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Abstract

This thesis considers the possibility that besides the three neutrinos in the Standard Model

(SM) there exist one ormore sterile neutrinoswhich lack the SM gauge interactions. Many ex-

tensions of the SM predict sterile neutrinos, but so far their existence has not been confirmed

by neutrino oscillation experiments. In this study it is assumed that three sterile neutrinos

exist and that they mix pairwise with three superpositions (the mass eigenstates of neutri-

nos in the SM) of the active neutrinos νe, νµ and ντ . The mass-squared differences between

mass eigenstates in each pair are assumed to be so small that the existence of the new states

would not have affected the results of the neutrino experiments performed so far. It is shown

that neutrinos from distant astrophysical sources, like supernovae and Active Galactic Nuclei

(AGN), provide an excellent tool for studying this kind of neutrino spectrum.

Ultrahigh-energy neutrinos produced in AGNmay oscillate into sterile states during their

flight to the Earth. It is shown that it would have notable effects on the ratios of ordinary

neutrino fluxes measured at the Earth. In core collapse supernovae sterile neutrinos may be

generated via matter effects when neutrinos born in supernova core traverse the medium

with decreasing density to the surface of the star. The behavior of neutrinos in supernova is

explored both numerically and by using the Landau-Zener approximation.

The Landau-Zener theory considers transitions in two-level quantum systems with a lin-

ear time dependence and it cannot be directly applied to the neutrino system of supernovae.

Supernovae have nonlinear profiles and three differently interacting neutrino types (νe, νµ,τ ,

νs) have different effective potential energies in matter. A general solution to such nonlin-

ear multistate system do not exist. Probabilities for some specific transitions in a multistate

linear system are known to be calculable by using the two-state Landau-Zener probabilities,

even when the transitions do not occur independently. The applicability of this independent

crossing approximation for nonlinear case is tested in this thesis and it is found to apply

reasonably well.
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Chapter 1

Neutrinos in standard model and

beyond

Neutrinos are weakly interacting uncharged particles. They are very light, but according to

experimental data they are not strictly massless. The absolute mass scale value of neutrinos

is unknown, but it is known to be orders of magnitude smaller than the masses of other

particles. Neutrino masses are generated by a so far unknown mechanism.

The evidence of neutrino mass comes from the oscillation phenomena observed in con-

nection to neutrinos created in nuclear reactions in the Sun and by cosmic rays in the atmo-

sphere and also to neutrinos man-made in nuclear reactors. There are two conditions for the

neutrino oscillations to happen. The first condition is that neutrinos have mass, or to be more

specific, the difference between squared masses of two eigenstates must be nonzero. The

second condition is that neutrinos are mixed, meaning that the states of propagation or the

eigenstates of Hamiltonian, the so-called mass eigenstates, do not coincide with the states in

terms of which the weak interactions are defined, the so-called weak interaction eigenstates,

νe, νµ and ντ .

Neutrino oscillations violate the lepton number conservation. Neutrino flavor may also

change when neutrinos travel in a medium. In matter the interactions of neutrinos with

background matter, which are different for different flavors, modify the Hamiltonian and the

eigenstates of neutrinos. The oscillation properties of neutrinos change, and in the case of a

varying matter density enhanced flavor transitions may take place in certain density regions,

called resonance regions.

Many extensions of the Standard Model (SM) of particle interactions predict existence of

1



2 CHAPTER 1. NEUTRINOS IN STANDARDMODEL AND BEYOND

one or more sterile neutrinos. Sterile neutrinos lack weak interactions but they can mix with

ordinary neutrinos due to mass terms. Sterile neutrinos might be produced via neutrino

oscillation or via matter effects.

1.1 Neutrinos in vacuum

1.1.1 Neutrino mixing in vacuum

The neutrino flavor states νl (l = e, µ, τ , . . . ) are defined as states which interact via charged

current interactions with corresponding charged lepton l. The neutrino mass states ν j ( j =

1, 2, 3, . . . ) with masses m j are the eigenstates of the total Hamiltonian in vacuum [1]. The

measurement of the width of the decay Z→ νν̄ at LEP experiment has set the number of

ordinary-type neutrino flavors into three [2]. If additional massive neutrinos exist, they must

be sterile, meaning that they do not couple to Z-boson. Correspondingly the ordinary neu-

trinos having the Standard Model gauge interactions are called active. Mass eigenstates do

not coincide with the flavor states when the mass part of the Hamiltonian is not diagonal in

flavor. Neutrinos are said to mix, and this vacuum mixing is described by the relation

|νl〉 = ∑
j

U∗
l j|ν j〉. (1.1)

Here U is a unitary matrix, called lepton mixing matrix. The matrix U can be parametrized

in terms of three mixing angles θi j = (θ12, θ23, θ13) and a phase factor δ,

U =









c12c13 s12c13 s13

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13e
iδ

s12s23− c12c23s13e−iδ −c12s23 − s12c23s13e−iδ c23c13









, (1.2)

where ci j = cos θi j and si j = sin θi j. This matrix is called the Maki-Nakagawa-Sakata (MNS)

matrix [3]. The phase factor δ is due to a possible CP-violation. If neutrinos are Majorana

particles, there are two additional phase factors and the mixing matrix U is multiplied by a

diagonal phase matrix diag(eiη1 , eiη2 , 1) [4]. In this thesis CP conservation is assumed, thus

δ = η1 = η2 = 0. Matrix U is build up as a product of three rotation matrix in subplanes of

3-dimensional space the θi j being associated with the rotation in the i j coordinate plane.

Neutrino phenomenology implies that neutrino mass spectrum is formed by a relatively

close states ν1 and ν2, whose mixing explains the solar neutrino data, and a third state ν3,

which might be either heavier (normal hierarchy) or lighter (inverted hierarchy) than the ν1,
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ν2 pair, so as to explain the atmospheric neutrinos data (see Fig. 1.1). In the ν1, ν2 pair the

heaviest state is labeled as ν2. In this work we will assume normal hierarchy unless where

otherwise stated. The neutrino oscillation phenomena do not give direct information on the

absolute scale of neutrino masses, only on mass differences. Nevertheless, the atmospheric

neutrino data, which is explained by neutrino oscillations corresponding to the squared mass

difference ∆m2 = 2.6 · 10−3 eV2, indicate that at least one of neutrinos is heavier than 0.05 eV.
The most stringent upper limit for the neutrino masses is obtained from the tritium β-decay

[5, 6], which gives the upper limit 2.3 eV for the effective electron neutrino mass [7].

n.h. i.h.

ν1
ν2

ν3

ν3
ν1
ν2

m2

Figure 1.1: Neutrino mass spectrum in normal hierarchy (n.h.) and in inverted hierarchy

(i.h.).

The ranges of mixing angles and mass-squared differences given by recent global fit anal-

ysis including data from all relevant experiments are summarized in Table 1.1.

Observation Mixing angle ∆m2 (eV2)

Sun, KamLAND θ12 = 32.4◦ − 38.0◦ ∆m212 = (7.01− 9.00) · 10−5

Atmosphere, K2K, MINOS θ23 = 39.5◦ − 53.1◦ |∆m232| = (2.0− 3.2) · 10−3

CHOOZ θ13 < 11.5◦ ∆m231 ≈ ∆m232

Table 1.1: Neutrino mixing parameters from a global analysis of all experiments at 3σ-level

[8].
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1.1.2 Neutrino oscillations in vacuum

Let us consider a case of any number of neutrinos. In a plane wave approximation the evo-

lution of neutrino weak eigenstate νl is given by

|νl(t)〉 = ∑
j

e−iE jtU∗
l j|ν j〉, (1.3)

where E j is the energy of the eigenstate |ν j〉. At the relativistic limit |p j| ≫ m j

E j =
√

p2j +m
2
j ≃ p j

(

1+

m2j

2p2j

)

+O(m4j ). (1.4)

After an approximation p j ≃ pi ≡ p ≃ E this leads to

|νl(t)〉 = ∑
j,l′
e−i

m2
j
t

2E U∗
jlU jl′|νl′〉, (1.5)

where we have used (1.1) and dropped the unphysical overall phase p. This gives the flavor

content of the neutrino state at a given time t, the state being |νl〉 at t = 0. The amplitude for
the transition νl → νl′ is given as an inner product 〈νl′|νl(t)〉 leading to the probability

P(l→ l′, L)= ∑
i

|U∗
jl|2|U jl′|2+ Re

{

∑
i 6= j
U∗
liUl′iUl jU

∗
l′ je

−i
∆m2i j
2E L

}

, (1.6)

where L is the distance between production and detection points (t ≃ L). There is an oscil-
lating term associated with each pair of mass eigenstates νi, ν j, provided that ∆m2i j 6= 0 and
nonzero mixing Uli,Ul′i 6= 0. The oscillation length is given by

L0 =
4πE
∆m2i j

= 2.48
E/MeV

∆m2i j/eV
2m. (1.7)

To be sensitive to the oscillations the set-up of an experiment should be such that L ∼ L0. If
L≪ L0 the oscillation phase does not have time to develop and to give an observable effect.
In the case of L≫ L0 the oscillation phase goes through several cycles before detection and
the oscillations average out because of the spread in energy of any actual neutrino beam.

When studying neutrino oscillation phenomena, it is in many cases enough to consider a

two neutrino case. The mixing matrix is then

U =

(

cos θ sin θ

− sinθ cos θ

)

, (1.8)
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and the oscillation probability is given by

P(l→ l′, L)= sin2 2θ sin2 ∆m2L
4E

. (1.9)

The first evidence of neutrino oscillation came from the Super-Kamiokande experiment mea-

suring neutrinos produced in the Earth’s atmosphere by cosmic rays [9]. Signals of oscilla-

tions have also been seen in solar neutrino experiments, where the observed deficit of the

electron neutrinos has got a convincing explanation in terms of oscillations between the all

three neutrino flavors [10]. The KamLAND reactor neutrino experiment, in which the deficit

of electron antineutrino flux produced by nuclear power plants is measured, has given a clear

evidence of oscillations as well [11]. Oscillation signal has also been seen in long baseline ac-

celerator experiments K2K [12] andMINOS [13]. In future, neutrino oscillations are expected

to be seen in measurements of ultra high energy cosmic ray (UHECR) neutrinos produced in

distant astrophysical sources. A set of values for which atmospheric, solar, KamLAND, long

baseline (LBL) and UHECR would give an oscillation signal are listed in Table 1.2.

