 
by relative deficiency of mineral in relation to collagen, which distinguishes it from 
osteoporosis in which a normal mineral to collagen ratio is observed [103]. Deficiencies of 
vitamin D, calcium, or phosphorus due to inadequate nutritional intake are the usual 
causes of osteomalacia [46]. 

In addition, there are several skeletal disorders which related to genetic, 
developmental, and dysplastic problems, such as osteogenesis imperfecta, ostosclerosis, 
and fibrous dysplasia. Osteogenesis imperfecta is a heritable disorder of connective tissue 
that is caused by abnormalities in type I collagen [84]. Consequently the elastic abilities of 
the extracellular matrix weaken and bone becomes brittle [105].  
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2.3 Mechanical properties of bone 

The primary function of skeleton is to provide mechanical support for the body in 
locomotion and static loading. To this end, bone is an adaptive tissue and has optimal 
mechanical properties, specific to each part of the skeleton. The mechanical properties of 
bone can be distinguished as the mechanical behaviour of the bone tissue as a material and 
as the mechanical behaviour of the whole bone as a structure. The material behaviour 
reflects the intrinsic properties of the bone material itself, being independent of the shape 
and size of the actual bone. The material properties can be determined by performing 
mechanical tests on standardised specimens. In addition to material properties, the 
structure of bone has an important role in terms of the strength. The structural properties 
include the effect of bone geometry as well as the material properties. The structural 
properties can be determined by mechanical testing of the whole bone specimens [37, 13, 
61].  

In vivo the bone is affected by loading of different origins, including external 
(ground reaction and impact forces) and internal forces (ligament tension, muscle 
contraction and bone-on-bone contact forces) [13].  

The purpose of mechanical testing is to determine the relationship between loading 
(force applied to bone) and the magnitude of consequent deformation. When the bone is 
deformed, its response is to the applied stress AF /=σ , where A is the cross-sectional 
area of the bone. The definition of compressive and tensile stresses is thereby identical to 
that of pressure. However, the loading of solid material can also be tension, shear or 
torsion, yielding the stresses and deformations in the corresponding directions. The 
magnitude of a local deformation is given by strain ε (compression, tension) or γ (shear) as 
deformation ∆l per unit length l (Fig 2.3). The stress is generally linearly dependent on the 
strain (Fig 2.3b), and the slope gives the elastic (or Young’s) modulus E. This region is 
called the elastic region. When the loading is increased, at a certain point the material 
begins to undergo permanent deformations, and the stress response ceases to be linear. 
This point is known as the yield point followed by the yield (or plastic) region. The stress 
corresponding to the yield point is called the yield strength σy of the material. The load 
that causes complete breakage of the material is known as the ultimate (or failure) load, 
and the corresponding stress as the ultimate strength σu [13, 61]. 

When performing structural testing of the whole bone, it is typical to measure the 
deformation against the applied force directly. This measurement yields a corresponding 
figure to Fig 2.3, but the stress is replaced by the force and strain by the actual 
deformation. The corresponding slope is then called the stiffness [13]. 
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Fig.  2.3.  a) A schematic diagram of a tensile loading of a standardised specimen. The test specimen, 
with length l and cross-sectional area A, undergoes deformation ∆∆∆∆l under loading force F. b) A 
schematic representation of typical stress-strain behaviour under mechanical testing.  

Mechanical testing is said to be non-destructive when exploring only the linear 
elastic region, and the yield point is not reached. The benefit of this approach is that the 
same specimen remains available for further testing. However, the elastic modulus can be 
determined more precisely when measuring near the yield point. Also, determination of 
yield and ultimate strength provides a more complete picture of the mechanical properties 
of the specimen [13]. 

If the elastic modulus of the material is independent of the direction of examination, 
the material is said to be isotropic. In cortical bone, however, the elastic modulus in the 
direction of the long axis of bone (i.e. the direction of osteons) is approximately two times 
higher than those in the transverse directions. Thus, cortical bone is anisotropic material. 
Particularly, it can be modelled using transverse or orthotropic isotropy [5, 39, 81]. The 
typical longitudinal and transverse elastic moduli of human cortical bone are 17 and 10 
GPa, respectively, and the shear modulus is 3.5 GPa [13, 61]. The strength properties of 
cortical bone depend on the direction also. However, unlike the elastic moduli, the 
strength is greater in compression than in tension or shear. This alone suggests that the 
cortical bone has adapted to the conditions where compression loading is greater than 
tension, and together with the anisotropy, that longitudinally directed loading is greater 
than  transversely directed loading [13]. 

Unlike those of cortical bone, the mechanical properties of trabecular bone vary a lot 
depending on the site. For instance, at vertebral bodies the trabecular bone is fairly 
anisotropic whereas in the femoral head it is nearly isotropic. The elastic modulus of 
trabecular bone is generally significantly lower than that of cortical bone, ranging roughly 
within 0.01-10 GPa. These differences in the properties of trabecular bone can indeed be 
understood due to its adaptation to different loading conditions at different skeletal sites, 
and the wide range in porosity and microarchitecture adopted to meet these different 
conditions [13]. 

 

 



Chapter 3  

Quantitative ultrasound applied to cortical bone 

3.1 The basic physics of ultrasound 

Ultrasound is propagation of a mechanical disturbance in a solid or fluid medium at 
frequencies higher than the upper limit of the audible sound range for humans (∼20 kHz). 
The field of ultrasonics dates back to the end of the 19th and the beginning of the 20th 
century, when piezoelectricity was discovered and its first applications were developed 
during the World War I. An in vivo application of bone ultrasound measurement was 
reported for the first time by Siegel et al in 1958 [94], who used it for monitoring fracture 
healing in tibia. Today ultrasound has a wide range of medical uses, including diagnostic, 
therapeutic and surgical applications. Diagnostic ultrasound has several applications, such 
as non-invasive imaging of different parts of the body and measurement of tissue motion 
or blood flow. Ultrasound imaging techniques are attractive due to the absence of ionising 
radiation and the availability of compact devices that provide real time images at lower 
cost compared to other imaging modalities. 

An ultrasound wave emerges as a tiny disturbance of the medium particles around 
their equilibrium positions, as the matter is excited by a mechanical impulse or vibration. 
The medium can be considered as a model in which mass points (particles) are connected 
to each other by strings. Due to the string interactions, the disturbance is transmitted step-
by-step to other parts of the medium. The intrinsic elastic properties of the medium, 
modelled by the strings and particles, define the propagation velocity of the acoustic wave 
c. In the real life, the string constant corresponds to an elastic modulus and particle mass 
the mass density of the material, which correspondingly define the velocity of the acoustic 
wave. 

The ultrasonic waves can be divided into longitudinal (compression) and shear 
(transverse) waves. The longitudinal wave denotes a wave in which the particles oscillate 
along the longitudinal axis of wave propagation, whereas the shear wave refers to the 
motion that takes place perpendicularly to the direction of propagation. In perfect fluids 
(gases or liquids) only longitudinal waves can propagate. Shear waves are not possible 
because these materials do not support shear forces and the particles are free to slide 
parallel to each other without any interaction. Elastic solids support both compression and 
shear motions, thus both of the longitudinal and shear waves can propagate. In a viscous 
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fluid, longitudinal and shear waves can both propagate, but the shear waves are strongly 
attenuated. Biological soft tissues have similar mechanical properties as viscous fluids, 
thus in practice only longitudinal waves can propagate in them. Bone is a hard solid tissue 
in which both longitudinal and shear waves can propagate [51]. 

In an isotropic solid the speed of the longitudinal wave cL is given by 

)21)(1(

)1(

ννρ
ν
−+

−= E
cL , (3.1) 

where E is Young’s modulus, ν  Poisson’s ratio and ρ the density. Correspondingly, the 
propagation speed of the shear wave cT is given by 

ρ
µ=Tc , (3.2) 

where µ = E / 2(1+ν) is the shear modulus. cT is typically less than 0.5 cL. The velocity of 
the so-called Rayleigh wave is cR = 0.9 cT. The Rayleigh wave propagates along the 
surface of a semi-infinite medium. 

The characteristic acoustic impedance of the medium, Z, is determined as 

cZ ρ= . (3.3) 

Reflection and refraction will occur at the boundary between two media with different 
acoustic impedances. The refraction is governed by Snell’s law, 

,
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where c1 is the velocity of the incident wave, c2 that of the transmitted wave and θ1 and θ2 
the angles of incidence and transmission, respectively. 

For longitudinal waves on a planar surface of two ideal fluids, the (intensity) 
reflection and transmission coefficients R and T are given by [104, 51] 
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where I i, Ir, I t are the incident, reflected and refracted intensities, and Z1 and Z2 are the 
acoustic impedances of the first and second media. Obviously T + R = 1. The amount of 
energy in the reflected wave depends upon the mismatch in acoustic impedance of the two 
media. The greater the mismatch, the greater the reflected energy. 

When either or both of the media are solids, then the energy of the incident wave, 
longitudinal or shear, will be converted as reflected and refracted longitudinal and shear 
waves. The number of possible waves depends on the type and order of the two media. If a 
fluid-solid interface (e.g. soft tissue and bone) is considered, then the incident longitudinal 
wave can be reflected only as a longitudinal wave and refracted both as longitudinal and 
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shear waves. For the fluid-solid case, Eqs. (3.5-3.6) are only valid at normal incidence. For 
other angles of incidence the equations become much more complex [51]. 

If the medium is inhomogeneous, the primary ultrasonic wave interacts with the 
boundaries of the particles that have different physical properties than the surrounding 
medium. This process is called scattering, yielding an emission of secondary (scattered) 
waves. There are three different mechanisms of scattering. a) If the dimensions of the 
scattering object are significantly larger than the ultrasonic wavelength, specular reflection 
takes place and Eqs. (3.4-3.6) can be utilised. b) If object dimensions are significantly 
smaller than the ultrasonic wavelength, then ultrasound is scattered uniformly in all 
directions, and the incident wave suffers minor perturbations due to diffraction at the 
edges. c) If the dimensions of the object are of the same magnitude with the wavelength, 
the scattered radiation exhibits a complex pattern which depends on the acoustic 
impedance, shape and dimensions of the object. Only two useful cases are relatively easy 
to calculate: scattering from a sphere and from a cylinder [65, 100]. 

The attenuation of an ultrasonic wave is a material property and represents the signal 
loss due to absorption and scattering by objects with scales too small to be captured by the 
wave. Ultrasound attenuation is characterised by an exponential decrease of the intensity 
with propagation distance x, 

xfeII ⋅⋅−= )(2
0

α  ,  (3.8) 

where I0 is the intensity at x = 0 and α(f) is the pressure attenuation coefficient expressed 
as a function of frequency f. The factor 2 in the exponent results from transforming 
pressure into intensity, since intensity is proportional to the square of pressure for a plane 
progressive wave [65, 100, 51]. Other factors such as reflection (interface) losses, beam 
spreading (diffraction) and mode conversion may contribute to a reduction in the intensity 
of the signal, but in experimental measurements the effects of these extrinsic factors 
should be removed where possible. 
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3.2 Axial transmission 

The so-called axial transmission technique has been used to assess long bones for over 
four decades [94, 30, 102, 16]. With this method an ultrasonic signal is mediated to bone 
at one point, allowed to propagate along the long axis of bone, and recorded from the same 
side of the bone at a given distance r apart from the emitter (Fig. 3.1). Figure (3.2) 
illustrates a typical recorded signal as a response to excitation of bone in vitro. The transit 
time t of the first arriving signal is determined, e.g., according to a certain threshold value, 
or the location of the first maximum, and the velocity v1 (also called as the apparent speed 
of sound) of the first arriving signal (FAS) is obtained as the ratio between r and t. 

   
 
Fig.  3.1.  Principle of a typical axial transmission measurement: a transmitter is excited by a pulse or 
toneburst, a longitudinal wave propagates near the dense periosteal surface of long bone, and this is 
received as the first arriving signal (FAS) at the receiver. 
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Fig.  3.2.  Typical recorded axial ultrasound signal. a) The first arriving signal (FAS) and an 
additional “guided wave”. b) FAS in the close-up. The time-of-flight can be determined according to 
the first maximum, threshold or zero-crossing point. (Low-frequency axial transmission scanner, 
human radius in vitro). 
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Generally, the FAS corresponds to an axial longitudinal wave, provided that the wall 
thickness h of bone is greater than the acoustic wavelength λ. In bone, the speed of the 
axial longitudinal wave is approximately 4000 m/s [53, 81].  

