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ABSTRACT

Ayrémt'), Sami

Knowledge Mining using Robust Clustering
Jyvaskyla: University of Jyvaskyld, 2006, 296 p.
(Jyvédskyld Studies in Computing

ISSN 1456-5390; 63)

ISBN 951-39-2655-9

Finnish summary

Diss.

This work is devoted to the development of scalable and robust algorithms for
data mining and knowledge discovery problems. The main interest lies in so-
called prototype-based clustering methods that are implemented using iterative
relocation algorithms. Different elements of prototype-based data clustering are
discussed and basic algorithms are described. In order to support the usability of
the new methods and algorithms, a modified knowledge mining process model
is also proposed. The refined model is based on the well-known knowledge dis-
covery process, but it emphasizes more domain analysis and “black box” nature
of data mining. Significance and importance of knowledge mining are clarified
by outlining the current body of the existing knowledge with real applications.

As the main outcome of this thesis, a highly automated robust clustering
method is presented. The method consists of a number of separately developed
and tested elements such as initialization, prototype estimation, and missing data
strategy. Non-smooth nature of the robust statistics is rigorously considered from
the point of view of non-smooth optimization. Numerical and statistical proper-
ties, such as robustness, scalability, computational and statistical efficiency, of the
presented methods are tested and illustrated through a number of numerical ex-
periments. The results are completed with some analytic results and illustrative
real-world examples. Furthermore, in order to estimate the correct number of
clusters, a new proposal of a cluster validity index is given.

Keywords: data mining, knowledge discovery, knowledge mining, data cluster-
ing, robust estimation, non-smooth optimization, visualization
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1 INTRODUCTION

This thesis considers a new and interdisciplinary field of computer science and
information technology called data mining (DM) and knowledge discovery (KD)
[118, 115]. Knowledge discovery in databases (KDD) originated in the late 1980s from
an observation that the growth rate of new knowledge lags behind the growth
rate of data collection [316]. Since then the rate of data growth has accelerated fur-
ther and, currently, large data sets are common in most (especially data-intensive)
organizations. For example, business, industry, and government systems gather
up data on an ongoing basis. Furthermore, many research organizations possess
masses of data for scientific purposes. These data sets create a challenge for infor-
mation system experts, statisticians, etc. By providing methods for transforming
data into an understandable form and turning it into useful knowledge, DM is
of great assistance to these experts from those numerous fields allowing them to
efficiently utilize these large and heterogeneous real-world data sets.

Overall, DM comprises methods and techniques from various fields [170,
167, 96, 369]. The most important ones of these fields are illustrated in Figure 1.
The focus of this thesis is to provide a thorough coverage of those fields of DM
that are relevant for the actual topic. There is a particular emphasis on statistics,
numerical optimization, and visualization. Elements of functional analysis are
used for verification of new techniques. Sometimes, the terms DM and KDD
are used interchangeably. More often DM, in which algorithms and methods are
applied to data, is considered to be the core step of the KDD process. In this thesis,
KDD means a process and DM its subprocess. The owner of the KDD process is
a domain expert, whereas DM is controlled by a method specialist. This division
and a slightly modified process-based view (knowledge discovery as the domain
process) is presented in Chapter 2 (cf. Section 1.1 also)

Data clustering, which is the target DM method in this thesis, is a descriptive
data mining technique that is used for partitioning a data set in an unsupervised
manner [9, 174, 8, 204, 220, 203, 106, 400]. It is often considered as one of the
core methods of the DM and KDD field. The basic idea of data clustering is very
simple: to divide objects into groups so that the objects in the same group are
more similar to each other than objects in the other groups.

The major aim of this work is to develop, verify, and validate a new clus-
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FIGURE 1 Origins of knowledge discovery and data mining.

tering method with several desirable properties. First, the method should be ef-
ficient and scalable even on large data sets. Secondly, it should be robust against
erroneous and missing data values. Although many attempts to enhance the ro-
bustness of clustering algorithms have been proposed, not many of them are re-
lated to the field of DM. Overall, the algorithm should be highly automated so
that the following operations and parameters would not involve the end users:

* Missing data handling
¢ QOutlier pruning

¢ Initial parameter values
* Number of clusters

The existence of these types of clustering methods enables domain experts to
mine knowledge with descriptive DM methods without thorough understanding
of algorithmic and statistical details.

Generally, the contributions and lessons of this work involve the following
interest groups:

* Domain experts should have basic understanding of the KM process and the
division of activities between KDD and DM subprocesses. They should also
know their domain and capabilities of DM tools, which, however, should be
automatically applicable without, e.g., parameter tuning.

o Statisticians should know that robust M-estimates that result from non-smooth

optimization problems can not be treated with classical C! calculus. There-
fore, special analysis and numerical techniques are needed.

* Optimization methodologists should be aware of simple techniques that seem
to be highly efficient for special non-smooth problems.
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* Information system specialists should utilize the data that is collected and
stored. Efficient retrieval is not enough.

* DM methodologists should remember the importance of rigorous analysis
and testing of various methods. Moreover, with real data clusters can be
retained better by using robust rather than classical projections. Special vi-
sualization techniques to support industrial process analysis can be devel-
oped.

1.1 Author’s contributions

The outcome of this thesis is a result of an intensive collaboration between the
author and the supervisors. Many of the initial ideas have been received from the
supervisors, (especially the ideas of robust clustering using the SOR-based ap-
proach to the computation of the spatial median by Karkkdinen, e.g., [213]). The
ideas were further processed by the author, who has constantly exploited super-
visors” in-depth expertise in the (sub-)fields of the topic, e.g., [214, 215]. Finally,
through further analysis and method development work, that are supplemented
with thorough computer experiments and literature studies, the author has ad-
vanced and extended the initial ideas to the fields of DM, KDD and KM by deriv-
ing, for example, new initialization and validation methods for cluster analysis.
Overall, the author concludes this thesis with the following contributions:

1. Based on experiences from applied research projects, a new KM model for
finding novel and useful knowledge from large data masses is proposed.
The model consists of two merged parts that are based on the original KDD
process and DM step. However, the new KM model presents the DM step as
a subprocess of the KDD process. Although the main contributions of this
thesis are concentrated on the DM parts of the KM model, the other steps
are also considered, even if somewhat incidentally. Based on practical ex-
periences and co-operation in applied industrial projects, the importance of
domain analysis has been emphasized. Hence, an interesting idea of using
the so-called genre method for a thorough domain analysis is introduced.
This allows domain experts to better understand and be aware of the avail-
able information.

2. As a major contribution of this thesis, a new robust clustering method, that
is built from thoroughly tested components, is developed. The develop-
ment of these new methods encompasses the following contributions:

* An extensive survey of elements of prototype-based data clustering is
given.

* The concept of robust clustering is described through the notions of
non-smooth optimization.
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The general principle of prototype-based iterative relocation algorithms
(e.g., K-means) is generalized for different norms, estimates, and miss-
ing data.

Convergence of the general clustering algorithm with missing data
treatment is shown.

Using classical optimization methods and algorithms, performance of
two types of robust clustering algorithms are tentatively examined and
compared with the traditional K-means algorithm on erroneous and
incomplete synthetic data sets.

A new algorithm for computing a robust location estimate, the spatial
median, on incomplete and noisy data sets is proposed.

Following the ideas in [213], the problem of the spatial median is pre-
sented using the theories of non-smooth optimization.

Based on ideas in [281], a simplified proof for the existence and unique-
ness of the spatial median is given.

A smoothed formulation for the problem of the spatial median with a
missing data treatment is given.

Convergence properties of the new algorithm for computing the spa-
tial median are analyzed.

Thorough numerical and statistical experiments for the spatial median
estimator with the missing data treatment are presented.

Based on the robust statistics and missing data treatment, an existing
sub-sampling based cluster refinement algorithm is generalized for ob-
taining a consistent initialization method for the clustering problem.

The proposed robust initialization and a “trimmed” variant are com-
pared to several original and modified methods through extensive nu-
merical experiments.

Based on the so-called silhouette index, a new and robust validity in-
dex for the clustering problem is introduced.

Based on robust scatter matrices and the missing data treatment, ro-
bust projection techniques are introduced and examined for visualiz-
ing high-dimensional data clusters in DM applications.

Graphical techniques for visualizing the progress (fluctuations in process
state) of an industrial process are proposed.

Utility of the robust clustering algorithm with the robust validity in-
dices, supplemented with robust projection and visualization techniques
is demonstrated on real-world data sets.
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1.2 Structure of the dissertation

The introduction is given in the first chapter. Chapter 2 discusses the DM and
KDD process models and presents the basic idea and structure of the KM model.
A genre-based strategy for the domain analysis step is suggested. Moreover, the
utility and needs of KM are presented in an extensive literature survey on DM
and KDD applications.

Chapter 3 provides a thorough discussion on data clustering. The main el-
ements of the clustering algorithms are explained. For instance, the dissimilarity
measures and missing data mechanisms are discussed and a number of known
strategies for dealing with missing data are considered. Furthermore, a general
iterative relocation clustering principle is introduced. Several existing variants of
the well-known K-means clustering method are presented with algorithms.

In Chapter 4, the principles of non-smooth optimization and robust statistics
are presented. A couple of basic optimization methods and the basic terminology
of classical statistics are introduced. The requirements and measures of robust
statistics are also presented with some illustrative examples. An in-depth discus-
sion is given for a class of statistical location estimators known as M-estimators.
Two robust and multivariate special cases of this class are the spatial median
and the coordinate-wise median. The existing connection between M-estimation
and non-smooth optimization is clarified by presenting non-smooth mathemati-
cal formulations and giving a strict analysis (incl. a simplified proof of existence
and uniqueness of the solution in the problem of the spatial median) for the esti-
mators from both statistical and computational point of views.

In Chapter 5, robust clustering methods, built on the aforementioned robust
estimators, are tested on synthetic data sets. Prior assumption about the gains of
robustness and utility of the chosen missing data strategy in the data clustering is
assessed through numerical experiments on erroneous and incomplete data sets.
A convergence analysis for the special cases of the general iterative relocation
algorithm is given with a chosen missing data strategy.

Chapter 6 introduces a pair of new “accelerated” methods for solving the
non-smooth problem of the spatial median. Smooth formulations for the problem
of the spatial median are given by taking into account the chance of missing data
values. The computational efficiency and reliability of the new iterative meth-
ods are compared to several methods including, for example, classical gradient
optimization methods and direct-search optimization methods. The theoretical
values of efficiency and consistency of the new methods are considered from the
statistical point of view. Comparisons are also made about how the chosen miss-
ing data strategy effects the statistical efficiency of the estimates.

In Chapter 7, new initialization methods with “trimmed variants” for the
problem of data clustering, that is generally known to be non-convex by nature
(i.e., several locally optimal solutions exist), are introduced by exploiting the pro-
posed robust estimators. A thorough examination against existing initialization
principles is performed for the proposed methods.
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In Chapter 8, the practical utility of the proposed tools is demonstrated on
large real-world data sets. Before the examples, a general exploration through the
cluster validity methods is given and on this basis, a new robust validity index for
the problem of estimating the "best” number of clusters, is introduced. By com-
bining the proposed index to the advancements of the previous chapters, a new
and highly automated robust clustering method is introduced. For comparison,
the estimates for the number of clusters are computed by using the new robust
indices and an old one. For interpretation of the results, robust scatter estimates
are introduced and applied to the data projection. Based on the existing results,
three techniques, one based on classical and two on robust statistics, are used for
computation of the so-called principal directions of the data that are then used for
visual interpretation of the results. The gains of the robust principal directions for
clustering application on large data sets are then assessed.

In chapter 9, the results of the previous chapters are concluded and future
needs and ideas are considered.



2 FROM KNOWLEDGE DISCOVERY AND DATA
MINING TO KNOWLEDGE MINING

2.1 What is data mining and knowledge discovery?

"The workshop confirmed that knowledge discovery in databases is an idea
whose time has come.”

This was stated during the first KDD workshop in 1989 [316], which served as a
kind of kick-off for the data mining and knowledge discovery discipline. During
the following years, the one-day workshop grew into a series of KDD confer-
ences. The need for KD methods emerged from the development of digital data
acquisition and storage systems during the last couple of decades. Capabilities
in various organizations to utilize huge data storages, for example, in decision
support or process control tasks, had lagged behind the growth rate of the data.
As Bradley [42] states, the growth of knowledge in organizations has been out-
stripped by the growth of available data. On the other hand, Kohavi et al. [233]
remind us that modern information technology provides good opportunities to
build systems that take data mining and knowledge discovery issues into account
in advance.

The term data mining was related to the knowledge discovery in the 1990s.
It was related to the use and development of the algorithms in KDD problems.
Many of the DM methods and techniques have already been in use in other disci-
plines. However, the fast development in the field of information technology has
produced new requirements and the old methods have been developed further.
Hence, the ideas behind DM and KD have been derived by researchers from sev-
eral fields, such as statistics, pattern recognition, software engineering, machine
learning, artificial intelligence, database technologies, and many others [316] (see
Figure 1). Clearly, DM and KDD have an interdisciplinary background. Perhaps
the most influential disciplines have been statistics and machine learning. The re-
lation between statistics and DM is discussed, for example, in [354, 172,171, 131].
Note that unlike statistics, DM is not based on data collection strategies. Thus it
is sometimes referred to as secondary data analysis [170, 171]. Database technology
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has also become an important element, because data must be stored and accessed
effectively. The database issues are considered, e.g., in [127, 201, 69].

Another very important issue is visualization, and, in particular, provision
of tools for visual interpretation of the obtained results. For example, scatter, trel-
lis, and star plots can be used for visualization of multidimensional data [170].
Methods, such as principal component analysis (PCA) and multidimensional scaling
(MDS), exist for dimension reduction tasks [170, 175]. Additionally, optimiza-
tion and numerical mathematics skills are needed to develop fast and accurate
methods for model fitting.

”Data mining is at best a vaguely defined field; its definition largely depends
on the background and views of the definer.”

As the above definition, written by Friedman [131] in 1997, attests, DM has been
regarded as an immature discipline. These definitions vary a lot depending on
the background of the person expressing her/his views. This is not surprising
when considering how short is the history of computer science and information
technology and the fact that DM/KDD follows the progress of these fields. The
relation of DM and KDD is discussed, e.g., in [117]. Margaret Dunham [96] sepa-
rates DM and KDD by referring to the following short definitions:

Knowledge discovery in databases is the process of finding useful information
and patterns in data.

Data mining is the use of algorithms to extract the information and patterns de-
rived by the KDD process.

On the other hand, Hand et al. [170] define DM as: ”

Data mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are
both understandable and useful to the data owner.”

Common definitions often consider DM as a step of the KDD process in
which algorithms are applied, but as it will be later explained, DM can be also
considered as a nested process for KDD. DM is associated with numerous differ-
ent labels, such as data analysis, pattern analysis, knowledge extraction, infor-
mation discovery, exploratory data analysis, database exploration, data pattern
processing, information harvesting, siftware, data dredging, snooping, fishing,
data archaeology, etc. [170, 167, 96, 318, 144, 60]. If one wants to quibble, “data
mining” might be considered as an illogical label; for example, Han and Kamber
[167] prefers to replace it by “"knowledge mining from data”. They explain this
through an analogy to gold mining. When gold miners are digging gold from
sand and rocks, it is called gold mining. When a data analyst is mining knowl-
edge from data, it would be logical to call it knowledge mining. However, since
data mining is a well-established term, it will be used here, but later in the thesis,
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anew aggregation of KD and DM will be proposed, and referred to as knowledge
mining (KM)?.

The amount of data is growing in two ways [116]. First, the number of col-
lected objects n (or observations, records, etc.) is increasing. It is not unusual to
have n >> 10* objects in a data set. For example, an industry process can be con-
trolled by measuring its state every 1/10 seconds over many years. Secondly, the
number of attributes p is also growing as more and more sensors and measure-
ment equipments are available for process control systems, or more and more
high-dimensional special DM applications, for example, text and web mining,
become available. As the capability to measure and record facts continuously
grows in many fields, many old-fashioned data analysis techniques run into the
so-called “curse of dimensionality” [170, pp. 193-196]. Traditional data analysis
tools cannot cope with the existing large multidimensional data sets.

Many data stores contain thousands of attributes. For example, our research
groups’ experience in the process industry indicates that the number of simulta-
neous measurements recorded from the paper making process is in several hun-
dreds. When such data is digitally stored over a couple of years, the database
easily can contain tens of thousands of observations. Such masses of data, rather
than assisting the domain experts or analysts in data exploitation, can overwhelm
them and, as a consequence, the data stores become useless. Therefore, it is no
longer enough to investigate data sets by looking at trends of individual mea-
surements or observations. In real-life situations the information may be present
in many forms, such as patterns, associations, changes, anomalies, or other sig-
nificant structures. Furthermore, the data itself can exist in many formats and in
different storage forms such as, text, image or sound files, databases, data ware-
houses, and many others (cf. the categories of communication forms (CCF) in
[378]). Alongside with the increasing computing power, efficient algorithms are
needed for accessing and making sense of the most substantial information lying
in the data masses.

As most of the data analysis methods have originally been designed only
for ideal cases with a feasible amount of error-free data, a number of fundamen-
tal research topics, such as efficiency of the algorithms, significance of the do-
main knowledge, handling of uncertainty, etc., have been addressed since KDD-
89 workshop. During the last two decades, numerous promising methods for
analysis of large data sets have been developed and integrated by DM/KKD re-
searchers and engineers. The aforementioned problems, along with future issues,
such as handling of complex data, relevance of visualization and perceptual pre-
sentation, have remained in the main focus of knowledge discovery field until
today.

DM puts a colorful set of data analysis and modelling techniques under one
umbrella. In addition to the curse of dimensionality and other problems that
have emerged due to large data sets, other classical problems, such as the ”bias-
variance dilemma”, are still looking for solutions [170, p.223]. For example, in the

! The term knowledge mining is also used by Professor Ari Visa, see the site of Knowledge

Mining course at http:/ /www.cs.tut.fi/ avisa/8004202.
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case of data clustering, this means that too large number of clusters does not
abstract the data enough and the solution remains difficult to interpret, whereas
too small number of clusters may lead to a biased solution with a significant loss
of information. In regression and classification problems, one has to avoid over-
learning, i.e., that a classifier learns an individual data set too precisely. Such a
classifier does not generalize outside the learning data set. Before one can choose
the most appropriate methods, the type of information needs to be analyzed and
understood especially from the application domain perspective.

Prior to deeper and more detailed treatments of the topic, definitions for
data, information and knowledge are given. According to Stenmark [359] and
Tuomi [377], the following definitions serve as guidelines for this thesis:

¢ Data consists of not yet interpreted symbols, such as simple facts, measure-
ments, or observations.

¢ Information consists of structured data with meaning.

¢ Knowledge emerges from information after interpretation and association
with the context.

2.1.1 Data mining tasks

Hand et al. [170] define the following DM tasks:

Exploratory Data Analysis (a.k.a. EDA) means explorative analysis of a data
set where the goal is to visually observe interesting and unexpected struc-
tures. The visual exploration is realized by using graphic representation
techniques, such as histograms, pie charts, scatter plots etc. High dimen-
sional data sets, that is p > 3, are difficult to visualize and dimension re-
duction techniques, such as PCA and MDS can be used to transform the
data into a low-dimensional space (e.g., [170]).

Descriptive modelling is used to describe a high-dimensional data set in a re-
tined way without strong assumptions about underlying classes and struc-
tures. This is also called unsupervised classification. Cluster analysis, seg-
mentation, density estimation, and dependency modelling techniques are
applied for this purpose. Descriptive cluster models are the major issue of
this thesis.

Predictive modelling consists of classification and regression. These are also
referred to as supervised classification. The aim is to predict a value of a
particular variable from the known values of other variables. In classi-
fication, the predicted variable is categorical (e.g., the diagnosis of a dis-
ease), whereas in regression the variable is quantitative (e.g., the price of
stocks). Building of predictive models relies on prior knowledge about
classes and structure in data. For instance, a neural network classifier is
built by using a learning data set where each data point has a known class
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label [181]. By applying a learning algorithm to the network, a determinis-
tic mapping from data points to the classes is obtained. The best network is
the one which is precise enough for the learning data but also generalizes to
other data sets. Depending on the application, the prior knowledge about
classes may be collected from domain experts or by investigating the data
with explorative and descriptive techniques. Predictive DM techniques in-
clude, among others, neural networks, nearest-neighbor techniques, deci-
sion trees, and Bayesian techniques. The methods for predictive data min-
ing mostly originate from the fields of machine learning and statistics (see,

e.g., [94]).

Discovery of patterns and rules aims at finding interesting and uncovered rela-
tionships from large data sets. The information is presented by association
rules and sequential patterns. Market basket analysis is a traditional ex-
ample of the applications in this category. Another good example is the
analysis of telecommunication networks” alarms [229]. The seminal associ-
ation rule algorithm was proposed by Agrawal et al. [4] in 1993. Since then
many faster variants have been introduced, e.g., [5].

Retrieval by content aims at finding patterns of interest from large data sets.
This is utilized especially for documents or images from large sets. For
example, a user may have a set of keywords, an image, a piece of music,
or just a description of an image or song, and she/he wants to find a set of
documents that matches best with the interesting patterns. WWW search
engines are retrieval-by-content tools, of which Google (www.google.com)
is an excellent example.

When considering this classification of DM tasks from a statistical perspective, it
can be challenged. Mainly it is a question about the role of explorative data analy-
sis (EDA) with respect to DM as a whole. Among the statistics community there
exist two types of data analysis: explorative and confirmatory data analysis, e.g.,
[188]. The principles and procedures of confirmatory data analysis (CDA) are
considered as great intellectual products of the last century [374]. CDA produces
summary statistics, assesses significance and precision, and tests hypotheses on
data that is collected under strict and specific circumstances. Exact confirmation
and reproducibility of the results are also important issues. This is accomplished
by exact formulation of the hypothesis, strict experimental design, data collec-
tion, and analysis. Finally, one confirms or discards the hypothesis based on the
outcome of the fixed assumptions and chosen methods.

While the exact confirmation of hypothesis is the basic principle of most
scientific research, EDA has also a significant role, for example, in supporting hy-
pothesis making. EDA is flexible, simple to apply, and a quick way to increase
one’s understanding about data. This is actually needed also for the steps of the
CDA [375]. This means that the whole DM clearly resembles EDA. In DM one
is not confirming or discarding hypotheses. Because a knowledge discoverer is
searching for new and unexpected facts (such as groupings, dependencies, cor-
relations etc.) from data, she/he is actually doing exploratory data analysis, at
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least, if considering from the point of view of the aforementioned traditional de-
finitions. Therefore, DM as a whole can be seen as a kind of explorative data
analysis approach, which makes the name of the first category somewhat ques-
tionable. Hence, perhaps a better label for the first task is “visualization based

data exploration”.2

2.1.2 Components of data mining algorithms

A data mining algorithm is an instantiation of a particular method that actu-
ally performs some chosen operations on the data. Therefore, data mining al-
gorithms are often presented as a composition of separate components that must
be adapted for different tasks. Fayyad et al. [111] propose a three component
model, whereas Hand et al. [170] suggest a four component framework with a
data management strategy.

In the following, the main components of data mining algorithms according
to [170, 111] are described.

A model or pattern structure determines an underlying structure or a functional
form for the data. A model realizes a meaningful function (e.g., classifica-
tion or clustering) through a representational form (e.g., linear function of
multiple variables or Gaussian probability density function) [111].

A score function (a.k.a. cost function, loss function, criterion function, or good-
ness-of-fitness function) determines how the attained model fits the data
set, and presents the error between the model and real-world data. The er-
ror (that is the value of the score function) is minimized by using optimiza-
tion and iterative search methods. A score function in a regression problem
might be, for example, the least-squares fit between the obtained function
and data or, in a classification problem, the misclassification rate.

Optimization and search methods are used to optimize the score functions for
finding the best-fitted models and pattern structures. The search meth-
ods are divided into two categories: parameter search for a given model
and model search from a model space. Parameter search problems are
usually formulated as optimization problems, such as the aforementioned
minimization of the least squares error of a given regression model. The
pattern/model search problems are accomplished, for example, by using
heuristic search techniques (e.g., many clustering algorithms [106]). There
are many challenges related to the model search and parameter optimiza-
tion. The variance-bias dilemma comes up in this part of KDD. It means that
models and methods should be designed so that too precise matching be-
tween a model and a particular data set is avoided. Otherwise the obtained
models become overfitted, which prevents them to be generalized to other

2 This discussion on the role of EDA in the fields of DM and KDD was initiated by professor
Vladimir Estivill-Castro during the evaluation of this thesis.
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cases. On the other hand, the methods should solve the problems accu-
rately in a reasonable time, which, especially on large DM data sets, brings
out the issue of computational complexity. Therefore, the development of
efficient and accurate solvers for the model and parameter optimization is a
challenging task, and is investigated mainly by the scientists in the field of
optimization and numerical mathematics. Optimization methods that are
useful in many DM problems are introduced, e.g., in [28, 311, 267, 280].

Data management strategy considers the efficient handling of the data during
the pattern/model search/optimization step. For example, the develop-
ment of the most classical statistical and traditional machine learning al-
gorithms have relied on the assumption that all data can be stored in and
accessed from the fast random-access memory (RAM). Data mining is, how-
ever, intended for large data sets that exceed the size of RAM. Therefore, the
DM algorithms and data storage strategies must be designed to be scalable
to large data sets, which means that careful consideration of data manage-
ment strategy is needed.

This thesis concentrates mainly on the first three components by developing new
formulations and algorithms for location estimation and clustering problems.
However, real-world experience has shown that the data management issue can
not be totally avoided, because of the huge size of the current data collections.

A large number of articles and books have been published on the methods
and principles of DM. Perhaps the most extensive discussions from the method-
ological point of view are given in [170, 167, 96]. Data Mining and Knowledge
Discovery journal® presents the latest developments. Furthermore, the techniques
and methods employed by DM community can be found in books from many
other fields, for example, in books about statistics, artificial intelligence, machine
learning, pattern recognition, and database technology.

2.2 Knowledge discovery process

Although DM and KDD may often be considered as a set of computational and
statistical methods for solving knowledge discovery problems, primarily they are
iterative and interactive processes involving numerous steps from domain analy-
sis to interpretation and utilization of the results. While DM is managed by com-
putational experts, KDD is managed by a domain specialist. KDD starts from
masses of data and proceeds, by using intelligent computational and statistical
methods, to the refined presentation that clarifies the interesting information in
exploitable and interpretable form using reduced amounts of numbers, graphs,
rules, etc. Fayyad et al. [117] define the goals of the KDD process as a verifi-
cation of a user’s hypothesis, autonomous discovery of new patterns, prediction

3 Data Mining and Knowledge Discovery is published by Springer Netherlands

(http:/ /www.springerlink.com).
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of future behavior of some entities, and/or description of interesting patterns.
By interpreting the refined and compressed information, a domain specialist can
turn the discovered information into human knowledge and obtain the intended
goals. A widely used and accepted definition for the knowledge discovery reads
as

"The nontrivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data” [111].

The term pattern is an expression that describes a subset of data or a model suit-
able for the subset of the data [111]. For example, Andrassyova et al. [10] and Ve-
hvildinen [385] summarize and compare different definitions and process models
that are applied in KDD. Although the definitions somewhat differ from each
other (see, e.g., [40, 350, 167, 111, 73]), in the main points they typically follow the
definition that is given in many articles by Fayyad et al. (e.g., [111, 115, 116, 113,
117]). In the following, short descriptions for the main steps of the KDD process
are given (cf. Figure 2):

Step 1. Data selection Interesting data from heterogeneous data sources (data-
bases, files, etc.) are selected. The modified view in Figure 2 emphasizes the
current situation, where the data sources exist in multiple heterogeneous
formats. Therefore, the first step of the process is presented by a figure that
fits the present state of information sources.

Step 2. Data preprocessing Erroneous and missing data values are handled, for
instance, by imputation and outlier detection methods. The intention of
this thesis is to minimize the effort needed in this step. This is realized
by applying strategies that are tolerant against erroneous data values and,
hence, allow the utilization of all available data.
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Step 3. Data transformation The data is transformed into a suitable form by find-
ing the most significant features and variables. Data reduction and projec-
tion techniques (e.g., PCA) are utilized.

Step 4. Data mining This is the core step of the KDD process. At this point, the
algorithms are selected. Interesting models and patterns are extracted from
the transformed data. Which methods are chosen depend on the application
(cf. Section 2.1.1).

Step 5. Interpretation and evaluation The refined information is presented in un-
derstandable and useful ways to the user. Visualization and knowledge
representation techniques are exploited. These are often exploratory DM
techniques (cf. Section 2.1.1). This activity is performed in co-operation
with domain specialist. Returning back to previous steps is possible.

These steps provide a useful outline for the overall KDD process. Fayyad et al.
[111] give also an augmented version for the process model in which, for exam-
ple, the analysis of the application domain is included.

2.3 Knowledge mining: an integrated process model

The industry-related applied research indicates that before the most valuable in-
formation and knowledge can be discovered, a lot of attention has to be paid
to the domain analysis. In large business organizations, huge amounts of “un-
known” or “unregistered” communication and information exist that should be
discovered and even digitized first or, otherwise, the reasonable goal setting and
knowledge utilization may become inaccurate and inefficient. Hence, an increased
awareness about information and communication residing in target environments
(e.g., business, industry, or government) can be useful while one is defining the
goal for the KDD process. This awareness is obtained by “mining” the organiza-
tion.

