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ABSTRACT 
 
In this thesis several multiphase flow problems with complex boundaries have been 
analyzed numerically: granular flows, capillary rise and rheological properties of 
particulate suspensions. 
We analyze the long-time diffusion coefficient in the shear flow of inelastic, rough, 
hard granular spheres by molecular dynamics simulations, and observe a transition 
from a disordered to a layered state at solid volume fraction 0.565sφ = . This transition 
causes a sharp drop in the long-time transverse self-diffusion coefficient of particles. 
We verify that the two-phase lattice-Boltzmann method applied here is capable of 
modelling the capillary rise phenomenon. We also demonstrate the dependence of the 
dynamic contact angle on the capillary number, and the applicability of the Washburn 
equation when changing contact angle is properly included. 
Several benchmark studies are carried out to validate the lattice-Boltzmann code 
developed for liquid-particle suspensions in the non-Brownian regime. The main 
emphasis in this comparison is on the dependence of the viscosity of the suspension on 
the concentration of particles. We then analyze in more detail the dependence of 
viscosity on shear rate in a Couette flow geometry. The onset of shear thickening is 
found to be related to a maximum in the layering of particles near the channel walls. A 
comprehensive study of the various momentum transfer mechanisms that contribute 
to the total shear stress indicates that both these phenomena are related to enhanced 
relative solid-phase stress. The apparent viscosity of the suspension is found to be 
completely given by the ratio of the solid-phase stress to the total stress, and this 
dependence takes the form of a simple rational function. 
We finally analyze the low Reynolds number flow of 2D liquid-particle suspensions, in 
which suspended particles may attach on channel walls, and deposited particles are 
detached if the hydrodynamic force on them exceeds a given threshold. The behaviour 
of this system is controlled by concentration of particles and detachment threshold. At 
low values of these parameters there is no deposition on the walls, followed by a first-
order like transition to a phase in which deposition layers exist in the stationary state. 
Close to the transition, these layers display a meandering pattern whose wavelength is 
directly proportional to suspension velocity. The meandering phase is followed by a 
necking phase in which deposition layers still do not block the flow channel. Finally a 
transition to a fully blocked flow channel takes place. This last transition is driven by 
equilibrium fluctuations in the deposition layers. 
 
Keywords: Multiphase flows, lattice Boltzmann, suspension, rheology,  pipe clogging. 
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1 INTRODUCTION 

Multiphase fluids or so-called ‘complex fluids’ are common in daily life. The term 
‘multiphase fluids’, which has been used for less than half a century [1], stands for 
systems with different substances or different phases of matter (solid, liquid or gas) 
in coexistence. Multiphase flow regimes can appear as dispersed regimes (i.e. not 
materially connected) such as particle, droplet or bubbly flows. Other forms of 
dispersed multiphase flow regimes are slug flow (large bubbles in a continuous 
fluid), annular flow (continuous fluid along walls, gas in the center), and stratified 
flow (immiscible fluids separated by identifiable interfaces) [2]. There are also non-
dispersed multiphase flows such as fluid flow through a porous material. 
Multiphase fluids have more complicated microstructure than single fluids and 
their flow dynamics depend on many physical parameters. 
Study of complex fluids is important for several reasons. Flow processes of complex 
fluids are encountered in numerous applications in many industries and in nature. 
Design and operation of multiphase processes call for understanding the basic 
mechanisms involved. This understanding is seldom available simply because of 
the complicated behaviour of multiphase materials. Therefore, studies of simple 
multiphase processes are needed as first steps towards handling of realistic 
problems. 
So far, perhaps apart from turbulence, the dynamics of single-phase fluids is fairly 
well understood. However, there is a large number of unsolved fundamental 
problems related to the macroscopic properties of multiphase materials. A primary 
difficulty in many multiphase flow problems involves the prediction of the shape 
and position of the interface between different phases. Experimental techniques are 
often not designed for multiphase systems and have difficulties to accurately probe 
the flow properties. 
In practice, the underlying multiphase character is often neglected, and the system 
is treated formally as a single-phase ‘rheological’ or ‘non-Newtonian’ fluid. In many 
applications with low volume fraction of particles, droplets, or bubbles, the system 
may indeed behave like a single-phase fluid. However, if concentration of the 
dispersed phase increases, significant changes may appear in the physical 
behaviour. For example, in a single-phase fluid the transfer of momentum simply 
results from internal motion or interaction of fluid particles, while in multiphase 
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fluids such as suspensions, viscosity, the resistance of the fluid to flow, arises from 
many mechanisms that involve interactions between the different phases. 
This thesis addresses several mesoscopic multiphase problems and is based on 
molecular and mesoscopic fluid dynamics simulations. Two major problems are 
discussed. 
On the one hand, the effect of shear on the dynamical and equilibrium properties, 
the microstructure and the rheological behaviour of monodisperse granular media 
and liquid-particle suspensions are discussed. 
First we investigate in detail the three-dimensional bounded and sheared granular 
flow by using direct numerical simulations. The main emphasis of this study is on 
the diffusion and microstructural behaviour of such materials under shear 
deformation. Concentrated suspensions behave similarly to these dense granular 
media, but with more complex microstructure and dynamics, due to the existence of 
fluid between the suspended particles. 
One of the major questions in the rheological behaviour of sheared particulate 
suspensions is whether they display a dilatant rheological behaviour. Industrial 
applications that involve this problem include mixer blade damage or bowing of 
roller in milling operations, slurry fractures, and rupture of coating material in 
paper industry. It would also be important to better understand the operation of 
common viscometers. We have thus studied the rheological behaviour of sheared 
two- or three-dimensional non-Brownian liquid-particle suspensions using 
numerical techniques. This study includes the effect of shear deformation on the 
microstructure of the suspension and on the transport coefficients such as viscosity. 
We also analyze various momentum transfer mechanisms, and their contribution in 
the formation of viscosity. 
On the other hand, Poiseuille flow of fluids is examined without and with 
suspended colloidal particles. The former case, the pipe flow of a fluid, is related e.g. 
to flow in porous materials, as narrow pores behave like capillary pipes. In a 
capillary pipe containing two immiscible fluids, pressure difference across the 
interface between these fluids (capillary pressure) makes the denser fluid rise inside 
the capillary even if there is an opposing external force such as gravity. Using 
numerical simulations of a two-phase fluid, we study this capillary phenomenon, 
e.g. the dynamics of the fluid-solid contact angle. By studying the capillary rise, we 
can also benchmark our numerical techniques for modelling imbibition of fluid in a 
gas-filled porous medium. 
We also study small-Reynolds-number pipe flow of a particle suspension, where the 
particles can deposit on channel walls, and deposited particles are detached if the 
hydrodynamic force on them is above a threshold value. The behaviour of this 
system is determined by two parameters: the concentration of the suspension and 
the detachment threshold, and it has a rich phase diagram. Possible applications of 
the problem extend from clogging of tiny blood veins in the human body, and 

 



1. Introduction 3
 
blockage of narrow capillaries in coating colour slurries, to fouling of pipes in 
petroleum industry. 
In the analysis of the problems described above, two numerical methods were used. 
The molecular dynamics method was first used to simulate the dynamics of hard 
spheres [3], but since then it has been extended to many other more complicated 
systems [4,5,6]. This method is a powerful tool in many physical problems, and it 
has been used to analyze e.g. rapid flows in a high Reynolds number regime of 
granular media [7], dilatancy phenomena [8] and fluidization of grains [9]. We use 
this method to analyze sheared granular flow. 
For modelling complex fluids with moving internal boundaries, mesoscale methods 
like coarse-grained particle-based schemes (such as DPD) [10] or lattice-based 
methods (such as the lattice-Boltzmann method [11,12,13,14] (LBM) and lattice-gas 
cellular automata [15,16,17,18]), are usually better than the conventional CFD 
methods [19]. LBM can also be seen as a special finite-difference scheme for the 
kinetic equation of a discrete velocity distribution function. It has evolved in recent 
years into an alternative and promising scheme for simulating various fluid flows 
[13, 19 ,20,21], and we use this method extensively in this thesis. 
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2 NUMERICAL METHODS 

2.1 WHY COMPUTER SIMULATIONS? 

Modelling can be done by means of theory, laboratory prototypes, or numerical 
techniques. The theoretical models often use, especially in complicated many-body 
problems, macroscopic equations to describe the physical phenomenon at hand, 
thereby neglecting many microscopic details of the system. Numerical methods 
usually lack this problem, and they are normally inexpensive in comparison with 
laboratory experiments. Numerical methods also provide efficient benchmarks for 
theoretical models. They can address details of complex phenomena that can be 
difficult for theory as well as for experiments. 
Experimental difficulties may arise from complexity, expenses, danger or hazardous 
condition of the phenomenon. For example, in a dense suspension flow, measuring 
of the local instantaneous flow quantities such as velocities and stresses, separately 
for both phases, is not feasible. Such information can however be attained from 
numerical simulations of the suspension flow. Also, numerical techniques are 
versatile enough to combine or distinguish different physical phenomena, which 
have made them popular tools of analysis. 
The results of numerical techniques are however subject to uncertainties that arise 
from e.g. the flow model and the numerical techniques used. Care must therefore be 
taken when expressing the results of numerical simulations, and they should be 
supported by theoretical and/or experimental benchmarks. 
In this thesis mainly two numerical techniques have been used for simulation of 
flow problems, especially multiphase phenomena, starting from microscale 
molecular dynamics of spherical particles up to mesoscale simulations of capillary 
rise phenomena, shear or Poiseuille flow of suspension, and clogging of suspension 
flow in channels. In each case, experimental or theoretical evidence have been used 
for benchmarking the method. 
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2.2 NUMERICAL SIMULATIONS AT DIFFERENT RELEVANT 

LENGTH SCALES 

In colloidal suspensions, for example, there are three important length scales, the 
microscopic size of the relevant molecules, the mesoscopic scale related to the size 
of colloidal particles, and the macroscopic scale which is that of the effective fluid 
motion. In particulate suspensions the size of the suspended particles can be in the 
macroscopic scale. 
As the relevant length scales in suspensions differ by several orders of magnitude, it 
is not possible to simulate them by including details at all these length scales. All 
numerical methods are based on one basic length scale. For macroscopic modelling 
the suspension must be regarded as a continuum medium, and the description is in 
terms of the variations of the macroscopic velocity, density and pressure (and 
temperature) with space and time. 
The macroscopic scale simulations, which usually go under the general name of 
computational fluid dynamics [22,23] (CFD), use macroscopic continuum equations 
like the Navier-Stokes equation, whose solutions are very sensitive to the boundary 
conditions. Various CFD methods offer successful simulation tools for different 
single-phase fluid dynamics problems within many branches of science and 
engineering [24]. For suspensions however, these methods are difficult to apply due 
to the moving boundaries of the suspended particles. In recent finite-element 
simulations it has been possible to analyse only cases with small numbers of 
particles [25,26], or simulations were limited to simple and regular particle 
geometries [27,28].  
An attempt to circumvent the problems with moving or otherwise complex 
boundaries is provided by lattice-based methods which are based on a mesoscopic 
basic unit of the system, typically of the order of a micrometer, but depending of 
course on the details of the system. There are a few popular methods, which use this 
approach, and they include the lattice-gas automata (LGA), its alteration the lattice-
Boltzmann method (LBM) and the method of dissipative particle dynamics (DPD). 
Each of these methods has its advantages and limitations. Use of mesoscale 
simulation techniques can allow the exact treatment of small-scale macroscopic 
systems, and can be used to effectively study e.g. the rheology of colloidal 
suspensions and the dynamics of interfaces. Simulations at the microscopic level 
have also been attempted in order to understand the truly microscopic behaviour of 
liquids.  
As Monte Carlo simulations are not suitable to describe the dynamic properties [29], 
the prevalent microscopic simulation method is that of molecular dynamics (MD) 
[3]. MD methods that apply different numerical techniques have thus been 
developed to study the dynamical behaviour of a large number of applications, see 
e.g. [29,30,31,32,33]. MD simulations are computationally very demanding, and 
obtaining bulk properties of, for example, suspensions, would mean using billions 
of particles [34]. 
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We review below in more detail the MD method and the LB method used in this 
work. 

2.3 THE MOLECULAR DYNAMICS METHOD 

Molecular dynamics (MD) provides a reasonable physical description of granular 
materials including their macroscopic averaged properties, hydrodynamics, and all 
fluctuations, using only linear dynamics. 
A (granular) system of spheres is initialised by first randomly placing the spheres in 
a box. Then overlapping spheres are randomly moved until no overlaps remain. 
Thereafter the system evolves in time according to Newton’s equations of motion 
under chosen initial and boundary conditions, and applied forces and fields. 
Four major steps are needed to enrol a hard-sphere molecular dynamics simulation: 
motion control, determination of collision times, collision dynamics, and calculation 
of the particle properties. 

2.3.1 Motion control 

The motion of a rigid body of mass m and acceleration a F , due to an external 
force F, follows Newton's Second Law. The total kinetic energy and momentum of 
the system must be conserved, as well as its total angular momentum 

/m=

i   i i
i i
m I= × +∑ ∑J r v ω ,

5

 (2.1) 

where  is the position,  the velocity and  the angular velocity of particle . I is 
the moment of inertia of the particles, which is for a sphere and  for 
a disk, with 

ir iv iω i
/ 222 /mR 2mR

R  the respective radius of the particle. 

Verlet algorithm 
For the positions r the most popular time integration algorithm is the so-called 
Verlet algorithm. Forward and backward Taylor expansions of the position as a 
function of time can be written in the forms 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 3

2 3

1/ 2 ,

1/ 2 .

t t t t t t t O t

t t t t t t t O t

δ δ δ

δ δ δ

+ = + + +

− = − + +

r r v a

r r v a

δ

δ
 (2.2) 

Adding the above two expressions gives the new position after time tδ , 
( ) ( ) ( ) ( ) ( )2 32t t t t t t t O tδ δ δ δ+ = − − + +r r r a . (2.3) 

There are several methods to make Eq. (2.3) explicit, the most common of these 
being the so-called half-step ‘leap-frog’ scheme [31], 

( ) ( ) ( )2t t t t t tδ δ δ+ = + +r r v . (2.4) 
So the velocity of the mid-step may be written as 

( ) ( ) ( )2 2
t

t t t t
m

tδ δ δ+ = − +
F

v v . (2.5) 
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Similarly for the angle (orientation) of a particle (in the case of non-spherical 
particles) 

( ) ( ) ( )2 ,t t t t t tδ δ δ+ = + +θ θ ω  (2.6) 
and for its angular velocity 

( ) ( ) ( )2 2
t

t t t t t
I

δ δ δ+ = − +
T

ω ω . (2.7) 

Later during the step, the current velocities are determined from  

( ) ( ) ( )(1 2 2
2

t t t t tδ δ= + + −v v v ) ,  (2.8) 

and similarly for the angular velocities. 

2.3.2 Collision procedures 

Collision time 
Consider two smooth hard spheres with relative locations ij i j= −r r r  and velocities 

 (see Figure 2.1). ij i j= −v v v

v

i
ij(t) tij

j
v

i
r

i
j

ij(t)
jv ij(t)r

rij(t+tij)  
Figure 2.1 Smooth hard-sphere collision: situation before and at the collision moment. 