Source L E ∆m2 (eV2)

Atmosphere (104 − 107) m (0.1− 10) GeV 10−5 − 1
Sun 1011 m (0.1− 10) MeV 10−12 − 10−10

KamLAND 150− 210 km ∼MeV & 10−5

LBL ∼ 100 km ∼ GeV > 10−3

UHECR ∼ 100 Mpc > 104 GeV ≥ 10−18

Table 1.2: Characteristic values of the key parameters in various neutrino oscillation experi-

ments.

Equation of motion for weak eigenstates

The time evolution of neutrino mass eigenstates can be described by the Schrödinger equa-

tion

i
d

dt
|νm〉 = H|νm〉 =

(

E1 0

0 E2

)

|νm〉. (1.10)

Here |νm〉 represents a quantum mechanical neutrino state in mass basis. For relativistic
neutrinos (1.4) holds, and neglecting the unimportant common phase one gets

i
d

dt
|νm〉 =

1
2E

(

m21 0

0 m22

)

|νm〉 =
1
2E
M2m|νm〉. (1.11)
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Using the definition of weak eigenstates |νW〉 = U†|νm〉 leads to the following equation of
motion

i
d

dt
|νW〉 =

1
2E
UM2mU

†|νW〉 = H0|νW〉 (1.12)

This description is useful when considering evolution of neutrino states in matter.

1.2 Neutrinos in matter

When neutrinos travel in matter they interact with the particles of the medium, scattering on

them either coherently or incoherently. At low energies only the the elastic forward scattering

is relevant and inelastic scattering can be neglected. Coherence of the wave function gives

rise to additional potential energy, Ve = VC + VN, where VC and VN denote for charged-

current (CC) and neutral-current (NC) interactions, respectively [14]. In ordinary matter µ

or τ leptons are not present, so that the CC reactions occur only for electron (anti)neutrinos,

whereas the NC interactions happen for all flavors. The potential energies are given as [14]

VC = ±
√
2GFNe,

VN = ∓ 1√
2
GFNn,

(1.13)

where upper (lower) sign refer to ν (ν̄), GF is the Fermi coupling constant, and Ne (Nn) is the

background electron (neutron) number density. The presence of matter changes the Hamil-

tonian H0 of Eq. (1.12) to the form

Hm = H0+V =
1
2E
UM2mU

†
+

( √
2GFNe 0

0 0

)

. (1.14)

The term VN, common for all flavors, is subtracted here, and an assumption Ne = Nn, valid in

an environment with light elements, like in the Sun, is made. V is a diagonal matrix in flavor

basis whose elements are the effective potentials describing the coherent forward scattering

in matter (for antineutrinos V → −V). Diagonalization of the Hamiltonian (1.14) gives the
neutrino eigenstates in matter.

In a non-uniform medium, the Hamiltonian (1.14) and consequently its eigenstates vary

as a function of electron density. In some special cases the new eigenstates can be found

analytically [15], but in general the Schrödinger equation can be solved only numerically. In

a medium with varying density the mixing of states can be anything quite independently of

their mixing in vacuum. For a two neutrino system the effective mixing angle θm, i.e. the
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angle that diagonalizes (1.14), is given by

tan2θm =
tan2θ

1−V(r)/VR
, (1.15)

where VR = ∆m2 cos 2θ/2E [4]. The point where V(r) = VR is called the resonance point.

There the change of the eigenstates is most rapid and the states are maximally mixed, i.e.

θm = π/4. When the density grows beyond its value at the resonance, the effective mixing

angle approaches gradually the value θm = π/2. The smaller the vacuum mixing angle θ, the

sharper is the change of the eigenstates at the resonance. The resonance condition V(r) = VR

determines the resonance density to be

ρR ∼ 1.4 · 106 g
cm3

(

∆m2

1eV2

)(

10MeV
E

)(

0.5
Ye
cos2θ

)

, (1.16)

where Ye is the electron fraction in the medium, defined as the number of electrons per nu-

cleon. One can define the resonancewidth ∆ρR as the distance from ρRwhere sin2 2θ becomes

half of its maximum value. For a small vacuum mixing angle θ, the width of the resonance

layer is [16]

2∆ρR ≈ 2ρR tan2θ. (1.17)

The layer where the density changes in the interval ρR± ∆ρR is called the resonance region.

1.2.1 The MSW effect

Let us consider the evolution of a neutrino state before and after a resonance more carefully.

The behavior of the eigenstates of a two-neutrino system in medium with varying density is

illustrated in Fig. 1.2, where the effective mass squaredm2eff, obtained by diagonalizing (1.14),

is plotted as a function of A = 2EV. For large values of A, i.e. in dense matter, the angle θm

approaches asymptotically the value π/2, the faster the smaller the vacuum mixing angle θ.

Hence at the production point, e.g. in a dense core of a supernova, the electron neutrino νe is

more or less the pure ν2. The state ν2 propagates in medium with decreasing density feeling

no much oscillation until the resonance region is reached. There oscillation enhances, and

neutrino becomes half νe and half νa (νµ or ντ ), since θm becomes π/4 regardless of the value

of the vacuum mixing angle, as indicated by Eq. (1.15). As neutrino leaves the resonance

region the νa component increases and the neutrino enters the vacuum as themass eigenstate

ν2. This behavior of the neutrino system is known asMikheyev-Smirnov-Wolfenstein (MSW)

effect [14, 17]. This description is valid when many oscillations take place at the resonance



8 CHAPTER 1. NEUTRINOS IN STANDARDMODEL AND BEYOND

ν
e

ν
e

ν
a

ν
a

ν
2

ν
1

m
2
2

m
1
2

A
R

A=2EV

m
eff
2

Figure 1.2: The MSW effect. νe produced in high density follows the ν2 curve. In resonance

the mixing is maximal and the neutrino continues as ν2. It ends up to vacuum as νa.

region and the system has time to adjust itself. Such transition is called adiabatic. If the

oscillation length is of the same order or greater than the width of resonance layer, the system

does not behave adiabatically. Then a transition will take place from state ν2 to state ν1 in the

resonance layer. The probability of this level crossing was first derived by Landau and Zener

[18, 19]. The Landau-Zener model for level crossing will be discussed in detail in Chapter 3.

1.3 Sterile neutrinos

All the original research articles of this thesis concern sterile neutrinos. A sterile neutrino

is a singlet under the SM gauge interactions, i.e. it is assigned into the representation (1, 0)

under the SM gauge symmetry SU(2)L×U(1)Y. In the most simple scenario it is identified as
a right-handed neutrino. The existence of sterile neutrinos is predicted by many extensions

of SM [20]. Often the new fermions are not called neutrinos, though transforming as (1, 0),

since they may originate from different physics. A singlet fermion may be a mirror neutrino,

goldstino in SUSY, modulino of the superstring theories or a bulk fermion related to the

existence of extra dimensions.

Let us first consider the case where sterile neutrinos are identified with right-handed

neutrinos, which are introduced in most models of neutrino mass. Right-handed neutrinos
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have to be introduced, if one wants to have Dirac mass terms ν̄RνL + h.c. in the theory [21].

Actually, symmetry arguments seem to imply that there is one sterile neutrino per fermion

family. A left-right symmetry of the matter content of particle theory would require that

each left-handed fermion has a right-handed counterpart. In the SM, neutrinos are the only

exception to this symmetry. A lepton-quark symmetry would imply that for each quark with

a given chirality there exists a lepton counterpart. The absence of right-handed neutrinos

would violate this symmetry.

The most general mass term for a single neutrino flavor is

LMν
= −1
2
ν cM ν + h.c., (1.18)

where ν = (νLν cR)
T, νL,R denoting left-handed and right-handed fields and ν c the charged

conjugated field, andM is a symmetric complex matrix

M =

(

mL mD

mD mR

)

, (1.19)

where mD and mL,R are the Dirac and Majorana masses, respectively. The Dirac mass term

mD originates from the Yukawa couplings of the neutrino to the Higgs doublet φ, similarly as

the mass terms of charged leptons, and it is thus proportional to the electroweak symmetry

breaking scale. The Majorana mass term for the left-handed neutrinos is mL(ν c)RνL + h.c. It

can arise through spontaneous symmetry breaking from a coupling of the neutrino with an

SU(2)L triplet Higgs field or from a non-renormalizable coupling with the product φφ. The

Majorana mass term for the right-handed neutrino, mR(ν c)LνR + h.c., is SU(2)L ×U(1)Y in-
variant and it can appear as a bare mass term in the Lagrangian. None of these mass terms

are present in the SM as there is no right-handed neutrino in the model (as it would not have

any gauge interactions) and lepton number violating terms will not arise in perturbation the-

ory as the all couplings of the model are lepton number conserving. IfmL,R = 0 neutrinos are

Dirac particles, while for nonzero values of mL,R they are Majorana particles, independently

of the value of mD.

A couple of special mass scenarios are of particular interest. One of them is the seesaw

model [22, 23, 24], which predicts the existence of heavy sterile neutrinos. In the seesaw case

an assumption mR ≫ mD ≫ mL ≃ 0 is made as mR is assumed to associate with a Grand
Unified Scale 1016 GeV or with some other high energy scale, mD is associated with the elec-

troweak scale 102 GeV, and mL is small compared with mD since a large vacuum expectation

value of a triplet Higgs field would be in contradiction with the measured mass ratio of W
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and Z bosons. In this case the mass eigenvalues become m1 ≃ m2D/mR and m2 ≃ mR [4]. The
two masses differ enormously, the heavier state being predominantly sterile. The smaller

eigenvalue m1 ≪ mD, explaining why the ordinary neutrinos are much lighter than other
fermions. The seesaw mechanism is the most popular explanation for the smallness of neu-

trino mass. It also predicts the mixing between active and sterile states to be very small

(tan2θ = 2mD/(mR−mL)), which could explain why the light sterile states, if they exist, have
been effectively hidden from the current low-energy neutrino phenomenology.

