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ABSTRACT 
 
 
Finni, Taija 
Muscle mechanics during human movement revealed by in vivo measurements 
of tendon force and muscle length 
Jyväskylä: University of Jyväskylä, 2001, 83 p. 
(Studies in Sport, Physical Education and Health,  
ISSN 0356-1070; 78) 
ISBN 951-39-1216-7 
Finnish summary 
Diss. 
 
The present series of experiments utilized in vivo tendon force and fascicle 
length measurements for studying muscle mechanics during human 
locomotion. The behavior of quadriceps femoris and triceps surae muscle 
groups was examined in several different jumping exercises as well as during 
isokinetic knee and ankle extensions. In order to know how the muscle 
functions in natural locomotion as compared to its output during maximal 
constant velocity conditions, interaction between muscle and tendon lengths 
was studied. Special emphasis was given for understanding the benefits of pre-
stretch in stretch-shortening cycle (SSC) of muscle function. The results suggest 
that there may be several interactive, task specific mechanisms that contribute 
to the enhanced performance in SSC exercises. Together with external loading 
conditions, the varying neural activity pattern sets the conditions for elastic 
energy storage and recoil by controlling the relative changes in muscle and 
tendon lengths. Greater activity level and force in a drop jump, for example, 
emphasize the role of elastic recoil from tendons as compared to a counter 
movement jump where also other mechanisms need to be acknowledged. 
Results from both submaximal jumps and maximal knee extensions suggest 
that enhancement may be related to length dependent behavior of muscle force. 
In addition to these mechanisms, contractile potentiation can have a role in SSC 
but may not be responsible for the major enhancement occurring in late 
concentric phase at high shortening velocities. Results from hopping with small 
knee-joint angular displacement suggest that there may be a particular 
frequency and jumping height at which the elastic bouncing is best utilized and 
at the same time the concentric phase is most economical. Results also support 
earlier observations that the economy of the shortening phase must be 
compromised at some point in order to produce more power and improve the 
jumping height. 
 
 
Key words: In vivo tendon force, fascicle length, force-velocity, neuromuscular 
function, force enhancement, stretch-shortening cycle, locomotion 
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1 INTRODUCTION 

Natural movement is an outcome from highly organized neuromuscular system 
that has a complex control mechanism. The control system behind the easy-
looking locomotion requires information about the properties and the behavior 
of movement generating and transmitting tissues, that is, muscles, tendons and 
skeleton. Muscles are motors that produce force to propel our locomotion. They 
are controlled by the nervous system both by voluntary and by reflex 
commands. Besides neural activation, the generated force varies also with 
muscle length and velocity. Isolated animal experiments have provided 
fundamental knowledge of the relationships between force, length and velocity. 
Although these relationships are well established in conditions where the 
muscle is maximally activated, the submaximal and variable activity level 
makes it difficult to estimate the behavior of the muscle during our most 
natural locomotion, such as walking, running or jumping.  
 A counter movement that normally precedes fast and powerful 
movements in sports and normal locomotion was first called the “wind-up” 
movement by Asmussen and Sorensen (1971). Later, the phenomenon where 
the muscle undergoes stretching prior to shortening has been called stretch-
shortening cycle (SSC) of muscle function (Norman & Komi 1979). Stretch-
shortening cycle of muscle function has been studied extensively since the early 
work of Cavagna et al. (1965, 1968) who showed that shortening work is 
enhanced after stretch. The true nature of SSC is, however, not revealed in 
isolated conditions neither in animal nor in human studies. Gregor et al. (1988) 
showed, by comparing maximal isotonic loading and submaximal running in 
cats, that during natural locomotion the neuromuscular system could produce a 
higher force and power output than in maximal isometric or constant velocity 
conditions. The enhanced muscle output in SSC could be attributed to elastic 
mechanisms or contractile machinery itself, or it may result from varying neural 
activity with interaction of muscle and tendon compartments. In any case, there 
are several factors that interplay in SSC to achieve the economical, yet effective 
movements that are used every day. The SSC of muscle function in its beauty is 
purposeful and suited for the task at hand. The present thesis takes a step to 
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comprehend the mechanisms acting in our bodies to serve this appropriate 
muscle function. This work is continuation to the earlier reviews and thesis 
work done at the Department of Biology of Physical Activity that deal with SSC 
muscle function (Aura 1985, Avela 1998, Bosco 1982, Horita 2000, Komi 1984, 
1990, 2000, Kyröläinen 1995, Nicol 1992). 
 



2 REVIEW OF THE LITERATURE 

2.1  Muscle-tendon unit 

The muscle is connected in series with tendon(s) that attach the entire muscle-
tendon unit to the skeletal system. The term “muscle” often refers not only to 
the muscle fibers but is also used for the entire muscle-tendon unit (MTU). 
Here, the word “muscle” signifies a compartment that extends from a distal 
muscle-tendon junction to a proximal one. Capacity of a muscle to produce 
force or shorten at given velocity is dependent on muscle’s basic properties. 
Effectiveness of the produced force also depends on muscle architecture and 
joint design. Muscles create torque around the joints with interaction of 
tendons. Although tendon and aponeurosis are passive components, they 
cannot be considered purely rigid links between the skeleton and muscle 
because of their non-linear properties.  
 
2.1.1  Skeletal muscle architecture 
 
The filaments of the contractile system, actin and myosin, reside in a sarcomere 
overlapping each other. Interaction of these filaments generates force that is 
transmitted to tendons through serial and lateral force transmission (Huijing 
1999, Monti et al. 1999, Patel and Lieber 1997, Young et al. 2000). Sarcomeres are 
arranged in series to form a single muscle fiber. Several muscle fibers in parallel 
form fiber bundles, or fascicles. However, not all the fibers within a fascicle 
have the same length and they may begin and end within the muscle fascicle 
itself (Ounjian et al. 1991, Young et al. 2000). Thus, fascicle length does not 
necessarily correspond to fiber length. 
 Arrangement of muscle fibers within a muscle into a parallel alignment or 
into a certain angle (i.e. pennation) in respect to the muscle’s force-generating 
axis has been well described in the literature (e.g. Gans 1982, Gans and DeVree 
1987, Herbert and Gandevia 1995, Kawakami et al. 1993, Sacks and Roy 1982, 
Scott et al. 1993, Woittiez et al. 1985). The muscles in focus in the present study 
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are the extensor muscles of the human lower limb. Muscles in both the 
quadriceps femoris (QF) and in the triceps surae (TS) muscle groups have 
pennate arrangements. Table 1 summarizes architectural features of these 
muscles. In a pennate arrangement, geometrically thinking, all the force 
produced by a muscle fiber is not transmitted to the tendon: the force in line 
with force-generating axis is the force produced by the fiber multiplied by 
cosine of it’s pennation angle. The advantage of pennation is that the 
physiological cross-sectional area (PSCA) can be great. As a consequence, the 
force that the pennate muscle can produce is greater than that of paralleled 
muscles because PSCA and maximum force are proportional (Powell et al. 
1984).  
    
TABLE 1  Architectural features of soleus (SOL), gastrocnemius medialis (GM), gastrocnemius 

lateralis (GL), vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI) and 
rectus femoris (RF) muscles. The index number indicates reference: 1) Woittiez et al. 
1985, 2) Wickiewicz et al. 1983, 3) Hoy et al. 1990 (vasti and gastrocnemius muscles 
are lumped). Note that these cadaver pennation angles can differ considerably from 
those found in vivo. E.g. Fukunaga et al. (1997a) reported VL pennation angles 
between 14 and 21°. For GM Kawakami et al. (1998) demonstrated angles up to 67° 
during maximal voluntary contraction. 

 
 SOL GM GL VL VM VI RF 
Muscle length (cm) 24.01 20.21 17.61 32.42 33.52 32.92 31.62 
Fiber length (cm) 3.81 

2.43 
4.81 
4.83 

5.61 6.62 

8.43 
7.02 6.82 6.62 

8.23 
Tendon length (cm) 27.03 42.53  22.53   41.03 
Pennation angle (°) 251 

253 

201 

153 
201 52 

53 
52 

 
52 52 

53 
Tendon L/Fiber L 
ratio 

11.33 8.93  2.73   53 

 
Shortening velocity of a pennate muscle, on the one hand, is less than that of a 
paralleled muscle. In the pennate muscles, fiber rotation, i.e. increase in 
pennation angle, occurs simultaneously with shortening. This results in lower 
shortening velocity in the fiber level as compared to the whole muscle velocity. 
On the other hand, a pennate muscle that is designed for force production can 
produce high joint angular velocity if it has a small moment arm in the joint it 
acts on (Lieber 1992, Lieber and Fridén 2000). Energetically, for given fractional 
shortening, a paralleled fibered muscle consumes more energy but also 
performs more work than a pennate muscle (Roberts et al. 1998). 
 Fascicle length and orientation show rather large inter-individual 
variation. This variation may stem from differences in training background 
(Kawakami et al. 1993, Kearns et al 1998, Kumagai et al 2000) or from gender 
variability (Chow et al. 2000). Furthermore, pennation angle may not be the 
same along the length of a muscle (Scott et al. 1993). Therefore, the muscle fibers 
may not function uniformly. Similarly, non-uniform behavior of fiber segments 
or sarcomeres within a muscle fiber has been described (Edman and Reggeani 
1984, Julian and Morgan 1979). 
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2.1.2  Series elastic component  
 
Series elastic compliance is a property of multi-component system that includes 
muscle, tendon and aponeurosis (i.e. internal tendon) elasticity. Each of these 
components acts differently in relation with muscle force. Muscle’s compliance 
resides in the cross-bridges (Huxley and Simmons 1971), in filament lattice 
(Horowitz et al. 1986) and in connective tissue (Kovanen et al. 1984). Although a 
passive muscle can be strained more than a tendon or aponeurosis (Trestik and 
Lieber 1993), the tendinous tissue is responsible for majority of the elongation of 
MTU in active condition (Alexander and Bennet-Clark 1977, Herbert and 
Crosbie 1997, Morgan et al. 1978). Furthermore, in pennate muscles, angulation 
of muscle fibers with line of force-generating axis introduces an extra 
compliance in the MTU.  
 Tendon consists of collagen and elastin embedded in a proteoglycan-water 
matrix. Tropocollagen molecule cross-linking and complex collagen fibril 
arrangement form a buffer medium against high forces the tendons are exposed 
to during movements (Józsa & Kannus 1997). Unloaded, the collagen fibers 
have a wavy configuration that gives rise to the toe region of the stress-strain 
relation of tendons. In this concave toe region, little force is needed to elongate 
the tissue. Continued stretch requires more force as the tendon becomes stiffer. 
Stiffness increases with tendon cross-sectional area and with decreasing tendon 
length (Butler et al. 1978). Tendons have been suggested to bear strains as high 
as 20 and 50% (Józsa & Kannus 1997) although usually strain levels below 10% 
are reported (Benedict et al. 1968, Hawkins and Bey 1997, Trestik and Lieber 
1993). In physiological levels of loading tendons are reported to strain less than 
3 % (Simonsen et al. 1988). 
 Tendons are strong with tensile strength up to 11 kN· cm-2, a value that has 
been measured during running (Komi et al. 1992). The tendons of the extensor 
muscles are considered stronger than the flexor tendons (Benedict et al. 1968). 
For major extensors in the human lower limb, the patellar tendon is straight 
originating from distal tip of patella and inserting to tuberositas tibia. The 
Achilles tendon twists up to 90° in medio-posterior direction as it decends 
towards insertion site in the calcaneus. Pattern of fusion of gastrocnemius and 
soleus tendons can vary dramatically between individuals (Jozsa & Kannus 
1997). These factors together with differential muscle contributions may be 
sources for non-uniform stress distribution that has been implied in Achilles 
tendon injury etiology (Arndt et al. 1998).  
 Tendinous tissues are viscoelastic with hysteresis, creep and force-
relaxation properties (Butler et al. 1978). Tendon alone is mostly elastic as 
velocity of length change is predominantly determined by the rate of force 
development (Huijing 1992). In MTUs that have majority of connective tissue in 
internal tendon, the effects of viscosity on muscle fiber length change can be 
marked (Lieber et al. 2000). Aponeurosis has been reported to strain similar 
amount than the thick tendon (Trestik & Lieber 1993) or to strain more than the 
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tendon (Lieber et al. 2000). Lieber et al. (2000) demonstrated that both the 
tendon and aponeurosis experience different amount of strain if loaded 
passively or actively. Furthermore, aponeurosis can experience different 
amount of strain along the MTU (Maganaris & Paul 2000, Magnusson et al. 
2001, Zuurbier et al. 1994) although opposite results have also been published 
(Muramatsu et al. 2001).  
 Magnitude of series elasticity in MTU can be evaluated using tendon 
length-to-muscle fiber length ratio (Zajac 1989). In the triceps surae muscle the 
muscle fibers are relatively short in relation to their tendons. Thus, soleus and 
gastrocnemius MTUs having large ratios can be considered compliant whereas 
the knee extensor MTUs are stiffer (Table 1). These ratios reflect muscle 
function, for example the triceps surae MTU acts as effective energy storage 
during running and jumping (Alexander and Bennet-Clark 1977, Fukashiro et 
al. 1995b). It has been shown that the amount of series elastic compliance can 
affect the internal energetics of muscle contraction (Ettema 1996b). Furthermore, 
tendons can have different dimensions, Young’s modulus and moment arms 
that influence movement efficiency (Voigt et al. 1995a). Compliance of MTU is 
affected by immobilization (Kubo et al. 2000), fatigue (Kubo et al. 2001a), 
exercise (Pousson et al. 1990, Cornu et al. 1997), stretching (Kubo et al. 2001b), 
and can have effects on spindle function (Rack et al. 1983). 
 Elastic elements can store substantial amounts of energy. Although many 
researchers using in situ muscle preparations have emphasized elasticity in 
active cross-bridges (Cavagna 1977, Goubel 1987, Huxley and Simmons 1971, 
Rack and Westbury 1974), studies have shown that tendinous tissue is 
responsible for majority of the elongation of MTU (Herbert and Crosbie 1997, 
Morgan et al. 1978, Roberts et al. 1997). Alexander and Bennet-Clark (1977) 
reported that tendons can store 5-10 times more elastic strain energy than 
muscles in human running. The amount of stored energy depends on the 
magnitude of force and amplitude of stretch in the tendon. When cross-bridge 
elasticity is considered, amplitude and velocity of the stretch affect the attained 
force (Edman et al. 1978). In addition, different animal fiber types (slow or fast 
twitch fibers) have different elastic properties, slow fibered muscles being 
stiffer (Goubel & Marini 1987). When the force is released and the muscle is 
allowed to shorten, the energy is recoiled. In natural locomotion, utilization of 
the recoil energy depends on the magnitude of force prior to shortening, time 
delay between lengthening and shortening, and timing of activation and 
relaxation of the contractile apparatus (Aura & Komi 1987, Bosco et al. 1981, 
1982a, 1982b, Ettema 1996b, Lou et al. 1999). Besides elastic energy storage, 
tendons have important effect on muscle fiber length and velocity. Compliant 
tendons act as a buffer decreasing strain in the muscle and allow muscles to 
work in high force and low velocity region of the force-velocity relationship 
(2.2.4) (Lieber et al. 1992). 
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2.2  Muscle function 

2.2.1  Neural input to muscle 
 
A volley of nervous impulses that reaches a muscle is created in the central 
motor system and is modified by sensory information. Voluntary activity is 
supplemented with feedback information from muscles, tendons and joints 
through proprioceptive reflex system. This information is required for adjusting 
the motor program to fit to the task at hand and to associate environmental 
factors. Pre-programmed neural activity that is delivered to muscle before the 
actual movement, and motor control strategy are important for purposeful 
locomotion with SSC of muscle function (Melvill Jones & Watt 1971, Moritani et 
al. 1991). In hopping, for example, α-motoneurone pool excitability is enhanced 
just before touch down and in the early phase of the contact (e.g. Dyhre-Poulsen 
et al. 1991). Consequently, incoming commands through voluntary and reflex 
pathways are efficiently delivered to the muscle to enhance the system stiffness 
to compensate upcoming yielding upon ground contact (Cordo & Rymer 1982, 
Dyhre-Poulsen et al. 1991, Moritani et al. 1990, Voigt et al. 1998). The stretch 
reflex response activated via muscle spindle afferent discharge has important 
role in stiffness regulation (Nichols & Houk 1976) that has consequences on 
force and elastic mechanisms during SSC (Morgan et al. 1978). The reflex 
response has been shown to be sensitive to loading conditions (Komi & 
Gollhofer 1997) and training background (Kyröläinen & Komi 1995). 
Electromyographic activity (Dietz et al. 1979), muscle stiffness (Hoffer and 
Andreassen 1981) and the entire SSC performance are dramatically reduced 
without an active reflex system (Kilani et al. 1989). 
 When the action potential reaches the muscle and causes excitation-
contraction coupling, there is a delay before force is developed. This 
electromechanical delay has been reported to be around 40 or 14 ms when the 
force is measured from external device or using tendon force transducers 
(Norman & Komi 1979, Nicol and Komi 1998, respectively). The delay includes 
activation process with calcium dynamics and cross-bridge function, and time 
spent for internal organization of muscle and tendon lengths (Zajac 1989). There 
is also a delay between the neural excitation ceasing and the force falling to 
zero. Activation and relaxation times are related to fiber types; fast twitch fibers 
have shorter rise time and shorter half-relaxation time than slow fibers 
(Gydikov et al. 1976). In several studies, activation and deactivation dynamics 
have been discussed as determining factors for optimal power and work 
production (Askew & March 1998, Curtin & Woledge 1996, Ettema 1996b, Lou 
et al. 1999).  
 