At the collision moment, the particle-particle distance should be equivalent to the 
particle diameter [29],  

( ) ( ) ( ) 2ij ij ij ij ijt t t t t R+ = + =r r v . (2.9) 
Rearranging this expression gives a quadratic equation for the time to collision, 

( )22
2

2 2

2 2
0ij ij

ij ij
ij ij

b r R
t t

v v
−

+ + =  (2.10) 

with . One can see that Eq. (2.10) is very important in collision detection: ij ij ijb ≡ ⋅r v

( )( )
( )( )

2 2 2 2

2 2 2 2

0 ; ,

0 4 0;

0 4 0;

ij

ij ij ij ij

ij ij ij ij

b no collision takes place

b and b v r R no collision takes place

b and b v r R collision takes place

 >
 < − − <

 < − − ≥

,

.
 

(2.11) 

The solution of Eq. (2.10) gives the minimum collision time [29], 

( )2 2 2 2

2

4ij ij ij ij
ij

ij

b b v r R
t

v

− ± − −
= . (2.12) 
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Of the two roots of solution (2.12), the smaller one obviously gives the minimum 
time to collision between the two particles.  

Collision dynamics 
At the moment of collision, the total momentum should conserve, i.e.,  

/ ,

/ .

n
ii i ij

n
jj j ij

m

m

δ

δ

′ = −

′ = +

v v P

v v P
 (2.13) 

Here for smooth particles, n
ijδP  is the projection of relative momentum m along 

the vector r , i.e., 
ijv

ij

2/
4
ij ijn

ij ijm
R

δ
⋅ 

=  
 

r v
P r . (2.14) 

For smooth particles (with frictionless surface) the post-collision components of 
velocities perpendicular to the vector  remain unchanged as well as their angular 
velocities. However, for rough particles (see definition below Eq. (2.17)) one can 
derive [

ijr

29] 

( ) ( )2

1/ 2 2
2ij ij ijn t

Im
mR I

δ = + + 
P v 

v . (2.15) 

In the case of rough particles, the particles have a no-slip contact [35] and therefore 
the post-collisional velocities in the normal and tangential directions are  

,
.

nn n

tt t

e
β

′ = −
′ = −

v v
v v

 (2.16) 

where and e β are the normal and tangential coefficients of restitution. β can be 
expressed in terms of  and the friction coefficient e µ  such that 

( )( )21 1 1 / /n te mR I vβ µ= − + + + v . (2.17) 
The post-collision velocities and angular velocities can now be derived in a similar 
way to Eq. (2.13). While e  varies between 0 and 1, corresponding to change from 
inelastic to fully elastic material, β varies between –1 to +1 corresponding to change 
from a perfectly smooth to a perfectly rough particle. For more details concerning 
the collision event, geometry of the system and simulation algorithm, see [29,36]. 
The angular velocities for rough particles are determined from 

' /

' /
i i ij ij

j j ij ij

2 ,

2 .

I

I

δ

δ

= + ×

= + ×

ω ω r P

ω ω r P
 (2.18) 

Note that in the case the particles are not spherical, the vector is normal to the 
tangential plane at the contact point between the two colliding particles. 

ijr

2.3.3 Structural information 

When analysing systems of particles that undergo Newtonian dynamics, it is 
important to infer also structural features of the system. This is important in 
particular when systems with high solid volume fraction are considered, as in these 
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systems phase transition to ordered states may appear. We therefore explain briefly 
the main tools for the analysis of structural order.  

Radial distribution function 
The radial distribution function (pair correlation function) measures correlation in 
the density of particles. It can be defined as the probability of finding another 
particle at distant  from a particle [r 37], and can be expressed in the form 

( ) ( ) ( )( )2 2 ,
4

N N

ij
i i j

Vg r t t
r N

δ
π ≠

= −∑∑ r r  (2.19) 

where is the volume of the system, V δ  the Dirac delta function and the angular 
brackets denote configurational average. 

Translational order  
Translational order appears as periodicity in the particle density, and can thus be 
described by Fourier components ( )tρk  of the mass density [38], 

( ) ( )
1

1 cos( ),
N

i
i

t t
N

ρ ρ
=

= ⋅∑k r k r  (2.20) 

Here wave vector k is such that 1 32 Vπ≤k , which becomes a reciprocal lattice 
vector for a regular lattice { }r . 

Bond orientational order  
Orientational order can best be parameterized with spherical harmonics, and we 
thus consider the quantity ( ) ( ) ( )( ),lmlm Y θ φ≡r rQ  [r 39], where Y  is a 

spherical harmonics with 

( ) ( )( ),lm θ φr r

( )θ r  and ( )φ r  the polar and azimuthal angle, 
respectively, and { }r  is the set of midpoints of bonds between all nearest-neighbour 
(nn) particles. An order parameter which measures orientational order, can thus be 
defined as 

1 2
24 ,

2 1

l

lml
m=-1

= QQ
l
π 

 + 
∑  (2.21) 

where ( )
1

1 bondN

lmlm
bond

QQ
N α

α=

≡ ∑ r , and the average is taken over all nn bonds of the 

sample. 
l 2 4 6 8 10 
SC (7-atom) 0 0.75 0.40 0.75 0.40 
BCC (15-atom) 0 0.05 0.55 0.50 0.20 
FCC (13-atom) 0 0.20 0.60 0.40 0.05 
HCP (13-atom) 0 0.15 0.55 0.40 0.05 
ICOS (13-atom) 0 0 0.60 0 0.40 

Table 2.1 Approximate values for Q  [l 39]. 
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Bond-angle correlation functions 
Bond-angle correlation functions ( )l rG  measure the flexibility with which a bond 
can have local orientations in a given state. It can be defined as 

( ) ( ) ( )( )0 0
4 ,

2 1

l

l lm lm
m l

G = W W
l
π

=−

+
+ ∑r r r r  (2.22) 

where W ( ) ( )
1

bondN

lm lmw Qα α
α=

≡ ∑r r  is again a sum over all nn bonds of point . Here r wα  

are Wigner symbols [40]. 

2.3.4 Diffusion 

Several definitions can be used to calculate the self-diffusion coefficient of particles 
in the considered system [41]: the diffusion equation, the velocity autocorrelation 
function and the mean-square displacements of the particles. Analysis of the 
random Brownian motion of an isolated sphere by the diffusion equation leads to 
the Stokes-Einstein relation [42] for the self-diffusion coefficient, 

( )21lim ( ) ( )
2

D t
dτ

τ
τ→∞

= + −r r t . (2.23) 

Here t is the starting time, r  is the position vector of the particle,  is the dimension 
of the space, and the brackets denote average over observation time intervals 

d
τ  for 

a single particle or over many particles of an ensemble. This relation is obviously 
valid only if the mean square displacements of particles are asymptotically linear in 
time. This result can be generalized to that for a diffusion tensor . Another way 
to determine the self-diffusion coefficient is to use the Green-Kubo formula [

ijD
43]. 

2.4 THE LATTICE-BOLTZMANN METHOD 

A general statistical mechanics description of fluid motion is given by the 
Boltzmann equation (BE), without any prior assumptions about e.g. 
hydrodynamical stresses [44]. BE describes the evolution of particle distributions so 
that its level of description of a given system is somewhere between that of 
macroscopic hydrodynamics and that of microscopic molecular dynamics. The 
differential form of BE in the relaxation time approximation is  

( ) ( ) ( ) ( )( )1, , , , , , , , ,eq
t f t f t f t f t

τ
∂ + ⋅∇ = − −r v v r v r v r v

 (2.24) 

where ( , , )f tr v  is the Maxwell-Boltzmann distribution function of a particle at 
location r with velocity v at time t, and τ is the relaxation time due to collisions.  
The first order solution (1O )τ  of the BE by using the Chapman-Enskog expansion 
method gives the Euler equation [45]. This is done by substituting the Maxwell-
Boltzmann particle distribution in the steady state and by neglecting the 
disturbances. The Navier-Stokes equation is a second-order solution O ( )0τ  of BE by 
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the Chapman-Enskog method [45]. The continuum description of fluid with second 
order accuracy in space and time is thus given by the continuity and Navier-Stokes 
(momentum) equations [46], 

( ) 0,
t
ρ ρ∂
+∇ ⋅ =

∂
u  (2.25) 

( ) ( ) ( )( ) ,Tp
t
ρ

ρ µ
∂  +∇ ⋅ = −∇ +∇⋅ ∇ + ∇ +  ∂

u
uu u u F  (2.26) 

respectively. Here µ  is coefficient of viscosity in the viscous stress term. In the 
nearly incompressible limit the time derivative of density in Eq. (2.25) is small. The 
terms on the right hand side of Eq. (2.26) are the induced momentum from the 
pressure gradient, viscous stress and the external force F. 
The key idea behind the LB method [14,47,48,49], is to solve the Boltzmann equation 
on a regular lattice [11]. At every time step, each ‘fluid particle’ propagates to a 
neighbouring lattice point and undergoes local collisions, in which the momenta are 
redistributed. If the lattice spacing is much smaller than changes in the solid 
boundaries, e.g., of suspended particles, bulk-like behaviour can be recovered. Fluid 
particles cannot however be considered as being of microscopic size, they represent 
a coarse-grained scale which already can support hydrodynamic behaviour, i.e., are 
of mesoscopic size. 
One can rigorously derive the LB method from kinetic theory [50], and there has 
been significant progress in the development of this method [11, 12 ,51,52]. Quite a 
lot of benchmarking has been carried out [53,54] in order to show that the LB 
method to second order accuracy provides a reliable, accurate and efficient 
algorithm for simulating low Reynolds number incompressible flows with complex 
boundaries. There are several different lattice-Boltzmann models for incompressible 
Newtonian fluids [20,55,56,57,58]. 
The lattice-Boltzmann (LB) method is just one of the methods that are based on 
solving a discretized form of the Boltzmann equation, other techniques include, e.g., 
the flux splitting method [59]. 

2.4.1 LB method for fluid flow 

We use here the so-called lattice-BGK [60] (lattice-Bhatnagar-Gross-Krook) 
algorithm with 9 links per lattice sites (D2Q9) in two dimensions, and with 19 links 
per lattice sites (D3Q19) in three dimensions [20, 55]. These algorithms have been 
successfully tested, and the results of several benchmark tests for pure fluid can be 
found e.g. in [III,IV,61,62,63]. The LBGK method is based on the discrete kinetic 
equation  

( ) ( ) ( ) ( )( )1, 1 , , ,eq
i i i i if t f t f t f t

τ
+ + − = − +r c r r r F . (2.27) 

Here ( , ) ( , , )i i if t f t≡ =r r v c
, 0,...,N=

 is a probability distribution function for ‘fluid particles’ 
at link i i , moving with discrete speeds  on a lattice {ic }r , τ  is the BGK 
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relaxation parameter, and eq (i )f t,r  is the local equilibrium distribution towards 
which the particle populations are relaxed. The set of discrete speeds are chosen 
such that conservation of mass and momentum as well as Galilean invariance are 
satisfied. We choose 0 1 1,= =c c

( )
1

N

i
i
C f

=

20, 2=c

0,

 for the rest particles, and motions along 
the nearest neighbour and next-nearest neighbour links, respectively.  

=∑

i
1

N

i
i

C f
=

( ) 0,=∑c

( )( ,i tr ( )1 ,eq
if f t

τ
≡ − r

) 1i it w= +r

2D Q

1

2

8

A force term  is included in the LB method to model a pressure gradient needed 
e.g. in channel flow. This body force term adds a constant amount of momentum at 
every time step on each lattice point, and is equivalent to having a constant body 
force (or gravity), F, in the Navier-Stokes equation Eq. (2.26) [

F

16].  
The LB equation must satisfy mass and momentum conservation, i.e., 

 

 
(2.28) 

where ( )1,...,i NC f f  is a single relaxation time collision 

operator in the LBGK method, and represents the change in particle populations 
due to collisions. Based on kinetic theory, in the equilibrium state where all 
populations of different particle velocities are in equilibrium, ( ) 0eq

i =C f . 

)

The local equilibrium can be chosen in the form of a quadric expansion of a local 
Maxwellian distribution [50]: 

2 2
eq

2 4
s s

( )( , , ) ( ,
2 2

i i uf t
c c c

ρ
 
 
 
  
 

⋅ ⋅
+ −

c u c ur u  (2.29) 2
s

,

where the  are a set of weight factors which can be chosen such that, e.g., iw

1 =0 4 / 9,w = 1/ 9,w 2 1/ 36w =  for , and 9 0 1/ 3,w = 1 1/18,w = 2 1/ 36w =  for  
(see Figure 2.2) [

3 19D Q
13]. 

 

34

5

6 7

1

234

5

6 7 8

91011

12 13 14

15

16

17

18

(D2Q9) (D3Q19)

Figure 2.2 The lattice velocity vectors in the 9-link D2Q9 (left) and 19-link D3Q19 
models used in the LB method. The links to nearest neighbours have black arrows and 
those to next-nearest neighbours have white arrows.  
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The basic hydrodynamic variables are obtained in the LB method from velocity 
moments in analogy with the kinetic theory of gases. The density ρ , the flow 
velocity u  and the ‘momentum flux’  of the fluid are given by  Π

1
( ) ( )

N

i
i

t fρ
=

, = ,∑r r

1
( ) ( )

N

i i
i

t t f
=

, , = ∑r u r c

1
( )

N

i i i
i

t ,

,t

 

 ( )ρ ,r

,f t
=

= ,∑Π c c r  

(2.30) 

respectively, where  for  and 9N = 2 9D Q 19N =  for . 3 19D Q
With these choices Eq. (2.27) can be shown [53] to lead in the continuum limit to the 
continuity and Navier-Stokes [57,64] equations with sound speed , sc

2

1

1 ,
N

s i i i
i

c w
d =

= ∑I c c  (2.31) 

where  is the dimension of the space. For the  and  models we use, 
Eq. (2.31) gives 

d 2 9D Q 3 19D Q
1 3sc =  for the sound speed. The kinematic viscosity of the 

simulated fluid is given by (2 1) 6ν τ= − /  (in lattice units) [55]. The fluid pressure can 
be expressed in the form  

( ) ( ) ( )( )2 2
s s fp t c t c tρ ρ ρ, = ∆ , = , −r r r ,  (2.32) 

where fρ  is the average density of the fluid.  
Notice that the main collision equation of the LB method is valid only for a low 
Mach number flow, or in the incompressible limit of the Navier-Stokes equation 
[65]. This follows from the low-velocity polynomial expansion made to obtain the 
equilibrium distribution function eqf (see Eq.(2.29)), which approximates the 
Maxwellian with second order accuracy [66,67]. 

2.4.2 Surface tension in the LB method 

In the LB method surface tension γ  results from interaction between fluid particles 
and is not given as a known macroscopic parameter. It should satisfy Laplace’s law, 
which describes the balance of forces due to pressure difference p∆  across an 
interface, p dV dAγ = ∆ , with  and  small changes in the control volume and 
area of the interface, respectively. In the case of a spherical droplet with radius 

dV dA
R , 

these changes are and 24 RπdV = dR 8 RdRdA π= . One thus gets the Laplace law in 
the form 

2p Rγ = ∆ . (2.33) 
A two-phase LB model was developed by Shan and Chen [68] through a relative 
forcing scheme, 

( ) ( ) ( ) ( )( ) ( ) ( ), ,
1, 1 , , , , ,eq

i i i i i G i W i ,f t f t f t f t t
τ

+ + = + − + +r c r r r F r F r t  (2.34) 
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where  is the surface tension force and  is the adhesive force at each time step 
. The force term is an attractive short-range force between neighbouring fluid 

particles [

GF WF

i
G

t GF
69] of the form ( ) ( ) ( )G iτψ ψ= − + ,i i∑F r r r c c  where ( ) 1 exp[ ( )]ψ ρ= − −r r  

with the total particle density ( )t,ρ r  defined in Eq. (2.30), and 
 (for zero link, nearest neighbour links and next-nearest 

neighbour links, respectively). Thus a single parameter G
0 1G G= = 2 =0, 2G G, G

0<  controls the surface 
tension.  
Adhesive forces between the fluid and solid phases were introduced via [69] 

 where W W( ) ( ) ( )W i
i
W sτψ= − + ,∑F r r r c ci i W0 1 20, 2W W= = , = , and  for fluid 

and solid nodes, respectively. The interaction strength W  is positive for a 
nonwetting and negative for a wetting fluid. 