The seesaw mechanism is not, however, the only way to generate neutrino mass hier-

archy. It is quite possible that light sterile neutrinos exist. They would appear, for ex-

ample, if the Dirac mass dominates over the Majorana masses in the mass matrix (1.19)

mL,mR ≪ mD. This would lead to mass eigenvalues m1,2 ≃ mD ± mR/2 and a mixing an-
gle tan2θ = −2mD/mR ⇒ |θ| ≃ π/4. This is called the pseudo-Dirac model, because in the

limit where Majorana mass term approaches zero the two neutrinos are combined and they

form a Dirac particle. Pseudo-Dirac neutrinos are nearly degenerate in mass and have a

nearly maximal active-sterile mixing. A drawback of the pseudo-Dirac model is that it does

not offer any immediate explanation for the smallness of mD in comparison with the other

Dirac masses of SM. A number of suggestions has beenmade to cure this. For example, Dirac

masses could be small because they might be forbidden in a tree-level and arise only through

radiative corrections as a result of a Dirac seesaw mechanism [25] or they might appear as a

result of different spread of neutrino and charged lepton wave functions in extra dimensions

[26].

The mirror model [27] can produce a similar mass spectrum as one has in the pseudo-

Dirac case. The mirror particles were introduced originally in order to maintain in a wide

sense the left-right symmetry of the world broken by the parity violation of weak interac-

tions [28, 29]. Mirror world originates from space inversion which in addition to parity

transformation transforms a particle into a reflected state in the mirror particle space [30].

Mirror particles have interactions identical to the ordinary particles, except with the oppo-

site chirality. They are assumed to interact with the ordinary particles only gravitationally

or via Higgs potential and neutrino mixing [31]. In the mirror world the weak interactions

are right-handed and thus the counterparts of the ordinary active neutrinos in mirror world

could be identified as sterile neutrinos. Because the analogue of the ordinary and mirror

world, whatever mechanism makes the ordinary neutrinos light, the same mechanism is as-

sumed to operate also in the mirror sector [20].

Sterile neutrinos that mix with the ordinary neutrinos might have been produced in the
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early universe via oscillations and they could have had important cosmological implications.

The most significant effect concerns the Big Bang Nucleosynthesis, which successfully ex-

plains the abundances of light elements [32]. BBN constrains the number of relativistic parti-

cle species in thermal equilibrium and the neutrino contribution to the critical density of the

universe. Sterile neutrinos could contradict with these constraints unless the mass-squared

differences and/or the active-sterile mixing angles are small enough [33, 34, 35, 36, 37]. For

the νe ↔ νs mixing a bound |∆m2| sin2 2θ < 5× 10−8 eV2 has been obtained, while for the
νµ,τ ↔ νs mixing the bound is |∆m2| sin2 2θ < 7× 10−5 eV2 [38].
So far the existence of sterile neutrinos has been neither confirmed nor ruled out. Mea-

surements of solar, atmospheric, reactor and beam neutrinos have restricted the allowed

range in parameter space for sterile neutrinos. Previously the positive ν̄µ → ν̄e oscillation

signal from LSND experiment [39] sensitive to the mass scale ∆m2 ∼ 1eV2 was explained by
a existence of a sterile neutrino [40]. Recently, the interpretation of this result in terms of a

single sterile neutrino has become strongly disfavored due to the first results of the Mini-

BooNE experiment [41], where no indication of neutrino oscillation has been seen . But there

is still plenty of free parameter space for sterile neutrinos left [42].

Because sterile neutrinos lack gauge interactions, they can not be produced or detected in

weak interaction processes. When mixing with active neutrinos, sterile neutrinos might be

formed via oscillation or matter effects. In this thesis the former have been studied in Paper I

in the case of UHECR neutrinos, the latter in Papers II-IV in the case of supernova neutrinos.

It is shown in these papers that the existence of a sterile state can be deduced via deficit of

the flux of active neutrinos.
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Chapter 2

Neutrinos from astrophysical sources

In this Chapter we first shortly review the solar neutrino problem and the results from vari-

ous solar neutrino experiments. Thenwe introduce the distant astrophysical neutrino sources

relevant to this work, supernovae and sources of ultrahigh-energy neutrinos.

2.1 Solar neutrinos

One of the most significant experimental achievements in neutrino physics is the observation

of neutrinos from the Sun. Solar energy is produced via nuclear fusion reactions, where pro-

tons are converted into alpha particles, positrons and neutrinos. According to the Standard

Solar Model (SSM), there are eight nuclear reactions which produce neutrinos [43]. Five of

them belong to the so-called pp cycle, and neutrinos produced in these reactions are called

the pp, 8B, hep, 7Be and pep neutrinos, named after the source or producing reaction. The first

three have continuous energy spectrum, while the last two are monoenergetic. The 13N, 15O

and 17F neutrinos originate from the so-called CNO cycle and have continuous spectrum. We

will concentrate on the dominant pp chain. The fluxes of the pp chain neutrinos predicted

by SSM are shown in Fig. 2.1, where the detection regions of different experiments are also

indicated.

The pioneering experiment detecting solar neutrinoswas theHomestake experiment [45].

It is known also as a chlorine experiment, because the detection of neutrinos is based on

the radiochemical reaction νe + 37Cl → 37Ar + e−. The energy threshold for this reaction

is 0.814 MeV. According to Fig. 2.1 the Homestake experiment is sensitive to the 8B and 7Be

neutrinos. Another class of radiochemical experiments are the so-called Gallium experiments

13
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Figure 2.1: Solar neutrino energy spectrum for pp chain predicted by BP04 [44]. Total theoreti-

cal uncertainties are shown for each source. Thresholds of various solar neutrino experiments

are shown at the top.

SAGE [46], GALLEX [47] and GNO [48]. They detect solar neutrinos via reaction νe+ 71Ga→
71Ge + e− with a low threshold of 0.233 MeV. Therefore they are sensitive also to the pp

neutrinos.

The real time measurement of the solar neutrinos is possible by using water Čerenkov

detectors. They capture the Čerenkov light emitted by the electrons created by the elastic

scattering reaction νx + e− → νx + e−. The first experiments based on this method were the

Kamiokande experiment [49] and its successor Super-Kamiokande experiment [50]. Unlike

radiochemical experiments, the Čerenkov light experiments are sensitive to all neutrino fla-

vors because the elastic scattering of neutrinos on electron can happen via both charge cur-

rent (CC) and neutral current (NC) reactions. The cross section of the νµ and ντ (NC) scatter-

ing is about six times smaller than that of the νe scattering (CC andNC). The energy threshold

of the Kamiokande experiment was 7.5 MeV while at the Super-Kamiokande experiment it
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was 5 MeV, which means that both experiments can measure only the 8B neutrinos (the con-

tribution of hep neutrinos is negligible).

The most advanced solar neutrino experiment is the SNO experiment [10], which proved

that part of the electron neutrinos transform to muon and tau neutrinos on their way from

the core of the Sun to the Earth. The target material in the SNO experiment is heavy water,

D2O. The significance of the SNO results follows from the possibility to detect neutrinos via

three different channels:

1. Neutral Current (NC): νx+ d→ n+ p+ νx

2. Charged Current (CC): νe+ d→ p+ p+ e−

3. Elastic Scattering (ES): νx+ e− → νx+ e−

The CC reaction is sensitive only to νe, while NC and ES reactions are sensitive to all

neutrino flavors. The NC reaction has equal cross section for all flavors but the ES reaction

has six times larger cross section for the electronic than for the other flavors. The CC and

ES reactions have a threshold of 5 MeV and that of the NC reaction is 2.2 MeV. Hence these

reactions are sensitive only to the 8B neutrinos.

The solar neutrino problem consists of the apparent deficit of electron neutrinos arriving

on Earth compared with the flux predicted by the SSM. The deficit is seen in all above men-

tioned experiments, in which 30− 52% of the theoretical flux has been detected [8]. The exact
fluxes versus the theoretical predictions for the various experiments are presented in Fig. 2.2.

The last two pair of bars in Fig. 2.2 are due to SNO experiment. In concord with the previous

results, the SNOmeasured in the CC channel about one third of the predicted flux, while the

NC flux coincides with the theoretical prediction for the total production of neutrinos in the

Sun.

The SNO results confirmed that neutrinos do change flavor, indicating that they are mas-

sive particles and that they mix. A combined analysis of solar neutrino data and the data of

the KamLAND reactor neutrino experiment [11] gives the best-fit values ∆m212= 8.2 ·10−5 eV2

and θ12 = 31◦ [53] for the νe → νµ,τ oscillation parameters. This is called the Large Mixing

Angle (LMA) solution. The recent results from Borexino experiment [54] measuring mainly
7Be neutrinos are also consistent with the predictions of the LMA solution.

The resonance density depends on the neutrino energy according to (1.16). In the LMA,

high energy solar neutrinos undergo MSW effect described in section 1.2.1, as the resonance

density is much lower than the density at the neutrino production point. Instead, at low
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Figure 2.2: Theory versus experiments [51]. The figure compares the predictions of the stan-

dard models of the Sun [52] and electroweak interactions to the measured rates in Solar neu-

trino experiments.

energies the resonance density exceeds the density of the production point. Therefore low

energy solar neutrinos experience vacuum oscillations [55]. Because the SNO experiment

is sensitive only to 8B neutrinos, there is still plenty of unexplored space in the low energy

part of the spectrum to be studied in future experiments like CLEAN [56], which will have a

energy threshold of . 20 keV.

2.2 UHECR neutrinos

In distant astrophysical objects like active galactic nuclei (AGN) and gamma ray bursts (GRBs)

ultrahigh-energy neutrinos (E ≥ 106 GeV) are thought to be produced. AGN are bright and
compact central regions of galaxies. It is hypothesized that in AGN a supermassive black

hole accretes matter, causing emission of highly powered jets of matter that stream out of the
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central region. The origin of GRBs is more unclear, a fireball model has been suggested [57].

In addition to AGN and GRBs, ultrahigh-energy neutrinos may also be produced in so-called

top-down sources, where neutrinos are produced in decays and annihilation of heavy par-

ticles [58]. Examples of such sources are topological defects, monopoles and cosmic strings,

and decays of massive relic particles originating from string and supergravity theories [59].

It is supposed that in AGN and GRBs hadrons are accelerated to very high energies.