2.2.2  Types of muscle actions 
 
Once the muscle is activated, it produces force through cross-bridge function 
(for reviews see HE Huxley 1969 and AF Huxley 2000). The type of muscle 
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action that results from the developed tension depends on the external forces. 
When the ends of the muscle are prevented from drawing closer together, the 
action is isometric. In many human studies, however, the term isometric is used 
when there is no information about the change in muscle fiber length, but the 
muscle-tendon unit length or the related joint angles remain unchanged. If the 
“isometric” action is tested by keeping the joint angles constant, the muscle 
does, in fact, shorten because the developed tension lengthens the tendinous 
tissues. During free movements, the tendon interaction and varying activity 
level may cause the muscle action to be isometric although the joint angles do 
change (Hof et al. 1983).  
 Dynamic actions involve changes in muscle length. In concentric action, 
the muscle shortens and in eccentric action the muscle lengthens. In human 
studies concentric and eccentric muscle actions are often examined in constant 
velocity or “isokinetic” movements (e.g. Komi 1973). It must be noted, however, 
that in common isokinetic exercises the shortening or lengthening velocity of 
the muscle is not constant, although the joint angular movement is (Ichinose et 
al. 1997). 
 Natural locomotion rarely involves pure forms of isometric, concentric or 
eccentric actions but is combination of these. An eccentric action that is 
immediately followed by a concentric one is called stretch-shortening cycle 
(SSC). Initially, it was used when MTU was observed to stretch and shorten 
without information about changes in muscle fiber length (Norman & Komi 
1979, Komi 1984). The term SSC is commonly used in both of these levels. 
However, it is important to notice that force enhancement and contractile 
potentiation phenomena related to SSC require that the muscle is active during 
the lengthening phase. In the following concentric phase the output may be 
more powerful than the outcome from pure concentric action. This stretch-
induced performance enhancement has been studied extensively after Cavagna 
et al. (1965, 1968) suggested potential mechanisms for work enhancement in 
isolated muscles and in intact human elbow flexors (see 2.3.2). 
 
2.2.3  Length dependence of force 
 
Tension developed by a muscle varies with its length. The isometric force-
length relationship, obtained during maximal activation at variety of muscle 
lengths, shows that the greatest forces can be produced at lengths in the middle 
of the range, where the overlap between actin and myosin filaments allows 
maximum number of cross-bridges (Fig. 1A). The original study of force-length 
relationships by Gordon et al. (1966) was performed with isolated segments 
along single muscle fibers and the curve was made up of four linear segments. 
Later, the relationship has been shown to be more bell-shaped than polygonal 
(Edman & Reggeani 1987) and the shape is similar if measured in the level of 
sarcomere, fiber bundle or entire muscle-tendon unit (Cavagna et al. 1968, 
Ettema 1996a, Meijer et al 1997). Increased compliance within the muscle shifts 
the relationship to longer lengths (Lieber et al. 1992, Kawakami & Lieber 2000). 
For MTU an additional compliance has the same effect. The shift is present also 
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after damaging eccentric exercise both in animal and human MTUs (Whitehead 
et al. 1998, 2001). In compliant units it is hypothesized that the muscle fibers 
work at ascending (shorter end) limb of the MTU force-length relationship 
(Zajac 1989). Also, if the force-length relationship is derived using submaximal 
activation, the optimum length at which the greatest force can be produced 
locates at longer muscle lengths (Ichinose et al. 1997, Rack & Westbury 1969, 
Stephenson & Wendt 1984). 
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FIGURE 1 Force-length (left) and force-velocity relationships (right) of isolated muscle 

fibers (top) and of intact human muscles (bottom). A) Maximum tetanic 
tension (solid line) and resting tension (line with circles) as a function of 
sarcomere lengths of an isolated skeletal muscle fiber (drawn after Edman 
1979). B) Classic force-velocity relationship in a single frog muscle fiber 
expresses a double hyperbolic shape during shortening. Near maximum 
isometric force the shortening velocity is very low and provides stability 
within the contractile system (drawn after Edman 1988). C) Force-length curve 
of an intact, active muscle (solid line) and passive muscle-tendon unit (line 
with circles). Total force-length curve of a muscle-tendon unit is shown (dotted 
line). In a compliant MTU (dashed line) the curve is distorted to the right as 
compared to a stiff MTU (drawn after Zajac 1989). D) In intact human muscles 
the classical force-velocity relationship is normally obtained by allowing 
lengthening the muscle or allowing it to shorten at constant velocity (Abbot et 
al. 1952, Hill 1938). Then, the force value is taken at a given muscle length in 
each condition. In intact muscle the curve differs slightly from the shape 
recorded from single fiber (drawn after Komi 1973). 
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Passive tension of muscle has reported to comprise the sum of tensions from 
passive elements within and between muscle fibers, from a viscous resistance to 
filament sliding, and from cycling cross-bridges (Bartoo et al. 1997, Proske & 
Morgan 1999).  In the entire MTU the passive tension comprises also tendon 
and aponeurosis, although the muscle compartment strains the most when 
MTU is being lengthened (Trestik and Lieber 1993) (Fig. 1). 
 Muscle fiber length at macroscopic level reflects the number of sarcomeres 
in series along the fiber. Thus, long fibers have more sarcomeres in series. The 
number of sarcomeres adapts to inactivity (Williams & Goldspink 1978) or 
eccentric training (Lynn & Morgan 1994); consequently, the operating range in 
the force-length curve may be relatively constant. Recently, Burkholder and 
Lieber (2001) have reviewed ranges of lengths of sarcomere in different species 
and muscles. They concluded that there is no typical length range at which the 
sarcomeres function. For human muscles, the wrist extensors have been 
reported to operate at short lengths (Lieber et al. 1994) and VL sarcomeres have 
been suggested to operate in the ascending limb and in the plateau region of the 
relationship (Cutts 1989). 
 In a muscle-joint system, the relative fiber length-to-moment arm ratio is 
the major determinant of the shape of the isometric torque-angle curve (Lieber 
& Shoemaker 1992). In the human triceps surae muscle, the most important 
determinants have been shown to be slack length of the series elastic elements, 
mean moment arm, maximum force, and fiber length (Out et al. 1995). A muscle 
with large moment arm length (i.e. length of a vector from the axis of joint 
rotation to a point in the line of action of the muscle where a straight angle 
forms) can produce greater moment with smaller excursion than an identical 
muscle with a small moment arm (Lieber & Friden 2000). The moment arm 
length changes during joint rotation and it may not be the greatest at optimum 
muscle length. Consequently, the muscle force-length and joint moment-angle 
relations do not coincide (Gillard et al. 2000, Hoy et al. 1990, Lieber et al. 1997). 
In a system where several muscles act as synergists, the interrelationships 
between the highly specialized muscles reveal the advantage of having variable 
fiber lengths, moment arms and architectures between the muscles; from a mass 
point of view it is more efficient to have several muscles than one large muscle 
for production of force and excursion (Lieber et al. 1997, Lieber & Friden 2000). 
 
2.2.4  Velocity dependence of force 
 
The force that a muscle can produce is dependent on the velocity of its length 
change. The relationship between muscle force and shortening velocity was first 
studied by Lewin and Wyman (1927) and is generally expressed with 
rectangular hyperbola formulated by Hill (1938). In eccentric actions the force 
that a muscle can generate is greater than in concentric or isometric actions. The 
classical relationship shown in figure 1 has been obtained by allowing fully 
activated muscles to change their length at constant speed. The shape of the 
relationship is similar if single muscle fiber (Edman et al. 1978, Julian & Morgan 



 21

1979), isolated muscle (Hill 1938) or intact muscle groups have been examined 
(Komi 1973, Tihanyi et al. 1982, Wilkie 1950). 
 The energetic cost of shortening (positive work) has been found to be 
greater than that of lengthening (negative work) by measuring oxygen 
consumption (Abbot et al. 1952, Asmussen 1952, Bigland & Lippold 1954) or 
ATP synthesis (Ryschon et al. 1997). It has been suggested that an active cross-
bridge, when lengthened, may be able to perform multiple cycles without 
splitting more than one ATP molecule for energy (Lombardi et al. 1992). 
Another reason for high efficiency of eccentric work may be attributed to the 
stretch-induced force enhancement phenomenon (see 2.2.5). 
 The classical force-velocity curve when measured with constant tetanic 
stimulation (animal studies) or maximal voluntary activation (human studies) is 
a good measure of the maximum sustainable power output of a muscle. 
However, it does not give a realistic measure of the instantaneous power of a 
muscle nor the work available through a full contraction-relaxation cycle under 
natural conditions the muscles normally operate (Josephson 1993). Both the 
force-length (2.2.4) and force-velocity relationships have very different shapes 
during natural locomotion. This is because during movements, muscles act with 
constantly varying length and velocity. Furthermore, as the force changes 
continuously, also the length of series elastic element varies and interacts with 
shortening or lengthening of the muscle (see 2.3).  
 
2.2.5  History dependence of force 
 
Previous shortening and lengthening have an effect on muscle’s force 
generating capacity. An active stretch increases isometric force generating 
capacity (Edman et al. 1978). Force enhancement during and after the stretch 
has been studied extensively (see Morgan 1994, Noble 1992, Brown & Loeb 
2000). The enhancement, being pronounced at long muscle lengths, has been 
attributed to altered cross-bridge function or sarcomere inhomogenieties 
(Edman et al. 1978, Edman 1999, Julian and Morgan 1979, Morgan 1990, Sugi & 
Tsuchiya 1988). However, the intrinsic mechanisms underlying the force-
enhancement phenomenon are not known. 
 Actively shortening muscle loses temporarily part of its contractile 
strength (Herzog & Leonard 1997a, Meijer et al. 1997). The magnitude of force 
depression increases with shortening distance, the phenomenon being greatest 
at short muscle lengths (Edman 1980). In intact muscles, the initial rapid fall of 
force at the beginning of shortening is generally believed to result from 
unloading of the series elastic component while the basic mechanism of force 
depression has been attributed to several factors including sarcomere non-
uniformities (Edman et al. 1993, Herzog & Leonard 2000). 
 In force enhancement and depression phenomena, both short- (transient) 
and long-lasting (residual) components have been described. The significance of 
these components to locomotion in vivo is controversial. While the transient 
force-enhancement may be too short to play a role in vivo, some believe that 
residual component may enhance the SSC performance (Edman 1997) although 
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others suggest this mechanism to have negligible effects (Brown & Loeb 2000). 
Usefulness of the phenomenon described by Cavagna and Citterio (1974) with 
increase in muscle compliance and consequent release of potential energy after 
stretch, has also been questioned as a potential mechanism to be operative in 
whole body system in vivo (Lensel & Goubel 1987, Goubel 1987). In any case, 
literature suggests that a small and rapid stretch of muscle fibers may be most 
effective in natural movement with SSC of muscle function (Bosco et al. 1981, 
Ettema et al. 1990, Komi & Gollhofer 1997). 

Passive muscle tissue has also history dependent behavior, called 
thixotropy (Cambell & Lakie 1998, Proske et al. 1993, Proske and Morgan 1999). 
Thixotropy refers to the dependence of stretch responses on the immediate 
history of contraction and length changes. Especially, at intermediate muscle 
lengths a resting muscle can be either slack or taut depending on the previous 
history of contraction and length changes. The presence or absence of slack (i.e. 
looseness) can have dramatic effect on the following tension development in 
subsequent phase of movement. For example, slack may be introduced by 
contracting a muscle at a long length, and then letting a relaxed muscle to 
shorten to a test length. Effects of slack can be removed by activating the muscle 
after the test length has been reached (Proske et al. 1993, Whitehead et al. 2001). 

2.3  In vivo muscle mechanics during locomotion 

2.3.1  In vivo muscle function 
 
Direct measurement of muscle forces during locomotion was made possible 
after Salmons (1969) first introduced the buckle-type force transducer. Later, the 
method has been applied to both animal (e.g. Gregor et al. 1988, Walmsley et al. 
1978, Whiting et al. 1984) and human experiments (e.g. Fukashiro et al. 1993, 
Gregor et al. 1991, Komi et al. 1984, Komi et al. 1987, Komi et al. 1992, Nicol & 
Komi 1999). Studies using direct recordings of tendomuscular forces have 
provided important insights into function of a particular muscle, functional 
adaptation to variable conditions (Biewener & Gills 1999, Komi et al. 1992), load 
sharing between muscles (Herzog et al. 1994), role of elastic energy (Gregor et 
al. 1988, Roberts et al. 1997) and neural control of locomotion (Walmsley et al. 
1978). However, accurate assessment of mechanical power output of a muscle 
requires also direct measurement of muscle length during movement. 
Sonomicrometry technique developed by Griffiths (1987) has been adopted for 
animal studies for muscle fiber length measurements, while B-mode 
ultrasonography has been applied in human studies (e.g. Fukunaga et al. 1997a, 
1997b). Simultaneous in vivo force and length measurements have been 
performed e.g. in running turkeys (Roberts et al. 1997) and in flying pigeons 
(Biewener et al. 1998). The detailed animal studies have contributed to the 
current knowledge that the muscles are not only motors but also can act as 
brakes, springs and struts (Dickinson et al. 2000).  
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 In situ and in vitro studies using cyclic length changes and variable 
stimulation cycle have revealed important aspects on efficiency (Barclay 1994, 
Josephson 1993, Curtin & Woledge 1996) and pre-stretch potentiation (Ettema et 
al. 1992, Takarada et al. 1997b). In these studies, it has been possible to vary 
systematically the input and work output of a muscle and use combinations 
that are close to function in vivo. A study on mouse muscles has shown that a 
soleus muscle yields a higher power output but consumes less energy than does 
an extensor digitorum longus that is a fast twitch muscle (Barclay 1994). This is 
because the energetic cost is relatively insensitive to the muscle’s mechanical 
performance and because each cross-bridge cycle consumes one ATP 
(adenosine triphosphate). Therefore, efficiency of the muscles having slow 
twitch fibers may be high in cyclic movements due to the fact that their cross-
bridges perform fewer cycles than do those in fast twitch muscles. Curtin and 
Woledge (1996) have shown that the briefest stimulation (twitch) gave the 
highest efficiency in sinusoidal movement. Maximum power, however, 
required longer duty cycles. These results give support to the notion that 
optimizing conditions for power production compromises efficiency. Lou et al. 
(1999) showed that a substantial fraction of external work is done by the series 
elastic component in the late push-off phase when the shortening of a muscle 
occurs during relaxation. Indeed, in natural locomotion, the muscular activity 
often decays before the end of push-off phase (Fukashiro et al. 1995b, 
Kyröläinen et al. 1999). As pointed out by Hof et al. (1983), a natural 
submaximal activation pattern is probably crucial for optimal muscle-tendon 
performance where elastic energy is effectively utilized. The effective use of 
elastic recoil energy requires, however, that the relaxation and force decrease 
must occur in such way that the contractile element remains strong enough to 
maintain its length or even shorten (Ettema 1996b) as shown in running turkeys 
(Roberts et al. 1997).  
 During walking in cats, medial gastrocnemius muscle fibers have been 
reported to shorten despite stretch of the MTU (Griffiths 1991). In human high 
load hopping spindle shortening during MTU lengthening has been modeled in 
gastrocnemius but not in soleus muscle that behaved similarly as the entire 
MTU (Voigt et al. 1998). These results have raised questions about muscle 
spindle function. Because muscle stretch is a major stimulus for spindle 
activation, how the reflexes could be operative if the muscles do not lengthen in 
vivo? Herzog and Leonard (2000b) have suggested that while the muscle fibers 
may be shortening in cat gastrocnemius muscle, the soleus muscle may be a 
better indicator for muscle spindle length changes. As the soleus is a postural 
muscle, the suggestion put forward by the authors that the ankle extensor reflex 
responses may be dominated by signals from soleus the GA responses having a 
secondary role (Herzog & Leonard 2000b), seems reasonable. On the contrary to 
the result from the cat study (Griffiths 1991), a recent report on human walking 
where gastrocnemius muscle lengths were measured with ultrasonography 
showed that changes in fascicle length were in the same direction as in MTU, 
but showed a little time shift and a considerable difference in the magnitude of 
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length change (Fukunaga et al. 2001). These observations remind that there may 
be several different behaviors that may be species, muscle or task dependent; 
function of one muscle may not be generalized to cover other muscles even if 
they are agonists. 
  