As the bone is surrounded by soft tissue, the FAS corresponds to the so-called lateral 
longitudinal (or P-head) wave, which propagates along the interface between these two 
media [16]. In this case, the excitation is mediated to bone through an overlying soft tissue 
and the lateral wave is born as a linear wave front which connects the refracted 
longitudinal wave to the reflected wave. This provided that the incident angle θ1 is equal 
to or greater than the critical angle θc = sin-1(vst/v1), where vst is ultrasound velocity in the 
soft tissue (approximately 1500 m/s). The velocity of the lateral wave has been shown to 
be consistent with that of the longitudinal wave in bone [16], and this essentially enables 
the clinical measurement of the SOS in bone. 

Commercial devices using the axial ultrasound transmission are currently available 
only from one manufacturer (Sunlight Medical Ltd., Tel Aviv, Israel). These devices 
operate at a central frequency of 1.25 MHz, which corresponds approximately to a 3 mm 
acoustic wavelength for the longitudinal waves in bone. It has been demonstrated that the 
FAS measured under these conditions indeed corresponds to a longitudinal lateral wave 
that propagates along the dense periosteal (outer) cortical bone [16, 11]. This fact is 
confirmed by the close agreement between clinically-measured velocities in the human 
tibia [27, 92, 102, 53, 83, 95] and in vitro measurements of the axial longitudinal wave 
velocity in human cortical bone specimens [5, 49, 3, 81].  

There is, however, evidence indicating that the apparent speed of sound (SOS) is 
lower than that of the longitudinal wave when the acoustic wavelength λ is greater than 
the thickness h [74]. Recent numerical simulations and measurements in bone phantoms 
suggest that the apparent SOS under this condition tends towards that of the fundamental 
symmetric guided wave (S0 mode) [72, 11, 12]. In vivo studies indeed support this idea 
that the apparent SOS measured at low ultrasonic frequencies is sensitive to bone 
thickness. When using a device operating at f = 250 kHz (λ ≈ 15 mm), a significant 
correlation between the apparent SOS and bone wall thickness was obtained, whereas in 
another study using a high-frequency device at f = 1.25 MHz (λ ≈ 3 mm), no correlation in 
the tibia and only a modest correlation in the radius was found. 

As in the in vivo bone measurements the excitation must be mediated to bone 
through the overlying soft tissue, and recorded via soft tissue at a given distance r away 
from the emitter, the consequent delays due to signal passing through the soft tissue must 
be eliminated (Fig 3.3). This is achieved simply by considering the difference between 
time delays t1 and t2 obtained from consecutive measurements made at two different 
distances r1 and r2, respectively. Now the inverse of v1 is given by [60] 

dr

dt

v
=

1

1
 , (3.9) 

where dt = t1 - t2 and dr = r1 - r2. The use of multiple transmitter-receiver distances r 
improves the precision of the velocity v1 that is determined as an inverse slope through Eq. 
(3.9) [60]. 

As discussed above, the soft tissue on top of the bone contributes to the reliability of 
measuring FAS by affecting the timing of the signal. The delay caused by soft tissue of 
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constant thickness a in the range of consideration can be eliminated using Eq. (3.9) or 
linear regression. A linearly changing a can easily yield a remarkable bias in the obtained 
velocities, and this can be reduced using so-called bi-directional approach. The 
measurement must be performed in both directions yielding v1

+ and v1
-, and the actual v1 is 

given by 
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where α = cos-1((a1-a2)/dr) [10]. In addition, soft tissue must be thin enough compared to 
the emitter-receiver distance r in order to obtain the fastest signal path via bone, i.e. for the 
given soft tissue thickness a, distance r must be greater than rmin defined by [16] 
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where vst is ultrasound velocity in the soft tissue.  
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Fig.  3.3.  Diagram of an in vivo axial transmission measurement when the thickness a of the soft tissue 
changes linearly.  
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3.3 Guided waves and bone 

In addition to FAS, completely different types of wave modes can also propagate in the 
long bone (Fig. 3.4). These so-called guided wave modes (GW) propagate, not only in the 
dense endosteal layer, but throughout the entire cross-section of cortical bone wall in the 
form of bending waves. As it is known that bone resorption starts in the endosteal bone, 
and that the consequent decrease of the solid cortical wall thickness yields increased 
fracture risk (Chapter 2), GW techniques may yield an improved diagnostic bone 
assessment. However, very little consideration has been given to measuring the GW in 
bone. A few studies have reported low frequency ultrasonic measurements (f = 100 kHz) 
of a slow antisymmetric flexural wave in the tibia, mapping the spatial variation in the 
velocity and quantifying changes during weightlessness [41, 78, 99, 62].  In addition, two 
recent in vitro studies demonstrated that velocities of guided waves measured in animal 
bones (f = 100 kHz and f = 50-500 kHz, respectively) correspond with close agreement to 
guided waves in a plate [54, 52]. 

 
Fig.  3.4.  Principle of an axial guided wave measurement. A guided wave arises from multiple 
reflections at the periosteal and endosteal boundaries, and propagates as a bending vibration of the 
whole cortical layer. 

In general, there is a whole family of different guided wave modes (GW). They arise 
from reflections, mode conversions and interference of longitudinal and shear waves, and 
propagate within the boundaries of plate and tube like layered media (Fig 3.4). The 
velocities of guided waves are functions of wavelength, frequency and layer thickness, and 
they are in addition determined by the elastic properties and density of the material [106]. 
These relationships will be treated in more detail in Chapter 4. In terms of the bone 
application, the endosteal surface of a long bone must be considered as the inner layer and 
periosteal as the outer layer of a tubular or plate like structure. If either of these 
assumptions can be made, then ultrasonic waves propagate guided by the bone cortex, and 
their characteristics are determined by the cortical thickness as well as the elasticity and 
density of the bone. Potentially, the most interesting guided wave mode regarding the 
bone applications is the fundamental antisymmetric flexural mode (A0). The velocity of 
A0 saturates to that of Rayleigh wave in thick layers, but decreases towards zero with 
decreasing cortical wall thickness.  

In addition to the guided wave modes, FAS can also show dispersive behaviour as 
mentioned in Section 3.2. However, FAS cannot be classified as a pure guided wave 
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mode, but rather as a complicated transition mode between the lateral and fundamental 
symmetric guided wave (S0), when its wavelength is of the order of or greater than the 
bone thickness. 

The effects of overlying soft tissues are considerably more complicated for guided 
waves than for FAS, as guided waves cannot usually be considered as bulk waves but 
preferrably as bending motion of the whole solid layer. The energy propagating in bone 
can easily leak to surrounding soft tissues causing attenuation and coupling. Coupling 
between bone and soft tissue means that they form a joint bilayer system in which a 
guided wave can propagate. Hence, any model of a single bone layer alone cannot very 
accurately explain the dispersion that takes place in the in vivo measurement of human 
bone. Thus the bilayer model, which takes the soft tissue coupling into account, will be 
discussed in Section 4.2. 



Chapter 4  

Theory of Guided Waves 

Though the concept of guided ultrasonic waves is novel in the field of bone quality 
assessment, guided waves have been widely used for many years in different applications 
of non-destructive testing for the assessment of plates, tubes and more complex structures 
[21, 20, 19, 17, 44]. This chapter reviews approaches to the theoretical description of 
guided waves with particular emphasis on those aspects of the theory relevant to the 
applications of guided waves for bone assessment. 

The propagation of guided waves in solids is governed by partial differential wave 
equations that arise from theory of elasticity. These governing equations are identical for 
guided as well as for bulk longitudinal and shear waves. The fundamental difference that 
distinguishes the guided waves from the bulk waves is that the latter propagate in the bulk 
of a material, independent of the boundaries, whereas the guided waves are born due to 
boundary interactions. Guided waves arise due to reflection, refraction, and mode 
conversion of longitudinal and shear waves at the boundaries of the media resulting in 
resonant modes whose frequency and propagation speed correspond to standing waves in 
the thickness direction of the structure. Mathematically, the solution of a guided wave 
must satisfy a number of boundary conditions, and the introduction of the boundary 
conditions makes the problem of guided waves difficult to solve. In most cases no 
analytical solution can be found, and often the use of numerical methods is needed [87]. 

Classically, the problem of guided waves is associated with waves in a traction-free 
isotropic plate (Lamb waves) [50, 106]. Due to the complexity of guided wave problems, a 
solution for the free plate case may be a convenient starting point for understanding the 
actual application. Sometimes it may be possible to consider the actual structure, e.g. a 
tubular bone, as a plate within a sufficient precision [54]. It is possible also to generalise 
the problem to deal e.g. with tubular shape, anisotropy and multilayer structures [32, 87].  
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4.1 Waves in plates 

Lamb waves are two-dimensional elastic waves that propagate in a traction-free solid 
elastic plate of finite thickness h. They can be modelled using four partial waves, 
downward and upward propagating longitudinal and shear waves (Fig 4.1).  

 
Fig 4.1.  Geometry of the free plate problem. Plate thickness is h. Lower-case kL,T are respectively the 
wave numbers of the longitudinal and shear partial waves, capital KL,T  are the corresponding vertical 
wave numbers, and k is the wave number of the propagating guided wave. 

The motion of a homogeneous, linear elastic solid can be modelled by Navier’s 
displacement equations of motion, 

( ) ijjiijj üuu ρµµλ =++ ,, , (4.1) 

where ui is the displacement vector,  
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ρ is the mass density and λ and µ are the Lamé constants. Summation over a repeated 
index is assumed. The displacement vector can be expressed via Helmholtz 
decomposition, 
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where φ  and ψj are scalar and vector potentials, respectively, and eijk is the permutation 
symbol. Substitution of Eq. (4.2) into Eq. (4.1) yields two uncoupled wave equations 
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where ∇2 = ∂2/∂y2 +  ∂2/∂z2, cL is the bulk longitudinal velocity and cT the bulk shear 
velocity. According to the partial wave formalism [87], the solutions of Eqs. (4.3) can be 
written as 
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kL is the wavenumber of a longitudinal wave component, kT the wavenumber of a shear 
wave component and k the wavenumber of a guided wave (in the direction of propagation) 
(Fig 4.1). The constants C1, C2, C3 and C4 are arbitrary unknowns and will be determined 
by the boundary conditions. 

Both of the potentials in Eqs. (4.4) now consist of two terms, one representing a 
downward propagating plane wave (positive y in the exponential term) and one 
representing an upward propagating plane wave (negative y in the exponential term). 
Technically we have thus assumed that there are four plane bulk waves in the solid, two 
longitudinal and two shear (Fig 4.1). 

Displacements ui can now be obtained from Eq. (4.2), and stresses σij are given by 

ijijij µεελδσ 20 += , (4.5) 

where δij is the Kronecker delta, the dilation is ε0 = ε11 + ε22 + ε33, and the strains are 
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By requiring traction-free boundary conditions, σyy = σyz ≡ 0 at the free plate 
surfaces y = 0 and y = h, where h is the plate thickness, and ignoring the shear horizontal 
displacements (ux ≡ 0), four equations will be obtained, 
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and ω is the angular frequency. 

This system of equations, Eqs. (7a-7d), can be expressed in a matrix form 
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where [G] is the global matrix, 
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and vector {C} contains the four unknown constants Ci, i = 1,…,4. The matrix equation 
Eq. (4.8) is satisfied when the determinant of matrix [G] vanishes. The characteristic 
equation for a plate in vacuum (with given wavenumber k, angular frequency ω, bulk 
velocities cL and cT, and plate thickness h) can thus be written as 

( )( ) 0,,,,det =hcckG TLω .              (4.9) 

The roots of this characteristic (or dispersion) equation provide the dispersion relations for 
the given structure, and can be solved numerically [87, 59, 80]. 

The technique described above is known as the global matrix method. Though not as 
elegant as the classical solution for Lamb waves [50, 106, 32], it is powerful as the global 
matrix [G] can easily be extended to different multilayer plate and tube structures. This is 
a useful property, for instance, if attempting to model the coupling effects of a soft (e.g. 
liquid) overlayer on top of bone or bone phantoms (see section 4.2). 

Classically, the solutions of Eq. (4.3) are sought in forms [32] 
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the exponential term represents the propagating wave in the axial (horizontal) direction, 
and f(y) and h(y) standing waves in the vertical direction. The displacements, strains and 
stresses are obtained from Eqs. (4.2), (4.6) and (4.5), and requiring the traction-free 
boundary conditions σyy = σyz ≡ 0 at the free plate surfaces (y = ±h/2, for convenience) 
consequently yields the classical Rayleigh-Lamb frequency equation  
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This equation divides in two parts that correspond to axially symmetric modes (+1) and 
antisymmetric modes (-1). The dispersion relations of Eq. (4.11) are identical with those 
of Eq. (4.8), and must also be solved numerically. 