Many KDD process models focus on data that is digitally stored and, there-
fore, immediately available, but this is not necessarily the common situation any-
more, because a lot of information exist in various formats. Without a thorough
domain analysis, a part of this information may remain out of reach. In order
to boost the utility of the KDD process, a so-called genre-based domain analysis
[223, 379, 320] can be made part of domain analysis prior to any data process-
ing activities. This was successfully utilized in applied projects related to paper
industry [211, 210, 212].

2.3.1 Genre-based domain analysis
As the organizations produce, use, and manage large amounts of data in multiple

formats, such as databases, text and image files, photos, letters, A4 paper docu-
ments, faxes, audio records, etc., it may become laborious to recognize the most
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important sources of information, or even be aware of their current owners. Some
of the data formats, such as human data (i.e., tacit knowledge), letters, paper doc-
uments, or audio/videotapes, can not be directly utilized by the KDD process.
Although such data often contain useful and valuable knowledge, it needs to be
transformed into a utilizable form.

The concept of genre provides means for thorough domain analysis through
examining information communicated as part of business processes, capturing
all information flows [356] including verbal communication, data in informa-
tion systems, and paper as well as electronic documents. In fact, genres can be
thought of as prototypical models [368] for communication representing a typi-
tied piece of information responding to a recurrent communicative situation, and
apart from individual’s private motives [405, 404, 411].

The fundamental idea of using genres in domain analysis is the assumption
that information that is communicated and used within business processes can
be regarded as important, or even critical, information to the success of business
operations and activities. Further, genre analysis provides knowledge over the
most essential informational entities that are related to business processes. In this
way, these entities can be taken into account in the KDD process in order to pro-
vide rational results. Thus, the goal of using the genre-based method [379] in this
context is to map different data sources in the organization to each other and find
out the related metadata, such as data amounts, formats, and users. Thereby;, it
supports the domain analysts in discovering and understanding the most impor-
tant data and information sources in the organization. In this way, the existing
sources are understood better and new valuable knowledge needs can be recog-
nized. Furthermore, the type of data and information sources are understood and
the most interesting non-digital information can possibly be digitized prior to the
actual KDD activities.
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Tyrvédinen et al. [378] present a taxonomy for categories of communication
forms that is used within the genre-based method. Based on this taxonomy, three
kinds of data and information from the DM point of view can be defined:

Mineable data Digital data, such as bitmaps, XML-documents, Word documents,
Excel sheets, e-mails, etc. These are relatively easily processed by computer
systems.

Indirectly mineable data This resides, for example, in audio/VHS tapes or ordi-
nary letters. Although not immediately ready for processing by computer
systems, this type of data can still be digitized without content changes.

Non-mineable information Information thatis delivered in rumors, discussions,
negotiations, etc. In other words, it is “human data” that is not mediated
and nearly impossible to convert into a mineable data. Digitalization of this
kind of information requires significant changes into the existing practices,
information management systems, and workflows across the organization.

The first two classes can be considered as data types or storing formats, but the
last one should be regarded as information rather than data. It is also very dif-
ficult to convert into data. Knowledge is an immaterial human property, which
is based on the received information. This information need to be extracted from
its owner and materialized in order to utilize it digitally. This is naturally an in-
tractable problem and will not be considered further in this thesis. Besides the
enhanced KDD activities, another advantage that is achieved by using the genre-
based approach in business organizations, is the immediate feedback about the
state and needs of the organization that the thorough domain analysis also pro-
vides. It produces valuable information from general process factors, such as the
throughput-time of (sub)processes, managed information volumes per person,
and the amounts of communication (see Figure 3).

2.3.2 Integration of DM and KDD processes

A modified KDD process including DM as its subprocess is presented in Figure
4. Tt follows the similar principles as the popular model proposed by Fayyad et
al. [115] (see Figure 2), which is further specified in verbal descriptions in [115,
pp-10-11]. Iterations back to the previous process steps are possible. However,
because almost everything in today’s world is measured by return on investment
(ROI), the original KDD model is extended with more domain specific steps and
details. Our model starts from analysis of the present situation and ends up with
intelligent utilization of data stores that is needed to make profit.

First of all, the knowledge discovery is divided into two nested processes:
KD and DM. KD corresponds to the original KDD process and DM is an extension
of the DM step embedded into KDD. As the process is extended to consider all
kinds of mineable data and information sources, ‘D’ for “databases” is dropped
from the KDD abbreviation. This aggregate will from now on be referred to as
KM. By separating more clearly knowledge discovery from data mining, domain
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specialists are able to independently attend all steps of the knowledge discovery.
Hence, DM is redefined as a sub-process that is hidden from the domain experts.
It is desired to be highly automated, so that the domain experts can concentrate
totally on the domain level problems. The original KDD process model in Figure
2 includes a number of complex steps, which means that for a successful pass
through the process, one needs skills and knowledge from the organization is-
sues to the computational methods applied, for example, in the feature selection
or outlier detection. Therefore, it also presumes close co-operation between the
domain expert and the method specialists. This is not necessarily an efficient ap-
proach in future as it necessitates the availability of DM support each time KD
and DM operations are needed. Therefore, the data preprocessing and transfor-
mation steps should be included in the DM process. They should not concern the
domain specialists.

The pictures representing the initial situation of the KD process in Figure 4
illustrate a typical start for a knowledge mining task. The figure emphasizes the
fact that KM is always related to a target environment where it is to be realized.
Some people know the environment better than the others: such information ex-
ist in the form of tacit knowledge and experience that accumulates in the course
of time and is not easily transferred among people. The domain (background)
knowledge is defined as “the information not explicitly present in the data” [316]. Ac-
cording to the workshop report [316], domain knowledge should be mainly used
for reducing the search space, while it also should be utilized carefully, because
it may prohibitively influence the discovery of unexpected models and patterns.
In the KM approach, the main purpose of domain knowledge is to assist in the
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search of the most useful data and information sources, and not only to explain
the expected patterns or models in data. In the late eighties, the facilities for
the analysis of the information sources or for collecting and digitizing data were
meager than those available at present. Hence, the increased domain knowledge
needs not be considered as a restrictive factor for any subsequent step of the KD
or DM process. It rather assists in the adjustment of the goal and increases the
capacity for the result utilization.

KD steps

The steps of the KD process are described next. Figure 4 shows the steps taken
from the starting point to the profit stage. The arrows represent the steps and the
symbols illustrate the outcomes. As the process is iterative, returning from any
step to some of the previous steps is possible (cf. Section 2.2).

Step 1. Domain analysis A general domain analysis, as described in Section 2.3.1,
is performed. One increases significantly his/her understanding about the
target environment. It is important to be aware of the owners and the origin
of the interesting data, whether all that data is in a digital format, about the
needs to digitize data, of the availability of new and interesting information,
and so on. On the other hand, one should evaluate the available resources
required by the whole process. All these details effect the subsequent issues,
such as data selection, goal setting, time constraints, etc.

Step 2. Goal setting As a result of the domain analysis, one is aware of the avail-
able data. On the other hand, there is awareness about when and by whom
the data will be processed. For example, one may come up with situations
where interesting data exist but where the only database expert happens to
be unavailable. Hence, based on the outcome of the domain analysis one
defines a reasonable goal for KM (cf. [385]).

Step 3. Data selection At this step one has gained technical readiness to make
the data selection. She/he is aware of available resources and the reason-
able goal. Based on knowledge about the useful information and communi-
cation sources, the most important data sets are selected. If the interesting
data is not in directly mineable form, one should consider possible digital-
ization. This depends, for example, on human resources, facilities, and time
constraints.

Step 4. Data mining In this step one performs data mining. The input to the
data mining is the selected data and the output is information presented by
understandable visual models and patterns. As the technical details of this
step are hidden, computational or statistical skills by the domain specialist
are not required. On the other hand, this excludes neither a human-driven
nor automatic computer-driven approach to the data mining process. Hence,
data mining can be performed by using a commercial DM software that
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serves all DM activities or, it can be accomplished in a step-by-step fashion
with a DM specialist.

Step 5. Interpretation/evaluation Interpretation and evaluation of the informa-
tion presented by visual patterns and models should lead to increased knowl-
edge by means of the predetermined goal. Depending on the domain, the
knowledge means things like increased awareness of customer behavior,
reasons for fluctuations in an industry process, relations and dependencies
between medical treatments and health, etc. One should also integrate the
obtained information to the background knowledge.

7

Step 6. Utilization "You'll get nothing by doing nothing...”. In order to profit
from the discovered knowledge, it has to be utilized. The value of the
obtained knowledge does not show up until this real-life utilization is ac-
complished. Depending on the goal, it may mean an increased number
of customers and sales for a company, survivals from a refractory disease,
pre-empted terrorist attacks or prevented white-collar crimes and frauds.
Moreover, this could also mean a decision to utilize KM more consistently
for increasing business intelligence.

DM steps

Compared to the above KD steps, DM requires much deeper understanding on
technical and computational issues (see, for example, algorithmic details in [185,
270, 44]). While the overall KD process is guided by a domain specialist, the DM
step remains mainly hidden. End users are usually more keen to solve domain
level problems than to struggle with computational or statistical details underly-
ing the DM models and patterns (e.g., choice of metaparameters). For example,
the mathematical and statistical elements used in DM tools are often so involved
that a specialist is required to deal with them. Therefore, if many algorithmic
decisions are required by the end user, usability of the whole KM may suffer sig-
nificantly. Due to the aforementioned points, it is essential to automate the DM
process as fully as possible. This means that after the goal setting and data selec-
tion, the more technical DM sub-process is performed as a black box system from
the end users point of view.

The DM process consists of five steps, which merge together the technically
complex steps of the original KDD process (cf. Figures 2 and 4). The process
starts with masses of target data and finishes with the useful and understandable
results. These steps are described next.

Step 1. Preprocessing In this step, the target data is preprocessed. According to
a chosen strategy, missing values are replaced and erroneous values cor-
rected or removed. If these activities are put in practice as part of the fol-
lowing mining algorithms, this step may not need any actions.

Step 2. Data transformation This step may involve scaling, feature selection, and
dimension reduction operations.
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Step 3. Method selection In this step, suitable methods for the task are selected
(cf. Section 2.1.1). This depends on the data and the goal of the whole KM
task.

Step 4. Mining This is the core of the KM. The chosen methods are applied to
the data. The output can consist of clusters, association rules, class labels,
estimates for parametric models, etc.

Step 5. Visualization The numerical results are converted into a useful and un-
derstandable form. Visualization techniques are used to illustrate the ob-
tained structures and models.

As a result of this process, the data is refined and transformed so that domain
experts can easily interpret and use it. Preprocessing and transformation, which
both are kinds of preprocessing steps in the DM process, can overlap each other.
Because the major goal of this thesis is to develop a clustering algorithm that
minimizes the number of input parameters of the DM process, the above process
framework is a focal point from the point of view of this thesis on the whole. It is
desirable that a KD process framework based on this development, including the
black-box approach to the DM process and automated reliable methods, should
become more and more common in future, in order to allow growth in the utility,
amount of users, and adoption of KD and DM tools.

2.4 Emerging areas: Text mining and Web mining

Special types of DM tasks, text mining and Web mining, can nowadays be consid-
ered such fundamental applications of DM and KM that they are worth of some-
what more detailed treatment. These specific sub-fields of KM offer many useful
tools and techniques for companies dealing with e-commerce and customer re-
lationship management (CRM) issues [39]. The special challenges have arisen
due to the exponential growth rate of Internet currently producing enormous
amounts of structured, semi-structured (e.g., html documents), and unstructured
data. The unstructured data can be, e.g., informal text, image, audio and video
files [317]. Consequently, the traditional query and data analysis tools have be-
come inadequate. The unstructured data formats are troublesome for DM meth-
ods and tools. Hence, general-purpose markup languages, such as XML*, are
used to describe and store data in a more computer-friendly structured or semi-
structured formats [73].

24.1 Text mining

Text mining focuses on information that is hidden in large collections of various
text documents, for example, e-mails or web-pages [32, 133]. Real-world applica-

4 In 9th of April 2006, First International Workshop on Knowledge Discovery from XML

Documents (KDXD 2006) was held in Singapore.
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tions consist of organizations’ large document databases, such as help-desk data
sets or generally useful spam-filtering systems. By text mining large document
databases companies may obtain beneficial information about future technology
opportunities, for example, to improve business strategy planning.

Mining from DM and KDD document collections

An interesting application from the point of view of this thesis is science and tech-
nology document database mining. DM and KDD, in particular, are excellent ob-
jects for text mining, because the field is progressing and, consequently, the num-
ber of publications is growing, at an unprecedented rate. This can be observed,
for example, by taking a glance over the bibliography of this thesis. Due to inter-
estingness of the used target data and the obtained results, a study published in
1999 by Zhu et al. [423] is briefly reviewed next. They propose a kind of text min-
ing process that is called TOA (technology opportunities analysis) and apply it to
mining scientific and technical document database INSPEC. Their main focus is
on the documents from the field of data mining and knowledge discovery itself.
The results provide valuable information about seminal contributions in the field,
interaction patterns across separate fields and institutions, emphases and active
players in the field, emerging research areas, etc. More generally, the output of
the TOA process includes basic profiling of the R&D activity in the target area,
mapping of technical topic interrelationships, and composite “science or technol-
ogy indicators”. The results provide very good examples about the possibilities
and utility of text mining.

At first, they investigated how the terms DM and KDD occur in the ar-
ticles. The results show that the institutions significantly contributing to KDD
are almost the same as those contributing to DM. This may not surprise the DM
community, but the authors note that, for example, in the fields of natural lan-
guage processing and computational linguistics, the similar matching of contrib-
utors across the fields is not found even though these are conceptually very close
fields. Hence, this is a sample of information that DM and KDD produce. The
high frequency of co-occurrences of DM and KDD terms led to the consolida-
tion of abstract of target documents that contained one or both of the terms. The
results also show that multiple authorship is a common practice in DM/KDD
(1142 authors for 694 articles). 27% of the contributors were from companies
(the most prolific of them was IBM). Affiliations among the most prolific authors
seem to follow the same division, since 22% of them are from companies and 74%
from academic institutions. Hence, the case study suggests that the KDD/DM
research is predominantly academic, but also supported by a significant indus-
trial involvement. Based on the relatively larger number of conference papers
against the journal papers and the large size of the research teams, the authors
conclude that KDD/DM is a "hot’ research area with a lot of experimental and
interdisciplinary application-oriented group work, where the results are dissemi-
nated quickly. Term clustering shows that ‘deductive databases” and ’distributed
databases” were the two most central terms of the clusters at that time. The au-
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thors also found that "World Wide Web’ topic has the greatest average growth in
the number of documents. "Data warehouse’” was the most industry-led domain,
whereas ‘rough sets’, ‘genetic algorithms’, and ’pattern classification” were the
most academic-driven. The slowest growth rates in the number of documents
were found for “pattern classification’, ‘genetic algorithms” and "query process-
ing’. The authors also note that the topics engaging industry researchers grew
fastest. In addition to the two most industry-driven technical topics of ‘data
warehousing” and 'business process databases’, also 'very large databases” and
‘association rules” showed strong industrial participation, whereas the remain-
ing technical topics were mainly academic. Hence, the development of basic ap-
proaches and techniques was predominantly addressed in the academic world in
1999.

2.4.2 Web mining

Alongside with text mining, web mining is another special application in the
tields of DM and KD with a number of recent efforts [105, 235, 107]. Cooley et
al. [77] define it simply as “the discovery and analysis of useful information from
the World Wide Web.” Web mining can be roughly divided into three categories
[235, 107]: Web content mining, Web structure mining, and Web usage mining. Han
et al. [166] give even a finer treatment for the Web mining tasks, but that will not
be discussed here.

The web offers currently the most challenging data source for DM and KDD.
Apart from that the content of the available on-line Web data is more complex
than the content of traditional text document collections, its content is also much
more dynamic and, worst of all, only a small fraction of the Web’s pages contain
truly relevant or useful information. This makes their use and finding the rele-
vant information quite problematic for the Web users community, which consists
of extremely broad spectrum of people with different backgrounds, interests, and
purposes. Moreover, the Web’s dynamic nature makes it highly unpredictable.
Web sites” access patterns may change dramatically due to significant events,
such as the WTC terror attacks on September 11, 2001 [166]. Leaving aside the
random surfing guided by linkage pointers from one page to another, the current
basic techniques for accessing Web information are mainly keyword-based search
and topic-directory browsing. These types of facilities are provided, for example,
by some well-known search engines such as Google and Yahoo.

E-commerce is a modern topic within business and an extremely interesting
application for web mining techniques. Ansari et al. [13] state that ”E-commerce
is the killer-domain for data mining”. As DM is inherently capable of dealing with
a lot of electronic and mineable data, it provides good facilities for collecting and
handling customer information from the Web [355]. Kohavi et al. [233] consider e-
commerce as a promising field from the viewpoint of Web mining, since the data
collection systems there are often new and do not carry much load from the past
and ancient legacy systems, where the needs of data mining were not taken into
account. So, Web mining offers good facilities for e-commerce traders to extract
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useful information for essential purposes, such as market strategy planning, from
the huge amounts of transaction and server data.

Web content mining

Web content mining concentrates on raw information available in the Web [107].
The Web contains several types of data, such as textual, image, audio, video,
metadata, and hyperlinks. Mining of the aforementioned heterogenous data types
is also referred to as multimedia mining (e.g., [167]), which is actually considered
as an instance of Web mining in [235]. Mining of unstructured text data is better
known as text mining (see Section 2.4.1), but Kosala et al. [235] see it as an in-
stance of Web mining as well. The semi-structured data available on the Web can
be refined with a higher level organization that enables the use of data mining
techniques, such as intelligent search agents, database techniques or query sys-
tems, so that the users can more easily find relevant and interesting information
from the Web.

Web structure mining

The Web consists, not only of huge numbers of pages, but also of links between
pages that contain enormous amounts of information about the authority of pages
etc. [62]. The analysis of these dependencies and connections is referred to as
Web structure mining, and may provide a lot of valuable information, for exam-
ple, about the authority of a Web site. This helps the search engines to direct users
to the most useful pages. Content-based search strategies are too vulnerable for
all kinds of misinterpretations.

Google A search engine, that is worth of few words in this thesis, is Google5. It
is highly popular and a successful example of the retrieval-by-content type of data
mining tools that also exploit linkage information. Google was developed by
Sergey Brin and Larry Page [52] in the 1990s and, currently, 150 million searches
are performed on Google daily6. Unlike traditional document search engines,
finding of relevant pages by Google is not only based on counting the number
of keywords occurrences. In order to suggest the most relevant and authorita-
tive pages to users, Google employs an intelligent technology called PageRank,
which evaluates more thoroughly the importance and authority of pages (see,
e.g. [53, 310]). The relevance of page content is evaluated by Hypertext-Matching
Analysis and Google analyzes the full content of a web page, including font size,
location of words, and content of the neighboring web pages.

Web usage mining

Web usage mining [358] focuses on browsing and access patterns (e.g., click-
streams) generated by Web users. Such information about page access frequen-

http:/ /www.google.com/

6 http:/ /www.google.com/ads/pharma.html, accessed 17th of May, 2006.
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cies or common traversal paths through a Web site is useful and valuable for
e-commerce business, CRM issues, or Web-service providers. In order to provide
users with better services, Web pages and links should be updated according to
users’” needs and to reflect the current trends. Information about Web usage is
often presented in the form of association rules, sequential patterns, or cluster
structures.

In addition to the usual challenges such as robustness, reliability and scala-
bility of the DM methods, the Web brings further requirements. For example, in
the context of clustering Web visitors that is actually closely related application
to the topic of this thesis, Estivill-Castro and Yang [103] mention the problems of
finding the natural measure of similarity for Web-visitors, scalability with respect
to both the size of data and computation of the similarity measure, and quality
of results in the presence of noise and outliers. For instance, when applying clas-
sical prototype-based clustering algorithms such as K-means for grouping users’
navigation paths, the usual estimates for the cluster representatives will not nec-
essarily provide useful information. This occurs because the navigation paths are
discrete structures and the sample mean as a prototypical vector of values for
a cluster may not have the values of a representative item of the cluster. In or-
der to avoid this problem a medoid-based robust clustering algorithm, in which
each cluster representative is restricted to be a member of the target data set, is
developed for Web usage mining [103].

Using the developed methods, many Web-sites are nowadays customized,
and some of them are even continuously adapted, according to the users’ inter-
ests. This special area of Web usage mining is called Web-personalization. The aim
is to produce personalized portals that dynamically serve customized contents
for the users [286]. Vast amounts of information about the behavior of Web users
is continuously stored and available in weblogs [107]. The problem is that usu-
ally only the visited URLs are stored. As such, URLs are quite a poor source of
information, because they do not provide information about actual content of the
pages. Consequently, weblogs are currently enriched also with content-based in-
formation [107]. At present, the amount of information stored into web-logs is
huge (see examples in [306]). Because the amount of this information also grows
continuously, the efficiency of the existing data mining algorithms lags behind the
volumes of real world data. Therefore, more efficient web mining innovations
also emerge. For example, in order to avoid dealing with the whole data each
time that DM is required, stream-based data mining agents [306] store and ex-
ploit previous summary information. Intelligent agents provide a flexible frame-
work for distributed Web mining, such as retrieval, filtering, and categorizing of
web documents [346]. SUGGEST 2.0 [349] is an example of a recommendation
system. It exploits Web usage mining techniques to dynamically generate sug-
gestions about pages that have not yet been visited but might be of interest to a
user. Lawrence et al. [246] have investigated a possibility to integrate DM tools
with a recommender and remote shopping system. The basic idea of the system
is a customer using Personal Digital Assistant (PDA) to compose and transmit
the shopping list to a store. The system also targets personalized product rec-
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ommendations back to the customer. A lot of DM techniques were applied, such
as association mining to discover relationships between the product classes and
clustering methods to group customers with similar shopping histories.

Generally speaking, Web mining is not anymore an added-value tool for
e-business companies, but rather a new-found requisite in their efforts to attract
and serve customers from among the enormous masses of users that are currently
reachable via Internet. Business developers have become aware that due to the
mediating nature of e-business, the customers are just as easily lost as reached.
Kohavi et al. [232] remind us: "leaving the store is only one click away...” that well
illustrates the ease by which Web-shopping can be cancelled. Internet provides
no practical opportunities for face-to-face human interaction or sales-talks by a
clever sales-man in a shopping situation. These have been the main tricks to
make a customer to change her or his mind in a traditional shopping situation.
Electronic stores are open round the clock and all the customers, within the tech-
nical limits of course, are able to arrive and do the shopping simultaneously. On
a top seller Web-marketing site there can be an enormous number of customers
visiting at the same time. After figuring out all these risks, problems, challenges
and, especially, after paying attention to the fact that the Web contains an enor-
mous amount of information about customer profiles, e-business companies have
started to utilize Web mining more and more. In this way, they have become
more intelligent in selecting the best pop-up advertisement, e-commerce offer,
or the best-price buying suggestion for a particular customer [317, 193]. Hence,
the knowledge about customers’ needs and desires is one of the most significant
competitive factors for any company on the e-commerce field. Consequently, as
the e-business companies continuously gather and produce more and more data
and, thereby, interesting problems for data miners, DM provides, therefore, a
great advantage for the business party, such as amazon.com and eBay among
many others [231, 233].

As an extremely promising subarea of DM and KDD fields, the coalition of
e-business and data mining has received a lot of attention in scientific journals.
Detailed descriptions about the techniques and results can be found, e.g., from a
survey by Pierrakos et al. [319] and articles by Nasraoui et al. [296, 295, 294]. A
special issue devoted to Web mining is provided by Data Mining and Knowledge
Discovery journal (Volume 6, Number 1, January 2002). More about e-commerce
applications can be found, for instance, in articles published in a special issue of
Data Mining and Knowledge Discovery (Volume 5, Numbers 1-2, January 2001)
journal.

2.5 Some application areas

In this section, DM /KDD applications and environments are surveyed more thor-
oughly. The examples have been collected from a diverse set of articles and books.
For instance, a large number of clustering applications are introduced by Everitt
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et al. [106]. The data sets used contain dolphin whistles, populations based
on different factors such as economy, geography or climate, mammal’s milk,
and so on. These all can be analyzed with DM methods. Detailed analyzes of
application-specific issues will not be considered here. Instead, the intention is to
map and summarize the wide utility of DM. The set of applications overviewed
is not expected to be complete, but, at least, can provide an idea about the vast
potential of DM for an interested reader. As an alternative for this chapter, a quick
browsing through the Internet would reveal the same thing.

Scientific applications Huge amounts of data in many forms, such as images,
time series, and sequence data, are collected by scientific applications [110]. DM
can assist scientists to discover and understand more deeper facts and meanings
from these data sets. For example, some well-known knowledge discovery au-
thors, among them Fayyad et al. [110] and Han et al. [165], introduce a number
of emerging scientific domains and applications for DM.

Rocke et al. [334] propose an efficient method for star/galaxy classification
from sky survey data by using sub-sampling and mixture likelihood clustering
methods. Using various DM methods, such as PCA, K-means clustering, and
self-organizing maps (SOM), Kitamoto [228] introduces a typhoon clustering ap-
plication for a huge archive of 34,000 satellite images. Fayyad et al. [110, 114]
present five DM case studies on scientific applications. SKICAT is an astronom-
ical sky survey application [112], and was developed to identify classes of the
sky objects appearing in photographic images by using decision-tree algorithms
and to generate a catalog of them for astronomers. JARtool [57] was developed
to help planetary geologists to recognize volcanoes on the surface of the planet
Venus from huge amounts of high-resolution image data that was collected by a
synthetic aperture radar (SAR) from the Magellan spacecraft for more than five
years. The image database is huge, since it consists of more than 30,000 SAR im-
ages. A case study on mining astronomical time series is introduced by Ng et al.
[301].

Fayyad et al. [110] refer to several gene-finding programs and methods that
are applied to biosequence databases. Ressom et al. [330] propose an adaptive
double self-organizing map (ADSOM) method for data clustering and visualiza-
tion in gene expression applications. Biological data sets are inherent objects for
DM systems because nature is full of different categories and hierarchies. In col-
laboration with several others Ka Yee Yeung [407, 409, 408, 406, 252] has written
several articles about bioinformatics. The articles introduce several applications
of clustering techniques, such as Bayesian mixtures, in gene expression. SUB-
DUE, introduced by Cook et al. [76], is a system for discovering interesting sub-
structures from structural data, for example, protein and DNA databases.

CONQUEST is a parallel computer system for atmospheric scientists for
making queries about extra-tropical cyclones and distinctive blocking features
in the atmosphere [304]. Han et al. [165], for their part, outline, with discus-
sions, several emerging scientific domains, such as telecommunication, climate
and ecosystems, for data mining. All these scientific domains produce masses of
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high-dimensional data in many forms. Han et al. [169] have also developed a spa-
tial data mining prototype system called Geominer for geospatial data mining.
Spatial data consists of objects with annotations about physical location informa-
tion [96]. Quakefinder is a DM system for automatic detection and measurement
of tectonic activity in the Earth’s crust from satellite images [362].

Business and industry Economy and business domains belong to the most pro-
mising areas for DM methods (e.g., [14, 234]). Today’s business managers are
dealing with huge volumes of data that can be processed and refined by DM ap-
plications. Basic applications on the business field are, e.g., market basket analy-
sis, risk management, and customer segmentation [350]. In order to maintain and
even raise the competitiveness on today’s market fields, companies apply DM in
sales, marketing, supply chain optimization, and fraud detection [234]. For ex-
ample, companies need to sense and forecast changes in the market trends. They
also have to direct advertising campaigns to the right group of customers (e.g.,
[227]). Such customers can be found by customer segment analysis, in which cus-
tomers are partitioned into homogenous groups according to their purchasing
behavior or other demographic features [350, 170]. For example, Dolnicar et al.
[88] have applied several clustering algorithms to travel markets segmentation.
In the experiment on market segmentation problems by Hruschka et al. [189],
neural networks outperformed the K-means algorithm.

Another interesting business application for DM is stock market analysis.
The stock markets produce immense amounts of time-series data that can be seg-
mented, clustered, classified, etc. in order to predict future behavior (see, e.g.,
[221]). Hence, one may search similarly behaving stocks and try to predict their
future changes. For example, Gavrilov et al. [139] have studied the methods for
tinding groups of similarly varying stocks.

Modern telecommunication networks process vast amounts of transactions
on a daily basis [343]. This data hides many useful patterns and regularities that
can be discovered by DM methods. In cooperation with four Finnish telecommu-
nication companies, Mannila et al. have developed methods to enhance the use of
network alarm data [229, 178]. They applied association rule algorithms for min-
ing frequent episodes from sequential data [271]. The increased knowledge was
used for filtering redundant alarms, locating faults, and predicting severe faults.
In [229], the same algorithms are also generalized into other environments, such
as document collections and student enrollment data. A data mining software
TASA (Telecommunication Alarm Sequence Analyzer) was implemented in or-
der to realize the practical use of the methods [230]. Another example of using
intelligent methods within the telecommunication industry is given by Weiss et
al. [394]. Vehvildinen [385] introduces three DM methods (rough sets, CART
classification trees, and SOM) as tools for managing quality of service in digital
telecommunication networks. C4.5 decision tree classifier for a telecommunica-
tion network diagnosis application is presented by Danyluk and Provost [84].
Data warehousing and sequence mining from telecommunication network data
in fault forecasting tasks and improvements in network reliability are introduced
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in [343].