2.3.2  Human movement studies 
 
In majority of human experiments, direct measurement of muscle force or 
length is not possible. Consequently, forces have been estimated using EMG-to-
force processing, optimization or inverse dynamics with anatomical 
measurements (e.g. Hof et al. 1983, Prilutsky & Zatsiorsky 1994, Spägele et al. 
1999, Voigt et al. 1998, Winters & Stark 1988). Muscle lengths have been 
obtained from kinematic recordings with application of models to predict 
tendomuscular length changes (e.g. Grieve et al. 1978, Hawkins & Hull 1990). 
Models are valuable but their utility depends on accuracy of their various 
components. Considering the properties of muscle, limited data of in vitro or 
cadaver studies is often applied in the models. Only in few studies comparisons 
between estimated and measured tendomuscular forces have been made 
(Fukashiro et al. 1993, Gregor et al. 1991). These studies have pointed out the 
possibility for overestimation of Achilles tendon forces using joint moment 
calculations during cycling and vertical jumping. Thus, direct measurement of 
tendomuscular loading provides a greater understanding of muscle function 
during natural movement. In addition, combination of tendomuscular force 
recordings simultaneously with fascicle length measurements by 
ultrasonography (e.g. Fukunaga et al. 1997b) provides tools to examine also 
output of a muscle during human locomotion. The following discussion focuses 
on different aspects of jumping exercises that were also used in the series of 
experiments in this thesis.  
 Standing jumps with and without a counter movement have been widely 
explored both experimentally (e.g. Asmussen & Bonde-Petersen 1974, Komi & 
Bosco 1978, Gollhofer et al. 1992, Fukashiro et al. 1995) and by computer 
simulations (e.g. Pandy & Zajac 1991, Bobbert et al. 1996). These studies have 
shown that a counter movement with SSC of muscle function enhances 
performance. The enhancement has been attributed to increased myoelectrical 
activity with reflex action (Bosco et al. 1982a), recoil of elastic energy (Komi & 
Bosco 1978, Fukashiro et al. 1995), the time available for force development 
(Bobbert et al. 1996), a high force at the end of the stretching phase (Zajac 1993) 
and contractile element potentiation (Walshe et al. 1998). Although counter 
movement jump produces higher jumping height than squatting jump, it 
cannot be considered as an efficient SSC exercise. This is because the impact 
load and activity levels during the downward phase are quite low, and because 
the transition between stretching and shortening takes relatively long time 
(Komi & Gollhofer 1997). The possibility of storing and utilizing mechanical 
energy by muscles exists in exercises where the contracted muscles are forcibly 
stretched immediately before shortening. Consequently, the storage and release 
of mechanical energy depends greatly on the type of movement (Gavagna 



 25 

1977). Therefore, drop jump and repetitive hopping performances, for example, 
are very different as compared to counter movement jump for the purpose of 
studying potentiation mechanisms in SSC type exercise. 
 Neuromuscular behavior in bouncing jumps has been extensively studied 
in search for mechanisms of movement control (Moritani et al. 1991, Voigt et al. 
1998), role of elasticity in locomotion (Fukashiro et al. 1995b, Komi & Bosco 
1978, Voigt et al. 1995b), and neuromuscular adaptation to variable conditions 
(Avela et al. 1994, Gollhofer and Kyröläinen 1991, Farley et al. 1998). In 
hopping, the impact loads and tendomuscular forces are higher than in counter 
movement jump enabling greater amount of elastic energy to be stored 
(Fukashiro et al. 1995b). Use of elastic energy may be related to sex (Komi & 
Bosco 1978), fiber type in the predominantly used muscles (Bosco et al. 1982) or 
movement amplitude (Thys et al. 1975). The smaller the movement amplitude 
during the ground contact, the better the elastic energy may be utilized in order 
to improve the efficiency of positive work (Thys et al. 1975). Furthermore, an 
effective multi-joint movement requires well-timed pre-activation and precise 
timing between agonist and antagonist muscles (Gollhofer & Kyröläinen 1991). 
High activity bursts via reflex system after a stretch of an activated muscle can 
enhance muscle stiffness, and consequently, affect elastic mechanisms 
(Gollhofer et al. 1984, Horita et al. 1996, Kyröläinen et al. 1990). Possibly, a stiff 
muscle in series with a compliant tendon would be most beneficial for 
utilization of elastic energy (Hof et al. 1983). Hopping frequency can also affect 
the use of elastic energy. Farley et al. (1991) observed that when subjects 
hopped with high or preferred frequency, the body behaved in a springlike 
manner. At low frequency of hopping the utilization of elastic energy was 
reduced because of longer contact time. Farley et al. (1991, 1998) have further 
shown that changes in hopping frequency are attained by altering leg stiffness, 
and especially the ankle joint stiffness. It must be noted that frequency in 
hopping experiments has been calculated in two ways. Farley et al. (1991) have 
used resonant period determined from contact time while Melvill Jones and 
Watt (1971), for example, have reported frequency as hops per second.  
 During locomotion, a special feature of biarticular muscles is that they 
may function as a transfer system for energy rather than as work generators. 
Winters and Stark (1988) showed with their model that gastrocnemius could 
both start fast movements and store elastic energy, and demonstrated task 
dependent function of synergistic plantarflexor muscles. Human gastrocnemius 
has been reported to function as energy transfer between the knee and ankle in 
jumping although the direction of power delivery has been debated (Bobbert & 
Ingen Schenau 1988, Pandy & Zajac 1991, Prilutsky & Zatsiorsky 1994). 
Furthermore, Pandy and Zajac (1991) concluded that an important contribution 
from gastrocnemius muscle to the jumping performance did not come through 
unique biarticular function of the muscle while Soest et al. (1993) challenged 
this point of view. These controversies have resulted from differences in 
modeling methods, which further stresses the importance for more direct 
measurements of musculotendinous mechanics during locomotion. 



 

3 PURPOSE OF THE STUDY 

In vivo muscle function has been studied both in isolation and during 
locomotion. Animal studies have provided fundamental information about 
basic dependencies and behavior of the muscle (e.g. Gordon et al. 1966, Hill 
1938). Most of these experiments are done using constant or maximal activation 
that rarely occur during natural locomotion. Human studies with in vivo tendon 
force measurements have benefited from advances in measuring techniques. An 
invasive buckle-type tendon force transducer (Komi et al. 1984, Komi et al. 1987, 
Komi 1990) has recently been replaced by less invasive optic fiber force 
transducer that provides an instrument for routine experiments (Komi et al. 
1996, Arndt et al. 1998, Finni et al. 1998). By combining the novel optic fiber 
method for tendon force measurements and ultrasonographic imaging for 
fascicle length determination the conventional force, electromyographic and 
kinematic recordings together with modeling provide unique combination of 
tools to study muscle function in human movement. The purposes of the 
present study can therefore be outlined as follows: 
 
 

1) Usually, forces produced by individual muscles or muscle groups, 
and length changes in muscle-tendon unit have been estimated in 
human movement studies (Hof et al. 1983, Bobbert et al. 1986, 
Gollhofer et al. 1992). Combination of direct measurement of 
tendomuscular forces and fascicle lengths can provide unique 
information about muscle function in humans. Therefore, the general 
aim was to describe tendomuscular loading patterns and to examine 
how the basic force-length and force-velocity relationships occur in 
natural locomotion (I, II, III, V, VI).  

 
2) The second purpose was to examine how the muscle function differs 

between different jumping types and how the neuromuscular 
function is modified when the performance is altered (I, III). More 
specifically, effects of contraction intensity and magnitude of MTU 
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length change on relative loading and muscle input-output ratio in 
the triceps surae and quadriceps femoris muscles were studied (II). 

 
3) Tendons do not act as simple force transmitters, but they interact 

with the muscles they are attached to. Compliance of tendinous 
tissue can modify the operating length and velocity of the muscle 
and, consequently, affect force production. Therefore, it is of interest 
to study changes in tendinous tissue length during human 
movement. The purpose was to utilize tendomuscular force and 
fascicle length measurements for estimating length changes in 
different compartments of MTU. Two different approaches were 
tested for estimating the tendinous tissue length change (I, IV).  

 
4) Muscle fascicle length may be assumed to reflect changes in the 

muscle fiber level. It has been shown in animals that change in 
muscle fiber length may not correspond to those in the MTU 
(Griffiths 1991, Roberts et al. 1997). Therefore, muscle fascicle 
behavior during natural human movement was examined and 
compared to changes in MTU length (III, IV, VI). Furthermore, 
changes in fascicle length in vastus lateralis muscle were studied in 
controlled eccentric and concentric knee extension movements. It 
was hypothesized that the changes in fascicle and MTU lengths 
would be in the same direction although the magnitude of velocities 
would be different (V, VI). 

 
5) Enhanced concentric performance after stretch has been attributed to 

the use of elastic energy, myoelectrical potentiation with reflex 
contribution (Bosco et al. 1981 1982), to the enhanced force after 
stretching phase (Bobbert et al. 1996, Edman 1997, Takarada et al. 
1997a), and to time-dependent activation mechanics (Bobbert et al. 
1996). Although many of these mechanisms have been studied in 
detail in animal models, their role in locomotion in vivo remains 
unresolved. Therefore, the final aim was to investigate pure 
concentric and stretch-shortening cycle exercises for understanding 
the possible mechanisms contributing to the enhanced concentric 
performance in SSC (I, V, VI).  

 



 

4 RESEARCH METHODS 

4.1  Subjects 

Total of 18 volunteers (7 women, 11 men) participated in this study and 
additional 6 subjects were involved in the pilot studies. Table 2 presents the 
physical characteristics of the subjects in each experiment that are reported in 
the original papers. The subjects had a heterogeneous background in physical 
activities, some being sedentary while few were national level top athletes. 
They were informed of the risks and benefits associated with the experiments 
and gave their written consent. The recommendations contained in the 
Declaration of Helsinki were followed. The use of the optic fiber force 
transducer in these studies was approved by the ethics committee of the Central 
Hospital of Central Finland.  
 
TABLE 2  Mean (SD) of the physical characteristics of the subjects.  
 
Experiment 1 2 3 
Age (yrs) 26 (10) 28 (8) 27 (4) 
Height (cm) 171 (7) 177 (10) 180 (7) 
Body mass (kg) 70 (14) 70 (12) 75 (8) 
Original paper I, II II III-VI 

4.2  Experimental design 

4.2.1  Experiment 1 (I, II) 
 
Four subjects performed squat jumps (SJ), counter movement jumps (CMJ) and 
hopping (HOP) on a force plate as normal bilateral performances. The same 
jumps were repeated unilaterally on a sledge ergometer (Kaneko et al. 1984) 
having an angle of 20.3° in respect to horizontal position (Fig. 2). In SJ and CMJ 
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the jumping height was moderately increased after each effort but even the last 
performances were quite submaximal. The subjects practiced the jumps a day 
prior to actual measurements during which they were given feedback of the 
knee joint angular displacement. Purpose was to keep the minimum knee joint 
angle the same (120 ; 180  being full extension) in SJ and CMJ. During HOP, 
amplitude of the knee joint angular displacement was 56 , and the subjects were 
free to choose their hopping height and frequency. 
 

SJ

HOP

CMJ

Jumps on the force plate Sledge apparatus

SJ

HOP

CMJ

Jumps on the force plate Sledge apparatus

 
 
FIGURE 2  Schematic figure of the squat jump (SJ), counter movement jump (CMJ) and 

hopping (HOP) that were performed bilaterally on the force plate (left). On the 
right, a subject in the sledge apparatus during the actual measurements. The 
sledge-jumps were done unilaterally. A black box attached to the subject’s 
shank is the optic fiber transmitter-receiver unit. 

 
During the performances both Achilles (ATF) and patellar tendon forces (PTF) 
were measured in vivo with the optic fiber method (Komi et al. 1996, Arndt et al. 
1998, Finni et al. 1998) (Fig 3). In addition, electromyographic activities (EMG), 
reaction forces and joint angular changes were recorded. Muscle-tendon lengths 
were calculated and Achilles tendon length changes were estimated with the 
method of Voigt et al. (1995a). Both Achilles and patellar tendon cross-sectional 
areas were measured using ultrasonography (Aloka SSD 280LS with 7.5 MHz 
linear array transducer). Thickness and width were measured from the images 
and the measures were used to calculate the cross-sectional area assuming the 
transverse section of the tendon is a regular ellipse (Kallinen & Suominen 1994).  
 Prior to the jumping maneuvers, maximal isometric plantarflexions were 
performed on an ankle ergometer (Avela et al. 1999, Nicol et al. 1996). Maximal 
knee extensions were measured with a knee extension device (Komi et al. 2000) 
(Fig. 3). In both cases, the performances were done with three different ankle 
and knee joint angles, respectively. Also, maximal concentric actions with 
constant joint angular velocity (i.e. isokinetic actions) were done in order to 
construct force-velocity curves for triceps surae (TS) and quadriceps femoris 
muscles (QF). The velocities used were 15, 20, 45 and 60 · s-1 (ankle) and 60, 120, 
180 and 230 · s-1 (knee). During the movement with maximal voluntary 
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contraction, a double twitch stimulus was delivered to tibial or femoral nerve 
approximately 60 ms prior to the angle of 90° or 120° at which the force value 
was taken for analysis, respectively. In a double twitch, two consecutive 
supramaximal stimuli were delivered to nerve with cathode (∅ 1.5 cm) over the 
tibial or femoral nerve, and the anode (5 × 8 cm) placed superior to the patella 
or over the hip, respectively (McKenzie & Gandevia 1991, Strojnik & Komi 
1998). 
 
4.2.2  Experiment 2 (II) 
 
One subject performed repetitive bilateral hopping with large (56°) and small 
(23°) knee joint angular displacement on a force plate. In the small amplitude 
hopping the jumping height was gradually increased. In addition, four other 
subjects performed the small amplitude hopping protocol also. The subjects 
were free to choose their hopping frequency, contact time and target height. For 
the purpose of control the subjects were provided with visual feedback of their 
knee angular displacement. ATF, PTF, reaction force, EMG activities and 
kinematics were recorded during the performances similarly as in experiment 1. 
 
