Abstract

Fragmentation is a phenomenon which appears at all time and length scales in na-
ture. Hence, it has a profound impact on many interesting physical and biological
systems. Brittle fragmentation is free from effects due to plasticity and viscoelastic-
ity and so serves as a test bench for understanding the fundamental mechanisms in
fragmentation.

The aim of the present work is to investigate the inherent mechanisms of
dynamic brittle fragmentation in different spatial dimensions. To this end, we intro-
duce conceptual models of dynamic fragmentation. We also introduce two coarse-
grained numerical models for generic brittle materials, which are dynamically real-
istic. The first numerical model describes fragmentation of D-dimensional objects
in D-dimensional space for D = 2. In the model a two dimensional object under
fragmentation is embedded in two dimensional space. The second numerical model
is fully periodic (a torus), and describes fragmentation of a two dimensional object
in three-dimensional space.

For the case when the spatial dimension equals that of the fragmenting ob-
ject, an analytical model based on branching and merging of propagating cracks is
introduced. Merging of side branches results in a scale-invariant fragment-size dis-
tribution with a universal scaling exponent (2D — 1)/D. The model is verified both
numerically and experimentally. The experimental fragment-size distributions are
given with excellent accuracy by the analytical model over several orders of magni-
tude in the small damping limit. Correlation length exponent is however shown to
be non-universal and depend upon material and loading conditions.

With the second numerical model we show that the extra spatial dimension
allows an additional (hierarchical) fragmentation mechanism on top of those related
to mergers of uncorrelated cracks on the one hand and of their side branches on the
other hand. Hierarchical mechanism also results in a scale invariant fragment-size
distribution but with a different scaling exponent. This mechanism explains some
experimental results which have previously been unexplained.
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Chapter 1

Introduction

Fragmentation is a fundamental process that appears in many phenomena in nature.
It takes place practically at all length and time scales ranging from those relevant
in the breakup of heavy nuclei [1, 2], in polymer degradation [3], in mineral pro-
cessing [4], up to the size distribution of asteroids [5]. In the case of instantaneous
fracture, i.e. the one which results from sudden introduction of a sufficiently strong
external energy that breaks the object into smaller fragments, the fragmentation
process falls into three main regimes in the order of increasing applied energy [6]:
abrasion, cleavage, and shattering. In abrasion only a small part from the surface
of the object is fractured, shattering is destructive breaking, whereas cleavage is
defined as a process in which the energy input just suffices for one crack to prop-
agate through the sample. This classification is evidently highly dependent upon
the geometry and the loading conditions of the sample. For instance, the concept of
abrasion is meaningful only in the case when the sample is loaded at its boundaries.

As most of the experimental data available are on instantaneous fragmenta-
tion, many theoretical, computational and statistical models consider continuous
fragmentation. In the terminology presented above, the greatest interest concerns
the regime close to cleavage. As abrasion is a rather qualitative concept, we prefer
to divide the process into two regimes that we call the damaged and the fragmented
state of the system, as presented in [7]. When the rate of elastic energy fed into the
system (i.e. strain rate) is smaller than a sample dependent value, the sample will be
merely damaged, whereas at higher rates cracks will propagate through the sample
and it becomes fragmented. At large enough strain rates the sample is destructed
(shattering).

In many experiments of fragmentation, a power-law dependence in the fragment-
size distribution (FSD) over a non-negligible range of fragment sizes has been ob-
tained, (e.g. [4, 8, 9, 10, 11, 12, 13]). This has inspired numerous attempts to
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explain the behaviour by computational and theoretical models. Most of the pre-
sented theoretical models are geometrical or probabilistic [14, 15, 16] and thus fail
to take into account the dynamical aspects of the process. An important dynamical
model revealing the potential criticality of impact fragmentation with respect to
the imparted energy was reported in [7]. This study also suggested the potential
importance of the dynamical aspects of fragmentation. The present study focuses
on dynamics and on mechanisms of fragmentation responsible for the observed scale
invariance in FSD. The existence of a transition point to the fragmented state in
the imparted energy was rather satisfactorily shown already in [7, 17], and evident
in all of our simulations, so that we study the systems close to this transition.

Another aspect that has escaped detailed analysis is the effect of related di-
mensions. Although clear experimental evidence [9, 10] of its importance has been
available, no clear explanation to it has so far been attempted. The aim of this
thesis is to identify the basic mechanisms in dynamical fragmentation and to ex-
tract effects related to the dimension of the fragmenting sample versus the spatial
dimension.

The thesis can be outlined as follows. In Chapter 2 the concepts and models
of fracture and fragmentation most relevant to the present study are presented. For
the needs of lattice dynamics to be introduced later, some equations of motion are
also derived in 2D, and a few relevant experimental results are reviewed.

The numerical methods and the models introduced in the thesis are presented
in Chapter 3.

The main results are outlined in Chapter 4. An analytical branching-merging
model is presented and verified by simulations and by comparison with experimen-
tal data. An extension of this model to fragmentation of 2D objects in 3D space
with an additional hierarchical fragmentation mechanism is introduced and anal-
ysed, and verified by numerical simulations as well as by comparison with previous
experimental results.

General conclusions based on the results obtained are drawn in Chapter 5.



Chapter 2

Fragmentation

2.1 Background

Compared to many other branches of physics, the development of our theoretical
understanding of fragmentation has progressed slowly. This is largely due to the dif-
ficulty in obtaining experimental data that would shed more light into the inherent
dynamics of large-scale fragmentation. Almost all models and theories thus aim at
explaining features observed in the final distribution of the fragments. The size dis-
tributions of fragments that arise from instantaneous breaking serve as fundamental
building blocks upon which theories for continuous breakup of materials can be con-
structed. There is a number of equivalent forms used for expressing the fragment
size distribution [6]. In experiments the most commonly used form is the cumulative
mass of fragments of linear dimension less than r, M (r), naturally obtained in siev-
ing measurements. This type of measurement also provides the cumulative number
N(s) of fragments with mass greater than a given mass s, N(s). Many theoretical
treatments, including the present one, often express the size distribution in terms
of the number density of fragments with a mass between s and s + ds, c(s), n(s).
It has been known for quite some while that, in the limit of small masses, these
distributions are often well described by the equivalent power-law forms [18]

M(r) )
N(s) o s~(@7b, (2.1)

n(s) o s

In many experiments on instantaneous and highly energetic breaking, values between
5/3 and 11/6 have been quoted for exponent « [6]. In the references up to 1984, the

3
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power-law form had been obtained over at most two orders of magnitude in size in
the small size limit [8, 19, 20].

An early theoretical attempt worth mentioning was that by Kolmogorov [21].
He started by presenting a simple multiplicative argument for repeated fragmenta-
tion: The mass of a given fragment evolves as sy — s; — .-+ — sy, where the
successive reduction factor, ry = si/sg_1, is a random variable with a well-behaved
distribution. By the central limit theorem, log sy = Effzo log r, will be normally
distributed, so that sy will be distributed log-normally. The log-normal distribution
described adequately the size distribution in some geological situations, such as the
distribution of rock sizes in boulder fields and of particle sizes in soils [22, 23, 24, 25].
The argument contains the implicit assumption of fragmentation proceeding in dis-
crete stages with each object undergoing approximately the same number of breakup
events [6]. However, this does not seem an overly drastic assumption as the frag-
ments do appear in a sense in a discrete fashion as a result of crack propagation.

In the following, we first outline in Sec. 2.2.1 the equilibrium arguments for
crack propagation, which can be considered as a starting point for fracture research.
We then derive some elastodynamic equations in 2D, which are relevant to crack
dynamics. As fragmentation is based on the elastodynamic behaviour of the material
undergoing fracture, we give a brief account of some relevant aspects of continuum
theory in Sec. 2.2.2. Thereafter some experimental results for fracture dynamics,
which have relevance to fragmentation, are reviewed in Sec. 2.2.3. We then outline
some of the conceptual development in fragmentation and the related experimental
results, relevant to the present study, in Secs. 2.3 and 2.4. As no well defined theory
exists of either fracture dynamics or dynamical fragmentation, we only bring up a
number of relevant concepts and observations based on experiments and simulations.

2.2 Fracture dynamics

2.2.1 Equilibrium theory

Fracture is distinctively a non-equilibrium process. Still, many of the first significant
contributions to the field were made assuming equilibrium conditions. Among them,
the work of Griffith is undoubtedly the most significant [26]. He considered an
ideally brittle elastic body containing a crack and potential energy of the form
E,o = Q + Qg, where the first term is the elastic energy of the sample and the
second is the energy expended in forming new surface as the crack grows. If the
work per unit area of surface created is denoted by +, then for a crack to grow a length
[, Qg = 2vl. Griffith then invoked the equilibrium principle of minimum potential
energy for conservative systems by considering the system to be in equilibrium with
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a particular fixed loading and a particular crack length. He then postulated that
the crack was at the critical state of incipient growth if the reduction in macroscopic
potential energy associated with a small virtual crack advance from that state was
equal to the microscopic work of creating the corresponding crack surface area,
0 Q+Q)=0 2.2
(0 +05) =0 (22)
The state of incipient growth is an equilibrium state, and the crack length solved
from Eq. (2.2), [ = ., is called the critical length for incipient growth. However, the
form of the elastic energy 2 as a function of [ determines the nature of the system.
Typically, for a constant displacement loading 9%/91?(Q + Qs) > 0, and thus, under
equilibrium conditions, the crack will advance slowly in increasing displacement.
Thus in the above equation —0€)2/Jl can be interpreted as a crack driving force. If,
on the other hand, 9%/9I*(Q + Qg) < 0, as is typically the case for force-loaded
systems, the system is unstable against crack growth and the crack will advance
without further driving.

Mott proposed a theoretical framework for including inertial effects during the
rapid crack growth [27] based on Griffith’s analysis. He introduced the total kinetic
energy for the system in the form Tj,; = v2f (1), where v is the velocity of the crack
tip, and argued that the total energy of this system is constant,

0
O+ T+ 05) = 0. (2.3)
Although some wrong conclusions from this steady-state crack growth model were
inferred, the basic idea of energy balance during rapid crack growth was important
for the later progress in the field.

Important for the development of the continuum field approach to fracture
was that Irwin introduced the concept of elastic stress intensity factor K [28]. He
demonstrated the equivalence of his stress intensity factor criterion and the Griffith
energy criterion for the onset of growth of a tensile crack in a two-dimensional plane
under given stress, and showed that the energy release rate is given by

0 _ K
o E’

where F is the Young’s modulus of the material [29].