Aviation safety is an important issue, which is considered by Nazeri et al.
[299]. They investigated the possibilities to assist safety officers in their analy-
sis work and, as a result, developed a new DM tool called "Aviation Safety Data
Mining Workbench’. Aircraft service issues are also treated with DM methods.
Létourneau et al. [248] developed an approach to predict aircraft component re-
placement using on-board sensor data and several DM techniques.

Corney [81] applies clustering methods to intelligent food design. The re-
search objective was to find best method to help the food designers discover ho-
mogeneous groups of consumers, and, thereafter, target them with appropriate
products. The work is an interesting example from the intersection of three re-
search domains: product design, food and drink, and intelligent data analysis.
As a result, a combination of a clustering and outlier detection algorithm, which
aims at producing outlier-free cluster models, is introduced.

Spam Spam, that is unsolicited e-mails, have become a significant problem for
e-mail users. Hence, spam filtering can be seen as a type of text mining task.
Without spam filters, users would have to use an unacceptable amount of time
for finding relevant messages amongst the spam. Further, spam e-mails misuse
a lot of network resources and, perhaps, even prevent relevant messages from
being received in time. An e-mail message contains numerical, categorical, and
unstructured information. The numerical information may include the message
length and the number of recipients. The categorical information can consist of
the domain of the sender and the type of the attached files. Unstructured infor-
mation is found on the subject and content fields. As the spam messages are in
some sense similar to each other, the spam detection problem can be approached
from the clustering perspective. Since the content and topic of e-mails usually
change over time, online clustering can be used to classify the received messages
into right classes. Manco et al. [268] apply text preprocessing and data clustering
to the spam problem. By integrating an agglomerative hierarchical clustering al-
gorithm with the k-means clustering, they obtained good results with respect to
a user-defined "optimal" partitions. As a future task, they suggest extending the
e-mail clustering to attachment file contents.

Fraud detection and risk prediction While organizations are storing increasing
amounts of (possibly sensitive) data, the detection of frauds, intrusions, or other
ominous and abnormal behavior becomes even more difficult. At the same time,
it becomes more essential to maintain the viability of, for instance, payment sys-
tems. Therefore, data mining techniques are applied more and more, for exam-
ple, to credit card fraud detection problems [63]. The compliance and integrity of
the U.S. government crop insurance program was improved by using log-linear
analysis to mine anomalous behavior that may indicate possible collusion be-
tween farmers, policy sellers, and indemnity claim adjusters [257]. Fawcett et al.
[109] apply rule learning to uncover fraudulent behavior among cellular phone
users. DM techniques, such as association rules and segmentation, have been ap-
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plied by Viveros et al. [391], to fraud detection in health insurance information
systems. In the Australian government’s health insurance scheme, Medicare, DM
was applied to discover valuable features from transaction data [180], and the
obtained knowledge was used for predicting compliance in pathology laborato-
ries. Lee et al. [247] outline DM-based research on real-time intrusion detection
systems. Utility of data clustering in intrusion detection problems is considered
by Portnoy et al. [322], who present a case study about intrusion detection, by
single linkage clustering, in a military networks environment. DM is also used to
predict the risk of an applicant in property and casualty insurance business: for
example, the K-means clustering algorithm is applied to predict risk and claim
frequency levels for automobile drivers [153].

Miscellaneous applications The integration of business and sport has brought
along more money and performance enhancing technology into sport. Be it mo-
tor sports, endurance sports, team sports, or nearly any of the today’s sports, a lot
of digital data is collected. In endurance sports, huge number of measurements,
such as heart rate, lactic acid level, or oxygen uptake, is collected continuously.
According to the Web site of the McLaren F1 team”, during the 2004 season they
collected 40 gigabytes of race data and 75 gigabytes of test-drive data. In many
team sports especially, immense amounts of game statistics (shots, misses, re-
bounds, passes, etc.) are collected. For example, the NHL ice-hockey league8
is known for its numerous game statistics that have been collected over years.
Hence, team sports such as basketball, ice hockey, and soccer, together provide
yet another interesting field of research for DM applications.

Advanced Scout is an example of the sport DM software [36]. It has been
utilized by a number of coaches in the professional NBA basketball league’. The
software assists the coaches to discover interesting patterns from game data, which,
in turn, helps them to plan game strategies for the coming matches. In order to
remove errors from the data, the software performs a rule-based preprocessing
step first. The data can also be optionally enriched with extra input data by do-
main experts. After the cleaning step, the data is transformed and reformatted.
In the transformation process, the discrete events are grouped into possessions.
Data may be further enriched with the roles of the players. This is done by using
the inference rules and an additional data entry. During the DM step, the team
coach initiates queries and the software detects interesting relationships within,
for example, shooting performance or team possessions. The DM step algorithm
is known as Attribute Focusing (AF). The discovered knowledge is presented
both in text and graphic forms.

Digitalization of music has brought along many challenges, such as Web
marketing and plagiarism detection, for data mining. Finding the most represen-
tative parts of a song helps one to compare different songs to each other. Morchen
et al. [287] introduce a multivariate time-series method for finding typical parts

http:/ /www.mclaren.co.uk/
http:/ /www.nhl.com

? http:/ /www.nba.com/
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from songs. A compression-based method for hierarchical clustering of music is
presented by Cilibrasi et al. [72]. The method is based on compression of strings
that represent the music pieces. Similarity in music pieces is discovered using
ordinary compression techniques. Music analysis methods enable more effective
navigation in music databases and, for example, can serve as a recommender sys-
tem for e-customers. The same approaches can be applied in other specific areas
too, for example, in detecting plagiarism in student’s computer programming
assignments.



3 INTRODUCTION TO PROTOTYPE-BASED
CLUSTERING METHODS

Data clustering, by definition, is an exploratory and descriptive data analysis
technique, which has gained a lot of attention in statistics, data mining, pattern
recognition, etc. Itis used for unsupervised investigation of multivariate data sets
with possibly different data types. These data sets also differ from each other in
the number of objects and dimensions. Undoubtedly, data clustering belongs to
the core methods of data mining, in which one focuses on large data sets with un-
known underlying structure. In particular, since the beginning of the KDD era in
1989 great efforts to develop scalable methods for clustering large data sets have
been made and, as a result of these efforts, several algorithms currently exist, e.g.,
CLARA (1990) [220], CLARANS (1994) [302], DBSCAN (1996) [98], BIRCH (1997)
[419], STING (1997) [392], DBCLASD (1998) [401], Incremental DBSCAN (1998)
[97], GDBSCAN (1998) [342], K-modes and K-prototypes algorithms (1998) [192],
PDBSCAN (1999) [402], CHAMELEON (1999) [217], CACTUS (1999) [137], ROCK
[151] (2000), scalable EM-algorithm (2000) [41], CURE (2001) [152], and CLOPE
(2002) [403]. This chapter is intended as an introduction into the most important
issues of data clustering. Furthermore, the principles of clustering algorithms
based on iterative location strategy are explained.

3.1 What is cluster analysis?

Cluster analysis is an important element of exploratory data analysis. It is typi-
cally directed to study the internal structure of a complex data set, which can not
be described solely through the classical second order statistics (the sample mean
and covariance). It is also called unsupervised classification, because class labels
(a.k.a. response variables) are initially unavailable for the data. MacQueen [265]
stated in his seminal paper that instead of being merely a computational process
to produce a unique and definitive grouping for a given data set, data clustering
is an aid to improve qualitative and quantitative understanding of large multi-
variate data sets. Later, due to its unsupervised, descriptive, and summarizing
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nature, data clustering has also become a core method in data mining and knowl-
edge discovery. Especially during the last decade, the increasing number of large
multidimensional data collections have stepped up the development of new clus-
tering algorithms [167, 170, 369].

Generally speaking, classification of different things is a natural process for
human beings. There exist numerous natural examples about different classifica-
tions for living things in the world. For example, various animal and plant species
are the results of unsupervised categorization processes made by humans (more
precisely, domain experts), who have divided objects into separate classes by us-
ing their observable characteristics [135]. There were no labels for the species
before someone generated them. A child classifies things in an unsupervised
manner as well. By observing similarities and dissimilarities between different
objects, a child groups those objects into the same or different group.

At the time before the computers came available, clustering problems were
solved manually. Although it is easy to visually perceive groups from a two- or
three-dimensional data set, such "human clustering” is not a very consistent pro-
cedure, since different individuals see things in different ways. The measure of
similarity, or the level and direction one is looking at the data, is not consistent
between different individuals. By direction is meant the set of features (or combi-
nations of features) that one exploits in classification. For example, people can be
classified into a number of groups according to their economical status or their
annual alcohol consumption, etc. These groupings will not necessarily capture
the same individuals [106]. The way the user looks at the data set depends, for
example, on her/his background (position, education, profession, culture, etc.).
It is clear that these things vary greatly among different individuals [204].

Numerous definitions for cluster analysis have been proposed in the litera-
ture. The definitions differ slightly from each other in their emphasis on the dif-
ferent aspects of the methodology. In one of the earliest books on data clustering,
Anderberg [9] defines cluster analysis as a task aiming to "find "natural groups”
from a data set, when little or nothing is known about the category structure”. Bailey
[16], who surveys the methodology from the sociological perspective, states that
“cluster analysis seeks to divide a set of objects into a small number of relatively homoge-
neous groups on the basis of their similarity over N variables”. N is the total number
of variables in this case. Moreover, Bailey notes that ”conversely variables can be
grouped according to their similarity across all objects”. Hence, the interest of cluster
analysis may be in either grouping of objects or variables, or both (see also [106,
p-154-155]). On the other hand, it is not rare to reduce the number of variables
before the actual object grouping, because the data can be easily compressed by
substituting the correlating variables with one summarizing and representative
variable. From the statistical pattern recognition perspective, Jain et al. [203] de-
fine cluster analysis as “the organization of collection of patterns (usually represented
as a vector of measurements, or a point in a multidimensional space) into clusters based
on similarity”. Hastie et al. [175] define the goal of cluster analysis from their
statistical perspective as a task “to partition the observations into groups (”“clusters”)
such that the pairwise dissimilarities between those assigned to the same cluster tend to
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be smaller than those in different clusters”. Tan et al. [369] state from a data mining
point of view that ”cluster analysis divides data into groups that are meaningful, useful,
or both.”. By meaningful they refer to clusters that capture the natural structure
of a data set, whereas the useful clusters serve only as an initial setting for some
other method, such as PCA or regression methods. For these methods, it may be
useful to summarize the data sets beforehand.

The first definition emphasizes the unknown structure of a target data set,
which is one of the key assumptions in cluster analysis. This is the main differ-
ence between clustering (unsupervised classification) and classification (supervised
classification). In classification the category structure is known a priori, whereas
cluster analysis focuses on data sets, where the class labels are unknown. Jain et
al. [205] suggest that the class labels and all other information about data sources
influence the result interpretation but not the cluster formation process. On the
other hand, domain understanding is often of use during the configuration of
initial parameters or correct number of clusters.

The second and third definitions stress the multi-dimensionality of data ob-
jects (observations, records, etc.). This is an important notion, since grouping of
objects that possess more than three features can not attained by a normal hu-
man being without automated methods. Naturally, most of the aforementioned
definitions address the notion of similarity. Similarity is one of the key issues of
cluster analysis, which means that one of the most influential elements of clus-
ter analysis is the choice of an appropriate similarity measure. The similarity
measure selection is a data-dependent problem. Anderberg [9] does not use term
”similarity”, but instead he talks about the degree of “natural association” among
objects. Based on the aforementioned definitions and notions, the cluster analy-
sis is summarized as “analysis of the unknown structure of a multidimensional data
set by determining a (small) number of meaningful groups of objects or variables accord-
ing to a chosen (dis)similarity measure”. In this definition, the term meaningful is
understood identically with Tan et al. [369].

Even though visual perception of data clusters works up to three dimen-
sions, in spaces consisting of more than three dimensions it becomes a complex
approach. Therefore, computers are indispensable for multidimensional cluster
analysis tasks. We know that a human is inconsistent as a classifier, but also dif-
ferent algorithms produce different groupings even for the same data set. Hence,
there exists no universally best clustering algorithm [8, 205]. On this basis, Jain et
al. [205] advise one to try several clustering algorithms when trying to obtain the
best possible understanding about data sets. Based on the authors” experience
and theoretical considerations, Kaufman et al. [220] propose six clustering algo-
rithms (PAM, CLARA, FANNY, AGNES, DIANA, and MONA) that they believe
to cover a major part of the applications. PAM is a partitioning-based K-medoid
method that divides the data into a given number of disjoint clusters. CLARA,
which also partitions a data set with respect to medoid points, scales better than
PAM to large data sets, since the computational cost is reduced by sub-sampling
the data set. FANNY is a fuzzy clustering method, which gives a degree of mem-
berships to the clusters for all objects. AGNES, an agglomerative hierarchical
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clustering method produces a tree-like cluster hierarchy using successive fusions
of clusters. The method provides a solution for different numbers of clusters.
DIANA is also a hierarchical method, but it proceeds in an inverse order with
respect to AGNES. At the beginning, DIANA puts all objects into one cluster and
continues by splitting each cluster up to two smaller ones at each step. MONA
is also a divisive algorithm, but the separation of objects into groups is carried
out by using a single variable. The set of methods, which was just presented,
should give a reasonably overall view to the internal structure of any data set.
As mentioned earlier, the result interpretation step is a human process, in which
one may utilize different visualization techniques (e.g., PCA and MDS [170]). Af-
ter the interpretation, prior domain knowledge and any other problem related
information are integrated in the clusters.

The development of clustering methods is very interdisciplinary. Contribu-
tions have been made, for example, by psychologists [283], biologists [373, 206],
statisticians [125], social scientists [16], and engineers [204]. Naturally, various
names for cluster analysis have emerged, e.g., numerical taxonomy, automatic
classification, botryology, and typological analysis [220, p.3]. Also unsupervised
classification [369, 203], data segmentation [175], and data partition [331] are used
as synonyms for data clustering. Later, when data mining and knowledge dis-
covery advanced, and constituted their own separate scientific discipline, this
also contributed greatly to the development of clustering methods. The special
focus there has been on the computationally efficient algorithms for large data
sets [167, 170, 369, 96]. Perhaps due to the interdisciplinary nature of the cluster
analysis, the same methods are often invented with different names on different
disciplines.

There exist a huge number of clustering applications from many different
tields, such as biological sciences, life sciences, medical sciences, behavioral, and
social sciences, earth sciences, engineering and information, policy and decision
sciences, to mention just a few [9, 204, 220, 203, 106, 400]. This emphasizes the
importance of data clustering as a key technique of data mining and knowledge
discovery [170, 167, 96, 149, 30, 142, 369], pattern recognition [372, 93,94, 205, 135],
and statistics [87, 175].

The range of clustering applications is very wide. It includes analysis of
software modules and procedures [266, 421, 422, 399], grouping customers of
similar behavior in marketing research [31], classification of unknown radar emit-
ters from received radar pulse samples [259], optimal placement of radioports in
cellular networks [2], identification of subtypes of schizophrenia [186], archeo-
logical applications [7], peace science applications (identification of international
conflicts [397]), P2P-networks [327], computer vision [132], etc. The list above is
almost endless. It also contains some quite exotic examples.

What is a cluster?

"Do not forget that clusters are, in large part, on the eye of the beholder."[99]

As one can see from Figure 5, the recognition of clusters in a two-dimensional
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FIGURES5 Ambiguous cluster models. On the left, data is drawn from a mixture of
the normal distribution, and, on the right, from a mixture of the Laplace
distribution.

view is a relatively easy problem. But, it is not as simple to tell the number of
clusters for the depicted data sets. Especially, the Laplace-case on the right is
problematic in this sense, because the clusters are more spread in all directions.
The number of clusters is ambiguous, because the clusters are separable on at
least two hierarchical levels. One may find either 3 or 7 clusters in the both data
sets.

Although clusters are often visually observable in low-dimensional spaces,
it is no easy matter to give a formal definition for a cluster. The definitions tend to
be weak and dependent on applications [369]. Clusters may be of various shape
and size, or influenced by the goal of the cluster analysis in a special way. For
instance, one analyst may need a more detailed view to the data than the other.
This is illustrated in Figure 5, which shows that the number of inherent clusters
may change according to the resolution (local versus global) with which one is
looking at the data [204, 369]. Overall, the lack of a universal definition for the
term cluster is frequently addressed by researchers in the cluster analysis litera-
ture, and they tend to agree that giving that definition is an intractable problem
[369, 400, 106, 220, 8, 80].

Clustering methods often tend to yield a data description in terms of clus-
ters that have strong internal similarities or, in other words, that contain points
which are close to each other in some sense [93]. Hence, sometimes the internal
properties are not enough and the cluster is defined in terms of internal cohe-
sion (homogeneity) and external isolation (separation). This means that a cluster
is considered as a collection of objects that are similar to one another within the
same cluster and dissimilar to the objects that are located in other clusters [167].
From this, an interesting connection to the field of software engineering can be
recognized, since the principle is very similar to the common software architec-
ture rule, which is based on the principle of ”loose coupling and strong cohesion”.
Such an architecture aims to localize the effects caused by code modifications
(see, e.g., Bachmann et al. [15]). Software components with a large number of
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links from one to another can be considered ”similar” or “close” to each other. A
good software architecture contains usually clearly separated “component clus-
ters”.

Next, some common definitions, that are known from the literature, are
given for cluster [204, 8].

e ”A cluster is a set of entities which are alike, and entities from different
clusters are not alike.”

* ”A cluster is an aggregation of points in the space such that the distance
between two points in the cluster is less than the distance between any point
in the cluster and any point not in it.”

* ”“Clusters may be described as connected regions of a multidimensional
space containing a relatively high density of points, separated from other
such regions by a region containing a relatively low density of points.”

Although cluster is an application dependent concept, all clusters possess certain
properties: density, variance, dimension, shape, and separation [8]. The clusters
are expected to be tighter and more compact high-density regions of data points
when compared to the rest of the problem space. From compactness and tight-
ness, it follows that the within-cluster dispersion (variance) is relatively small.
The shape of a cluster is not known a priori. It is determined by the selected
algorithm and clustering criteria. Separation is defined by the degree of cluster
overlapping and the distances of clusters to each other. Fuzzy clustering meth-
ods produce overlapping clusters by assigning the degree of cluster membership
for each point to all clusters [21, 22]. Traditional partitioning clustering meth-
ods, such as K-Means, and hierarchical methods produce distinct clusters, which
means that each data point is assigned to only one cluster. The dimension of a
cluster is defined by the space of the problem variables. For spherical shaped
clusters, it is possible to calculate radius. These are the measurable features for
any cluster, but it is not possible to assign universal values or relations to them.
Perhaps the most problematic features of clusters are their shape and size.

3.2 Elements of clustering process

Although the intuitive idea of cluster analysis is simple, the successful comple-
tion of a clustering task on real data requires a large number of correct decisions
and choices between several alternatives. According to Anderberg [9], cluster
analysis consists of nine major elements. Because real-world data sets are often
incomplete, that is, some values are missing, the list is extended with the item of
missing data strategy [258, 208]. Data presentation is another important element
due to the large number of different algorithms. When the choice between dif-
ferent algorithms is made, one should take into account the requirements for the
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data presentation. While some clustering algorithms operate directly on data val-
ues, others are based on (dis)similarity matrices. For example, prototype-based
clustering methods are useless if only between-object (dis)similarities are avail-
able and the absolute values of the object attributes are unknown. On the other
hand, size of similarity matrices explodes on large data sets, which makes the
methods based on them useless in those cases. The following list includes the
most significant elements of the general clustering process.

1. Data presentation.

2. Choice of objects.

3. Choice of variables.

4. What to cluster: objects or variables.

5. Normalization/weighting of variables.

6. Choice of (dis)similarity measures.

7. Choice of clustering criterion (objective function).
8. Choice of missing data strategy.

9. Algorithms and computer implementation (and their reliability, e.g., con-
vergence).

10. Number of clusters.
11. Interpretation of results.

Jain et al. [205] suppose that data collection, data representation, normalization,
and cluster validity are as important factors for the successful clustering process
as the clustering strategy itself. Hastie et al. [175, p.459] suggest that the choice
of (dis)similarity measures may be even more important than the choice of the
clustering algorithm. The list could also be extended with cluster validation [204,
8], but this is not seen as necessary as it closely relates the estimation of the correct
number of clusters to the result interpretation. Visual exploration of the obtained
clusters is a kind of validation technique.

One should note that use of any mathematical validity index risks the philo-
sophical nature of clustering problems. As it is demonstrated in this chapter
(cf. Figure 5), there does not always exist a unique or correct clustering model.
Hence, visual interpretation and validation by domain experts remain important
approaches to the determination of the correct number of clusters, or, in fact, even
to the selection of clustering criteria. In the following, a more detailed treatment
for the elements is given.
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3.2.1 Data representation

The target of cluster analysis can be a data sample drawn from a particular popu-
lation by using some statistical data collection strategy. On the other hand, in DM
applications the target data is often collected without statistical data collection
strategies [170]. A statistical data sample can represent, for example, TV-viewers
or customers of a supermarket. A more arbitrarily collected data set may consist
of values of numerous setting and measurement parameters that are stored, for
example, from an industrial process in the long run. Both of these types of data
can be presented in an n X p data or pattern matrix [204]:

X11 ... xlp
X: . .

xnl PR .an

The rows of the matrix correspond to the data objects and the columns to the
variables. Depending on the context, a data object might be an observation, a
pattern, an instance, an event, a data unit, a tuple, or a case. From mathematical
and computational point of view, each row is equivalent to the transpose of p x 1
data vector, which represents a point in a p-dimensional space (or, in the case of
missing values, in its subspace).

For example, the hierarchical single-link clustering method is based onn x n
(dis)similarity or distance matrix

dip ... diy
D — s '.. s ,
dn ... dun

which represents pair-wise proximities between objects in a data set. If not oth-
erwise announced, the term dissimilarity matrix is used from now on. Clearly,
the size of matrix D is n? and dij = 0forall i = j. d;j can be any [;-norm, dissim-
ilarity measure for categorical data, etc. Distance and (dis-)similarity measures
will be considered more precisely later in this thesis. The problem with this data
presentation approach, especially on large data sets, is n> memory requirement.
For example, on a 32-bit computer architecture, a double-precision dissimilarity
matrix of 5000 data objects takes 200 megabytes of memory. This introduces de-
mands for efficient memory utilization. Another risk might be the missing data
values. The similarities computed in different sub-spaces are not easy to compare.
Sometimes the comparison may prove impossible. For instance, let us consider
the distance computation for the following three 3-dimensional data vectors

x;=(1 0 NaN)T, x=(NaN 1 1)T, x3=(1 NaN 1)T.

Using any method, straightforward comparison of the between-object distances
is difficult, since all the points lie in the different sub-spaces. Imputation could be
a solution, but it is not a sensible operation when nothing is assumed about data
a priori. Missing data strategies are considered more precisely later in this thesis.
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3.2.2 Data collection strategy

The choice of data objects, also known as a data collection strategy, is an impor-
tant issue from a statistical perspective. In DM and KD, all data is usually em-
ployed, which makes data collection strategies less significant when compared
to statistical analysis. Hence, in data mining one rather speaks about secondary
data analysis where the data already exists for processing [170]. Therefore, in
a data mining problem, the data set may represent the whole population which
one wants to compress, summarize, and explore in order to find novel and useful
structures and, thereby, to understand it better.

3.2.3 Feature selection and extraction

The choice of the operative variables is known as variable or feature selection. The
goal is to find the most effective subset of features before the actual cluster analy-
sis phase [203]. An alternative for the feature selection is feature extraction. For
finding the most discriminative variables of a given data set, one reduces the di-
mension and, at the same time, tries to preserve the discriminative power of the
data set. If the value of a variable is approximately constant for all the objects,
the discriminative power of that variable is very low. Such a variable is likely
to be unnecessary in cluster analysis. Feature extraction can be realized by pro-
jection methods, such as MDS, PCA, or independent component analysis (ICA)
(see methods, e.g., in [175, 200]). These methods reduce the number of variables
by projecting the data to new coordinate axes that represent the most informative
directions (latent variables) of the data. The new variables are linear or non-linear
transformations of the original variables [203, 170]. These methods can be used
either separately or in sequence. Clustering methods can be used for feature se-
lection as well. By taking appropriate (dis-)similarity measures for variables, such
as correlation coefficients, alike variables can be grouped and presented by one
representative variable!. On the other hand, variable selection is closely related
to data scaling or weighting, which is discussed more closely in the context of
data standardization in Section 3.2.5. The rejection of a variable corresponds with
the scaling of a variable to a zero-length interval or weighting by zero [145].

3.2.4 What to cluster?

A starting point of all cluster analysis tasks is the data itself whose internal struc-
ture is the matter of interest. The characteristics of a data set, such as noise, gross
errors, incompleteness or sparsity, and the amount of data itself, compose the
requirements and constraints for the problem induction and, thereby, for the se-
lection of clustering algorithm. Therefore, careful analysis of the target data set
together with prior knowledge often precedes the problem formulation and algo-
rithm selection. One may want to cluster either data objects (row-wise) or vari-

1 For instance, Clustan Software (www.clustan.com) and MATLAB (www.matlab.com) offer

methods for variable clustering.
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ables (column-wise), or sometimes even both (c.f., Bailey’s definitions in Section
3.1). From this arises the need for several different similarity measures. Usually
the similarity of objects is defined through the distance (e.g., [;-norms) between
two data points, whereas in the case of variables, correlation is perhaps the more
appropriate measure (see Section 3.2.6). The choice of clustering units, either ob-
jects or variables, is an application dependent decision.

Data types

In typical DM applications, it is not usually possible to inspect variables individ-
ually. However, it may be useful to be aware of basic properties of the variables,
since this information can be utilized in the preprocessing and algorithm selec-
tion. Data types are usually categorized into three main classes: binary, discrete,
and continuous [9, 204, 220]. A data type refers to the degree of quantization in
the data.

Continuous data types, such as height or weight of a person, can take any
real value in a fixed range of values. This is perhaps the most frequently encoun-
tered data type. Continuous variables are of two scales: interval and ratio.

Binary and discrete variables are categorical data types. A discrete vari-
able has a finite number of possible states, such as colors (red, blue, green). The
states may have mutual ordering or not. Clustering algorithms for categorical
data sets are proposed, e.g., in [192, 151, 184]. Categorical variables are typi-
cal, for instance, for market basket analysis [151]. Discretization or quantization
of continuous real-world analog signals is usual in a number of modern signal
processing systems. Hence, there is a large number of systems that produce cate-
gorical (digital) data. Applications of this kind can be found in several fields such
as audio/video signal processing, speech processing/recognition, digital image
processing, digital communication, industrial process control and analysis, etc.

Binary variables are the simplest form of data. Binary variables have exactly
two values, for example, 0 — 1,”yes-no”,”male-female” or “smoker-nonsmoker”.
Categorical variables can be represented using binary attributes (for example,
use values 0 or 1 to denote the similarity of categorical observations). Other ad-
vantages of the binary data are that they are noise-free and on the same scale in
all dimensions [307]. The binary variables are divided into two classes, namely,
symmetric or asymmetric. Symmetry of a binary variable depends on the relative
significance between two alternative states. If both states are equally important,
the binary variable is symmetric. In the case of an asymmetric binary variable, ei-
ther of the states is more informative than the other. Hence, for symmetric binary
variables, negative (zero-zero) matches (a = 0 and b = 0) are weighted equally
with positive (one-one) matches (a = 1 and b = 1). In the asymmetric case, the
negative and positive matches are not equally important. The positive matches
are often used to denote the more significant similarity [106]. The more significant
one of the states represents more aberrant phenomena and the other represents
more usual facts. An asymmetric binary variable may represent, for example,
occurrence of some infrequent sickness, such as AIDS. MONA, a monothetic di-
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visive hierarchical clustering algorithm is intended especially for binary data, see
Kaufman et al. [220, Ch.7]. Ordinez [307] proposes a specialized variant of the
K-means-type algorithm for binary data.

Data scales

Data features can also be categorized according to scale [204]. There are two
principal data scales: qualitative or quantitative.

A qualitative scale is either nominal or ordinal. The nominal scale generalizes
the binary data type. The numbers are meaningless in the quantitative sense and
they are used as labels. The four state nominal variable expressing the nationality
of a person using numerical coding serves as a good example of the nominal
data types: 1=Finnish, 2=Swedish, 3=Norwegian, and 4=English. In this case, the
numbers provide proper labels for computer operations, but no ranking for the
nationalities. A clustering algorithm for nominal variables is proposed, e.g., by
Ganti et al. [137].