0,1s =

The algorithm can be divided into four major steps. In the first step, the fields at 
time t, such as the densities and the velocities, are derived. In the second step, the 
collisions of the total populations are calculated. In the third step, surface tension is 
introduced and is combined with the total populations. Finally, propagation of the 
populations is achieved. 

2.4.3 LB method for suspension simulations 

Several lattice-Boltzmann models for suspensions have already been developed 
[70,71,72,73]. In order to model the fluid phase in liquid-particle suspensions, we 
used in Refs. [III,IV] the lattice-Boltzmann model of Ref. [71]. This model was 
chosen because of computational convenience. It could be efficiently implemented 
on parallel processors, and all internal and external parameters of the system could 
easily be varied. All hydrodynamic forces acting on particles and stresses in the 
fluid phase can also be evaluated without reference to the averaged fluid-dynamical 
quantities such as the viscous stress tensor [57]. 
The suspended solid particles obeyed Newtonian dynamics, and their motions were 
determined by the molecular dynamics method described in Section 2.3. 

Particle solid boundary nod
Particle fluid core node
fluid node

 
Figure 2.3 Schematic picture of a disk particle in a regular lattice with solid, internal and 
external fluid boundary nodes. 
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)i

In the model used here, a solid particle consists of a solid matrix, and of an interior 
fluid that is called the fluid core of the particle. There are two kinds of lattice points 
inside a particle, the interior points and the boundary points. Each boundary point 
has at least one link pointing to the fluid phase. The lattice-Boltzmann collision 
operation (Eq. (2.27)) is applied at every lattice node including the boundary and 
interior points of the particles. 
The no-slip boundary condition at solid-fluid interfaces is usually realised in lattice-
Boltzmann simulations through a simple bounce-back condition, where the 
momenta of the fluid particles are reversed at the boundary points [70, 71]. The 
bounce-back condition can be generalised to moving boundaries, whereby the 
particle distributions are modified at boundary points such that [70, 71]  

( 1) ( ) 2 (i i i i f i wf t f t Bρ′ ++ , + = + , + ⋅r c r c u c . (2.35) 
Here  indicates the time right after the collision and t+ i′  denotes the bounce-back 
link. Also, coefficients  apply for  in two-
dimensions, and  for  in three-dimensions, for 
the rest particles, and motions along the nearest neighbour and next-nearest 
neighbour links, respectively. Finally u  is the wall velocity at point . It is 
determined by the particle center of mass position r and velocity , and angular 
velocity ω , such that 

0 1 20, 1/ 3 and 1/12B B B= = =

0 1 21/ 6 and 1/12B= = = D Q

w

c

2 9D Q

U

0,B B 3 19

wr

( )w w c= + − ×u U r r ω . (2.36) 
The last term in Eq. (2.35) accounts for the momentum transfer between the fluid 
and the moving solid wall. Note that Eq. (2.35) is also used to implement the 
moving solid boundary walls in Couette flow with  the channel wall velocity. wu
The forces and torques on a solid particle are calculated as sums of momentum 
changes over the particle surface nodes, 

( ) ,p f
s

t ρ= ∆ w∑F u

( )p w
s

t ρ= ×∆

 

f w∑T r u . 
(2.37) 

The mass sM  of a solid matrix is uniformly distributed in the interior and boundary 
points giving it an effective density sρ . However, the solid matrix interacts with the 
fluid phase and with the core fluid only at the boundary points. The total 
hydrodynamic force and torque acting on the solid matrix can be obtained at each 
time step by summing the effect of Eq. (2.35) at all boundary points. The solid 
matrix can then be moved according to normal Newtonian dynamics with particle 
properties such as location, velocity, angular velocity, force and torque. 

2.4.4 Momentum transfer in suspensions  

When analysing the rheological behaviour of particle suspensions, it is important to 
understand the underlying mesoscopic mechanisms that contribute to the total 
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observable shear stress (and apparent viscosity). To this end we need to calculate 
the stresses of different phases and momentum fluxes. 
The fluid momentum tensor  can be obtained from the LB pre-collision and post-
collision populations 

fΠ

if  and if
∗  (Eq. (2.34)) such that 

1 1

1 1Π ( ) ( ) ( )
2 2

N N

f i i i i i i
i i

t c c f t c c f tαβ
α β α β

∗

= =

, = , + ,∑ ∑r r ,r  (2.38) 

where ,α β denote the spatial components of tensor . fΠ
The convection tensor for each solid or fluid phase ( ,v s f ) ,=  

,v vρ=C uu  (2.39) 
can be directly calculated from density fρ  and velocity (of the node) u  (Eq. (2.30)), 
and the viscous stress tensor  is given by  fΣ

f f= −Σ Π C f

,

,

. (2.40) 
The total momentum flux  through any surface  which intersects the system is 
given by  

F S

S
d= ⋅∫F Π S  (2.41) 

where  is the total momentum tensor. In the present case it can be written as  Π
f s f s= + + +Π C C Σ Σ  (2.42) 

where  and fC sC  are the convective momentum tensors, and  and fΣ sΣ  are the 
internal stress tensors for the fluid and the solid phase, respectively. A schematic 
illustration of the simulation setup together with a snapshot of an actual solution for 
the Couette flow of the suspension is shown later in Figure 6.1. In this figure the 
surface  is a plane perpendicular to the  axis. The total shear stress acting 
on this plane is defined by 

(S S )y= y

,xy xy xy xy
T f s f s f s f s= + + + ≡ + + +τ σ σ τ τ C C Σ Σ  (2.43) 

where  denotes averaging over space, time and ensemble. Here we calculate all 
averaged quantities in a macroscopically stationary state and, assuming ergodicity, 
perform averaging over a long period of time, over volume or surface, and over a 
number of macroscopically identical systems. Stresses σ  and f sσ  contain the 
stresses due to pseudo-turbulent motion of the two phases,  contains the viscous 
stress of the fluid phase and 

fτ

sτ  contains the internal stress of particles (and 
corresponds to the elastic stress of physical solid particles). 
Stresses ,  and fσ fτ sσ  can all be directly calculated for each lattice point using Eqs. 
(2.38)-(2.40). Notice that in sσ  both the convection of the solid matrix and the 
convection of the fluid core have to be included. Notice also that the convection and 
stress of fluid at the boundary points of the particles are included in σ  and , 
respectively. 

f fτ

Evaluation of the actual stress distribution inside solid particles would require 
solving, separately for each suspended particle, time-dependent elastic continuum 
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equations with boundary conditions given by the hydrodynamic forces due to the 
surrounding fluid, and the impulsive forces due to particle-particle collisions. 
Fortunately, it is not necessary to carry out here this formidable numerical effort. 
The stress sτ  can be written in the form  

s c pp f= + +τ τ τ τ p ,  (2.44) 
where  is the stress in the core fluid while  and  are the stresses in the solid 
matrix caused by particle-particle collisions and by interactions between the fluid 
and the particle, respectively. The stress  can be obtained directly from Eq. (2.40). 
In order to calculate stresses  and , we consider an impulsive force  due to 
particle-particle collisions, and a force F  due to the hydrodynamic interactions 
that also acts on a surface  formed by the intersection of surface  with the 
particle (see the insets in Figure 6.1). Since the collisions are assumed frictionless, 
and the particles are circular and smooth, the angular velocity does not change in a 
collision. It is then easy to show that the collisional force on  can be written as  

cτ ppτ fpτ

cτ

fp

ppτ

pA

fpτ ppF

S

pA

d
pp

s

m
M t
∆

= ,
∆
pF  (2.45) 

where  is the collision time (1 in lattice units), t∆ sM  is the total mass of the solid 
matrix of the particle, m  is the mass of the lower part of the particle, and  is the 
total momentum change of the particle due to collision (see inset (b) in Figure 6.1). 
In simulations, mass m  can simply be calculated by counting the number of lattice 
points that are located below the plane  inside the particle. 

d

d

∆p

S
While deriving the force F , the effect of fluid phase and fluid core on the solid 
matrix must both be included. The equation of motion for the lower part of the 
particle, as shown in inset (a) of Figure 6.1, gives 

fp

2 .fp i d o d d d d d dm m m r, ,= − − + + × +F F F a α r ω e y  (2.46) 
Here  and  are the hydrodynamic forces due to the fluid core and the fluid 
phase out of the core on the solid matrix (which can be obtained from Eq.(2.37)),  
is the mass of the lower part of the particle, and ,  and  are the acceleration, 
angular acceleration and angular velocity of the whole solid matrix, respectively. 
Finally,  is a vector pointing from the center of the particle to the center-of-mass of 
the lower part of the particle. The contribution of collisions and hydrodynamic 
interactions to the total shear stress is now given by 

i d,F

dr

o d,F

dm
a α ω

x
pp pp pF Aτ = /  and 

x
fpF Afp pτ = / . 

More details of the lattice-Boltzmann suspension code we use, together with 
benchmark results, are given in Refs. [III,IV]. 
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3 MD SIMULATIONS OF A GRANULAR MEDIUM 

3.1 INTRODUCTION 

Even though fluids can be adequately modelled on the mesoscopic or macroscopic 
scale using the Navier-Stokes equations, it is nevertheless interesting to study 
microscopic scale phenomena like diffusion and phase transitions. Many natural 
phenomena like avalanches, landslides, and soil fluidisation, can be related to 
granular flows that involve diffusion processes. Broadly speaking the individual 
molecules of a fluid build up a granular medium through interparticle ‘contacts’ 
[74,75,76].  
In these systems mixing is an important phenomenon which occurs due to the 
diffusive motion of the particles. This diffusion has been analyzed by kinetic theory 
of rapid granular flows [77,78], laboratory experiments [79,80] and numerical 
simulations [81,82,83]. 
In Campbell’s [82] review of results prior to 1990 concerning diffusion in molecular 
dynamics simulations of dense granular media, lack of diffusion for solid volume 
fractions over 0.56 is reported. This means that diffusive motion of particles may be 
suppressed by high densities. Campbell’s conclusion was based on a series of 
computer simulations for unbounded granular shear flows. Such lack of diffusion 
was, however, not observed in later computer simulations on bounded rapid 
granular flows [84]. Hence, it was important to further examine this issue, and we 
studied it by simulating a Couette flow of inelastic, rough, hard spheres. 
Our simulations were carried out in a cell under periodic boundary conditions in 
the y and x directions, with a velocity gradient imposed in the z direction. Two 
massive walls, with the same properties as the interior particles, were fixed to move 
in opposite directions parallel to the x direction (see Figure 3.1). 
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Figure 3.1 A schematic picture of the initial configuration of dark and light particles in the 
computational box which includes the wall particles. 

The number of particles in the interior and in the walls varied from 4296 to 4824, 
and from 400 to 625, respectively. This meant that for concentration ranged from 0.5 
to 0.6. All the simulations began with an initial set of random overlapping spheres 
using the method of Ref. [85]. Then the individual spheres were moved randomly 
until the overlaps were removed. On one side of the plane  the particles were 
marked dark, whereas on the other side the particles were marked white (see Figure 
3.1). 

0=Z

Granular shear flow with average shear rate from zero to 12w wu H sγ −= ≈

wu
4  was 

then studied using the molecular dynamics method (see chapter 2):  is the wall 
velocity and  is the gap between the walls. The particles were modelled as 
inelastic, rough, hard spheres with radius 

H
R  for which 2 10H R ≈

e=

. In order to 
simulate a dense granular flow, Lun and Bent [86] suggested certain values for the 
dissipation parameters. Using their values (i.e., the coefficient of restitution , 
the surface friction coefficient 

0.93
= 0.123µ , and the phenomenological constant for 

sticking contacts 0 = 0.4β ), the collision frequency was 600 kHz, which was close to 
the value reported previously [80]. 

3.2 RESULTS AND DISCUSSION 

From the simulations, stress fluctuations, diffusion coefficient tensors, velocity 
distributions, density profiles, radial distribution functions, and correlation 
functions were determined.  
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Figure 3.2 Snapshots of (a) the initial configuration of white and black particles, and at (b) 

 and (c) * 59t = * 250t = , projected to the xz (left) and yz planes (right). The arrows 
indicate the shear flow direction. 

Snapshots of a system with solid volume fraction 0.565φ =  and shear rate 14w sγ −  
are shown in Figure 3.2. The snapshots are projections of particle locations to planes 
parallel and normal to the shear flow, respectively. From Figures 3.2 (b) and (c) a 
‘diffusive’ evolution of the system can be seen. This is in contrast with what 
Campbell [82] reported on the absence of diffusion. The lack of self-diffusion may 
have been induced by an ordered initial configuration in their simulations. The 
ordered layers in the xz plane from a close to hexagonal pattern in the yz plane (the 
pattern is also close to icosahedral). 
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Figure 3.3 (a) Radial distribution function in the equilibrium situation 
( ) as a function of dimensionless radial distance 1 *0.56, 4 , 250w s tφ γ −= = ≈ *r = r R

150
. 

(b) Velocity profile and kinetic granular temperature at t , with 
 as functions of dimensionless channel height (

* =
1~ 0.5 and 4 ,w sφ γ −= * 2Z Z R= ). The 

inset shows the average density profile across the sample. 
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The radial distribution function shown in Figure 3.3a has a peak at *r = r R 2 3≈ , 
indicating localised ordering around the particles. This means that the initially 
disordered system has evolved to an ordered state in the presence of shear flow. 
The degree of translational order ( )ρk  was tested according to Eq. (2.20) by 
choosing =( 2 )lπk z , where  is a unit vector in the z direction. z
We found that is 0.8 for 11≈l H  (see also Figure 3.3b). This could indicate a layered 
state with eleven layers. We also found that 0ρ ≈k  in the direction ( ), ,− + −x y z , 
thus verifying the absence of cubic symmetry (the sliding fcc phase). We 
investigated therefore a set of orientational order parameters, denoted by ( )lm rQ  as 
described in Eq.(2.21) and Table 2.1, associated with each bond with 12 nearest 
neighbours. Nonzero value of this order parameter indicates an ordered structure. 
We found that Q  suggesting an icosahedral lattice. However, the value 

 suggested that the symmetry of the bond-oriented states is not perfectly 
icosahedral and, as can be seen from the final configuration in Figure 3.2, the 
structure is rather close to that of a simple hexagonal lattice. More information 
regarding possible types of orientational order of the above-mentioned system can 
be obtained from the bond-angle correlation functions 

0.46 ≈

0.248Q ≈

lG  (see Eq. (2.22)) [39]. The 
value of ( )*

6

=

G r  at large r*, shown in the inset of Figure 3.3a, also indicates that the 

system is close to an icosahedrally oriented liquid, possessing a degree of symmetry 
intermediate between those of a crystal and a liquid. In conclusion, for a high 
average shear rate, the system of inelastic, rough, hard spheres displays the 
symmetry of imperfect icosahedral or hexagonal liquid for solid volume fractions 
larger than 0.565φ .  
In d dimensions, the average translational kinetic energy of particles whose 

velocities satisfy the Maxwell-Boltzmann distribution, is 2

1

1
2 2

N

i i
i

dm u kT
=

> =∑< . The 

kinetic granular temperature T  is given by kin
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where ,i kρ is the volume of slice k covered by particle i, and u is the particle velocity 

with the average 

i

, ,
1 1

k kN N

k i k i
i i

i kρ ρ
= =

≡∑ ∑u u . 