Collisions like pγ and pp will occur, yielding pion production and decays and subsequent

muon decays:

π → µ + νµ

↓
µ → e+ νe+ νµ,

(2.1)

with nearly equal amount of particles and antiparticles. The initial neutrino fluxes from the

source are thus related as F0e : F
0
µ : F

0
τ = 1 : 2 : 0, where F0e , F

0
µ and F

0
τ are the initial fluxes

of electron, muon and tau neutrinos, respectively. Because the distance of UHECR neutrino

production point from the Earth and the energy of produced neutrinos vary, the oscillations

will average out in the data. Thus the time dependence of the survival probability (1.6)

disappears and the probability is given by

P(l→ l′) = ∑
j

|U jl|2|U jl′|2. (2.2)

Assuming no significant matter effects on the route, the observed flux of each flavor νl on the

Earth is

Fl = ∑
l′
P(l′ → l) · F0l′ . (2.3)

If no new physics is present the fluxes of different neutrino flavors measured at the Earth

should be roughly equal. This can be understood as follows. The initial fluxes in the mass

basis are F0i = ∑l |Uli|2F0l . Using the information that |Ue3| ≃ 0 and that atmospheric mixing
is nearly maximal one gets F01 : F

0
2 : F

0
3 ≈ 1 : 1 : 1 irrespective of the solar angle θ12 (see e.g. [60,

61, 62]). Oscillations do not change these proportions but only the relative phases between

the mass eigenstates. An incoherent mixture in the ratios F1 : F2 : F3 ≈ 1 : 1 : 1 in the mass
basis leads to equal mixture also in flavor basis, i.e. Fe : Fµ : Fτ ≈ 1 : 1 : 1.
The detection of UHECR neutrinos will be a challenge due to the low fluxes and a sub-

stantial background of atmospheric neutrinos [63]. One of the most appropriate techniques

for detecting UHECR neutrinos consists of detecting Čerenkov light from muons or show-

ers produced by neutrino interactions in large volume underground water or ice telescopes
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like IceCube [64], ANTARES [65] and NESTOR [66]. Neutrino fluxes from individual AGN

or GRB are not detectable, but the diffuse flux might be detected in the future experiments

mentioned above.

Deviations from the equal flux prediction in future experiments would be an indication of

new physics. The deviation might be due to non-conventional production mechanism [67],

neutrino decay [68] or CPT violation [69]. It may give a hint that neutrinos are pseudo-Dirac

particles [70]. It can also indicate a presence of sterile neutrinos [61], whose effects have been

studied in this thesis in Paper I.

2.3 Supernova neutrinos

Supernovae of type II are thought to be originated by core collapses of red or blue giant stars

withmassM≥ 8M⊙, whereM⊙ is themass of the Sun. Since the remnant of the collapsed star

and the surrounding envelope are optically thick, most of the gravitational binding energy

(∼ 1053 ergs) is carried away by neutrinos. Their average energy is 10 MeV, and their number
is about 1058 [71].

Rate estimates of core collapse supernovae in the Milky Way vary somewhat, typical

value being a few in a century. In 1987 a supernova explosion took place in the Large Magel-

lanic Cloud, which is 51.8 kpc away from the Earth. About 20 neutrinos from this explosion,

known as SN1987A, were detected in the Kamioka [72] and IMB [73] experiments. Any far-

going conclusions could not have been made from the data because of poor statistics. In two

decades the number of detectors has increased and the quality of resolution have improved

such a way that thousands of events would be detected from a supernova explosion taking

place in our galaxy today.

Supernova explosion takes place when the iron core of amassive star reaches the so-called

Chandrasekhar limit of about 1.4M⊙ [4]. In the hot core neutrinos of all flavors are produced.

Electron (anti)neutrinos are dominantly produced in the CC processes like e− + p→ n+ νe

and e+ + n→ p+ ν̄e, while other flavors are produced in several different NC processes such

as electron-positron pair annihilation e+ + e− → νl + ν̄l, electron-nucleon bremsstrahlung

e± + N→ e± + νl + ν̄l, and nucleon-nucleon bremsstrahlung n+ p→ n+ p+ νl + ν̄l [71].

In spite of the weakness of their interactions, neutrinos are trapped in the core because

of the very high matter density. They can freestream only when the density is low enough

so that the neutrino mean free path is larger than the radius of the core. The surface from

which neutrinos freestream is called neutrinosphere and its radius depends on the flavor and
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energy of neutrinos. Since νµ, ν̄µ, ντ and ν̄τ (called collectively νx in the following) feel only

the NC interactions, they leave the local thermal equilibrium earliest and have the smallest

radii of neutrinosphere. Since themantle is neutron-rich, the reaction νe+ n→ e− + p is more

efficient than ν̄e + p→ e+ + n. This keeps νe in local thermal equilibrium up to larger radii

than ν̄e. Thus the next deepest neutrinosphere is that of ν̄e and the least deep one is that of

νe. The estimated radii of the neutrinospheres lie between about 50− 100 km [71]. The larger
the radius of the neutrinosphere, the lower the mean energy of neutrinos. Based on that, the

hierarchy of average energies is supposed to be

〈Eνe〉 < 〈Eν̄e〉 < 〈Eνx〉. (2.4)

There is an uncertainty considering the initial spectrum of supernova neutrinos. The

above assumptions lead to the traditional prediction of roughly equal initial fluxes F0e : F
0
ē :

F0x = 1 : 1 : 1 [74]. In Ref. [75] the nucleon recoils and electron neutrino pair annihilation

νe+ ν̄e→ νl + ν̄l have been included in the simulation and spectrum presented in Fig. 2.3 for

neutrino fluxes has been obtained. As can be seen from Fig. 2.3, for the average energies it

implies 〈Eν̄e〉 ≈ 〈Eνx〉, in contrast to (2.4). Neutrino number fluxes can still differ by a large
amount. When integrated over the energy the neutrino flux ratios F0e : F

0
ē : F

0
x = 4 : 3 : 2 are

obtained.

The effective potential met by neutrinos in a supernova is proportional to the matter den-

sity of the progenitor star. According to [76] the effective potential felt by νe is described by

the radial power-law

V(r) = 1.5 · 10−9 eV
(

109cm
r

)3

. (2.5)

In the outer layers of the envelope the density drops faster than (2.5) suggests, becoming

closer to an exponential decrease [77]. However, the resonance transition at lower densities

does not significantly depend on the details of the profile of the supernova [78].

According to the current knowledge of neutrino mass and mixing parameters, neutri-

nos undergo two MSW resonances when they traverse the star. They are denoted as H-

and L-resonances, corresponding to high and low resonance density (see Fig. 2.4). The H-

resonance is characterized by the mixing parameters ∆m213 and θ13, whereas the L-resonance

corresponds to ∆m212 and θ12. Given the present value of ∆m213 from the atmospheric and θ13

from the CHOOZ reactor neutrino data (∆m213 = 2.6 · 10−3 eV2, θ13 < 11.5◦), and those of ∆m212
and θ12 (∆m212 = 7.9 · 10−5 eV2, θ12 = 33.7◦) from the solar neutrino data, as well as the aver-

age energy of supernova neutrinos, one can estimate the H- and L-resonances to occur at the
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Figure 2.3: The initial spectra of neutrinos from supernovae [75]. The fluxes of ν̄µ, ντ

and ν̄τ are equal to that of νµ presented in the plot. Integration over energy gives

F0e : F
0
ē : F

0
x = 4 : 3 : 2. The ratios corresponding to the most common energy E ∼ 10 MeV are

F0e : F
0
ē : F

0
x = 4 : 2.3 : 1.4.

densities
ρH ≈ 103 g · cm−3,

ρL ≈ 30− 140 g · cm−3,
(2.6)

respectively. The H-resonance is in the neutrino (antineutrino) channel for normal (inverted)

hierarchy of neutrino masses. The L-resonance occurs for neutrinos for both the hierarchies

and it is adiabatic [80]. The adiabaticity of the H-resonance depends on the value of the

mixing angle θ13. The adiabaticity can be calculated using the Landau-Zener formula to be

discussed in detail in Chapter 3. Three cases can be distinguished [81] (PH is the transition

probability in the H-resonance):

1. Adiabaticity breaking region: sin2 θ13 . 10−6 × (E/10 MeV)2/3, where PH ≈ 1;

2. Transition region: sin2 θ13 ∼ (10−6 − 10−4)× (E/10 MeV)2/3, where 0 . PH . 1;

3. Adiabatic region: sin2 θ13 & 10−4 × (E/10 MeV)2/3, where PH ≈ 0.

The transition region is usually neglected in analytic calculations for simplicity and the H-

resonance is assumed to be either totally adiabatic or totally nonadiabatic. The sensitivity

of the H-resonance on the mixing angle θ13 makes supernova neutrinos an excellent tool for
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Figure 2.4: Level crossing diagram for normal mass hierarchy [79]. Solid lines show the

effective Hamiltonian as a function of electron number density. The dashed lines correspond

to energies of unmixed flavor levels.

studying the value of that angle. The question is especially interesting because the possible

detectivity of CP-violation of neutrinos depends on the size of θ13.

In the core where neutrinos are produced the density is very large (ρ & 1012 g · cm−3) [82]

and neutrino mixing is highly suppressed by matter effects. Because V ≫ H0 the Hamilto-
nian (1.14) is approximately diagonal and hence the interaction eigenstates coincide with the

eigenstates of the Hamiltonian. If all the resonances neutrinos encounter are either adiabatic

or nonadiabatic the neutrinos either stay in the original eigenstate or jump to another eigen-

state completely. In such cases there is thus no mixing of eigenstates when neutrinos travel

in the star and they leave the star as a single mass eigenstates and there will be no neutrino

oscillations when neutrinos travel to the Earth [83]. If instead the H-resonance lies in the

transition region, the behavior of the neutrino state in the resonance is semiadiabatic and a

jump to another eigenstate is not complete. In that case a linear combination of eigenstates is

formed and some oscillation is generated.

If neutrinos cross the Earth before detection, they may undergo matter effects in the in-

terior of the Earth. The matter density in the Earth, ρ ≈ (1− 13) g · cm−3, is close to that of
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the L-resonance. Therefore the mixing angle in matter, given by (1.15), increases from its vac-

uum value by the effect of the resonance, leading to oscillations which may be observable.