G = (2.4)

2.2.2 Dynamic theory

Irwin’s introduction of stress intensity factor K provided the basis for the develop-
ment of theoretical dynamic fracture mechanics. The dynamic fracture mechanics
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is naturally based on continuum mechanics. In the basic solutions in the field the
stress waves invoked by the propagating crack are accounted for in various approx-
imative schemes. As the conceptual and numerical models presented in this work
are mainly in 2D, it is in order to review here the basic continuum equations in 3D
and to derive their 2D counterparts. Besides, the 3D versions are often used in 2D
as well. The equation of motion for an elastic continuum is

where p is the mass density, u; are the displacement vector, and o;; the stress tensor
components and xj the position coordinates (i, k € {x,y, z}). The rhs of Eq. (2.5)
is thus the internal stress force (summation over repeated index). The free energy
of a deformed isotropic body can be expressed as

1
= F+ 5)‘%2@ + pug, (2.6)

where Fj is the free energy of the undeformed body, and A\ and p are Lamé constants.
To represent deformations as the sum of a pure shear and a hydrostatic compression,
the following identity can be used:

Uik = (Wi — Adjruy) + Adiguy. (2.7)

Here, A = 1/3 for 3D and A = 1/2 for 2D (as d;; = 1/A). The differences in the
relevant equations of motion in different spatial dimensions arise basically from this
identity. Omitting the unnecessary Fj, since it can be chosen as the reference energy
level, the free energy can now be expressed as

1
F = M(uzk — Aéikuu)Q + 5/{1@%, (28)
where Kk = =V (dp/0V')r is the modulus of compression, and

2
K = )\+§,u, in 3D,

kK = A+pu, in 2D. (2.9)
The stress tensor can be expressed as
o = Kupdy + 2p(ui, — %@kuu), in 3D,
o = Kuydy + 2u(uy, — %&ku”), in 2D. (2.10)

The coefficients in Eq. (2.8) may be expressed in terms of the Poisson ratio v =
—u;;/uj;. Spatial dimension does not affect the coeflicient of the shear term g, but
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does affect that of the compression term k,

E
= — in 2D and 3D
M 2(1 +]/)’ mn an s
E
K = ————  in3D,
3(1—2v)
E
— UV

The equation of motion - or Navier’s equation - can now be expressed as

. E E
— — 7A—» .—» . D

pu e u+2(1+y>(1_zy)vv u, in 3D,

i T i+ L vv.a in 2D (2.12)
pu = 51+ ) U 21— 1) u, in 2D. :

The longitudinal (¢;)and transverse (¢;) elastic wave velocities can be deduced from
these equations such that

B Bol-v) | B
“ = \/p<1+u><1—2u>’ T2y M

E E :
q = \/p(1+y)(1—1/)’ ¢ = o110 in 2D. (2.13)

The derivation given in [31] for the velocity of the surface wave cp is valid in
2D as well. Only the ratio ¢;/¢; = /(1 — v)/2 differs from the 3D case. Due to this,
the maximum value for the proportionality factor £ in 2D,

cr = &£, (2.14)

is less than that in 3D, {3p ~ 0.875 [31].

All solutions to moving cracks in different geometries start from the Navier’s
equation, Eq. (2.5). Typically, in fracture mechanics solutions are sought for bound-
ary value problems in plane geometries in which continuum materials are of infinite
thickness, so 3D equations are used. These results should not be uncritically adopted
as such to two-dimensional materials, but solutions should start from the 2D forms
given above. The basic continuum mechanical constraints are imposed while solving
the problem in addition to the conservation of linear momentum, which leads to
Navier’s equation, i.e. conservation of mass, p + pd,,0v; = 0, and the conservation
of angular momentum that requires that the stress tensor is symmetric, o;; = 0j;.
The crack naturally introduces a discontinuity in the geometry. In the crack domain
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conservation of linear momentum is replaced by ||o;;n; + pV'4;|| = 0, where notation
|/l = fT — f~ denotes the jump in the value of function f across the crack surface:
its limiting values are f* as the surface is approached in the direction of nf, with
n; the unit normal vectors of the crack surface. V is the local speed of the surface
in the direction of the unit normal.

The boundary value problems are solved by applying techniques of complex
integration. The crack tip is treated as a normal discontinuity. The discontinuity
related to the opened crack surface presents extra complications, however. As part
of the solution the speed for elastic waves travelling in opposite directions along
the crack surfaces is obtained. This is the speed of free surface Rayleigh waves, cg.
Theoretically, cg is the upper limit for the crack propagation speed.

Only in a few cases the boundary value problem can be solved exactly. Already
for stationary crack growth the solutions become complicated, let alone for crack
growth at a nonuniform speed. The basic elastodynamic solutions shed no light e.g
into the important question of cracks turning towards each other and the angle at
which they meet. The non-stationary boundary conditions of this problem make it
inaccessible for analytic solutions. So, the best that has been done analytically so
far has been to find solutions for a single crack propagating under various boundary
conditions. The stress intensity factor varies with varying geometry and crack open-
ing mode, but the asymptotic form of the stress field near the crack tip is always
the same. In polar coordinates around the crack tip

K77
S0, v). 2.15
om0 v) (2.15)

Here, 7 is the crack opening mode - I, II, or III for the in-plane opening, in-plane
shearing, and anti-plane shearing mode, respectively; v is the crack speed, and 6 the
angle from the line drawn from the crack tip in the direction of crack propagation.
For crack speeds less than about 40 % of the shear wave speed ¢; of the material, the
angular variation of stress components is found to differ little from the corresponding
equilibrium results. Significant variation appears for higher speeds. In mode I the
maximum stress seems to lie in the direction 6 ~ 100° as v > 0.4¢; [29]. There is
thus some indication of the observed bifurcation of the fast propagating cracks.

Uij =

The most useful and universal result from the analysis of the problem of non-
uniform crack speed is the equation for crack tip motion in mode I,
2E~ v

~1—— 2.16
(]' - VQ)KI(tvlvo)Z CR’ ( )

where [ is the crack length, v = [ the crack speed, and K/(t,[,0) the stationary
(I = 0) stress intensity factor. Thus, dynamical analysis gives the Rayleigh wave
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speed as the maximum speed of crack growth. Also, by drawing an analogy with a
mass particle, as the equation of motion is a first order differential equation for a
constant crack surface work 7, one can conclude that the crack tip has no effective
inertia [29].

In the case of time-independent loading Eq. (2.16) becomes
v=cr(l=1/l), (2.17)

where [y is a ’constant’ depending on fracture energy (and as later experimentally
observed, also on crack velocity) [30].

2.2.3 Experimental methods and results

Typically, in an experimental setup for dynamical fracture, stress is applied via
externally controlled boundary conditions, and the resulting behaviour of the crack
is observed. Some of the quantities measured during crack propagation are the
crack’s position and velocity, the instantaneous stress field at its tip, and the acoustic
emission resulting from its motion. Various optical and photoelastic methods have
been developed to measure dynamically the stress intensity factor and energy release
rate [33, 34, 35, 36, 37|. Also, the resulting fracture surface can be measured and
correlated with any of these dynamical measurements.

The elastic loading of the sample to be fractured can be done statically or
dynamically. In static loading either the boundary conditions or applied stress are
constant throughout the experiment. In dynamic loading very high loading rates
are desirable. A common way to achieve this is by loading a sample which includes a
flaw, or a seed for a crack, by collision with a guided projectile. In this way loading
rates as high as K; ~ 10°M Pa+/m/s have been achieved [32].

With respect to fragmentation, by far the most relevant experiments on frac-
ture address the velocity and branching of cracks. The most straightforward method
for velocity measurement is high-speed photography. To overcome the problem of
limited number of frames (~ 30) in high-speed cameras, a method based on using a
streak camera was introduced [38]. Variants of resistive methods based on breaking
a conductive layer, when a crack is opened, have also been introduced [39, 40, 41, 42].

The linear elastic fracture mechanics has been highly successful in predicting
the value of the stress intensity factor at the tip of both stationary and moving
cracks, for both static and dynamically applied loads [43]. Likewise, experiments on
crack arrest [44] agreed well with the theoretical prediction based on the stress field
at a point directly ahead of the crack tip reaching its equilibrium value as soon as
the shear (Rayleigh) wavefront has passed [29].
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However, the discrepancy between experiments and theory increases with in-
creasing crack velocity for v > 0.4¢;. The fundamental problem is that fracture me-
chanics provides no explanation to the experimentally observed velocity dependence
of the fracture energy [38] (v = 7y(v)) in Eq. (2.16)). A rather robust theoretical
prediction, when overlooking the divergent behaviour of the left side of Eq. (2.16)
as a function of crack velocity v, is that the crack should accelerate and asymp-
totically approach the Rayleigh wave speed cg. Experimentally found values for
the value at which the crack velocity saturates are, however, far lower than cg (see

Table 2.1 [30]).

Table 2.1: The maximal crack velocities observed in a number of brittle materi-

als [30].

Material Umaz /CR
LiF1 0.63
Rolled tungsten 0.85
Single-crystal tungsten 0.88
MgO 0.88
Weak interface PMMA 0.9
Grooved PMMA 0.8
Glass 0.47-0.66
PMMA 0.58-0.62
Homalite 0.33-0.41

Highest crack velocities have been observed in anisotropic materials. In an
experiment performed by Washabaugh and Knauss [45], plates of PMMA were first
fractured and then rehealed to form a preferred plane, substantially weaker than the
material on its sides. Fracture was performed by impulsively loading the faces of an
initial 'seed’ crack by means of an electromagnetic loading technique. Velocities of
up to 0.9cg were observed. The common feature of crack propagation in anisotropic
materials is that microscopic crack branching does not take place [30].

A major effort has been placed on the investigation of the dependence of crack
velocity on fracture energy. The continuum theory simply states that energy is
supplied by the surrounding continuum to the crack tip - or the very small process
zone surrounding it - at a rate determined by the speed of elastic waves in the
continuum. This statement fails to take into account that the process zone can
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actually grow quite large due to microcracking taking place in the vicinity of the
crack tip. When the microcracking patterns dominate the crack propagation, the
dynamics of the evolution of the process zone can become quite independent of wave
propagation in the surrounding elastic body [46]. Microcracking itself is very much
dependent on the material, which explains the varying values for v,,,, in Table 2.1.
In a nucleation and growth model [47, 48], dynamic crack growth occurs by stress-
induced nucleation of micropores or cavities, which then become microcracks and
grow and coalesce with each other. It was found that as the stress level increased,
more flaws were nucleated farther ahead of the main crack. Growth, interaction, and
coalescence of microcracks appears to be the primary mechanism of crack growth in

PMMA [46].