In Figure 3.3b we show the velocity and density profiles, and the local kinetic 
granular temperature. A layered structure in the yz plane is evident from the 
density profile, and an S-shaped velocity profile and a high granular temperature 
near the walls can also be observed. We found that the granular temperature is 
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proportional to the transverse self-diffusion coefficient, *D ∝ T , which can be 
understood from dimensional analysis (Eq. (2.23)). 
The amplitude fluctuations of the dimensionless normal stress on the walls 
( ( )* 2

pP P 4 wt R 2ρ γ∗  =    with *
wt = t u H  the dimensionless time and pρ  the particle 

density [87]), was found to obey a strongly asymmetric distribution similar to those 
observed in recent experiments [79]. For a system with 0.565φ =  and  at 

, the amplitude of stress fluctuations on the wall increased with increasing 
coefficient of restitution (from 

14w sγ −=
*t 200≈

0.84e  to 0.93e= =
0.123

), and decreased with surface 
friction (from 0.41 down to µ µ= = ) as shown in Figure 3.4a. For 

0.84e and 0.41µ= =  at t , the fluctuations were much smaller than those 
observed by Savage and Sayed [

* > 200

0.93=
87]. In the opposite case, by increasing the 

coefficient of restitution to e , and decreasing the surface friction coefficient to 
0.123µ = , the result was closer to those in the annular shear cell tests of Ref. [87]. 

However, all the results obtained were much smaller than those for gravity-driven 
channel flows [79]. 
The decay of the absolute value of the mean dimensionless normal stress, *P , 

appears to be almost exponential before , as evidenced by Figure 3.4a. There 
is, however, an additional decrease of 

* 200t ≈
*P  at about t  ( ~ 5  collisions), 

which might indicate a phase transition. Other evidence for a transition could be 
obtained from translational and bond orientational parameters [

* 200≈ 710×

I, 87], and from the 
radial distribution function. 
The stress fluctuations on the walls increased with the solid volume fraction when 
the latter was increased from 0.56 to 0.58 (c.f. Figure 3.4a). Meanwhile the 
self-diffusion coefficient (measured from the slope of the mean square displacement 
curve for dimensionless time intervals * 1τ > ), decayed further approaching a value 
close to those of recent experimental observations [79, 83]. The increased stress 
fluctuations may be the result of higher dissipation at 0.58 leading to the decrease in 
the transverse self-diffusion coefficients. At 0.582,φ = diffusion decays rapidly with 
time (at ) to ( the diamonds in Figure 3.4b). This also is an evidence 
of a phase transition to an ordered state or to a structural arrest. In an ordered 
system fluctuations induced changes in the geometry of the cage formed by the 
nearest neighbours around a particle become infrequent. This could result in a 
dramatic decay of the long-time transverse self-diffusion coefficient. 

* 245t = -5* 10D ≈
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Figure 3.4 (a) Dimensionless normal stress, exerted by the particles on the bottom wall as 
a function of dimensionless time , for three indicated sets of parameters. (b) 
Dimensionless mean square transverse displacement 

*t
2*Z< ∆ >  as a function of 

dimensionless time *τ , for three sets of parameters that include the starting time of the 
analysis . Solid lines are linear fits to the data for *t * 1τ > . 

Also shown in Figure 3.4b are the self-diffusion coefficients for the cases 
. The coefficients decay from *0.565, 159,245tφ = = 3~ 10 up to 10 4− −  when t  

increases from 159 to 245. This is consistent with the result presented in Figure 3.4a. 

*

In order to test that the behaviour we found above for rough particles is not due to 
roughness only, we did some of the analyses for systems of smooth particles. For a 
solid volume fraction of 0.565 and a sufficiently long starting time of , our 
results show that the calculated dimensionless long-time transverse self-diffusion 
coefficient for the system comprised of smooth particles is , which is an 
order of magnitude higher than that for the system of rough particles  
(not shown). The above-mentioned value for the system of smooth particles is close 
to those reported in Ref. [

* 40t ≈

-2

=1.5D

* =1.2 10D ×
* -10× 3

79] for moderate shear rates. It appears that shearing of 
particles with rough surfaces generates lower normal stress than a similar shearing 
of smooth particles. This may be interpreted such that rough particles tend to have 
more rotational energy than smooth particles. Moreover, particles with rough 
surfaces lack transverse diffusional movements. This observation supports the 
Menon and Durian results [80] in that the dynamics of grains in a dense granular 
flow are dominated by collisions rather than sliding contacts. 
A comparison between diffusion coefficients for different volume fractions in 
granular media revealed that for dilute systems, the velocity autocorrelation 
function also decays exponentially as predicted by kinetic theory [88]. Results are 
shown in Figure 3.5 for a dilute and a dense system. For the higher volume fraction, 

~ 0.51φ , the velocity autocorrelation decays faster, and correspondingly there is a 
smaller diffusion coefficient. 
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Figure 3.5 (a) Velocity autocorrelation function as a function of dimensionless time for 

~ 30%φ  (black symbols) and ~ 51%φ  (white symbols). (b) Dimensionless mean 
square transverse displacements 2*Z< ∆ >  of a system of smooth particles as a function 
of dimensionless time *τ . Solid lines are linear fits to the data. Filled symbols denote 
30% solid volume fraction and white symbols 51% solid volume fraction. 

Our results also show that in the stream direction the self-diffusion coefficient was 
much higher than in the transverse directions for both smooth and rough particles, 
in agreement with the experimental results of Hsiau and Shieh [89].  
In conclusion, our numerical simulations of a sheared, dense, monosized granular 
material indicate there is a phase transition at long run times for systems of rough 
particles, which causes a sharp drop in the dimensionless transverse long-time self-
diffusion coefficient of the particles. However, the system is diffusive at solid 
volume factions even higher than 0.56. The structure of the ordered state was found 
to be closer to that of a simple hexagonal lattice rather than icosahedrally oriented 
liquid. A similar behaviour could be seen in system of smooth particles so that the 
self-diffusion coefficient decreased by increasing concentration. In this case, the self-
diffusion coefficient was much higher in the stream direction than in the transverse 
directions, and much smaller than that for rough particles. 
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4 CAPILLARY RISE 

In this section we review our results for simulations on single- and two-phase 
fluids. The purpose of these simulations was to better understand the solid-liquid 
(wetting) and gas-liquid (surface tension) interactions. It would also be interesting 
to see how well the LB method is capable of simulating the well-known capillary 
rise phenomenon, and the method was thus tested on an uprising fluid in a narrow 
capillary pipe [II]. 

4.1 THE HYDRODYNAMICS OF CAPILLARY RISE 

The capillary rise phenomenon has been of wide theoretical and practical interest in 
the recent years [90,91,92,93,94], with applications ranging from simple capillary 
rise and imbibition (penetration of liquid (droplet) into a porous material) to droplet 
spreading and other phenomena related to wetting. The basic analytical theories for 
capillary rise were developed a long time ago [95], but recent experimental and 
numerical techniques have provided new insight into this problem: on the 
numerical side first the LGA models [16, 14 ,96,97,98] and then the more recent LB 
method [II, 55 , 96 ,99]. 
In the classical analysis by Washburn [100], the motion of an incompressible fluid is 
treated as a Poiseuille flow [101]. When we consider the rise of an incompressible 
liquid in a capillary pipe, we can thus start from the Hagen-Poiseuille equation for a 
fully developed pipe flow under a pressure drop of P∆ , 

( )
4dQ ,

d 8 f

Pr
t h h

π
µ +

∆
=

+
 (4.1) 

where 2d d d dQ t r hπ= t  is the volumetric flow rate,  is the height of the rising 
liquid column from the level of the liquid surface outside the pipe,  is the length 
of the capillary pipe immersed in the liquid,  is the radius of the pipe, and is 

h
h+

r fµ  
the viscosity of the liquid. The total pressure drop may be expressed as a sum of 
capillary pressure and the static pressure exerted by gravity: 

2 cos ,d
fP g

r
hγ θ ρ∆ = −  (4.2) 
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where fluid density, surface tension and dynamic contact angle are denoted by fρ , 
γ  and dθ , respectively.  
In the classical capillary rise theory the contact angle is constant, but in the 
phenomenologically corrected version [100] of this theory contact angle varies with 
velocity, and is thus called the dynamic contact angle. Combining Eqs. (4.1) and 
(4.2) one can write  

2d8 ( ) 2 cos
df d
hh h r r gh
t

µ γ θ++ = − fρ . (4.3) 

By including inertial and entrance effects [101], and by rearranging the terms, 
Eq. (4.3) becomes  

2
2

2

8 ( )1 d d 1 dcos ( )
2 d d 4 d

f
d f f f

h hh h hrh r rgh
t r t t

µ
θ ρ ρ ρ

γ
++ 

= + + + 
 

. (4.4) 

This is the Washburn equation whose solution we will use to compare with the 
simulated column height, with the dynamical contact angle first determined by 
simulations. 
Inertial forces can usually be ignored in the overdamped limit 

( )1 52 332 cosc f d fr r gµ γ θ ρ< = 2  [102], which condition is satisfied by the parameter 

values in our system. Asymptotically and at long times ( )t→∞ , when d d 0h t→ , 
one finds that 

2 cos ,
f

h
gr

γ θ
ρ

∞
∞ =  (4.5) 

where lim dt
θ θ∞ →∞

= . Due to the rough discretization and the steep density variation 

especially for small , it is difficult to accurately measure r dθ  directly from the 
simulated density field. For an indirect determination of dθ , we first apply the one-
dimensional Reynolds transport theorem in a control volume to estimate the rate of 
change of the momentum of the system. The upper control surface moves with the 
meniscus of the liquid column (no outflow from the control volume) and the lower 
control surface is fixed at the lower end of the pipe. Then the rate of change of the 
total momentum inside the control volume is  

syst
d d( ) [ d ] ( )d
d d CV CS
m V

t t
ρ ρ= +∫ ∫v v v v ,A⋅n  (4.6) 

where  is the total mass of the fluid inside the control volume,  is the fluid 
velocity, and CV  and CS  denote the volume and the surface area of the control 
volume, respectively. By integration we find that 

( )m m t= v

( )2

2

dd d d[ d ]
d d d

( )d ( ).

cv
f fCV

fCS

mhV r h
t t t

A r v

ρ ρ π

ρ ρ π

 = + = 
 

⋅ = −

∫

∫

vvv v

v v n v

dt
,
 (4.7) 
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where  and  are liquid velocity and a unit vector normal to the inlet control 
surface, respectively. Assuming a constant velocity through the control surface, we 
obtain an expression for 

v n

dθ by substituting Eq. (4.4) into Eqs. (4.6) and (4.7), 
( ) 2 2 2d1 3cos [ 8 ( ) ].

2 d 4
cv

d f f

mv
r v h h v r gh

r t
θ ρ π πµ

π γ += − + + + fρ π  (4.8) 

This equation can be used to determine dθ  from the simulated . Notice that this 
is the correct form for Eq. (8) in Ref. [

( )h t

II]. However, the results remain almost 
unchanged, especially at long times, because the rise velocity is very small.  
The height of the column , or the location of the gas-liquid interface, was 
determined as the turning point of a least-squares fit by a  function of the 
density profile in the vertical direction. 

( )h t

tanh

A number of empirical relationships for wetting have been discussed in the 
literature, all of which express the dynamic contact angle dθ  as a function of the 
capillary number Ca vµ γ=  during spreading such that (Ca )d f aθ θ= , , where the 
advancing contact angle aθ  is that of a spreading liquid in the limit 0v +→ . We 
adopted the expression generally used in studies of capillary rise [102],  

cos cos CaBd a Aθ θ= − ,  (4.9) 
where  and A B  are constants. This dependence on aθ and of Ca dθ  was tested by 
simulations, and a reasonable agreement was found. 

4.2 RESULTS AND DISCUSSION 

We first simulated a three-dimensional two-phase fluid system by using the LB 
method [II] with periodic boundaries in the lateral directions and without any pipe. 
The simulation code has already been tested for single-phase fluid and flow through 
porous media, and many benchmark results have been reported [62]. After a certain 
number of iterations, when the system reached the equilibrium state, the pipe was 
inserted, and the simulation was continued until saturation of the capillary rise (c.f. 
the snapshots in the insets of Figures 4.3 and 4.4 for r=5 and 20, respectively). 
The simulations reported below were performed for pipe radii , while the 
full domain size was , and 100

2 5 10r = , ,
50 50 200× × 100 300× ×  for 20r = . In all capillary rise 

simulations the relaxation parameter was 1τ = , and unless stated otherwise, the 
adhesive parameters were W 0 1= − .  and G 0 15= − . . This resulted in 20f gρ ρ ≈ , 
with the bulk density of the liquid phase 2 25fρ = . , viscosity 0 375fµ = . , and the 
surface tension 0 085γ = . . 
Dimensional analysis for the group of variables ( ), , , , ,f fh t g ρ µ γ  was done for 

presenting the results in dimensionless units. We thus defined the characteristic 
time, velocity and height as 3 2

0 f fµ ρ 3.2γ= ≈t , 0v 0.23fγ µ= ≈  and 
2

0 0.74f fh µ ρ γ= ≈ , respectively. In the presence of gravity, we also used the 
dimensionless parameter 4 3

f fg gµ ρ γ= . 
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An important issue is whether variation in the capillary radius changes the 
dynamics of the flow in the two-phase flow model. To address this question we 
calculated the velocity profile for pipes with different radii, and compared them 
with the analytical results [101] (see Figure 4.1). This velocity profile could be 
determined from a steady flow of the single- or two-phase fluid at its equilibrium 
density between two infinite (periodic boundary conditions in the lateral directions) 
parallel plates. A constant body force at each lattice point produced the flow 
without any phase separation in the two-phase model. The well-known analytical 
results for Poiseuille flow [101] are also shown in Figure 4.1 by the full lines. 
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Figure 4.1 A typical example of the velocity profile of the fully developed flow of a 
single-phase (W G ) fluid, and of a two-phase (W0g= = = 0 1= − . , G 0 15= − . , ) 
fluid, between two parallel plates. 

0g =

A comparison with analytical results showed that in our simulations the velocity 
profile had the correct (Poiseuille) parabolic form but it was shifted forward. This 
relative deviation increased for decreasing  as expected from the boundary effects. 
The reason for this deviation was a strong boundary-layer effect. The adhesive force 

 defined in Eq. (2.34), generates a low-density liquid layer on the pipe surface. 
Due to very low resolution, we did not expect sensible results for , and for 
strong adhesion also  and  were too small. As seen in the density profiles 
of Figure 4.2, the narrow pipe with radius 

r

r

GF
2r =

5r = 10r =
2=  did not have the bulk liquid density 

anywhere in the pipe. The decay of density close to the inside walls of the pipe was 
however similar for all , at least for weak adhesion forces, e.g. W  
(see Figure 4.2). The proportion of the liquid with bulk density decreased with 
decreasing radius. 