Another qualitative scale, namely ordinal, is the weakest numerical scale
with meaningful numbers. It possesses a finite set of states that comprise a mean-
ingful sequence of the codes (e.g., 1,2, ..., M) with an order. The farther apart the
two codes are from each other in a sequence, the greater the distance between
them. Therefore, the relations of the numbers have a meaning, but the mutual ra-
tios are meaningless. For example, the following numberings (1,2, 3), (10,20, 30)
or (1,20,300) have an equivalent meaning on the ordinal scale, since the first and
the last elements are equally distant to each other in each case. A simple example
of an ordinal variable is the order of competitors in a race. Although the exact
results (e.g., running time, length of jump, etc.) for each competitor might be
unavailable, it is possible to express, using competitor rankings, that the winner
and the last (M) competitor are the most apart from each other. It is just left
unknown how far apart from each other they are according to some measured
quality. Another typical ordinal scale application is, for instance, questionnaire
data that model, for example, appreciation of a thing (food, sport, painting, song,
etc.) by using different grades, such as 1 = detest, 2 = dislike, 3 = indifferent, 4 =
like, 5 = admire. Hence, the order of the numbers is again meaningful. The higher
the number the more pleasing the thing. Because of the lack of knowledge about
absolute differences between the states of discrete variables, the order-statistics
that are based on /;-norm are often employed in the analysis.

Interval and ratio scales are quantitative by nature. On the interval scale, a
unit of measurement exists and the interpretation of the numbers depends on
this unit. Hence, numbers on the interval scale can not be interpreted before the
actual scale is known. Temperature units, Fahrenheit and Celsius, are examples
of the interval scaled variables. Both of them are continuous, but their ratios of
numbers have different meanings.

The ratio scale is the strongest scale and in this scale the numbers have ab-
solute meaning. Hence, zero has the same meaning for all measurement units.
For instance, distance units (centimeters, meters, miles, etc.) and monetary units
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(Euro, US dollar, the pound, etc.) are ratio scaled variables, since multiplying a
value by a given factor has always the same significance, no matter what unit is
used.

Mixed variable data

In real-life, it often happens that more than one data type occurs in the same
data set. In these cases we are dealing with mixed data types, which offer new
challenges to the distance calculation and algorithm development. Clustering
algorithms for mixed data types are given, e.g., in [70, 192, 183]. Podani [321]
introduces three different approaches to deal with mixed variable data sets (see
also details in [9]). The first one of these is the scaling of variables to the same
scale. The problem is that this may lead to a loss of information, if the con-
version happens from continuous towards some unordered nominal scale. On
the other hand, scaling from an unordered discrete scale towards continuous
ordered scales requires some domain knowledge to link the unordered classes
with an external ordering. The second approach is to separately analyze each
variable by taking into account the data type and to synthesize the results. The
third approach is to use specific coefficients for data types. All these classic ap-
proaches give a burdensome impression when considered from the DM point of
view. When one is dealing with data that consists of hundreds or thousands of
variables - and these are not extraordinary numbers with DM applications - the
methods that require variable-wise external knowledge are no more practical.
Hence, robust and automated methods are needed for handling large data sets
with various data types and scales.

3.2.5 Standardization

Standardization of variables equalizes the weights of different variables during
the cluster analysis process. This is necessary, since in many applications dif-
ferent variables are measured in different units, which leads to unequal scales
and, thereby, unequal contributions in the clustering process. For example, let us
consider distance computation of bivariate data representing weight and age of
a person. If we take milligrams and years as units and compute the Euclidean
distance, it follows that the variable “weight” will have a dominating effect to
the result. Considerable differences in the range of the variables may hinder their
simultaneous visual interpretation as well [339, p.60].

A typical form of standardization, also known as the “z-score” formula, is to
transform a variable x; = {(x;);, j=1,...,n} to zero mean and unit variance
[106, 284]. Hence, the “z-score” transformation of a scalar variable x; € R is
realized by

fi:xla_‘u:%xi_g_:“xi_ﬁ/ (1)
where #; is the scaled variable, u the sample mean, and ¢ the standard deviation.
From the right-hand side of the formula one can see that this is actually only a
linear transformation of a variable. Hence, as pointed out by Saalasti [339, p.60],
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by determining the coefficients x and p in a different way, other approaches, such
as division by the range, which scales a variable into a given interval (e.g., [0, 1]
or [—1,1]), are obtained. A variable is scaled to unit range [0, 1] by choosing

1
n = -
max x; — min x;
1 1

and
min x;
1

’3:_

max x; — min x;
1 1

Milligan et al. [284] present a simulation study for seven standardization meth-
ods. In several cases, the division by the range of a variable produces the best
recovery for the underlying cluster structure. It is also robust across wide vari-
ety of conditions. The traditional unit variance scaling proved to be less effective
than the range scaling.

A potential problem for the unit variance and range scaling methods is the
existence of outliers. The classical statistics used in the unit variance scaling are
sensitive to any gross errors. In the range scaling approach, one gross error forces
the rest of the data to the other end of the range. Although being robust against
outliers, rank-based standardization, in which the values are simply converted to
ranks, has very poor performance under most conditions in [284].

As the examples in [106, p.49] show, the standardization of variables with
respect to the standard deviations over a complete set of objects does not always
work in the case of cluster analysis. In some cases, it may reduce the influence of
the most discriminative variables due to the decreased weights of the variables
with large between-group variations. Therefore, in cluster analysis, it may be
more sensible to prioritize within-group variations in standardization of cluster
data. However, the problem is that the groups are not known a priori. To solve
this problem, e.g., Huang et al. [190] propose a W-K-means algorithm that itera-
tively updates the weights with respect to a current partition. Many references to
other methods are found therein. When unit variance or range scaling is applied
to the within-cluster scaling, one should note that shifting the mean of the clus-
ters to zero or transforming the range of the cluster data to a given range leads
to overlapping clusters. Therefore, the inter-cluster scales must also be taken into
account in standardization [284].

Other problematic issues are standardization of online clustering data sets
and categorical data types. In the first case, the sample range of online data may
be difficult to predict. In the latter case the data type may represent an unordered
scale. Another problem that is related to categorical data types is the transforma-
tion of variables into a continuous interval. When all variables in a data set, both
discrete and continuous, are forced to the continuous range from zero to one, it is
not clear in the case of binary variables whether the scaled values should be zero
and one (end-points of the range) or the mid-points of the both halves (0.25 and
0.75). The first scaling provides a maximal weight for each binary variable and,
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thereby, also maximal discriminative power. Hence, the binary variables con-
tribute to the distance computation with maximal influence. The latter scaling
would average the effect, which means that two values would not be maximally
distant to each other on the new scale, but would be representative values for the
two halves of the variable range.

Actually, the same problem generalizes to all categorical data types, but
fortunately the significance decreases as the number of states of the categorical
variable grows. One should also note that when the chosen method is scale in-
variant (e.g., by relying on marginal distributions [23]), there is no need for stan-
dardization procedures. For example, minimum, maximum, mid-range, or the
coordinate-wise median are order-statistics, which are inherently scale invariant.

3.2.6 Choice of proximity measure

Cluster analysis is, for a large part, based on comparison of how similar or dis-
similar data objects are to one another. Similar objects are gathered into the same
group whereas dissimilar objects belong to distinct groups. Data objects or ob-
servations are described by a set of variables (features, attributes, etc.), which
actually represent many kinds of real-world observations and measurements. By
analyzing the type of these variables (binary, discrete, continuous, etc.), one can
choose the most appropriate distance measure. There are several terms that are
used in this context of proximity measures, e.g., similarity, dissimilarity, distance or
in more general terms, proximity. In this thesis, the terms distance and similarity
are mostly used. A large distance between two objects corresponds to a small
similarity and vice versa.

A comprehensive introduction to similarity measurements, for both vari-
ables and objects, is given by Anderberg [9]. Shorter presentations are given, e.g.,
in [106, 220, 204]. Properties of (dis)similarity measures for binary data are dis-
cussed by Zhang et al. [415]. An examination of eight binary vector dissimilarity
measures in handwriting identification task is presented by Zhang et al. [414].
In the following, some of the most common classes of distance functions will be
presented.

lq-norms

A general class of distance functions in p-dimensional vector space, satisfying
the conditions of metric spaces (see, e.g., [297, 66]), is defined by [,-norm (a.k.a.
Minkowski metric) [66, 94, 412]:

p 1/q
li(x,y) = (Z |(x); — (Y)z'|q> = [x—yllg g<oo, (2)
i3

where x,y € RP.
The most common special cases of (2) are I1-, - and lw-norms. [;-norm
(a.k.a Manhattan or City-block distance) is equal to the sum of the shortest projec-
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tions parallel to coordinate axes:

p
hixy) = ; [0 = ()il = Ix =yl

[;-norm is related to discrete variables. It is also the norm behind the coordinate-
wise sample median estimate [213]. The popular l;-norm (a.k.a. Euclidean dis-
tance) is defined by:

P 1/2
2
b(xy) = (Z ()i = (¥)il ) =[x =yl
i=1
leo-norm is the maximum distance in the direction of any coordinate axes:

lo(x,y) = argmax|(x); = (y)i| = [Ix = yl|-

1<i<p

Mahalanobis distance

The Mahalanobis distance is a data-dependent metric that takes correlations be-
tween variables into account [94, 170, 106]. If there is strong correlation between
two or more variables, the weights of these variables will be cut down by Ma-
halanobis distance. This may occur when some measurement is repeated several
times for each object or observation and it becomes more significant than the
others in non-standardized distance computation. The squared Mahalanobis dis-
tance between two vectors x and y reads as:

dun(xy) = (x—y) T (x—y), 3)

where I is the sample covariance matrix. The sample (co-)variance matrix incor-
porates the correlation between variables and standardizes each variable to zero
mean and unit variance. When correlation between variables is zero and each
variable has unit variance (Z is the identity matrix), the Mahalanobis distance
equals to the squared Euclidean distance.

Correlation coefficients

The Pearson’s product-moment correlation coefficient (also referred to simply as coeffi-
cient of correlation or Pearson’s correlation) is a similarity index for ratio and interval
scaled variables [357, 204]. Given a set of n paired measurements or observations
(x;,y;), it is computed as

Sxy

rxy e —
V/SxxSyy

where sxy = 3 YL (% — ) (yi — 7), sxx = 3y Lty (3 — )2 and sy = 3 Y0 (v —
7)?. % and 7 are the sample means of x; and y; (i = 1,...,n), respectively. The
absolute value |ry,| can be used when negative and positive correlation have the

(4)
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same significance [204, p.16]. The corresponding dissimilarity index on the in-
terval [0,1] is obtained by dy, = 1 — |ry,|. The correlation coefficients can not
be used to measure the magnitude of the difference between two objects or vari-
ables. Despite of being utilized also as an index of inter-object similarity (see, e.g.,
[8, p.22-24]), the correlation coefficients are more often used to measure linear de-
pendency between two variables. Hence, this is a potential similarity index for
variable grouping by clustering methods. Note that Pearson’s product-moment
correlation coefficient is based on the classical parametric statistics and normal
distribution, which makes it sensitive to distortions. Robust variants of the corre-
lation coefficients are non-parametric, and distribution-free rank-based methods,
such as Spearman rank correlation coefficient and Kendall rank correlation coef-
ficient, may be useful when the sample is on ordinal scale or distorted and not
normally distributed (see details, e.g., [357, p.231]).

Cosine similarity

The cosine similarity gives the cosine of the angle between two vectors. It is a
popular index of similarity in text clustering [345] defined as:

XTy

dc(x/ Y) = ‘ )

X2 llyll2

The cosine similarity is scale invariant and independent on the length of the vec-
tors. Hence, it considers the proportions of feature vectors, but ignores their total
lengths. This is useful, for instance, in comparison of a pair of text documents
with the same proportions, but with a different number of term instances, since
such documents are usually considered similar to each other. The cosine similar-
ity presumes orthogonality of the features in vector space, which does not hold
for document collections if the documents have something in common and are
not completely independent [345]. Because the cosine similarity index does not
satisfy the triangle inequality axiom, it is not a metric [363].

General similarity measure for missing data

Kaufman et al. [220] present a general distance measure in the context of the
large-scale clustering algorithm CLARA. The distance measure resembles the
Gower’s general similarity measure that was initially intended for data sets that con-
tain both continuous and categorical variables (see [147] or [106, pp.43-44]). The
Euclidean distance between two p-dimensional real-value vectors x and y is then
defined as

d(x,y) =

=3

p
Z}((X)i —(¥)i)? (6)

where p is the number of variables that exist in both x and y.
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Distance measures for binary variables

A large number of similarity and distance measures for binary data are proposed
in the clustering literature [9, 106]. A very recent and thorough review is given
by Cha et al. in [61]. As a special case of categorical data, the transformation to
the continuous scale is not necessarily trivial. All continuous distance measures
are not necessarily reasonable in binary data cases, but many binary counterparts
are presented for clustering applications [9].

One of the most popular distance measures for comparing two binary vec-
tors is the Hamming distance, which is defined as the count of “bits” that differ in
the two vectors [61]

P
dhamming = Z ||(X)1 - (Y)z”l
i=1

One can easily see that the Hamming distance is actually equal to the aforemen-
tioned /;-distance in the binary vectors case. The Hamming similarity is defined

as
{ Loif  (x)i = (y)i

p
S ine = ) . Si, Where s;= -
hamming 1_21 ir ! 0, otherwise.

There are also many binary similarity measures that are derived from the inner
product of two vectors as

Sinnerproduct(xr Y) = XTY' 7)

The counts of matches between a pair of binary vectors are usually pre-
sented by a contingency table (Table 1). The table contains the number of matches
and mismatches between two p-dimensional vectors [220, 106, 167]. Perhaps the

TABLE 1 A binary contingency table.

1 0 sum
1 111 n1o n11 + 1y
0 no1 noo 11 + Moo
sum | 111 + Moy | N0 + Moo | P = M11 + 110 + Ho1 + Moo

most difficult issue with the binary measures is whether to include or exclude
negative matches (case ngp in Table 1). As mentioned in Section 3.2.4, binary data
types are of two types: symmetric or asymmetric. In the case of an asymmetric
binary variable, the positive match provides more information about the objects
than the negative match and, thereby, they are weighted more in distance com-
putation. Some measures completely ignore the negative matches.

A large number of common binary similarity measures are derived from the
following generic formula:

n11 + Prgo
n11 + ‘BTZ()() + )&(1’110 + n01)

S(x,y) = (8)
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The influence of the co-absence (”0 — 0”) features is adjusted by the choice of pa-
rameter B. Correspondingly, the influence of mismatches is adjusted by changing
the value of parameter A. More information about binary measures derived from
(8) can be found, e.g., in [61, 414, 415, 400, 9, 106].

3.2.7 Choice of clustering criterion

Optimization-based clustering algorithms, such as K-means, partition a data set
by minimizing or maximizing some numerical criterion. Hence, the clustering
criterion defines what kind of partition one is looking for. It is a very difficult
problem to formulate a criterion function that exactly corresponds to the qual-
ity of classification in real-world problems [29]. A variety of clustering criteria
derived from the dissimilarity matrix and directly from continuous variables are
suggested, e.g., in [106, 94]. The most commonly used criterion is the sum of
the within-group sums of squared distances over all variables, which is equal to
minimizing tr(W), where W is the within-group dispersion matrix. The trace of
a matrix is the sum of the diagonal elements. This equals to minimizing the sum
of the squared Euclidean distances between data points and their cluster means,
which corresponds to the criterion that the well-known K-means-algorithm min-
imizes. Weaknesses of tr(W) criterion are the scale-dependency and the inherent
assumption about the spherical shape of clusters, even though the natural clus-
ters can be of other shapes. In order to avoid the problems of the tr(W) criterion,
several alternative criteria are suggested. For example, the det(W) criterion al-
lows elliptical shape of clusters. This, however, assumes that all clusters have
the same orientation and elliptical degree. The scale-dependency is avoided by
maximizing det(T)/det(W) or tr(BW~1!), where T is the total dispersion matrix
of data X and B the between-group dispersion matrix (for definitions, see [106,
p.92-93]). Other criteria for clusters of different shapes and sizes are presented,
e.g., in [106].

3.2.8 Missing data

"“Incomplete, noisy, and inconsistent data are commonplace properties of large real-world
databases and data warehouses” [167, p.106]. Besides that real-world data sets are
often large, many times even huge, they are often incomplete and noisy as well.
An incomplete data set contains objects, in which one or more features are miss-
ing. In order to minimize the bias in the data, missing data values must be treated
carefully. There are many reasons for the absence of data values, such as technical
malfunctions, death of patients, refusal of respondents to answer certain ques-
tions, etc. [27]. The underlying reason defines the distribution for the missing
data. Knowledge about the statistical characteristics of the missing data source
helps one to choose the best strategy to deal with it. One should also note that
missing data encompasses information about the data set. Pyle [324] emphasizes
that missing data patterns may sometimes contain the most important piece of
information of the target domain. In such cases, the information about missing
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data should not be completely lost in DM operations. Therefore, it may be wise
to capture the information about missing data patterns before substituting them
with new values.

Missing data mechanisms

Roughly speaking, there are basically two types of missing data values [324, 258].
The first type consists of values that are, for one reason or another, not entered
into the data set, although the true underlying values exist. There are many pos-
sible reasons for the lack of these values, for example, a human mistake or a fault
in the data gathering or storage system. In some cases, empty values of a data set
correspond with measurements for which there exist no value in the real world.
For example, it is not possible for an unemployed person to have an employer.
Also, some individuals questioned may not have an opinion. Hence, information
really does not exist for these fields. On the other hand, this type of “do not ex-
ist” or “do not know” observations are actually information by themselves. For
example, the most important target group for the presidential election campaign
are the people who are uncertain and do not have an opinion yet.

In statistics, missing data values are divided into three classes depending
on the mechanism responsible for the absence of data [258, 141, 27]:

-2
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FIGURE 6 A data set with 15% of missing values that are generated completely at ran-
dom (MCAR).

Missing completely at random (MCAR). The probability that the j# component
of a vector x; € R” (i = 1,...,n) is missing is independent of any other
known or missing values of x;. In MCAR case any missing data technique
can be used without producing significant bias on the data [27]. This is
illustrated in Figure 6, where 15% of data is removed completely at random.
The missing values are presented by lines, which mean that any value is
possible. The sample mean and the spatial median of the data set before the
data deletion are marked by "x” and "«’, respectively. One can see that the
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sample mean ('>’) and the spatial median ("¢’) are almost unbiased after the
deletion of the points, when the available case strategy (see Section 3.2.8) is
applied to the computation.

[0
X

I%..

X

FIGURE7 A data set with some values missing at random (MAR). If x > 5 then y is
missing.)

Missing at random (MAR). The probability that the j component of a vector
x; € R? is missing does not depend on the values of missing components,
but may depend on the values of observed components. Hence, the ob-
served values of (x);’s is a random sample of the sampled values within
subclasses defined by the values of (x;); where k # j, and provided that
(x;)x is always available. Figure 7 shows two cluster data, where the value
of y variable is missing for all x > 5. Hence, the missing values exist only in
one cluster. They are marked by the lines. The sample means and the spatial
medians of the clusters before the data deletion are marked by "x” and "+,
respectively. One can see that the sample mean ('i>") and the spatial median
(¢”) are almost unbiased after the deletion of the points, when the available
case strategy is applied to the computation. However, the variation of the
estimates in the cluster with incomplete data is larger than the estimates of
the complete cluster.

Not missing at random (NMAR). The probability that the j* component of a vec-
tor x; € R? is missing depends on its value. Hence, the availability of (x;);
is a function of itself. For example, if a value of some measurement is out
of some permissible range, it might be therefore censored and replaced by
an empty value. In this case, we have a partial information that the value
has exceeded some range limits and the mechanism of missing data is un-
derstood. However, no general method exists for this kind of mechanism
and standard complete case analysis with such data are in general biased
[258, 141]. In Figure 8, one observes that the estimates are highly biased on
this incomplete data set. The sample means ("x’,’>>") and spatial medians
("x",/¢”) are computed for complete and incomplete data, respectively, using
the available case strategy.
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FIGURE 8 A data set with values not missing at random (NMAR). Variable x exist only
if x > 0.

Figures 6-8 show that missing values are kind of outliers, since the true values
can be actually any permitted value. This is illustrated by depicting the objects
containing one or more missing values by a straight line (in principle the line goes
from —oo to 00). Hence, as well as outliers, the missing data values are another
relevant justification for utilization of robust procedures in data analysis tasks
(e.g., cluster analysis and /or data mining).

Strategies for handling missing data

In order to deal with different types of incomplete data sets, a treatment for miss-
ing data values must be implemented into clustering algorithms. Little and Rubin
[258] divide the missing data methods into the following, not mutually exclusive,
categories: 1. Procedures based on completely recorded units, 2. Imputation-
based procedures, 3. Weighting procedures, and 4. Model-based procedures.
Most of the methods are able to deal with MCAR data, but MAR and NMAR are
more complicated from the statistical perspective. In this thesis, it is assumed
that in DM applications data is missing completely at random. In the following,
some simple methods will shortly be presented [27, 106, 258].

Complete case strategy This is the most straightforward strategy for handling
missing data. Complete case methods simply utilize only complete cases from
the target data. After the incomplete objects have been pruned awayj, it is pos-
sible to apply ordinary clustering algorithms as if the data were complete. The
weakness of this approach is the risk of losing too much of data, which may lead
to biased estimates. Figure 9 presents an example. Incomplete samples x, and x3
are ignored before the mean is computed. The complete case handling leads to
40% loss of data before the averaging.

Strategy of using available data Methods based on available data strategy uti-
lize all available data in computation. If the j value of a p-dimensional object
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FIGURE 9 Complete case strategy: an example.

x; € R? is missing, it will be ignored and all computations will be accomplished
using the remaining available values from x;. A convenient way to indicate the
available data is to define a projector (c.f., the indicator matrix by Little and Rubin
[258]), which separates the missing and available values in the following way:

N J 1, if (x;); exists,
(pi) = { 0, otherwise. ®)

By further denoting P; = Diag{p;}, for example, the /;-norm can be redefined as

p 1/q
12(x:) = [Pxilly = (Z |(Pi)j(xi)j|q> , 1<g< oo (10)
=1

The Gower’s general similarity coefficient [147] or the one given by (6) can be
used to implement the available value strategy into clustering algorithms [106,
p-53]. Let us consider two p-dimensional objects x; and x;. The weight of the
components that are missing in either or both of the objects is zero, and the simi-
larity is computed as the average of the remaining variables. Kaufman et al. [220]
define a distance measure with a treatment of incomplete cases for the clustering
algorithm CLARA.

Imputation Imputation methods fill in the missing data with values that are
estimated using the available data and known relationships [27, 106]. Finding
the best estimate for a missing value is not a straightforward task. It depends,
for instance, on those statistical measures that must remain unbiased. Addition-
ally, imputation may have an unequal effect on statistical measures of different
variables. Hence, it is a complex and case-dependent solution.

The simplest methods are the case substitution and mean or mode imputation.
The case substitution method is often used in sample surveys [27]. A data object
with missing values is replaced by another non-sampled object. For example, a
person that cannot be contacted in a telephone poll can be replaced by another
person [27]. The mean and mode imputation are simple and popular methods.
The missing data is replaced by mean (quantitative variables) or mode (qualita-
tive variables) of all known values of that attribute. The mean imputation may
work when the sample is drawn from a unimodal normal distribution and data
is missing at random. However, the problem in this case is that the imputed
data will lead to underestimated variance even if the model used to generate the
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imputations is correct, because the mean value does not contribute to the vari-
ance [258]. Therefore, the mean imputation affects the correlation between the
imputed and any other variable. From the cluster analysis point of view, the
problem with these simple imputation methods is that the potential class struc-
ture of the data is not considered in the operation. Shrinking the within-clusters
variances may lead to problems in the cluster validation. Information about the
variability of the missing data estimators and uncertainty about the correct model
could be assigned to the imputed values by using multiple imputation methods. In
order to achieve unbiased statistics for clusters, the imputation should be done
separately for each homogeneous group in the data. A summary over whole
data may be misleading. Hence, cluster analysis, especially from the data mining
point of view, needs more sophisticated imputation methods, because the homo-
geneous groups, that is clusters, are not known in advance.

Hot deck and cold deck methods, and prediction models, are more appropriate
methods for clustered data than the previous imputation methods. The hot deck
imputation method substitutes missing data with values that are based on the es-
timated missing data distributions. The missing data distributions are estimated
from the available data values. The cold deck approach differs from the hot deck
in that the fill-in values are taken from some other data source. A typical hot
deck procedure proceeds in two steps [27]. In the first step, data objects are par-
titioned into clusters using the available data. In the second step, if incomplete
data objects have not been assigned yet, they are assigned to the best-fitting clus-
ters or, otherwise, the missing values of the assigned clusters are filled in with
the cluster-wise estimates (such as mean or mode of a cluster). Algorithm 3.2.1
presents an iterative hot deck imputation procedure by Everitt et al. [106].

Algorithm 3.2.1. Iterative hot deck imputation

Step 1. ( Complete-case clustering) Cluster the complete cases of the incomplete
data set.

Step 2. (Assignment) Assign the incomplete data objects to the nearest clusters.

Step 3. (Imputation) Impute the missing data values using statistical summaries
based on within-cluster data.

Step 4. (Clustering) Perform clustering for the data set using the observed and
imputed data values. If there are changes in clusters, repeat from Step 3.

Algorithm 3.2.1 is actually closely connected to the well-known EM algo-
rithm, which is an iterative algorithm for computing the maximum likelihood
estimates for model parameters from incomplete data [85, 258]. Each iteration
of the EM-algorithm consists of two steps: E-step (expectation step) and M-step
(maximization step). The E-step estimates and replaces the missing values as-
suming that the current parameter estimates are correct. The M-step re-estimates
the parameters for the model as if there were no missing data. These steps are
iterated until convergence is achieved. The EM-algorithm is a very general ap-
proach that can be applied to a broad range of problems including missing data
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situations, such as mixture models (clustering models [41]), variance component
estimation, iteratively re-weighted least squares, and so on. The K-means cluster-
ing algorithm can also be considered as a simplified variant of the EM-principle.

Similar Response Pattern Imputation (SRPI) [292] and nearest neighbor hot deck
[258, p.65] are so-called matching methods that identify candidates, which are
the most similar objects to the object with missing data and substitute the miss-
ing data of the incomplete object with values of the candidate object. The candi-
date has to be complete in the required variables and the distance between the
incomplete and the candidate objects must be less than some limit value dy. As
variables are standardized, the I»- or l-norms, for example, can be used for the
similarity comparison. Because some of the values are missing from the com-
pared objects, distance must be first computed as given in (9). Also the general
distance measure given in Section 3.2.6 can be used. If more than one of the data
objects minimize the chosen distance measure to the incomplete object, then the
average value can be used for substitution of the missing variable. On the other
hand, if the distance between the candidate and the incomplete object is more
than the limit dy, the imputation will be omitted. This prevents to some extent
the occurrence of strange data objects during imputation. Nevertheless, this ap-
proach could be useful from cluster analysis point of view due to the local nature
of the imputation procedure. The weakness is the required computational power
on large data sets that are unavoidable in data mining context.

Prediction model methods use predictive models to estimate values that will
be used as substitutes for missing data [27]. The variable with missing data is
used as a class-attribute and the remaining data is used as an input for the pre-
dictive model. Depending on the type of the variable with missing data (nominal
or continuous), either classification or regression model can be used. This ap-
proach requires that there are correlations among the variables or, otherwise, the
obtained values are not precise for estimating the missing data. This approach
leads easily to more well-behaving values for missing data than the true values
would be.

3.2.9 Clustering algorithm

"We argue that there are many clustering algorithms, because the notion of
“cluster” cannot be precisely defined."

The above argument is taken from the Estivill-Castro’s article: Why so many clus-
tering algorithms [99]. Hundreds of clustering algorithms have been developed
for analyzing inherent structures of various data sets. Each clustering algorithm
is based on a set of underlying assumptions and criteria, and thereby the meth-
ods are distinctly biased. Hence, it is obvious that different methods produce
different solutions. For example, a hierarchical single linkage algorithm is prone
to find elongated clusters, whereas the K-means methods favor hyperspherical
clusters. Aldenderfer et al. [8] state that sometimes the properties of a chosen
clustering method have even more effect to the result than the data itself.
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An extensive survey on clustering algorithms is given by Xu et al. [400].
Other comprehensive sources are, e.g., [106, 203, 149, 30]. A number of classifi-
cations have been created for clustering algorithms. A class name describes of-
ten algorithmic features (hierarchical, grid-based, neural networks, ...) or prop-
erties of the intended applications (e.g., large-scale, mixed data, ...). At least
the following classes of clustering algorithms exist: partitioning (e.g., K-means
[265]), hierarchical (agglomerative and divisive algorithms, e.g., [204]), density-
based [98, 342, 187, 12, 238], grid-based [65, 3, 348, 392], constraint-based [376],
fuzzy [21, 22, 176], mixture-densities [124, 126], graph theory-based [312], neural
networks-based [19, 20], aggregation-based [143], kernel-based [224], evolution-
ary methods [285, 18], multi-objective [244], large-scale clustering [41, 418, 150,
388], etc. A positive thing in having a lot of various clustering algorithms is
that different methods reflect different aspects of the data and, thereby, give a
many-sided view into their internal structure. This is utilized especially in the
clustering aggregation method by determining the optimal clustering solution as
the one that minimizes the disagreements between several clustering solutions
[143]. Han et al. [167] divide the algorithms into five classes: partitioning, hierar-
chical, density-based, grid-based, and model-based methods. Bradley et al. [44]
propose a categorization of three classes: metric-distance based methods, model-
based methods, and partition-based methods. Also Hastie et al. [175] divide
clustering algorithms into three distinct classes: combinatorial algorithms, mix-
ture modelling, and mode seeking. Estivill-Castro states in [99] that the strongest
distinction among different clustering algorithms is between mathematical (con-
tinuous) and structural (discrete) models.