When the flow of energy to the crack tip increases sufficiently, the crack is
branched into two or more macroscopic cracks. After this bifurcation, single-crack
models are, of course, no longer valid. In a series of measurements [41, 42], the
velocity of a crack starting at rest was observed to show an initial jump and, after
acceleration to a velocity over a certain critical value v., oscillations were seen to
emerge. The initial jump is understandable as energy flow into and dissipation in
the process zone increase abruptly when the crack is nucleated. Velocity can be
made to increase gradually by making an initial flaw or small crack from which
the the crack starts growing. The value v, ~ 0.36cgr was obtained and later found
to be independent of sample geometry, sample thickness, applied stress, and the
acceleration rate of the crack [30]. Fineberg et al. also measured the rms value
of the the surface height of fracture surface and found it to be constant for mean
velocities v < v., and a monotonically increasing function of v for v > wv..

An explanation to these instabilities was provided by the experiments by
Sharon et al. [49]. They observed a sharp transition at v = v, from a state having
no branches to a state where both a main crack and daughter cracks are observed.
Microbranching was found to be responsible for both the structure of the fracture
surface and the fluctuations in the crack velocity.

As a crack accelerates, the energy released from the elastic energy stored in
the surrounding material is used for the creation of new fracture surface. When
the velocity of the crack reaches v,, the energy flowing into the crack tip is divided
between the main crack and its daughter cracks formed by branching. Thus, there
is less energy available for each crack and the velocities of the cracks diminish.
Apparently the main crack screens its daughter cracks, which thus have a finite
lifetime. The main crack can ’outrun’ the daughter cracks as it has the geometrical
advantage of straight-line propagation. As the daughter cracks die, there is more
energy available for the main crack and it begins to accelerate again, until the
scenario described above repeats itself [30].
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Sharon et al. have shown that, at a given mean velocity in PMMA, the lengths
of and distances between consecutive daughter branches are characterised by log-
normal distributions, whose mean and standard deviations are linearly increasing
functions of the mean crack velocity [50]. Although individual branch lengths seem
to vary randomly, the average branch profile can be very accurately described in
both PMMA and glass by a power-law form [50, 51],

y = 0.22"7, (2.18)

where x and y are the directions parallel and perpendicular to the direction of the
main crack propagation, respectively. The origin is taken to be the point at which a
daughter branch begins. As this expression is identical for two such highly different
materials, one might conjecture that it is universal. The assumption is further
supported by observations of branch profiles in polystyrene [52].

Comparing the form Eq. (2.18) with the experimental data for branching
angles, and taking into account the distance at which this angle was measured,
Fineberg and Marder [30] found excellent agreement. They suggested that there is
a smooth transition between microscopic and macroscopic crack branch profiles in
brittle materials and that the branches at length scales < 1000 gym exhibit a high de-
gree of universality. Thus, presumably, the criterion for the formation of macroscopic
crack branches coincides with the onset of the microbranching instability [30]. The
onset of macroscopic branching was indirectly inferred from experiments to occur
at v ~ 1.7v. [50].

2.3 Conceptual models for fragmentation

Even before Kolmogorov’s argument for log-normal fragment-size distribution (FSD)
[21], several attempts in the realm of statistical fragmentation had been taken. One
of the earliest of the kind is the one by Lienau [53]; even he refers to some similar
earlier studies in Japan [54] and to literature in mineral dressing. Lienau discussed
the geometric statistical problem of randomly distributed points on a line and the
distribution of fragment lengths created by this random partitioning. The relevance
of Poisson distribution in describing these random points was brought up by him.

There is general agreement over how geometric statistical fragmentation is
applied in one dimension, and we outline the main points here. By starting from an
initial Poisson distribution of points on an infinite line, ¢.e. probability of finding
n points in a length [ is P(n|l) = (Ngl)"e~™o! /nl, where Ny is the average number
of points per unit length, Lienau arrived at an exponential cumulative fragment
number per unit length [55]

N(1) = Nye Mo, (2.19)
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One can show quite easily that for a line of finite length [y the corresponding equation

reads
l Nolp+1
N(l) = Ny (1 — l_) . (2.20)
0
The two cumulative fragment numbers per unit length can also easily be shown to
be equivalent when [ < [.

After Lienau, Mott extended the geometric concept of random points on a line
to random fragmentation of a two-dimensional region, and suggested a distribution
(which fitted the data he had access to) of the cumulative number of fragments in
the form [56]

N(s) = Noe V2Nos, (2.21)

where Ny is the average number per unit area and s is the fragment area. Mott
and Linfoot tried then to justify this form by giving an analytic solution for the
distribution of fragment areas formed by the random arrays of horizontal and vertical
lines of equal density in an infinite area [56]:

N(S) = QNQ\/ N08 K1(2 NQS). (222)

Here, K is a modified Bessel function. The analytical solution and the Mott dis-
tribution agree reasonably well, except for small s, as verified in [55]. Mott and
Linfoot argued that the Mott distribution is probably better than the solution for
the problem where lines are drawn only from two sets of parallel lines. For fragments
of equivalent shape but of random size, the Mott distribution is exact [55].

Based on a large set of experimental data and on their numerical investigation
of geometric fragmentation problems, Grady and Kipp suggested that, in complete
analogy to the 1D case, Eq. (2.19), fragment sizes in 2D fragmentation are deter-
mined by breaks distributed randomly on scalar measure s of area. These points’
then define a Poisson variable, and the cumulative fragment number distribution is
given by

N(s) = Nge o5, (2.23)

This expression is called a linear exponential distribution [55].

The work referenced above considered fragmentation as a geometric statistical
process. Common to all of them, fragment size distribution (FSD) was of some kind
of exponential form. There was however a derivation within geometric statistics,
which included some physical assumptions, that gave a power-law form for FSD,
i.e. the one due to Gilvarry [14]. He introduced it to explain the experimental
results by himself and Bergstrom [8]. As this result is closely connected to the
results presented in this work, we will briefly outline its derivation here and make
reference to the related work by Grady and Kipp [55].
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Gilvarry assumes that cracks start either from newly nucleated flaws or from
some of the initial flaws (hence called activated) and propagate in the material
without branching until stopped by the boundary of the specimen or by an existing
crack in its path. The original specimen is considered infinitely large, so that there
are no surface flaws.

The internal flaws are assumed to be randomly distributed in the specimen
with a low enough concentration to conform with a Poisson distribution. That is to
say, a set of M points is randomly distributed over a domain of extent T" such that

lim % — 7, (2.24)

where v is a finite constant. Under this condition, the probability P(n|t) of points
falling in a subdomain of extent ¢ is given by the Poisson distribution

e V()"
n!

P(n|t) = (2.25)

When an initial flaw is activated, two contiguous surfaces result from crack
propagation, each of which contains flaws arising from intersection of these surfaces
with other initial flaws. A new fracture surface can arise by activation of such a flaw
on a surface. Similarly, an edge formed by intersection of two fracture surfaces may
contain flaws distributed along a line, activation of which can yield new fractures.
Gilvarry refers to the three types of flaws as volume, facial, and edge flaws, respec-
tively. Fragmentation is then assumed to proceed by activation of a set of all three
types of flaws.

Poisson distribution is assumed to hold for activated flaws as well as the rest of
the initial flaws. The first flaws are assumed to be activated by an externally applied
stress, which is instantly and permanently removed when the first cracks begin to
propagate. Subsequent flaws are then activated by stress waves produced by prop-
agation of the prior ones. Gilvarry states that the removal of the external stress
permits fragmentation to be controlled entirely by the postulated random distribu-
tions of activated flaws in the original specimen. We comment on this point later in
Chapter 4. Gilvarry defines constants 7,, s, and ; as the mean volume, areal, and
linear densities of activated flaws of volume, facial, and edge type, respectively.

In defining a differential element the total edge length, face area, and volume
of the fragment are increased from [ to [ +dl, from s to s+ ds, and from v to v+ dv,
respectively. The probability of having at least one activated flaw of one of the three
types in this element is

P(1dl, ds, dv) = P(1|dl) + P(1|ds) + P(1|dv), (2.26)
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since the activation of the different types of flaws are mutually exclusive. The
probability that no activated flaw is contained in the fragment, is given by

P(0|L, s,v) = P(0]))P(0]s)P(O]v). (2.27)

Thus, the probability dp(l, s,v) of formation of a fragment with total edge length,
total face area, and total volume in the ranges [I,l + dl|, [s, s + ds], and [v,v + dv],
respectively, is given by

dp(l,s,v) = P(0|l,s,v)P(1|dl, ds, dv) = e~ ?dQ, (2.28)

where Q = vl + Vs + Yv.

The number dn(l, s, v) of fragments with total edge length, total face area, and
total volume in the fore mentioned ranges can now be expressed in the form

dn(l, s,v) = g(l, 5, v)dp(l, 5, v), (2.20)

where ¢(l, s,v) is the a priori number of fragments with the values [, s, and v.

Gilvarry then proceeds to claim that, given the volume Vj of the initial speci-
men, q is fixed by
a="Vo/v, (2.30)

and is independent of [ and s. Accordingly, he then finds that
dn(l,s,v) = Vov~ e “dQ. (2.31)

This expression should thus be the general form for the distribution function of
fragment sizes in a fracture in which the distributions of edge, facial, and volume
flaws are independent Poisson distributions. Gilvarry finds that for the scenario
described above the edge flaw contribution dominates, so that @ ~ ;I [14].

The numerical work done by Grady and Kipp [55] addressed many of the
suggested analytical models for FSD’s; including that of Gilvarry’s. For all cumu-
lative F'SD’s obtained from the numerically implemented models, they found close
agreement with the linear exponential distribution, Eq. (2.23). Thus, there was
apparently no trace in FSD of power-law form.

Let us analyse a bit more closely Gilvarry’s derivation. We can find no justifi-
cation for the assumption made in Eq. (2.30) for the form of the a priori number of
particles ¢. The term v~! is thus effectively put in by hand and, as a result of this,
Eq. (2.31) is found for the distribution of fragment sizes. Without this assumption
Gilvarry would have obtained a purely exponential form for FSD, in agreement with
the results in [55].
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Unlike for statistical fragmentation in 1D, there seem to be different views
in dimensions greater than one. Typically, models of fragmentation are in general
hierarchical ones, which means that a large piece first breaks into smaller ones, that
may then break further. The reason is obvious: hierarchical process is conceptually
easy allowing one to write down formal equations for the development of fragment
sizes. Also, nothing prevents one from making such an assumption as there seems
to be no data, experimental or numerical, on the time evolution of fragmentation.