5 1= , 0 20,r 0.1= −

For increasing adhesion we observed that the simulated velocity profile approached 
the theoretical curve, and that the boundary effects decreased in the density profile 
(see the curves for 20r =  in Figure 4.2). At the same time, due to increased discrete-
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lattice effects at the gas-solid interface, values for cos dθ  greater than unity were 
obtained for small , which is clearly unphysical. r

15

ρ
r=2
r=5
r=10
r=20, w
r=20, w

=0.11
=0.15
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x
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1
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2.5

Figure 4.2 The density profiles across the capillary pipe for radii 2,5 10 and 20r = ,  as 
functions of distance from the centerline of the pipe.  

With increasing adhesion (not shown), the density of the fluid in the first layer next 
to the wall increased, but the range of the wall effect (liquid layer with a thickness of 
a few lattice spacing) in the density was the same. 
In Figures 4.3 and 4.4 the column height and the dynamic contact angle are shown 
for  as functions of simulation time. For comparison we also show the 
results with and without the presence of gravity, while W

5 and 20r =
0 1= − .  was kept constant. 

For increasing pipe radius there was a decrease in the column height which is 
expected from Eq. (4.3). 
Without gravity, as expected from Eq. (4.3), the column rose faster with increasing 
pipe radius. Moreover, there was an increase in the column height for increasing 
pipe radius, which is expected. The solid lines in Figures 4.3 and 4.4 show the 
corresponding numerical solutions of Eq. (4.4), where the dynamic contact angle dθ  
was determined from Eq. (4.8). 

 



4. Capillary rise 

 

30

0 10000 20000 30000
t/t0

0

100

200

300

400

h/
h 0

 

No g

g*=0.00146

θd
h/h0
θd
h/h0
Washburn

0

π/2

π/3

π/6
θd

Figure 4.3 The height of the column and the dynamic contact angle as functions of 
simulation time for the pipe radius 5r = . The inset shows three snapshots of the capillary 
rise: initial, intermediate, and steady state (side view). 
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Figure 4.4 The height of the column and the dynamic contact angle as functions of 
simulation time for the pipe radius 20r = . The inset shows three snapshots of the 
capillary rise: initial, intermediate, and steady state (side view). 

If the contact angle was kept constant, a satisfactory agreement between the 
Washburn equation and the simulation data could only be obtained for a short time 
window up to t t . On the other hand, by using 0 1000/ ≈ dθ  in the Washburn equation 
as obtained from Eq. (4.8), good agreement was found for large  up to the latest 
data points, where some deviation appeared as a result of an increase in the 
interface velocity close to the end of the pipe. 

r

At the beginning of the simulations we had cos 0dθ = , or 2dθ π= / , as can be seen 
from Figures 4.3 and 4.4. After this the contact angle dθ  decreased with increasing 
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time or decreasing . The steady state contact angle was quickly reached, 
especially in the presence of gravity, in a few hundred time steps of the total 
simulation time of about 50 000 time steps. The increase of cos

Ca

dθ  at small  results 
from the liquid reaching the end of the pipe. 

Ca

1/~ t

104

0, zero gra
, zero grav

0 10000 20000 30000

For small capillary numbers and long times, i.e. for slow interface velocities, dθ  
approached a constant as expected. For increasing pipe radius there was an increase 
in the steady state contact angle, which is unphysical and is due to the difficulty of 
determining the precise angle from simulation results. 
For stronger gravity the relative importance of the other resistive forces in Eq. (4.4) 
diminished, and the behaviour of dθ  was more consistent. This supports the idea 
that the frictional forces in our simulation model are somewhat different from those 
assumed in the hydrodynamical derivation of Eq. (4.8). 
We also examined the speed of capillary rise as shown in Figure 4.5 as a function of 
time for both zero and non-zero gravity. The column first sharply speeded up and 
then decayed towards the stationary state approximately as . More simulation 
time is however needed to properly fix the exponent. While the sharp initial 
acceleration resulted from the fast implantation of the pipe into the system, the 
decay of velocity for non-zero gravity was almost independent of capillary radius. 

3
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Figure 4.5 Normalized velocity of the column as a function of simulation time. 

In conclusion, our test results are promising: The capillary phenomenon can indeed 
be studied by LBM at the hydrodynamic level. However, due to discreteness effects 
one needs rather thick (in lattice units) pipes for realistic kinetics. For the 
parametrization used here, the diameter of the pipe should be at least 30 lattice 
units. Future work needs to be done to validate or modify the theoretical velocity 
profile of a narrow capillary with strong adhesive forces at walls.  
For the static properties in the presence of gravity, somewhat thinner pipes are 
appropriate, while thicker pipes are needed in the case of strong adhesion. 
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5 SOME RHEOLOGICAL PROPERTIES OF LIQUID-
PARTICLE SUSPENSIONS 

In this chapter I explain results for Couette flow of liquid-particle suspensions. In 
the simulations lattice-Boltzmann methods for the fluid (Chapter 4) and those of 
molecular dynamics for the Newtonian motion of solid colloidal particles (Chapter 
3) are combined. The main motivation for this part of the work was to provide 
benchmarking for subsequent simulations on liquid-particle suspensions. We clarify 
the role of particle shape, shear rate, and solid volume fraction (area fraction), i.e. 
concentration, in the rheological properties of 3D (2D) suspensions. The viscosity of 
suspensions is analysed as a function of shear rate and concentration. 

5.1 BACKGROUND 

Suspensions of submicrometer-sized particles appear in many industrial processes 
e.g. in paper industry, in emulsion technology, in environmental processes, and in 
biological systems, to mention just a few examples [see e.g. 103]. There is thus wide 
interest in understanding the flow dynamics and rheological properties of such 
liquid-particle suspensions. Due to their complicated microstructure, the rheology 
of suspensions may depend on many factors such as particle-volume fraction, 
particle size, particle shape, ionization, suspending liquid, flow rate and shear rate. 
Recently, it has also been shown that polydispersity may have a significant effect on 
the hydrodynamics of particle suspensions [104,105,106]. Attractive and repulsive 
interactions between the particles have furthermore been found to have a significant 
effect on suspension’s rheology [107]. One should understand better how e.g. 
particle interactions affect the rheological properties of the suspension for increasing 
concentration of particles, and the two-phase character of the suspension may give 
rise to complicated microstructural behaviour in different flow regimes. 
The theoretical (both analytical and numerical) study of suspension rheology is 
difficult for primarily two reasons. First, the hydrodynamic interactions between the 
suspended particles involve several length and time scales. There are short-range 
lubrication forces, which are two-body interactions. There is an intermediate range 
in which many-body hydrodynamic interactions are important. There are also long-
range interactions that must be properly ‘renormalized’. Second, the exact 
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knowledge of the forces and stresses for a given configuration of the particles is not 
sufficient to determine the rheology, because an average over different particle 
configurations is needed. These configurations are themselves results of an 
interplay between the external driving forces (e.g. an imposed shear flow or gravity) 
and the ‘internal’ hydrodynamics, i.e. the inter-particle and Brownian forces. Thus, 
the system is completely coupled [108]. For these reasons, theoretical approaches 
have generally assumed highly idealized systems, such as dilute spherical 
suspensions at low shear rates. Experimental knowledge is also limited as the 
operation of even the most commonly used viscometers is not always properly 
under control.  
Analytical and numerical studies have traditionally been based on various 
continuum models. However, these models always include several parameters of 
microscopic origin that are difficult to determine. Thus, simulation results for 
particulate suspensions would be most helpful and have immediate and wide 
applicability. On the computational side detailed analyses of microstructures have 
indeed become feasible through direct simulation of the motions of individual 
particles. Nevertheless, such studies are still computationally heavy, and usually 
involve approximations. 

Viscosity of liquid-particle suspensions 
The viscosity of a suspension of monodisperse spheres can depend on several 
dimensionless parameters. The most important of these are the solid volume 
fraction 3(4 3) nRφ πρ= /  and the Peclet number 2

0wPe d Dγ= / . Here d is the particle 
diameter, nρ  the particle number density, R  the radius of the particles, wγ  the shear 
rate, and  the diffusion coefficient related to the Brownian motion of the particles. 
The Peclet number expresses the ratio of the hydrodynamic shear forces and the 
diffusive Brownian forces acting on the suspended particles. The Brownian forces 
tend to bring the suspended particles back to their equilibrium configuration, which 
is continuously disturbed by the hydrodynamic shear forces acting on the particles. 
If the Brownian forces are omitted (as is the case here), the shear Reynolds number 

0D

( )2
f w fd u Hµ γ= ν= is used to characterise the flow conditions instead of 

the Peclet number. Here fν  is the kinematic viscosity of the carrier fluid, and fρ  is 
its density. For 2D discs, e.g., the area fraction is 2

nRφ πρ= .  

2Re w fdγ ρ

The functional dependence of viscosity on φ  and  (or Pe Reγ ) is known 
theoretically only in a few limiting cases. Einstein derived at zero Reynolds number 
his famous formula for the relative apparent viscosity rµ  of the suspension 
( r a fµ µ µ= with aµ the apparent viscosity of the suspension and fµ  the viscosity of 
the pure fluid),  

51
2rµ φ= + .  (5.1) 
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 Einstein omitted in his analysis the Brownian motion of the particles, and all 
interactions between them. For this reason Einstein’s formula is only valid for very 
small (smaller than about 5%) solid volume fractions φ . When the solid volume 
fraction is increased, the effects of interactions between the suspended particles 
become significant. The inclusion of Brownian effects and hydrodynamic two-
particle interactions lead to a 2φ  term in the expansion of the viscosity [109,110],  

2
2

5( ) 1 ( )
2r w wkµ γ φ γ= + + .φ  (5.2) 

Notice that rµ  now also depends on the shear rate wγ , an effect which will become 
increasingly important for increasing volume fractions φ . This dependence is 
included in the factor  which has the following limiting behaviour: (i) in the low-
shear limit 

2k
)( 0wγ → , where Brownian motion dominates (Region I of Figure 5.1), 

 [2 6 2k = . 110]; (ii) in the high-shear limit ( w )γ →∞

5 2k
, where hydrodynamic 

contributions dominate (Region III in Figure 5.1), 2 = .  [109]. Unfortunately, Eq. 
(5.2) agrees with experiments only up to volume fractions of order 15 . For 
still higher concentrations many-particle interactions must be taken into account. 
This is where theoretical difficulties become more severe.  

20%−

γw (1/s)

µ r

I II III

 
Figure 5.1 Typical viscosity of a liquid-particle suspension as a function of shear rate. 

When extending the dilute-suspension analyses to higher concentrations, difficulties 
arise in computing the many-body hydrodynamic interactions, and in determining 
the configurations of the microstructure. A simple and often used expression is the 
relative viscosity of the (semi-empirical) Krieger- Dougherty model [111],  

max

max

1 ,r

ηφ
φµ
φ

−
 

= − 
 

 (5.3) 

where η  is the intrinsic viscosity of the suspension, which varies between 2.50 and 
2.67 for rigid spheres depending on whether the particles are charged or not, and 

maxφ  is the maximum packing fraction at which viscosity diverges. Experimental 
results of Van Der Werf and De Kruif [112] suggest that maxηφ  is close to 2. The 
values of the maximum packing ratio maxφ  which we use in scaling the volume 
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fraction are 0.785 (2D) and 0.605 (3D), which correspond to ‘flowing’ arrangements 
of simple cubic and hexagonal packings, respectively, perpendicular to the plane of 
shear [105, 112]. 

5.2 BENCHMARK STUDIES FOR THE LB METHOD 

We carried out numerous benchmark studies to ensure the correctness and accuracy 
of our results and our simulation codes. As shown in Chapter 4 for fluid-flow 
simulations by the LB method, good agreement was found between the theoretical 
and simulated velocity profiles in a channel flow (see Figure 4.1). For suspension 
simulations an obvious test is also to compare the hydrodynamic radius HR  of 
particles with their nominal radius R . The hydrodynamic radius HR  was derived 
by simulating fluid flow through an infinite array of discs in 2D or spheres in 3D. 
The simulation was performed by placing a solid fixed particle in an arbitrary 
location in a periodic cubic box with side length , and subject to fluid stream with 
velocity U. Analytical expressions for the drag coefficient are known for both 2D 
and 3D systems [

L

113,114], and the latter is given by 
2 5

3 6
1 2.837 4.19 27.46 - -D f H H
H

HF R U R R
R L L L

πµ
 

= + 
 

. (5.4) 

We showed in Ref. [III], and show here in Table 5.1, that the hydrodynamic radii of 
discs in 2D were systematically smaller than R , but only by less than 1  a lattice 
point. 

2

 
R 6.0 6.2 6.5 10.0 10.2 10.5 

<RH> 5.65 5.80 6.13 9.57 9.78 10.06 

Table 5.1. Input radius R  and the mean hydrodynamic radius <RH> for a regular array of 
disc-shaped (2D) particles placed in different locations. 

The same test was carried out in 3D by locating a solid sphere in an arbitrary 
location in a periodic cubic box, and the mean hydrodynamic radius was found 
somewhat smaller than the nominal radius R (see Table 5.2). The small discrepancy 
both in 2D and in 3D is mostly due to our realization of the no-slip boundary 
condition. 
 

R 2.50 3.80 5.00 5.50 10.00 10.50 20.00 
<RH> 2.42 3.67 4.99 5.27 9.77 10.39 19.79 

Table 5.2. Input radius R  and the mean hydrodynamic radius <RH> for a regular array of 
spherical particles (3D). 

Furthermore, for a disc-like particle moving under an external force, such as gravity, 
in the middle of a channel, good agreement was found in the forces induced on the 
particle and the walls, between our results and those calculated by FEM or the LB 
method of Ref. [72] (see Table 2 in Ref. [III]). 
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In another benchmark study, the hydrodynamic forces on a fixed disc with forced 
counterclockwise rotation close to a moving wall were simulated, and compared 
with the results of a commercial finite-volume solver (Fluent). Simulations were 
carried out for several particle radii and for two different gaps between the centre of 
the particle and the moving wall, and the results are shown in Table 3 of Ref. [III]. 
We also analysed the hydrodynamic lubrication forces between two discs scattering 
with a non-zero impact parameter, and in central collision [III]. The simulation 
results were compared with the analytical results of Ref. [115]. In both cases the 
relaxation parameter was 1τ = .  
In the scattering case, the lubrication force is [115] 

( )2 2 3
0 0 0 01 2

0

2 5 1 5 12
12 4 24 4Sc f t

2F U J Jx s J x x x O
h s

µ   = ∆ + + + + + +    
s , (5.5) 

with ( ) ( )1 2 2 1
0 0 02 , 1  and 2 tan 2x s h x J xπ − −= = + = 0 . In central collision the 

lubrication force is given by [115] 

( )20 0 0
3 2 2

0 0 0

293 2 69 .
2 40 40 4C f n

x x xF U J s J O s
s h h h

µ
  

= ∆ + + + − +  
  

 (5.6) 

Here  is the relative spacing between the two particles of radius 12( 2 )s D R= − /R R  
and of centre-to-centre distance 12D  with 1 and 2 denoting the particles, 

 with U1 2( )− ⋅U U ttU∆ = 1 and U2 the particle velocities and t a unit vector in the 
direction of motion of the particles, and 1 2(nU )∆ = − ⋅U U n  with n a unit vector 
normal to the direction of the line connecting the particles at their shortest mutual 
distance. The relative normalization of the analytical and simulated lubrication 
forces was done so that the force on a particle by the other particle is asymptotically 
(for large relative distances) the same independent of the method. 

s n
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Figure 5.2 (a) Lubrication force on two particles in central collisions as a function of their 
dimensionless distance s. (b) Lubrication force on two particles scattering with a non-zero 
impact parameter as a function of the dimensionless impact parameter s. The full curves 
are the analytical results for the respective cases[115]. 