This could affect either the flux of νe only or ν̄e only, or both. The Earth effect is expected

to be more significant at higher energies. The energy dependence of the νe and ν̄e flux has

an oscillatory character. The oscillatory behavior or its absence is different for detectors lo-

cated differently on the Earth. It may also be possible to identify the Earth effect through the

distortion of the spectrum in a single detector [84].



Chapter 3

Landau-Zener theory and its

extensions

The Landau-Zener (LZ) model [18, 19] is widely used for solving the time-dependent Schrö-

dinger equations. It is a method for evaluating the transition probabilities between two states

in a linear quantum system, and it is based on theWKB approximation, where approximative

solutions of Schrödinger equation are used. The method is quasi-classical, meaning that the

de Broglie wavelengths are assumed to be small compared with the characteristic dimensions

of the system, which holds when potential varies slowly and the momentum of the particle

is nearly constant over several wavelengths.

Originally the LZ-theory was applied to transitions in diatomic molecules [18], but it

has found applications also in atomic and molecular physics [85], quantum optics [86], as

well as in neutrino physics [87]. The motivation to use LZ-theory in neutrino physics is that

it describes transitions between neutrino eigenstates in matter. In neutrino physics one is

usually considering nonlinear systems as the matter densities in the physically interesting

situations are usually not varying in linear manner. Applying the LZ-method to nonlinear

two-level neutrino system is studied e.g. in [88]. In other fields of physics the extension of

the LZ-method to multistate linear systems has been studied [86]. In particular, it has been

found that in the case of linear multilevel systems analytic solutions to LZ problem exist only

in some special cases [89].

In neutrino physics with current knowledge of mixing parameters and supposing active

neutrinos only, all situations can be handled as separate nonlinear two-state systems. If sterile

neutrinos exist, nonlinear multistate systems might be encountered. This kind of situation is

23
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studied in detail in Paper III of this thesis.

3.1 Level crossing problem for a two-state system

Let us consider a dynamical system consisting of two states, whose energies have different

time dependence. The behavior of the system is governed by the Schrödinger equation

i
dΨ(t)
dt

= H(t)Ψ(t), (3.1)

where the Hamitonian is assumed to have the form

H(t) =

(

Haa+Va(t) Hab

Hba Hbb+Vb(t)

)

, (3.2)

where the potentials Va and Vb are different functions of time and the time-independent

elements Haa, Hbb, Hab and Hba correspond to the Hamiltonian in vacuum. The nondiagonal

elements Hab and Hba arise from the coupling of states. In the presence of potentials Va and

Vb the gap between the energy levels will be time-dependent. The width of this gap is given

by the difference of the energy eigenvalues, i.e.

∆E =

√

(Haa+Va(t)− Hbb−Vb(t))2 + 4H2ab. (3.3)

The system originally in one state can tunnel quantum mechanically to the other state over

this gap. By a quasi-classical method described in [90] a following formula for probability of

this tunneling is obtained:

PLZ = e−2ℑ
R t0 ∆Edt

= exp
(

2ℑ
Z t0
dt
√

(Haa+ Va(t)− Hbb−Vb(t))2 + 4H2ab
)

. (3.4)

The integration limit t0 is a zero of (3.3). It is called the transition point and it lies on the upper

half of complex plane. Non-reality of the transition point reveals that the region is classically

inaccessible. In the case of several zeros, the one lying closest to the real axis is chosen as the

contribution related to the other zeros is in general exponentially suppressed in comparison

with the contribution of the closest zero. For the lower limit of the integration, any point on

the real axis can be chosen, because the real part of the integral does not matter in (3.4).

Whether the integral in Eq. (3.4) can be solved analytically or not, depends on the exact

form of the potentials Va(t) and Vb(t). In general case it cannot be solved in a closed form but

a numerical evaluation is needed.
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When the time-dependence of the potential is linear, i.e. Va = vat, Vb = vbt, the integral in

Eq. (3.4) can be solved analytically. This is the original Landau-Zener problem. One obtains

in this case the following expression for the transition probability [18]:

PLZ = exp
[−2πH2ab
|va − vb|

]

≡ e− πγ
2 , (3.5)

where an adiabaticity parameter γ has been defined:

γ =
4H2ab

|va − vb|
. (3.6)

Adiabatic conversions correspond to the values γ ≫ 1 and the transition probability PLZ ≃ 0.
Then the oscillation length changes slowly comparedwith the potentialV and the eigenstates

propagate without mixing. In the case γ . 1 the transition is nonadiabatic and a level cross-

ing from one state to another can occur. The transition probability can be calculated from

classical equations of motion although the tunneling process itself is classically forbidden, as

the complexity of the transition point implies, hence the term quasi-classical [90].

3.2 Parametrization for LZ problem in neutrino physics

In neutrino physics, the two-state Hamiltonian (1.14) is inserted into the generalized defini-

tion of adiabaticity parameter, where the denominator of the definition (3.6) is replaced by

the absolute value of the spatial derivative of the difference of the potentials at the resonance

point. The resonance condition VR = ∆m2 cos2θ/2E leads to the following expression for the

adiabaticity parameter [87]:

γ =
∆m2 sin2 2θ

2E cos2θ|dNe/Nedx|R
. (3.7)

Here the subscript R denotes the resonance point, corresponding to the turning point dis-

cussed in the previous section, at which the logarithmic derivative of the electron number

density Ne should be evaluated.

Usually the potentials neutrinos experience when traveling in matter are nonlinear due to

nonlinear density profiles of the medium. For example, in the Sun the potential is exponen-

tial, while in supernovae it is assumed to have a power-law form. The original Landau-Zener

formula (3.5) is not applicable in these cases but one needs to evaluate the integral (3.4). For

some special cases, like exponential and power-law potential, it turns out that the adiabatic-

ity parameter γ factors out of the integral and an expression depending only on the mixing
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angle θ (and in the case of power-law potential the power n) is left [88]. The formula (3.5)

generalizes to the form

PLZ = e−
πγ
2 Fn(θ), (3.8)

where Fn(θ) is the correction function that takes into account the nonlinearity of the potential

V. The parameter γ can still be approximated as in Eq. (3.7). The proper definition of γ in

nonlinear case would contain higher order derivatives. Nevertheless, it is enough to include

the first order derivative, the rest is taken into account by the correction function Fn(θ) [88].

According to Ref. [88], the correction function for an exponential potential (V ∝ exp(−r))
experienced by neutrinos traveling in the Sun is

F (θ) = 1− tan2 θ, (3.9)

and for a power-law potential (V ∝ rn) experienced in supernovae it is

Fn(θ) = 2
∞
∑
m=0

(

(1/n)− 1
2m

)(

1/2
m+ 1

)

[tan(2θ)]2m. (3.10)

This series converges only for θ < π/8 and it is therefore not suitable for numerical evaluation

in the case of maximal or nearly maximal mixing. It can be presented as a hypergeometric

function

Fn(θ) = 2F1

(

n− 1
2n

,
2n− 1
2n

; 2;− tan2(2θ)
)

. (3.11)

One can further use the Euler’s formula to transform the function 2F1 to an integral form [91],

2F1(a, b; c; z)=
Γ(c)

Γ(b)Γ(c− b)
Z 1

0
dttb−1(1− t)c−b−1(1− tz)a, (3.12)

suitable for numerical evaluation. By this analytical continuation the applicability of the

results is extended to the range 0 ≤ θ ≤ π/4 [77].

In the extreme nonadiabatic limit, where γ ≪ 1, the approximation made in deriving the
formula (3.5) fails. The Landau-Zenermethod picks up only the leading term of the exponen-

tial, which is the dominant part for large γ. For a small γ there may be other contributions

to the probability [90]. When γ → 0, the formula (3.5) always gives PLZ→ 1. However, for a
quickly varying density, the level crossing probability should go to cos2 θ [88]. A generaliza-

tion of the LZ-formula appropriate for quickly varying density distributions is given by an

ansatz [88]

P =
e−

π
2 γF − e−

π
2 γ

F

sin2 θ

1− e−
π
2 γ

F

sin2 θ

. (3.13)
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For a linear potential and small mixing angles this formula reduces to Eq. (3.5).

In Paper III of this thesis the Landau-Zener probabilities were evaluated by computing

numerically the integral (3.4) and taking the extreme nonadiabatic limit (3.13) into account.

3.3 Multistate linear system and ICA

As mentioned, the original Landau-Zener analysis of level crossing concerned two-level sys-

tems with linear time-dependence (potential). A simple generalization of this is a system

with an arbitrary number of crossing energy levels with a linear time-dependence. For a

n-state system one needs to solve a differential equation of order n with time-dependent co-

efficient. An analytic solution for such a system has been obtained only for some special

situations [89]. These include the equal slope case, when all but one unperturbed energy

level have equal slope, as well as so-called bow tie case, where all levels have different slopes

but they cross at the same point.

Independent crossing approximation (ICA)

It is intuitively evident that the probability for transitions in a multilevel system is obtained

as a product of the two-state Landau-Zener probabilities if the crossings can be considered to

occur independently, that is, the corresponding crossing regions are wide apart. Surprisingly

enough, it has been shown numerically that for matrix elements corresponding to transitions

between the lowest and the highest unperturbed energy state this method holds even if all

crossing regions overlap. That is, the so-called independent crossing approximation (ICA)

[89]

Pkk =
n

∏
i=1

PLZi (3.14)

is valid for these transitions. In (3.14) n is the number of crossing points, PLZi is the transition

probability in the crossing point i handled as an independent two-level system. Here k de-

notes the unperturbed state with highest or lowest slope, and Pkk gives the probability for a

system originally in one of these states to end up to the same state after all the crossing points

are passed.

It is shown that the ICA holds for all exactly solvable cases with finite number of states

[89]. It has been confirmed by many numerical checks. This has made some authors to

believe, that a general multistate system can be solved in terms of two-state crossing prob-

abilities of Landau and Zener [89, 92]. The validity of the ICA rule in the case of nonlinear
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potential was tested in Paper III in the case of neutrinos and it was found to work really quite

well.