Marsili and Zhang [15] introduced a hierarchical analytical model without using
a specific breaking mechanism. For simplicity, the assumption of fragments breaking
into two smaller fragments at each level was made. In the model, breaking of an
object is determined by its energy density E/V: If E/V > 1, the object breaks into
two pieces of energy € and E — ¢, and volume v and V — v, respectively. These
are again subject to the energy density criterion for breaking further into two. The
process is repeated for an arbitrary number k of levels.

These authors assume a uniform distribution in energy and set ¢(e, v|E) =
E~1¢(v), where q(¢, v|E) is the probability that the energy and volume of an element
are in the ranges [e,e + de] and [v,v + dv], respectively, and ¢(v) is the volume
distribution with an additional symmetry requirement ¢(v) = ¢(1 — v), obviously
for analytical reasons. An iteration relation for the distribution p of the energy
density z is constructed,

P () = / " (el B (B)dE. (2.32)

where py(E) is the energy distribution at level k with the total energy E, and p(z|E)
is the energy density distribution of the object unstable against fragmentation. By
writing the asymptotic limit in the form

Poo(T) ~ Az77, (2.33)

the exponent can be solved from

fy:/o v T B(v)dv. (2.34)

The physical solution for any ¢ is then obtained for v = 1. After some additional
approximations a power-law form for volume (mass) distribution of stable fragments
is obtained,

W)~ Vot (2.35)

where a = 1 in the limit of infinite range for volumes. In this model a also depends

on the initial energy Fy. As Ej increases « increases until it reaches the universal
value 1. Because V = rP and N(r) = [[°W(V')dV’ ~ r= where D is spatial
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dimension and d the power-law exponent, the relation d = Da can be written. Thus
an upper limit D for d is obtained in accord with all the data referenced in [18].

The value of the model presented above lies again in the conceptual develop-
ments made. However, despite that the authors set as their goal to formulate a
scheme which produces a power-law FSD without referring to any specific fracture
mechanism, the exponent « is rendered dependent upon these mechanisms (like the
number of resulting fragments at each level) and initial conditions (Ey, V). The
dependence of a on Ej is however questionable: In real fragmentation processes the
power-law exponent does not simply saturate to universal value as the input energy
is increased. On the contrary, the power-law form disappears at values high enough
for Ey, so that the mass range in which the scale-invariant form appears is reduced
at large masses. The difficulty with this kind of modelling is related to the lack of
knowledge of the actual fragmentation process.

The conceptual model introduced by Kadono and Arakawa [12] serves as an
example of a mere probabilistic hierarchical scheme without any reference to physical
parameters, such as energy. It will also play a role in the analysis below of the
results obtained from our simulations. This model was introduced to explain results
obtained from an experiment, where crack propagation within thin glass plates under
high shock loading induced by a projectile was observed using a high speed camera.

The process was proposed for 2D but it can easily be adopted in 3D as well.
First, a square with unit area is divided into b subsquares of side 1/b. At the second
step b?p subsquares, where p is the fraction of the subsquares which will be further
fragmented, will each be divided into b* equal subsquares of side (1/b)?. By repeating
the procedure, a collection of an infinite number of fragments of various sizes is
obtained. The number of fragments with length r, = (1/b)" is (pb?)" (1 — p)b°.
The cumulative number of fragments larger than r, can now be written as

N>7r) = (1—p)b* +pb*(1—p)b* + ...+ (pb*)" (1 — p)b?
~ ()t =17, (2.36)

where v = In(b?p)/Inb. This simple model will be used later in Chapter 4 in more
detail.

In the models outlined above the emphasis is on the statistical aspects of frag-
mentation. Physical parameters were scarcely considered. The implicit assumption
was that fragmentation takes place in a fashion by which the whole specimen is
fragmented but shattering does not occur. A characterisation of fragmentation as
a function of impact energy was done by Kun and Herrmann [7]. With a 2D dy-
namical model of deformable, breakable, granular solids they were able to show that
there is a sharp transition as a function of impact energy between two final states,
a damaged and a fragmented state, as defined in Chapter 1. They chose the di-



18 CHAPTER 2. FRAGMENTATION

mensionless ratio of the energy impact and the binding energy of the sample as the
control parameter, and the mass of the largest fragment divided by the total mass as
the order parameter. By studying the behaviour of the fragment mass distribution
in the vicinity of the transition point, and its dependence on the finite particle size,
they gave numerical evidence that the transition point behaves as a critical point
and is analogous to a continuous phase transition. In all subsequent simulations and
analysis presented in this work fracture occurs close to this transition point.

2.4 Some relevant experimental results

There is a vast amount of experimental data on fragmentation. A review of the
results up to 1986 can be found in [18]. Of the later experiments we make explicit
reference to only three that have high relevance to the present study.

Oddershede et al. performed a series of experiments on objects of different
shapes [9]. The objects were cast of gypsum by pouring liquid gypsum into an
open mould of desired shape, thereby minimising stresses and strains in the objects.
The dried objects were then fragmented by throwing them onto a hard floor. The
mass of each fragment was then measured, those larger than 1072 g by an electronic
scale and those in the range [1073,1072] by an analytical balance. To check possible
dependence of the way the impact was given, identical objects were struck in different
ways, but no difference in the resulting distributions was seen. Also, experiments
were performed with objects of different materials (frozen steric paraffin, soap and
peeled potato), but no dependence on material was observed.

As measurements yield single events, the total number of fragments with
masses larger than or equal to s, N(s) rather than the continuous probability n(s)
was measured,

N(s)=- /OO n(s')ds'. (2.37)

Measured distributions were found to be of the form
N(s) ~ s P exp(—s/s0), (2.38)

where sg was interpreted as a characteristic finite-size cutoff mass. The exponent (3
was found to depend on the effective dimension of the object defined by the authors
such that

dpm =14 2(ab+ ac + be)/(a® + b* + c2), (2.39)

where a, b, and ¢ are the lengths of the three sides of the object.

The dependence of exponent (3 on this dimension, as found in Ref [9], is shown
in Table 2.2.
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Table 2.2: Experimental values for 3 [9].

d, 1 2 3
3 1.0+01 12401 15540.1

Meibom and Balslev performed further experiments of similar kind and, be-
sides confirming the observations made by Oddershede et al. [9], concluded that
exponent ( depends on the dimension of the original object on the length scale of
the fragment considered [10]. To this date, however, no explicit argument exists for
the observed dimensional dependence of .

Katsuragi et al. [57] performed experiments in some sense complementary to
those outlined above. A glass tube was placed between a hard stage and a plate, both
of stainless steel. The stage was fixed by placing heavy weights on it. A cylindrical
brass weight with a flat and even bottom surface was dropped on the stainless steel
plate vertically. A planar failure wave thus propagated to the glass tube from the
cross section of the tube. Consequently, the glass tube was cleaved by the impact.
Unlike in the experiments referenced above, the whole fragmentation process is thus
ensured to take place as cleavage in 2D. The power-law form N(s) ~ s %5 was

obtained over two orders of magnitude in fragment size.



Chapter 3

Method and Numerical Models

3.1 Lattice model and dynamics

Fragmentation of a brittle material was modelled using a lattice of mass sites at
discrete positions. Masses formed a square lattice and were each connected to their
nearest neighbours by massless, elastic beams of square cross section w?, length 1,
and Young’s modulus E. Beams deform elastically according to the matrix equation

—

F=T'KTU, (3.1)
where vector F = F(fL yl, 2 ;,li,l;,li,l;) contains the forces fz and angular
momenta [* acting on the two ends (i = 1,2) of the beam, T is the rotation matrix
transforming the beam’s local coordinate system, whose x-axis is chosen to be the
beam axis, into the global coordinate system of the lattice, and U is the displacement
vector of a lattice site. K is the stiffness matrix in the local coordinate system given

by

EA —EA
EA -9 0 =EA g 0
0 12E1 6ET1 0 —12FE71 6ET1
3 2 3 2
6E1 4E1 —6ET1 2E1
Kl = ]_OEA e ! EOA e !
— )
“BA 9 0 EA g 0
0 —12EI —6EI 0 12E71 —6E1
3 12 13 2
0 6E1 2E1 0 —6E1 4FE1

2 l 2 l

in which A = w? and I = ‘1"—; is the moment of inertia introduced by the masses at
the lattice sites. Columns 1 and 4 in K; give the linear force elements exerted on
the two ends of the beam along its axis, and columns 2 and 5 give the corresponding
force elements in the y direction. Columns 3 and 6 give the elements of angular
momenta exerted on the two ends. The forms of the elements can be calculated

starting from the equilibrium equations for the beam.

20
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The lattice dynamics are governed by discretised Newton’s equations of motion,
which, starting from the continuum equz_x.tions'l\/[(j +CU + KU = F and definitions
U=[U@t+At)—U(t—At)]/(2At) and U = [U(t+ At) — U(t)]/(At), can be written

as

{% + %} Ut +At) = {Z—l‘; - K} U(t) (32)
_ {% - %] Ut — At) + F(t).

Here M is the mass matrix, C is the damping matrix, both of which are diagonal,
K is the global stiffness matrix, and F' contains the external forces exerted on the
lattice sites.

The disorder is introduced into the system by either distorting the lattice by
a controllable amount or by defining Young’s moduli whose magnitudes randomly
vary from beam to beam. The fluctuation of the moduli around a nominal value
can again be controlled. The beams break instantaneously and irreversibly thus
rendering the stiffness constants independent of strain or strain-rate.

The lattice model is thus completely generic and unrelated to any specific
material. This is justified by the observed universal behaviour of brittle fragmen-
tation, regardless of material differences [9]. The square lattice obviously suffers
from anisotropy, unlike e.g. the Voronoi lattice. However, in contrast with Voronoi
lattice, its advantage is the easiness with which disorder can be controlled.