It is evident from Figure 5.2 that the simulation results are in rather good agreement 
with the analytical solutions. The accuracy was even better in the case of central 
collision and higher lattice resolutions. Similar behaviour was found in Ref. [61] for 
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corresponding 3D simulations. As also shown in Ref. [73], lubrication forces given 
by the LB method are typically smaller than the corresponding analytical 
predictions when particles are very close to each other (see Figure 5.2b). However, 
they are strong enough to keep the particles separated most of the time. 
In order to test the inertial behaviour of the suspended solid particles, we also 
performed the lateral migration tests of Aidun and Lu [72], and Feng et. al. [116] 
(see Figures 5.3 and 5.4). We found good agreement with their results, when a 
particle initially placed near a wall migrated to the middle of the channel as shown 
in Figures 5.3 and 5.4 for three different ratios of partice density to fluid density. In 
Figure 5.4, an overshoot from the middle of the channel is also accurately 
reproduced by the present method. 
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Figure 5.3 Comparison of the lateral migration of a particle in a vertical channel of length 
L (x direction) and width H (y direction) with the results of Aidun and Lu [72], and Feng 
et. al. [116], for . Re 1γ =
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Figure 5.4 Comparison of the lateral migration of a particle in a vertical channel (the same 
as in Figure 5.3) with the results of Aidun and Lu [72], and Feng et. al. [116], for 

. Re 3γ =
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5.3 VISCOSITY OF LIQUID-PARTICLE SUSPENSIONS 

In order to simulate the Couette flow of a liquid-particle suspension, suspension 
was placed between two moving solid walls oriented in the x direction and 
separated by a distance H. The walls moved with speed  in opposite directions. 
Couette-flow conditions are thus created with the mean shear rate 

wu
2w wu Hγ = . 

Periodic boundary conditions were imposed in the x direction. The simulation grid 
was rectangular and usually 128  up to 384x384 lattice points. The diameter of 
the particles was 10 lattice units. Volume fraction (area fraction) of the particles was 
varied between 

128×

6%φ =  and 55%φ = . The shear Reynolds number 
( 2Re f wdγ fρ γ= µ ) was varied between 0.14 and 11.7. A typical duration of the 
macroscopically transient states was 200 000-600 000 simulation steps depending on 
the system size. The necessary time-averaged quantities were calculated for the 
stationary states over 40 000 iteration steps, which even in the worst cases 
corresponded to several mean periods of a particle traversing the system. 
We computed the relative apparent viscosity r a fµ µ µ= of the suspension. Here 

aµ , the apparent viscosity of the suspension, is given by /a T wµ τ γ=  with Tτ  the 
total shear stress on the moving walls. We first analysed the effect of particle shape 
on the viscosity, and show in Figure 5.5 rµ  as a function of φ  for disk-shaped and 
star-shaped particles with .  Re 1.0γ ≈

It is evident that the viscosity in the case of star-shaped particles (a cross-shaped 
combination of two perpendicular ellipsoidal particles, with two different axis ratios 

 and major axes l : ) increases much more rapidly 
with increasing solid volume fraction than in the case of disc-shaped particles. 
Instead, the viscosity of ellipsoidal particles quite closely follows that of disc-like 
particles (not shown). Also shown in Figure 5.5 is the 2D version of the semi-
emperical formula by Krieger and Dougherty [

a 4.3, 17.2 and 2.7, 8.0a l a l= = = =

111], Eq. (5.3) with maxφ =0.785 and 

maxηφ =2. 
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Figure 5.5 The simulated relative apparent viscosity rµ  for disk–shaped and star-shaped 
particles as a function of the solid volume fraction φ  for Re 1.0γ ≈ . Also shown are the 
semi-empirical formula by Krieger and Dougherty [111] (see Eq.(5.3)), and the simulation 
results of Aidun and Lu [72] and Brady and Bossis [117]. 

The three-dimensional Couette flow of monodispersed randomly distributed 
spherical particles was simulated in a fluid, which was modelled using the three-
dimensional D3Q19 model with 19-links, introduced in Chapter 2. The simulation 
grid was 128 , the diameter of the particles 10 lattice units, , and 
volume fraction of the particles was varied between 

128× Re 0.1γ =

6%φ =  and 55%φ =  . A 
snapshot of these simulations is shown in Figure 5.6a. 
A simplified version of the 3D simulation of Couette flow of monodispersed 
spherical particles was also carried out such that the particles were restricted to 
move only in one layer along the xy plane. In these monolayer simulations the shear 
Reynolds number was varied between 0.1 and 15, and φ  between 6% and 52%. A 
snapshot of these simulations is shown in Figure 5.6b. 
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(a)

           

(b)

  
Figure 5.6 (a) A snapshot of a shear flow of suspended spherical particles as simulated by 
the three-dimensional LB method. (b) A snapshot of a shear flow of a monolayer of 
suspended spherical particles as simulated by the 3D(m) LB method. 

We computed the relative apparent viscosity rµ of the suspension for both versions 
of the 3D simulations. In Figure 5.7 we show the relative apparent viscosities for 

 as functions of the scaled volume fraction 1.0Re =γ max/φ φ  together with the 3D 
Krieger formula, for which max 1.6ηφ = . 
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Figure 5.7 Simulated relative apparent viscosity for small Reynolds numbers, in a 3D as 
well as in a 3D(m) (monolayer) system. Also shown is the 3D Krieger formula [111]. 

As can be seen from Figure 5.7, both 3D and 3D(m) methods very accurately follow 
the Krieger formula with less than 2% deviations below max/ 0.5φ φ ≈ . 
In Figure 5.8 we compare the simulated relative viscosities of 2D and 3D(m) 
suspensions for three Reynolds numbers 0.1, 1.5, and 11.7, plotted as functions of 
the scaled volume fraction max/φ φ . Also the 2D Krieger formula is shown for 
comparison, and it should be applicable at low Reynolds numbers (see Eq.(5.3)).  
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Figure 5.8 The simulated relative apparent viscosity rµ  for disk–like (2D) and spherical 
3D(m) particles restricted to move in a monolayer as a function of normalised solid volume 
fraction max max/ :φ φ φ = 0.785 in 2D and 0.605 in 3D. Results are shown for three values 
of Reγ . Also shown is the 2D version of Krieger formula. 

 
As shown in Figure 5.8, the magnitude of relative apparent viscosity is found to be 
higher in the 2D system than in a 3D monolayer of spheres for corresponding values 
of scaled concentration. For increasing shear rate the deviation from Krieger 
formula occurs at lower concentration, which is expected due to shear thickening. 
Note that the results for dilute 3D(m) systems follow closely the Krieger formula, 
even for relatively high Reynolds numbers. For increasing solid volume fraction, the 
3D relative viscosity seems to approach the corresponding 2D value. 
In Figure 5.9 we show the relative apparent viscosity for 1.0Re =γ  as a function of 
scaled volume fraction max/φ φ  together with a number of previous experimental 
(van der Werff and de Kruif) [112] and numerical results, all obtained for Reynolds 
numbers . The numerical results included in Figure 5.9 are obtained using 
Stokesian approximation [

1Re <γ

105, 117 ,118,119], lattice-gas simulations [120], or lattice-
Boltzmann simulations [72], for both two-dimensional and three-dimensional 
systems. The values of the maximum packing ratio maxφ  used in scaling the volume 
fraction were 0.785 (2D) and 0.605 (3D), as above. It is evident from Figure 5.9 that 
the results obtained here agree very well with the previous results shown. 
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Figure 5.9 Comparison of the simulated relative apparent viscosity with previous 
experimental and numerical results for small Reynolds numbers, in 2D as well as 3D 
systems. 

 
We also carried out several other benchmark studies such as stress distribution 
around a particle in shear flow, and different relative motion of particles near a wall. 
In addition, benchmark tests reported in Refs. [70, 71 , 73] indicate that the method 
applied here is adequate for realistic suspension simulations. We can conclude, 
based on the above tests and benchmarks, that the fundamental physical 
background of the model used here is correct. 
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6 MICROSTRUCTURE OF DILATANT SUSPENSIONS 

In this chapter we analyse the ‘dilatant’ rheological behaviour of Couette flow of 
liquid-particle suspensions. The purpose of this work is to better understand the 
cause of shear thickening and the effects on dilatancy of the microstructure of the 
suspension. We study the mechanisms of momentum transfer and shear stress of 
liquid-particle suspensions in two dimensions using numerical simulations. 
The Couette flow geometry (shear flow) of liquid-particle suspension is relevant for 
many applications, and appears e.g. in common viscometers. Often in such practical 
flow problems, the underlying two-phase character is neglected, and the suspension 
is treated as a non-Newtonian fluid. Such an approach may be useful for a dilute, 
homogeneous, isotropic suspension with small particles of regular shape. However, 
in dense suspensions their two-phase nature cannot be neglected. This is due to the 
importance then of other mechanisms for momentum transport in addition to 
viscous stress in the fluid phase. These mechanisms include particle-particle 
interactions and stress inside the particles. Moreover, depending on the scale of the 
details included, effects of boundaries or complicated microstructures such as 
clustering [121] and layering [122] of particles can make the two-phase flow non-
homogeneous or non-isotropic. 
In order to understand the underlying mesoscopic mechanisms that contribute to 
the total observable shear stress and consequently the apparent viscosity of a liquid-
particle suspension, we compute the stresses of different phases and momentum 
fluxes. A snapshot of shear stress carried by the fluid can be seen in Figure 6.1, 
where higher shear stress areas are noticeable between solid particles. The coloured 
contours indicate the viscous shear stress in the fluid phase. As we concentrate here 
on the basic mechanisms that are responsible of the solid volume fraction and 
Reynolds number dependence of viscosity, we only consider the zero-gravity 
situation. 
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Figure 6.1 A snapshot of a two-dimensional Couette-flow of liquid-particle suspension 
solved by the LB method. Colour coding indicates viscous shear stress in the fluid phase. 
The two insets show the forces used in calculating the internal particle stress. 

The Couette flow of the carrier liquid is solved using the lattice-Boltzmann method 
while the motion of the cylindrical (in 2D) and spherical (in 3D(m)) particles of radius 
R suspended in the fluid is governed by Newtonian mechanics. The numerical 
technique is presented in chapter 2 and benchmarking of the simulations against 
results of other numerical techniques and experiments was reported in the previous 
chapter. The suspension is placed between two moving solid walls oriented in the x 
direction and separated by a distance H. The walls move with speed u  in opposite 
directions. Couette-flow conditions are thus created with the mean shear rate 

w

2w wu Hγ = . Periodic boundary conditions are applied in the x direction. The 
simulation grid is rectangular and usually of size 128x128 lattice points. In some 
cases lattices of size 256x256 and even 384x384 lattice points are used. The diameter 
of particles is 10 lattice units and their density (including the solid matrix and the 
core fluid) is about 3.5 times the density of the carrier fluid. We chose this particular 
value for the density ratio as it is relevant for pigment suspensions used in paper 
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coating. As discussed in the previous chapter, the results we obtain are not very 
sensitive to this value. Volume fraction (area fraction) of the particles is varied 
between 12% to 52% and the shear Reynolds number between 0.14 and 11.7. 
Simulations are started from a randomly distributed particle configuration (see 
Figure 6.1) with the fluid at rest (only walls moving). 

6.1 SUSPENSION MICROSTRUCTURE IN SHEAR FLOW  

In an equilibrium state, monodisperse suspensions show different structures 
depending on particle interactions, concentration and shear rate. For example, it is 
known that long range repulsion between the particles tends to order the system 
while short range repulsive forces lead to a fluid-like structure [107]. We first 
consider the effect of concentration on the microstructure of the suspension.  
Figure 6.2 shows the profiles of the average velocity U of the suspension, and the 
local volume fraction of the particles, between the moving plates in a 
macroscopically stationary flow for Re 1.5γ = , and for two systems with different 
volume fractions of particles. For each value of coordinate y (c.f. Figure 6.1), the 
average is taken over the surface S(y), over time, and over an ensemble of three 
macroscopically identical systems. The average velocity is calculated for the local 
velocity field irrespective of the phase that occupies the location. The velocity U 
thus represents the ‘mixture velocity’, i.e., the total volumetric flux of the suspension 
in the x direction. For the relatively dilute suspension shown in Figure 6.2a, the 
particles seem to concentrate near the center of the channel. Weak and somewhat 
diffuse layering may be observed near the walls. The velocity profile slightly 
deviates from linear and has a shallow S shape such that the shear rate is lower near 
the center. This can be understood on the basis of decreased particle concentration 
and, consequently, lower apparent viscosity near the walls.  
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Figure 6.2 The local volume fraction of particles yφ  and the mean velocity profile of the 

suspension U across the channel width H for a suspension with Re 1.5γ =  and mean solid 

volume fractions 12%φ =  (a) and 48%φ =  (b). Thick solid line indicates the volume 
fraction, and thin solid line is the suspension velocity divided by the velocity of the wall 
( ). Dashed line represents a linear velocity profile. wu

 



6. Microstructure of dilatant suspensions 

 

46

For the denser suspension shown in Figure 6.2b, the most spectacular phenomenon 
is the strong layering of particles near the walls. Weaker layering is visible even in 
the central region of the channel. Notice that such layering was also observed in 
light-diffraction experiments by Hoffman [123]. The shear rate oscillates strongly 
near the walls, and the velocity profile seems to have features of slippage at the 
walls. At the central part, the shear rate is clearly lower than the average value 
(indicated by the slope of the dashed line). It is evident from Figure 6.2 that the 
mean flow of the suspension is affected by the underlying two-phase nature of the 
fluid. 
In order to find the shear-rate dependence of layering, and the related velocity 
profiles, we then determined the velocity and the distribution profiles for a 
suspension with 52%φ = , which should display layering as indicated above, for 
three different shear rates. Figure 6.3a shows the local volume fraction of particles, 
and Figure 6.3b the mean velocity profile of the suspension. In the low shear 
Reynolds number region ( ) the suspension is in the Newtonian flow 
regime, and the velocity profile is quite linear. A strong layering of particles is 
observed, as expected, near the walls, and it appears for all three shear Reynolds 
numbers. Weaker layering is visible even in the central region of the channel. 
Between the first layer and the wall there remains a narrow zone which contains 
almost entirely fluid. Experiments also often show such a layer of pure fluid in a 
gap less than a particle radius that decreases for increasing concentration [

Re 0.1γ =

124]. 
At  layering appears to be somewhat more pronounced near the channel 
walls in comparison with the two other cases. In this regime, the velocity profile 
starts to become nonlinear (Figure 6.3b). By increasing the shear rate beyond 

, the concentration profile in the middle of the channel appears to flatten 
out (Figure 6.3a). 
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Figure 6.3 Variation of the solid volume fraction of particles (a), and the mean velocity 
profile of the suspension (b), across the channel width H for three different shear 
Reynolds numbers and for the mean solid volume fraction 52%φ = . 