Chapter 4

Effects of sterile neutrinos

As the solar neutrino puzzle has been beautifully solved and the atmospheric, reactor and

beam neutrino experiments can be explained in terms of oscillations of the three active neu-

trinos, there is no compelling reason to introduce sterile neutrinos. However, sterile neutri-

nos may still exist. It is quite possible that the effects of sterile neutrinos, e.g. on the solar

neutrino data, may have left hidden in the energy scale explored by SNO, which is sensitive

only to the high energy tail of the solar neutrino spectrum. Sterile neutrinos might reveal

themselves in the forthcoming sub-MeV experiments like CLEAN [56]. It is also possible

that sterile neutrinos couple only to the state ν3 which has practically no effect on the solar

neutrino data.

In this Chapter a model with one or more sterile neutrinos is investigated. It is assumed

that sterile neutrinos are nearly degenerate in mass with the active ones, a scenario which

is still allowed by the current experiments. Predictions are made on how this kind of ster-

ile neutrinos would reveal themselves in future experiments measuring the supernova and

UHECR neutrino flux. Exploring sterile neutrinos in supernovae leads one to study also a

more general problem of multistate nonlinear systems and the applicability of the Landau-

Zener theory discussed in the previous Chapter.

4.1 Model with nearly degenerate sterile neutrinos

We now assume that in addition to the three active neutrinos νe, νµ and ντ there exist three

sterile neutrinos, νs1, νs2 and νs3. Let us assume that the active neutrinos mix mutually to

29
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form three states ν̂i,

ν̂i = ∑
l=e,µ,τ

Uilνl, (4.1)

where U is the standard 3× 3 mixing matrix given in Eq. (1.2). In the absence of the ster-
ile neutrinos, or if the sterile neutrinos decouple from the active ones, the states ν̂i would

coincide with the mass eigenstate neutrinos of the SM. Suppose, however, that the sterile

neutrinos νsi, i = 1, 2, 3, do not decouple but they mix with the active ones according to

νi = cosϕi ν̂i− sinϕi νsi,

ν ′
i = sinϕi ν̂i+ cosϕi νsi.

(4.2)

Then the neutrino mixing matrix (1.2) is extended to the form

U(6) =

























cosϕ1Ue1 cosϕ2Ue2 cosϕ3Ue3 sinϕ1Ue1 sinϕ2Ue2 sinϕ3Ue3

cosϕ1Uµ1 cosϕ2Uµ2 cosϕ3Uµ3 sinϕ1Uµ1 sinϕ2Uµ2 sinϕ3Uµ3

cosϕ1Uτ1 cosϕ2Uτ2 cosϕ3Uτ3 sinϕ1Uτ1 sinϕ2Uτ2 sinϕ3Uτ3

− sinϕ1 0 0 cosϕ1 0 0

0 − sinϕ2 0 0 cosϕ2 0

0 0 − sinϕ3 0 0 cosϕ3

























, (4.3)

whereUli’s are the elements of the three neutrinomixing matrix of Eq. (1.2). The antineutrino

states are assumed to mix similarly.

Obviously, this is not the most general way to mix the three sterile neutrinos with the

three active ones. Firstly, in this scheme we have just three new mixing angles (ϕ1, ϕ2, ϕ3)

while in the most general case the number of additional angles would be 15. Secondly, we

have not included any new CP-violation parameters, while in the general case 10 additional

CP-phases would appear when one goes from the standard U to a 6× 6 mixing matrix [4].
The neutrino states νi and ν ′

i and the corresponding antineutrino states ν̄i and ν̄ ′
i are the

mass eigenstates with masses mi and m′
i, respectively. The mass spectrum of this system is

illustrated in Fig. 4.1, where we have assumed the normal mass hierarchy. We have also

indicated in the figure the effect of the active-sterile mixing (4.2) on the composition of the

mass eigenstates with some arbitrarily chosen values for the mixing angles ϕi. The original

research papers Paper I, Paper II and Paper IV of this thesis concern with this kind of mixing

scheme and study its phenomenology in astrophysics.

We assume the mass difference of the states νi and ν ′
i to be so small that in the processes

studied in laboratory experiments, like particle decays µ → e+ νe + νµ and π,K → l + νl,
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Figure 4.1: Mass states in a model with three sterile neutrinos, which are nearly degenerate

with the active ones.

these two states are not distinguished but appear as a single state with couplings equal to

those of the active state ν̂i. There are models where degenerate neutrino pairs may naturally

appear (see a discussion in section 1.3). To such models belongs the pseudo-Dirac model,

where the mixing angles ϕi are close to the maximal value π/4.

This kind of active-sterile mixing would have remained unnoticed in the existing exper-

iments, if the coupled mass states are nearly degenerate. The upper limits for the mass-

squared differences ∆m2ii′ (i = 1, 2, 3) between the eigenstates ν
′
i and νi for this to happen are

∆m211′ < 10−12 eV2, ∆m222′ < 10−11 eV2 and ∆m233′ < 10−4 eV2 [42]. The first two limits come

from solar neutrino experiments, the third one from cosmology. If the values of the mixing

angles ϕi are smaller than π/4, larger mass-squared differences would be allowed.

4.2 Effect on UHECR neutrino fluxes

Ultrahigh-energy cosmic ray (UHECR) neutrinos described in section 2.2 provide an excel-

lent tool for exploring nearly degenerate sterile neutrinos, as is shown in Paper I. The huge

distances to UHECR sources offer baselines, which can not be achieved in terrestrial experi-

ments. They make it possible to test oscillations with ∆m2 down to 10−18 eV2 [93]. In practice
neutrinos travel in vacuum during their flight, leaving the leading role in their evolution to

vacuum oscillations.

Sterile neutrinos can not be detected, but one can get information of their presence by
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(a) 3 steriles (b) 1 sterile

Figure 4.2: Relative fluxes of the UHECR neutrinos at earth. The gray area corresponds to

the situation with only active neutrinos present, corresponding mixing angles θ12, θ23 and

θ13 varying within their experimentally allowed ranges. The black area, in part behind the

gray area, corresponds to the situation with (a) three sterile neutrinos with arbitrary mixing

angles ϕi (b) one sterile neutrino mixed with the heaviest state with arbitrary mixing angle

ϕ3.

examining their effects on the relative fluxes Fl ,

Fl =
Φl

Φe + Φµ + Φτ
, (4.4)

of the active neutrinos at the Earth. HereΦl denotes the measured flux of the neutrino flavor
νl. In Paper I the values of the mixing angles θi j were allowed to vary within their exper-

imentally allowed ranges. Bounds 0.49 < θ12 < 0.67, 0.63 < θ23 < 0.94 and 0 ≤ θ13 ≤ 0.1,
each obtained from two-neutrino analysis, were used [69]. The first limit comes from com-

bined solar and KamLAND reactor data [94], the second from atmospheric neutrino data [95]

and the third from nonobservation of oscillations in CHOOZ [96] and Palo Verde [97] exper-

iments. The allowed relative flux values given by these ranges of the mixing angles θ12, θ23
and θ13 form the gray boomerang shaped area of Fig. 4.2(a).

If the mass-squared difference between the states in Eq. (4.2) is below 10−12 eV2 the ex-

istence of the sterile flavor would have escaped detection in the oscillation experiments per-

formed so far, but they could have measurable effects on the fluxes of the UHECR neutrinos
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making the flux ratios to differ from those possible in the standard three active neutrino case.

Allowing the active-sterile mixing angles ϕi vary freely within the range 0 ≤ ϕi ≤ π/4 the

black area of Fig. 4.2(a) is obtained, which shows that substantial deviations from the SM

result (the gray area) are indeed possible.

The phenomenologically most interesting is the flux ratio of the electron and muon neu-

trinos,

Reµ ≡ Fe
Fµ

. (4.5)

In the case of three active neutrinos this ratio varies in the range

0.75 . (Reµ)SM . 1.17 , (4.6)

when the mixing angles θi j vary in their experimentally allowed ranges, 0.49 < θ12 < 0.67,

0.63 < θ23 < 0.94 and 0 ≤ θ13 ≤ 0.1. In the presence of active-sterile mixing one has

0.47 . (Reµ)sterile . 1.62 . (4.7)

The relative deviation of the ratio Reµ from its SM value, caused by the active-sterile mixing,

can have its value in the range

−40% .
(Reµ)sterile − (Reµ)SM

(Reµ)SM
. 70% . (4.8)

The largest positive deviation is achieved when the sterile mixing angle ϕ1 is very small and

the other two ϕ2 an ϕ3 are nearly maximal, while the largest negative deviation is obtained

when ϕ1 and ϕ2 are nearly maximal and ϕ3 is very small. In the former situation the flux

ratios are approximatively Fe : Fµ : Fτ = 0.4 : 0.3 : 0.3, in the latter situation Fe : Fµ : Fτ = 0.2 :

0.5 : 0.3. The effect of the active-sterile mixing to the relative fluxes can thus be quite large

and detectable in the future neutrino telescope experiments.

Let us consider the situation where there is only one sterile neutrino present. More specif-

ically, let it be the state ν ′
3, which has the loosest bounds from the solar neutrino data and

might therefore have the largest effects on the flux ratio. In Fig. 4.2(b) a ternary plot cor-

responding to this situation is presented. As it is seen from the plot, even in this case of

one sterile neutrino substantial deviations from the SM prediction are possible towards the

direction of larger Fe and Fτ and smaller Fµ. In Fig. 4.3 the ratio Fe/Fµ = Reµ is plotted as

a function of the active-sterile mixing angle ϕ3, letting the ordinary mixing angles θ12, θ23
and θ13 to vary within their experimental limits. As one can see, the allowed ranges of the

sterile and non-sterile cases do not overlap when the active-sterile mixing angle is close to its

maximal value.
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Figure 4.3: The ratio of electron and muon neutrino fluxes as a function of the active-sterile

mixing angle ϕ3. Only one sterile state ν ′
3 is present. The region between solid lines is the

allowed range in the presence of ν ′
3 when the mixing angles θ12, θ23 and θ13 are varied within

their experimentally allowed values. The dashed lines correspond the situation in the SM

case with no sterile neutrinos.

4.3 Effect on supernova neutrino fluxes

For supernova neutrinos, in contrast to the UHECR neutrinos, matter effects play the main

role. This is because neutrinos are produced at high densities in the supernova core from

where they travel through a medium with decreasing density to the surface of the star. In

section 2.3 we discussed the matter effects in supernovae in the presence of three active neu-

trinos. In Fig. 4.4 energy levels of the system of three active (solid lines) and three sterile

neutrinos (dashed lines) are presented. Note that we have used there the standard "normal-

ization" of the matter effect where the effects caused by neutral current interactions are taken

out of the Hamiltonian as a common factor. That is why the energy levels associated with the

sterile neutrinos have an apparent dependence on the matter density in this plot.