4.2 Fluid-solid bilayer 

The purpose of developing a model for Lamb waves in a fluid-solid bilayer was to explain 
the effect of soft tissue on top of the bone. In this model the liquid on top of a solid plate 
played the role of soft tissue.  

The problem of a fluid-solid bilayer has been discussed comprehensively e.g. by 
Yapura and Kinra [111].  At an interface between solid and fluid the energy of guided 
waves leaks from solid to fluid in the form of leaky waves. The leaky waves, however, are 
reflected back at the top boundary of the thin fluid overlayer and propagate back to the 
solid substrate. As a consequence the guided waves propagate, not in the fluid or solid 
layer alone, but in the whole bilayer structure. This coupling affects strongly the 
dispersion characteristics of the guided wave modes. As this kind of coupling is expected 
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when there is a layer of soft tissue on top of bone (in vivo measurements), a bilayer model 
is needed in the analysis of measurement results.  

Yapura and Kinra [111] developed a bilayer counterpart to Eq. (4.11) using the 
classical approach. In the following, however, the partial wave formalism will be used to 
extend the global matrix of the solid plate (Eq. 4.8) into the fluid-solid bilayer case [87].  
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Fig.  4.2.  Geometry of the fluid-solid bilayer plate problem. Lower-case kL,T,F are respectively the 
wave numbers of the longitudinal, shear and fluid partial waves, capital KL,T,F are the corresponding 
vertical wave numbers, and k is the wave number of the guided wave. 

The ideal fluid can be treated similarly than the elastic solid, except that fluid only 
sustains longitudinal waves. As in the solid we had four partial waves, the fluid overlayer 
increases the number of partial waves by two (Fig 4.2).  

The wave equation for the fluid is given by 
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where φF is the scalar potential, cF = λF/ρF is the bulk velocity, and λF and ρF are 
respectively the bulk modulus and density of the fluid. The scalar potential φF can be 
expressed analogously to Eq. (4.4a), when replacing the sub-index L with F. The vector 
potential ψF = 0. The corresponding displacements uiF, strains εijF and stresses σijF can be 
obtained from Eqs. (4.2), (4.6) and (4.5). 
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The six boundary conditions that must be satisfied are  
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These boundary conditions yield six boundary condition equations that can by expressed 
in the matrix form  

[G]{ C} = 0, (4.14) 

where [G] is the global matrix and {C} the vector of six unknowns Ci, i = 1,…,6. The 
elements of the matrix [G] are given by 
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Equation (4.14) is satisfied when the determinant of the global matrix [G] vanishes. The 
dispersion equation for the fluid-solid bilayer can thus be written as 
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( )( ) 0,,,,,,,,det =ρρω FTLF haccckG .              (4.16) 

where cL and cT are respectively the bulk longitudinal and shear velocities, ρ  the density, 
h the thickness of the solid substrate, cF the bulk velocity, ρF the density and a the 
thickness of the fluid overlayer. The roots of Eq. (4.16) must be solved numerically. 

4.3 Effect of anisotropy 

The anisotropy of cortical bone has been studied by several researchers and experimental 
results for the anisotropy of the elastic constants have been reported [5, 39, 81]. Long 
bones can be considered transversely isotropic or orthotropic. In addition, the effect of 
anisotropy on the propagation of guided waves is well known e.g. in non-destructive 
testing of composite laminates [87, 80, 69, 70, 34]. However, the incorporation of 
anisotropy in the guided wave model of bone is as yet unexplored. 

This study did not include an extensive consideration of bone anisotropy. We, 
however, briefly comment here, how to incorporate anisotropy in the Lamb wave theory. 

The fundamental difference between the treatment of wave propagation in an 
isotropic and an anisotropic medium is that in the anisotropic case the governing equations 
of motion cannot be expressed as two simple equations, as Eqs. (4.3), by substituting the 
displacements ui to the equations of motion using the Helmholtz decomposition, Eq. (4.2). 
As it is not convenient to use this so-called method of potentials (Helmholtz 
decomposition is a function of the scalar and vector potential) for the anisotropic 
materials, a more general solution is often considered [87].  

For zero body forces, the propagation of elastic waves in anisotropic media is 
governed by the equation [87] 
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where Cijkl is the elastic tensor, which defines the elastic constants and the anisotropy for 
the medium. A single guided wave mode in an anisotropic plate is composed of six partial 
waves (instead of four for an isotropic plate), whose displacements ui can be expressed as 

]exp[)](exp[ tiylziku yii ωα −+= , (4.18) 

where the αi are the amplitudes and ly = ky/kz is the ratio of vertical to axial wave number. 
Each of these partial waves satisfies the homogeneous Eq. (4.17), and the substitution of 
Eq. (4.18) into Eq. (4.17) allows to determine the ly

(n) for each partial wave modes n = 1, 
2, …, 6. Requiring traction-free boundary conditions σyy = σyz = σyx ≡ 0 at the upper and 
lower boundaries of the plate, then finally yields the characteristic dispersion equation for 
an anisotropic plate [87]. 
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4.4 Effect of tubular shape 

The problem of guided waves in tubes has been a topic of considerable interest in non-
destructive testing [112, 64, 96, 107, 108, 80, 18, 47, 4, 67, 34], but no extensive studies 
have been made considering the bone application.  

 
Fig.  4.3.  Geometry of the free tube problem,  a is the inner and b the outer radius. 

The exact solutions to the axially propagating guided waves in hollow traction-free 
tubes were first published by Gazis [29], and followed e.g. by Graff [32], Pavlakovic [80] 
and Rose [87]. In tubes the guided waves must be modelled in three dimensions, whereas 
two-dimensional modelling was sufficient for an isotropic plate. It is convenient to 
consider the tube problem in cylindrical coordinates r, θ and z (Fig 4.3).  

The traction-free boundary conditions are  

0=== rzrrr σσσ θ    at   r = a, and  r = b. (4.19) 

The assumed radial, circumferential and axial displacement components can respectively 
be given by 

)cos(cos)( kztnrUu rr += ωθ , 

)cos(sin)( kztnrUu += ωθθθ , (4.20) 

)sin(cos)( kztnrUu zz += ωθ , 

where n = 0, 1, 2, 3, … is the circumferential order, and Ur, Uθ and Uz are the 
corresponding displacement amplitudes composed of Bessel and modified Bessel 
functions. 

When considering the axial transmission, i.e. wave propagation along the long axis 
of the tube, the guided waves modes can be divided into three classes [112, 96]: 

longitudinal modes L(0, m) (axisymmetric modes), 

torsional modes T(0, m) (axisymmetric modes), 

flexural modes F(n, m) (non-axisymmetric modes). 

Here n = 1, 2, 3, … is the circumferential order and m = 1, 2, 3, … is the number of mode 
[87]. The counterpart of the fundamental antisymmetric plate mode (A0), which we have 
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mostly been interested in regarding the bone application, is the fundamental flexural tube 
mode F(1,1) (hereafter referred to as F11). 

The dispersion equation for the hollow traction-free tube can be expressed as  

( ) 0][det =G , (4.21) 

where [G] is a six-by-six global matrix. The first three rows of the matrix elements are 
[87]: 
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where Zn and Wn represent incoming and outgoing Bessel functions, k is the axial 
wavenumber, µ one of the Lamé constants, α2 =ω2/cL

2 - k2, β2 = ω2/cT
2 - k2, α = (|α2|)½, 

and β = (|β2|)½. The remaining matrix elements, G41 to G66, are obtained from elements 
G11 to G36 by replacing a with b in Eq. (4.22). The proper criteria for choosing the Bessel 
functions can be found in Table 4.1. The incoming wave Zn can be substituted by the 
Bessel function Jn or modified Bessel function In, and the outgoing wave Wn  by the Bessel 
function Yn or modified Bessel function Kn. Parameters γ1 and γ2 account for differences in 
the recurrence relationships of different Bessel functions (Table 4.1). 

The roots of Eq. (4.21) yield the dispersion relations of a free tube and they must be 
solved numerically. The principle of a numerical solution routine is described in Section 
4.5. 
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Table 4.1.  Criteria for choosing the appropriate Bessel functions. 

α2 > 0 and β2 > 0 α2 < 0 and β2 > 0 α2 < 0 and β2 < 0 

γ1 = 1 γ1 = -1 γ1 = -1 

γ2 = 1 γ2 = 1 γ2 = -1 

Zn(αr) = Jn(αr) Zn(αr) = In(αr) Zn(αr) = In(αr) 

Wn(αr) = Yn(αr) Wn(αr) = Kn(αr) Wn(αr) = Kn(αr) 

Zn(βr) = Jn(βr) Zn(βr) = Jn(βr) Zn(βr) = In(βr) 

Wn(βr) = Yn(βr) Wn(βr) = Yn(βr) Wn(βr) = Kn(βr) 

 

4.5 Implementation of numerical solution 

The dispersion equations of guided waves, such as (Eq. 4.9), cannot be solved analytically 
but a numerical solution must be used. In order to find a point on a dispersion curve, a root 
of the characteristic equation (Eq. 4.9) must be found. A root corresponds to a point where 
the determinant of the complex-valued global matrix [G] is zero. The coefficients of 
matrix [G] depend on the geometry of the system (e.g. plate thickness h), material 
properties (e.g. cL and cT), frequency f, real wave number k and attenuation coefficient α.. 
The latter three, f, k and α, must be varied in order to find valid roots. 

If the materials are elastic and the waveguide is considered as free in the vacuum, as 
it was the case in this study, then there is no way for energy to leave the system and the 
attenuation will be zero. This simplifies the root search as the roots will be real. In the case 
when attenuation is involved, the roots will be complex and a more complicated two-
dimensional root search routine is required. The imaginary part of the complex wave 
number corresponds to the attenuation coefficient α. 

Figure 4.4 illustrates one example of a surface corresponding to the magnitude of 
det([G]) drawn in logarithmic absolute scale. The minima observed in this surface 
correspond to the roots (cp

i,fi) of the dispersion equation, and they determine the 
trajectories of the dispersion curves. The phase velocities cp

i can be obtained from the 
wave numbers by cp

i = 2π⋅fi / ki, and it is a matter of choice whether to consider the 
problem in terms of cp

i or ki. 

An efficient method used for tracing the trajectories of the dispersion curves was 
adopted from Lowe [59] and Pavlakovic [80]. The procedure was started with a frequency 
sweep, followed by curve tracing routines. The frequency sweep sought for the minima f 
of abs(det([G])) (Fig. 4.1) for given cp or k, and then the exact f were determined using the 
Newton-Raphson algorithm. The points obtained from the frequency sweep were used as 
the starting points in tracing the individual curves. In the curve tracing routine, the starting 
point was used as the first initial guess, and as the number of obtained roots increased, 
linear or quadratic extrapolation was used for predicting the next points that fall on the 
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trajectory of the sought dispersion curve. The use of extrapolation made this process 
efficient and robust, increasing the precision of the initial guess.  

The curve trace yielded the dispersion curves in terms of f, k, and cp. The 
corresponding group velocities were obtained by cg = 2π⋅df / dk. 

Some examples of the dispersion curves for plate, fluid-solid bilayer and tube 
structures are shown in Figure 4.5. The curves were computed using parameters similar to 
those of cortical bone. 