Despite of several algorithm classes, two most commonly used approaches
are hierarchical and partitioning algorithms. These are also the most traditional
methods. The focus of this work is on partitioning methods. The algorithm
classes are not strictly separated and some methods include features of two or
more classes. For instance, density-based method DENCLUE [187] utilizes grids
for initialization. A hierarchical method and Gaussian-based mixture models are
combined by Fraley et al. [124]. Evolutionary methods may include a partition-
ing [285, 18] and hierarchical [138] approach. Fuzzy partitioning and graph the-
ory clustering is combined in [325]. A kernel-based fuzzy partitioning clustering
method for incomplete data is proposed in [416].

Since different algorithms produce different type of clusterings, there is no
sense to make straight comparison on the quality of the obtained clusterings.
Whereas the K-means algorithm finds only spherical clusters, density-based algo-
rithms are capable of finding clusters with arbitrary shapes. Hence, these meth-
ods have different goals and rather complement than compete against each other.

3.2.10 Number of clusters
The problem of determining the correct number of clusters in a data set is per-

haps the most difficult and ambiguous part of cluster analysis. One of the most
fundamental reasons for this is the non-unique nature of the overall clustering



77

problem, which means that there are often more than one valid solution for a
given clustering problem. It was shown in Figure 5 that the “true” number of
clusters depends on the “level” one is viewing the data. Another problem is due
to the methods, that may yield the ”correct” number of clusters for a “bad” clas-
sification [173]. Furthermore, it has been emphasized that mechanical methods
for determining the optimal number of clusters should not ignore the fact that
the overall clustering process has an unsupervised nature and its fundamental
objective is to uncover the unknown structure of a data set, not to impose one
(c.f., Anderberg in [9, p.15] and Everitt et al. in [106, p.7-8]). For these reasons,
one should be well aware about the explicit and implicit assumptions underly-
ing the actual clustering procedure before the number of clusters can be reliably
estimated or, otherwise, the initial objective of the process may be lost. As a so-
lution for this, Hardy [173] recommends that the determination of the optimal
number of clusters should be made by using several different clustering methods
that together produce more information about the data (cf. clustering aggregation
[143] and the mixture of experts model in neural computation [181]). By forcing
a structure to a data set, the important and surprising facts about the data will
likely remain uncovered.

In some applications the number of clusters is not a problem, because it is
predetermined by the context [175]. Then the goal is to obtain a mechanical par-
tition for a particular data using a fixed number of clusters. Such a process is not
intended for inspecting new and unexpected facts arising from the data. Hence,
splitting up a homogeneous data set in a “fair” way is much more straightfor-
ward problem when compared to the analysis of hidden structures from het-
erogenous data sets. An illustrative example is the partitioning of a country into
a number of telephone areas [220]. Or a company that is going to share out the
customer database for K sales persons such that the customers in the group of
each sales person are mutually as similar as possible. Obviously the number of
clusters is determined by the number of sales persons and partitioning into K
clusters will be performed, no matter whether there is K homogenous groups in
the database or not. Hence, the principal goal of these clustering problems is
not to uncover novel or interesting facts about data. These examples show that
the need for methods that also determine the number of clusters depends on the
application.

Numerical methods can usually provide only guidance about the true num-
ber of clusters and the final decision is often an ad hoc decision that is based on
prior assumptions and domain knowledge. Therefore, the choice between the dif-
ferent numbers of clusters is often made by comparing several alternatives, and
the final decision is a subjective problem that can be solved in practice only by
humans. Nevertheless, a number of methods for objective assessment of cluster
validity have been developed and proposed. Because the recognition of cluster
structures is difficult, especially in high-dimensional spaces, various visualiza-
tion techniques can also be of valuable help to the cluster analysts.

Many different methods for determining the number of clusters have been
developed. Hierarchical clustering methods provide direct information about the
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FIGURE 10 Left: a bimodal data set (n = 30). Right: Dendrogram tree (see, e.g., [106,
p.55]) after the hierarchical single-linkage clustering.

number of clusters by clustering the objects on a number of different hierarchical
levels, which are then presented by a graphical tree structure known as dendro-
gram (see Figure 10). One may apply some external criteria to validate the solu-
tions on different levels or use the dendrogram visualization for determining the
best cluster structure.

Partitioning-based clustering methods, for example, K-means [265] and PAM
[220], take the number of clusters as an input parameter. Hence, the algorithm
should be run several times for different number of clusters and the best number
should be chosen by some external criteria. Some modified variants of the par-
titioning methods exist that are based on splitting and merging rules in order to
increase or decrease the number of clusters as the algorithm proceeds. Examples
of such methods are ISODATA and the coarsening-refining approach of K-means.

The selection of the correct number of clusters is actually a kind of model
selection/validation problem. A large number of clusters provides a more com-
plex “model” whereas a small number may approximate data too much. Hence,
several methods and indices have been developed for the problem of cluster val-
idation and selection of the number of clusters, see, e.g. [340, 95, 91, 283, 9, 106,
129, 173, 236, 207, 371, 329, 161, 314, 361, 366]. Many of them are based on the
within- and between-group distance. Generally, there are three main approaches
to the cluster validation [156]. Internal criteria utilize learning data in the vali-
dation. External criteria require test data on which to validate the goodness of
the obtained clustering solution. Relative criteria compares the obtained cluster-
ing to another clustering structure that is obtained by the same algorithm, but
with different initial parameters. A more detailed treatment for cluster validity
and the problem of the unknown number of clusters is given later in Chapter 8.
Moreover, some examples on real-world data will also be presented.
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3.2.11 Interpretation of results

Interpretation of the clustering results is often performed using visualization tech-
niques. At this point, available domain knowledge can be integrated in the ob-
tained clustering solution. In two- or three dimensions the visualization is straight-
forward, but in higher dimensions projection and transformation techniques may
be necessary. The most common approaches are the PCA and MDS techniques.
These are treated in more detail in Chapter 8.

3.3 Partitioning-based clustering algorithms

Perhaps the most popular class of clustering algorithms are combinatorial opti-
mization algorithms a.k.a iterative relocation algorithms. They minimize a given
clustering criterion by iteratively relocating data points between clusters until a
(locally) optimal partition is attained. In basic iterative algorithms, such as K-
means- or K-medoids, convergence is always local. Because the number of data
points in any data set is always finite and, thereby, also the number of distinct
partitions is finite, the problem of local minima could be avoided by searching
the globally best solution with an exhaustive search method. This is achievable in
theory, but finding the globally optimal partition is known to be an NP-hard prob-
lem and the exhaustive approach through all partitions is not useful in practice
[93, p.226]. The number of different partitions for n observations into K groups is
a Stirling number of the second kind, which is given by

=K
K _ 1 k-i (K
Sy = i:O( 1) <i)z.

This shows that the enumeration of all possible partitions is practically impossi-
ble even for relatively small problems. The problem is further exacerbated when
the number of clusters is unknown. In that case the number of different combi-
nations is the sum of the Stirling numbers of the second kind:

i=Kinax

Z (1)
Sl’l 7
i=1

where K,y is the maximum number of clusters for which it obviously holds that
Kinax < n. The fact is that exhaustive search methods are far too time-consuming
even for modern computing systems. Moreover, it seems to be an infinite race
between the computer power and the amount of data, which both have increased
rapidly during the last years. Therefore, iterative optimization is a more practical
approach than exhaustive search.

3.3.1 Iterative relocation algorithm

Iterative optimization clustering starts with an initial partition. The quality of this
partition is then improved by applying a local search algorithm to the data. Sev-
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eral methods of this type are often categorized as a partitioning cluster method
(a.k.a. non-hierarchical or flat methods [94]). A general iterative relocation al-
gorithm, which provides a baseline for partitioning-based clustering methods, is
given in Algorithm 3.3.1 (see, [168],[106, pp.99-100] or [8, p.45]).

Algorithm 3.3.1. Iterative relocation algorithm
Input: The number of clusters K, n x p data set X.
Output: A set of K clusters, which minimizes a criterion function .

Step 1. (Initialization) Begin with the initial K cluster centers/distributions as the
initial solution.

Step 2. (Recomputation) (Re)compute memberships for the data points with re-
spect to the current cluster centers.

Step 3. (Update) Update some/all cluster centers/distributions according to the
new memberships of the data points.

Step 4. (Stopping rule) Repeat from Step 2. until there is no change to J or no
data points change cluster.

Using this framework, iterative methods compute the estimates for cluster
centers, which are often referred to as prototypes or centroids. The prototypes
are meant to be the most representative points for the clusters. The mean and
median are typical choices for the estimates. On the other hand, some methods,
such as the EM-algorithm [41, 85], estimate a set of parameters that maximizes
the likelihood of the chosen distribution model for a data. The best-known of
the prototype-based algorithms are K-means and K-medoids, whereas the EM-
algorithm is probably the most popular distribution-based algorithm [168]. The
methods differ in the way they represent clusters, but they are mostly based on
the same general algorithmic principle, which is given by Algorithm 3.3.1. The
medoid-based algorithms are needed in special applications that include restric-
tive domain structures (such as Web navigation paths, see for example, [103] and
Chapter 2) whose integrity must be retained. K-means is discussed more thor-
oughly later in this work.

In summary, there are three basic elements that can be easily modified in the
general relocation algorithm: 1. Initialization, 2. Reassignment of data points into
clusters, and 3. Update of the cluster parameters. Although the heuristical, com-
putational and statistical properties of iterative partitioning methods are mainly
defined through the realization of these elements, there are also other influencing
factors, such as treatment of missing data values, that effect the overall behavior.

Initialization

Due to the non-convex nature of criterion functions to be minimized, the iterative
relocation methods are often trapped into one of the local minima. This makes
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the quality of final clustering solutions dependent on the initial partition. A sim-
ple approach is to run the partitioning-based algorithms by starting from several
initial conditions. Another, more sophisticated way is to use some heuristic for
finding an optimal initialization. In general, the initialization of the partitioning-
based clustering algorithms is an important matter of interest (previous studies,
e.g., [9,273, 315, 43, 218, 222, 6, 182, 119, 365]).

Main iteration

The reassigment of data points and the update of prototypes (or parameters) con-
struct the pass through data that improves the quality of the clustering. There are
two main types of passes: nearest centroid sorting pass (a.k.a. K-means pass) and
hill-climbing pass [8] or [9, p.160-162]. Let us refer to the passes by NCS-pass and
HC-pass, respectively.

The NCS-pass simply assigns data points to the cluster with the nearest pro-
totype. Aldenfelder [8] divides the NCS-passes into combinatorial and noncombina-
torial cases. In the former case, cluster centers are recomputed immediately after
the reassigment of a data point (c.f. MacQueen’s K-means and its variant [9]). In
the latter case, the cluster centers are recomputed only after all data points are re-
assigned to the closest cluster centers (c.f. Forgy’s K-means and Jancey’s variant
[121, 9]). The NCS-pass implicitly optimizes a particular statistical criterion (e.g.,
tr(W) for K-means) by moving data points between the clusters, whereas the
HC-pass moves the points from a cluster to another only if the move improves
the value of the criterion function.

Problem of unknown number of clusters

The name of a partitioning-based clustering method is usually of the form K-
"estimates” (sometimes, mostly in the context of fuzzy clustering, also C-"estimates”
is used, see [351, 21, 22, 400], and articles therein), which is due to the tendency to
partition a data set into a fixed number (K) of clusters. Another well-known class
of clustering algorithms, namely hierarchical algorithms, produce a set of solu-
tions with different numbers of clusters, which are then presented visually by a
hierarchical graphical structure called dendrogram (see Figure 10). Although hi-
erarchical methods provide some information about the number of clusters, they
are not very feasible for data mining problems. First, quadratic memory require-
ment of the dissimilarity matrix is intractable for large data sets. Secondly, con-
struction of the dissimilarity matrix is troublesome for incomplete data, because
distances between data points lying in different subspaces are not directly com-
parable. This opens up another interesting problem: estimation of the correct
number of clusters for partitioning-based algorithms. Typically, K is estimated
using some measure to compare the validity of the clustering solution (see Sec-
tion 3.2.10).
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3.3.2 K-means clustering

Basically K-means is an iterative process that divides a given data set into K dis-
joint groups. K-means is perhaps the most widely used clustering principle, and,
in particular, the best-known of the partitioning-based clustering methods that
utilize prototypes for cluster presentation (a.k.a representative-based algorithm
by Estivill-Castro [99]). It is also employed, by the name Lloyd’s algorithm, as a
vector quantization technique for signal compression problems [140]. Quality of
K-means clustering is measured through the within-cluster squared error crite-
rion (e.g., [9, p.165] or [175])

n
. K 2
, ) = 2 C—my.y. 11
ceNI”I,lmlr;}ewj(c {mk}k’l) i=1 I () I2 -

subjectto (c¢); € {1,...,K} foralli=1,...,n,

where c is a code vector, which represents the cluster assignments of the objects,
and m(), is the mean of the cluster, where the data point x; is assigned to. The
sample mean leads to a unique minimum of the within-cluster variance, from
which it follows that the problem actually corresponds to the minimization of
YK | tr(W;), where W; is the within-group covariance matrix of the i cluster.
Thus, the K-means clustering is also referred to as a variance minimization tech-
nique [220, p.112]. Actually in 1963, before the invention of the first K-means
algorithms, the minimum variance optimization technique was used by Ward
[393], who proposed a hierarchical algorithm that begins with each data points
as its own cluster and proceeds by combining points that result in the minimum
increase in the sum of squares error value.

As such, K-means clustering tends to produce compact clusters, but it does
not take into account the between-cluster distances. The use of the squared I,-
norm makes the problem formulation extremely sensitive towards large errors,
which means that the formulation is non-robust in a statistical sense (see, e.g.
[195]). However, due to its implementational simplicity and computational effi-
ciency, K-means has retained its position as an extremely popular principle for
many kind of cluster analysis tasks. It also requires less memory resources than,
for instance, hierarchical methods. By courtesy of its computational efficiency,
K-means is also applied to initialization of other more expensive methods (e.g.,
EM-algorithm [38, 43]). The K-means algorithm, which is used to minimize the
problem of K-means (12), has a large number of variants which are described
next.

K-means algorithms

K-means type grouping has a long history. Already in 1958 Fisher [120] investi-
gated this problem in a one-dimensional case as a grouping problem. At that time,
algorithms and computer power were still insufficient for larger-scale problems,
but the problem was shown to be interesting with concrete applications. Hence,
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procedures more efficient to exhaustive search were needed. The seminal ver-
sions of the K-means procedure were introduced in the Sixties by Forgy [121] (cf.
discussion in [265]) and MacQueen [265] (see also [9] and [30]). These are perhaps
the most widely used versions of the K-means algorithms [220, p.112]. In 1982,
Lloyd [260] presented a quantization algorithm for the problem of pulse-code
modulation (PCM) for analog signals. The algorithm is often referred to as the
Lloyd’s algorithm and, actually, it is equivalent with the Forgy’s K-means algo-
rithm in a scalar case. Although Lloyd’s paper was not published until 1982, the
unpublished manuscript from 1957 is referred, for example, in articles from 1977
and 1980, by Chen [68] and Linde et al. [255], respectively®. A basically similar
algorithm for multidimensional cases was presented by Chen in [68]. Linde et al.
generalized the Lloyd’s algorithm to a vector quantization algorithm [255]. This
is often referred to as the Generalized Lloyd’s Algorithm (GLA) in signal and im-
age processing context. Hence, there are two main types of K-means algorithms
that have actually been discovered more than once. The main difference between
the Forgy’s and MacQueen’s algorithms is the order in which the data points are
assigned to the clusters and the cluster centers are updated. The MacQueen’s
K-means algorithm updates the “winning” cluster center immediately (online)
after every assignment of a data point and all cluster centers one more time after
all data points have become assigned to the clusters, while the Forgy’s method
updates the cluster centers only after all data points are assigned to the closest
cluster centers. Moreover, the algorithm iterates until converged while the Mac-
Queen’s algorithm does not iterate down to convergence. It performs only one
complete pass through data. The starting points are often the first K data points
in the data set.

Next the MacQueen’s K-means algorithm, its convergent variant, and the
Forgy’s algorithm are given. The following notations are used:

* p: number of dimensions
* n: number of data points

* X ={xq,...,x,}: given p-dimensional data set

K: number of clusters

e C1UCyU...UCk: cluster sets

* 1 size of k" cluster

* my,..., mg € RP: cluster centers (prototypes)

e ce IN”, {1 < (c); <K}:nx1code vector (cluster assignments)
® maxit: maximum number of iterations

e {: iteration count

According to the author’s note [260], the manuscript of this article was written and circu-
lated for comments at Bell Laboratories already in 1957.



84

MacQueen’s K-means algorithm First, we present the MacQueen’s single pass
variant of the K-means algorithm. This variant is relatively fast to compute, be-
cause the algorithm performs only one pass through the complete data set and
finalizes the cluster means one more time in the end. This also ensures that the
predefined number of clusters can not change during the process when each clus-
ter is initialized with at least one data point. According to Anderberg [9, p.163],
acceptance of the first reallocation of data points should give apparently good
results, because the consequent reallocations usually result in relatively few as-
signments. However, the quality of the obtained partitions is questionable and
the results also depend on the sequence in which the data points are processed.
Moreover, due to its single pass nature one can not speak about convergence.

Algorithm 3.3.2. MacQueen’s (online) K-Means algorithm
Required input parameters: X and K.
Optional input parameters: {my }X_,.
Output parameters: {m;}X_ and c.

Step 1. (Initialization) If needed, choose the initial cluster centers (for example,
setm; = x; fori=1,...,K).Setny =0fork=1,...,K.

Step 2. (Main iteration) For each pointx; (i = 1,...,n)
1. Step 2.a. (Assignment) Assign x; to its closest cluster Cy by

(¢); = argmin|x; — my 2.
k

Set np = ni + 1.
2. Step 2.b. (Update) Recompute the center of the gaining cluster Cy as

1
m(k) = — Z X;.

Nk x;€Ck

Step 3. (Recomputation) Update the centers of the final partition by recomputing for all
ke{l,..., K}

Convergent variant of MacQueen’s K-means algorithm In [9], Andeberg pro-
poses the following variant for the MacQueen’s algorithm that iterates until con-
vergence. Due to the reassignment rule this variant is also dependent on the order
of the data points.

Algorithm 3.3.3. Convergent MacQueen’s K-Means algorithm

Required input parameters: X, K, and maxit.



85

Optional input parameters: c°.

Output parameters: {m}X_ and c.

Step 1. (Initialization) If needed, partition data into initial clusters (for example
using the main iteration of the ordinary MacQueen’s algorithm ). Set t = 0.

Step 2. (Main iteration) For each pointx; € X (i =1,...,n)
1. Step 2.a. (Assignment) Assign x; to a new cluster C! if

min |x; — ml|[> < ||x; — mfct)iHZ'

r#(ct);

2. Step 2.b. (Update) Recompute the centers of the losing and gaining

clusters, C éct)» and C!, respectively, as

and

1
m, = ﬁ(rzﬁmﬁ +x;).

Setn, =n, +1, Mety, = N(et); — 1, (Ct)i =r,andt=1t+1.
Repeat Step 2. until convergence is achieved; that is, continue until the full
cycle through the data set fails to cause any changes in cluster memberships
or t = maxit.

Forgy’s K-means algorithm The next algorithm, Forgy’s batch type algorithm,
is at present perhaps the most widely used version. It is independent of the order
of the data points. However, it is also a local procedure, which means that the
solution depends on the initial conditions. A trouble for a clustering task may
arise from the possibility of ending up with less than K clusters.

Algorithm 3.3.4. Forgy’s (batch) K-Means algorithm

Required input parameters: X, K, and maxit.

Optional input parameters: {m{}X_; or c*.

Output parameters: {m}}X_ and c*.

Step 1. (Initialization) If centers {m{}K | are given then go to Step 2. Else if an
initial partition ¢’ is given then go to Step 3. If neither centers nor parti-
tion is given as input then initialize centers {m{}£_,, assign each data point
{x;}I; to the closest center and go to Step 3. Set t = 0.
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Step 2. (Reassignment) Reassign each data point in {x;}"_; to a new cluster C/, if

. Lt . gl
r;rtlcrfl)i”"l m[|2 < |[x; —mig [|2.

Set (c'); = r and update nj forallk =1,...,K.

Step 3. (Recomputation) Update the cluster centers of the current partition by
recomputing forallk =1,...,K

1
mEk) = Z X;.

n
k xiGC};

Step 4. (Stopping) If no reassignments of data points between cluster centers
occur or t = maxit, then stop. Otherwise, set t = t 4 1 and repeat from Step
2.

A convergence proof for the algorithm is given by Selim et al. [344]. The
time complexity of the Forgy’s K-means is O(npKt) (t is the number of iterations)
[94]. This is reasonable from the DM point of view, since 7 is usually significantly
greater than p, K, or ¢ [102]. Because of the algorithmic details, the MacQueen’s
and Forgy’s algorithms are also referred to as online- and batch-K-means algo-
rithms, respectively (see, e.g., [38, 347]).

For example, in [38, 347], the convergent variant (Algorithm 3.3.3) of Mac-
Queen’s K-means algorithm is behind the online clustering, although the Mac-
Queen’s K-means algorithm is referred. In [38], the numerical experiments sug-
gest that the online K-means algorithm converges faster during the first few passes
through the data and, thereafter, batch version (Algorithm 3.3.4) outperforms it.
However, the online clustering may be useful in real-time applications, which
have to respond to inputs in extremely short time, or receive the data in a stream
of unknown length, or if there is not enough memory available to store a data set
as a complete block [21].

Drawbacks

Despite the wide popularity of the ordinary K-means algorithms, there are some
significant defects that have led to the development of numerous alternative ver-
sions during the past years (see, e.g., [315, 43]):

e Sensitivity to initial configuration. Since the basic algorithms are local search
heuristics and K-means cost function is non-convex, it is very sensitive to
the initial configuration, and the obtained partition is often only suboptimal
(not the globally best partition).

* Lack of robustness. The sample mean is very sensitive to outliers. So-called
breakdown point is zero, which means that a single gross error may dis-
tort the estimate completely. The obvious consequence is that the K-means
problem formulation is non-robust as well.



87

» Unknown number of clusters. Since the algorithm is a kind of “flat” or “non-
hierarchical” method [94], it does not provide any information about the
number of clusters.

* Empty clusters. The Forgy’s batch version may lead to empty clusters on
unsuccessful initialization.

¢ Order-dependency. MacQueen’s basic and converging variants are sensitive
to the order in which the points are relocated. This is not the case for the
batch versions.

* Only spherical clusters. K-means presumes the symmetric Gaussian shape
for cluster density functions. From this it follows that a large amount of
clean data is usually needed.

* Handling of nominal values. The sample mean is not defined for nominal
values.

* Method is statistically biased and inconsistent. The method converges often to
the wrong parameter values (local optimum of poor quality) even if pro-
vided with the correct number of clusters (distributions) and the data exist
in large amounts following multivariate Gaussian distributions [102].

In order to solve the previous problems many variants for the original versions
have been developed.

Enhanced variants of K-means algorithm

It seems that the development of the clustering algorithms was very intensive
during the sixties. As we know, the rapid development of PC computer systems
during the eighties and still growing data storages led to the invention of knowl-
edge discovery and data mining concepts. It seems that this development has
led again to the growing interest in clustering algorithms. Hence, many variants
for the traditional K-means algorithms have emerged during the last ten years.
Many of these try to solve the known drawbacks of the K-means procedures.
The general version of the iterative relocation algorithm (Algorithm 3.3.1)
provides a great number of optional elements to be implemented in different
ways when building an iterative relocation algorithm for solving the problem
of K-means. First, there are many ways to generate an initial partition or cluster
prototypes for a data set. Second, there are many ways to arrange the relocation
of the data points and update of the prototypes (for example, see [106, p.100]).
The data points can be assigned to the nearest cluster or to the one that leads to
the largest reduction in the value of the objective function. The cluster prototypes
can be updated, either after every single reassignment of a data point, or after a
tixed number of reassignments. Therefore, it is not surprising that the K-means
clustering algorithm receives a somewhat many-sided treatment in the cluster-
ing literature. Although the differences among the variants do not seem to be
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remarkable, the algorithms may sometimes produce different final partitions for
the same data despite starting with the equal initial conditions.

Together with the basic K-means algorithm, MacQueen [265] presented a
”“coarsening-refining” variant that estimates also the correct number of clusters.
It starts with a user specified number of clusters, and then coarsens and refines
clustering according to input parameters during the process. After each assign-
ment, all pairs of cluster means whose distance to each other is less than the
coarsening parameter will be merged. On the other hand, every time a data point
is processed in order to make an assignment to a cluster, its distance to the closest
cluster mean is compared with the refining parameter. If the distance exceeds the
parameter value, a new cluster will be created.

Another variant that also tries to determine the number of clusters is called
ISODATAS3. This is a quite elaborate algorithm and requires a lot of inputs from
the users. If the user is looking at the data from data mining perspective, which
means a minimal amount of prior assumptions and information, the use of this
algorithm may prove to be complicated.

Jancey’s variant is a modification for the Forgy’s K-means method [9, p.161-
162], which is expected to accelerate convergence and avoid inferior local min-
ima. In this variant the new cluster center is not the mean of the old and added
points, but the new center is updated by reflecting the old center through the
mean of the new cluster.

In order to avoid poor suboptimal solutions, a number of different initial-
ization methods for K-means(-type) methods have been developed and evalu-
ated through numerical experiments (cf., the references in Section 3.3.1). Zhang
et al. [413] suggested to run the so-called K-Harmonic Means algorithm prior to K-
means. They reported that in comparison to the K-means algorithm, K-Harmonic
Means is more insensitive to initial configurations, but it converges slower near
the solution. An accelerated, kd-tree-based variant for the K-means clustering
is proposed by Pelleg et al. [313]. The authors suggest this method for initial-
ization of the ordinary K-means algorithm as well. As a problem the authors
report the scalability with respect to the number of dimensions, which is due to
the use of the kd-tree structure. One of the most interesting approaches to avoid
poor quality minima in clustering problems is the LBG-U method, which is pre-
sented as a vector quantization method [134]. Since the LBG-algorithm [255] is
equivalent with the Forgy’s K-means clustering algorithm, the LBG-U method
can also be used as a clustering method. The idea of the LBG-U is to repeat the
LBG-algorithm until convergence. After each run, the cluster center with the
minimum utility is moved to a new point. The mean vector that possesses the
minimum utility is the one that contributes least to the overall sum of squared er-
rors when removed. The new point is chosen close to the mean of the cluster that
generates most of the distortion error for clustering. LBG-U is good from the DM
point of view, because it does not require more input parameters than the basic
K-means algorithms. It also converges, since the algorithm will be terminated if

3 This is not the same procedure as the the one called Basic Isodata in [93, p.201]. Basic

Isodata is actually the same as the Forgy’s K-means.
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the last run does not produce reduction to the value of the criterion function.

The increased power of the computer systems has enabled the use of more
intensive methods in solving the drawbacks of the K-means-type algorithms.
Methods based on genetic algorithms based methods have been developed in
order to get the globally best solutions for partition problems [239, 18, 263]. In
general, genetic algorithms are known as computationally demanding. Kovesi et
al. [237] propose a stochastic K-means algorithm that incorporates randomness to
the deterministic K-means clustering method. The algorithm is shown to be less
dependent on the initial partition than the original K-means, but it requires more
computation time. Likas et al. propose the global k-means clustering algorithm
[254]. The global k-means is a deterministic and incremental global optimization
method that employs the K-means procedure as a local search procedure, but is
independent of any initial parameters. In order to reduce the computational load
of the exhaustive method, a computationally faster variant and a kd-tree-based
initialization method are also given in the paper.

As the requirements for dealing with data sets, often too large to be loaded
into a fast RAM memory even, have been constantly growing, the scalability of
the K-means algorithms have become an important issue. A scalable single-pass
version of the K-means algorithm, which is based on identification of data that
can be compressed, region of data that must be maintained, and regions that can
be discarded, is introduced in [45]. An enhanced version for that is proposed in
[108]. These methods can be used efficiently for searching multiple solutions from
different initial conditions, since the information about the compressible regions
is retained, and discarded data can be reused. An efficient “disk-based” algo-
rithm, Relational K-means, for clustering large high-dimensional data sets inside a
relational database is given in [309]. Disk-based refers to efficient organization of
data matrices on the disk.

A number of methods for estimating K, the correct number of clusters, have
been developed and experimented with partition-based methods in general. It
is not so much an algorithm-specific issue, but a more general problem covering
all partition-based methods that are based on solving clustering problems for a
specific K. A common approach is to use some validity measure to evaluate the
goodness of the obtained solution (cf. the references in Section 3.2.10).