4.2.3  Experiment 3 (III-VI) 
 
Nine subjects were involved in experiment 3 that included isokinetic knee 
extensions and unilateral sledge jumps. First, the entire length of the vastus 
lateralis muscle was imaged using ultrasonography from all subjects. The 
purpose was to construct a picture of the whole muscle and evaluate accuracy 
of the estimation method used for fascicle length determination. Then, 
maximum isometric knee extension with five different knee angles (90, 120, 140, 
160 and 175°) was measured in a knee extension device (Fig. 3). Maximal 
concentric and eccentric actions at three different velocities (60, 120 and 180°· s-1) 
were performed in a random order. Also, passive and maximal eccentric-
concentric actions at each velocity were recorded. Then, the subjects moved to 
the sledge apparatus where submaximal SJ, CMJ, repetitive CMJ and drop 
jumps (DJ) were performed (Fig. 2). The subjects were able to control their 
performance with visual feedback of the predetermined target height and 
lowest position. 
 In addition, four of the subjects had an optic fiber inserted into the patellar 
tendon on a separate day. They repeated the sledge performances after 
calibration procedure of the optic fiber force transducer in the knee extension 
device (Fig. 3). 
 In all performances, vastus lateralis fascicle lengths were imaged by 
ultrasonography, and EMG activities, forces and kinematics were recorded. 
Patellar tendon cross-sectional area was also determined by ultrasonography 
(Aloka SSD 2000) as done in experiment 1 for calculation of stress in the tendon. 
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FIGURE 3  An optic fiber force transducer has been passed through patellar tendon with a 

help of a hollow needle (left). After the needle has been removed the fiber 
remains in situ. On the right, a subject is sitting in the knee extension device 
during calibration of the tendon force transducer. A little amount of blood is 
coming out of the insertion site near the patellar tendon. The tips of the fiber 
have been attached to the light transmitter-receiver unit that is fixed to the 
subject’s shank. An ultrasound probe has been secured to the subject’s thigh 
for fascicle length measurements. Knee extension force was measured with a 
strain gauge in the lever arm of the ergometer.  

4.3  Recording procedures and analysis 

4.3.1  In vivo force measurements  
 
4.3.1.1 Optic fiber force transducer 
 
Direct tendon forces from Achilles (I, II) and patellar tendons (I, II, III, IV, VI) 
were measured with an optic fiber technique (Komi et al. 1996). This method 
requires a light transmitter and a receiver, and a piece of an optical fiber that 
can be sterilized and used in vivo. In the present study, a light emitting diode 
(GaAlAs semiconductor, HFBR-1414, Hewlett Packard, USA) was used as a 
transmitter. The created light signal having wavelength of 820 nm was sent 
through the core of a two-layer optic fiber. In the other end of the fiber, the light 
signal was detected by a photodiode receiver (pin-type, HFBR-2414, Hewlett 
Packard, USA), converted into an analogue signal and sent further to a 
recording computer. Small size of the transmitter-receiver unit and the use of 
telemetry enabled the subjects to perform unrestricted movements with the 
force transducer in situ. 
 The use of the optic fiber as a transducer for tendomuscular forces is based 
on light intensity modulation occurring in a micro-deformable optical fiber 
(Bocquet & Noel 1987). When the two-layer fiber is compressed, the amount of 
light traveling through is reduced. Figure 4 illustrates how the light rays can 
leak out of the fiber core when it is not straight. The magnitude of reduction 
depends on fiber characteristics such as fiber diameter and minimum bending 
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radii (Hecht 1993). During tendomuscular loading, tensile stress develops 
within the tendon fibers (Butler et al. 1978). This stress then compresses the 
plastic optic fiber inside the tendon and reduces the transmitted light. A linear 
relationship has been reported between an increasing loading of the tendon and 
the intensity of light passing through the optic fiber (Komi et al. 1996, Arndt et 
al. 1998) even in maximal voluntary contractions (Finni et al. 1998). 
 
 

Cladding
Core

Light rayθ < θc
θ > θc

Straight fiber Compressed fiber

Cladding
Core

Light rayθ < θc
θ > θc

Straight fiber Compressed fiber

 
 
 
FIGURE 4 In a straight step index multimode fiber a light ray is trapped by total internal 

reflection within the fiber core provided that the angle θ is smaller than the 
critical angle θc. In a compressed or bent fiber the ray incidents on the interface 
at angle greater than θc and part of the light leaks out. 
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FIGURE 5 Responses of the optic fiber to dynamic loading was tested by compressing the 

fiber between calibration scissors. Hysteresis loop (right) obtained from 
dynamic loading-unloading cycles (left). 

  
The optic fiber method has been tested both in animal preparations (Komi et al. 
1996) and in human experiments (Arndt et al. 1998, Finni et al. 1998, Komi et al. 
1995). Furthermore, the optic fiber behavior has been tested mechanically. 
Recordings during dynamic loading-unloading cycles are shown in figure 5. 
Hysteresis of the fiber output was found negligible. 
 In intact human tendon, movement of the skin during locomotion may 
cause artifact to the signal. By pulling the skin along the tendon near to the site 
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of insertion of the optic fiber the magnitude of artifact was evaluated (I). During 
full ankle plantarflexion the potential artifact could be the greatest if the skin is 
folded around the Achilles tendon. This problem was not present in the patellar 
tendon. 
 The optic fiber used in this study had a polymethyl methachrylate core 
and a fluorinated polymer cladding with a diameter of 0.5 mm. Prior to use, the 
ends of the fiber were cut straight and smoothed carefully with sandpapers 
having surface roughness of 12, 3, and 0.3 microns. The fiber was then sterilized 
with ethylene oxide, aired for 24 hours and sealed to a sterile bag to be opened 
just before the insertion. 
 
4.3.1.2 Insertion procedure 
 
A pad covered with anesthetic cream containing lidocain-prilocain was kept 
over the insertion site at least one hour before the insertion of the optic fiber 
took place. In the Achilles tendon, the insertion site was approximately 3 cm 
proximal to the calcaneus. In the patellar tendon the site was in the middle of 
the tendon. During the insertion procedure, the subjects were either sitting or 
lying on their back depending on the most suitable condition for the protocol 
used. In spite of the different posture, ankle and knee joint angles were always 
secured to 90° and 120°, respectively.  
 Aseptic conditions were ensured during the insertion procedure. After 
removal of the anesthetic cream, the insertion site and the surrounding skin 
were cleaned carefully with antiseptic liquid. Then, a 19-gauge needle was 
passed through the tendon on a sagittal plane after which the optic fiber was 
threaded through the needle. By removing the needle, the fiber remained in 
situ. Then, tips of the fiber were carefully cleaned and attached to the 
transmitter-receiver unit (Fig. 3). 
 
4.3.1.3 Calibration 
 
Calibration of the optic fiber was performed with subjects at the same position 
as during the insertion procedure. The optic fiber outputs from Achilles and 
patellar tendons were related to externally measured plantarflexor and knee 
extension forces, respectively. In a normal calibration setting, the subjects were 
asked to maintain steady submaximal force levels for few seconds. The 
magnitude of forces used in calibration was normally 10, 20, 30 and 40% of 
maximal voluntary contraction (MVC). In some cases also 100% MVC was used 
(see below).  
 The plantarflexor force was measured with a strain gauge force transducer 
under the ball of the foot with the same equipment as described earlier (II) 
(Arndt et al. 1998), or using an ankle ergometer device (I, II) (Avela et al. 1999, 
Nicol et al. 1996). Knee extension forces were measured with a custom built 
machine (I, II, III, IV, VI) (Komi et al. 2000) or using the same device as Arndt et 
al. (1998) that was modified to knee extension (II) (see also 4.3.3). External force 
was calculated to represent the tendon force using balance of moments around 
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the joints (Fig. 6). The assumptions required for this calculation include: 1) knee 
and ankle are frictionless joints, 2) there is no movement of joint angles during 
contractions, 3) moment arms are constant at different activity levels, 4) the 
moment arms were determined correctly for given joint angle (see 4.3.1.4) and 
5) external force is produced only by the triceps surae (in case of ATF 
calibration) or quadriceps femoris muscle groups (in case of PTF calibration). 
The movement of the joint angles was minimized by careful attachment of the 
subject to the required position. The stability of the position was evaluated by 
asking the subject to contract muscles and examining if there was joint 
displacement. Modifications were done if necessary.  
 EMG recordings showed that there was no activity in the hamstring 
muscles during calibration of the patellar tendon force. Furthermore, as the 
force produced by the knee extensor muscles is transmitted to the skeletal 
system through patellar tendon, the external force measured from the lever arm 
of the knee extension apparatus was produced purely by the quadriceps 
femoris muscles. This was not the case for plantarflexor force. In addition to the 
triceps surae muscle group, flexor digitorum longus, flexor hallucis longus, 
peroneus and tibialis posterior muscles assist the plantarflexing movement. 
Therefore, an electrical stimulation procedure was used to confirm that only the 
soleus and gastrocnemius muscles contributed to the plantarflexor force. This 
was done by applying stimulation (30 Hz, 0.2 ms square wave pulse, 
Neuropack Four mini, Nihon Kohden, Japan) to the relaxed plantarflexor 
muscles via self-adhering stimulation electrodes (5 × 5 cm, StimTrode, 
Axelgaard Manufacturing, USA). Anodes were placed over proximal part of the 
medial and lateral gastrocnemius muscle bellies and a common cathode was 
placed distally on the muscle-tendon region. The difference between the 
gradients of the regression lines in voluntary and stimulation procedure can be 
attributed to force contribution from deeper plantarflexor muscles (Fig. 6). 
When necessary, the calibration protocol was repeated during and/or after the 
measurements to ensure stability of the optic fiber transducer output. In some 
cases the fiber in Achilles tendon lost it’s property due to permanent 
deformation. This was probably caused by high forces during intensive jumps. 
These performances were not included in the analysis (Fig. 6D). It must be 
emphasized that after the calibration procedure has been performed the 
changes in moment arms during actual movements do not need to be taken into 
consideration in the force calculations. 
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FIGURE 6 Calibration of the tendon force transducer. External force (F’) was related to the 

optic fiber signal using a linear model and equation of balance of moments in 
the corresponding joints. A) Achilles tendon force calibration up to maximum 
effort. Equations of linearity were used in converting the fiber output to force 
values. Curves from two subjects. B) Patellar tendon force calibration up to 
maximum effort. Curves from two subjects. C) For some subjects, calibration 
curves using voluntary (filled squares) and stimulation (open circles) protocol 
were not identical showing the possibility for overestimation of the Achilles 
tendon force if contribution from other plantarflexor muscles was not 
considered. D) In a few exceptional cases, the optic fiber signal recorded from 
Achilles tendon was saturated after performing high intensity hopping (open 
squares) as compared to measurements done prior to the performances (black 
squares).  d; moment arm of the tendon, d’; moment arm of the foot.  
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4.3.1.4 Moment arm determination 
 
Two methods were used to determine tendon moment arms and axis of rotation 
in the knee and ankle joints. In the first method (I, II), they were obtained by 
using external landmarks and by rotating the distal segment of the 
corresponding joint on a marker table. With subjects contracting their muscles 
isometrically at joint angles specific to the calibration, the outlines of the leg and 
foot were projected on to the marker table. The proximal segment was held 
firmly in place while the distal segment, with markers attached along, was 
rotated. Lines drawn by the distal segment markers were used to determine a 
center of rotation at the joint angle corresponding to the calibration angle. The 
moment arms were then measured from the marker table and compared to 
those measured using anatomical landmarks. 
 In the second method (III-VI), moment arms were determined from 
radiographs taken at three different knee joint angles with contracted muscles. 
Images at angles of approximately 180°, 120° and 60° were superimposed to a 
transparency in order to determine the axis of rotation and moment arm of the 
patellar tendon (Spoor & van Leeuwen 1992). External forces measured in 
maximal eccentric and concentric knee extensions were converted into muscle 
force using individually calculated formula for angle dependent moment arms 
(V, VI). 
 
4.3.1.5 Vastus lateralis fascicle force (III, IV, VI) 
 
Vastus lateralis force (FVL) in the direction of the muscle fibers (fascicles) was 
deduced from patellar tendon force similarly to Ichinose et al. (2000): FVL = 
PTF· 34%(cosα)-1, where α is the angle between deeper aponeurosis and the 
fascicle, and 34 % is considered as a relative physiological cross-sectional area 
(PSCA) of VL to the total PCSA of quadriceps femoris muscle (Akima et al. 
1995).  
 
4.3.2  Muscle and tendon length measurements 
 
Model of Hawkins and Hull (1990) was used to estimate the length changes in 
the muscle-tendon unit (MTUlength). The model requires information about joint 
angles that were obtained using potentiometer of the knee ergometer (V, VI) or 
from high-speed video analysis (I, II, III, IV, VI). The jumping maneuvers were 
filmed at 200 Hz in the sagittal plane. Reflective markers on the neck, trochanter 
major, center of rotation of the knee, lateral malleolus, heel and fifth metatarsal 
head were digitized from the video using Motus software (Peak Performance 
Technologies, USA). Soleus and gastrocnemius MTU lengths were averaged to 
represent length changes in the TS muscle and the QF muscle lengths 
correspond to averaged length changes in the vasti muscles. This averaging 
procedure simplified the presentation of the length changes together with the 
forces measured from the tendons of corresponding muscle groups. The pattern 
of muscle length behavior was similar between the muscles within the muscle 
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group in the conditions used, and therefore the averaging procedure was 
considered justified.  
 Length of the vastus lateralis fascicle was calculated on the basis of 
ultrasonographic measurements (III-VI). Ultrasound technique has been widely 
applied to study muscle function and tendinous tissue behavior in isometric 
and in isokinetic movements (e.g. Fukunaga et al. 1996 1997, Herbert & 
Gandevia 1995, Ichinose et al. 1997, Fukashiro et al. 1995a). Several authors 
have reported great individual differences in fascicle lengths, pennation angles 
and in their elongation when joint angular changes were equal (e.g. Kawakami 
et al. 1993, Kearns et al. 1988, Yamamoto 2000). Aloka SSD-2000 
ultrasonographic device with a 7.5 MHz linear array probe and a scanning 
frequency of 42 Hz was used to image the fascicles. The probe was secured to 
the subject’s mid-thigh after clear visibility of the echoes from fascicle interface 
during contraction and movement was confirmed by the researcher. Fascicle 
interfaces appear as light stripes in the ultrasound image. One of these stripes 
was chosen for analysis and was traced throughout the movement. The images 
were recorded to a videotape with sampling frequency of 50 Hz. A 
parallelogram model (Fig. 7) was used when the images were digitized with 
Motus software (Peak Performance Technologies, USA). During locomotion the 
fascicle moves in relation to skin where the probe was attached. Therefore, the 
entire fascicle was not always fully visible within the image area. Thus, 
estimation of the full length was necessary. Another reason for estimation was 
that some subjects had notably longer fascicle than could be visualized at a 
time. The total fascicle length lfasc was calculated as follows: lfasc =    
lmeas+h(sinD)-1, where lmeas is actually measured length, h is the distance of 
fascicle end point from the superficial aponeurosis and D is the angle between 
fascicle and deeper aponeurosis. When the aponeuroses were not in parallel, 
the angle between them was subtracted from D to make the calculation possible 
(Fig. 7). The error for estimating the entire length of the fascicle was 2-7% as 
measured from constructed images of the whole vastus lateralis muscle. This 
error was caused by the curvature of the aponeurosis and fascicles. In addition, 
small but possible angulation (1-10�) of the superficial aponeurosis from the 
horizontal position introduces an error that is less than 0.5%. The changes in 
fascicle length in the direction of line of pull was calculated as lx = lfasc ·  cosD. 
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FIGURE 7 A parallelogram model used in fascicle length determination. 
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Length changes in the tendinous tissue, i.e. tendon and aponeurosis, were 
calculated as ltendinous = MTUlength - lx (IV, VI). Length changes in the thick 
tendon were estimated using model of Voigt et al. (1995a). This model, utilizing 
quadratic tendon force function Ftendon = k(∆ltendon)2, was used to calculate 
length changes in Achilles tendon (I) and in QF tendon (IV). Constant k in the 
formula was calculated as follows: k = [Y· T∅  (εmax - εtoe) 102] (εmax ·  lo)-2, where Y 
is Young’s modulus (1.2 GPa used), T∅  is tendon cross-sectional area 
(individually measured), ε is strain (values as Voigt et al. 1995a) and lo is tendon 
resting length (from Yamaguchi et al. 1990). Instantaneous velocities of the 
obtained lengths were calculated by dividing infinitesimal change in length 
with the corresponding time. 
 