3.2 Imposing periodic boundary conditions

In order to eliminate the boundary effects arising from an elastic loading of the
inevitably finite lattice, we implemented periodic boundary conditions in the algo-
rithm. To accomplish this so that any constraint imposed on the lattice via elastic
loading be eliminated, it is necessary to introduce extra degrees of freedom, through
which the loading can be performed. As will be seen, this is not trivial. On the other
hand, all the systems on which fracture experiments are performed are certainly
constrained by the loading. Thus, although desirable to get rid of these loading
constraints in order to observe only the features inherent to fragmentation, it is also
of interest merely to eliminate the boundary effects due to non-periodic boundary
conditions. This way the characteristics arising from the constrained strain can be
identified. To this end, we implemented periodic boundary conditions in two ways,
one that preserved loading constraints and another that eliminated them. The in-
troduction of extra degrees of freedom in the second case enabled us to simulate
two-dimensional systems in three-dimensional space.
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3.2.1 Minimal model

In the first method, coined the minimal model, loading is performed by expanding
the periodic box up to a maximum strain e,, (e(t) = €, sin*(wt), for ¢t < m/(2w),
€(t) = €n, otherwise). In the discrete Newton’s equations of motion the inertial
effects related to the expansion of the periodic box are easily removable. The inertia
created in the elastic relaxation of the system is damped by a ’viscous’ damping
term in the equations of motion. Fragmentation is allowed only after the maximum
strain is reached. A 2D version of this model was used in the simulations made for
Publications IT and III.

3.2.2 Scaling dynamics

The method which is free from any extra constraints imposed via elastic loading
requires slightly more elaboration. To expand the surface without adding kinetic
energy in the direction of the lattice surface, additional degrees of freedom need to
be brought into the system. For each lattice site ¢ an extra parameter, SC;(t), de-
picting the local magnitude of expansion or contraction of the lattice is introduced.
The introduction of expansion variables independent of the dynamical variables as-
sociated with the dynamics of the surface on which periodic boundary conditions are
imposed, implies a close analogy with a curved two-dimensional surface expanding
in 3D space. Thus the expansion, or scaling, of the surface can be visualised as an
increase in the surface radius of curvature, R;(t), determined locally at each site.
The scaling factors of the displacements in Eq. (3.3) can thus be defined as

Ri(t)  Ri(0) +0R(2)

OTRO) T RO

(3.3)

where R;(0) is the initial radius of curvature and dR;(t) is the accumulated change
(sum of changes at previous time steps) of the radius at time t.

As imposing constraints is to be avoided, we let the radius parameter perform
Newtonian dynamics. Arbitrary masses can be associated with the radius parame-
ters at different lattice sites, but sticking to the analogy with the curved expanding
surface it is natural to define it equal to the lattice site mass m. As this radius is
orthogonal to the lattice surface at each lattice site and obeys Newtonian dynamics,
we have effectively extended the system by two extra degrees of freedom per lattice
site - namely position and velocity in the direction of the outer normal of the sur-
face of the 'torus’ thus formed. The radius parameter obeys Newtonian dynamics
according to Eq. (3.3) with the forces determined by projecting the elastic forces on
the curved surface of the torus into the direction perpendicular to the surface. The
magnitude of this projected force at each time step can be calculated from the torus
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geometry (Eq. (3.9) below). This force then directly affects the position of the mass
site in the radial z direction and, in a manner explained below, the position in the
surface directions x and y as well,

As the scaling of a site is an extra parameter, its relation to the site’s dis-
placement, and velocity, and to forces in the surface directions, have to be explicitly
defined in the dynamics. In all computations that contribute to the forces exerted
on the mass sites, the displacements need to be given at correct scaling levels. In
other words, at each step in the algorithm, the displacements of the neighbouring
sites need to be transformed to values corresponding to a judiciously determined
scaling level. Of the scaling levels of two neighbouring sites, the one closer to some
predetermined level is chosen as the reference scaling S’C’re]f>( ) based on which the
calculation is done. The mentioned predetermined level can be chosen to be the
scaling level averaged over all sites, as in Publication I, or it can be defined as a
local average around the interacting sites. The latter was used in Publication IV.
The displacement of the site that is farther from this level, say ¢, is transformed
so that its displacement along the surface corresponds to scaling of the site closer
to the predetermined level, say j. The latter was thus chosen as SC’@%(t). The
transformed displacement for site ¢ can thus be written as

Ul (t) =[SO (8) — 11XV, + —=222 SCin) [U(t) — U2(1)] (3.4)
L - (i.3) ! SCi(t) : :

Here XV, denotes the initial, unscaled position of the if" lattice site, (j,(t) the
displacement of the i site at its present scaling level SC;(t), and U°(t) the dis-
placement of this site due only to the scaling of the lattice, i.e., with the part that
results when the surface dynamics is excluded,

U0 (t) = [SCi(t) — 1] XY (3.5)

Obviously Eq. (3.4) could also be written more compactly. The given form proved
to be numerically the most stable.

The transformation to the displacements according to Eq. (3.4) is depicted in
Fig. 3.1. The relative displacements of the sites ¢ and j in the direction normal to
the surface are calculated using the radius of curvature and the difference in the
scaling factors SC;(t) and SC;(t) (see the last term in Eq. (3.9)).

After having transformed the displacements to the same scaling by Eq. (3.4),
the periodicity of the scaled lattice needs to be taken into account. For all the
sites whose connecting beams cross a periodic boundary, the above transformed
displacement needs to be further transformed such that

0r'(t) = Ut - [SCih(8) = XY +
+{XVipog — AXY pog + XY = XV po}[SCI (£) = 1. (3.6)
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Figure 3.1: Schematic diagram depicting the transformation of displacements to an-
other scaling level. The vertical axis depicts the scaling value SC; and the horizontal
axis the displacement relative to the initial position XY; with SC;(t =0) = 1. It is
assumed here that SC; > SC; and that, of the neighbouring sites ¢ and j, the scaling
factor of the latter is closer to the scaling averaged over the whole lattice. Thus, the
force computation is to be performed at the scaling level SC&e’f) (t) = SC;(t), and the

displacement U;(t) is transformed to the value U () corresponding to this scaling.
It is now evident how the mere scaled initial coordinates U%;(t) = [SC;(t) — 1]XY;
and the displacements caused by the dynamics U;(t) — U?(t) are rescaled separately.

The vector notation is omitted in the figure as it depicts displacements in one di-
mension.
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Through this equation the displacement of lattice site 7 is transformed to correspond
to the displacement it would have, were it located in the neighbouring periodic cell
so that it would lie next to its neighbouring site ¢’ on the opposite boundary in the
present (or actual) cell. By D € [0,1] we denote the effective strength of disorder.
X_Yi, p—o denotes the initial unscaled position of the lattice site ¢ with the quenched
disorder part excluded (D = 0), and AXY p_g is the distance between neighbouring
lattice sites at their initial positions with no disorder. The first two terms give the
properly scaled displacement from the initial position. The remaining part then
adds to this the new position calculated from the initial position in the adjacent
periodic cell with proper scaling. Again, the transformation could be written more
compactly, but the form given above proved to be the numerically most stable one.
The transformation of displacements from one periodic cell to another proved to be
the operation most prone to numerical instability, so using the best possible form is
important.

To determine whether a beam after the last time step should break or not, its
length Ly jy(t) has to be computed including the radial component and taking into
account the periodicity of the lattice,

Luy(t) = |XY,—XY; — PRX; L, — PRY; L, +
+ U () = Uj" (8) + [SC;(t) — SCi(1)]Ri(0)]. (3.7)
PRX jy is a factor whose value is zero if the beam does not cross a periodic bound-

ary, and one otherwise. L, and L, are the lengths of the unscaled lattice in the x
and y directions, respectively.

The load, proportional to the relative strain of the beam, is then calculated as

Ly (t) — Ly j(0)
Load; j(t) = —~ : : (3.8)
) L 5(0)

and is compared with a preset threshold for irreversible breaking of the beam.

As mentioned, the force exerted on lattice site i, projected in the direction
perpendicular to the surface, is determined based on the geometry of the curved
surface,

: 70 el )\{sgn(scg;;;(t) ~1.0) ij’”(
(i,4) QSC(Z',J‘)(t)Ri(O)

R;(0)
Ly j)(t) ) (3.9

The first term on the right side of the equation gives the force due to the curvature
and the remaining part gives the contribution due to the difference in the scaling

LZ., t) —
Fp(t) — sz\ <7.7>() +

+[SCi(t) = SC;(1)]
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Figure 3.2: Schematic picture of a beam L;; on the curved surface. The length of
the beam with respect to the radius of curvature is exaggerated in order to make
angles visible.

parameters (i.e. the distance in the direction perpendicular to the curved surface)
of neighbouring lattice sites i and j. sgn(SC&ef)(t) — 1.0) gives the direction of the
force due to the curvature.

A schematic picture of a (scaled) beam L;; is given in Fig. 3.2. From the geom-
etry the force induced by surface curvature can be calculated as follows: The initial
beam length can be written as Ly; = \/(in — 20;)% + (Yoi — Yo;)* + (20i — 205)%

The force exerted on mass i, say, is F' = kAU , where k can be taken as constant due
to the small relative strains before the beam breaks: k = (EFw?)/L;; = (Ew?)/Lo;;,
and AU = \/(ZL‘QZ - ij)Q + (yoZ - ij)2 + (ZOi - ZOj) - LOij~ Now 0 = ¢/2 and the
force components parallel and perpendicular to the curved surface are FP*" = F cos 6
and For" = Fsinf), respectively. Now L;j/2 = Rsin(¢/2) = sin6, so that § =
arcsin(L;;/(2R), where R is the radius of curvature. Hence, F°'*" = FL;;/(2R).
This form, given for the curvature induced part in Eq. (3.9), was used in order
to follow the curved surface analogy. In principle any form for the orthogonal force
could be used, as long as it keeps the dynamics of the expanding/contracting surface
stable.

The radius parameter at time step ¢t + At can now be determined from the one
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at t using a discretised Newton’s equation for the radius parameter,

+

Ap T aagfllt+ Al =
2m; m; C;

[At2 — KIR:(t) - [At2 2AL

|Ri(t — At) + FP(t) + Ff(t),  (3.10)

where Ff(t) is the external force applied on lattice site i.

Unlike in the case of constrained dynamics, loading of the system described
above can be realised by having Ff(t) # 0, which induces more instability to crack
dynamics (see discussion after Eq. (2.2)). In the simulations made for Publica-
tion IV, Ff(t) was set to zero and an initial impulse for expanding the system was
given by setting R;(—A) = —A - At, with A a constant, and letting the system go.
The curved elastic beam lattice then performed unconstrained dynamics.

The force calculations in connection with the transformations of displacements
to different scaling levels are based on linear approximations, so the model is valid
only for brittle materials not exhibiting plasticity.