The problem of empty clusters may occur with the Forgy’s batch-type al-
gorithms. One cluster center may become empty when all the points are closer
to other centers. The risk of empty clusters exists also for other batch-type parti-
tioning clustering methods. This is not the case for the MacQueen’s type single
pass algorithms. However, on large data sets and with small numbers of clusters,
the probability of empty clusters should be small. The problem is worse in sub-
sampling based methods due to the smaller number of data points. Therefore,
Bradley et al. [43] introduce, as a part of their sub-sampling-based initialization
method, a variant of the K-means algorithm, KMeansMod, that never returns
empty clusters in the final solution. This method is considered more thoroughly
in Chapter 7.

The order-dependency is not a general problem for the batch-variants of
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the K-means algorithms, but it is a serious problem for the MacQueen’s type on-
line K-means algorithms. The tendency to spherical clusters is an inherent prop-
erty due to the problem setting. Therefore, prototype-based clustering algorithms
tend to construct clusters where the points are close to each other. On the other
hand, any kinds of connected areas of arbitrary shape are not of interest. For
example, hierarchical (e.g., single-link) and density-based methods are biased to
arbitrary non-spherical shape clusters.

Extensions of the K-means-type algorithms to deal with mixed and cate-
gorical data types are presented in [326, 191, 192, 154, 341]. The K-modes al-
gorithm by Huang [191] extends the K-means principle to categorical variables
by using simple matching coefficients as a dissimilarity measure and replacing
the cluster means with modes as cluster representatives. Based on the previ-
ous work, Huang [192] proposes a k-prototypes algorithm that further integrates
the k-means and k-modes algorithms to allow clustering of objects described by
mixed numeric and categorical attributes. Algorithms for clustering binary data
streams are represented in [307].

The lack of robustness in K-means algorithms is a consequence of the use
of the sensitive square of l,-norm in the cluster center estimation. The sample
mean is straightforward and fast to compute (closed-form solution exists), but it
is also extremely sensitive to all gross errors, which inevitably exist in real-world
data sets. This makes the usability of the K-means algorithms questionable on
noisy and incomplete data sets. This problem is discussed more thoroughly in
this thesis.



4 ON NON-SMOOTH OPTIMIZATION AND ROBUST
ESTIMATION

In this chapter, the basic elements of non-smooth optimization, nonlinear opti-
mization algorithms, and robust statistics are introduced. The chapter begins by
presenting the basic notations that are used throughout the thesis, unless other-
wise stated. Basic definitions on convex analysis are given to be used later as
grounds for some basic theories of non-smooth optimization. A few nonlinear
optimization algorithms and iterative solvers are introduced. These are applied
to robust location estimation problems. The basic terminology of the statistical
estimation is explained together with an introduction to robust statistics and M-
estimation. Finally, two specific multivariate M-estimators, the coordinate-wise
and spatial medians, are introduced from the non-smooth optimization perspec-
tive with discussions.

4.1 Convex analysis and non-smooth optimization

In this section some basic definitions regarding convex analysis and non-smooth
optimization are introduced. The given definitions serve as basic knowledge for
the methods and formulations that are used for the computation of the spatial
median [267, 305, 33, 28, 332, 74].

4.1.1 Convexity

The concept of convexity is a fundamental and useful property in optimization,
and, thereby, in clustering and statistical estimation as well. Theories of convex
analysis form the basis for defining optimality conditions for smooth and non-
smooth optimization problems. The term convex concerns both sets and func-
tions. Hence, let us first define the convex set.

Definition 4.1.1. A set S C IR? is said to be convex if

Axi+(1—=A)xp € S
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whenever x1 and x; are in S and A € [0, 1]. In other words, S is convex, if the line joining
any two points of the set also belongs to the set.

Prototype-based partitioning algorithms produce usually clusters with con-
vex geometry, whereas non-convex clusters are obtained, for example, by density-
based methods.

The weighted average of the form Ax; + (1 — A)xp, where A € [0,1], is
known as convex combination of x; and x,. Based on this, the definition of the
convex hull is given next.

Definition 4.1.2. Let S be a random subset of RP. The convex hull of S, denoted by
conv(S), is the collection of all convex combinations of points on S.

Convexity of functions is defined by the next definition.

Definition 4.1.3. Let J : S — R, where S is a nonempty convex set in IRP. The
function J is said to be convex on S, if

T (Mg +(1=A)xa) AT (x1) + (1 -21)T (x2) (12)
for each x1,xz € S and for each A € [0,1].

The function J is called strictly convex on S, if strict inequality holds in (12)
for all x1,x, € S and for each A € [0, 1]. The function J is called (strictly) concave
if —J is (strictly) convex.

4.1.2 Nonlinear optimization

Let us consider nonlinear unconstrained optimization problem of the form

min 7 (u). (13)
If 7 € C(RP), (13) is said to be a smooth optimization problem. Such problems
can be solved using methods that are based on the classical C! calculus. On the
other hand, if 7 ¢ C!(IRP), problem (13) is said to be non-smooth [267]. Such
problems can not be analyzed (or solved) using classical C! calculus. There are
two basic approaches to such problems. A non-smooth problem can be smoothed
by function approximations so that the classical C! assumptions become valid. In
the other case, one can use an optimization method that is not based on the C!
differentiability assumptions. The field of applied mathematics that concentrates
on such problems is called non-smooth analysis [267].

Local and global minima

Based on [33, 305] the notion of optimality is described next. Properties of the
objective function [J determine the nature of the existing solutions and methods
that efficiently find them. The global minimum of 7 is a point, where the function
attains its minimum value over the whole problem space.
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Definition 4.1.4. A point u* € R? is a global minimum of J, if
J(u*) < J(u) forallu € RP.

If J is non-convey, its global minimum may be difficult to find. Moreover,
the knowledge of J is usually local. So-called global optimization methods are
used for such problems. However, most optimization algorithms attain the lo-
cally minimizing points. A local minimum is a point that yields the smallest
value of the objective function in its neighborhood.

Definition 4.1.5. A point ux € R? is a local minimum of J, if there exist § such that
J(u*) < J(u) forallu € B(u*, ).

The above definition is called weak, because the minimum is not necessarily
unique in the neighborhood [305]. Hence, the definition of a strict minimum is
needed.

Definition 4.1.6. A point u* € R? is a strict local minimum of [J, if there exists & such
that
J (") < J(u) forallu € B(u*,d) withu # u*.

If J is convex, every local minimum is also a global minimum. Local and
global maxima are defined correspondingly.

Optimality conditions in smooth problems

As mentioned above, if 7 € C!(IR?), optimization problem (13) is said to be
smooth. In this case, the minimizing points of J can be simply characterized
by gradient V.7 (u*). Hence, the first-order necessary conditions for optimality are
defined by the following theorem [33, 305].

Theorem 4.1.1. If u* is a local minimum of J and J is continuously differentiable in
an open neighborhood of u*, then V.7 (u*) = 0.

Point u* € R’ is called a stationary point, if V.7 (u*) = 0. Hence, a lo-
cal minimum is always a stationary point. If 7 is moreover twice continuously
differentiable in an open neighborhood of u*, the second-order necessary optimality
conditions are defined by the following theorem [33, 305].

Theorem 4.1.2. If u* is a local minimum of J and V2?7 is continuous in an open
neighborhood of u*, then V.J (u*) = 0 and V27 (u*) is positive semidefinite.

The necessary optimality conditions ascertain only the local optimality. Strict
local optimality is guaranteed by the second-order sufficient optimality conditions
that are defined by the following theorem [33, 305].

Theorem 4.1.3. Suppose that V27 is continuous in an open neighborhood of u* and
that V.J (u*) = 0 and V27 (u*) is positive definite. Then u* is a strict local minimum
of J.
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Note that the second-order sufficient conditions are not necessary, since
point u* can be a strict local minimum, even though it fails to satisfy the suffi-
cient conditions (an example is given in Nocedal et al. [305, p.17]).

Convexity of J provides some desirable and simplifying properties for analy-
sis. These are described by the following theorem [33, 305].

Theorem 4.1.4. When J is convex, then any local minimum u* is also a global min-
imum of J. If, in addition, J is differentiable, then any stationary point u* is also a
global minimum of J. If J is strictly convex, then u* is the unique global minimum of

J.

Optimality conditions in non-smooth problems

If 7 ¢ C!, the aforementioned definitions are not necessarily valid anymore. In
this section generalization of optimality conditions to non-smooth problems are
presented based on [267]. In order to define the optimality conditions in non-
smooth case, the concepts of the Lipschitz continuous function, generalized di-
rectional derivative, subdifferential, and subgradient are needed. The Lipschitz
continuous function is defined as follows:

Definition 4.1.7. A function J : R? — R is locally Lipschitz continuous at u* € R?,
if there exist Lipschitz-constant K > 0 and 6 > 0 such that

|J(u) — T (v)| < K|ju—v|forallu,v € B(u*,$).

The concepts of subgradient and subdifferential generalize the principles of
the ordinary differentiability of smooth and functions for non-smooth Lipschitz
continuous functions. In the case of the Lipschitz continuous function, there does
not necessarily exist classical directional derivatives. This means that the gen-
eralization of the ordinary directional derivatives to consider also non-smooth
Lipschitz functions is needed and given by the following definition [267, p.29].

Definition 4.1.8. Let J : R? — R be a locally Lipschitz continuous function at u €
RP. The generalized directional derivative of J at u in the direction d € IR? is defined
by
J(v+td)—T(v)

; .

J°(u;d) = limsup

v—u,t]0

The generalized directional derivative always exists for Lipschitz contin-
uous functions and coincides with the ordinary directional derivative J'(u;d)
when it exists [267]. Using the generalized directional derivatives, one can define
the concept of subdifferential and subgradient for Lipschitz functions.

Definition 4.1.9. Let J : RP — IR be locally Lipschitz continuous. The subdifferential
0J (according to [74]) of J at u € RP is defined by

0J () = {€ € RP|JT°(u;d) > &Td forall d € RP}.

Each element & € 07 (u) is called a subgradient of J at u.
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More details about properties and calculus of the subdifferential and sub-
gradient can be found in [267, 332].

Using the generalized directional derivatives and subdifferential, the clas-
sical first order optimality conditions can be generalized for unconstrained non-
smooth optimization. Hence, the necessary conditions for a Lipschitz function to
attain its local minimum are given by the next theorem [267, p.70].

Theorem 4.1.5. If J is locally Lipschitz at u* and attains its local minimum at u*, then
(i) 0€9J(u*)and
(i) J°(u*;d) > 0foralld € RP.

For convex functions the above conditions are also sufficient and the mini-
mum is global. Finally, the concept of the stationary point can be generalized for
a Lipschitz continuous function.

Definition 4.1.10. Let J be locally Lipschitz continuous. Point u* € R? is called a
substationary point of the minimization problem (13), if

0€aJ (u).

4.2 Basic optimization algorithms

Perhaps the most usual approach to cope with non-smoothness is the use of non-
derivative optimization such as simplex or coordinate descent methods [242].
Another choice is to smooth the original problem by a suitable function approx-
imation and optimize it by using an appropriate gradient-based optimization
method. Beginning at u’ € R?, optimization algorithms generate a sequence of
iterates {u'}?° , that terminates when one or more stopping criteria are satisfied.
This means that no more progress can be made or the accuracy of the solution
point is approximated sufficiently [305, p.19]. For developing and evaluating dif-
ferent solvers for the problem of the spatial median, a set of basic optimization
methods are described in this section.

4.2.1 Gradient-based optimization methods

Smooth nonlinear optimization problems are usually solved by a method that uti-
lizes derivative information. As described above, the derivative information can
be used for determining the optimality conditions of the solution. If the optimal-
ity conditions are not yet satisfied, the best possible search direction is selected
before the line search by using the gradient of the objective function.

Such methods are usually referred to as gradient-based methods. Minimiza-
tion of objective function J with a gradient-based method is performed by iter-
ating between two basic steps:

1. Find the best descent search direction d € RP.



96

2. Find the optimal step size A in the direction of vector d such that the value
of J becomes minimized in the search direction.

Numerous rules and algorithms following the aforementioned basic steps and
gradient principle have been developed (see, e.g., [33]). The most naive way to
utilize the derivative information of objective function 7 is to constantly progress
to the direction of the steepest descent that is obtained by —V 7 (the negative
direction to the gradient of 7). This is the principle of the well-known steep-
est descent method (a.k.a. gradient method) [33, pp.25-26]. The steepest descent
method is simple, but it often leads to slow convergence. The problem is that on
an elongated cost surface, the gradient direction can be almost orthogonal to the
direction that leads to the minimizing point of the objective function and makes
the steepest descent algorithm to progress with short orthogonal ”zigzag” steps
[33, p.26].

Conjugate gradient method

Conjugate gradient method (CG) is a more advanced gradient-based approach to
the nonlinear smooth optimization. CG methods were originally developed for
solving large linear systems of equations (see, e.g., articles in [240]). The first
nonlinear CG method was developed in the 1960s and many variants have been
proposed since then [305]. CG methods improve the convergence speed of the
steepest descent method by reusing the derivative information from the previous
iterations. Another significant advantage is that no matrix storage is required. Be-
cause CG methods naturally assume well-defined gradients in the whole search
space, non-smooth optimization problems can not be solved without approxima-
tions.

The nonlinear CG optimization algorithm is given next. For the conver-
gence of the algorithm, it is assumed that level set £ := {u : J(u) < J(u%)}
is bounded. Moreover, in some neighborhood A of £, the gradient of objec-
tive function J is assumed to be Lipschitz continuous (cf. Definition 4.1.7) [305,
p-127].

Algorithm 4.2.1. CG algorithm

Step 1.(Initialization.) For a given u® € R? evaluate 7° = J(u’) and VJ° =
VI W).Setd’ = -V 7%and t = 0.

Step 2.(Line search.) Solve a' using a suitable line search method and set u'™! =
u’ +atd’.

Step 3.(Update of search direction.) Evaluate V. J7'*1. Set

VT3

‘Bt—i-l —
VT3

(14)
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or

‘Bf-i-l _ (vjt+1)T(vjt+1 _ vjt)
VT3

and d"t! = —V 711 4 1Al Set t =t + 1.

(15)

Step 4. (Stopping criterion.) If satistied then stop. Otherwise go to step 2.

Use of (14) leads to the Fletcher-Reeves and (15) to Polak-Ribiere CG method.
The CG algorithm attains the global solution only for a strictly convex objective
function.

4.2.2 Direct search methods

Also a number of non-derivative methods, such as the finite difference, coor-
dinate descent, and direct search methods exist for non-smooth problems [33].
Since these methods do not utilize derivative information, they are inherently
appropriate for solving non-smooth optimization problems. Direct search meth-
ods are also referred to as zero-order-methods (CY(IR?)), because instead of using
derivative information, they construct approximations of the cost functions [251].
Margaret Wright [398] defines the class of direct search methods as follows:

e A direct search method uses only function values.
* A direct search method does not "in its heart” develop an approximate gradient.

Wright reminds us that the second criterion is ill-defined, since any comparison of
function values can be considered as a development of an approximate gradient.
Overall, direct search methods are widely used for unconstrained nonlinear opti-
mization problems. Implementations can be found, for example, in the MATLAB
optimization toolbox (see http://www.mathworks.com/) and [323].

Nelder-Mead Simplex Method

The Nelder-Mead algorithm (NM) is a heuristic direct search algorithm that was
developed in the sixties by J.A. Nelder and R. Mead [300]. Because the algorithm
is based on a geometric figure called simplex, it is also characterized as a simplex
method that is a subclass of direct search methods. NM has been utilized, for
example, in robust computer vision problems [278]. A Golden-Section search
based variant of NM, referred to as NM-GS, is presented in [298]. NM-GS shows
better theoretical convergence properties than the original NM, but since their
practical performance was reported to be comparable to each other, the variant is
skipped in this thesis.

The simplex is a geometric figure in a p-dimensional space that corresponds
to a convex hull of p 4 1 vertices with nonzero volume. For example, a simplex
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in two or three dimensional spaces correspond to a triangle and tetrahedron, re-
spectively. The simplex is maintained non-degenerated during each step of the
algorithm.

There are not many theoretical results of the convergence of NM, but gener-
ally it is assumed to converge relatively fast in a close neighborhood of a global
minimum, provided that the objective function J is strictly convex. Hence, if
an approximate solution to an optimization problem can be given, then the ex-
act solution can be found in a relatively short time by NM. On the other hand,
when started with an arbitrarily chosen simplex, an optimal solution can not be
guaranteed.

Because the derivative information is missing, the assessment of the local
optimality conditions is more complicated. Naturally, the optimality conditions,
given in Theorems 4.1.1, 4.1.2, 4.1.3, and 4.1.5, are not of use if derivative informa-
tion is not available. This complicates the definition of the termination criteria for
the algorithm. Another weakness of NM is its poor scalability to large-scale prob-
lems. Large-scale problems usually lead to vast numbers of objective function
evaluations that significantly increase computational cost and, thereby, lengthen
the time to converge.

Regardless of its popularity as a nonlinear optimization method, the litera-
ture indicates that the poor effectiveness and extreme sensitivity of the solutions
to the stopping criteria make NM too slow and unreliable method for large DM
applications. On the other hand, when initialized with an approximate gradient-
based method, NM may converge fast to the locally optimal solution.

Algorithm

The NM algorithm creates a sequence of simplices with p + 1 vertices in RP. A
re-formed simplex at t'" iteration is denoted by {uf, ..., w1}

The vertices are ordered at each iteration such that the condition J (u}) <
Jwh) <...<J (u; 1) is satisfied. Because iteration index t has no other mean-
ing than to provide an alternative stopping criterion, that is the maximum num-
ber of iterations for the algorithm, it can be omitted for the rest of the algorithm
description.

At each iteration, the vertices with the smallest (the best vertex u;) and the
largest (the worst vertex u,,1) value of J are chosen. The worst point u, 1 is
shifted to a new position u € R” such that condition J (u) < J(up1) becomes
satisfied. u is determined by applying the following operations to the simplex:
reflection, expansion, contraction, and shrinkage. The operations are associated with
scale parameters that are denoted by p, x,y, and o, respectively. The values of
these parameters must satisty the following conditions:

p>0,x>1,0<y<1,and0<c <1
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Typical parameter values can be [242] (cf., MATLAB Optimization Toolbox!):

1 1
=1, x=2,vy=-,and o = =.
The outcome of each iteration is either an accepted point to replace the worst ver-
tex u, 1 or, provided that the shrinkage operation was carried out, the outcome
can be p new points that form a new simplex with the existing vertex u; for the
next iteration. The search direction of an operation is defined by the worst vertex

Upiq and @, which is the mean of all vertices except Uy and given by

p
Z u;.
i=1

The iteration of the NM algorithm is given next according to [242].

u=

< |+

Algorithm 4.2.2. Nelder-Mead algorithm

Step 1. (Order) Sort the vertices of the current simplex to satisfy J (uy) < J (uz) <
e S J(up+1).

Step 2. (Reflect) Compute the reflection point u, from
W =0+ p(0—upgq). (16)
Evaluate J, = J (u;).
Step 3. (Expand) If J, < Ji, then calculate the expansion point u,,
u, =a+ x(u —a), (17)

and evaluate J, = J(u.). If J. < J;, then accept u, and terminate the
iteration; otherwise accept u, and terminate the iteration.

Step 4. (Contract) It J, > Jp, then perform a construction between w and the
better of u, 1 and u,.

Step 4.a. (Outside) If 7, < J; < JTp+1 (e, uy is strictly better than uy,.1), then
perform an outside contraction: calculate

u. =+ y(u —a) (18)

and evaluate J. = J(u.). If J. < J;, then accept u, and terminate the
iteration; otherwise, go to Step 5 (perform a shrink).

Step 4.b. (Inside) If J, > Tp+1s then perform an inside contraction: calculate
Uee = U+ (80— upy1) (19)

and evaluate J.c = J (ucc). If Joe < Jp+1, then accept u. and terminate
the iteration; otherwise, go to Step 5 (perform a shrink).

http:/ /www.mathworks.com
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Step 5. (Shrink) Evaluate J at the p points v; = u; +p(u; —u1),i=2,...,p+ 1.
The (unordered) vertices of the new simplex for the next iteration consist of
points {uy,va,..., Vpi1}.

As a stopping criterion one can use, for example:

max [|[J1— Jill1 <e or max [u;—ul2 <g
2<i<p+1 2<i<p+1
where ¢ is a small positive real number. The criteria are very sensitive to the
scale of the problem and the prior knowledge of the problem space helps in the
determination of the appropriate values.

4.2.3 Successive overrelaxation method

The successive overrelaxation method (SOR) [384, 56] is an iterative method origi-
nally proposed for solving a linear system of equations

Au=b, (20)

where A is p X p real matrix and b p x 1 vector. The solution vector u exists and
is unique if and only if A is nonsingular, and this solution is given explicitly by

u=A"'p. (21)

Iterative methods, such as the Jacobi, Gauss-Seidel, and SOR methods, can be
used for solving a problem presented in (20) by constructing a sequence of so-
lutions {u’}$> ). The idea of SOR is to accelerate the convergence rate of Gauss-
Seidel type of methods, which are based on solving coordinate-wisely

(w12) = ((b» — Loayu' ) Zamu*-l)j) Fi=lep

@i j<i j>i
The acceleration is realized by the following convex combination
ut — ut—l + w(ut—l/Z . ut—l) — wut—1/2 + (1 _ w)ut_l, (22)

where w is the relaxation factor (a.k.a overrelaxation parameter or extrapolation
factor [384, 395]). w should be chosen so that it accelerates the convergence rate
of Gauss-Seidel type of iterations. Practically the best value of w is unknown, but
some heuristics have been developed. A theorem due to Kahan shows that SOR
fails to converge if w is outside the interval |0, 2] [155].

Theorem 4.2.1 (Kahan?). A necessary condition for the SOR method to converge is
|w — 1| < 1. (For w € R this condition becomes w € (0,2).)

Note that if w = 1 then the method simplifies to the Gauss-Seidel method.
If w < 1, the term under-relaxation is used. The SOR method has been applied,
for example, to massive discrimination problems with support vector machines
[269].

2

Original reference not available to the authors: Kahan, W., Gauss-Seidel methods of solving
large systems of linear equations, Doctoral Thesis, University of Toronto, Canada, 1958.
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4.3 Classical statistical estimation

In this section, the most important statistical definitions related to the statistical
estimation are given for later statistical analyzes and experiments.

4.3.1 Basic terminology

Many times in practical situations, it is not possible to gather measurements from
the entire target population. Therefore, the estimation of the statistical parame-
ter values is usually based on samples that are drawn from the population. To
accomplish such tasks, the following definitions are essential to know [395]:

An estimate denoted by 0, is an educated, and hopefully "the best’, guess, that
is based on known information, for the true value of a population para-
meter. Often, an estimate for the uncertainty of an estimate 6 can also be
determined statistically.

An estimator defined by a functional T is a rule that tells how to calculate the
estimate 6 based on the measurements contained in a sample.

It is worthwhile to note that when all measurements from a population are avail-
able, one should rather talk about calculation of a parameter value than its esti-
mation. On the other hand, an estimate is also a random (vector) variable that
has a distribution. The different statistical measures can be used for selecting
the best estimator, whose “goodness” depends on the underlying distribution of
the target sample. If the underlying statistical conditions are unknown, then the
estimation is a more difficult task.

A location parameter determines the true position of the population distri-
bution. It is defined as follows ([188]):

Definition 4.3.1. Let f(x; 0, A) be the density function of a random vector variable x. 6
is a location parameter if the density f(x; 0, A) can be written as a function of x — 6; that
is, f(x;0,A) = h(x — 6; A) for some function h(-; A), and h(-; ) does not depend on 6.

The location parameter of an interesting population is estimated by using
a point estimator, whose outcome is naturally called point estimate. 1t is the actual
numerical value that approximates the unknown and exact value of the location
parameter on a given sample. Instead of a point estimate, a scatter estimate of a
given sample may also be of interest. Such an approach is referred to as interval
estimation, which is another type of statistical estimation.

The following definitions are mainly taken from [135]. Let ® C R’ be an
arbitrary parameter space. X = {xi,...,X,} is a random sample in R?, which
is drawn from a population with a probability density function p(x,0), where
0 € O. X is assumed to be independent and identically distributed. The estimate
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of the true parameter vector 0 is denoted by 0, which is a function of T over the
random sample X as

0="T(xy,...,xn) = T(X).
Because X consists of random vectors x;, also 8 becomes a random vector. The

expected vector or the mean of a random sample X is defined by

amszwm,

where p(x) is the joint density function of x. The sample mean vector is defined

by
1 n
H=— Z X;.
=
The variance of an individual random variable x; = (x;); (i € {1,...,n},j €

{1,...,p}) is defined by

0j = E{(xj — ui)(xj — H)},
where yi; = (u);. The unbiased estimate of covariance matrix T of a random sample

X is defined by

£=&{ta—mlx -} =

i(xi —w)(xi— )"

The bias of an estimate 8 = T(x, . ..,X,) is the difference between the true value

of the estimated parameter 0 and the expected value of 8. According to the classic
statistics, the best estimator one can find should be unbiased, consistent, and effi-
cient [135, p.124]. Hence, the definitions of these central properties are presented
next.

Definition 4.3.2. An estimate 8 = T(xq, ...,y ) is said to be an unbiased estimate of 6

if
bias = E{0} —0=0 forall 6c @.

Otherwise, it is a biased estimate.

For example, the sample mean is an unbiased estimator of the population
mean. In practice, however, the bias is usually impossible to determine, because
the exact value of the true parameter 0 tends to be unknown. The consistency is
defined as:
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Definition 4.3.3. An estimate 0 = T(x1,...,Xn) is a consistent estimate of 0 if and
only if
nli_r}ro105{||T(x1, .o, Xy) — 0]2} = 0.

A consistent estimator guarantees asymptotically correct estimates. The ef-
ticiency of an estimator is measured by the variance of the estimates. The relative
efficiency of two consistent estimators tells which one gives the correct values in
probability.

Definition 4.3.4. Let 8; = Ti(xq,...,X,) and 8, = Ty(x,...,Xy) be the estimators
for the true parameter 0. When the estimates 01 and 0, are compared on the same samples,
their relative efficiency is defined by the ratio

) EUB - 0)P)
(o — ol}

If 7 < 1 always for all possible 0, then 8; is said to be an efficient esti-
mate. The efficiency of an estimator depends on the underlying statistical distri-
bution. The sample mean is the most efficient estimator on the samples that are
drawn from the normal distribution. For a nonsymmetric (skewed) distribution
this does not necessarily hold anymore and, for example, the median may be the
more efficient estimator.

All estimators proposed in this study are expected to satisfy the Fisher con-
sistency. A Fisher consistent estimator measures the right quantity at the ideal-
ized parametric model [162].

Definition 4.3.5. (Hampel [162]). Let Fg be a family of probability density functions
f(x,0). Let {Fg, 0 € O} denote a parametric model, where ©, the Fy's and the mapping
0 — Fg are precise. Estimator T with values in © is said to be Fisher consistent at the
parametric model if and only if

T(Fg) =6 forall 6¢c O.

These are the basic properties that are expected to hold for all appropriate
estimators. Another important factor considering the evaluation of an estimator
is, of course, the computational cost required to compute the estimate.

4.3.2 Multidimensional transformations
Following the presentation in [338], a couple of definitions that are closely related

to the multivariate location estimation problems are given. These definitions are
needed for comparing the geometrical properties of the multivariate estimators.
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Definition 4.3.6. The multivariate location estimator is said to be translation (or loca-
tion) equivariant if

T(xy+b,...,xu+b) =T(xq,...,x4) +b forany b e R".

Definition 4.3.7. Let 7t denote any permutation on {1, ...,n}. The multivariate location
estimator is said to be permutation invariant if

T(xn(l),...,xn(n)):T(xl,...,xn) forany 7.

Definition 4.3.8. The multivariate location estimator is said to be affine equivariant
(coordinate-free [89]) if

T(Ax;+b,...,Ax, +b) = AT(xq1,...,x,) +b,

where b € R" and A is any nonsingular matrix.

Affine equivariance is a desirable property, but it is difficult to combine with
robustness. Affine equivariant robust estimators need also more computation
time than classical estimators [338, p.270].

4.4 From classical to robust statistics

Statistical inferences are based on both observations and prior assumptions about
underlying conditions. The underlying conditions determine, for example, dis-
tributional models, randomness, independence, etc. The classical statistics rely
on the normal (or Gaussian) theory that emerged due to finding that the errors
in the least square (LS) problems are normally distributed. The LS problem is
defined by the following optimization problem

n
min.7 (0), for J(8) =} Ilxi— 8|3, (23)
BcRY =

where 8 is an unknown parameter vector. The Euclidean distance is used between
the observed values x; and model parameter 0. Due to its explicitly solvable for-
mulation LS problem is very fast to compute (a closed-form solution exists). This
was of great importance at the time of its invention, since there were no comput-
ers available. Because of its simplicity, computational efficiency and perhaps also
tradition, a large number of the techniques in statistical data mining and data
analysis software packages are still based on the LS principle.

Real world data rarely satisfy the classical normal assumption. According to
Huber [197], it has been clear since the sixties that one seldom has precise knowl-
edge about the true underlying distributional conditions. John W. Tukey has been
considered as the first one who in the sixties recognized and elaborated the prob-
lem of the extreme sensitivity of classical procedures to very minor deviations
from the normal assumptions [199].
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44.1 Robustness

According to Huber [195] “robustness signifies insensitivity to small deviations from
the assumptions”. A small deviation from the assumptions refers either to gross
errors in a minor part of the data or small errors in a large part of the data. The
primary goal of the robust procedures is to safeguard against those errors.