As is seen from the Fig. 4.4, many additional crossings of energy levels appear when

sterile neutrinos are present. Nevertheless, in the mixing scheme we are studying, presented

in Eq. (4.2), only three of these crossings can lead to enhanced transitions between neutrino

flavors (they are indicated by rings in Fig. 4.4). One of them (ν1, ν ′
1) lies on the neutrino side
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(Ne > 0), while the other two (ν2, ν ′
2 and ν3, ν

′
3) lie in the antineutrino side (Ne < 0). Due to

the small mass differences assumed between the states νi and ν ′
i , the new resonances occur

at low densities, ρR < 10−5 g · cm−3, the exact value depending on the parameters ∆m2ii′ and
ϕi.

 

 

ν
e

ντ

νµ

ν
s

H

N
e

Figure 4.4: Neutrino eigenstates as a function of electron density, in the presence of three

active neutrinos (solid line) and three sterile neutrinos (dashed line). For clarity the states are

drawn as there were no active-sterile mixing. The crossings of states giving rise to enhanced

transition in the case of the active-sterile mixing (4.2) are marked by circles.

A simplified LZ study

To find out the behavior of the energy states in the new resonances originating from the

active-sterile mixing is a non-trivial task. One reason for this is that the matter potential has

a power-law form instead of a linear behavior. In addition, the resonances overlap with each

other in the low density region, where the L-resonance is still operative. Hence it is not a

priori justified to use even the corrected LZ formula (3.8).

In Paper II, where this system was investigated, we first made a simplifying assumption

that all the resonances between the active and sterile states are fully nonadiabatic. This is
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rather conservative assumption, because in the nonadiabatic case the behavior of the states

in an active-sterile resonance is like if there were no mixing at all. If the effects of the active-

sterile mixing turned out to bemeasurable even in this conservative case, it would be promis-

ing to explore the system and the behavior in resonances in detail. In nonadiabatic case only

the L- and H-resonances need to be considered, and they can be handled as separate two-

state systems like in the case where only active neutrinos are present. When the active-sterile

resonances are nonadiabatic, (anti)neutrinos always end up to the states νi at the surface of

the supernova. These states contain a sterile component due to the active-sterile mixing.

The flavor composition of the neutrino flux on the surface of the star and at the Earth is

given by

Fα =

6

∑
i=1

|U(6)αi |2Fi, (4.9)

where Fα is the relative flux of the flavor state να (α = e, µ, τ , s1, s2, s3) and Fi (i =

1, 2, 3, 1′, 2′, 3′) is the final occupation of the mass eigenstate νi. From Fig. 4.4 it can

be deduced that Fi = (F0x , F
0
e , F

0
x , 0, 0, 0) and Fi = (F

0
x , F

0
x , F

0
e , 0, 0, 0) for a nonadiabatic and

an adiabatic H-resonance, respectively. For antineutrinos an analogous formula is used

with F̄i = (F0ē , F
0
x , F

0
x , 0, 0, 0). In Paper II the analysis was done for two initial flux ratios,

F0e : F
0
ē : F

0
x = 4 : 3 : 2 and F0e : F

0
ē : F

0
x = 1 : 1 : 1 (see discussion in section 2.3). The results are

presented in Tables 4.1 and 4.2, where they are compared with the results of the three active

neutrinos case.

In the study of Paper II the mixing angles θ12 and θ23 were fixed to the values θ12 = π/6

and θ23 = π/4. For the worse known θ13 two values were used, θ13 = 0 and θ13 = π/32, which

both are within the allowed range (θ13 < 0.20) obtained from the three-neutrino analysis of

the present oscillation data. In respect to the transitions in the H-resonance, these two values

of θ13 correspond to the two extreme cases of fully nonadiabatic (PH = 1) and fully adiabatic

(PH = 0) transitions, respectively. The sterile mixing angles ϕi were allowed to vary freely.

In the case of F0e : F
0
ē : F

0
x = 1 : 1 : 1 results are independent of the behavior of the states in the

H-resonance. As sterile flavors can not be detected, the flux ratios of the active flavors are

used as observables. We have chosen Fe/Fa, Fē/Fa and Fe/Fē, where Fa is the sum of the fluxes

of νµ, ν̄µ, ντ and ν̄τ .

From Tables 4.1 and 4.2 it is seen that the active-sterile mixing has measurable, albeit not

outstanding, effects. In each case the flux ratios can either increase or decrease as compared

with the SM prediction. A question arises, how the flux ratios would change if one or more

of the active-sterile resonances turned out to be fully or partly adiabatic. This question was
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PH = 0 PH = 1

active active + sterile active active + sterile
Fe
Fa

0.20 0.13− 0.30 0.26 0.19− 0.35
Fē
Fa

0.27 0.18− 0.42 0.28 0.18− 0.44
Fe
Fē

0.74 0.71− 0.78 0.91 0.81− 1.07

Table 4.1: Flux ratios Fe/Fa, Fē/Fa and Fe/Fē at the Earth in the case of an adiabatic (PH = 0)

and a nonadiabatic (PH = 1) H-resonance. The active-sterile transitions are assumed to be

nonadiabatic. The cases of active only and active + sterile are considered. The initial neutrino

fluxes were assumed to have F0e : F
0
ē : F

0
x = 4 : 3 : 2.

active active + sterile
Fe
Fa

0.25 0.17− 0.38
Fē
Fa

0.25 0.17− 0.38
Fe
Fē

1.00 1.00

Table 4.2: The same as in Table 4.1 but with the initial flux ratios F0e : F
0
ē : F

0
x = 1 : 1 : 1. Now

the ratios are independent of whether the H-resonance is adiabatic or nonadiabatic. The

active-sterile transitions are assumed to be nonadiabatic. The cases of active only and active

+ sterile are considered.

addressed in Paper IV, where the evolution of neutrino states in supernova envelope was

studied numerically in the presence of nearly degenerate sterile neutrinos.

Density matrix formalism

The evolution of a quantum system can be solved, at least in principle, as accurately as one

wants by solving numerically the Schrödinger equation (3.1). If the system is in a mixed

state, as is the case for supernova neutrinos, the density matrix formalism is a proper way

to do that. The density matrix ρ is a kind of generalization for the state vector, and it allows

to treat both pure and mixed systems on the same footing. The Schrödinger equation (3.1) is

replaced by the equation

ρ̇ = i[ρ,H], (4.10)

where the dot stands for time derivative. The density matrix is Hermitian and have positive

eigenvalues, and it has Tr(ρ)= 1. The diagonal elements of ρ give the occupation of different
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states. Choosing the interaction states as basis states diagonal elements ρll(t) are just the

normalized fluxes of different flavors at a given moment of time. The input needed are the

initial fluxes and the Hamiltonian. In the case when only the three active neutrinos exist, ρ(t)

is a 3× 3 matrix, and the initial fluxes are given as ρll(0) = F0l , l = e, µ, τ . The Hamiltonian is

of the form Hm = H0+V, where the effective potential takes into account the effects of matter

and is given by Eq. (2.5). For the sterile neutrinos the effective potential is half of that given

by Eq. (2.5). Antineutrinos are treated similarly, except that for them V has an opposite sign.

Solving (4.10) is in principle a straightforward numerical problem and it can be done

by utilizing brute force. How demanding the solving actually is depends on the initial pa-

rameters and the degrees of freedom of the system. In the worst case the computation is

time-consuming and also inaccurate because of round-off errors and instability.

Exact solution for supernova neutrinos

As discussed in section 4.1, the ν3/ν ′
3 -mixing is practically not restricted by the solar neutrino

data. Therefore it is reasonable to reduce the number of sterile states to one and consider

only the ν3/ν ′
3 -mixing. This choice also makes the computation more stable and less time

consuming.

With our choice of mass hierarchy mν ′
3
> mν3 , the 33

′-resonance lies in the antineutrino

sector (see Fig. 4.4). Its effect is that the relative fraction of electronic flavors in comparison

with the nonelectronic ones increases. Let us consider first the case of maximal mixing ϕ =

π/4. In that case the νs/ν3-resonance is totally adiabatic, and a neutrino born in the core as ν̄τ

leaves the star as ν ′
3. This state is half active, half sterile, and the active part consists almost

solely of the nonelectronic flavors νµ and ντ . Compared with the state ν̂3, which is the final

state in the SM case, the amount of the nonelectronic flavors is reduced, as a half of the state

is now sterile. For an adiabatic H-resonance one has Fe/Fa = 0.24 and Fē/Fa = 0.35, to be

compared with the Standard Model values 0.17 and 0.24, respectively. For an nonadiabatic

H-resonance one has Fe/Fa = 0.35 and Fē/Fa = 0.32, to be compared with the Standard Model

values 0.29 and 0.26, respectively.

In Paper IV the flux ratios were studied as a function of the active-sterile mixing angle

ϕ. There the neutrino energy was fixed to E = 10 MeV, which corresponds to the maximal

intensity of the neutrino flux. The initial fluxes were taken as F0e : F
0
ē : F

0
x = 4 : 2.3 : 1.2, as

given by the model of [75]. For neutrino parameters the global 3ν best-fit values ∆m212 =

7.9 · 10−5 eV2, θ12 = 33.7◦, ∆m223 = 2.6 · 10−3 eV2, θ23 = 43.3◦ and θ13 < 5.2◦ [8] were used. The
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Figure 4.5: Ratio of (a) ν̄e (b) νe and nonelectronic active fluxes as a function of sterile mixing

angle ϕ3. Results corresponding to minimum and maximum values of θ13 are presented. The

horizontal lines indicate the limits of the active only (SM) case. Here E = 10 MeV.

active-sterile mass-squared difference was taken as ∆m233′ = 10−6 eV2. Increasing of ∆m233′
from this value would not change the values of the final flux ratios, since the values saturate

in this limit. As ∆m233′ decreases from this value the ratios Fe/Fa and Fē/Fa obtain smaller
values at ϕ = π/4 than in the case of ∆m233′ = 10−6 eV2. The sensitivity for ϕ disappears

totally when ∆m233′ ≤ 10−11 eV2 and the same values for flux ratios are obtained as in the case
of no active-sterile mixing.