Chapter 4

Results

4.1 Lattice elastodynamics

Differences in the static properties of the discretised lattice model and the continuum
system were shown to be negligible by checking energy conservation in a loaded
system, and by comparing the static stress field obtained for a 2D plate with a hole
in the middle with the corresponding analytical solution. Wave dynamics as given
by the discrete model was also seen to conform with excellent accuracy with the
continuum dynamics by comparing the transverse and longitudinal wave speeds in
the beam directions (see Publication I).

The effect of discretisation and anisotropy of the lattice, however, showed in
crack propagation. The measured speed of crack propagation, v, slightly exceeded
the theoretical upper limit, the Rayleigh wave speed vg, in the absence of micro-
branching. In Publication I vz was given based on a 3D consideration. As pointed
out, the parameter ¢ in Eq. (2.14) has however a slightly higher value in 2D. This
would take v a bit farther away from vg. On the other hand, v was measured in a soft
direction of the anisotropic lattice, which partly explains its apparently somewhat
too large a value as stress enhancement is expected in soft directions. In principle,
in a discrete ordered lattice infinite crack velocity can be attained as adjacent beams
may break during a single time step.

Crack velocities for two strain-rate values are shown in Fig. 4.1. The instability
due to the discreteness of the lattice increases with increasing strain rate. It appears
as larger oscillations in the crack velocity for larger strain rates. Thus, at larger
strain rates the first beams break at lower strain values so that crack propagation is
strain controlled, which explains the lower value for v in Fig. 4.1A than in Fig. 4.1B.
At sufficiently small strain rates the crack starts propagating at a fairly small strain,

28
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Figure 4.1: Crack velocity as a function of time for W = 1 and L = 1/v/2. The
straight lines show the velocity of the transverse wave cy. In A the strain rate is
1.06 - 1073m/s, and in B it is 7.07 - 10™5m/s.

which increases while crack accelerates to its maximum attainable velocity. Then
crack propagation is no longer controlled by the strain rate.

Although the mechanism behind the observed velocity oscillation in a discrete
lattice is different from the one causing the experimentally observed velocity oscil-
lations, namely microbranching [49] (see Section 2.2.3), their similar appearance is
understandable. In the case of microbranching, the crack can be thought to be accel-
erated in those intervals when no microbranching occurs. Elastic energy is expended
locally at the crack tip when a microbranch is generated. When the microbranch
finally stops, the strain rate has increased, and the velocity of the crack increases
until another microbranch is generated. In our discrete lattice elastic energy is ex-
pended in breaking beams. After a beam or beams are broken, elastic energy is
stored a while in the vicinity of the crack tip until several beams may break at the
same or consequent time steps, thus producing an increased velocity.

When multiple cracks were present, velocities far less than ¢y were measured.
In this case relaxation effects due to fracture dominate over those induced by dis-
cretisation and anisotropy, keeping crack velocities in a realistic range.

4.2 Fragmentation by the branching-merging pro-
cess

In the branching-merging process, contrary to a hierarchical process, fragmentation
proceeds from small towards large fragments. In other words FSD evolves in time so
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that the size of the largest fragment, sq, in the distribution grows with time. FSD’s
of power-law form have been found experimentally for several decades, see e.g. [8,
18,9, 10, 57]. There is also an abundance of simulations and conceptual models that
produce power-law distributions. Both the hierarchical and the branching-merging
scheme can produce an FSD of pure power-law form. The motivation for proposing
the branching-merging process came from simulations: Propagating cracks were
seen to generate side branches. Fragments were seen to form so that small fragments
resided close to the first nucleated main cracks ([58, 59] and Section 4.3). To combine
the experimentally observed power-laws and the spatial distributions of fragments
observed in simulations into one scenario, a heuristic analytical model was presented
in Publications II and III. In experimentally obtained FSD’s a cut-off in the power-
law form was observed in the large size regime. As will be seen, also this is naturally
incorporated in the scenario, which consists of two individual processes.

In a brittle material in which material strength/stiffness variations are uncor-
related, the cracks will be nucleated in uncorrelated positions under a (spatially)
homogeneous strain field. This was qualitatively confirmed from snapshots, see Fig.
1 in Publication II. As these cracks propagate, they will eventually merge, that is, a
crack tip will meet and terminate at the free surface created by another crack. The
FSD resulting from merging of uncorrelated cracks, which can be considered as a
two-dimensional Poisson process, was shown by Grady and Kipp [55] to be of linear
exponential form, see discussion in connection with Eq. (2.23).

The typical fragment size resulting from this kind of a Poisson process can be
written as sy o< p~!, where p is the density of the nucleated cracks. As the cracks
propagate, they generate side branches, given that the crack velocity is high enough
(see Section 2.4). Main cracks thus serve as starting points for the branching-merging
process we describe below.

As the elastic energy loaded in the sample by the time nucleation of cracks
begins is typically high in comparison with the energy released in the formation
of a fracture surface, the nucleated cracks will propagate very fast and be unstable
against branching or bifurcation (or crack-tip splitting) [30]. All propagating cracks,
which at the first stage are the main cracks, will thus emit side branches. The
propagating side branches naturally leave two free surfaces, which attract crack tips
of the neighbouring side branches. Thus adjacent side branches will attract each
others. A single merging of two side branches leaves only one propagating branch:
One of them terminates at the free surface created by the other, and a small-size
fragment will be formed [11, 59]. The fragments formed by the first mergings taking
place between branches, whose average mutual distance is [,, are called the first-
generation fragments, and the participating branches the first-generation branches.
So, in an idealised scheme half of the first-generation branches will propagate further
to take part in second-generation mergings. In this way the number of branches is
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halved in each generation. The average distance between neighbouring branches, on
the other hand, doubles when going to the next generation.

Let us denote the first generation as ¢ = 1. If an initial number n, of branches
are generated from a main crack, the number of fragments n in generation ¢ is given
as ny/(2°P~Y). The linear size of the fragments in generation i is 2°l, , so the
fragment size s in generation i is 2/ S(i=1), where s(;_1) is the size of the fragments
belonging to the first generation. Simply by writing down the number of fragments
as a function of fragment size in generation ¢, one gets a discrete FSD. Taking the
continuum limit gives for the number density of fragments in an interval ds

n(s) oc s~@P-V/D, (4.1)

The description given above is of course for an idealised scheme, but it can
be generalised with plausible additional assumptions to a distribution for branch-
to-branch distances and to a case when only a certain portion of the side branches
participate in the process.

In the mining engineering literature the experimentally observed Gaudin- Schuh-
mann (GS) distribution for the cumulative mass of fragments of linear dimen-
sion less than r is given as M(r) o« 77, where v ~ 1. The distribution of the

form in Eq. (4.1) is seen to conform with the GS distribution as r” oc s. Thus,
M(r) = for n(r')dr’ o« for(r/)D(T/)*(QDfl)(r')D*IdT/ X T.

In simulations the branching-merging process was seen to propagate a finite
distance away from the first formed main cracks. This is due to relaxation and
dissipation taking place in the material. Randomly distributed broken beams nat-
urally relax the strained lattice just as cracks nucleated from them. A propagating
crack also dissipates energy. These effects cause the side branches eventually to get
arrested. In FSD the finite propagation distance of side branches shows as a cut-
off at large fragment sizes, consistently with experimental observations. This crack
arrest is taken into account by introducing a penetration depth parameter A, which
is an average measure of the finite distance to which the branching-merging process
proceeds.

The branching-merging process effectively takes up space/mass from the frag-
ments generated by the Poisson process. Thus, assuming the large-size cut-off in
FSD to be of exponential form, a reduced linear size can be defined for the Poisson-
process fragments as [* = sB + A. The cut-off is thus incorporated in FSD by a term
of the form ~ exp (%) The propagation (or penetration into the Poisson-process
fragments) of the branching-merging process is taken into account in FSD by a term
of the form ~ s™fi(s/s;1), where « = (2D — 1)/D is the power-law exponent of
Eq. (4.1). f1 is a scaling function that produces the cut-off with s; the effective

cut-off size. It must be proportional to the penetration depth such that s; ~ \P.
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Assuming, for simplicity, an exponential form for the scaling function, FSD can thus
be written in the form

—92Dg

\D
), (4.2)

where 2” is a mere geometric factor, and 3, determines the relative normalisation
of the two parts of the distribution.

n(s) o (1—B,)s exp
_(l*)D

S0

)+

By exp (

4.2.1 Simulations and experiments I

In order to check the validity of the FSD of Eq. (4.1) in 2D, simulations were per-
formed for the minimal lattice model of Section 3.2.1 with two types of disorder.
The lattice sites were slightly randomly distorted from their regular positions. The
amount of distortion was controlled with parameter d; which can take values be-
tween 0 and 1, where 0 corresponds to zero distortion and 1 to a chosen maximum
(small) distortion. In order to mimic disorder commonly present in brittle mate-
rials, uniformly distributed uncorrelated variations in the Young’s modulus F of
the beams (E € [1 — 02,1 + d2]) was used in addition, and a small fraction (d3) of
prebroken bonds was introduced to model microcracks. The two cases studied are:

(1) 6, = 0.7, 85 = 0.0, &3 = 0.0, and (II) &; = 0.3, 6, = 0.1, 65 = 0.001.

It is worth while to first check the consistency of the model in the limit of
large viscous damping (coefficient c¢), where analogy drawn from an overdamped
oscillator suggests that the ratio of the penetration depth A to the largest fragment
size so should decrease exponentially with increasing damping. We indeed found
(Publication IT) that in this limit A/sy = exp(—c/const), c.f. Fig. 4.2. For the real
brittle material, considered in that work, damping is small and A\ correspondingly
very large. We can thus safely set A = s/, which is the largest value for A in
practice and also reduces the number of independent parameters used for fitting the
simulation and experimental results.