 

 
Fig.  4.4.  The magnitude of the determinant of the global matrix [G] illustrated in logarithmic 
absolute scale. The minima of the surface correspond to the roots of the dispersion equation and 
determine the dispersion curves. 
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Fig.  4.5.  Phase and group velocity dispersion curves respectively for a), b) a free isotropic plate, c), d) 
a fluid-solid bilayer and e), f) a free hollow tube. Material properies were cL = 4000 m/s, cT = 1800 m/s, 
cF = 1500 m/s, ρρρρ = 2.0 g/cm3, ρρρρF = 1.0 g/cm3. The fluid to solid thickness ratio was 0.5 (c,d) and the wall 
thickness to outer radius ratio was 0.4 (e,f). 
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Chapter 5  

Experimental and numerical methods 

5.1 Device 

Experimental measurements were performed using an axial pulse transmission scanner 
with a pair of unfocussed low-frequency contact transducers. The transducer diameter was 
approximately 5 mm. The transducers were orientated perpendicularly to the surface of the 
object to be measured and ultrasonic gel was applied as a coupling agent. The vertical and 
lateral position of each transducer could be adjusted manually and the axial position 
(scanning direction) using computer controlled stepper motors. The contact pressures 
between the transducers and the specimen were monitored using two precision load cells 
(Sensotec Model 31). During the scan, the transmitter was kept fixed and the receiver was 
moved away from the transmitter in steps (Fig 5.1). Typically the measurement was made 
at 40 transmitter to receiver distances r ranging from 20 to 50 mm corresponding to step 
size of 0.75mm. The receiving transducer was, in effect, dragged along the surface of the 
object to be measured with acoustic coupling maintained by the presence of ultrasonic gel 
and a near constant contact pressure. Lateral position was not adjusted during scans. The 
transmitter was excited by a square wave pulser (Panametrics 5077PR) yielding a signal 
bandwidth of 50 to 350 kHz (-20dB). The received signal was amplified and then digitised 
with a PC-based digital oscilloscope (National Instruments 5102) sampling at 10 MHz and 
averaging over, typically, 100 acquisitions. The received distance (r) - time (t) signal 
matrix was then visualised as a so-called (r,t) diagram (Fig 5.2), in which the intensity was 
represented conveniently using an absolute-valued grey scale.  
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Fig.  5.1.  a) Schematic diagram of the axial scanner device, and photographs of b) an in vitro and c) in 
vivo measurement. 
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Fig.  5.2.  A typical (r,t) diagram (human radius in vitro). 
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5.2 Methods of analysis 

In the (r,t) diagrams two distinct wave modes were consistently observed (Fig. 5.2). The 
first of these (Wave 1) was a fast first arriving signal (FAS) and the second (Wave 2) was 
slower and corresponded to the fundamental antisymmetric Lamb mode (A0). The 
velocities of Wave 1 (v1) and Wave 2 (v2) were determined in the distance-time plane. In 
addition, two-dimensional spectral analysis was used for a more precise determination of 
v2. 

5.2.1 Distance-time analysis 

Determination of the velocity in the distance-time plane consisted of two phases, a) 
detection of the time-of-flights ti at the given distances r i and b) linear regression in the 
detected points (r i,ti). This approach eliminated the delay due to overlaying soft tissue as 
discussed in Chapter 3.  

The time-of-flights corresponding to Wave 1 were determined using a 25% 
threshold of the amplitude of the first detectable peak (Fig 3.1). A robust linear regression 
based on the least median of squares was then used for determining the velocity. The 
reason for using the robust regression was that often some failure points were involved 
among the determined time-of-flights, and this robust regression, giving lower weights for 
these failure points, determined the velocity more reliably than the ordinary least-mean-of-
squares algorithm. 

Determining the time-of-flights for Wave 2 was considerably more difficult than for 
Wave 1, as Wave 2 was dispersive and interfered by other wave modes. Therefore, 
different approaches for analysing Wave 2 were developed. The time-of-flights were 
always determined according to the maxima of the corresponding wave front. Sometimes 
Wave 2 was strong enough and the time-of-flights could be read from the recorded raw 
(r,t) diagram. The (r,t) matrix could also be processed using strong band-pass filtering, 
which enabled the measurement of dispersion, i.e. to determine the velocity at specific 
frequencies. When Wave 2 was weak compared to interfering waves, then specific group-
velocity filtering and spectrum analysis methods were needed for a proper determination 
of v2.  

Where v1 or v2 are given without indication of the corresponding frequency, the 
frequency range from f = 250 to 300 kHz was used for v1 and that from f = 100 to 150 kHz 
for v2. 

5.2.2 Spectral analysis 

Two-dimensional fast Fourier transform (2D-FFT) has been used by several researchers 
for analysing distance-time matrices similar to the ones measured with the described low-
frequency axial ultrasound scanner [1, 93, 54]. The 2D-FFT method was developed 
specifically for analysing signals which consist of overlapping wave modes that cannot be 
separated in the time history of the signal. The FFT separates such wave modes in terms of 
frequency and wavenumber. In the wavenumber-frequency plane the intensity maxima 
correspond to propagating wave modes, and if guided waves propagate, the locations of 
these intensity maxima are supposed to correspond to trajectories of guided waves (Fig. 
5.3). Thus, the two-dimensional spectral analysis allows direct comparison between 
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experimental results and theory. Moreover, determination of the velocities and dispersion 
of the identified wave modes is as well possible. 

The 2D-FFT was based on the two-dimensional Fourier transform, as given by [1] 

∫ ∫
+∞

∞−

+∞

∞−

+−= drdtetrufkV tkri )(),(),( ω , (5.1) 

where  
)()(),( θωω −−= krtieAtru  (5.2) 

is the displacement on the surface of the structure (assuming that a harmonic wave is 
propagating), A(ω) is a frequency-dependent amplitude constant, ω = 2πf is the angular 
frequency, k is the wave number and θ the phase. The measured (r,t) matrix represented 
the displacement u(r,t). 

The 2D-FFT made for the (r,t) matrix was often expressed as functions of phase 
velocity and frequency. The transformation from wavenumber k to phase velocity cp was 
made point-by-point as kfcp /2π=  (Ref. V) (Fig. 5.3). 

 
Fig.  5.3.  2D-FFT shows a ridge of intensity maxima that corresponds to a propagating wave mode. 
This result is for a free aluminium plate. 

 

5.2.3 Inversion scheme 

Inversion schemes have been used successfully for analysing guided wave data in different 
applications of non-destructive testing (e.g. Karim et al [44]) and also in one bone 
measurement study by Lefebvre et al [54]. The purpose of an inversion scheme is to 
determine one or more properties of the medium based on the measured guided wave 
ultrasound data. Karim et al introduced a method in which the dispersion equation of the 
given structure was minimised in terms of the elastic modulus in a large number of 
experimentally measured phase-velocity-frequency points. Lefebvre utilised this method 
using plate theory for axial transmission measurements of bovine bones, and determined 
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estimations for the Young’s modulus. These approaches, however, require a broad-band 
multi-mode guided wave measurement.  

We developed a fairly different approach because we, so far, only measured one 
genuine guided wave mode (A0) and a reliable identification of this mode required the use 
of selective time domain filtering. In addition, our essential interest here was to clarify 
how well the measured A0 Lamb mode could reflect the thickness of a plate or a cortical 
wall. Therefore we did not attempt to determine the Young’s modulus, as yet, but made 
the inversion in terms of thickness h with given material properties (e.g. cL and cT). 

While the time-domain (or group-velocity) filtering included adjustable input 
parameters, the inversion scheme was actually considered as a theory based signal 
processing feedback loop (Fig. 5.4). The preliminary input parameters were material 
properties (e.g. cL and cT), thickness h and time delay td. The output parameters were 
(ve

i,fi), h and td, where ve
i were the experimental phase velocities at corresponding 

frequencies fi; and h and td the fitting parameters. The fitting was made by means of the 
minimisation 

( ) ( ) 
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


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i
ipdie hfctfv

1

,,min , (5.3) 

where cp(fi,h) were the computed theoretical phase velocities. The approach can be applied 
either using an assumed constant cg value or allowing to cg to vary as a function of 
frequency. In general, a constant cg value was used. The constant cg was typically 
determined according to the average or maximum level of the corresponding group 
velocity curve. 

Our inversion scheme was thus tightly connected with the identification of an 
experimental wave mode, yielding more reliable phase-velocity trajectory (ve

i,fi) than the 
2D-FFT alone. Therefore we called this process also as the selective 2D-FFT (Ref. V). 

 
Fig.  5. 4.  Principle of the inversion scheme and signal processing feed back loop. 
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5.3 Finite-element simulation 

Analytical modelling of guided waves is possible only in simple uniform sample 
geometries, such as plates and tubes. Thus the effect of some relevant bone properties, 
such as a non-symmetrical shape, porosity and defects, must be modelled using numerical 
simulation of wave propagation. The methods of numerical modelling date back to the 
1940’s, though the more active interest in the utilisation of these methods has arisen 
together with the rapid development of computers after the 1960’s [113]. There are two 
principal approaches of numerical modelling, finite-difference and finite-element method 
(FEM) [1, 24]. Since then, it has been shown that FEM is more effective and accurate in 
terms of modelling guided waves, as the free boundaries are better accommodated with 
this method [1, 66, 93]. Also, the axial propagation of the lateral wave in cortical bone has 
been modelled using a two-dimensional [11, 72] (Ref. I) and three-dimensional finite-
difference method [12]. In contrast with some previous results, the finite-difference 
method (more specifically the so-called Virieux difference method) was found as to be the 
most accurate approach for simulating the fluid-solid interaction in immersed bone 
samples [12]. However, it must be noted that comparison of these two approaches is not as 
simple, as plenty of different modifications of the finite-difference and finite-element 
method have been developed for the needs of various applications [24]. 

Several commercial general-purpose programs are available for numerical 
modelling, such as ABAQUS/Explicit (ABAQUS Inc., Warwick, Rhode Island, USA) 
[93], and Wave2000 Pro (CyberLogic Inc., New York, USA). Sometimes these programs 
may, however, lack features that are required for specific wave propagation problems. It 
may thus be more flexible to use a custom made, specialised wave propagation code.  

Our purpose was to simulate the low-frequency ultrasonic guided wave 
measurements in simple two- and three-dimensional structures in order to validate the 
measurement principle against analytical theory, and to model the properties of bone that 
affect the measurement but are not possible to model analytically. We started the 
simulations using Wave2000 Pro (Ref. I), based on the finite difference method, but 
encountered some difficulties in observing guided waves. Therefore, we began to seek 
custom-made software to handle the two-dimensional simulation of guided waves in a 
traction-free isotropic plate. This software was developed in collaboration with our group 
by Erkki Heikkola in a related AKTINUM-project at VTT Processes (Jyväskylä, Finland) 
and Numerola Oy (Jyväskylä, Finland). 

The finite-element method was used to simulate the vibration of an isotropic plate. 
The plate, denoted by Ω , is assumed to be homogeneous and to have uniform thickness h 
(see Fig. 5.5). Simulations were based on the two-dimensional linear elasticity equation 

with the plane strain assumption. In this case, the displacement ( )Tuuu 21=r
 is governed 

by the system of equations  

( ) ( ) ,0
2

2

=⋅∇∇+−∆−
∂
∂

uu
t

u rr
r

µλµρ  (5.4) 

where λ  and µ  are the Lamé constants and ρ  the density of the material. These 
parameters are connected to the pressure and shear (longitudinal and transverse) wave 
velocities such that 
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µλ =+= TL cc  (5.5) 

The stress tensor ( )u
rτ  of the elastic medium is given by 

( ) ,2,1,,22211 =++= jiijijij µεεεδλτ  (5.6) 

where ijδ  is the Kronecker symbol and ijε  is the linear strain tensor, 
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The condition on the boundaries of the plate is of the form ( ) gnu
rrr =τ , where n

r
 is 

the outward unit normal to the boundary. The right-hand side of the boundary condition is 
zero on all other boundaries except the transducer interface .tΓ  This case corresponds to 

the interface of a solid with air. On the transducer interface the second component of 
vector g

r
 is a time-dependent signal corresponding to vibration of the transducer in the 

direction perpendicular to the plate. This signal initiates the vibration of the plate, and the 
frequency band of the signal is bounded to the interval 100-300 kHz. 

The signal in the receiver at time t is measured by computing the following integral 
over the receiver interface rΓ : 

( ) .
2

∫
Γ

⋅
r

dsntu
rr

 (5.8) 

 

     
Fig.  5.5.  The plate and locations of the transducer and the receiver. 

 

Attenuation of the vibration is modelled by adding mass proportional damping to 
Eq. (5.4). This assumption leads to the system of equations 

( ) ( ) ,02
2

2

=⋅∇∇+−∆−
∂
∂+

∂
∂

uu
t

u

t

u rr
rr

µλµαρρ  (5.9) 

where the attenuation parameter 0>α  determines the rate of decay with respect to mass 
and velocity deformation. 

The finite-element method requires the following formulation of the elasticity 
equation. Find the displacement field u

r
 such that 

( ) ( ) ∫∫∫ ∫
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∂+⋅
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for all displacement fields .v
r

 This equation holds at all times t, and time-dependent 

simulation is started from the initial conditions ( ) 00 =u
r

 and 
( )

.0
0 =

∂
∂

t

u
r

 

Spatial discretisation with the finite-element method requires a triangular mesh for 
the plate. The number of nodes in the mesh is denoted by N. Discretisation leads to the 
semi-discrete equations of motion 

,2
2

2

GUK
t

U
M

t

U
M =+

∂
∂+

∂
∂ α  (5.11) 

where the NN 22 × -matrices M and K are the finite-element mass and stiffness matrices. 
The vector G corresponds to the source signal g

r
 and vector U contains the nodal values of 

the displacement components. 