To solve the density matrix equation (4.10) a variety of MATLAB solvers for ordinary dif-
ferential equation were tested. An important feature of a suitable solver is that it should

keep the trace of the density matrix as constant. Such a solver (ode23s), based on a modified
Rosenbrock formula, was selected [98]. The density matrix equation (4.10) was solved for ϕ

values from zero to its maximal value of π/4 at intervals of 2.5◦. Because the adiabaticity of

H-resonance has a notable impact on the final fluxes, we checked both adiabatic and nonadi-

abatic cases, using upper and lower limits of the mixing angle θ13. Because the fraction of the

νe and ν̄e on states ν3 and ν ′
3 is negligible, the ratio Fe/Fē is insensitive to the ν3/ν ′

3 -mixing.

Hence the evolution of the flux ratios Fē/Fa and Fe/Fa was followed, as shown in Fig. 4.3.

Using a two-state approximation, i.e. calculating the transition probability from (3.8)

with (3.7), the 33′-resonance is nonadiabatic when ϕ . 12◦. Then ν̄τ ends up to state ν3,

which has a sterile fraction proportional to sin2ϕ. As ϕ increases from zero to 12◦ the sterile

fraction increases, decreasing the weight of nonelectronic flavors νµ and ντ in that state. As

a consequence the ratios Fē/Fa and Fe/Fa increase.
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Let us now consider the parameter region ϕ & 12◦ where the 33′-resonance is fully adi-

abatic. Then a neutrino born as ν̄τ ends up to the state ν ′
3 with sterile fraction proportional

to cos2ϕ, decreasing with increasing ϕ. The ratios Fē/Fa and Fe/Fa seem to either saturate or

increase when ϕ increases. This behavior can be understood as follows.

In the case of θ13 = 0, the H-resonance is nonadiabatic. The flux originating at the state

ντ ends up to the state ν3 whereas the flux originating as ν̄τ goes to the state ν ′
3. These fluxes

have an equal original weight, F0x = 1.2. As ϕ increases, the sterile component of the state

ν3 increases but at the same time the sterile component of the state ν ′
3 decreases by same

amount. So there is no net effect and the flux ratios Fē/Fa and Fe/Fa saturate to constant

values.

When θ13 = 5.2◦ the H-resonance is fully adiabatic. Considering the pair ν3, ν ′
3 there is in

this case more flow to the state ν3 because it is occupied by neutrinos born as νe which have

a large relative initial weight, F0e = 4. Now the increase of the sterile component in state ν3

overrides its reduction in state ν ′
3 and the net effect is that the ratios Fē/Fa and Fe/Fa keep

increasing as the angle ϕ increases.

The bands due to uncertainty of the value of the mixing angle θ13 in Fig. 4.5 are wider

for the flux ratio Fe/Fa than for Fē/Fa. This is because the mixing angle θ13 has more effect

on the flux of νe than on that of νē, because the H-resonance lies in the neutrino sector in the

normal hierarchy case we are considering. The ratio Fē/Fa seems to offer a quite promising

test for the active-sterile mixing. Even for relatively small mixing the ratio might deviate

substantially from its value in the case of three active neutrinos. For ϕ > 5◦ this effect could

be seen independently of the unknown mixing angle θ13.

4.4 Validity of ICA for three states in nonlinear potential

The level crossing in multilevel system is a problem one encounters in many branches of

physics. This problem, also known as multilevel Landau-Zener problem, in particular in

quantum optics and atomic physics. As discussed in Chapter 3, the basic question is whether

the Landau-Zener theory of two-level systems is applicable in the systems where there are

overlapping resonances. It has been shown analytically and by numerical studies that for

linearly varying energy levels one can successfully present level crossing probabilities as

products of the appropriate two-level LZ probabilities even if the two-level crossing regions

overlap. This question is addressed in Paper III where three-level system with a nonlinear

time dependence is studied.
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A shortcoming of the numerical approach made in section 4.3 is that one does not achieve

a detailed information of the behavior of the system. Instead the system is dealt as a black

box, where a certain input leads a certain output. A detailed information of the system, i.e.

understanding what is going on in a particular resonance, would also help one to analyze

the experimental data. Therefore it would be useful to search for a physically more revealing

and computationally less heavy way to study the system. This is what is done in Paper III.

In Paper III the effects of overlapping resonances were studied in a neutrino system by

considering a toy model with three states with different interactions in a nonlinear potential.

The aim was to investigate whether the independent crossing approximation rule discussed

in section 3.3 is applicable also in this nonlinear case. This question has not been previously

studied but all the earlier studies has concerned with linear cases. To test the validity of

ICA the results obtained numerically by the density matrix formalism were used as reference

values.
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Figure 4.6: Energy levels of system consisting of νe (the steepest straight line), νs (the next

steepest line) and νa (the horizontal line).

The toy model includes the electron neutrino νe, a sterile neutrino νs, and a nonelectronic

active neutrino νa which all behave differently in matter. The energy levels of the system

are shown in Fig. 4.6. According to (1.13) the effective potentials of νe, νs and νa in mat-

ter are Ve =
√
2GFNe, Va = 0 and Vs = 1√

2
GFNe, where the neutral current contributions are

subtracted and Nn = Ne is assumed. Neutrino mixing parameters were deliberately chosen
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so that the resonances 32 and 21 are semiadiabatic. For small values of ∆m212 the resonances
are separated but as the value of ∆m212 increases the resonances start to overlap. The transi-
tion probabilities of the resonances were calculated by using (3.4). The total probability PLZ31
for transition from the highest energy state ν3 to the lowest one ν1 was obtained by multi-

plying these two probabilities PLZ31 = PLZ32 P
LZ
21 . This ICA result was then compared with the

numerical result Pρ
31 obtained by using the density matrix approach. In Fig. 4.7 the both

probabilities are presented as a function of the squared mass difference ∆m212 of the states ν1
and ν2 in vacuum.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
−6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

∆ m2
12

  [eV2]

P
31

P
31
ρ

P
31
LZ

Figure 4.7: The probability for transition 3→ 1 as a function of ∆m212 calculated by using the
LZ-theory (solid line) and density matrix formalism (dashed line).

The transition regions (1.17) of the 32 and 21 crossings start to overlap at ∆m212 = 0.2 ·
10−6 eV2 and the overlap is maximal at ∆m212 = 0.5 · 10−6 eV2, where the transition points
coincide. At ∆m212 = 1 · 10−6 eV2 transition regions have passed each other and are separated
again. The Landau-Zener model seems to work rather well in the V ∼ t−3 case, except in a
region around a curious dip at ∆m212 = 0.2 · 10−6 eV2. The dip is actually an artifact caused by
simplistic use of LZ-theory, as will be explained in the following.

In Eq. (3.4) the upper limit of the integral corresponds to the zero of the integrand. It is

chosen to be the branch point in the upper half-plane of the complex time that is closest to

the real axis as was explained earlier.

What happens in the case studied in Paper III is that at ∆m212 = 0.2 · 10−6 eV2 there are
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two branch points with equal imaginary parts, and a role of the closest branch point moves

from one branch point to the other at this value of ∆m212. That is, a different branch point
gives the dominant contribution to P31 for large values than for small values of ∆m212. This is
shown in Fig. 4.8, where P31 is plotted for both of these values. Obviously, the contribution

of both zeros should be taken into account when evaluating P31. For a two-level case the both

zeros might be taken into account coherently, as was discussed in [99] in a totally different

physical situation of quantum optics. The incoherent sum obviously gives a too large result

as it neglects interference effects. It is a subject of a further study to find out how the coherent

summation should be done in a three-level case, where the result of [99] is not applicable.
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Figure 4.8: The contributions corresponding to the two dominating branch points (t0)1 and

(t0)2 to the transition probability P31 (dash-dotted and dashed lines, respectively). Also

shown are the numerical result obtained numerically by density matrix approach (thick solid

line) and the incoherent sum of the contributions from the two branch points (thin solid line).



44 CHAPTER 4. EFFECTS OF STERILE NEUTRINOS



Summary

The aim of this study was to explore signals of sterile neutrinos from astrophysical sources.

The physics of ultrahigh-energy neutrinos born in active galactic nuclei (AGN) and gamma

ray bursts (GRBs) and supernova neutrinos were studied as a possible environment to test

the hypothesis that there exists in Nature three sterile neutrinos nearly degenerate with the

known active neutrinos. The sterile neutrinos were assumed to mix pairwise with the active

neutrino mass eigenstates. The current values for the ordinary neutrino mixing parameters

from neutrino oscillation experiments were used, while the values of the active-sterile mixing

angles were allowed to vary with no restrictions. Astrophysical neutrinoswere found to offer

a suitable probe for studying the existence of such sterile neutrinos.

In the case of ultrahigh-energy neutrinos the oscillations will average out. It turned out

that the active-sterile neutrino mixing would change the active neutrino flux ratios detected

at the Earth.

In supernovae matter effects on the evolution of neutrino states play an important role.

Neutrinomixing angles and eigenstates are functions of density of the backgroundmatter. In

medium with varying density the Mikheyev-Smirnov-Wolfenstein effect takes place and an

enhanced flavor conversion happens in resonance regions. The possible active-sterile mixing

increases the number of resonances as compared with the standard three neutrino case. In

this thesis the Landau-Zener approximation for level crossing probabilities as well as the

density matrix formalism were used to find out the active neutrino flux ratios at the Earth.

To improve the precision of supernova neutrino signals a more detailed information about

the initial neutrino fluxes is needed.

When considering supernova neutrinos, a Landau-Zener problem of three states in non-

linear potential was met. A general analytic solution for such a problem does not exist. The

validity of independent crossing approximation (ICA) suitable in the case of linear potential

was tested in this nonlinear case and it was found that the ICA works well.

45
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Detecting UHECR neutrinos is still a challenge for experimentalists. The fluxes are low

and atmospheric neutrinos pose a substantial background. From Milky Way supernova the

existing neutrino detectors, like the Super-Kamiokande, would detect thousands of events.

However, the energy spectrum is currently detectable only for electron antineutrinos. In

suggested forthcoming experiments like CLEAN the energy information also of the nonelec-

tronic neutrino flavors would be available.
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