4.3.3  Conventional force measurements 
 
Plantarflexor forces in isokinetic and isometric conditions were measured with 
the ankle ergometer (Avela et al. 1999, Nicol et al. 1996). In this device, 
movement of a pedal, where the foot was mounted, was controlled by a digital 
feedback system. Rotation axes of the pedal and ankle joint were coincided. 
Torque around the rotation axis of the pedal was measured by a piezoelectric 
crystal transducer (Kistler, Winterhur, Switzerland). Conversion of torque to 
force was made possible by using 1 cm elevation under the point of force 
application in the ball of the foot. Thus, the moment arm was easily determined. 
In maximal concentric isokinetic movements the initial ankle joint angle was 90° 
(180° being full extension) from where the pedal was driven the first 12.5° to a 
dorsiflexed position. At this position the subjects had one second to produce as 
high force as possible before the concentric movement with pedal rotation of 
30° started. The subjects were instructed to sustain the maximum effort 
throughout the motion. 
 Knee extension forces in isokinetic and isometric conditions were 
measured by a strain gauge attached to a lever arm of the ergometer (Komi et 
al. 2000). The lower leg of the subject was fixed to the lever arm, length of which 
could be read from an inbuilt ruler. The parallel alignment of the rotation axis 
of the lever arm and knee joint were tested with passive and active extension-
flexion movements. Maximal eccentric (ECC) and concentric actions (CON) 
were performed with angular displacements from 160° to 90° and from 90 to 
160°, respectively. In addition, eccentric-concentric knee extension (SSC) was 
performed at knee angular velocity of 120 °· s-1. Maximum preactivation was 
used in each condition. In both ankle and knee ergometers the inertial effects 
were compensated by subtracting the signal recorded in passive condition from 
that obtained in the active effort. 
 Reaction forces were measured with a force plate (Raute Oy, Lahti and 
University of Jyväskylä, Finland) both in vertical jumping (I, II) and in sledge 
jumping performances (I, III, IV, VI).  
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4.3.4  Muscular activity 
 
Bipolar surface electrodes (Beckmann miniature skin electrodes, USA) with 
interelectrode distance of 20 mm were used to record electromyographic 
activities from tibialis anterior, soleus, gastrocnemius medialis, vastus lateralis 
and rectus femoris muscles (experiment 1 and 2) and from tibialis anterior, 
soleus, vastus lateralis, vastus medialis, rectus femoris and biceps femoris 
muscles (experiment 3). The electrode positions were chosen according to the 
recommendations of SENIAM (Hermens & Freriks 1997). The EMG signals 
were amplified and sent telemetrically to the recording computer. The signals 
were high pass filtered (20 Hz before sampling) and full wave rectified. Then, 
they were integrated and averaged to obtain average EMG (aEMG) for different 
phases of movements. The jumping performances were divided into braking 
and push-off phases and the isokinetic movements were divided into 50 ms 
periods (V) or averaged over 80 ms using symmetrical moving average 
procedure (VI). 
 
4.3.5  Data collection and processing 
 
Analog signals were collected to a PC with a frequency of 1 kHz. An electronic 
pulse was used to synchronize the analog and video data. As the analog and 
video data were recorded at different frequencies, they were later resampled at 
200 Hz to for multiple calculations and data presentation. The jumping height 
(h) was determined either from the net impulse (NI) or from the take-off 
velocity (vo) of the center of mass in the following ways: 
 
h = vo2 (2g)-1   or   h = (NI· m)2 (2g)-1 
 
NI = ∫[Fz(t) – mg]dt, where Fz is vertical reaction force, t is time and m is mass 
 
The movement of center of mass was determined from kinematic analysis using 
mass segment parameters from Dempster (1955). In the sledge jumps, the 
displacement of the sledge seat was measured with a pulse meter. The 
movement of the sledge seat together with knee joint angular signal from 
electrical goniometer was used as a feedback for subjects for the purpose to 
control their performances during the jumping performances. 
 Hopping frequency (II) was calculated from consecutive touchdowns 
divided by the corresponding time (hops· s-1). Stiffness of the leg spring was 
determined from the ratio of the peak vertical ground reaction force to the 
vertical displacement of the center of the mass during contact phase (Farley et 
al. 1991, McMahon & Cheng 1990). 
 Isokinetic force-velocity relationships were constructed utilizing Hill’s 
parabolic equation (F+a)(V+b)=b(Fo+a), where F is muscle force, Fo is maximal 
isometric muscle force, V is velocity of muscle at given F, and a and b are 
constants. First, constants a and b were determined by plotting F against (Fo-
F)· V-1 as done by Tihanyi et al. (1982). Fitting the line by least squares did not 
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always produce satisfactory correlation. Thus, a solver function (Microsoft 
Excel) was used to find values of a and b in the equation F= b(Fo+a)/(V+b)-a  so,  
that the values F, Fo and V would correspond to experimentally measured 
values. Because terms (a/Po) = (b/Vo) are constants, the calculations contained 
constrains to ensure the validity of this equation, and that the maximum 
velocity (Vo) would have values within reasonable physiological range. This 
solving process was repeated for each experimentally derived force (F) and 
velocity (V) value pairs, and average values of the calculated a’s and b’s were 
used. 
 Power produced by the muscle-tendon unit was calculated by multiplying 
tendon force with MTU velocity. Both instantaneous and average power 
outputs over eccentric and concentric phases were calculated (I).  

4.4  Statistical methods 

Means and standard deviations (SD) or standard errors (SE) were calculated for 
each subject group. Pearson’s correlation coefficients were calculated to find out 
significant relationships between selected parameters. The data was tested for 
normality because low number of subjects, and often non-parametric tests were 
chosen. Friedman’s two-way Anova was used to reveal differences in 
parameters during different velocity or jumping conditions. Student’s two-
tailed t-test, Wilcoxon signed rank-test or Mann-Whitney U-test was used to 
determine differences between two parameters such as differences in eccentric 
and concentric phases or between two jumping conditions. Level of significance 
in all tests was set to p<0.05. 



 

5 RESULTS 

This chapter gives an overview of the results of the experiments. Original 
papers (I-VI) should be consulted for additional details. 

5.1  Muscle mechanics during jumping 

5.1.1  Neuromuscular behavior 
 
Typical patterns of reaction force and patellar tendon loading during unilateral 
sledge performances and bilateral jumps on the force plate are shown in figure 
8. Due to the inclination of the sledge, the reaction forces in unilateral sledge 
jumps were only 20 % of those recorded during normal bilateral jumps on a 
force plate (I). In general, the tendon loading patterns were similar, the major 
difference between the two conditions being in contact times and movement 
amplitudes. Comparison of reaction forces and EMG activity patterns showed 
no differences when subjects performed the jumps with or without the optic 
fiber force transducers intact (Fig. 9). 
 The loading patterns remained quite constant but the peak forces 
increased together with jumping height (I, II). A change in the amplitude of 
knee joint angular displacement during hopping altered the relative loading of 
the TS and QF muscles. During large amplitude jumps the patellar tendon was 
primarily loaded whereas during jumping with small amplitude the Achilles 
tendon forces were greater (Fig 10). The effect of movement amplitude is 
further illustrated in figures 16 and 17. 
 The force in the end of eccentric phase correlated positively with peak 
power in the concentric phase both in TS (r2 = 0.63, p< 0.01) and QF muscles (r2 
= 0.85, p< 0.01) (I). Comparison of muscle input (i.e. EMG activity) and mean 
power output of the TS and QF muscles showed that using the same input, 
more power could be produced in the concentric phase of CMJ as compared to 
SJ (I). In hopping, the input-output ratio of TS muscle showed an optimum 
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when the jumping height was low and it was performed close to a natural 
hopping frequency of 2.1 Hz (Melvill Jones and Watt 1971). Preferential 
preactivation of gastrocnemius muscle was evident in both small and large 
amplitude hopping but major EMG activity of triceps surae muscle occurred in 
the eccentric phase of small amplitude hopping (II). 
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FIGURE 8  Reaction forces (top) and patellar tendon forces (below) during squat jump (SJ), 

counter movement jump (CMJ) and hopping (HOP) on the force plate (left) 
and on the sledge (right). Jumping heights are given from these particular 
jumps from one subject. Note: the reaction force and time scales are different 
between the bilateral force plate and unilateral sledge conditions. See paper I 
for average curves. 
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FIGURE 9  Comparison of vertical ground reaction forces (Fz), and EMG patterns during 

counter movement jump (CMJ) with (right) and without (left) the optic fibers 
in the tendons. 
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FIGURE 10  Effect of intensity on tendon loading. During large amplitude movements such 

as CMJ (left) or hopping with 56  knee joint displacement the patellar tendon 
was primarily loaded. In small amplitude hopping with knee flexion of 23  
during the ground contact phase the Achilles tendon produced greatest forces 
(right). Increase in jumping height (upward arrows) did not alter the loading 
patterns but the peak forces were increased. Representative examples from two 
individuals. 

 
During hopping with different amplitudes, the peak stretching velocities (0.33 
vs. 0.36 m· s-1 for small- and large-amplitude, respectively) and activity patterns 
remained quite similar in QF muscle in spite of different magnitudes of stretch 
in the muscle. The aEMG of VL muscle was greater (p<0.05) in the eccentric 
than in concentric phase in both hopping conditions (II).  
 In large amplitude jumps the QF did greater work and produced more 
power than the TS muscle (Fig 11). In large amplitude hopping, however, the 
relative contribution of TS increased but did not exceed the contribution of QF. 
Figure 12 shows that the peak powers were reached almost simultaneously for 
QF and TS muscles in submaximal, large amplitude hopping. 
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FIGURE 11 Positive work (left) and peak power (right) produced by triceps surae (TS) and 

quadriceps femoris (QF) muscles in squat jump (SJ), counter movement jump 
(CMJ) and hopping with large amplitude (HOP). 
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FIGURE 12 Two representative examples of power-time curves during large amplitude 

hopping on the force plate. Peak powers in quadriceps femoris (QF) and 
triceps surae (TS) muscles were reached almost simultaneously in these 
submaximal performances. 

 
5.1.2 Muscle-tendon behavior  
 
Changes in MTU, muscle and tendon compartments were estimated for the 
purpose of examining muscle function in greater detail during different 
locomotion conditions. Soleus muscle compartment length during jumping was 
modeled in paper I and vastus lateralis muscle fascicle length was determined 
from ultrasonographic images in papers III, V and VI. 
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FIGURE 13 Fascicle lengths, patellar tendon forces, reaction forces and vastus lateralis EMGs 

during unilateral SJ, CMJ and DJ on the sledge apparatus. Dashed vertical lines 
indicate time at which the muscle-tendon unit started to shorten. 

 
In all the measured SSC exercises where the MTU was stretched prior to 
shortening, the muscle compartments behaved similarly (Figs. 13 and 14). The 
magnitude of length change was, however, different depending on the 
movement amplitude, contraction intensity and examined muscle (I, III). For 
example, during drop jumps the change in VL fascicle length was smaller than 
in CMJ although the MTU length change was same in both conditions (Fig. 13) 
(III). This was because the greater EMG activity in DJ reduced both the 
magnitude and velocity of the fascicle length change as compared to the CMJ. 
During the downward movement in CMJ, the initial lengthening of both TS and 
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QF MTUs occurred with little activity. This is illustrated in the level of muscle 
compartment in figures 13 and 14. When the activity in the end of lengthening 
phase and in early shortening phase increased, there was possibility for the 
force to continue the increase during muscle shortening also (I, III). During SJ, 
the muscle compartment, as modeled for soleus and measured for VL, 
shortened throughout the performance. 
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FIGURE 14 An example of muscle-tendon interaction in the triceps surae muscle during 

squat jump (top), counter movement jump (middle) and hopping (below). Fz; 
vertical ground reaction force, MTU; muscle-tendon unit length, tendon; 
tendon length calculated with the force method, fiber; estimated muscle fiber 
length change. For average curves see paper I.  
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Tendinous tissue length changes were estimated by two methods. The method 
of Voigt (Voigt et al. 1995a) in combination with direct tendon force 
measurements (force method) was used to calculate Achilles tendon length 
changes during jumping (I). This method predicted that the Achilles tendon 
stretches prior to shortening in SJ, CMJ and HOP (Fig. 14). Furthermore, the 
force method was compared to the results obtained from direct measure of in 
vivo fascicle length change and MTU length estimation (kinematic method). 
Both the force and kinematic approaches predicted the same pattern of behavior 
during different jumping types for tendinous tissue of the vastus lateralis 
muscle (Fig. 15). The magnitude of length change, however, differed 
considerably between the methods. The absolute length changes and strain 
were greater using kinematic method (IV). 
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FIGURE 15 Tendinous tissue behavior estimated using kinematic and force method gave 

the same patterns of length change but the magnitude differed considerably 
(left). Comparison of tendon force -strain relationships with the two methods 
(right). Individual 95% confidence interval (CI) for kinematic regression line is 
shown as dotted lines. For force method CI is marginal. Error bars represent 
SD. 

 
 
 
5.1.3 Force-length-velocity relationships  
 
The instantaneous force-length and force-velocity curves during natural 
locomotion differ considerably from the isometric and isokinetic relationships 
obtained using maximal activation. In the following, instantaneous force-length 
and force-velocity relationships are first presented in the level of muscle-tendon 
unit with examples of CMJ and hopping on a force plate (Fig. 16 and 17). In 
every condition, the force-length curves traveled counterclockwise direction for 
both TS and QF muscles (I, III).  
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FIGURE 16  Force-length relationship during hopping (solid line) and counter movement 

jump (CMJ, dashed line) in the triceps surae (left) and quadriceps femoris 
muscle-tendon units (right). First, MTUs lengthened and force increased. 
During shortening further increases in force could be seen. During CMJ the 
patellar tendon was primarily loaded whereas the Achilles tendon forces were 
greater during hopping. 
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FIGURE 17 Force-velocity relationships in counter movement jump (left) and hopping 

(right). In hopping the stretching velocities were greater both in TS and QF 
muscle-tendon units as compared to CMJ. Negative velocity denotes stretching 
and positive shortening of the MTU, respectively. ATF; Achilles tendon force 
(solid line), PTF; patellar tendon force (dashed line).  

 
Force-velocity curves measured in maximal isokinetic conditions could exceed 
those measured during submaximal locomotion. Figure 18 shows both the 
instantaneous and isokinetic force-velocity curves. SJ, CMJ and HOP were 
submaximal bilateral jumps on the force plate and the isokinetic “classical” 
curve was measured with the ankle ergometer and fitted to the Hill’s equation. 
The two classical curves show the magnitude of overestimation of ATF if 
contribution of other plantarflexor muscles is neglected. In figure 19 the 
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magnitude of enhancement is further illustrated in hopping where the 
examples are taken from small and large amplitude performances.  
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FIGURE 18 Comparison of isokinetic and instantaneous force-velocity relationships from 

four individuals during squat jump (SJ), counter movement jump (CMJ) and 
hopping (HOP). Hopping was performed with large knee joint angular 
displacement. There is possibility for bilateral loading difference in these 
jumps that were performed on a force plate. The dashed line with higher force 
values shows the total plantarflexor force and the dotted line represents pure 
Achilles tendon force calculated by using optic fiber calibration. Scales are 
normalized to measured maximal plantarflexion force (Fo) and estimated 
maximal shortening velocity (Vo). 
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FIGURE 19 Enhancement of triceps surae and quadriceps femoris muscle outputs during 

hopping with small (left) and large (right) knee joint angular displacement. The 
black squares indicate the actually measured values and the dashed lines have 
been constructed by using Hill’s equation. The shaded areas illustrate that the 
concentric muscle output in submaximal hopping exceeded that measured in 
maximal isokinetic condition.  