The model FSD, Eq. (4.2), was also compared with the results of a series of
experiments (Publication II) in which 22 identical gypsum discs were fragmented
by dropping them from a varying height. The discs were dropped from the heights
h =10.25,0.5,0.75,1,1.5,2,2.5,3,3.5,7, and 10 m, two experiments per each height.
After each impact the masses of the fragments were carefully weighed. The impact
energy was sufficient to fragment the discs at the minimum height of 0.75 m. The
measured cumulated FSD’s for heights A = 0.75,3.0,7.0, and 10.0 m are given in
Fig. 4.3. Comparison with the integrated FSD, N(s) = [ n(s)ds with the n(s) of
Eq. (4.2) (solid line), is made.
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Figure 4.2: n(s) for disorder type I with (A) Breaking threshold of a beam ¢, = 0.018
and (B) e, = 0.025. The numerical distributions are fitted by Eq. (4.2). In (A)
sp = 32.5 and in (B) sy = 460. The number of free parameters is reduced by using
AP = sy. The two terms of Eq. (4.2) are also shown separately in (B). (C) is the
same case as in (A) but with a large damping coefficient ¢ = 1.0. In this case
so = 430 and A = 4.0. (D) shows A\”/sq as a function of ¢. Simulation data are
compared to the exponential function A? /sy = exp(—c/const).
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Figure 4.3: Fragment-mass distributions N (s, A, 3,) obtained for different dropping
heights 4. In (A) h = 0.75 m, and function 10N (s, 75,1.3 x 107*) is shown as
a line. In (B) h = 3.0 m and the line is 130N (s,55,3 x 107°), in (C) h = 7.0
m and the line is 75N (s,19,5 x 1073), while in (D) h = 10.0 m and the line is
250N (s,33,3.2 x 1071). From Fig. (C) it appears that only one part of the disc
has fragmented properly. The rest of it has probably been cleaved into a few large
fragments.
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Figure 4.4: (A) Experimental fragment-size distributions from quarry blastings and
(B)laboratory experiments on cylinders. The quarry data are fitted by n(s) of
Eq. (4.1) (broken line), and by n(s) (full line), corresponding to A — oo, and
b = 14.0. The laboratory data are fitted likewise, except that b = 2.6.

Obviously, the statistics of the experiments is quite limited inducing large
variations to the data. The fit to Eq. (4.2) is decent for about one third of the
experiments. For smaller impact energies (i.e. heights) the data could be better fit
using exponents smaller than the one predicted by the branching-merging process.
We will return to this point in Section 4.3.

4.2.2 Experiments 11

The large-scale blastings of granite gneiss in the Bararp quarry in Sweden provide
Publication III [60] with a far better statistics for proper comparison with the model
FSD of Eq. (4.2) than the gypsum disc experiments above. Seven single-row rounds
were blasted in a 10—12 m long and 5 m high bench, with different hole sizes but with
a roughly constant specific explosive charge, ¢ ~ 0.55 kg/m?. A multi-step weighing
process gave 19 size fractions from 0 — 0.075 mm to 500+ mm, plus boulders which
were counted and weighed separately. This resulted in an FSD covering almost four
orders of magnitude in linear size, or 12 orders of magnitude in mass. The obtained
FSD is shown in Fig. 4.4A.

Additionally, seven cylindrical rock samples were cut from Bararp rock and
blasted in a closed blasting chamber [61]. The sample diameters chosen were
100, 200, 250, and 300 mm, and the specimens’ height-to-diameter ratios were in
the range 1.2 —2.1. A single central hole was drilled. The specific charge was in the
range 0.36 — 2.9 kg/m3. The complete sieving process gave 20 size fractions ranging
from 0 — 0.063 mm to 1004 mm, covering more than three orders of magnitude in
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Figure 4.5: (A) Snapshot fom a simulation of a small brittle membrane at an early
stage of fragmentation (broken bonds are removed so they appear white). (B)
The final fragment-size distribution averaged over ~ 30 simulated configurations for
e = 1.2. The curve is a fit to the data by Eq. (4.2). (C) Fragment-size distribution
from simulations using minimal external strain (¢ = 1.0) required for fragmentation.
The line is a fit by Eq. (4.1).

linear size. These data are given in Fig. 4.4B.

Because the power-law contributions were now very pronounced in the result-
ing FSD’s, the data from these measurements were fitted with the scale-invariant
pure power-law form Eq. (4.1). In granular rock the grains are much harder than
grain boundaries such that fracture mostly takes place along these boundaries. One
therefore gets in the small fragment size limit a noticeable contribution from grains
which typically have a log-normal size distribution. We can take this effect into
account by introducing a log-normal ’correction’ in the size distribution,

n(s) = n(s)[1 + bg,(s)]ds, (4.3)

where b is the ’strength’ of the correction. Here g,(I) oc exp[—(4(l) — €)?/w], with
e & —3 and w ~ 10, and ¢(I) = —log(l) is the grain-size parameter used in the
so-called Udden-Wentworth scale. The typical grain-size for this type of rock ranges
from 3 to 10 mm.

As is evident from Fig. 4.4, the fit of the large-scale experimental data by
Eq.( 4.1), and especially by its corrected form n Eq.( 4.3), is excellent in the infinite
penetration depth limit valid for crystalline rock exhibiting negligible damping for
crack propagation. Fig. 4.5 shows FSD’s obtained from the simulations that used
the minimal model and the model where scaling dynamics is incorporated together
with a snapshot from a minimal model simulation.
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4.2.3 Correlation length

In the small damping limit considered here, 3(1]/ P can be considered as a correlation
length, i.e. the typical maximum distance between beams belonging to the same
fragment. Close to the transition point in strain, €,, between the damaged and frag-
mented states, which appears at strain € = ¢, the scaling of sq can be investigated
through the probability Il(e, Ls) of a system of size L fracturing at threshold e.
By defining probabilities shifted with respect to the transition point €, such that
TI(e,, L,) = (e — e(Ls), L,), where I1(0, L) = 0.5, a data collapse in the form
II((e — eb(LS)Li/ ", L,) with v the correlation length exponent, was performed along
with a fit of II(e, Ls) by a Gaussian curve (Publication II). In the Gaussian fit the
standard deviation should scale as L;”. The correlation length 3(1]/ b appeared to
diverge according to a power law at the transition point. Both fits gave the cor-
relation exponent v = 4 £ 1.0, which differs from that reported in [17]. By fitting
VE — \/E, obtained from the experimental data as a function of 5(1)/ D, we obtained
v~ (0.25 and v ~ 1.1 for the correlation length exponent in Publications II and III.
(In Publication III there is a misprint: The fit has been performed using (1/7,)?
and not 1/,/7, as indicated in Fig. 3). We can thus infer that the correlation length
exponent v is not universal for brittle fragmentation, but apparently depends on
loading conditions. A minor difference in v was also found between the two types
of disorder investigated (see Section 3.2.1).

We can thus conclude that the conceptual model for fragmentation by a com-
bination of a Poisson process and a scale invariant branching-merging process ex-
plained satisfactorily the experiments reported in Publication IT and excellently the
ones in Publication III. Different correlation length exponents v were found for the
experiments and for the simulations. This is quite natural as there seems to be no
reason to expect universality in the correlation length, which is rather a system and
loading dependent quantity.

4.3 Dimensional effects in fragmentation

The numerical model introduced in Section 3.2.2 describes a fully periodic two-
dimensional brittle system, i.e. a torus, embedded in a three-dimensional space.
In this way we can analyse dimensional effects in dynamic fragmentation, that is
whether fragmentation is in this case different from the process described in the
previous section, in which fragmentation of D-dimensional systems was considered
in D-dimensional space for D = 2 and D = 3. To begin with we show that the
former process is reduced to the latter if we freeze out the out-of-plane motion in
the former case. This freezing out can easily be made by increasing the inertia
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in the radial direction of the system. In the large inertia limit we applied on a
perfectly ordered beam lattice a constant force loading, i.e Ff(t) = const # 0, Vi, in
Eq. (3.10). In this way we were able to produce the power-law form n(s) ~ s~ for
the number density of fragments and at the same time see that essentially all cracks
started from an initially broken beam. An advantage of this force-loading scheme
is that the spatial development of fragmentation can relatively clearly be discerned.
Cracks were seen to propagate, branch, and merge in directions away from the
first-formed main cracks and finally stop due to dissipation and relaxation. This
finite propagation could thus be depicted by a penetration depth A, as described in
Section 4.2. We can thus conclude that the two realisations of our numerical model
give the same results under similar conditions.

We now proceed to consider fragmentation of the two-dimensional surface of
the torus in a three-dimensional space such that the out-of-plane motions of the
surface are not frozen out (Publication IV). A motivation to this problem is provided
by earlier results by Oddershede et al. [9]. They observed the exponent of the power-
law FSD vary with an effective dimension of the objects (varying between two and
three) broken in our familiar three-dimensional space. So far these results have
remained unexplained.

The system was loaded initially such that an impulse corresponding to ho-
mogeneous expansion was given in the direction of the radius of curvature. The
system thus resembles an inflated closed brittle surface in free space, which un-
dergoes Newtonian dynamics. When the deformation of a beam exceeded a given
breaking threshold, it was simply removed. In order to describe a real disordered
material with defects, we also introduced initially a number of uncorrelated defects
in the form of individual removed beams.

The time evolution of the fragmentation process showed clearly that while frag-
ment formation started with small fragments close to the first propagating cracks and
proceeded towards larger ones farther away, some large fragments divided further
into smaller fragments. Thus, the fragmentation process is now clearly comprised of
two parts: a branching-merging process proceeding from small towards large frag-
ments, and some kind of hierarchical process proceeding in the opposite direction.
Before going into a more detailed description of this complicated fragmentation pro-
cess, we introduce briefly a simple model for hierarchical fragmentation as it will
help us in the analysis of simulation results.

We choose the model of Kadono and Arakawa [12] to represent a hierarchical
fragmentation process because it is so simple but captures however some of its
essential features. From Eq. (2.36), using s; = Til/Q, we find N(> s;) ~ si_(1+lnp/1nb2),
when denoting the fragment generation by ¢. Thus,

n(s) ~ s~ Gtmp/nb?) (4.4)
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The average size or mass in generation ¢ can be written as
(A =p)P(A/0)2 + (b*) (1 = DB (/D) + .+ (pb?)' (A — p)b?(1/0)™
’ (1= p)b? + (pb?)(1 = p)b? + ... + (pb?)""1(1 — p)b?
(1/6)°[1 + (pb*)(1/b)* + ... + (pb?)""*(1/6)*Y)]
| L+ (pb?) + ...+ (pb?)it
> i—o(Pb?)!

The ratio of average masses in consequent generations is hence given by

siaaf = [+ (o)) Yo
lm 5340 /5; = 1/(pb?). (4.6)

On the other hand, the average mass of the branching-merging process (with
the residual included) can be written as
S 1

5 = A ~ y 47
1 + NI Z;/:O h*@/ 1—ht ( )

where S is the total system mass, and N; is the number of fragments in the first
generation of the process.