The standard central-difference method is used to discretise the equation with 
respect to time. If we denote the discretisation time step by t∆ , and the solution U at time 

tit i ∆=  by iU , then the equation for computing the solution 1+iU  from the two previous 

time steps is given by 

( ) ( ) .21 22
111 iiiiii GtKUtMUtUUMMUt ∆+∆−∆+−=∆+ −−+ αα  (5.12) 

Each time step involves the solution of this linear system, which is obtained by Cholesky 
factorisation of the mass matrix M. The central-difference method is second-order 
accurate with respect to time, but it is only conditionally stable. In other words, the time 
step t∆  needs to be smaller than a given threshold depending on the finite-element mesh 
density and the wave velocity. If the mesh is refined, also the time step needs to be 
reduced to keep the time iteration stable. 



Chapter 6  

Results 

6.1 Validation of the measurement principle  
(2D simulations for plates) 

A two-dimensional finite element approach was used to simulate wave propagation in a 
free plate. Source and receiver geometry corresponded to that of the experimental axial 
transmission system, and the frequency range of the short transmitted pulse was 50-350 
kHz (-20 dB). The objective of these simulations was to investigate the nature of the 
propagating signals in the proposed low-frequency axial scanning method. More 
specifically, the aims were to measure the velocities of the wave modes present, assess 
their dispersion and relation to plate thickness, and to compare the simulated results to 
those expected for Lamb waves in plates. 

Material properties corresponding approximately to those of an isotropic bone 
(Young’s modulus E = 23.8 GPa, Poisson ratio ν = 0.3 and density ρ = 2.0 g/cm3) were 
chosen as the simulation parameters. According to Eqs. (3.1) and (3.2), the corresponding 
bulk velocities were cL ≅ 4000 m/s and cT ≅ 2140 m/s. 

Figure 6.1 shows (r,t) diagrams for simulations in plates with thickness ranging from 
1.0 to 4.0 mm. The fast Wave 1 (First Arriving Signal or FAS) and a slower Wave 2 can 
be identified in all diagrams. Wave 1 had a lower intensity than that of Wave 2. The 
velocity v1 of Wave 1 ranged from 3616 to 4006 m/s for thicknesses h = 1 - 10 mm, 
respectively (Fig 6.2). The mean frequency of Wave 1 was estimated roughly as 300 kHz 
by looking at the pulse lengths of the first arriving signal. Wave 2 was strongly dispersive 
in a thin plate, the higher frequency components arriving first and the lower frequency 
ones arriving later, considerably delayed. In a thick plate dispersion was much weaker, as 
expected. The velocity v2 (100 kHz) ranged from 790 to 1800 m/s for h = 1 - 10 mm, 
respectively (Fig 6.2). 
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fem, isotropic bone plates: 1.0, 1.5, 2.0, 3.0, 4.0 mm
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Fig.  6.1.  Effect of plate thickness h on the wave modes seen in the (r,t) diagrams. FEM simulation 
results for plates with isotropic material distribution. 
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Fig.  6.2.  FEM simulation results for the phase velocities of Wave 1, Wave 2 and fundamental Lamb 
modes as functions of the thickness to wavelength ratio. 

Velocity v1 was consistent with that of the lateral wave propagating at the bulk 
velocity when thickness to wavelength ratio (h/λ) was greater than 0.5. For h/λ < 0.5, v1 
decreased towards the phase velocity of an S0 Lamb mode. For a 1 mm plate v1 = 3616 
m/s, corresponding exactly to the saturation level (f,h→0) cS0 = (E/(ρ(1-ν2)))½ ≅ 3616 m/s 
of the S0 mode in the thin plate and low frequency limits [32]. Velocity v2 was fairly 
consistent with the phase velocity of an A0 Lamb mode throughout the simulated 
thickness range. 

Using 2D-FFT within the frequency range f = 50 - 350 kHz, clear intensity maxima 
curves were obtained (Fig 6.3). The intensity maxima (v2

i,fi) (diamond markers) were in 
excellent agreement with the computed phase velocities of the A0 Lamb mode (solid lines, 
computed for the same material parameters and plate thickness as used in the simulation). 

 

P
ha

se
ve

lo
ci

ty
(m

/s
)

2000

1800

1600

1400

1200

1000

800

600

400

Frequency (kHz)

50 100 150 200 250 300 350

Expected free plate A0

Simulated v2
i

P
ha

se
ve

lo
ci

ty
(m

/s
)

2000

1800

1600

1400

1200

1000

800

600

400

P
ha

se
ve

lo
ci

ty
(m

/s
)

2000

1800

1600

1400

1200

1000

800

600

400

Frequency (kHz)

50 100 150 200 250 300 350

Frequency (kHz)

50 100 150 200 250 300 350

Expected free plate A0

Simulated v2
i

Expected free plate A0

Simulated v2
i

Expected free plate A0
Simulated v2

i

P
ha

se
ve

lo
ci

ty
(m

/s
)

2000

1800

1600

1400

1200

1000

800

600

400

Frequency (kHz)
50 100 150 200 250 300 350

Expected free plate A0
Simulated v2

i

Expected free plate A0
Simulated v2

i

P
ha

se
ve

lo
ci

ty
(m

/s
)

2000

1800

1600

1400

1200

1000

800

600

400

P
ha

se
ve

lo
ci

ty
(m

/s
)

2000

1800

1600

1400

1200

1000

800

600

400

Frequency (kHz)
50 100 150 200 250 300 350

Frequency (kHz)
50 100 150 200 250 300 350

(a) (b)  
Fig.  6.3.  The locus of  the intensity maximum in the (ve,f) plane for FEM simulations of isotropic bone 
plates with thicknesses of a) h = 1.5 mm and b) h = 4.0 mm. 



 

 
 

41 

6.2 Validation of the measurement system (results for plates) 

The low frequency axial transmission device was used to measure a range of acrylic plates 
in order to confirm the presence of two propagating waves, and to assess the velocity of 
these waves as a function of frequency and plate thickness.  

Perspex acrylic (cL = 2730 m/s, cT = 1325 m/s and ρ = 1.186 g/cm3, corresponding 
to Young’s modulus E = 5.60 GPa and Poisson ratio ν = 0.347) was chosen as the 
phantom material. Twelve plates with thicknesses ranging from 2 to 24 mm were 
measured. The plate thickness h was measured using a caliper. For each plate the 
ultrasound scan was repeated three times. 

The (r,t) diagrams for the acrylic plates were similar to those for the numerical 
simulations. Two wave modes, Wave 1 and Wave 2, were observed consistently (Ref. I). 
Wave 1 (estimated f = 250 kHz) was consistent with the lateral wave in thick plates and it 
tended towards an S0 Lamb mode for h/λ < 0.5 (Fig 6.4, cross markers). Wave 2 (f = 100 
kHz) was consistent with an A0 Lamb mode for h/λ < 0.5. However, in thick plates the 
observed v2 was affected by the S0 as well as the A0 mode, and the results were not clear 
for h/λ > 0.5 if no selective filtering was used (Fig 6.4, dot markers). When using selective 
time domain filtering (or group-velocity filtering), v2 as a function of frequency followed 
more precisely the dispersion curve of the A0 mode also for thick plates (Fig 6.4, circle 
markers).  

When using the selective 2D-FFT and inversion scheme within the frequency range f 
= 30 - 350 kHz, clear intensity maxima (v2

i,fi) (diamond markers) were obtained for thin as 
well as for thicker plates (Fig 6.5). These experimental results were in a good agreement 
with the computed dispersion curves of A0 mode (solid lines).  
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Fig.  6.4.  Experimental results for acrylic plates. Velocities v1, v2, and phase velocity of fundamental 
Lamb modes are shown as functions of the thickness to wavelength ratio. 
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Fig.  6.5.  The locus of  the intensity maximum in the (ve,f) plane as measured for acrylic plates with 
thicknesses of a) h = 2.2 mm, and b) h = 12 mm. Diamond markers denote the measured velocity of 
Wave 2 as determined from the intensity maxima (white) and the solid lines show the respective phase 
velocities of the plate A0 mode. Selective 2D-FFT was used. 

The inversion scheme used yielded an estimate he for plate thickness, which was in 
excellent agreement with the true plate thickness h in the thickness range 2 to 8 mm (Ref. 
V). For thicker plates there is less dispersion in the phase velocity in the investigated 
frequency range, and therefore thickness estimation was not as accurate as for thin plates. 

6.3 Effect of sample geometry (results for tubes) 

The objectives of this study were to clarify how a tubular shape of the sample affects the 
measured velocities v1 and v2, and also how reliably the wall thickness of the tube can be 
estimated when using plate theory in the inversion scheme. 

Acrylic was again used as the phantom material. Four hollow tubes with an outer 
radius of b = 10.0 mm and a wall thickness e ranging from 2.2 to 8.0 mm, were measured 
such that each ultrasound scan was repeated three times. 
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Fig.  6.6.  The velocity of Wave 1 as measured for acrylic tubes and plates of varying thickness.  
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The velocity v1 measured for tubes showed a similar dependence on wall thickness 
as that measured for plates (Fig 6.6). However, v1 was about 4% higher for tubes than for 
plates when the thickness was less than 6 mm. When the thickness was 6 mm or greater, 
then the difference was not clear between the velocities for plates and tubes. 

Dispersion curves for velocities v2 were determined using a selective 2D-FFT 
assuming plate theory in the inversion scheme. When the tube-wall thickness e was small 
compared to the outer radius of the tube b, then the fundamental flexural tube mode (F11) 
was fairly consistent with the trajectory of the A0 plate mode in the investigated frequency 
range (Fig 6.7). Indeed, the experimental velocities (square markers) corresponded fairly 
well to those of F11 (or A0) when the tube wall was thin (e = 2.2mm). When thickness e 
increased with respect to b, then v2 was higher than that of the A0 mode. Correspondingly, 
the phase velocity of F11 increased as well, being in satisfactory agreement with the 
experimental results. 
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Fig.  6.7.  Experimental velocities for Wave 2 as measured for hollow acrylic tubes, and the theoretical 
curves computed with the corresponding tube dimensions. Experimental velocities were determined 
using a selective 2D-FFT together with an inversion scheme based on plate theory. 
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Fig.  6.8.  Ultrasound thickness he versus the actual tube-wall thickness e. Ultrasound thicknesses were 
obtained by an inversion scheme using a) a plate A0 mode (diamond markers) and b) a tube F11 mode 
(circle markers) when fitting the results measured for acrylic tubes. 

 

The inversion scheme used also provided wall-thickness estimates he (Fig 6.8). 
When using the plate model (A0 mode), the obtained thickness he was in good agreement 
with the actual wall thickness e only when e/b was small (e = 2.2 mm). For e > 2.2 mm, he 
> e, and the error between he and e increased with increasing ratio e/b, being 60% at e = 
8mm. When using the tube model (F11 mode) and constant cg, the wall-thickness estimate 
he agreed, with a difference of at most 10%, with the true thickness in the thickness range 
e = 2.2 - 6.0 mm, and with a 15% difference for e = 8.0 mm. Using variable cg improved 
the precisions of he slightly. At this stage of method development the use of variable cg in 
the inversion scheme has not been optimised, however. 

6.4 Effect of irregular cross-section  
(results for anatomically shaped bone phantoms) 

Measurements were made with the axial transmission device in phantoms with an 
anatomically realistic (non-spherical) cross-sectional shape in order to clarify how cross-
sectional geometry affects the measured velocities v1 and v2, and the thickness estimate he 
(using plate theory). 

Polyvinyl chloride (PVC, cL = 2400 m/s, cT = 1060 m/s and ρ = 1.4 g/cm3) was 
chosen as the phantom material as it was easy to manufacture in an anatomical shape. One 
drawback of using PVC is that its longitudinal and shear velocities are substantially lower 
than those in bone, and this must be remembered when interpreting results from such 
phantoms. Two tubular bone phantoms had a circular central hole and an outer cross-
sectional profile mimicking that of the human tibia. A ”thick” and ”thin” phantom were 
manufactured, having medullary canal diameters of 15 mm and 19 mm, respectively. The 
cross-sectional profiles of the two phantoms are shown in Fig. 1 of Ref. III. Ten 
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measurement sites were marked around each phantom. At each measurement site, the 
thickness of the phantoms along a line normal to the surface of the inner circle was 
measured using a caliper (the mean value of three measurements). In the ”thick” phantom 
local thickness determined in this way varied from 5.2 to 13.3 mm, and in the ”thin” 
phantom it varied from 2.6 to 10.2 mm. 

For PVC plates results corresponding to those obtained for acrylic plates were first 
measured for calibration purposes.  