 
The enhancement of the output of MTU was further examined by constructing 
the force-velocity curves for the vastus lateralis muscle fascicle (VI). The results 
showed that the fascicle force in submaximal jumps reached values close to 
those produced during maximal isokinetic effort, but did not exceed them. 
Force in the MTU, however, showed potential enhancement at higher 
shortening speeds of MTU (Fig. 20). During DJ especially, it was shown that the 
muscle-tendon interaction made it possible for contractile component to act in 
high force and low velocity region with the tendon responsible for great 
shortening velocity of the muscle-tendon unit (III). 
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FIGURE 20 Force-velocity curves for vastus lateralis fascicle (left) and muscle-tendon unit (right). 

Comparisons of the instantaneous curves during drop jump (DJ) or counter movement 
jump (CMJ) (solid lines) and isokinetic curves (filled circles) showed that muscle 
output was not enhanced over that in maximal isokinetic condition in either jump type. 
In DJ, however, the instantaneous MTU force at high muscle-tendon shortening speeds 
exceeded that extrapolated from isokinetic measurements. 
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5.2  Fascicle behavior and force enhancement in controlled knee 
extensions 

Figure 21 shows examples of force, knee angle, VL EMG, fascicle and tendinous 
tissue length recordings during maximal knee extensions. As expected, the 
fascicles shortened in the concentric action and lengthened in the eccentric 
action (VI). Velocity had no significant effect on the magnitude of length change 
in ECC or in CON (Fig. 22). In stretch-shortening cycle the fascicles lengthened 
prior to shortening (Fig. 23) (V). The magnitude of lengthening in the eccentric 
phase was greater (p<0.05) than shortening in the concentric phase.  
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FIGURE 21 Vastus lateralis EMG, knee extension force, knee angle, fascicle length and 

tendinous tissue length recordings during maximal concentric (left) and 
maximal eccentric conditions (right). Velocity in this example was 120°· s-1. 

 
Concentric force production in knee extension movement was enhanced in SSC 
as compared to pure shortening action (V). The force enhancement was 
significant (p<0.05) at knee angle of 115° although the force prior to the 
concentric phase was smaller (p<0.05) in SSC than in CON. The force 
enhancement was not associated with differences in EMG activity but the 
fascicle behaved differently between the conditions. In eccentric phase of SSC 
the VL fascicle was actively lengthened being significantly longer at the 
beginning of shortening in SSC than in CON (Fig. 22). During the concentric 
phase the fascicle shortened more in SSC than in CON in a way that at the knee 
angle of 115° the difference in was not anymore significant. 
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FIGURE 22 Relationships between patellar tendon force (PTF) and fascicle length during 

concentric (left) and eccentric (right) conditions at 60 and 180°· s-1. Average (SE) 
for 4 subjects is given. 
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FIGURE 23 Torque (upper curves), fascicle lengths (middle) and rectified vastus lateralis 

EMG activity in SSC (solid lines) and in pure concentric (CON) knee extension. 
During the eccentric phase of SSC the fascicles lengthened actively being 
significantly (*p<0.05) longer prior to the concentric phase than in CON. The 
torque increased in the eccentric phase but dropped in the subsequent 80 ms 
transition phase to a lower level as compared to the pre-activity torque level in 
CON. During the concentric phase at a knee angle of 115° the force was higher 
in SSC than in CON, but no significant differences in fascicle length or EMG 
were found. 



 

6 DISCUSSION 

Main findings of the present study can be summarized as follows: 
 

 
1) Tendomuscular output in the concentric phase of CMJ was related to 

the force at the end of stretching phase in both TS and QF muscles. 
With similar EMG activity level, a greater concentric power output 
could be achieved in CMJ than in SJ. Modeling soleus muscle-tendon 
interaction showed that tendon stretch and recoil occurred in both SJ 
and CMJ. In CMJ, stretch-shortening cycle in the active muscle 
compartment was not particularly efficient (I). 

 
2) Increase in jumping intensity did not alter the loading patterns but 

peak ATF and PTF were increased. In small-amplitude hopping with 
different intensities a jumping height where the concentric phase is 
most economical, as measured by EMG-to-ATF ratio, could be found. 
At this low jumping height the frequency was close to preferred 
frequency of hopping (II). 

 
3) The Achilles tendon was primarily loaded in small-amplitude 

hopping whereas patellar tendon forces were greater in large-
amplitude jumps, such as CMJ and hopping with great knee joint 
angular displacement during the ground contact phase. In hopping 
with different amplitudes the peak stretching velocities and activity 
patterns remained similar in QF muscle in spite of different 
magnitude of stretch in the muscle. For the TS muscle, however, there 
were several possible control strategies (II). 

 
4) Enhancement of concentric force production after pre-stretch was 

demonstrated in maximal, constant velocity knee extensions. Force 
enhancement was related to fascicle length behavior but was not 
associated with differences in EMG levels (V).  
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5) In all the examined SSC exercises, the fascicles first stretched and then 
shortened. The magnitude of length change was, however, dependent 
on movement type and contraction intensity. For example, in CMJ the 
length change was considerably greater than in DJ where the activity 
level, and consequently, the stiffness was greater. (III, VI). 

 
6) Instantaneous force-velocity curve of the muscle-tendon unit could 

exceed that recorded in maximal isokinetic conditions. The 
enhancement of muscle output was predominant in the normal 
hopping conditions as compared to the sledge jumps, and could be 
seen both in the triceps surae and in the quadriceps femoris muscle 
groups. In the sledge jumps, no enhancement of muscle output was 
found at the fascicle level (VI). 

 
7) Comparison of the force and kinematic methods to estimate 

tendinous tissue length change during locomotion produced the 
same patterns of behavior but the magnitudes of length change 
differed considerably. The absolute changes in length and in strain 
were greater using kinematic method as compared to force method 
(IV). 

6.1  In vivo behavior of muscle and tendon during jumping 

6.1.1  Muscle-tendon interaction 
 
Muscular output depends on interaction between muscle and tendon with a 
given force, activity level, length and velocity. In this regard human subjects 
may show individual activity patterns and several patterns of behavior may be 
found during different natural movements. Also, stiffness of elastic structures 
may vary (Voigt et al. 1995a) and have an effect on the magnitude of stretch in 
the fascicles (Yamamoto 2000). In bilateral jumps, MTUs were found to act as 
springs (I, II) or work generators (I, see also Fig. 16), whereas in sledge 
performances they were mainly work generators (III). Measurement and 
modeling of muscle and tendon length changes in the knee and ankle extensor 
muscles showed that in SJ, the soleus muscle compartment (I) or VL fascicle (III) 
shortened throughout the movement. First, at low levels of force, shortening of 
the muscle lengthened the tendon when the force was increasing. When the 
force was decreasing, both components shortened. These findings are similar to 
behavior of gastrocnemius muscle during maximal SJs (Kurokawa et al. 2001). 
Thus, tendon stretching and recoil energy can have an effect on tendomuscular 
output in the SJ also. In CMJ, both the tendon and muscle lengthened prior to 
shortening. During muscle lengthening, however, the activity level was quite 
low. Consequently, the storage of elastic energy within the muscle 
compartment could not have been significant because it requires an active 
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stretch with sufficient force (Cavagna et al. 1968, Cavagna 1977). Furthermore, 
the transition between stretching and shortening phase was long in CMJ. This 
fact further suggests that the role of active stretch in creating beneficial 
conditions for the utilization of elastic energy in the muscle was only minor in 
these submaximal performances. In bouncing jumps, such as DJ and hopping, 
the effectiveness of SSC depends on the loading pattern (force), activity level, 
duration of the transition phase, and magnitude of length change. In drop 
jumps where the activity level was higher than in CMJ, the VL fascicles were 
stiffer bearing greater forces but undergoing smaller length changes. This 
benefits elastic mechanisms but also myoelectrical potentiation through stretch 
reflex response (see 6.2).  
 Both in CMJ and in DJ, the fascicles started to shorten while the tendinous 
tissue and the entire MTU was still lengthening (Fig.13). This was because the 
EMG activity was increasing and, probably because of the force-length 
relationship. For example, when the fascicles operate in the ascending limb of 
the relationship as shown in paper III, the fascicles gain force potential during 
the stretch and are strong enough to elongate the tendinous tissues also in the 
beginning of the shortening phase. This behavior delays the beginning of 
shortening of the tendinous tissue to the late push-off phase, when the 
recovered recoil energy compensates muscle fiber shortening velocity (6.2.2). 
 It must be noted that the behavior of one muscle group cannot be 
generalized to represent function of other muscles. Also task dependency of 
muscle function needs to be emphasized (Gollhofer & Kyröläinen 1991). 
Different activity patterns and amount of length change vary considerably 
between different muscles (see Voigt et al. 1995b, Bobbert et al. 1996). Muscle 
specific analysis is of great importance especially when mono- or biarticular 
muscles are compared (Prilutsky & Zatsiorsky 1994). However, simple models 
are sometimes useful because parameter estimation may be reduced. In the 
present study, the muscles of quadriceps femoris and triceps surae muscle 
groups were often lumped to act as a simple functional unit. Consequently, 
there was no need to estimate the relative contribution of different muscles to 
the directly measured patellar and Achilles tendon forces, respectively. 
Therefore, the loading patterns are reliable in shape and represent true forces 
produced by these muscle groups in vivo. 
 
6.1.2 Effects of intensity and movement amplitude 
 
The loading patterns remained similar at all intensities but changes in 
magnitude of force and duration of performance were observed with increased 
effort. Also Komi et al. (1992) observed increases in peak Achilles tendon force 
with increased running velocity. Alterations in knee joint angular movement 
during the ground contact phase, or increase in jumping height did not cause 
dramatic changes in the control strategy of QF muscle during hopping. The TS 
muscle, however, showed several possibilities in this regard. In large amplitude 
hopping, the EMG activity was similar between eccentric and concentric phases 
while in small amplitude hopping major activity was found during the eccentric 
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phase. Furthermore, the small amplitude hopping was characterized with faster 
stretching velocity of TS muscle and shorter contact time (II) having the criteria 
for effective SSC that are 1) a well-timed pre-activation, 2) short and fast 
eccentric phase and 3) immediate transition between stretch and shortening 
phases (Aura & Komi 1987, Bosco et al. 1981, Komi & Gollhofer 1997). It must 
be noted, however, that in the present study (II) the relative length changes in 
the muscle and tendon compartments were not estimated for each subject (see 
example in Fig. 14). Because passive tendinous structures and active muscle 
respond differently to stretch it is impossible to know where these conditions 
occur in the muscle. The abovementioned conditions together with high force in 
eccentric phase are beneficial for elastic energy storage in the muscle (Cavagna 
1977) while elastic storage in the tendinous tissue depends on the magnitude of 
elongation and force in the end of the stretch. The concentric phase with 
decreasing EMG activity and force was the elastic energy could be recoiled (Lou 
et al. 1999, Ettema 1996b). The benefit of elastic energy in economizing the 
concentric performance had an optimum at medium jumping heights. This 
optimum, where EMG-to-ATF ratio was lowest, occurred at hopping frequency 
of 2.0 Hz that is reportedly close to preferred frequency (Melvill Jones & Watt 
1971) at which natural resonant frequency can be of advantage (Wilson et al. 
1996). Also Taylor (1985) has shown that at preferred hopping frequency the 
role of elastic energy is maximized and use of metabolic energy is minimized.  
 In order to increase jumping height more input to muscle is required to 
achieve powerful performance, as shown in the present study (II). The same 
behavior was seen in experiments by Moritani et al. (1991) where the ground 
contact phase was kept constant and frequency of jumping was decreased with 
simultaneous increase in hopping height. These data suggest that economy of 
the shortening phase is compromised for power production as shown in 
controlled animal studies (Curtin & Woledge 1996). Besides increasing muscle 
input in the concentric phase, also force in the end of eccentric phase is related 
to powerful concentric performance (I) (Bobbert et al. 1996, Takarada et al. 
1997a). 
 
6.1.3 Classical vs. instantaneous force-velocity relationships 
 
The classical force-velocity relationship describes a fundamental property of a 
skeletal muscle. During natural locomotion, however, the basic relationship 
measured with constant, maximal activity differed considerably from 
instantaneous recordings (Figs. 19, 20) as shown previously by Gregor et al. 
(1988). Differences stem from constantly changing muscle activity and length, 
and from variable load applied on the muscle during locomotion. In this 
context it must be emphasized that the basic force-velocity relationship is a 
property of a contractile component, and that the measurement of 
instantaneous length changes, from where the velocities are derived, are often 
measured in the level of MTU as done in the study by Gregor et al. (1988). In 
the present study, the comparison of the force-velocity curves at the level of 
muscle fascicle and MTU reveal dramatic differences between the curves (Fig. 
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20). Although the output of MTU was greater than that extrapolated from 
isokinetic measurements, the output in the fascicle level was not. This does not 
mean that the enhancement of power output would not occur in the contractile 
level at all; in fact, it has been demonstrated in isolated mouse muscles that the 
lack or presence of enhanced output is dependent on the type of muscle. By 
comparing force-velocity curves Barclay (1994, 1997) showed that the curves 
measured during sinusoidal cyclic contractions exceed the classical curve in 
mouse soleus muscle but not in extensor digitorum longus muscle.  These 
differences in muscle’s performance also relate to differences in efficiency 
between muscles. In intact muscle groups the muscles act synergistically and 
the interaction between tendon and the muscles during locomotion may lead to 
misinterpretations about muscle’s performance if architectural or functional 
differences between muscles are not considered.  
 The measurement of classical force-velocity relationship is especially 
difficult in human studies where linear velocities of a muscle must be derived 
from joint angular motion. Furthermore, measurement of the relationship 
requires that there are no changes in the length of series elastic element. This 
may be accomplished by allowing the maximally activated muscle to shorten 
against a constant force during which there are no changes in tendon length. 
When measuring force production of human muscles in vivo, these conditions 
are not, however, easily met. Without direct measure of fiber or fascicle lengths 
it is difficult to isolate the contribution of contractile and elastic components. 
Because muscle fiber or fascicle velocity does not correspond to MTU velocity 
or joint angular velocity even at constant muscle activation level, the true 
performance of a muscle is not revealed by conventional isokinetic 
measurements (Ichinose et al. 2000). 
 By estimating length changes in both MTU and fascicle level, the present 
study showed that the concentric output of MTU could be greater in 
submaximal locomotion as compared to that measured under maximal 
activation in isokinetic condition. The following chapter discusses the possible 
mechanisms that might be involved in the SSC related performance 
enhancement.   

6.2  Mechanisms of performance enhancement in SSC 

In search for mechanisms of the enhanced performance during shortening 
phase of SSC, previous conditions in the eccentric phase must be known. In 
respect to the muscle-tendon interaction, there are several possibilities how 
MTU may function. On the one hand, when the MTU lengthens, the tendon 
may be responsible for lengthening almost entirely (Roberts et al. 1997) as was 
the case in DJ on the sledge (III). This requires high activity in the muscle fibers 
and is most likely to occur in MTU actuators having large tendon-to-fiber 
length ratio. On the other hand, muscle and tendon may both lengthen. In some 
studies, continuous muscle fiber shortening has been reported although the 
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MTU is lengthening (Griffiths 1991). In the present study also, this phenomenon 
was seen during late braking phase of CMJ and DJ on the sledge (Fig. 13). 
Diversity of the reported behavior can reflect variety of explored experimental 
conditions or differential behavior amongst species and examined muscles in 
different tasks. In line with previous literature, the submaximal performances of 
the present study suggest that activation mechanics and use of elastic energy 
affected the performance enhancement and economy of the movement 
(Anderson & Pandy 1993, Bosco et al. 1981, 1982b, Thys et al. 1975). 
Furthermore, results from maximal knee extensions of the present study show 
possible involvement of force-length properties in enhancing the muscle 
output. 
 