If we now follow in the simulations the evolution of the fragmentation process,
the fragments were seen to be distributed in two distinct parts, a small-size part,
extending with time towards increasing fragment sizes, and a large-fragment or
residual part. The averaged maximum size of the small-fragment part, s, ., was
seen to grow as ~ exp(const ny, ), where ny, is the number of broken beams - linearly
dependent upon ¢ in accord with the branching-merging process, c.f. Fig. 4.6A. The
branching-merging process stops as s, reaches the average size of all fragments.
This is explained by the fact that side branches cannot propagate farther than the
average distance between the main cracks. Up to this point the overall maximum
fragment size s,,q, stays rather constant, followed by crossover to a power-law decay.
This behaviour of s,,,, illustrates the fact that fragmentation does not now stop
when the branching-merging process stops, unlike in the case of the minimal model.
It proceeds by a hierarchical fragmentation process whereby large fragments already
formed during the first phase (dominated by the branching-merging process), are
broken further. This is also demonstrated by the FSD’s shown in Fig. 4.6B. The
exponent «, initially 1.5 in agreement with the branching-merging process, begins
to decrease when s=,  reaches the average fragment size, levelling off at a final value

max

of = 1.2, c.f. Figs. 4.6B and 4.7B.
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Figure 4.7: Simulated development of the fragment-size distribution as a function
of ny-. (A) (4) Average maximum fragment size S,,q., (X) average fragment size s,
(x) average maximum fragment size of the small-size part of the distribution s, .,
and ([J) number of fragments in the small-size part N.. (B) The scaling exponent
« as obtained from fitting the number density of fragments by n(s) ~ s™%, as a

function of ny,.



4.3. DIMENSIONAL EFFECTS IN FRAGMENTATION 41

5
10

10" A
3

v élO
7] 2 &

10 A
1 p
10 ++

100 .

10t 102 N 10°

Figure 4.8: sy, as a function of the number of fragments N. A power-law fit gives
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Saw ~ N34 which is shown as a line.

From Fig. 4.7 the average fragment size § is seen to decrease with increasing ny,
according to a power-law. According to Eq. (4.7), for the branching-merging process
5 should after an initial decrease level off at a constant value. Thus the behaviour
of § should essentially be determined by the hierarchical process. From Eq. (4.6) we
can deduce that for a hierarchical process 5 decreases exponentially as a function of
i. By inspection it can be seen that for p sufficiently large i ~ exp(const ny,) in this
process. Combining the two relations gives a power-law decrease of § as a function
of ny, in accord with Fig. 4.7A.

The relevant time scales related to the branching-merging and hierarchical
processes are very different. The branching-merging process is initially very fast
in producing the small-size part of FSD, so that the largest fragment of this part
grows, as explained above, exponentially with n;.. The hierarchical process takes
off very slowly, but eventually begins to form new fragments at a rate which grows
exponentially with n,,., while not appreciably affecting the growth of s, . that is
still dominated by the branching-merging process. By that time the latter process
produces new fragments with a rapidly decreasing growth rate. There should thus be
an interval in the fragmentation process during which s, ~ N? with 3 a constant.
Here as before N is the total number of fragments (which depends on time). We
show in Fig. 4.8 a simulated s, as a function of N. These data display a clear
power-law dependence with 3 =~ 3.44.

The secondary cracks that are responsible for the hierarchical fragmentation
process were observed to be spatially correlated: new cracks had a tendency to form
preferrably near already existing cracks. Their distribution is thus not Poissonian
in contrast to that of the main cracks which appear in fragmentation in a two-
dimensional space, c.f. Fig. 4.11.

As there is now a nonzero radius of curvature, relaxation of strain at the (1D)
crack surfaces in enhanced, which induces strain peaks in the vicinity of them. The
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Figure 4.9: Differential FSD’s Ny(ny, = 17000). The fitted line is Ny ~ s~ 17,

extra dimension allows thereby stress enhancement close to existing cracks such that
the fracture threshold is there more easily exceeded.

As there is a power-law contribution to FSD even after the operation of the
hierarchical process, albeit with a changed scaling exponent, it is evident that the
correlated nature of the secondary cracks renders the process scale invariant. In
order to find the related scaling exponent, we plotted the differential fragment-size
distribution Ny(ny.) = N(ny.) — N(néi) = 11500) for ny,. > 11500. This differential
distribution is dominated by the hierarchical process as nl()i) = 11500 marks the
crossover in the relative dominance of the two processes. We show the differential
distribution in Fig. 4.9 for ny,. = 17000. It is evident that the process is indeed scale
invariant with a scaling exponent of ~ 1.17. A large-size cutoff begins to appear at
Ny = 18500.

The effect of the hierarchical process was also confirmed by simulating a system
in which side-branch formation was inhibited after an unlimited formation of the first
1000 broken beams. Already at ny,. = 5000 the resulting FSD had acquired a power-
law form with the exponent a ~ 1.25 in the whole size range. Snapshots of this
process are shown in Fig. 4.10. Comparing these to the snapshots of fragmentation
with an initial Poisson distribution of defects, Fig. 4.11, the hierarchical process is
seen to be more pronounced now when branching is inhibited, as expected.

In the fragmentation process where there were no broken beams initially in the
beam lattice, the previously extracted features were seen to be present. The cut-off
at large fragment sizes, c.f. Fig. 4.12B, is now stronger than in the case with an
initial Poissonian distribution of defects [13, 4]. Again, from the growth of s~ as
a function of ny,, c.f. Fig. 4.12A, it can be inferred that the small-size part of FSD
is formed by the branching-merging process.

We can thus conclude that fragmentation of a two-dimensional toroidal surface
is a process which begins with nucleation of main cracks followed by a merging
process at their side branches. Thereafter nucleation of secondary cracks takes



4.3. DIMENSIONAL EFFECTS IN FRAGMENTATION 43

o~ . 2{ Xjﬁé} 36% \\ Vs
Figure 4.10: Snapshots of a disordered lattice undergoing fragmentation in which
formation of branches is inhibited. (A) ny = 6000, (B) ny,. = 12500, (C) ny =

14500, (D) ny, = 27000

Figure 4.11: Snapshots of a disordered lattice with defects undergoing a fragmenta-
tion: (A) ny. = 6000, (B) ny,. = 12500, (C) ny. = 14500, (D) ny,. = 27000.
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Figure 4.12: Fragmentation with no initial defects. (A) Curves marked as in
Fig. 4.7(A). (B) Evolution of FSD’s (+) ny. = 1000, (x) n, = 6500, (x)
Ny = 19000. Lines ~ s and ~ 5712 are shown to guide the eye.

effect. Because of relative strong elastic relaxation at the crack surfaces, these
secondary cracks are spatially correlated: they are preferably formed in the vicinity
of the already existing cracks. Merging of these secondary cracks with existing
cracks creates a hierarchical fragmentation process whereby existing (or forming)
fragments are broken further. The branching-merging process determines, through
growth of s5, .., the size range on which the hierarchical process operates. At later
stages, as the branching-merging process is restricted by the average distance of the
main cracks, the hierarchical process dominates fragmentation and produces an FSD

of the form ~ s~ 12,

The fragmentation mechanisms described above explain well the dimensional
dependence of the power-law exponents in the FSD’s of the experiments by Odd-
ershede et al. [9]. The measured values of ~ 1.2 and ~ 1.55 for « in 2D and 3D
objects, respectively, closely coincide with the values obtained in the simulations for
the two versions of our numerical model, applicable in the respective cases (see Ta-
ble 2.2). We can now also explain to the deviation of the experimental data from the
result of the branching-merging model in Publication II. As already mentioned in
the beginning of the section, in the limit of high inertia in the radial direction, which
corresponds to approaching the situation in which a 2D object is fragmented in a 2D
space, the exponent 1.5 was again obtained for the power-law FSD. When moving
away from this limit towards the state in which dynamics take place in three dimen-
sions, or a 2D object fragments in 3D, the power-law exponent 1.2 results. Thus,
the the effective spatial dimensions available for dynamical fragmentation seem to
determine, which of the possible processes take part in the overall fragmentation.
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Conclusion

With the aid of two numerical models we have investigated the fragmentation process
that takes place in a two-dimensional disordered brittle medium embedded in two- or
three-dimensional space. The static as well as dynamical applicability of the models
for simulation of brittle fragmentation was verified by thorough benchmarking. For
fragmentation in which the spatial dimension and the dimension of the fragmenting
object are equal, an analytical model based on branching and merging of propagating
cracks was presented. This analytical and the respective numerical model produced
the available experimental fragment-size distributions (FSD) with excellent accuracy
in the case of equal object and spatial dimensions. The exponent of the power-
law part of FSD was determined to be (2D — 1)/D with D the spatial dimension.
Nucleation of cracks was found to occur randomly without any correlation induced
by loading. Both the power-law and the exponential part of FSD could be explained
by the model. The nature of this dynamic process was confirmed by time-dependent
simulations and analysis.

In the numerical model in which a two-dimensional brittle disordered medium
fragments in a three-dimensional space, FSD was found to acquire a form differ-
ent from that produced in two-dimensional space. Fragmentation was found to be
comprised of a branching-merging process as in the previous case, but also of an
additional hierarchical process. The hierarchical part was found to dominate in the
regime where the largest fragments produced by the branching-merging process are
of the same order of magnitude as the average fragment size, i.e. when the side
branches around the main cracks have reached the average distance between them.
The hierarchical process is facilitated by the presence of the extra spatial dimen-
sion which allows out-of-plane motion so that larger fragments are in this case more
unstable against further fragmentation. An exponent of ~ 1.2 was obtained for
the power-law FSD produced by a combined process in which the hierarchical part
was significant. The extra spatial dimension was found to induce spatial correlation
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in the nucleation of cracks so that the hierarchical process produces also in itself
a scale-invariant FSD. The scaling exponent of the hierarchical process alone was
found to be 1.17.

Our results provide an explanation to the results of previous fragmentation
experiments in which the effective dimension of the fragmented objects had varied
between two and three. In addition there are very recent results on fragmentation of
egg shells [62, 63], which appear to be understandable in terms of the fragmentation
mechanisms described above. The stiffness of the shells used in combination with
the way the energy is imparted in loading may be factors that determine in this case
the loading-dependent significance of hierarchical fragmentation, i.e. the observed
exponent of the power-law FSD. This problem needs, however, a more detailed
analysis.

The introduced modes will no doubt prove helpful in future experimental and
theoretical work concerning fragmentation. Identification of the participating pro-
cesses also provides means for analysing fragmentation using alternative approaches.
A master equation analysis could in this respect prove very useful. Information ob-
tained from the simulations enables one to write down the dynamical probabilistic
equations governing the developing fragment-mass distribution. Investigation of the
behaviour of these equations could benefit from analogies to other more extensively
studied dynamical non-equilibrium systems and the results already obtained for
them.
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