A typical deviant in a data set is an outlying data value. An observation
with one or more such data values deviates significantly from the bulk of the data
and is therefore called an outlier [24]. There are many reasons for the existence of
such observations in real-world data sets. They can be caused by a failure in a
data acquisition system or by a human mistake. On the other hand, an outlying
value may also be a correct measurement of an object with deviating features.

Another kind of deviation from the normal assumptions is missing data
(see Section 3.2.8). There can be many reasons for missing data values (see, e.g.,
[258]). Fortunately, if the mechanism that leads to the missing values is known,
it may be possible to substitute these missing values by the correct or estimated
values. However, in the case of sparse and large data sets, it may be too laborious
to analyze and substitute the missing values. Moreover, the missing data mech-
anism may be fully unknown, which makes the estimation of the correct value
difficult. The same holds for the outliers. For instance, missing beats and extra
beats in heart rate time series may arise either due to a physiological reason or
measurement errors [339].

These facts have been one of the most significant motivation for the devel-
opment of robust procedures. Regardless, statistical tools are still mainly based
on the classical statistics. This prevents precise and correct inferences from dirty
real-life data, even though the actual algorithms are fully reliable.

A competing factor for robustness is (statistical) efficiency. Usually the in-
creased robustness leads to decreased efficiency. For example, the trimmed sam-
ple mean estimator is less efficient than the sample mean computed for the whole
data set. The trimmed variant loses a part of the data for diminishing the influ-
ence of gross-errors. The less data the less information and, finally, the more
uncertainty. In practice, this is shown as increased variance in the estimates. For
this reason, Coakley et al. [75] propose that the relative efficiency of a robust es-
timator should provide at least 95% efficiency with respect to the least squared
estimators on a normally distributed sample.

From the point of view of the software developers, especially the ones work-
ing with DM and KDD methods and algorithms, the robust estimators should
also have efficient implementations with respect to the amount of required com-
putation and memory usage, testability, etc. (computational efficiency should
not be confused with statistical efficiency). On the other hand, approximation al-
gorithms that are implemented in order to shorten computation time have been
considered as a risk for the consistency and breakdown point of the estimators
[179]. Therefore, it may be worthwhile to test new methods both from the com-
putational and statistical point of view.
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4.4.2 Outlier trimming

How the aforementioned deviations should be taken into account in the opera-
tions on incomplete and erroneous real-world data sets? The simplest approach
is to completely reject outliers and apply classical statistics to the remaining data.
One may use robust statistics (robust location and scatter estimates) in two ways.
Either one uses the robust estimates instead of the classic statistics or, first com-
putes a robust estimate in order to identify outliers, then rejects or corrects those,
and afterwards applies classic methods to the cleaned data.

Trimming is an example of the rejection techniques that is used to make the
classical estimators more robust. Trimming means that a predetermined fraction
or number of the most extreme observations are removed from the sample before
the estimate is computed (e.g., [24]). The trimmed mean is a trimmed variant of the
sample mean.

An effort to define the correct trimming fractions was made by Stigler [360],
who examined eleven location estimators on 24 real world data sets. The re-
sult was that these data sets contain such minor deviations from the normal as-
sumptions that a very fine trimming (10%) yields the best estimates and, more-
over, the second best in the tests was the sample mean without trimming. Hu-
ber comments on Stigler’s aforementioned real-world experiments by stating that
the used real-world data sets contained fewer gross errors than the average real
world data (see discussions in [360]).

Hence, the trimming approach is not as simple as it looks. The trimming
procedure is sensitive to the changes at the rejection point [196]. A high density
of data at these points may distort the estimate seriously. Another problem is to
define the trimming fraction or limit. Outlier detection from multivariate data is
not easy. Visual recognition of outliers from high dimensional data sets is diffi-
cult, which often makes the explorative methods useless. A further complicating
fact is the difficulty to give a reliable characterization for extremity, because it de-
pends on the unknown location parameter of the sample. Hence, this leads to a
kind of recursive problem, which proves that the separation of the rejection and
estimation steps is not at all obvious [195, 197]. Due to false rejections and false
retentions, even a normal data set containing few gross errors may not be normal
after trimming. The situation is even worse when classical estimates are applied
after trimming a data set that is mistakenly assumed normal for the main part.
According to Huber [195], the best robust procedures outperform rejection pro-
cedures, because they are based on smooth transition from the full acceptance to
the full rejection of observations.

4.4.3 Quantification of robustness

In order to be able to analyze and compare the robustness of estimators, measures
of robustness are needed. Two main types of robustness exist: qualitative and
quantitative.
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Qualitative robustness

Qualitative robustness is based on continuity of the estimators [195, 162]. In the
qualitative sense, the robust estimators possess a so-called weak-star continuity:
if two empirical cumulative distributions get closer to each other, then the esti-
mates based on these samples also get closer to each other [162]. The exact math-
ematical formulation behind the weak-star topology is skipped here (see more
details, e.g., in [195]).

Quantitative robustness

Quantitative robustness expresses the effect of small deviations from the under-
lying distributional conditions to the distribution of an estimator [195, 163]. From
the perspective of this thesis, this type of robustness is of main interest.

Breakdown point Perhaps the most popular of the quantitative measures is the
so-called breakdown point (BP). Rousseeuw and Leroy [338] define BP as “the
smallest fraction of contamination that can cause the estimator T to take values arbi-
trarily far from T(X)”. A formal definition according to [195, 338] follows next.

Definition 4.4.1. Let T = T(X) be any arbitrary estimator. Let us denote by X' all
contaminated samples obtained by replacing m data points by arbitrary values (this allows
also extremely distant outliers). The maximum bias caused by the contamination is given
by:
biasmax(m, T,X) = sup|| T(X') — T(X)||, (24)
X/

where the supremum is taken over all contaminated sets X'. The finite-sample breakdown
point is given by

(T, X) = inf{% : biasmax (m, T, X) = co}. (25)

Hence, BP measures the global reliability of an estimator. The above defin-
ition is independent on the probability distributions. In the case of a non-robust
estimator, such as the sample mean, BP is zero [198]. On the other hand, the high-
est possible breakdown point for any translation equivariant estimator is 0.5 (cf.
Theorem 4.4.1).

Theorem 4.4.1. (Lopuhai et al. [261]). Let X = {x1, ..., Xn} be a sample of n points in
RP. When T, is translation equivariant, then €*(T,,,X) < |(n+1)/2]/n, where |u|
denotes the nearest integer less than or equal to u.

The upper limit is due to the self-evident truth that if more than half of the
data is contaminated, it becomes impossible to decide which part of that data is
good.
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FIGURE 11 The influence curve of the Tukey’s biweight estimator. max(G*, G™) is the
gross-error sensitivity. L is the local-shift sensitivity and rp the rejection
point.

Influence function and its derivations The influence function (IF) and its deriv-
atives represent the local concepts of the robustness. They give an infinitesimal
aspect to the robustness, since they describe the standardized effect of an infin-
itesimal contamination on the estimate [162, 24]. In a mathematical sense, the
influence function is the first derivative of an estimator defined by a functional T.
The value of the derivative at a given point x (when it exists, and is unique) mea-
sures the normalized effect by small contamination to the estimate at this point.
Let’s consider the asymptotic definition of the influence function first [163].

Definition 4.4.2. Let us consider the functional form of an estimator T = T(X) and
an underlying basic distribution F. A random contaminated model with a contamina-
tion ratio A is given by (1 — A)F + AG. The influence function of a functional T at a
distribution F is then given by

IF(Z, T, F) = Jim L= ME+AG) = T(F)

, 26
A—0 A ( )

where G is the atomic distribution for which P(X = ¢) = 1.

The influence function is a useful measure of robustness as long as the con-
taminated fraction of the data is smaller than the breakdown point. For a ro-
bust estimator, the influence function should be bounded and continuous. The
bounded influence function provides safety against outliers by determining an
upper limit for the worst approximate effect that a fixed amount of contamina-
tion may have on the estimate. For example, both coordinate-wise and spatial
medians have bounded influence functions. The continuity property provides
safety against inliers, which means that not any single observation can determine
the value of an estimator. For example, the coordinate-wise medians are deter-
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mined by the location of one or two middle values [55], which makes them very
sensitive to rounding and grouping of these points.

As data mining tasks usually suffer from a lack of knowledge about the
underlying distribution, the finite-sample version of the influence function is also
needed [163]. The empirical influence function is used when the intention is to
measure the influence of a single data point to a particular estimate.

Definition 4.4.3. Let us suppose that we have an estimator T, for n > 1 and a sample
X1,...,Xn—1 0f n — 1 observations. The empirical influence function of Ty, is a plot of

Tu(X1, -, Xn—1,X) (27)

as a function of x.

Another finite-sample variant for the Hampel’s influence function is the sen-
sitivity curve that was proposed by Tukey around 1970 [199, 195]. It is actually also
a variant of the Jackknife method [282]. The idea is to assess the influence of one
additional (virtual) observation x on estimator T, = T(xy,...,X;). As a function
of an additional observation x that is scaled by the sample size 7, the sensitivity
curve is obtained from (26) by replacing F by F,,_1 and A by 1/n as

SCn_l(X) = i’l[Tn(Xl, ‘e ,Xn_l,X) — Tn_l(xl,. . .,Xn_l)]. (28)

The finite gross-error sensitivity, which corresponds to the boundedness of
the influence function, is defined as:

Definition 4.4.4. The gross-error sensitivity [163, 162] of a consistent estimator T, of
T at distribution F reads as

GES = sup||IF(x,T,F)||. (29)

The gross error sensitivity determines the worst approximate effect that a
fixed amount of contamination may have on the estimate. If GES — oo for a
particular estimator, then the estimator is completely intolerant against outliers.
The robust estimators, such as the sample median, Tukey’s biweight, Andrews’
wave, etc. usually possess the finite gross-error sensitivity. As an example, the
gross-error sensitivity of the Tukey’s biweight estimator is depicted in Figure 11.

The local-shift sensitivity expresses the worst approximate effect caused by
removing an observation and reintroducing it at a new position. It is also based
on the influence function and defined as follows:

Definition 4.4.5. The local-shift sensitivity (e.g., [188, 162]) is the supremum of the
absolute slopes of chords joining all pairs of distinct points on the influence function:
155 — sup FO) ~ ED)]
X#£y ||X - YH

(30)



110

This is a measure of the local effect of rounding or grouping to the value of
an observation. A discontinuous influence function leads to the infinite local-shift
sensitivity. LSS of the coordinate-wise sample median is asymptotically infinite
at the central part of the sensitivity curve. In practical applications this is re-
flected by the fact that one or two middle observations dominate the value of the
estimate.

The rejection point expresses the largest distance after which the observa-
tions become rejected. In this region the influence function equals zero as the
observations do not have any influence on the estimate. The rejection point is
defined as [162]

Definition 4.4.6.

RP =inf{r > 0;IF(x; T,F) =0 when ||x|| >r}. (31)

All observations that exceed RP are rejected by the estimator. A class of
estimators with a finite rejection point is referred to as redescending estimators
(see, e.g., [162,164, 417]). These types of estimators are particularly well protected
against sufficiently large outliers.

In addition to the classic measures, such as consistency and efficiency, ro-
bust estimators should also be provided with a high breakdown point, which
means qualitative robustness. These are the desirable properties for all robust
estimators [195, 410, 75]. Considerable values in the aforementioned measures
assure that an estimator tolerates well small deviations from the assumed model
and avoid ”catastrophe” in the case of larger deviations. From the DM and data
clustering point of view, it is important to have methods and estimators that are
insensitive to gross errors, because such errors are difficult to detect from large
multidimensional real-world data sets. In conclusion, a set of requirements for
robust estimators collected from [162, 333] are the following;:

High efficiency Nearly equal efficiency with maximum likelihood estimators un-
der ideal parametric models.

Qualitative robustness Estimates are influenced just slightly by small deviations
from the assumed model.

Quantitative robustness Estimates are protected against large amounts of con-
tamination or single gross errors (high breakdown point).

Local-shift sensitivity Smooth reaction to rounding and grouping.
Rejection point Separation between outliers and the bulk of data.
Fisher consistency Estimation of right quantity (for parametric models).

Affine equivariance The solution should be independent of the scales of the vari-
ables (multivariate cases)
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Computational practicality The solution should be obtainable in a practical amount
of computing time, even in a high dimension and/or with large amounts of
data.

4,5 M-estimation

M-estimators (a.k.a. maximum likelihood type estimators) are a specific class
of statistical functionals based on generalization of the traditional least squares
principle (see, e.g., [196, 197, 274, 195, 163]). The idea of maximum likelihood
estimation (ML-estimation) is to find a parameter that maximizes (or minimizes)
the likelihood function (or its logarithm). Let us give a definition for the general
M-estimator [195, 163].

Definition 4.5.1. Any estimator T, = T,,(x1,...,Xn), whose value is defined by a min-
imizing point of a problem of the form

1

n
argmin Y _ p(x;; Ty), (32)
T, i=1
or by an implicit equation
n
¥(xi; Ty) = 0, (33)

1

where p is an arbitrary function, P(x;,0) = Vep(x;,0), (when V g exists and is unique)
is said to be an M-estimator (or a maximum likelihood type estimator).

The generalized multivariate M-estimator of a location parameter is defined

as
T, = argmin Zp(xi —Ty), (34)
Ty i=1
or
n
Y $(x— Tn) = 0. (35)
i=1

By altering p a large assortment of M-estimators for a location parameter can be
constructed [196]. Usually p is strictly convex so that ¢ becomes strictly monotone
and consequently estimator T, is unique.

By choosing p(u) = u?, p(u) = |lul|; and p(u) = —log f(u) the multivari-
ate sample mean, coordinate-wise median and maximum likelihood estimator,
respectively, are obtained. f(u) is the density function of a distribution. Note
that the coordinatewise median is unique only if the number of observations is
odd [213]. ¢ is actually the influence function of the M-estimator. Hence, the sen-
sitivity of the estimates can be evaluated from the shape of . An estimator with
small values of ||(u)||; on any large ||u||; is robust against extreme observations.
In Figure 13, the shape of the influence functions are depicted for four different



112

L2 cost function L1 cost function Tukey’s biweight cost function Andrew’s wave cost function
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FIGURE 12 Cost functions of four M-estimators.

L2 influence function L1 influence function Tukey's biweight influence function Andrew’s wave influence function
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FIGURE 13 Influence functions of four M-estimators.

M-estimators. One can see that the /r-estimator has an unbounded but strictly
monotone influence curve, which expresses that already one outlier may totally
disturb the estimate. A robust influence curve is given by the /1-estimator that
has a bounded and monotone influence function.

Tukey’s biweight and Andrew’s wave are redescending M-estimators [162,
164, 417]. The shape of the cost and influence functions are presented in Figures
12 and 13. Because the value of the influence functions equals zero for the esti-
mator after the predetermined distance parameter (rejection point), all extreme
outliers are entirely rejected. These estimators suffer from two drawbacks. First,
they are not based on convex cost functions (i.e., monotone influence functions),
which make finding of a globally optimal solution, which by Theorem 4.1.4 can
not be assured to be unique, more complex. Secondly, the determination of the
rejection limit is a difficult data-dependent problem.

A number of functions for M-estimators are introduced in [420]. When com-
pared to other types of estimators, such as L- and R-estimators, M-estimators are
more flexible and easily generalized to multivariate problems [163]. However,
M-estimators are not inherently scale invariant (except the coordinate-wise me-
dian). Hence, in practical applications specific scale estimation procedures are
needed. In this thesis, multivariate generalizations with missing data treatment
are presented for three M-estimators.
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4.6 Robust multivariate M-estimators and non-smooth optimiza-
tion problem

In this section a pair of multivariate location estimators, that are based on the

usual /;-norms, are introduced along with a critical study from the point of view

of robust statistics and optimization. By following the presentation by Karkkai-

nen and Heikkola [213], multivariate formulations for the coordinate-wise me-

dian and the spatial median as a non-smooth optimization problem are given.
Let us consider the following family of optimization problems [213]:

. 1¢
min (@), for 7 (w) = 3% u sl (36)

4.6.1 Coordinate-wise median

The marginal (or sample) median is a non-parametric estimate of the univariate
population median. The p-variate median estimator can be simply constructed as
a vector of marginal (sample) medians [338, 23]. The M-estimate formulation can
be derived for the same estimator from the general M-estimation problem (32)
[213].

In order to turn the multivariate coordinate-wise median to the M-estimation
problem, we choose 4 = a = 1 in (36) that leads to the minimization of the sum
of [;-norms. This is actually a non-smooth optimization problem and the sub-
differential of the cost function is given by:

n

0Ji (u) = Y & where(g;); = sign((u —x;))). (37)

i=1

The sign-function sign(u) is defined such that sign(u) = —1 for u < 0, sign(u) =
1 for u > 0 and sign(u) = [—1,1] for u = 0. The solution of the problem is the
coordinate-wise median. In practice, the solution represents the set of coordinate-
wise middle values taken from the ordered sample set. The solution is unique for
odd 1, but for even #, all points in the closed interval between the middle values
satisfy (37). An appropriate choice (used, e.g., in MATLAB) is the average of the
two middle values.

4.6.2 Spatial median

The spatial median is a multivariate M-estimator of a location parameter. It is
known by several names, such as Fermat-Weber point, multivariate L; estima-
tor /median, the mediancentre or Weber point [352, 261, 338, 82, 148]. In opera-
tions research and management science it is best-known as Fermat-Weber point
that minimizes the (weighted) sum of the Euclidean distances to the n given
points in IR?. Hence, it provides a solution for the usual facility location prob-
lem (fire stations, distribution or communication center, etc.) [262].
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By choosing g = 2a = 2 the problem of the spatial median is obtained from
(36):

min 73 (), for 7} (u Znu—xznz, 3)

which clearly satisfies the conditions given in Def1n1t1on 4.5.1. In the univariate
case, (38) coincides with the coordinate-wise median.

The gradient of the convex cost function f(u, x;) = ||u — x;|2 is well-defined
and unique for all u # x;. However, case u = x; leads to the use of the sub-
gradient (see Definition 4.1.9), which is below characterized by the condition
1€]l2 < 1 (see also [55]). Thus, the (local) extremity of (38) is characterized by
means of a sub-gradient, which reads as

(u—x); o
07, (u Zéu with { (61)j = fu=xiss for [u—xil2 #0, 39)
ICill2 <1, for [[u — x;| = 0.

As pointed out in [213], (38) is a non-smooth optimization problem [267], which
means that it can not be treated (both analytically and numerically) by using the
classical (C1) differential calculus.

Proof of existence and uniqueness of spatial median

When the inherent non-smoothness of problem (38) has been recognized, the ex-
istence and uniqueness of its solution need to be shown without using the math-
ematically incorrect characterization V.7, (u) = 0. The existence of the minimiz-
ing solution for (38) is shown by proving the following theorem:

Theorem 4.6.1. Problem (38) attains its minimum.

Proof. Let us define a compact set

L= B.(x;,d),where d= max [|x; —x;|>.
U Bt max =
Itis clear that x; € B, (x;,d) foralli,j € {1,...,n} (this means that the intersection
of B.’s contains all x;’s) and for any u € L there exists at least one x; such that
|lu — x| < d. The complement of L is given by M = IR? \ L. Because u € M can
not be inside any Bc(x;, d), it follows that for any u € M it holds ||u — x;||» > d.

1. Letu € M. Then |ju — x;||2 > d for all x;. From this it follows that } " ; |[u —
X;||2 > nd when u € M.

2. Now we have to show that there exists u € L such that )} ; [[u —x;||2 < nd.
However, this is trivial since by choosing u = x; forany i = 1,...,n, we
have Y'  [[lu —x[[2 < (n —1)d < nd.

Based on these two observations, there always exists a point u € L, for which
T (u) < J}(v) forall v € M. Hence, we have shown that if there exist a solution
for (38) it is found in the compact set L. Since any vector norm is continuous, we
know according to Weierstrass’” theorem [33, p.654] that there exists a minimizing
solution to problem (38) in the compact set L. O
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Adapting the ideas of [281] the following basic result is obtained, which
proves the uniqueness of the spatial median. The proof is further extended to
encompass also missing data cases by Valkonen [381].

Theorem 4.6.2. If the sample is not collinear, then the spatial median is unique.

Proof. Based on the previous Theorem 4.6.1 it is known that there exists a solution
u* for problem (38), which belongs to the compact set L. Let us denote a :=
j21 (u*), i.e. the minimizing value of the cost functional. Concerning uniqueness,
assume that there exist two solutions u; and u; for (38). Then, from the triangle
inequality it follows that for all 1 < i < n we have

u; +u 1 1
102 = xill = 5 =) + (w2 =32 < 5w —xill + o = xill2).
Hence,
u; + up "y + up
7 (M) -yt
2 = 2 2
1 & 1&
< Y w = xill2 45 ) [luz —xill2
2L 2 L
i=1 i=1
X oo
_ YLt 40
;T =« (40)

which shows that also % is a solution of (38). Moreover, if the sample is not
collinear, i.e. not collapsed on the line going through the points u; and uy, there
exists at least one point x; in the sample such that

(ul — Xg, U2 — Xk) — ||u1 — kaZ ||u2 — Xk||2 COS(U1 — X, U2 — Xk)
< ug = xg[|2 [[uz — x¢ |2 (41)

Let us denote vi = u; — x4 and vo, = up — x;. From (41) we have

(v1,v2) < |[[vi]2]lvall2
& a5 + [[vall5 4+ 2(v1, v2) < [[v1l5 + [[v2]5 + 2[lv1[l2[v2l2
& [vi+val3 < ([vall2 + [[v2]l2)?
& |lvi+va2 < |lvill2 + [[v2]l2-

This readily implies that
[ (g —xx) + (w2 — xi) [|l2 < [Jug — xg[|]2 + [Juz — x|,

which similarly to (40) yields

Ts <u1 —;u2> < .

This is a contradiction with the fact that u; and u; are both solutions of (38). [
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FIGURE 14 Level curves and gradient fields of the squared l,-norm (left) and l,-norm

(right).
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FIGURE 15 Level curves and gradient fields of /;-norm.

4.6.3 Comparison of statistical and computational properties

Both coordinate-wise and spatial median possess robust nature with a 50% break-
down point that, moreover, is independent of the number of dimensions. The
coordinate-wise generalization of the marginal median into p-variate data ex-
tends a number of univariate properties to the multivariate case. The spatial me-
dian is based on the multivariate generalization of the univariate sign-function
sign(u) with an angular aspect. The breakdown bound of the estimators does
not depend on the number of dimensions and equals that of the univariate me-
dian [261]. Since there are significant differences between these /;-norm-based
multivariate generalizations of the median, a closer consideration is in order.

In Figures 14 and 15 the bivariate level curves and gradient fields of three
l;norms are depicted. The level curves illustrate the shape of the corresponding
cost function behind the particular M-estimator. The gradient fields illustrate
the shape of the bivariate influence functions. Hence, the different measures of
robustness can be recovered from the figures.

As a comparison, the classical squared /,-norm is first inspected. Use of this
norm leads to the non-robust sample mean estimate, in which case the length of
the gradient vectors increases when moving away from the origin. In fact, the
length of the gradient vectors grows infinitely, which indicates that the influence
function is unbounded (cf. Figures 12-13). This means that the outlying points
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are more heavily weighted at equilibrium V||x||3 = 0. This readily explains the
sensitivity of the squared /,-estimators towards outliers. Hence, the sample mean
is not a robust estimate.

The bounded influence function is obtained by dividing the gradient by its
length, which leads to the spatial sign function (cf. (39)) [290]. This is a multivari-
ate generalization of the univariate sign function. Use of the spatial sign function
gives equal weights for each observation by ignoring the distance from the data
to the equilibrium and, thereby, the corresponding estimation function 7' de-
pends only on the direction of the data (see Figure 14 (right)). Figure 15 clearly
illustrates that also the coordinate-wise median gives equal weights for all data.
Hence, the [{-norm is also insensitive to the distance.

Although the spatial median is not affine equivariant, it is still orthogonal
equivariant (matrix A in Eq. (4.3.8) must be orthogonal), since the Euclidean
norm is invariant under orthogonal transformations. Hence, the Euclidean dis-
tances and thereby the spatial median remain invariant after any rotation of the
data. From the lack of affine equivariance property, it follows that the scaling of
variables may not cause the corresponding effect to the estimate.

The coordinate-wise median is a translation and scale equivariant estimator,
because any shifts or scale changes can not alter the marginal orders of points.
However, it is not orthogonal equivariant and therefore neither affine equivari-
ant. This makes its use difficult in multivariate problems, provided that data is
not discrete. Moreover, the coordinate-wise median does not necessarily lie in the
convex hull of the data, provided that the data set lies in R” with p > 3 [338]. For
instance, consider a set of unit vectors [eq, ey, ..., en]T of R? forn = p > 3. The
coordinate-wise median on such data is [0,0,..., O]T, which is not in the convex
hull of the unit vector data [338, p.250]. Therefore, it is not a representative vector
for the geometric location of such data. On the contrary, the spatial median is
always inside the convex hull of a sample.

1 L] L] 1 L] L] L] L] 1 L] L] L] L]
0 @gpaimed 0 @gpamed @zpamed spatmed 0 spatmed spatmed
e e e @med @med @med
1 L] L] -1 L] L] L] L] -1 L] o L] L]
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-2 0 2 - 0 2 0 0 2 -2 0 2 -2 0
X X Y X X Y
(a)lnlier at (x,y,2) = (0,0,0)T. (b)Inlier at (x,y,z) = (—0.33,-0.33, —0.33)7.
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FIGURE 16 3D comparison of the local-shift sensitivity for the spatial median and the
coordinate-wise median estimators.
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FIGURE 17 4D comparison of the local-shift sensitivity for the spatial median and the
coordinate-wise median estimators.

The infinite local-shift sensitivity at the median of a distribution makes the
coordinate-wise median highly sensitive to one (or two if # is even) middle ob-
servations. This feature is illustrated and compared with the spatial median in
Figures 16-17. The coordinate-wise median is represented by ‘[J-mark and the
spatial median by ‘o’-mark. In Figure 16, three-dimensional data (n = 9) with
eight points in the corners and one at different locations inside the “cube” is rep-
resented by two dimensional plots from three perspectives (a kind of scatter plot
representation about pairwise relationships between variables [170, p.70]). As
the inlying point is moved from the center of the cube towards the corner point
in three steps, one can see that the coordinate-wise median is completely defined
by this freely moving individual point as far as it lies inside the cube. The prob-
lem, for example from the multivariate data clustering point of view, is that on the
edge of the cube the “inlier” point is absolutely not the most representative point
for the geometric location of the data. In Figure 17 the same illustration is given
on four-dimensional hypercube-shape data that consists of seventeen data points.
The interesting finding is that while the behavior of the coordinate-wise median
is exactly the same as explained above, the spatial median stays at the place even
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better. This partly shows that the spatial median benefits from increment in the
dimensions.

It is known that spatial median coincides with the coordinate-wise median
in the univariate case. From this it follows that it has a unique solution only if the
data are not collinear, that is the data are not concentrated on a straight line. In the
bivariate case, Brown [54] shows that the spatial median is asymptotically normal
on multivariate symmetric spherical data. In the univariate case the normal effi-
ciency naturally coincides with the coordinate-wise median being 2/ = 0.637,
but the experiments show that the relative efficiency with respect to the sample
mean improves further due to increasing dimensions. Hence, these results and
examples indicate that the spatial median is an inherently multivariate estimator.

From the computational point of view, the spatial median estimator suf-
fers from two obvious drawbacks. Lack of the closed-form solution and non-
smoothness of the problem have hindered the development of fast and reliable
algorithms. The former means that only numerical approximations to the solu-
tion are possible and explicit solutions do not exist for the problem [17]. From
the DM point of view the algorithms must also scale to large high dimensional
data sets. The latter requires reliable algorithmic solutions to the solvers. This
problem actually refers to the inliers that are data points very close to the solution
[55]. In general the ill-defined points of the subgradient function in (39) necessi-
tate the use of approximations in the computation. Incautious approximations in
the algorithms may lead to biased estimates and thereby, to lowered consistency,
efficiency, and robustness of the estimator when compared to precise theoretical
values. Hence, the basic requirements of robust algorithms are at risk. Reasonable
efforts have been devoted to the development of fast and correctly converging al-
gorithms for the spatial median problem. Many of these are also referred in this
thesis (for a review, see, e.g., [79]). On the contrary to the usual point of view,
large DM type data sets and the consequent ”curse of dimensionality” turn out
to be an advantage in this case, since the increased data sparsity decreases the
probability of inliers [55].

4.7 Conclusions

The spatial median seems to have more desirable properties than the coordinate-
wise median from the DM point of view. Because DM is focused on heteroge-
nous large-scale data sets, the versatile multivariate properties of the spatial me-
dian seem to overcome the coordinate-wise variant. This discussion also reflects
consequences of the fact that the coordinate-wise median is actually based on
the marginal order-statistics that ignore the angular information about data. On
the other hand, such properties make the coordinate-wise median an inherently
promising estimator for purely discrete data sets.

The challenge concerning the spatial median is the development of fast and
reliable algorithms. One should also be careful with affine transformations that
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change the variable scales. Due to the many desirable multivariate properties,
the spatial median is considered a promising location estimator for large multidi-
mensional data mining problems. Besides the ones presented here, several other
multivariate medians are discussed, for example, in [352, 424].