We would like to analyse in a more quantitative way the observed layering, and 
later also its possible relation to the apparent viscosity of the suspension. To this end 
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we need to quantify layering, and do this by defining a ‘layering index’ through a 
recursive procedure. 
A ‘layered cluster’ parallel to a channel wall is composed of particles whose centres 
lie within a distance y Rδ β=  from the line which goes through the center of mass 
of the cluster and is parallel to the wall, and whose nearest-neighbour distances 
(between the centres of the particles) are within xδ αλ=  in the direction of the wall 
(see Figure 6.4). Here / n

a
HLλ =  is the ‘mean free path’ of the particles, n  the total 

number of particles, and nd α β  coefficients that we have chosen to be 
3 2  and 1 2 , respectively. This definition is built into a recursive search routine 
which is continued until no new particles are found that satisfy the definition. 
At first a particle is chosen at random and the layered cluster it possibly belongs to 
is identified. Then another (so far ‘unidentified’) particle is randomly chosen and 
the process is repeated, until all particles are ‘identified’.  

δy<βR
c.m.

New layered cluster with nL=5 particles

δx<αλ
R

Layered cluster with nL=4 particles

uw  
Figure 6.4 A schematic presentation of the search routine for layered clusters. A cluster of 
four particles is already identified, and a new particle (shaded) is then found that satisfies 
the criteria for the maximum horizontal distance between the nearest-neighbour centres 
and for the maximum distance of the centre of the particle from the horizontal line that 
goes through the centre of mass of the cluster. We use 3 2α = , 1 2β =  and 

HL nλ = . 

Here we consider only those layered clusters with n  particles that are closest to 
the walls. We average  over the simulation in the stationary situation (at every 
500’th time step over 200 000 time steps) and over both walls. This procedure 
produces a non-zero 

2L >

Ln

Ln  even if all possible configurations were random 
distributions. We thus determine 0Ln  by averaging  over 20 independent 
random configurations, and subtract it from 

Ln

Ln  to find layering in excess of 
random distribution. A ‘layering index’  is then defined to be 

( )0 ,
2
L LR n n

L

π

φ

−
≡  (6.1) 

such that it is the ratio of the solid volume fraction the averaged layered cluster 
closest to a wall occupies of a full layer, and the solid volume fraction φ  of the 
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suspension. The result of measuring this layering index  for six different 
concentrations is shown in Figure 6.5 as a function of shear Reynolds number. 
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Figure 6.5 Variation of layering index  as a function of shear Reynolds number for six 
concentrations. The solid lines are guides for the eye. 

As can be seen from Figure 6.5, for increasing shear Reynolds number the layering 
index first increases, but then, after a maximum, it continuously decreases. This 
tendency is clear for concentrations above 30%, for which the maximum appears 
before . We might tentatively think that there are two competing effects in 
play here. On the one hand, an effect of walls is to suppress the rotation of nearby 
clusters so that they tend to align themselves along the walls. On the other hand, 
lubrication forces between the suspended particles tend to disorder and eventually 
break the clusters especially for increasing shear Reynolds numbers when even the 
single-phase fluid flow begins to become unstable. Whether this is indeed the 
relevant mechanism, we cannot tell at the moment.  

Re 1γ =

This kind of behaviour resembles the decrease of ‘ordering’ reported by Dratler et. 
al. [125] in relation to shear thickening. This would also indicate that changes in the 
microstructure of the suspension are related to its shear thickening behaviour. It is 
thus instructive to also treat the suspension as a non-Newtonian single-phase fluid, 
and compute its apparent viscosity, as would be measured in an appropriate 
viscometric experiment. 

6.2 SHEAR THICKENING 

From the 2D simulations described above we also determined the time-averaged 
total shear stress on the channel walls as a function of shear rate. From the total 
shear stress we get the relative apparent viscosity of the suspension, and this is 
shown in Figure 6.6 as a function of shear Reynolds number for six concentrations. 
For solid volume fractions above about 30%, the relative viscosity begins to increase 
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with increasing shear Reynolds number at about Re 0.5γ ≈ , while being more or less 
independent of Reγ  before that value. For lower concentrations the apparent 
viscosity begins to increase at higher shear rates. The dependence of apparent 
viscosity on Reγ appears to be a power law (not shown here). In the corresponding 
3D(m) simulations of monolayer arrays of spheres we found very similar behaviour 
(see Chapter 5). 

102 103Rew
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Figure 6.6 Relative apparent viscosity rµ  as a function of shear Reynolds number 
2Re f w fd u Hγ ρ µ=  for six solid volume fractions φ . For more information, the 

corresponding values of the wall Reynolds number Rew f wu H fρ µ=  are also indicated. 

We can now at least partly address the question how layering is related to the 
relative apparent viscosity, and plot in Figure 6.7 the layering index as a function of 
relative apparent viscosity for the three highest solid volume fractions considered, 
for which layering index was found to have a maximum below Re . 1γ =

 



6. Microstructure of dilatant suspensions 

 

50

2 4 6 8 10 12
µr

0.6

0.8

1

1.2

la
ye

rin
g

in
de

x

52%
48%
44%

φ

 

Figure 6.7 Variation of layering index  as a function of relative apparent viscosity rµ  
for three concentrations. Solid lines are guides for the eye. 

The data points in Figure 6.7 are for different shear Reynolds numbers such that, for 
each concentration, Reγ  increases from left to right. It is evident from this figure 
that below a certain threshold value layering index is independent of rµ , and 
comparison with Figures 6.5 and 6.6 reveals that this threshold roughly coincides 
with the maximum in the layering index and the onset of shear thickening. Above 
the threshold, i.e. in the shear thickening regime, layering index continuously 
decreases with increasing rµ . We might thus conclude that disappearance of 
layering cannot be the cause of shear thickening, but rather that it results from a 
mechanism which appears to be responsible also for increasing apparent viscosity. 
This leads us to study the mechanisms of stress and momentum transport that 
contribute to the formation of viscosity. 

6.3 MOMENTUM TRANSFER ANALYSIS 

Momentum transfer in multi-phase systems such as particulate suspensions, is by 
nature a multi-scale phenomenon. We thus computed the stresses of different 
phases and momentum fluxes including the viscous stress in the fluid phase, the 
structural stress inside the particles, and the inertial fluxes that arise from the 
pseudo-turbulent fluctuations of both phases. The mean shear stress inside each 
individual particle is calculated indirectly from the hydrodynamic forces that act on 
the surface of the particle. Evaluation of the hydrodynamic forces acting on the 
particles and the stresses in the fluid phase could be done without reference to the 
averaged fluid-dynamical quantities such as the viscous stress tensor, because the 
LB method is not based on the conventional continuity and Navier-Stokes 
equations, but on a discretized Boltzmann equation. The details of the momentum 
transfer calculations are shown in chapter 2. A snapshot of the shear stress carried 
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by the fluid can be seen in Figure 6.1, where higher shear stress areas are noticeable 
between solid particles. 
First we compare in Table 6.1 the different contributions to the total shear stress of 
the suspension. 
 

φ  Tf τσ /  Ts τσ /  Tf ττ /  Ts ττ /  

12% 0.013   0.057   73.98   26.03  
52%   0.083   0.196   11.30   88.33  

Table 6.1 Relative contributions of the different momentum transfer mechanisms to the 
total shear stress Tτ for two values of the solid volume fraction. Stresses fσ  and sσ  are 

the pseudo-turbulent stresses of the fluid and solid phases, respectively, fτ  is the viscous 

stress of the fluid phase, and sτ  is the shear stress in the solid phase (internal shear stress 
in the suspended particles). 

It is evident that the convective (pseudo-turbulent) stresses are very small in 
comparison with the other stress terms, and need not be taken into account. 
Moreover, the contribution of direct collisions was also negligible (always less than 
0.5% of the total stress). This is due to highly dissipative collisions between particles 
in our simulations. 
In Figure 6.8a we show the shear stress carried by the fluid, f Tτ τ , and the shear 
stress carried by particles, s Tτ τ , both scaled with the total shear stress Tτ , for the 
solid volume fraction 12%φ = . In Figure 6.8b the same quantities are shown for 

52%φ = . It is evident from Figures 6.8 that both shear stresses are nearly 
independent of Reγ  at low Reynolds numbers, but begin to change when the 
Reynolds number exceeds a threshold value that depends on the solid volume 
fraction. Above the threshold value, the shear stress of the solid phase increases 
with increasing Reγ , while the shear stress of the fluid phase respectively decreases. 
The relative contribution to the total shear stress of the solid phase seems also to 
strongly depend on the solid volume fraction of the suspension. 
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Figure 6.8 The scaled viscous ( f Tτ τ , open squares) and solid ( s Tτ τ , filled squares) 

stresses as functions of the shear Reynolds number , for suspensions with γRe 12%φ =  

(a), and 52%φ = (b). Solid lines are guides for the eye, and Tτ  is the total shear stress. 

To make plain the dependence on the solid volume fraction of the shear stresses, we 
show in Figure 6.9 both shear stresses as functions of the solid volume fraction at a 
fixed shear Reynolds number Re 3γ ≈ . 
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Figure 6.9 The scaled viscous ( f Tτ τ , open squares) and solid ( s Tτ τ , filled squares) 

stresses as functions of the solid volume fraction for Re 3γ ≈ ; Tτ  is the total shear stress. 

At this shear Reynolds number, the contribution of the solid phase exceeds that of 
the fluid phase at about 25%φ = , and at 52%φ =  the contribution of the solid phase 
is almost 90%. Comparison of Figures 6.6 and 6.8 indicates that, as a function of 
shear Reynolds number, the solid-phase contribution begins to increase roughly at 
the onset of shear thickening, which is also roughly where the layering index has its 
maximum. 
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As the shear stress of the solid phase appears to be an important variable, we show 
in Figure 6.10 the relative apparent viscosity of the suspension as a function of 
s Tτ τ , the ratio of the shear stress carried by the particles to the total shear stress. 

The data points in this figure correspond to shear Reynolds numbers that vary 
between  and .  Re 0.1γ = Re 11.7γ =
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Figure 6.10 The relative apparent viscosity as a function of s Tτ τ  for six solid volume 
fractions. The solid line is a fit by Eq. (6.2) to the observed values. 

It is evident from Figure 6.10 that all data points collapse on a single curve, which 
indicates that the apparent viscosity only depends on s Tτ τ , and not directly on the 
solid volume fraction or shear Reynolds number. 
From a fit to the data points we find furthermore that the scaling curve defined by 
the data collapse, very closely follows a simple expression  

1
1r

s T

µ
τ τ

=
−

. (6.2) 

So far we have not found any explanation for this scaling form. 
We can conclude by stating that the rheological behaviour of the liquid-particle 
suspension displays complex phenomena such as dilatancy, i.e. shear thickening, 
nonlinear velocity profile, layering of particles and apparent slip near the solid 
walls. A detailed study of various momentum transfer mechanisms revealed that 
shear thickening is related to increasing solid-phase stress, accompanied by 
decreasing layering near the walls. The apparent relative viscosity was found to 
only depend on the relative solid-phase stress, through a simple analytical 
expression. 
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7 SUSPENSION CLOGGING 

7.1 INTRODUCTION 

Pipe or channel blockage is a common phenomenon that may occur in a wide range 
of physicochemical and biological processes such as, for example, in pipeline 
transportation of oil or coal in a liquid [126], wheat transport in the pipes of silos, 
coating colour in capillary viscometer and cholesterol in human blood vessels [127]. 
There are two qualitatively different phenomena that may cause the blockage: 
jamming at high densities of suspended particles, and blockage due to growing 
deposited layers on channel walls. Particle deposition on channel walls narrows the 
flow channel and nontrivial patterns like meandering or necking of the remaining 
flow channel may appear. A typical example of a meandering pattern is that of 
rivers made by sedimentation of soil particles on riverbanks of slow streams (see e.g. 
[128,129]). 
It would be of fundamental interest to find a common physical mechanism that 
drives the pattern formation in the above-mentioned examples as they display 
different patterns even though the involved physics may be rather similar. In order 
to analyse the basic mechanisms, we constructed a numerical model. This model 
should take as simple a form as possible but still capture the mechanisms that are 
relevant in real systems. There are two competing mechanisms in our model: 
Particle deposition leads to changes in the local flow velocities, which may in turn 
cause detachment of deposited particles.  
In the simulations we applied the simplest possible attachment and detachment 
rules, and did not consider more complicated mechanical interactions between the 
particles and the flow. Large system sizes and long runs were required to obtain 
possible phase boundaries, and therefore we used two-dimensional simulations to 
get better accuracy.  
We used the lattice-Boltzmann method explained above to simulate the channel 
flow of particle suspension [V]. When a particle touched a wall, it was assumed to 
get attached to it (see Figure 1.1). Mutual attachment of suspended particles were 
not allowed to happen. The freely floating particles should thus be understood as 
mesoscopic particle aggregates of the typical size of freely floating clusters. When 
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the total force on an attached particle (i.e. an aggregate) increased beyond a certain 
threshold value Pτ , the particle was detached and became again suspended in the 
liquid (c.f. Figure 7.1).  

Free particle
Attached particle

(b)(a)
 

Figure 7.1 A schematic presentation of attachment (a) and detachment (b) of a particle 
near a channel wall. 

Suspension was driven through a periodic channel of width and length 
 by a pressure gradient 

30H ≈ ⋅R
R150L ≈ ⋅ P∇ , at low particle Reynolds numbers Re 0 1p ≤ .  

(refers here to 2Re 4p f v Rρ= f Hµ , where  is the velocity, v fρ  density, and fµ  
viscosity of the carrier fluid.). The number of suspended particles with a diameter of 

 lattice units varied from 500 up to 1000 (  varied from 0.25 to 
0.55), and the particle to fluid density ratio was 
2 9R = 2 /N R Hφ π= L

2.5p fρ ρ ≈ . These particles were 
non-buoyant spherical discs whose mutual collisions due to the hydrodynamic 
lubrication forces were inelastic. 
The simulation times were chosen large enough ( )60O~ 1  to be well in the 

stationary regime, where the velocity and concentration distributions used to infer 
the properties of the system are fully developed. 
A constant pressure gradient  was imposed between the inlet and the outlet by 
using a body force, i.e., a certain momentum was added at each lattice point at each 
time step, including the lattice points that are inside the free and the attached 
particles. A particle approaching a wall was attached to the wall if its distance was 
less than or equal to one lattice unit from the wall or another already attached 
particle. 

P∇

As the (dimensionless) threshold parameter we used the total force on a deposited 
particle normalized with the drag force on a particle near a wall,  

( )
*

p 24 4
total

P
FF

R P H R
τ

π
≡ =

∇ − / 3
. (7.1) 

Here the total force  includes the lift and drag forces, collision forces due to 
other particles, and the body force. Normalization is of course arbitrary and this 
particular choice was made as it produces convenient values for the thresholds. 

totalF
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7.2 RESULTS AND DISCUSSION 

For a fixed number of particles, a channel flow of suspension with deposition can be 
characterised by only two parameters: The solid volume fraction φ  and the 
threshold Pτ [V]. If Pτ  is increased from zero at a constant φ , we find up to six 
distinct regimes in the behaviour of the suspension: ordinary pipe-flow ( P dτ τ≤ ), 
two types of deposition in the both meandering and necking regimes, and blocking 
( P bτ τ> ) (see Figures 7.2 and 7.3). 
Deposition of particles began as Pτ  was increased beyond a threshold value ( )dτ φ . 
Above this threshold curve, different types of deposition pattern were found on the 
channel walls. There was a non-zero region above ( )dτ φ  in which the number of 
deposited particles was less than the number of particles needed to block the 
system. This means there is an equilibrium in which a fluctuating ‘interface’ ( )h x t,  
at position x and time t, separates the deposited layer from the rest of the 
suspension on both channel walls. This ‘interface’ was extracted by connecting the 
center points of attached particles, which were locally the most distant from the 
wall. The resolution of the interface was therefore one particle diameter. 