For anatomically shaped bone phantoms the dependence of v1 on the local radial 
wall thickness was confirmed. As expected, v1 decreased with the decreasing wall 
thickness (Figs. 2  and 3 of Ref. III). The measured v1 was found to vary by 17.1% and 
21.4% depending on the location of the measuring site around the ”thick” and “thin” 
phantom, respectively. Measured v1 was strongly linearly correlated with the local 
thickness (r2 = 0.81, p<0.001) (Fig. 3 of Ref. III). 

Correspondingly, v2 (at f=100kHz), as determined using the selective 2D-FFT and 
the inversion scheme (plate theory), correlated linearly with the local thickness (r2 = 0.76, 
p<0.001). The value of v2 (at f=100kHz) varied by 18.8% and 33.0% depending on the 
location of the measuring site around the ”thick” and “thin” phantom, respectively. The 
local wall thickness estimate he, obtained from the inversion scheme, correlated linearly 
with the actual local wall thickness h (r2 = 0.78, p<0.001), though he was 30% lower than 
h (p<0.001) (Fig. 6.9). The trend of this difference is contradictory with the expected 
difference between the plate and tube models (Figs. 6.7, 6.8), and the explanation remains, 
as yet, inconclusive. 
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Fig.  6.9.  a) Wall thickness estimates he for the “thick” (diamond markers)  and “thin” (squ are 
markers) anatomically shaped bone phantom as a function of measurement site. Corresponding local 
thicknesses h are shown by dashed lines. b) Correlation between the ultrasound thickness he and local 
wall thickness h (results for two phantoms). 
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6.5 Effect of overlying soft tissue (results for immersed plates) 

Immersed plate was measured using the axial transmission device in order to test if 
immersion affects the reliability of measuring Wave 1, to test if plate model yields a 
satisfactory interpretation of Wave 2 in this case, and to evaluate the usefulness of the 
fluid-solid bilayer model so as to provide an improved interpretation of Wave 2. 

Aluminium plate (h = 4.0 mm, cL = 5950 m/s, cT = 3120 m/s and ρ = 2.7 g/cm3, 
corresponding to Young’s modulus E = 68.9 GPa and Poisson ratio ν = 0.31) was chosen 
as the bone phantom and water (cF = 1500 m/s) on top of the plate played the role of soft 
tissue. All measurements were made underwater, in varying immersion depths of 0 to 12 
mm. The thickness of the thin overlying water layer was carefully adjusted according to 
the area of the water tank and the volume of the new water added. Transducers were hold 
on top of the water, and their vertical position was controlled within 0.1 mm. 

The velocity of Wave 1 was v1 = 5383 (cv = 2.5%) for immersion depths a ≤ 8 mm 
(Fig. 6.10). For a > 8 mm, a reliable determination of v1 was not possible. For a dry 
aluminium plate v1 = 5533 (cv = 1.2%). The mean error when measuring v1 for an 
immersed plate was thus -2.7%. The thickness to wavelength ratio was h/λ = 4.0 mm ⋅ 300 
kHz / 5500 m/s = 0.22, thus v1 can be assumed to be lower than cL = 5950 m/s and slightly 
greater than cS0 (h,f→0) = (E/(ρ(1-ν2)))½ ≅ 5313 m/s [32]. 
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Fig.  6.10.  Velocities v1 (triangle) and v2 (diamond) as functions of overlayer thickness.  The velocities 
of the S0 and A0 Lamb modes, computed for similar plates, are shown for comparison. 
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From Eq. (3.12) we recall that the overlayer must be thinner than amax = rmin [1-
(cF/v1)

2]½ [2(1+(cF/v1))]
-1, where cF is the sound velocity in the fluid overlayer and v1 the 

signal velocity in solid. When rmin = 20 mm, v1 = 5500 m/s and cF = 1500 m/s, then amax = 
7.6 mm. In practice, however, v1 should be determined correctly if it is identified as the 
first arriving signal at least within 2/3 of the scanning range (r2/3 = 30-50 mm). Thus rmin = 
30 mm yields amax =  11 mm. 

It was not possible to measure v2 reliably through a thin overlayer using the 
distance-time analysis or ordinary 2D-FFT. Only the use of the selective 2D-FFT 
approach yielded a satisfactory identification for Wave 2 (Ref. V). Using plate theory and 
constant cg in the inversion scheme, the 2D-FFT yielded the mean velocity v2 = 1600 m/s 
(cv = 14 %), at f = 100 kHz for a = 0 - 12 mm. For a = 0 - 4 mm, v2 = 1663 m/s (cv = 1.5 
%). For a dry plate v2 = 1705 m/s (cv = 1.0 %) and the computed phase velocity 
(f=100kHz) is cA0 = 1719 m/s. 

The inversion scheme (plate theory) yielded a satisfactory estimate he of the plate 
thickness for up to a = 6mm. For larger immersion depths a, the plate thickness could not 
be determined using plate theory in the inversion scheme (Ref. V). 

The selective 2D-FFT approach was also tested using the first wave mode (BL1) of 
the water-solid bilayer model. BL1 required the use of a variable cg(f) as the group 
velocity changed considerably at the investigated frequencies and thicknesses. The plate (h 
= 4mm) was measured for immersion depths of a = 1, 3, and 5 mm, and for parameters a 
and h their known values were used in the selective 2D-FFT. Doing so, the experimental 
dispersion curves for v2 were qualitatively consistent with those of BL1 calculated using 
the corresponding values of a and h (Fig 6.11). Use of bilayer theory in the inversion 
scheme (i.e. in the determination of he) is not possible yet, but will soon become possible. 
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Fig.  6.11.  Velocities of Wave 2 (markers) as determined using the selective 2D-FFT and variable cg 
when analysing the results for a 4mm aluminium plate immersed at depths of 1, 3 and 5 mm.  
Parameters a and h had their known values. The results computed for the bilayer mode 1 (BL1, solid 
lines) at the same depths a, and the plate A0 mode (dashed line) are shown for comparison. 
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6.6 Application to real bone (in vitro) 

Human radius specimens were measured using three different ultrasonic devices. The 
objectives were to show that Wave 1 (FAS) and Wave 2 (A0 guided wave) can be 
measured also in an actual bone, that the theory for plates can satisfactorily be used in the 
interpretation of the guided wave results, and that the theory for tubes can improve the 
interpretation. Another purpose was to verify that the two ultrasound velocities measured 
reflect bone quantities, such as bone mineral density (BMD) and cortical thickness (cTh). 

In vitro measurements were made in collaboration with the Laboratoire d’Imagerie 
Paramétrique, Université Paris 6. Forty one (n=41) fresh human radius specimens were 
measured at the lateral mid-shaft (45% from the distal end). Three repeated measurements 
per specimen were made. The radius specimens were, in addition, measured with two 
other axial ultrasonometers, Omnisense (Sunlight Medical Ltd., Tel Aviv, Israel), and a 
bidirectional axial ultrasonometer prototype (Laboratoire d’Imagerie Paramétrique, 
Université Paris 6, Paris, France). Both of these devices operated at around 1 MHz 
frequency, being considerably higher than those used in our low-frequency axial scanner. 
The actual values of bone mineral density (BMD) and cortical thickness (cTh) were 
assessed using peripheral quantitative computed tomography (pQCT) (Norland/Stratec 
XCT 2000, Stratec Medizintechnik, Pforzheim, Germany). 

The low-frequency Wave 1 (v1 = 3799 m/s ± 179 m/s) and Wave 2 (v2 = 1280 m/s ± 
142 m/s) were both significantly slower than the FAS measured with the 1 MHz axial 
ultrasonometers (p < 0.001). Velocities v1 and v2 correlated significantly with cortical 
BMD (r=0.40, p<0.01; r=0.67, p<0.001, respectively) and cTh (r=0.33, p<0.05; r=0.72, 
p<0.001, respectively) (Table 3 of Ref. IV). The speed of sound (SOS) measured with the 
French prototype device yielded a relatively high correlation with cortical BMD (r=0.72, 
p<0.001) and also a weak correlation with cTh (r=0.36, p<0.05), whereas that of the 
Omnisense only correlated with the cortical BMD (r=0.50, p<0.001). In multivariate 
regression models (step-wise) v2 was determined best by the combination of cTh and 
cortical BMD (r2 = 0.62, p<0.001), or trabecular BMD and cortical BMD (r2 = 0.62, 
p<0.001). However, all of the FAS velocities (including the low-frequency and both of the 
1 MHz devices) were best determined by the cortical BMD alone. These results are 
described in detail in Ref. IV (note the difference in the notations of velocities). 

The low-frequency measurements were also analysed using the inversion scheme 
and spectral analysis approach. The theoretical tube and plate models were used with cL = 
4000 m/s, cT = 1800 m/s and ρ = 2.0 g/cm3. In the tube model the outer radius b was 
approximated using the mean radius based on the total cross-sectional area measured by 
pQCT, yielding b = 6.28 mm ± 0.71 mm. The corresponding wall thickness was e = cTh = 
2.53 mm ± 0.50 mm, and the thickness-to-radius ratio was e/b = 0.40 ± 0.07. From the 
latter it can be seen that the radius bones are quite strongly tubular, justifying the need for 
using the tube model (see Fig 6.7). 
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The thickness estimate obtained from the inversion scheme, when using the tube 
model, was he = 2.53 mm ± 0.67 mm, and it yielded a relatively high correlation with cTh 
(r=0.71, p<0.001) (Fig 6.12). In comparison, when using the plate model in the inversion 
scheme, the thickness estimate (he = 4.2 mm ± 1.8 mm) did not correspond well to the 
actual cTh, but correlation with cTh (r=0.67, p<0.001) remained as significant. 
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Fig.  6.12.  The thickness estimate he (using tube model) versus actual cortical thickness cTh. 

6.7 The clinical application (in vivo) 

Human tibia was measured using the low-frequency axial scanner and one commercially 
available axial ultrasonometer (Omnisense, Sunlight Medical Ltd., Tel Aviv, Israel). The 
objective was to demonstrate that Wave 1 and Wave 2 can also be measured in vivo, 
reflecting the aspects of bone properties. Bone mineral density (BMD) and cortical bone 
thickness (cTh) were assessed using peripheral quantitative computed tomography 
(pQCT) (Norland/Stratec XCT 2000, Stratec Medizintechnik, Pforzheim, Germany) in the 
same site where the ultrasound measurements were made.  

Two in vivo studies were made. In a small pilot study eight healthy normal and eight 
osteoporotic female volunteers were measured (Ref. I). The osteoporotic group had axial 
bone mineral density values, as measured using dual-energy x-ray absorptiometry, more 
than two standard deviations below the normal group. A more extensive study was made 
in a hundred and six 12-14-year-old girls (Ref. II).  

The velocities of Wave 1 and Wave 2 were lower in the osteoporotic group (OP) 
than in healthy normal group (N) (Fig 6.13). However, a significant difference between 
these two groups was only obtained for Wave 2. In comparison, neither the speed of sound 
(SOS) nor cortical BMD discriminated significantly between the two groups. 



 

 
 

50 

 

p<0.01ns

ns ns

∆ = 2% ∆ = 15%

∆ = 4%∆ = 1%

Wave 1
(FAS)

3700
3800
3900
4000
4100
4200

N OP

V
el

oc
ity

, m
/s

Wave 2
(A0 Guided Wave)

1200
1300
1400
1500
1600
1700

N OP

V
el

oc
ity

, m
/s

Omnisense
"Speed of Sound"

3600
3700
3800
3900
4000

N OP

V
el

oc
ity

, m
/s

Cortical Bone
Mineral Density

1000
1050
1100
1150
1200

N OP

B
M

D
.g

/c
m

3

a) b)

c) d)
 

Fig.  6.13.  Pilot in vivo results in the tibia of eight osteoporotic (OP) and eight healthy normal (N) 
female volunteers (Ref. I). 

 

Table  6.1.   Pearson’s correlations between ultrasound and pQCT variables for the tibia of a hundred 
and six pubertal girls (Ref. II). 

  v1  v2  SOStibia  BUA  

cTh  .24 *  .28 **  ns  .43 ***  

cBMD  .47 ***  .46 ***  .58 ***  .30 **  

v1  .57 *** .33 ** .24 * 

v2   .23 * .25 * 

* p<0.05; ** p<0.01; *** p< 0.001p<0.05; 
** p<0.01; ***p<0.001 

 

In the pubertal girls the velocities of Wave 1 and Wave 2 were v1 =  3713 (182) m/s 
and v2 = 1720 (92) m/s. Velocity v1 correlated significantly with v2 (r=0.57, p<0.001), and 
both of these velocities correlated weakly but significantly with SOS. Velocities v1 and v2 
correlated significantly with cortical BMD (r = 0.47, p < 0.001 and r = 0.46, p < 0.001, 
respectively) and weakly but significantly with cTh (r = 0.24, p < 0.05 and r = 0.28, p < 
0.01, respectively) (Table 6.1) (Ref. II). 
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Fig.  6.14.  Soft tissue thickness for the good and poor fit  groups for a) tibia and b) radius. The quality 
of fitting was based on the visual judgement of how clearly the Wave 2 was seen in the (r,t) diagrams 
and how well the slope of the fitted line thus was expected to correspond to the velocity of A0 plate 
mode. 