6.2.1 Role of neural input 
 
Results from both triceps surae and quadriceps femoris muscles suggest that 
the same concentric power output could be achieved with less EMG activity in 
the CMJ as compared to SJ. Comparison of the submaximal CMJ and SJ with 
progressively increasing jumping height showed that the enhancement of SSC 
performance cannot be solely explained by increases in muscular activity (I). 
What, then, is the role of activation? Bosco et al. (1982b) pointed out individual 
differences in activation mechanics in maximal SJ and CMJ performances. In 
some subjects, the performance potentiation could be attributed mainly to 
increased activity; while in other subjects the potentiation through elastic 
mechanisms was suggested (Bosco et al. 1982b). In bouncing jumps that are 
performed with short contact time, the muscles are activated well before the 
ground contact (Avela et al. 1994, Dyhre-Poulsen et al. 1991, Gollhofer & 
Kyröläinen 1991). This pre-activation is very important in creating sufficient 
MTU stiffness prior to stretching of the muscles (Gollhofer et al. 1984, 1992). 
Then, the stretch imposed to activated and stiff muscles upon ground contact 
allows tendon elongation with storage of elastic energy. A fast stretch can also 
activate reflex response to enhance the activity and stiffness further (Komi & 
Gollhofer 1997, Nichols & Houk 1976). The reflex function has been shown to be 
very significant in natural human performances. Dietz et al. (1979) have 
demonstrated that in submaximal running the EMG activity can be 
dramatically greater as compared to value obtained during maximal isometric 
voluntary contraction. Furthermore, SSC performance has been shown to be 
reduced after blocking the stretch reflex (Kilani et al. 1989). In the present study, 
a high level of activity and force in DJ had a positive effect on muscle stiffness. 
Consequently, fascicle length changes were smaller in DJ and in repetitive CMJs 
than in normal CMJ (III, V). This enabled the fascicles to take advantage of the 
high force and low velocity region of the force-velocity curve while the tendon 
was responsible for high shortening velocity of the entire MTU (III, VI). 
 High forces are consequence of high activity level. The force in the end of 
eccentric phase had a positive effect on concentric power output in TS and QF 
muscles (I). This has been shown also in previous studies (Bosco et al. 1981, 
Bobbert et al. 1996, Takarada et al. 1997a). As joint moments are greater at the 
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beginning of concentric phase of CMJ than in SJ, the performance enhancement 
brought by SSC of muscle function has been attributed mainly to the greater 
time available in CMJ for force generation (Bobbert et al. 1996). In submaximal 
conditions of the present study, however, it was clearly demonstrated that the 
force could continue to increase also during the shortening phase in CMJ (I). 
Therefore, although the high force at end of stretch favors concentric power 
output, it cannot alone be responsible for the performance enhancement 
phenomenon in standing jumps. 
 
6.2.2 Elastic recoil 
 
It has been known for long time that the elastic compliance in MTU enables 
metabolic energy savings (Alexander & Bennet-Clark 1977). The mechanisms 
through which the elasticity affects the performance are not, however, well 
understood (see target article by Ingen Schenau et al. 1997 and subsequent 
responses). The diversity of emphasis of the role and mechanisms by different 
researchers may be related to the multi-component origin of elasticity within 
the muscle-tendon unit. In the contractile level, the active cross-bridges are 
generally accepted to have in series elasticity (Huxley and Simmons 1971, 
Cavagna et al. 1994). However, the elastic energy stored in the cross-bridges 
during stretch is fully abolished by minute changes in length and cannot have 
major importance in locomotion in vivo (Brown & Loeb 2000, Edman & 
Tsuchiya 1996). Although the single fiber or single muscle studies do not 
support considerable elastic contribution from cross-bridges there is evidence 
that slow and fast twitch muscles may benefit differently from SSC. Bosco et al. 
(1982) have shown that subjects with higher percentage of fast twitch fibers 
benefited more from small amplitude movements. The subjects having more 
slow twitch fibers were able to utilize elastic energy better. The differences in 
utilizing the elastic energy may be related to the fact that fiber types have 
different stiffness, the slow ones being stiffer because of longer cross-bridge 
cycle, because they have fewer sarcomeres in series than in fast twitch fibers 
(Gregory et al. 1978, see also Goubel and Marini 1987), and because slow 
muscles have greater amount of cross-linked collagen (Kovanen et al. 1984). In 
the present experiments fastest transition between stretching and shortening of 
the fascicles occurred in DJ (VI). Therefore, if there were elastic mechanisms 
acting in the muscle compartment, most likely they would operate during DJ. 
 In spite of vast literature on elasticity within the active component, the 
storage of elastic energy in tendon is much more significant during natural 
locomotion (Alexander & Bennet-Clark 1977, Herbert & Crosbie 1997, Morgan 
et al. 1978). In tendon, differences in stiffness have effects on speed of force 
transmission and on usage of elastic energy in SSC. Compliance of tendon 
structures has been reported to have a favorable effect on usage of the elastic 
energy (Cavagna 1977, Kubo et al. 1999, 2000). It may be that a stiff muscle in 
series with a compliant tendon benefits from elastic mechanisms most. This has 
been suggested by Hof et al. (1983) who studied muscle-tendon interaction 
during human walking. He was able to show that in a concerted contraction, 
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where activation is matched to the imposed load in order to keep the length of 
the contractile component constant, elastic recoil is considerable. Consequently, 
only little negative work is lost, fibers may operate near plateau of the force-
length relationship, shortening speed is reduced and high power peaks may be 
delivered. In the present study, muscle stiffness was high in DJ where it was 
shown that shortening velocity of MTU was enhanced considerably by tendon 
action (III, VI). This demonstrates the dramatic effect that the tendon recoil can 
have in natural locomotion. Several experiments on animal locomotion have 
also stressed the importance of storage and recoil of elastic energy in tendinous 
tissues (Alexander & Vernon 1975, Biewener & Baudinette 1995, Gregor et al. 
1988, Morgan et al. 1978, Roberts et al. 1997). However, while elastic recoil can 
be important in enhancing efficiency and performance through muscle-tendon 
interaction, it may not be responsible for increased maximal jumping 
performance (Anderson & Pandy 1993).  
 
6.2.3 Other mechanisms  
 
Mechanisms that could also affect performance enhancement are contractile 
potentiation and length-dependent behavior of the muscle. Potentiation of the 
contractile machinery depends on muscle length. Ettema et al. (1992) have 
shown that the effect of contractile potentiation is amplified when the muscle 
shortens from longer lengths while conversely being negatively influenced by 
the velocity of shortening. They showed also that at short muscle lengths a 
small but significant force enhancement in pre-stretch conditions was found 
only with lowest shortening velocity. Consequently, in the present study, a 
small amount of potentiation could have been present in DJ, where the fascicles 
operated at short lengths and low velocity (III, VI). However, this potentiation 
may not be responsible for the enhanced output of MTU that occurred at higher 
shortening velocities during late push-off phase of DJ. This is because the 
shortening of the fascicles started sooner than shortening of MTU and the 
transient effects of stretch-induced force-enhancement are abolished very 
rapidly (Edman et al. 1978, Noble 1992). To be more specific, the transient 
effects that last shorter time than residual effects are also greater in magnitude 
and thus, are more likely to have noticeable contributions to performance. 
Although Edman (1997) has suggested that residual force-enhancement 
component could contain a mechanism for improved SSC performance, others 
have not observed the entire phenomenon (Brown & Loeb 2000). In summary, 
even if there is contractile potentiation, the magnitude would be small and 
therefore, it may not be primarily responsible for SSC enhancement in vivo. 
Furthermore, in CMJ, the role of contractile potentiation is even more 
questionable because the transition between lengthening and shortening was 
slower, and potentiation is most prominent when the fascicle velocity changes 
rapidly (Brown & Loeb 2000). This does not mean that contractile potentiation 
does not have significance at all; on the contrary, it may well play a role in 
regulating the relative changes in muscle and tendon lengths during 
locomotion. 
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 Apart from contractile potentiation, another mechanism may be 
considered in CMJ. In CMJ, both ATF and PTF started to increase during the 
unweighting phase, due first to the passive stretch and then during the active 
braking phase. During the initial passive stretch, both tendon and muscle may 
be expected to lengthen (Kawakami et al. 1998, Narici et al. 1996). 
Consequently, the muscle length, hypothetically, could be positioned on the 
descending limb of the force-length curve prior to activation. Then, when 
activity starts, the muscle shortens and moves towards the optimum length and 
gains force generating capacity (Gordon et al. 1966). Although the VL fascicles 
were identified to operate at shorter lengths during CMJ on the sledge (III), this 
mechanism may be operative in other conditions or muscles. Furthermore, this 
mechanism supplemented by increasing neural activity will magnify the 
potentiation effect. 
 Normally, when the muscle is allowed to shorten with constant activity 
the force decreases. This force decrease has been shown to depend on the initial 
length, the phenomenon being more marked on the ascending limb of the force-
length relationship (Meijer et al. 1997). Comparison of VL fascicle lengths in SJ 
and CMJ showed that in CMJ the shortening phase started at longer (ns.) 
fascicle length although the knee joint angle was the same in both jumping 
conditions (III). Also, in maximal knee extensions the fascicle length was greater 
(p<0.05) prior to the concentric phase in SSC than in CON. These results 
suggest that the decrease in force production capacity is less when the 
shortening is initiated at longer muscle length. In fact, the present results in 
maximal knee extension show enhanced concentric performance in SSC as 
compared to CON, and suggest that the enhancement may be related to 
modified length-tension properties together (Huijing 1998) with longer initial 
fascicle length prior to shortening (V). The various mechanisms explained 
above stress the importance to consider the interplay between muscular 
activation, force, length, velocity, and elastic mechanisms in enhancing SSC 
performance. 

6.3  Methodological considerations 

6.3.1 Optic fiber force transducer 
  
Optic fiber as a transducer of tendomuscular forces was first reported by Komi 
et al. (1996) who tested the method in rabbit Achilles tendon. First experiments 
where this method was applied to humans were reported in abstract form in 
1995 (Komi et al.) and in first articles were published in 1998 (Arndt et al. 1998, 
Finni et al. 1998). Although the calibration was linear up to maximum effort in a 
report by Finni et al., high force region was of concern in the study by Arndt et 
al. Since those experiments the method has been improved and the insertion 
and calibration procedures have been further explored. However, also in the 
series of experiments of the present thesis it was observed that in some cases 
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high Achilles tendon forces could cause permanent deformation of the optic 
fiber. Consequently, the calibration curve was not linear or was shifted to lower 
output range (Figure 5D). This was, however, observed only in a few subjects.  
 The reason for differential response in Achilles tendon among subjects 
may be partly explained by its architecture. Individual differences in the degree 
of medio-posterior rotation of the tendon may stress the optic fiber differently 
in high force region. Subjects with greater rotation may be more susceptible for 
permanent deformation of the fiber. Therefore, it is of great importance to 
perform careful calibration procedures when Achilles tendon forces are 
recorded, as described in 4.3.1.3. Further advances in ATF calibration could 
include the use of ultrasound in confirming that only soleus and gastrocnemius 
are activated during the stimulation calibration procedure. Thus, the true 
triceps surae contribution would be confirmed. Furthermore, it would be 
possible to stimulate gastrocnemius muscles selectively, and investigate the 
relative contribution of mixed (gastrocnemius) and slow (soleus) muscle on the 
Achilles tendon force. 
 In the case of the patellar tendon, the fiber response was highly 
reproducible even after high loading. It may be assumed that the tendon 
architecture allows more even stress distribution along the fiber going through 
the tendon. Therefore, in spite of the thicker tendon, measurements of patellar 
tendon forces can be performed also during strenuous activities.  
 An important finding was that the natural locomotor patterns, as observed 
with EMG, reaction force and kinematic recordings, were not disturbed by the 
presence of optic fibers in situ (Fig. 9). This confirms that the method is 
applicable for natural locomotion studies. As a technical detail, optic fibers with 
different properties could be used for different purposes. For example, fiber 
with high sensitivity could be used for measuring low force levels. When 
maximum forces are of interest, another type of fiber could be selected. In the 
present study, individual differences in the sensitivity of fiber output in very 
low force levels was found (Fig. 5A). In some subjects the low force level region 
could not be measured accurately, but at forces used during the jumping 
performances, the fiber responded as expected. Also these individual 
differences in sensitivity may stem from differential tendon structures. 
 
6.3.2 Use of ultrasound for fascicle length determination 
 
Ultrasound technique has recently become very popular in fascicle length 
measurements (e.g. Chow et al. 2000, Fukunaga et al. 1997b, Herbert & 
Gandevia 1995, Kawakami et al. 2000, Kumagai et al. 2000). Reliability of 
fascicle length and angle measurement has been confirmed by comparing 
manual measurement from cadavers (Kawakami et al. 1993, Narici et al. 1996) 
and reproducibility has been confirmed in several studies (Fukunaga et al. 1997, 
Kawakami et al. 1993, Kawakami et al. 1995). The resolution of the 
measurements depends on the used probe and the analyzing method. With the 
current technique, the resolution depends on the image size, as the digitizing 
procedure allows resolution in pixels no matter how small the image is. The 
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width and depth of the image was adjusted for optimal visualization of VL 
without compromising the maximum possible scanning frequency of 42 Hz. 
The most critical aspect in fascicle length determination in the present study 
was the estimation of entire length. The parallelogram model used requires that 
the fascicles and aponeurosis are straight. However, curved fascicles have been 
reported especially in the triceps surae muscle (Maganaris et al. 1998) although 
linear models have also been used (Chow et al. 2000). In vastus lateralis muscle 
the curvature has been taken into account in some studies by using digital 
curvimeter for length measurements (Ichinose et al. 1997, 2000, Kawakami et al 
1993, 1998). In relaxed VL muscle the curvature can be considerable but even a 
small amount of tension straightens the fascicle so that it is almost linear (see 
figures in Fukunaga et al. 1997a, 1997b, Kubo et al. 1999). With the method used 
in the present study, the effect of error in estimating the length was shown to be 
smallest in the mid thigh region where the images were taken (III). This can be 
seen also from constructed image of entire VL muscle in Fig. 1 of Ichinose et al. 
(1997). The problem of estimation could be resolved by using wider probe. 
Unfortunately, a wider probe requires that the scanning frequency be 
compromised with commercially available probes at the present time. 
Furthermore, during movement a wider probe would help only little because 
the entire length of VL fascicles cannot be visualized throughout the 
unrestricted movements. In jumping conditions especially, the fascicle, being 
fully visible in initial position, moved in relation to skin where the probe was 
fixed. As the same fascicle was followed throughout the movement it did not 
remain within the visualized area. Consequently, estimation was needed. 
Figure 24 illustrates how the linear estimation may differ only slightly as 
compared to the naturally occurring curved situation. In the present study, the 
average error of estimation was 4% ranging from 2 to 7%. An additional 
precaution of fascicle measurements during locomotion is that the full visibility 
of fascicles may be abolished when the skin moves in relation to the fascicle. If 
the fascicle cannot be seen, the probe position needs to be corrected for accurate 
length determination. With the above reasoning and limitations in mind, the 
present method was found suitable for determining fascicle lengths during 
human movement. 
 