 
Figure 7.2 Snapshots with color coded fluid velocities (violet is zero velocity and red is 
high velocity). (a) Meandering for 0 18Pτ = . , 0 26φ = . , and 0 11sC = . . (b) Necking for 

0 067Pτ = . , 0 46φ = . , and 0 13= − .sC . (c) Blockage for 0 095Pτ = .  and 0 46φ = . . 

sC  is not defined because of blocking. 

By calculating the cross correlation between the upper and lower interface curves, 
we could examine if they were correlated. This makes it possible to distinguish 
between a meandering type and a necking type of deposition. Cross correlation is 
defined as 
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 (7.2) 

where σ  is the standard deviation, n is the number of points at the interface curves, 
1,2α =  refers to the upper and lower interfaces, respectively, the bar denotes 

average over an interface, and the angular brackets denote ensemble average. 
For flow paths just above the transition ( P dτ τ≥ ), cross correlation was positive 
indicating a meandering type of deposition (Figure 7.2a). There was an exception at 

0 38φ ≈ . , where the intermediate region between the onset of deposition and 
blocking was very narrow. As Pτ  approached the blocking limit P bτ τ= , cross 
correlation typically became negative, i.e. the interfaces at opposite sides of the 
channel were anti-correlated. This indicates a necking behaviour of the flow path. In 
this case fluctuations may more probably drive the two interfaces together, so that 
full blocking of the flow path appears (Figure 7.2c). Because of large fluctuations it is 
however difficult to determine the exact phase boundary between the meandering 
type and necking type of behaviours. 
We could however construct the phase diagram by numerically determining the 
approximate locations of three phase boundaries, and support them by semi-
analytical arguments [V]. The possible phase boundary between meandering and 
necking types of flow paths was difficult to determine even numerically, but we 
give an estimate based on cross-correlations also for that boundary (assuming that it 
exists). The phase diagram together with theoretical estimates for three phase 
boundaries are shown in Figure 7.3.  
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Figure 7.3 A generic phase diagram that describes the location of six phases in the 
( ,P )τ φ space. Full blocking, (( )• )×  deposition layers with necking, , and (  

deposition layers with meandering, C . The dotted line is a simple spline fit between 
negative and positive correlations. To the left of 

0sC < )
0≥s

cφ φ=  deposition is ballistic, and to the 
right of it deposition layers are homogeneous. The full lines are phase boundaries given by 
the semi-analytical arguments described in the text. 

In the phase with deposition layers at low φ  and high Pτ , there was no detachment 
of particles, and columns of particles typical of ballistic deposition [130,131] without 
relaxation were formed. This is illustrated in Figure 7.4a.  
At high φ  and low Pτ , the system was characterised by rapid attachment and 
detachment events, which, after extensive rearrangements, resulted in more or less 
homogeneous and dense layers of deposited particles. Unlike in the case of ballistic 
deposition, density was higher in the deposited layer than in the suspension, and 
the thickness of the deposited layers grew until detachment and attachment events 
were in balance (Figure 7.4b). Finally, at high φ  and high Pτ , rapid deposition 
occurred until the channel became fully blocked (Figure 7.2c). 
We found that the concentration of the suspension and the deposited layers sφ  and 

dφ , respectively, did not depend much on Pτ  within the used flow regime, and that 
they crossed at 0 38cφ φ= ≈ . , which thus marks the transition from ballistic to 
homogeneous deposition (see Figure 7.4c). 
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Figure 7.4 Superimposed snapshots with grey scale coded particle velocities regardless of 
fluid contours (white is high particle velocity and black is zero particle velocity). (a) 
Ballistic type of deposition, 0 14Pτ = . , 0 3φ = . , and 0 76d sφ φ/ ≈ . . (b) Dense and 
homogeneous deposition layers for 0 053Pτ = . , 0 5φ = . , and 1 15d sφ φ

d

/ ≈ . . (c) The 
average concentration of particles in the deposited layers φ  and the concentration of 
suspended particles in the flow channel sφ , as functions of the solid volume fraction φ  for 

0.1Pτ = . 

The boundary for the onset of deposition ( dτ ) was estimated by , where 
 and are the attachment and detachment rates, respectively. Obviously when 

, there is no deposition.  is proportional to the rate of collisions 
between particles and walls, which can be determined numerically by preventing 
attachment in the suspension. On the other hand,  is proportional to the rate at 
which the fluctuating total forces exceed 

aN N= det

aN

detN
detN

atN> atN

detN

Pτ . These forces were numerically 
evaluated by recording the collision forces on a single deposited particle. By 
equalling the two rates determined in this way, we formed the curve ( )dτ φ  shown 
in Figure 7.3.  
It is difficult to determine numerically the nature of the onset of the deposition 
transition, but if we follow the asymptotic amount of net deposited particles 

, across the transition line lim ( )at
N N∞ →∞

= t ( )dτ φ , it looks like N∞  has a finite jump 

there to a non-zero value (Figure 7.5b). Below the transition  increases initially 
due to transient deposition, but after a relatively short time reaches a maximum, 
and decays exponentially to zero thereafter. Above the transition the initial rise in 

 is very similar, but there is no maximum, and  keeps on increasing with a 
very long saturation time. We find in fact that this saturation is algebraic in time. 
This can be seen in Figure 7.5a which shows the concentration of deposited particles 
for different values of 

aN

aN aN

φ . Below 0 38φ ≈ . , i.e. in the case of ballistic deposition, 
saturation is very slow because of shadowing effects [130, 131]. It is so slow that it is 
not possible to determine the actual time dependence of  with the statistics we 
can get from the extremely long simulations needed in this case. On the other hand, 

aN
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in the case of homogeneous deposition for 0 38φ ./ , we find the best fit is given to 
the simulated behaviour by 
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 (7.3) 

in which * / 2 ft tH P µ= ∇  is a dimensionless time, and  is a (fitting) parameter with 
an approximate value of ;  is the total number of particles in the 
system. 
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Figure 7.5 (a) Net deposition concentration as a function of dimensionless time for 
different suspension concentrations for Pτ = ; * / 2 ft t H P µ= ∇ . (b) Variation 

with Pτ  of the ratio of the asymptotic value of the attached particles  and the total 
number of particles , for the range of 

N∞

totN  between no deposition and complete 
blocking. 

In order to better analyse the clogging transition, we also considered the nature of 
fluctuations in the interfaces. It is evident that hydrodynamical drag forces are 
biggest near the local maxima in the deposited layers, and that they are lowest near 
the local minima. Likewise it is evident that, if we consider the height of the 
interface , hydrodynamical effects appear as random attachment and 
detachment events. For the time evolution of the interface, we are thus lead to the 
following (Langevin) equation,  

(h x t, )

2( ) ( ) ( )h x t h x t x t
t

ν η∂ ,
= ∇ , + , ,

∂
 (7.4) 

in which  describes the prevalent attachment and detachment events at the 
interface, and 

2 (h x tν∇ ,
(

)
)x tη ,  is an effective noise term. The noise term here is assumed to 

have a Gaussian distribution and to be uncorrelated.  
There is no mechanism in the system, which would drive locally the interface in the 
direction of the normal, nor is there any direct diffusion in the deposited layers. We 
do not thus expect there should be in this equation nonlinear terms, such as the one 
in the Kardar-Parisi-Zhang equation [132], or higher order derivatives of  [h 133]. 
Equation (7.4) describes equilibrium fluctuations of an interface, as it should in the 
present case, and is known as the Edwards-Wilkinson equation (EW)[134].  
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The scaling properties of the EW equation can be discussed by considering the 
interface fluctuation as a function of time and space ( ) ( ) ( ), ,h x t h x t h tδ ≡ − , where 

 is the height of the interface at point ( ,h x t ) x  and time , and the bar denotes an 
average over the interface. Due to the large fluctuations of the system, it is useful to 
consider the two-point height-difference correlation functions 

t

( ) ( ) ( ) 2

, '
, , ´ , ´

x t
C r t h r x t t h x tδ δ= + + − ,  (7.5) 

where the brackets denote an average over all configurations in time and space. In 
the stationary state the spatial and temporal height correlation functions have the 
scaling forms 

( )
( )

2

2

,0 ~ ,

0, ~ ,

C r r

C t t

χ

β
 (7.6) 

in which χ  is the so-called roughening exponent and β the so-called growth 
exponent. We find that in our system 0.25β  independent of the size of the 
channel (see Figure 7.6a). This result is in agreement with that for the EW equation 
[135]. The results for the spatial correlation function ( )0,C t  as shown in Figure 7.6b 
are not conclusive as the scaling regime is very short in this case, but they are not 
inconsistent with 0.5χ . The higher apparent exponent at short length scales arises 
from the discreteness of the interface. For ( ) ( ),0r20 ,C~ 1r O  levels off due to the 

finite length of the flow channel. 
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Figure 7.6 (a) The temporal height correlation function ( )0, tC  vs. normalised time for a 

narrow and a wide system. (b) The spatial height correlation function C r  vs.  for a 
narrow and a wide system. For both graphs, the solid lines indicate the slopes that 
correspond to the EW equation. 

( ,0) r

Another quantity of interest in relation to the interface fluctuations is the local 
interface width [136], which can be defined as 

( ) ( ) ( ) 2
, ,

r
w r t h x t h t ≡ −  ,  (7.7) 
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in which the averaging takes place over all subsystems of size , while the system 
size is . This quantity can be expected to behave as 

r
L

( ) ,  for 
, ~

,  for 
t t L

w r t
r t L

.
β χ β

χ χ β

 <


>
 (7.8) 

The fluctuations in the width of the interface therefore behave such that  
before the saturation time 

1 4w t /∝
* ~ Lt χ β . It should be noted that the relevant length scale 

is here the width of the channel and not the length of the channel, which restricts 
finally the scale of possible fluctuations. Using this result and Eq. (7.3), we obtain 

aw N∝ . Evidently ah N∝ , and  and  should reach saturation 
simultaneously. We can thus expect that  

aN w

( ) 1 2max , a ah x t N Nα α= +   ,  (7.9) 
in which the second term on the right-hand side is the contribution of fluctuations; 

1α  and 2α  are parameters which can be determined by numerical simulations. In 
our simulations we found 1 17α ≅ and 2 2.5α ≅ . From the relation 

, where  is the width of the channel, we find a curve ( ),h r tmax 2H= /   H ( )bτ φ , 

which should give a fairly good estimate for the transition to the fully blocked 
phase. This curve is also shown in Figure 7.3, and we indeed observed it follows 
quite closely the numerical result for the phase boundary related to the clogging 
transition.  
We can thus conclude that the basic mechanism that drives the clogging transition is 
the equilibrium fluctuations in the deposition layers at the channel walls. This 
means also that a full description of the hydrodynamical effects, as in this work, is 
probably needed to determine the transition. Description of the flow of the liquid 
part of the suspension as a Stokes flow would perhaps underestimate the relevant 
fluctuations. 
Our numerical results also show that an increase in the solid volume fraction 
increases the meandering frequency. In our model it is possible to observe the onset 
of meandering behaviour, even though the finite width of the channel restricts the 
meandering amplitude, and compare it with the previous results on unlimited river 
meandering [128, 129]. The relation between the characteristic wave length of 
meandering ( mλ ) and the (suspension) flow velocity ( sV ), can be used to 
characterise the phenomenon. According to the model calculations of Ref. [129],  

s mV λ∝ . (7.10) 

We analysed the flow path in terms of the mean value of the upper and lower 
interfaces of the equilibrium state, by fast Fourier transform. We chose the second 
largest wave length maximum of the Fourier transform to characterise the 
meandering wave length, and compared it with the observed fluid velocity. The 
result is shown in Figure 7.7. Our numerical results seem to be fairly consistent with 
the model predictions of [129], i.e. with Eq. (7.10). This means meandering in our 
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simulations appears to have similar characteristics as the fully developed 
meandering described in [129]. 

100 150 200 250
λm

10-3

10-2

10-1

V
s

Vs∝(λm)0.5

present simulations

 
Figure 7.7 Variation of suspension velocity as a function of meandering wave length. 

Even though the results reported here are only a first attempt to understand channel 
flow with particle deposition on the walls from a microscopic fluid dynamics point 
of view, we expect that the basic mechanisms that we were able to clarify, will 
already be useful in many practical problems. The flow was only considered here at 
small (particle) Reynolds numbers, and one would expect even more complex 
behaviour to appear when the Reynolds number is increased. 
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8 CONCLUSIONS 

In the present study, numerical techniques were used to investigate several fluid 
flow phenomena. Both single- and multi-phase systems were studied, by microscale 
MD simulations of solid particles up to mesoscopic LB simulations of liquid-particle 
suspensions. 
In molecular dynamics simulations of dense, monosized, rough inelastic particles, 
the decay of diffusion coefficients along with change from disordered to layered 
configurations was observed, and the diffusion coefficients were also examined as 
functions of shear rate. 
We tested the use of the lattice-Boltzmann method in studying the classical capillary 
rise problem in order to find if the method can be used to simulate imbibition of 
fluid in porous media. The results were promising and displayed the well-known 
capillary rise behaviour, but only for large capillary radii due to discretization 
problems. 
An important result was the understanding gained for the shear thickening 
behaviour of the Couette flow of liquid-particle suspensions. These flows display 
complex phenomena that arise from the two-phase nature of the fluid, including a 
nonlinear velocity profile, layering of particles near the channel walls, and apparent 
slip near the walls. We found that shear thickening, i.e. increasing apparent viscosity 
of the suspension with increasing shear Reynolds numbers, arises entirely from the 
enhanced solid-phase momentum transfer. When the relative apparent viscosity of 
the suspension was plotted against the solid-phase contribution to the shear stress, 
all simulation points collapsed on a single scaling curve for wide range of solid 
volume fraction and shear Reynolds number. This scaling curve was also found to 
be described by a very simple function of the relative solid-phase stress. 
A pipe flow of liquid-particle suspension was also considered, in which deposition 
of particles on pipe walls was allowed, together with detachment of deposited 
particles for high enough hydrodynamic forces. Two variables, solid volume 
fraction and detachment threshold, were shown to span a rich phase diagram for 
this system. For low values of these two parameters no net deposition appears, 
followed first by a transition to finite but non-blocking deposition layer on the 
walls. To begin with these deposition layers displayed a meandering patter, where 
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characteristic length scale was determined by suspension velocity in accordance 
with previous results. Increasing distance from the first transition lead to the 
appearance of necking features in the deposition layers, before a transition to a fully 
blocked flow channel took place.. This blocking transition was formed to be driven 
by equilibrium fluctuations in the thickness of the deposition layers. 
These results are expected to be a starting point for a number of interesting and 
important applications in industrial as well as biological flow problems. 
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