 

Two further in vivo studies were performed in Caucasian females, one for the tibia 
(age 32-90 years, n=65) and one for the radius (age 22-83 years, n=107). However, we 
encountered difficulties in measuring Wave 2 reliably at least in 1/3 of the subjects 
measured for the tibia and in 2/5 in those for the radius. The difficulties were identified as 
a consequence of too thick soft tissue on top of the bone (Fig 6.14). In the tibia the local 
soft tissue thickness (as measured using the pQCT at the site where the ultrasound 
measurements were made) ranged from 4 to 14 mm (±1 s.d.) between the subjects, and in 
the radius from 7 mm to 15 mm (±1 s.d.). As the soft tissue was thicker on top of the 
radius, this partly explains why the measurements were also more difficult for the radius 
than for the tibia. 

Due to these difficulties in measuring through the soft tissue, we began an extensive 
program for explaining the effect of soft tissue theoretically and to develop more efficient 
analysis methods in order to eliminate the adverse effect of soft tissue. As yet, we have 
tested the plate model (A0 mode) with the inversion scheme and selective spectral analysis 
method for the improved determination of v2 for the radius in vivo. This method enabled 
an automatic determination of the reliability of guided wave measurement based on the 
quality of the curve fit according to Eq. (10) of Ref. V. As a result, the in vivo radius data 
was divided, again, as a good fit (small fitting error between plate A0 mode and v2, n=45) 
and poor fit group (large fitting error between plate A0 mode and v2, n=62). Indeed, the 
soft tissue was thinner for the good fit (9.9 mm ± 3.1 mm) than for the poor fit (11.7mm ± 
3.1 mm) sub-set of the radius data (p<0.01).  

In the good fit group (n=45), velocity v2 (as defined using the selective 2D-FFT and 
plate model) correlated significantly with the cortical BMD as well as cTh (Fig 6.15). No 
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correlations between v2 and the bone quantities were found for the poor fit group (n=62), 
but instead, v2 yielded a strong correlation with the local soft tissue thickness (Fig 6.16). 
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Fig.  6.15.  Guided wave velocity v2 (as determined using the selective spectral analysis and plate 
theory for the good plate theory fit group) versus bone quantities for the radius in vivo. 
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Fig.  6.16.  Guided wave velocity v2 (as determined using the selective spectral analysis and plate 
theory for the poor plate theory fit group) versus local soft tissue thickness for the radius in vivo. 

 

The cortical thickness estimate he, as determined using the inversion scheme (plate 
model), was significantly higher than the actual cTh, and the correlation between he and 
cTh (good plate theory fit group) was slightly lower (but significant) than that of v2. These 
observations were obviously caused by the compatibility issues between the simple plate 
model and the in vivo problem (as the bone has tubular shape and it is overlyed by a layer 
of soft tissue). However, the tube or bilayer models have not yet been tested with the 
inversion analysis of the in vivo data. Further work is needed to optimise the inversion 
scheme for in vivo measurements exploring the use of tube and bilayer models, but this 
was outside the scope of the current work. It may also be necessary to combine the two 
into a tubular bilayer model.  



Chapter 7  

Discussion 

In this study we introduced an axial scanner device, operating at low ultrasonic 
frequencies (f = 50-350 kHz), and a method for measuring two ultrasonic wave modes 
(Wave 1 and Wave 2) simultaneously in cortical bone using this device. The measurement 
principle was verified with two-dimensional finite element simulations as well as with 
experimental measurements for bone phantoms. Wave 1 was shown to be the fast first 
arriving signal (FAS) and Wave 2 was consistent with the fundamental antisymmetric (or 
flexural) guided wave (A0). The effects of tubularity and overlying soft tissue were 
investigated theoretically and experimentally, and measurements were made on specific 
bone phantoms to illustrate the effect of anatomical bone shape. In addition, we reported 
guided wave results for human bone in vitro and in vivo - to our best knowledge, as the 
first group after Jansons et al [41] and Tatarinov et al [99]. 

The finite element simulations and the experimental results for plates were in 
excellent agreement with the theory of Lamb waves as well as with the previous finite 
difference simulation results by Bossy et al [11, 12] regarding the thickness effects of 
FAS. Wave 1, corresponding to FAS, was consistent with the lateral longitudinal wave if 
thickness-to-wavelength ratio was e/λ >> 0.5. When e/λ was close to 0.5, then a clear 
decrease in the velocity of Wave 1 was observed, and when e/λ << 0.5 Wave 1 was close 
to or consistent with the fundamental symmetric guided wave (S0). In addition, a slight 
increase in v1 compared to its high-frequency saturation value (cL) was observed at around 
e/λ = 0.7-1.0, which was as well in agreement with Bossy’s results. According to our 
measurements for human bone, the cortical thickness varied in the range 2.5-6.5 mm in the 
tibia and 1.0-4.0 mm in the radius. When measuring Wave 1 (f = 250-300 kHz), these 
ranges correspond roughly to e/λ = 0.2-0.5 and e/λ = 0.1-0.3, respectively, indicating that 
Wave 1 is expected to be sensitive to cortical thickness in the tibia, and that in the radius 
the thickness sensitivity may be impaired due to plateau of S0. In comparison, the French 
prototype device (f = 1.0 MHz) corresponds respectively to e/λ = 0.6-1.6 and e/λ = 0.25-
1.0, and Omnisense (f = 1.25 MHz) to e/λ > 0.8-2.0 and e/λ = 0.3-1.3. Thus, neither of 
these devices is expected to be sensitive to the cortical thickness of the tibia, but especially 
the French device may be sensitive to that of the radius. 

Velocity v2 of Wave 2 (f = 100 kHz), being consistent with A0, saturated to 
Rayleigh velocity cR for e/λ > 2 (Figs 6.2, 6.4). For e/λ < 2, v2 began to decrease slightly, 
and for e/λ < 0.5 strongly with decreasing e/λ. The cortical thicknesses measured in the 
tibia and radius correspond respectively to e/λ = 0.1-0.3 and e/λ = 0.2-0.5 when measuring 
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Wave 2 at f = 100 kHz (by chance similarly as with Wave 1). Thus, v2 is expected to be 
highly sensitive to cortical thickness in the radius as well as in the tibia. 

Measurements in vitro confirmed the thickness sensitivity of Wave 1 and Wave 2. 
The correlation between v2 and cTh was strong and significant, partly confirming the 
consistency between Wave 2 and A0 guided wave. However, v1 only yielded a modest 
correlation with cTh, which could partly be explained due to the S0 plateau effect at low 
e/λ. The inferiority of v1 results could also be explained due to impaired coupling of Wave 
1, as the low-frequency device is not optimised for measuring the Wave 1 alone. 
Transducers were orientated perpendicularly to the specimen, whereas properly tilted 
transducers would have concentrated more of the energy into the longitudinal wave. Also, 
the resolution of the data acquisition device (8 bits, 10 MHz) was limited and it was not 
possible to completely filter the digitising noise of the poorly coupled, low-intensity 
signals. 

The main interest was in the investigation of the sensitivity of ultrasonic velocities to 
the cortical thickness. Therefore, the thickness was chosen (as an only material property) 
as the fitting parameter in the inversion scheme. In plates the plate theory inversion 
yielded exact thickness estimates he (10% precision) for plates thinner than 8 mm, which is 
considered as sufficient regarding the cortical thicknesses of human bones. However, 
when using the plate theory inversion in tubes, the estimate was exact only when the wall 
thickness e was low compared to the outer radius b of the tube (e/b < 0.3), but for e/b 
larger than that the error increased with increasing e/b. It was proposed that the difference 
between plate and tube models could explain this phenomenon, and successfully it was 
shown that using the tube model inversion, the thickness estimate he corresponded nicely 
(10% precision) to the actual tube wall thickness e, provided that e/b < 0.8 and e < 8 mm. 
This is indeed considered sufficient within the range of human bone cortical thicknesses.  

The inversion for the human radius in vitro (mean e/b = 0.4) yielded the thickness 
estimate range he matching exactly to that of the actual cTh. However, the correlation 
between he and cTh was not higher than r=0.71 (p<0.001), and there was clear scattering 
in the points seen in Fig 6.11. This can obviously be explained due to the choice of 
constant tube radius b in the inversion model. This b was defined according to the mean 
radius of the radius bones, thus the variation of the actual radius clearly explains the 
scattering of the observed result. In addition to b, the elastic properties of the bone were 
assumed as constants, and this assumption affects scattering as well. 

In addition, it was shown that v1 and v2 are dominated by the local rather than 
average thickness of anatomically shaped bone phantoms. This denotes that the placement 
and alignment of an ultrasonic probe on top of bone is critical in order to obtain reliable 
and reproducible results. However, when comparing the acoustic wavelengths between 
bone and PVC, the effective size of the anatomically shaped phantoms (made of PVC) 
matches to that of approximately 1.6 times greater bone. Therefore, as the diameter-to-
wavelength ratio of actual human bones is smaller than in these experiments, the 
ultrasound velocities may more strongly be affected by the mean cortical thickness. This 
consideration can justify the use of the mean cortical thickness in the pQCT measurements 
of bone in vitro and in vivo. The mean thickness was much more precise than the local 
cortical thickness, which had to be determined using a slow manual analysis of the pQCT 
images. 
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The effect of the material properties (elastic modulus and density) on v1 and v2 was 
not considered in detail in the simulations or experimental measurements in phantoms. In 
theory, the material bulk velocities cL and cT are affected by Young’s modulus E and 
density ρ, and Poisson’s ratio ν  according to Eqs. (3.1) and (3.2), where ν  is defined by 
cL and cT as 
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Biomechanical studies indicate that E is approximately proportional to ρn where estimates 
of n range in the literature from 2 to 3 in cortical bone. From Eq. 3.1 this implies that 
velocity should then be function of ρm where m should vary from 0.5 to1. This explains 
the positive correlations obtained between ultrasound velocities and the bone mineral 
density (BMD). As velocity v1 saturates to cL, and v2 to cR ≈ 0.9 cT, this defines the 
relationships between v1, v2 and the elasticity and density via the bulk velocities of the 
material.  

In general, the bulk velocities alone define the dispersion curves for a plate, and thus 
the inversion from the experimentally measured guided wave velocities is possible to the 
bulk velocities and further to elastic constants properties of the plate. This inversion 
approach has been successfully utilised, e.g., by Karim and Mal, Lefebvre et al and Gsell 
et al [44, 54, 34]. It is provided, however, that the thickness and density of the plate (or 
tube wall) are known. Considering the bone guided wave application, the thickness could, 
for instance, be measured using a simple pulse-echo measurement, in the contrary to the 
complicated guided wave inversion approach discussed in this study. As mentioned in 
Section 5.2.3, velocities of several genuine guided waves should be measured within a 
broad frequency range in order to successfully use the elastic modulus inversion. The 
thickness inversion approach was the most suitable for this application, as it also helped in 
solving the wave identification problems (due to low spatial resolution) together with the 
selective 2D-FFT method.  

Remaining relevant questions that arise in the applicability of guided waves in the 
assessment of long bones are the effects of endosteal porosity, bone heterogeneity and 
anisotropy. It is known that anisotropy of cortical bone can be considered according to 
transversely isotropic or orthotropic symmetry [81]. In addition, the analytical guided 
wave models (plate and tube) can be expanded to anisotropic case, though a more general 
solution method must be used [87, 80, 34]. This must obviously be made next in the 
progress of bone guided waves research.  