Measured EstimatedMeasured Estimated

 
 

FIGURE 24 Schematic presentation of fascicle length determination (see also model in Fig 7). 
Measured fascicle length (thick line, left) was added to the estimated length using 
linear model (thick line on the right). However, the linear model did not differ 
significantly from the true condition where both the fascicle and aponeurosis curve 
(thin lines). Superficial and deeper aponeuroses are illustrated with oblique lineation. 
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6.3.3 Modeling the length of elastic components 
 
A clear distinction between the two methodological approaches, the force and 
the kinematic method, in estimating the tendinous tissue length during 
locomotion is that although both of them showed the same pattern of behavior, 
the magnitude of length change was considerably different (IV). The high strain 
values obtained with the kinematic method may be explained by the fact that 
the method takes into account not only the thick tendon but also the 
aponeurosis. In addition, the compliance may be affected by pennation and 
unequal distribution of fascicle length change along the muscle length. Thus, 
the reported high strain values are not surprising because strain in the 
aponeurosis has been reported to be greater than in the thick tendon both 
during passive and active loading (Lieber et al. 2000). Furthermore, Fukunaga 
et al. (1997a) have shown that at given contraction level the fascicle shortening, 
and consequently, the tendinous elongation, is pronounced with extended knee 
joint angles, as in the present study, as compared to more flexed position.  
 According to a review by Zajac (1989) tendon stress in the non-linear toe 
region may vary form 5 to 30 MPa and strain from 1.5 to 4 %. Maximum stress 
in the tendon was found during DJ corresponding to 40 MPa with 4.9 % strain 
calculated from the force method. If we can consider that the force method 
describes better the force-length relationship of thick tendon it may be possible 
that the tendon was stretched to operate in a stiffer region at some point of the 
movement. As the kinematic measure includes also the aponeurosis the present 
results are in line with the concept of Kawakami and Lieber (2000) that 
aponeurosis could be the major source for in-series compliance, not the tendon.  
 Both methods contain several parameters that are subjected to error. The 
kinematic method with 10 % uncertainty was found to be more unreliable than 
the force method with uncertainty of 1 %. In the kinematic method most critical 
measures were the fascicle angle and the amount of fascicle length that was 
estimated. This error may be reduced considerably when the entire fascicle can 
be visualized throughout the motion in the ultrasound image as explained in 
6.3.2. The force method was most sensitive to resting length (lo). Therefore, we 
further tested the model with VL tendon lengths measured from entire VL 
images but the results were not affected. As the uncertainties could not explain 
the difference between the methods, it can be concluded that the two 
approaches yield different measures. Tendon length changes are better 
described with the force method whereas kinematic method includes 
compliance of the aponeurosis as well.  
 Tendon elongation has been measured previously by means of 
ultrasonography in isometric condition using a reference marker on the skin 
(Fukashiro et al. 1995a, Maganaris & Paul 2000). However, the marker may not 
provide a stable enough reference in order to determine tendinous tissue length 
changes reliably during normal locomotion. The kinematic method with in vivo 
fascicle length measurements and muscle-tendon length estimations introduced 
here was shown to produce the same pattern as could be predicted from 
quadratic tendon force function. Although the magnitude of length change and 
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strain were different the methods introduced here may be feasible for 
estimating the patterns of tendinous tissue length change during locomotion. In 
fact, this technique has been applied to measure gastrocnemius tendon length 
during walking in a recent report by Fukunaga et al. (2001). They reported 
tendon length changes to be around 1 cm in a walking cycle. During walking, 
however, simultaneous action of knee and ankle joints does not cause great 
changes in MTU length in the biarticular gastrocnemius muscle whereas the 
changes are more pronounced in a monoarticular vastus lateralis muscle 
(Pierrynowski & Morrison 1985). This can also explain the great length changes 
observed in the tendinous tissue of VL muscle during jumping exercises (III). 

6.4  Perspectives 

The results showed that the behavior of muscles is very much different during 
natural human locomotion with voluntary neural activity as compared to that 
expected from the classical force-length-velocity relationships found in 
maximally activated conditions. These differences arise from several factors 
such as history dependent behavior of force production that is not considered in 
most of the models that are used in examining muscle function. Therefore, 
experimental results should be compared with models for purpose of validity 
and development. In vivo tendon force and fascicle length recordings provide a 
very good possibility for this comparison during human movements.  
 Individual differences in voluntary activity level and patterns may 
sometimes be a source for heterogeneous results and hinder general 
conclusions from human studies. In search for mechanisms, the possibility is to 
use electrical stimulation to activate the muscle using the same relative amount 
of activity for each subject. A project where activity is standardized with 
electrical stimulation and fascicle length behavior is examined in pure 
concentric and stretch-shortening cycle muscle action is in progress. 
 
 



 

7 PRIMARY FINDINGS AND CONCLUSIONS 

 
1) The results from submaximal jumping performances support earlier 

views that elastic recoil and muscle activity play an important role in 
the concentric phase of SSC exercise. It was demonstrated that the 
MTU output could be enhanced in submaximal SSC performance 
over that found in maximal isokinetic measurements. The 
mechanisms behind the effective muscle output and the enhanced 
performance depend on type of the exercise and muscle of interest. In 
a multi-joint movement, the enhancement cannot be attributed to any 
single factor alone. Especially, the interaction between muscle and 
tendon components may be organized in a manner that takes 
advantage of the force-length properties of the muscle differently 
depending on the level and pattern of neural activity (I, III, V, VI). 

 
2) Enhancement of concentric force production after stretch was found 

also in maximal knee extension exercises. This enhancement was not 
related to differences in EMG activity but may be attributed to 
modified length-tension properties together with longer initial 
fascicle length prior to shortening. These observations, in addition to 
those from submaximal jumping exercises (III), further suggest that it 
is important to consider length dependent behavior of muscles when 
examining factors affecting enhanced performance in SSC exercise 
(V). 

 
3) Results from hopping with small knee joint displacement suggest that 

there may be a particular frequency and jumping height at which the 
elastic bouncing is best utilized and at the same time the concentric 
phase is most economical. It seems that naturally selected jumping 
frequency and appropriate input to muscles are important in factors 
for economical SSC performance. Results also support earlier 
observations that the economy of the shortening phase must be 
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compromised at some point in order to produce more power and 
improve the jumping height (II). 

 
4) In all the examined SSC exercises where the MTU stretched prior to 

shortening the VL fascicle behaved the same way. The magnitude of 
length change was, however, dependent on the movement type and 
contraction intensity. In comparison of CMJ and DJ, the greater 
muscular activity reduced the magnitude and velocity of fascicle 
length change during the DJ. Because changes in MTU length were of 
same magnitude in both conditions, tendon stretching and shortening 
played a very important role in enhancing the velocity of the entire 
MTU in the push-off phase of DJ. It must be noted, that the energy 
stored in tendinous tissues during DJ did not come only from “free” 
gravitational potential energy, but from the active and stiff contractile 
elements (III, VI). 

 
5) Tendinous tissue compliance has significant consequences on muscle 

function during locomotion. Methods for estimating muscle and 
tendon length changes are, however, mainly based on models where 
parameters from cadaver studies are used. In the present study, two 
models were tested and supplemented by in vivo recordings of 
fascicle lengths and tendon forces. The force and kinematic methods 
for estimating tendon length changes gave different results: the 
former characterizing external tendon behavior and the latter 
contained measure from both internal and external tendons. The 
utility of these methods depends on various estimations. Although 
both methods are applicable to dynamic movements, further testing 
is required to improve accuracy of the kinematic method, especially, 
because it provides a non-invasive tool for examining tendinous 
tissue behavior during human locomotion (IV). 
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YHTEENVETO 
 
 
Ihmisen luonnollisessa liikkumismallissa lihaksen voimia tuotetaan venymis-
lyhenemissyklin (SSC) tavoin. SSC:ssa aktiivinen lihas ensin venyy ja tätä seu-
raa välittömästi lihaksen lyheneminen. Lihaksen lyhenemisvaihe on SSC:ssa te-
hokkaampi ja taloudellisempi kuin tilanteessa, jossa lyhenemisvaihe aloitetaan 
ilman aktiivista esivenytysvaihetta. Usein SSC:tä on tutkittu seuraamalla lihas-
jännekompleksin pituudenmuutoksia. Kuitenkin lihaksen ja jänteen pituuden-
muutosten vuorovaikutus luonnollisessa liikkeessä on erittäin monimutkainen 
johtuen mm. tahdonalaisen aktiivisuustason ja lihakseen kohdistuvan kuorman 
jatkuvasta vaihtelusta liikkeen aikana. Täten pelkästään lihas-jännekompleksia 
tutkimalla ei voida saada riittävän tarkkaa tietoa siitä, millä työtavalla lihas 
toimii, ja kuinka paljon voimaa, työtä ja tehoa lihakset tuottavat jokapäiväisissä 
liikkeissämme. Tässä tutkimuksessa käytettiin ainutlaatuista kuituoptista jän-
nevoima-anturia akilles- ja patellajänteen kuormittumisen tutkimisessa, sekä 
ultraäänitekniikkaa lihassolukimppujen (fascicle) pituuksien mittaamisessa 
erilaisissa submaximaalisissa hyppelysuorituksissa ja maksimaalisissa polven 
ojennuksessa. Tutkimuksen tarkoituksena oli selvittää 1) jänteiden kuormittu-
mismalleja sekä lihassolukimppujen käyttäytymistä erilaisissa liikkumistilan-
teissa, 2) miten voima-pituus- ja voima-nopeus -riippuvuussuhteet eroavat 
luonnollisessa liikkumistavassa ns. klassisesta tilanteesta, 3) miten tahdonalai-
sen aktiivisuuden taso sekä lihas-jännekompleksin pituudenmuutoksen suu-
ruus vaikuttaa lihastyön tehokkuuteen ja taloudellisuuteen, ja 4) mitkä tekijät 
vaikuttavat suorituskyvyn potentoitumiseen SSC lihastyötavalla. Lisäksi ver-
tailtiin kahta eri menetelmää jänteen pituudenmuutoksen arvioinnissa dynaa-
misen liikkeen aikana.  Tutkimussarjasta tullaan julkaisemaan kuusi erillistä ra-
porttia (I-VI). Tutkimuksen päälöydökset ja johtopäätökset voidaan tiivistää 
seuraavasti: 
 Submaximaalisessa, SSC:tä hyödyntävässä esikevennyshypyssä tarvittiin 
vähemmän lihasaktiivisuutta saman tehon saavuttamiseen hypyn konsentri-
sessa vaiheessa kuin puhtaassa konsentrisessa hypyssä. Esikevennyshypyssä 
konsentrisen vaiheen teho korreloi eksentrisen vaiheen lopussa tuotettuun 
voimaan. Kuitenkin lihasvoima ei välttämättä ollut huipussaan vielä eksentri-
sessä vaiheessa, vaan jatkoi kasvua konsentrisessa vaiheessa, johtuen mm. li-
hasaktiivisuuden kasvusta. Täten kirjallisuudessa esitetty seikka, että esikeven-
nyksen hyöty tulisi vain ja ainoastaan siitä, että se mahdollistaa suuremman 
voiman ja aktiivisuuden jo ennen konsentrista vaihetta (Bobbert et al. 1996), ei 
ole yleistettävissä kaikkiin SSC suorituksiin. Tulokset viittaavat siihen, että esi-
kevennyshypyn etu puhtaaseen konsentriseen hyppyyn tulee ainakin osittain 
voima-pituus -riippuvuussuhteen hyödyntämisestä. Voima-pituus-riippuvuu-
den mukaisesti lihas ei menetä voimantuottokapasiteettiaan lähtiessään lyhe-
nemään pidemmältä lihaspituudelta niin paljon kuin lihas, joka on lyhyempi 
ennen konsentrista vaihetta. Verrattaessa lihassolukimppujen pituuksia ennen 
konsentrista vaihetta, olivat lihakset esivenytyksen jälkeen pidempiä kuin iso-
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metrisen tilanteen jälkeen sekä submaksimaalisessa hyppytestissä että maksi-
maalisessa polven ojennuksessa. Esivenytyksen tuoma pituusetu voitiin täten 
hyödyntää välittömästi seuraavassa konsentrisessa vaiheessa. Koska näissä 
mittauksissa lihas-jännekompleksin pituudenmuutoksia kontrolloitiin siten, 
että ennen konsentrista työvaihetta niiden pituus oli sama sekä esikevennysti-
lanteessa että puhtaassa konsentrisessa tilanteessa, johtuivat lihassolukimppu-
jen pituuksien erot lihaksen ja jänteen keskinäisestä vuorovaikutuksesta.  
 Pudotushypyssä ja hyppelyissä jänteen ja lihaksen vuorovaikutus koros-
taa elastisen energian hyödyntämistä. Esiaktiivisuus ja voimakas aktiivisuus 
kontaktivaiheessa minimoivat lihaspituuden muutokset ja mahdollistavat li-
haksen toiminnan suurella voimalla ja hitaalla supistumisnopeudella. Täten 
jänne voi venyä varastoiden huomattavan määrän elastista energiaa, joka va-
pautetaan konsentrisen vaiheen lopussa, kun aktiivisuus ja voima pienenevät. 
Tulokset osoittavat jänteen olevan erittäin merkittävässä roolissa suuren su-
pistusnopeuden saavuttamiseksi lihas-jännekompleksin tasolla, ja täten myös 
tuotetun tehon kasvattamisessa ponnistuksen loppuvaiheessa. Tämä tulos ha-
vainnollistettiin vertailemalla voima-nopeus -riippuvuussuhteita sekä lihasso-
lujen että lihas-jännekompleksin tasolla. Lisäksi hyppelyissä mitattuja hetkelli-
siä voima-nopeus -käyriä verrattiin maksimaalisissa isokineettisissä suorituk-
sissa mitattuihin ns. klassisiin voima-nopeus -kuvaajiin. Vaikka lihas-jänne-
kompleksin voimantuotto olikin tietyissä tilanteissa suurempaa submaksimaa-
lisessa hyppelyssä kuin maksimaalisessa vakionopeudella tapahtuvassa liik-
keessä, ei potentoitumisilmiötä ollut havaittavissa lihassolukimppujen tasolla.  
 Luonnollisesti valittu hyppelytaajuus ja tarkoituksenmukainen lihas-
aktiivisuus ovat tärkeitä seikkoja liikkumisen taloudellisuuden kannalta. Tulok-
set viittaavatkin siihen, että on olemassa tietty taajuus ja hyppykorkeus, jolla 
elastisen energian hyödyntäminen on tehokkainta ja samanaikaisesti suorituk-
sen konsentrinen vaihe on kaikkein taloudellisin. Tutkimustulokset tukevat 
aikaisempia havaintoja siitä, että konsentrisen vaiheen taloudellisuudesta pitää 
tinkiä, jos päämääränä on tehokas suoritus. 
 Jänteen pituudenmuutoksia dynaamisen liikkeen aikana arvioitiin kah-
della tavalla: 1) suorien jännevoimamittausten perusteella, ja 2) lihassolukimp-
pujen ja lihas-jännekompleksin pituuksien mittaamisen perusteella. Jännera-
kenteiden pituudenmuutokset olivat malliltaan samanlaisia riippumatta käy-
tetystä menetelmästä, mutta muutoksen suuruus erosi huomattavasti. Paksun 
jänteen pituudenmuutoksia kuvasi paremmin voimaan perustuva arviointi, 
kun taas kinematiikkaan perustuva mallintaminen sisälsi pituudenmuutokseen 
myös aponeuroosin, joka on huomattavasti joustavampi kuin paksu jänne. Tä-
ten maksimivenymät olivat 5 tai 15 % lepopituudesta käytetystä menetelmästä 
riippuen.   
 Tämän tutkimussarjan perusteella voidaan sanoa, että vaikka lihaksen pe-
rusriippuvuussuhteet voimantuoton, pituuden ja supistusnopeuden välillä 
ovatkin universaaleja, luonnollisessa liikkeessä vaikuttava tahdonalainen aktii-
visuus aiheuttaa lihaksen ja jännekomponentin välillä monimutkaisen vuoro-
vaikutuksen. Tämän vuoksi supistuvan komponentin tekemää työtä on vaikea 
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kvantifioida tarkasti ulkoisten mittausten perusteella luonnollisen liikkeen ai-
kana. Lisäksi yksilölliset erot lihasrakenteissa ja opituissa aktiivisuusmalleissa 
vaikeuttavat pitkälle meneviä yleistyksiä erityisesti submaksimaalisissa liikku-
mistilanteissa. Tämän tutkimussarjan tulokset ovat osoittaneet, että menetel-
mälliset edistysaskeleet mm. suorien jännevoimien ja lihaspituuden mittaami-
sessa mahdollistavat lihaksen voimantuottoon vaikuttavien tekijöiden moni-
mutkaisten vuorovaikutussuhteiden tutkimisen ihmisen liikkumisen aikana. 
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