Endosteal porosity is also a critical issue, as it affects roughness of the inner cortical 
layer, and the theory of guided waves provides an ideal layer with smooth top and bottom 
surfaces. Clearly, the roughness scatters the partial ultrasonic waves, and consequently 
affects attenuation of the propagating guided wave. If the size of the scatterers is 
significantly smaller than the acoustic wavelength, then only the attenuation (without more 
complex effects) takes place and the guided wave is expected to propagate. As the size of 
the pores in endosteal bone is of the order or less than 1 mm, and the acoustic wavelength 
of the A0 guided wave is of the order of one or two centimetres (f = 100kHz), the 
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condition between the pore size and wavelength is satisfied. However, as the frequency 
increases, the wavelength decreases. So, consequently the propagation of higher order 
guided waves may not be possible in the bone, especially in osteoporotic bone. The effect 
of surface roughness on guided waves has also been studied theoretically and 
experimentally by Lobkis and Chimenti [56, 57]. 3D simulations in bone [12] indicate that 
the increasing endosteal porosity decreases the velocity of the FAS. In addition, the 
experimental phantom measurements, made by Tatarinov et al [98], suggest that the 
velocity of flexural guided wave (i.e. A0) is decreased by the increased amount of 
endosteal porosity (f = 100 kHz). Thus, both Wave 1 and Wave 2 are expected to be 
affected by the porosity, in a manner that these low frequency ultrasonic waves in a way 
sense the effective thickness of the compact bone. As a conclusion, the low-frequency 
guided waves are therefore expected to be good indicators of the cortical thickness. 

The in vivo results in a hundred-and-six pubertal girls were in an agreement with the 
in vitro results, suggesting correlations between the guided wave velocities (v1, v2) and 
bone properties (BMD, cTh). The correlations between the guided wave velocities and 
cortical BMD were, in general, as high as expected from the in vitro study. Velocity v1 
yielded slightly better correlation in vivo than in vitro, which may indicate that the 
overlying soft tissue improves the coupling of the longitudinal first arriving wave (Wave 
1). Velocity v2, in turn, was slightly lower than its in vitro counterpart. This clearly is the 
first sign to indicate the problems in the reliable identification of the fundamental flexural 
(or antisymmetric) guided wave (Wave 2) through the overlying soft tissue. However, the 
preliminary results comparing the small group of osteoporotic females with a normal 
healthy control group, in spite of the soft tissue effects, only the Wave 2 can significantly 
discriminate between osteoporotic and healthy bone. These data suggest that the guided 
waves may yield a clinically relevant bone assessment and thus justifies the need for more 
extensive in vivo measurements and further investigation and development of the method. 

Further in vivo measurements were made for the tibia of sixty five and for the radius 
of a hundred and seven subjects. In the analysis of these measurements we, however, 
encountered serious difficulties in obtaining a good fit between Wave 2 and A0 plate 
mode. As a result, we found out that the difficulty in observing a clear A0 like Wave 2 
increased with increasing on-site soft-tissue thickness. The classification based on the 
quality of plate theory fitting yielded the rejection of 1/3 to 2/3 of the subjects when 
choosing the sub-set of good fit data. This classification helped in obtaining the expected 
correlations between v2 and bone quantities in the small good plate theory fit sub-sets. 
However, the only strong and clear (negative) correlation was obtained between v2 and the 
soft tissue thickness in the sub-set classified as poor plate theory fit group. These findings, 
unfortunately, raise also the preliminary positive results into a doubtful light. In the 
preliminary phase Wave 2 was analysed using semi-automatic line fitting in (r,t) diagrams, 
and thus the human judgement of the proper fitting may have had a strong influence on the 
obtained v2. Though being blind on the bone properties, the automatically determined v1 
was known when determining v2. Later, different automatic analyses, based on filtering 
and line fitting in the distance-time plane or the spectral analysis, were developed to 
achieve more reliable determination of v2. However, no expected correlations have, as yet, 
been obtained. The results do suggest that visual analysis of the (r,t) diagrams by a human 
observer may actually work better than the current automatic processing algorithms. This 
gives further confidence that there is valuable, though complicated, information present in 
the signals, and that further refinement of the signal analysis procedures is likely to bring 
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improved results. The data also indicate that, for a human observer, knowledge of v1 may 
improve the determination of v2 and this suggests that automatic analysis based on the 
information from both waves is worth investigating. 

These difficulties yielded the motivation for developing the fluid-solid bilayer model 
for explaining the effects of the overlying soft tissue layer. It is obvious to expect that the 
guided waves propagate, not in the bone or soft tissue alone, but in the whole bilayer 
system composed of bone and soft tissue. Therefore, it is highly possible that this bilayer 
model could explain the problem of in vivo guided wave measurement. In this model, the 
contribution of soft tissue is mostly related to the thickness of the soft overlayer (assuming 
that the sound speed in soft tissue can be approximated e.g. with that in water). This 
prediction is in close agreement with the experimentally obtained negative correlation 
between v2 and soft tissue thickness. Therefore, the purpose is to use the soft tissue 
thickness a as the known input parameter in the inversion scheme and selective spectral 
analysis method, and this way to eliminate its effect by seeking for the contribution of 
bone thickness h alone (or any bone material parameter) to the experimentally measured 
bilayer velocities. 

The limitations of the suggested solution approach to the soft tissue problem are 
tightly connected to those of the inversion scheme and selective two-dimensional spectral 
analysis method. The inversion was shown to work with plates, tubes and bones in vitro. 
As the thickness he was allowed to range over the whole spectrum of the results, it was 
shown that the inversion scheme works provided that a proper theory and input parameters 
are chosen. Therefore, the accuracy of this method relies on the choice of theoretical 
model and input parameters. Also, this means that satisfactory in vivo results cannot be 
obtained until the theory behind the guided wave propagation problem in vivo can be 
modelled and is known well enough. To this end the modelling of the effects of bone as 
tube, anisotropy, inhomogeneity and endosteal roughness are warranted. But more 
importantly, the effects of the overlying soft tissue and interior bone marrow should be 
addressed. Modelling the soft tissue or bone marrow as ideal elastic fluid may not, 
however, be sufficient, as the soft tissue and marrow are viscous (or visco-elastic) 
materials and may strongly affect the dispersion behaviour of guided waves. Previous 
studies, made regarding the effects of viscous tube core, viscous loading and visco-elastic 
bilayer [107, 108, 26, 71, 97], could be used as the starting point in these problems. 

A strong limitation of the two-dimensional spectral analysis was the short spatial 
scanning length (typically 30 mm). The short scanning length was necessary as to be able 
to approximate that there is no significant variability in the bone properties within the 
scanning range. This, however, yielded flat spectral peaks and thus low resolution in 
discriminating different wave modes in the phase-velocity (or wavenumber) domain. As a 
result, joint peaks were formed if two wave modes were too close to each other (in many 
cases already, e.g., the phase velocity difference of 1000 m/s was too close). We tested the 
adverse effect of the short scanning length (results not shown here) by finite-element 
simulations, and a 200 mm scanning length, for instance, yielded an excellent peak 
resolution. The selective 2D-FFT method was developed in order to eliminate the effect of 
other wave modes and thus to improve the reliability of mode identification. The fast 
Fourier transform could, however, be replaced with some more efficient spectral analysis 
approach, such as the Prony method [108, 47] or matrix pencil method [40, 34]. Also, it 
could be worth of trying to try to extend the scanning length in order to improve the 
resolution. This, however, must be made by the cost of increasing variability of bone 
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properties, which obviously may be adverse on the propagation of guided waves. But 
being able to measure guided waves over a longer range, then this could yield an average 
result reflecting more completely the properties (strength) of bone. 

The ultimate question, which arises, is the clinical relevance of the bone assessment 
using the guided ultrasonic waves, a) in general and b) using the proposed measurement 
approach. Clinically it would be relevant to have methods which can discriminate between 
osteoporotic or fractured and a healthy bone. Also, it would be warranted to assess the 
early signs of bone deterioration and to predict the risk for bone fracture at an early phase, 
thus maximising the benefit of medication. It may be difficult to displace the dual energy 
x-ray absorptiometry, the “golden standard” of bone assessment, completely. However, in 
general ultrasound provides three advantages over the X-ray based methods. Ultrasound is 
believed to be tissue safe, as long as intensity levels are kept below well recognised 
maximum permissible levels, and the equipment can be built as small and easy-to-use 
devices with an economy price. But more importantly, ultrasonic velocity reflects the 
material elasticity as well as its density, whereas the X-ray absorption is only affected by 
the density. Therefore, the comparison between ultrasonic and X-ray methods should be 
made bearing in mind that these methods are expected to reflect quite different properties 
of bone. The density takes no account of the underlying hierarchical microstructure that 
defines the mechanical properties of bone. The density thus yields only a fraction of the 
information that is needed to define the strength of bone. For instance, disorganised bone, 
such as that found in Paget’s disease, may have normal density but dramatically reduced 
elastic modulus and is expected to be weak and fracture easily. However, X-ray absorption 
cannot predict this, provided that the density is close to the normal level. But the 
ultrasonic velocity gives a direct insight into the ratio between elasticity and density. 
Therefore, the ultrasonic velocity may reflect the bone strength more completely than X-
ray attenuation, lacking, however, information of the absolute magnitude of the density. 

The question of guided waves builds up on top of understanding of the behaviour of 
the ultrasonic waves in general, as the guided wave is composed of the conventional 
ultrasonic longitudinal and shear waves between two boundaries of a medium. As 
discussed in this Thesis, the velocities of the measured guided waves were strongly related 
to the thickness of the waveguide due to dispersion. It was also described that the guided 
wave is a bending vibration of the whole structure. The guided wave velocity can 
therefore reflect aspects of the average elasticity and density throughout the bone 
thickness, as well as the effective thickness itself. A broad-band guided wave 
measurement can yield a multivariable inversion problem, i.e. a set of guided wave 
velocities (ve

i,fi), which can with certain approximations be quite accurately inversed as 
different material properties of the medium in which they were measured from. Therefore, 
a single guided wave velocity, e.g. that we have referred to as v2, can reflect only a 
fraction of the potential of guided waves. On the other hand it must be acknowledged that 
the possibility of measuring additional guided modes in bone has not yet been confirmed 
and hence the prospects for developing a successful inversion scheme for both geometric 
and material properties are not clear. Furthermore, even if a successful inversion scheme 
were possible allowing determination of elasticity, this would still only be a surrogate for 
bone strength rather than a direct measurement. It may be that optimal prediction of bone 
strength is to be obtained by combining a range of measurements including bone density, 
cortical thickness and elasticity. 
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Finally, however, theoretical considerations cannot, on their own, confirm the 
clinical applicability and value of a proposed new bone measurement method. This can 
only be made with in vivo measurements in large sample populations in comparison with 
the standard bone densitometry methods. A strength of this present study was its aim to 
collect such clinical evidence in the in vivo measurements. Measurements in girls 
confirmed the ability of guided waves to capture information on bone thickness in addition 
to bone density, in contrast to existing ultrasonic measurements of bone. Pilot data from a 
small number of older women suggested that guided waves may have an enhanced ability 
to detect osteoporosis. However, some difficulties were encountered in vivo due to the 
overlying soft tissue. In any future work, these difficulties should be addressed by 
extending the modelling work to include the modelling of bone as an anisotropic tube, and 
the soft tissue and bone marrow respectively as a viscous liquid layer and core. The large 
amounts of in vivo data that have been gathered already will be useful in any future work.  

As, noted above, future work could thus include the development of an appropriate 
wave propagation model for a multilayer structure in order to better interpret the in vivo 
guided wave measurements in bone. In this model the bone should preferably be 
considered as an anisotropic tube, and the soft tissue and bone marrow respectively as a 
viscous liquid layer and core. In addition, further technical development of the 
measurement system is warranted. The speed of data acquisition should be increased, 
thereby enabling a better precision through increased signal averaging. Also, it would be 
warranted to move the recording position slightly sideways on top of the bone between the 
scans in order to seek for an optimal contact and signal response. All of these requirements 
could be achieved by an array probe in which the necessary transducer elements were built 
inside a single casing, and scanning could be performed electronically. Finally, the 
ultrasonic guided wave assessment of bone does not necessarily need to be limited in the 
transmission principle, but also the measurement of a specular reflection spectrum may be 
worth investigating. This approach has been successfully used for measuring the guided 
wave dispersion curves for composite laminates [6, 7], and it also provided an efficient 
implementation of an inversion scheme [44]. A similar approach, known as the Ultrasonic 
Critical angle Reflectometry (UCR), has been used for determining the pressure and shear 
wave speeds for bone [3, 63]. However, the reflection-based measurement of guided 
waves has not yet been reported for bone. This approach would be attractive as it provides 
a localised point measurement, and allows the simultaneous measurement of several 
guided wave modes. 

As a conclusion, it was shown that the methods introduced in this Thesis provide 
useful information of bone phantoms and bone in vitro, and despite of the effects due to 
overlying soft tissues, also of bone in vivo. These results thereby indicate that the use of 
ultrasonic guided waves is a feasible and clinically useful assessment of cortical bone, 
providing advantages over the existing axial transmission techniques. In addition, this 
Thesis forms a firm basis for any future endeavours to improve the clinical performance of 
the guided wave bone assessment by further modelling work and technical development of 
the device and methods of analysis.  
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