5 FIRST TESTS ON ROBUST CLUSTERING

In this chapter, robust methods for clustering erroneous and incomplete data sets
(without imputation) are considered. For this purpose, the usual K-means algo-
rithm [265] is generalized by using robust location estimates and a special pro-
jection technique. Numerical comparison of the resulting methods against the
standard K-means algorithm on synthetic data is presented and analyzed. This
chapter originates from the results presented in [208].

5.1 Motivation

Very often, data clustering is considered as a core method of DM and KM, and the
number of different clustering methods is huge. Based on the previous chapters,
we know that data clustering is a challenging task and includes many changeable
and adjustable elements, such as the basic algorithmic approach (hierarchical,
partitioning, density-based, model-based, grid-based, fuzzy, etc.), the initializa-
tion of an algorithm, the distance measure, and the cluster representation tech-
nique. These all are dependable on the nature of the particular context where
data clustering is intended to be applied. Moreover, as it is described in the pre-
vious chapters, the variety of applications is remarkable.

As numerous efficient systems for data gathering have already been devel-
oped, there is an obvious need for clustering techniques that are tolerable and
reliable on missing and erroneous data (unfortunately most of real-life data is
of this form [167, 226]) and scalable to large data sets. Such techniques are of
central importance in developing automated “black-box” DM tools that expect a
minimal number of parameters and settings from the users. Unfortunately, most
of the today’s data analysis and mining tools are still based on the tuning and
selection of complex parameters before the actual algorithm can be started. An
ordinary DM tool customer is usually a specialist on some application domain
and not therefore provided with comprehensive skills in computing or statistics.
These skills are, however, needed in the parameter adjustment.

Robust techniques are by construction more suitable for erroneous and in-
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complete data sets. Therefore, better quality of the results compared to the tra-
ditional clustering methods is expected. However, as usually, nothing is for free,
since the price to pay for the robustness is usually expressed in increased costs in
computation.

The well-known K-means algorithm (see, e.g., [220]) works as a reference
method for this study. It is a prototype-based partitioning clustering method,
whose popularity is based on the simplicity of the algorithm. While being com-
putationally efficient, K-means is unfortunately also very sensitive to all kind of
defects and initial conditions. As described in Chapter 3, many variants of the
original MacQueen’s type of K-means algorithm have been proposed.

Based on the K-means principles, two robust algorithms will be introduced
by replacing the sample mean with a robust multivariate estimator. For han-
dling missing values, the available data strategy is applied in all computation
(see Section 3.2.8). Thus, all available data will be utilized. Moreover, no addi-
tional parameters are provided. Notice that similar approaches are also presented
by Estivill-Castro and Yang [104] and Jornsten et al. [207], but with different al-
gorithmic details and without taking into account the possibility of missing data
values.

5.2 Previous work on robust clustering

As classical statistics, also many clustering methods, such as the K-Means algo-
rithm, are sensitive to erroneous and missing values. Even a small amount of er-
rors and missing values may completely distort the clustering result, and then the
“correct” underlying cluster structure of the data set remains uncovered. When
compared with estimation of a location or scatter parameter, the problem of dirty
data is even worse in data clustering. By considering the influence functions,
Garcia et al. [11] show that robustness of a prototype estimate does not neces-
sarily extend to a clustering algorithm. Figures 33 and 34 show that robustness
of a partition-based clustering method depends on the initialization, because the
global minimum of the cost function is not necessarily the best solution for find-
ing groups’ point of view. This means that the initialization must also be robust.
In order to increase the robustness of clustering algorithms, Garcia et al. [11]
propose a trimmed variant of the classical K-means method.

Lack of statistical robustness is not the only trap for clustering methods.
Therefore, one should make a difference between statistical and computational
properties. Although the desired statistical properties are obtained, one should
also concentrate on reliable computation. If computational and algorithmic de-
tails of all elements are not thoroughly considered, hidden problems may re-
main in the clustering algorithms (e.g., computational issues when dealing with
non-smoothness of the spatial median, Section 4.6.2). The computation of EM-
algorithm for Gaussian mixture models is a good example. It is based on precise
parametric models that exploit a lot of information about location and variabil-
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ity of the cluster structure. However, the computation becomes unstable when
the cluster-wise variance of a cluster is very close to zero for one or more vari-
ables. Such situation may appear especially with categorical variables or missing
data. Hence, computational tricks are needed with this statistically fundamen-
tal mixture model method (see [308]). The hierarchical single linkage algorithm
(e.g., [204]) fails when a data point triplet lies, due to missing values, in different
sub-spaces of R”. In such cases, the order of the mutual distances is undefined
without special treatments or distance measures. Overall, the algorithmic details
are as important issue as the statistical properties in data clustering methods.

The basic idea of the K-Means method is to partition a given data set into
K non-overlapping clusters. The sample mean over the assigned data points is
assumed to be the most representative point for each cluster. The two basic steps
of the K-means iteration, namely the assignment of points and computation of
prototypes, are easy to generalize. Hence, new methods are often developed by
modifying these steps. As mentioned earlier, robust variants for the iterative re-
location clustering algorithms are obtained by replacing the sample mean with
the spatial median [208, 104, 207].

One can also replace the sample mean by the coordinate-wise median [9,
p-166]. The coordinate-wise median is as robust as the spatial median, but fits
better discrete than continuous data, because it is based on the I;-norm (’city-
block’-distance). Bradley et al. [46, 44] propose a formulation for the prob-
lem of the K-coordinate-wise medians as a bilinear programming problem. As
a coordinate-wise order-statistic, K-(coordinate-wise) medians is proper for dis-
crete data types, such as questionnaires. The spatial median is more appropriate
for continuous multivariate data sets in R” with p > 2. The coordinate-wise me-
dian lacks some multivariate properties of the spatial median. A robust location
estimator can also be derived from the sample mean by trimming. Hence, one
can obtain increased robustness by trimming a certain fraction of cluster-wise
data at each iteration, which leads to the trimmed variant of the K-means method
[11, 83]. A robust fuzzy c-means method that is based on the same idea is pro-
posed by Butkiewicz [58].

Perhaps the best-known robust variants of the partitioning-based algorithms
are so-called medoid algorithms: K-medoids [175], PAM [220], CLARA [220], and
CLARANS [303]. These are clustering algorithms, where the prototypes are con-
strained so that they are chosen from the data points (thatis {m;}X_ | C {x}")).
As the K-medoids approach is more robust against outliers and noise than K-
means, it is also computationally more expensive. For example, a fast variant
(with sub-quadratic time complexity) of the medoid-based algorithms for Web
mining applications is proposed by Estivill-Castro and Yang [103]. Medoid al-
gorithms are invariant to translations and orthogonal transformations of data,
but not invariant to affine transformations that lead to changes in the inter-object
distances [220, p.119]. The K-medoids algorithm results always in K non-empty
clusters. In order to reduce the computational requirements, enhanced variants
for the K-medoids algorithms, such as CLASA [71], which is based on the simu-
lated annealing approach, can be considered.
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There are also some other approaches related to robust clustering. For ex-
ample, based on the concepts of mutual information and variance analysis, Fred
and Jain [128] introduce an information-theoretic ensemble approach for robust
clustering. The principle is to construct several partitions for a given data, ana-
lyze the consistency and variability of the obtained partitions and combine them
by the so-called evidence accumulation technique. Another robust method that is
based on a mutual agreement between several clusterings is the clustering aggre-
gation principle introduced by Gionis et al. [143]. A robust algorithm for spatial
clustering is proposed by [102]. One of the most recent efforts on the robust clus-
tering is presented by Gallegos et al. [136]. Robust clustering algorithms have
also been integrated into statistical software packages, such as S-PLUS [364].

5.3 Generalization of K-means method

The K-means clustering problem (12) is generalized next for any /;-norm and
missing data. Hence, the general algorithm does not define the type of the dis-
tance and prototype estimation functions. A convergence analysis is performed
for squared and non-squared l>-formulations. A similar definition under the
name “total within-group distance problem” is presented by Estivill-Castro and
Houle [100], but without missing data strategy. They also present a fast and ro-
bust clustering algorithm for spatio-temporal data mining problems that avoids
quadratic complexity.

Before going to the formulation of the clustering problems, let us say few
words about the chosen missing data strategy. In order to deal with incomplete
data sets, a strategy for the missing data treatment must be embedded into the
formulae. Since it makes no sense from the DM point of view to be involved in
making hypotheses on the distributions of unknown cluster-wise data, the cho-
sen missing strategy is to employ only available data values in the calculation of
distances and location estimators (see details in Section 3.2.8 or [258, 106]). From
this it follows that all computations are restricted to existing fields of the original
data. Therefore, the subsequent optimization problems will be generalized for
missing data cases by using the projector technique given by (9).

5.3.1 Partitioning-based clustering problems based on /;-norm and missing
data treatment

At first, the generalized K-estimates clustering problem using the projector tech-
nique (9) for missing data is defined as

min 7 (c, {m}K ;) = Y ||Pi(x; — my ) [|¢ (42)
i=1

ceN",m;€IRP

subjectto (¢); € {1,...,K} foralli=1,...,n.
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Code vector ¢ represents the cluster assignments for each data point x;. Thus,
m,,), is the prototype of the cluster, where data point x; is assigned to. The choice
of g = 2and o = 2 leads to the known K-means problem with available case strat-
egy for missing data. Robust variants are obtained by using « = 1. By choosing
g = 1and a = 1, one obtains the K-medians clustering problem (to be exact the K-
coordinatewise-medians) and by g = 2 and « = 1 the K-spatialmedians clustering
problem is obtained.

5.3.2 General K-estimates algorithm with missing data treatment

The same iterative reassignment and batch-update principle as in Algorithm 3.3.4
can be used to solve any of the aforementioned clustering problems. The gener-
alized algorithm is defined next (notations are similar to the ones in Chapter 3).

Algorithm 5.3.1. General K-estimates algorithm
Required input parameters: X,K, and maxit.

Optional input parameters: Initial prototypes {m{}X_ or initial partition in code
vector c'.

Output parameters: {m;}X_ and/or c.

Step 1. (Initialization) If initial prototypes {m?}K , are given then go to Step 2.
Else if initial partition ¢’ is given then go to Step 3. If neither prototypes nor
partition is given as input then initialize centers {mg}szl, assign each data
point {x;}!" ; to its closest center, and go to Step 3. Set t = 0.

Step 2. (Reassignment) Assign each data point x; (i = 1,...,n) to the closest
cluster C (k € {1, ...,K}), which is given by

()i < argmin [|P;(x; — my)|[3.
ke{1,...,K}

If the minimization results in a tie-break situation with the existing assign-
ment for x;, its reassignment will be omitted. In other tie-break cases the
random selection between the tied cluster centers can be used.

Step 3. (Recomputation) If the cluster reassignments were changed in Step 2. and
t < maxit, then recompute the prototypes of all modified clusters by

my — argmin ) [|Pi(x; —m) )3
mp  x;eCy

and repeat from Step 2. Otherwise, stop.

By varying ¢ and «, different K-estimates algorithms are obtained from Al-
gorithm 5.3.1. The projector technique generalizes the algorithms to missing data
cases, which means that preprocessing methods, such as imputation of missing
data, are not needed.
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5.3.3 Convergence analysis

The convergence proof for the K-means-type of algorithms is given by Selim et
al. [344]. Here, by using a new formulation, the proof is extended and gener-
alized for the K-spatialmedians case with missing data treatment. In general,
the iterative relocation algorithm does not attain the global minimum over the
assignments. Since the algorithm is not based on continuous optimization, but
instead on the discrete assignments in Step 2., the attained minimum is not nec-
essarily even a real local minimum of the cost function. However, the obtained
local minimum is the smallest permissible point of the particular convex part of
the discrete cost function. A similar, but more informal, argumentation about the
convergence is given by Verbeek [386]. In the following, the convergence proof
is given for the l;-norm-based algorithms (i.e. § = 2 and « € {1,2}), since both
cases can be presented in parallel.

Theorem 5.3.1. From any initial cluster centers, Algorithm 5.3.1 converges in a finite
number of steps for choices g = 2 and a € {1,2}.

Proof. Let X = {xq,...,X,} be a random sample in R?. Let 1 < K < n be the
number of clusters. P! denotes the partition of X into K non-empty clusters at
iteration t. Hence, for P! it holds that X = U,IleCli and Cf # @ forallk =1,...,K.
The set of vectors {m!}X | represents the prototypes of {C{}X | at iteration .
Function s(P,i) € {1,...,K} returns membership of x; with respect to a partition
p.

As we know that the number of distinct partitions is finite, it is sufficient to
show that by choosing g = 2 and « € {1,2} Algorithm 5.3.1 decreases the cost
function values of problem (42) on each iteration. Hence, the optimal partition is
attained when the location of each cluster center is optimized (ie., in the subgra-
dient sense 0 € Vmi J (P!, {m!}X )) and additional reassignments of the current
partition can not decrease the value of the cost function.

According to the steps of Algorithm 5.3.1, the proof will be carried out for
g = 2 in two phases.

Phase 1.) The cost of the current partition P! and cluster-wise prototypes
{mi}K s

TPt AmiE ) = Y P — ml )5
i=1

{mi}K_ is kept fixed until further notice. Assign each data point x; to a new
cluster Cy if

keﬁf}K}HPi(xi —mp)|5 < [[Pi(x; — mé(pt/i))Hg for k#s(PLi).  (43)

The inequality is justified as it is defined in the subspace of x; and prototype
vector my is always complete, that is, both sides are projected to the same com-
ponents.
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Let us denote the reconstructed partition by P*. Next we divide X into two
sets {S,S1}. Sa contains the reassigned (active) points {x;|s(P!,i) # s(P',i)}
and Sj the rest (inactive points). If |S 4| > 0, then clearly

J (P {mi} ) < TP {mi}i,),

because by (43)
Y IIPi(xi — D2+ Y IIPix o)) 112
Xl‘GSA XZGS[
Y IPi(xi — D2+ L IPi(xi —m e )l
X;€S 4 X;€S1
2 ||Pi(x,-—m§(pt’i))|\§‘—|— Z ||Pi(xi—mé(pt,i))||%-
X;€S4 X;€S]

If [S4| = 0, then we are done.

Phase 2.) For each C}, new center mh is obtained by minimizing the sum of
the error function as

M} «— argminJ (m), for J(m)= Y [IPi(x; —m)]|5. (44)

m XZ'GC;;

This leads to special cases of M-estimation for ,-norm with the available case
strategy for missing data. The minimizing point is the mean or the spatial median
of given data vectors.

Since the within-cluster sum of the absolute or squared I, distance is mini-
mized for each cluster after reassignments, the total sum can only decrease from
the first phase. Hence,

(Pt {mk k=1) < j(ﬁt’ {mltc}lIf:Q-

Assuming that there exists a minimizing solution for the sample mean and
spatial median with the available case strategy, the new prototypes . do not
increase the value of the clustering criterion. Now, P**1 = P! and {mt“}k:1 =
{mi}X_ . Because by every reassignment made according to the first phase, the
value of 7 (P, {m,tc}llf 1) is decreased and this can not be increased in the second
phase, it follows that J (P!, {m{"1}KX ) < 7(P!,{m!}X ), whenever one or
more points are reassigned during the #// iteration. Since there exists only a finite
number of different partitions, this shows the result. O

5.4 Statistical experiments on synthetic data sets

The three variants of the K-estimates clustering algorithm, K-means, K-medians,
and K-spatialmedians, are next tested on synthetic bivariate data sets. The data
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FIGURE 18 Left: A plot of the test data set, in which three clusters of size ten are well-
separated. Right: The dirty test data set, in which four data values (appr.
6.67 percent of the whole data) are randomly distorted.

sets with size n = 30 and dimension p = 2 are random samples from trimodal
Gaussian distributions. The clusters are clearly separated (see Figure 18). In or-
der to investigate the sufficiency and consistency of the methods under nearly
optimal conditions (well-separated spherical clusters without defects), the first
experiments were performed on complete and clean data set. For analyzing the
robustness of the different methods to outliers and missing data, four randomly
chosen data values were disturbed and, thereby, turned over to outliers (see Fig-
ure 18). Moreover, 10%, 30% and 50% of data values, in turn, were removed.

The experiments were realized on MATLAB 6.1. environment. The spatial
median was computed using the self-implemented Polak-Ribiere-type conjugate
gradient (CG) optimization method where golden section (GS) was used for de-
termining the search step size [28]. Because the CG method utilizes the deriva-
tive information of the cost function and the gradient of the spatial median cost
function is not well-defined everywhere, the obtained CG solutions were further
fine-tuned by the simplex-based Nelder-Mead algorithm [242].

The maximum norm of cluster displacement

t t—1
max m, —m <e
ke{l,...,K}H k k ||°° -

was used as a stopping criterion. The tolerance parameter was ¢ = 10~3. The
stopping criteria for CG was chosen to be ||[u’ — u'~!|| < 107° and, in GS, ||u’ —
u!~1||, < 1078, where u! is the solution after ¢ iteration.

The results were obtained by running the algorithm for 100 random initial
cluster prototypes on each data sets. The efficiency (likelihood of unbiased solu-
tions) of the methods in the statistical sense was analyzed using visual histogram
presentations for the error distributions (over 100 test runs).

The error estimates are defined by the sum of distances from the obtained
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FIGURE 19 Error distributions of the 100 test runs on the complete non-disturbed data
set.

cluster centers to the centers of the generating distribution. Let y, € R” (k =
1,...,K) be the true means of the generating distribution modes and m; € IR?
(k = 1,...,K) the ones obtained by a chosen clustering algorithms. Let 7(k)
denote any permutation on {1, ..., k}. The error can then be determined by finding
the permutation 77(k) that minimizes the distance from the true centers y, to the
ones computed by the clustering algorithms:

K
err = min —m 2. (45)
”(K)k_zl [FZ n(K)Hz

The permutation is needed, because the generated prototypes can be in any order
with respect to each other. The mean estimate ér7 for the error on a particular
method is computed as the average error of 100 trials. The median estimate is
computed correspondingly.

5.4.1 Results

Let us finally consider the results. As itis shown in Figure 19, no significant differ-
ences in the statistical efficiency of the K-means, K-medians, and K-spatialmedians
methods was found on the complete non-disturbed data set. All the algorithms
seem to produce very good results under such conditions.

Next, the clustering algorithms were tested on a data set that contains some
outliers, but no missing data. The results are illustrated in Figure 20. As it can be
seen, the statistical efficiency of the algorithms was decreased due to the outliers.
Moreover, clear differences can be observed when comparing the results of the K-
means algorithm to the ones obtained by the robust algorithms. K-means leads
to approximately reasonable results in 50% probability, whereas for K-medians
and K-spatialmedians the same number is almost 90% with almost identical per-
formance.

Removing 10% of data seems to increasingly impair the performance of
K-means (see Figure 21). Approximately half of the test runs produced signif-
icant errors. The statistical efficiency of K-medians and K-spatialmedians also
decreased when compared to the complete data cases with outliers, but approx-
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FIGURE 20 Error distributions of the 100 test runs on the complete data set with out-

liers.
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FIGURE 21 Error distributions of the 100 test runs on the incomplete data set (10% of
values missing) with outliers.

imately 80% of the results were still of good quality and almost none were poor.
No significant differences between the robust algorithms were found.

To break also the robust algorithms, the amount of missing data was in-
creased to 30% of the total. The results are illustrated in Figure 22. Obviously,
the statistical efficiency of K-means is not anymore feasible. Nearly all of the re-
sults are unsatisfactory. The results obtained by K-medians and K-spatialmedians
were again quite identical to each other. The results were even better when com-
pared to the two previous cases, but this is considered as a coincidence. However,
it shows that even a third of the data may be lost without a significant influence
on the performance of the robust algorithms.

Finally, Figure 23 presents the mean and median estimates for the clustering
errors with the different methods. Considering the median estimates of the K-
means clustering errors, one can observe that one half of the clustering solutions
are of relatively poor quality when more than 10% of data is missing and outliers
are present.

The contribution of the outliers to the performance of K-means may be de-
duced by comparing its error estimates with the robust algorithms. Figure 23
shows that for K-means the error, when no missing data exist in the data, is
greater than the error of K-medians and K-spatialmedians when 10%-50% of data
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FIGURE 22 Error distributions of 100 test runs on the incomplete data set (30% of values
missing) with outliers.

is missing.

Although the median errors of K-medians and K-spatialmedians do not in-
crease much with respect to the amount of missing data, the average quality of
the results is impaired slightly.

5.5 Conclusions

The data mining algorithms inherently contain a number of adjustable parame-
ters that often are difficult to understand by an ordinary end user. Therefore,
algorithms that are adjusted in advance to the target environment are needed.
The ultimate goal of this thesis is to make a contribution to the development of
robust data mining algorithms that work well even on noisy and incomplete data
sets without a number of user-defined parameters. Although estimation of the
correct number of clusters has not yet been considered in this chapter, it is one of
the main issues related to data clustering [220].

The main goal of this chapter is to report on preliminary tests for the ro-
bust estimators that are used together with a special missing data treatment in
iterative prototype-based clustering algorithms. Other issues, such as initializa-
tion, computational efficiency, and scalability are considered in other parts of
this thesis. However, the obtained results are encouraging, since the robust al-
gorithms performed much better on the erroneous and missing data sets. A large
part of the test runs resulted in good quality of solutions for the robust meth-
ods, even when 10%-50% of the data were missing and 7% distorted. Hence, it is
expected, and for good reasons, by developing efficient and robust initialization
methods for clustering algorithms, one is able to cluster complex data sets with-
out prior operations, such as outlier detection or imputation. The performance of
K-spatialmedians and K-medians differed slightly from each other. This observa-
tion is not considered completely unexpected, because all the test test data sets
were sampled from bivariate distributions. The inconsistencies of the coordinate-
wise sample median estimator appear in higher dimensional problems. More-
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FIGURE 23 The mean and median estimates of the clustering errors for the different
methods.

over, as the coordinate-wise median is based on the [;-norm, it is better applied
to the discrete data problems. In these experiments, the algorithms used for solv-
ing the problem of spatial median are not scalable to higher dimensions and data
size. More efficient methods with missing data treatment are developed and pre-
sented in the subsequent parts of this thesis.



6 FAST COMPUTATION OF ROBUST LOCATION
ESTIMATES

Even if robustness itself has been a major issue since the sixties, not so many ro-
bust tools for data mining or analysis tasks have been developed. This is probably
due to the difficulty of the formulations and complexity of the algorithms. While
the sample mean is computed in short time, robust estimates often involve trim-
ming and sorting operations, or non-smooth optimization problems that require
iterative algorithms for solving. Hence, a serious problem for the robust estima-
tion are the computational details. For instance, incautious approximations in
computer implementations may lead to inaccurate solutions for a theoretically
robust, consistent, and efficient estimator. Also wrong assumptions about math-
ematical formulations increase the risk of such errors. This means that variability
of the estimates grows, which leads to uncertainty of the results. On the other
hand, algorithmic solutions require thorough analytical considerations and test-
ing under various conditions in order to be verified and validated.

Hence, there is a lot of work to do for the statisticians and computer scien-
tists in making robust techniques feasible, for example, in unsteady large-scale
problems that are frequently faced in the field of data mining and knowledge
discovery. Previous efforts on developing fast algorithms for robust estimation
of location in the fields DM and KDD can be found, e.g., in [101]. The paper
presents randomized estimators of location for approximating in subquadratic
time two robust and orthogonal equivariant estimators: the least median square
and least trimmed square [338].

In this chapter, an effort to the development of the robust data mining meth-
ods is given. A number of classical optimization methods, special iterative meth-
ods, and different formulations for solving the problem of the spatial median
are introduced and compared. Numerical experiments are performed in order to
evaluate the accuracy of the solutions and the computational requirements. The
algorithms and problem formulations include the handling for missing data. Sta-
tistical experiments are performed in order to evaluate how the statistical prop-
erties are maintained with respect to missing data.

The contributions of this chapter are as follows:
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1. A new formulation for the problem of spatial median taking into account
missing values.

2. Anew algorithm for computing the spatial median and comparison to (many)
others.

3. Tests of both statistical and computational properties.

6.1 Iterative methods for solving the problem of spatial median

Some proposals for the use of spatial median in the fields of DM and KDD are
given, e.g., in [104]. It is also well-known that there exist no explicit closed-form
solutions to the problem of the spatial median and only numerical approxima-
tions to the solution are possible [17]. The best-known algorithm for solving the
problem of the spatial median is the Weiszfeld algorithm. The algorithm was
first proposed by Weiszfeld in the 1930s! and has been rediscovered several times
since (see, e.g., [241, 262, 78, 279]). It is based on the first-order necessary condi-
tions for a stationary point of the cost function in (38), which provides the follow-
ing iterative scheme:

n X t_x.
g { Lol xle g utg (), 46)
u, if u=x; forsome i=1,...,n.

In this thesis, w; = 1 foralli = 1,...,n, since we treat all data points always with
equal weights. Therefore, the weights are skipped from the rest of the formulae.
u™! = u’ has been defined in order to make the scheme defined and continuous
for all x € RP. Kuhn [241] proved in 1973 that the Weiszfeld algorithm (globally)
converges to a unique minimizing point u*, for all but a denumerable number
of initial points u’, assuming that the data is not collinear. Katz [219] derived
results that when the minimizing point u* is not any of the data points, the local
convergence of the Weiszfeld algorithm is always linear. Otherwise, when opti-
mal point u* coincides with a data point, then the local convergence can be linear,
quadratic or sublinear. He proposed the use of Steffensen’s iteration in order to
assure a quadratic convergence speed.

In 1989 Chandrasekaran and Tamir questioned in [64] the claim that the
non-collinearity is not necessarily a sufficient condition for the Kuhn’s conver-
gence theorem. They used counter-examples to demonstrate that the Weiszfeld
algorithm may not convergence for continuous sets of starting points when the
points are contained in an affine subspace of R”. In other words, this meant that
the non-collinearity had to be replaced by the more stringent assumption that
the convex hull of the data points X = {x1,...,x,} € RP is of full-dimension
p. This conjecture was later resolved and formally proved by Brimberg in [47] in

! The original paper of the Weiszfeld [396] was not available to the author of the thesis, but

a plenty of citations can be found from articles.
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1995, until Cénovas et al. [59] discovered mistakes in the proof, which opened the
question again in 2002. An attempt to sidestep the problem is proposed in a re-
cent report by Rautenbach et al. [328] in which they introduce a non-continuous
modification of the Weiszfeld iteration with a proof of convergence to the optimal
solution from any starting point without any further assumptions.

Another modification to the Weiszfeld algorithm was proposed by Vardi
et al. [382, 383] in 2000 with the guarantee of monotonical convergence to the
spatial median from any starting point in IRP. In order to represent this modified
Weiszfeld iteration the following definitions are given

77(“):{ 1, if uwe{xy,...,xy},

0, otherwise,

H 7, lIxi —u||2H

The spatial median is attained by the followmg iterative process

uft! = max (O, 1-— Z((::)) ) T(u') + min (1, Z((z:))>ut, (47)
where ) , » ,
AE R Py e A P rer

X;7u X;7u
The generalization of the Weiszfeld algorithm for more general /;-distances
is presented in [50] with a proof about the global convergence for any g in the
closed interval [1,2], and provided with same assumptions as Kuhn in [241]. In
[289, 288, 335] modifications and convergence results of the generalized prob-
lem that utilizes an approximating cost function are studied. More results on the
location problem of the spatial median and the Weiszfeld algorithm with gen-
eralized [,-norms are given, e.g., in [262, 48, 51]. Note that Canovas et al. [59]
questioned the validity of the convergence results in [48], since they were based
on the invalidated results presented in [47]. Uster et al. [380] have studied the
convergence of Weiszfeld algorithm when g > 2 and introduced a stepsize factor,
which makes the iterative procedure converge for such parameter values. Other
recent approaches to the problem are, e.g., a Newton-based approach [249].

Acceleration of iterative methods

Since the basic iterative methods, such as the Weiszfeld algorithm, may suffer
from the slow convergence speed, several acceleration methods for speeding up
the convergence of such algorithms have been investigated. Methods for acceler-
ating convergence of iterative methods are described, for instance, in [56, pp.68-
72]. Katz [219] suggested the use of Steffensen’s scheme to accelerate the linear
convergence speed of the Weiszfeld algorithm to quadratic. Steffensen’s iteration
is not known to be globally convergent, but it may be used to accelerate the lo-
cal convergence. However, the improvement with respect to the total CPU time
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has been questioned (see, e.g., [387, 49]) due to the increased computation time
required by the Steffensen’s iteration itself. Another reference on the use of Stef-
fensen’s iteration and its speeding effect on the convergence rate with respect to
the number of iterations is given in [245]. Drezner [90] and Verkhovsky et al. [387]
introduce other variable step size factors for accelerating the Weiszfeld-type iter-
ative procedures and report significant enhancements in the number of iterations.
Drezner proposes an acceleration factor that is based on the Aitken’s § process
and reduces the running time of the Weiszfeld procedure, at least, by a factor of
two. Drezner’s acceleration method is reported to be especially efficient for small
data sets. About equal reduction in the number of iterations was attained by the
FASFL algorithm [387]. For small samples the factor is somewhat smaller than
two and for large greater than two. This iterative algorithm is proposed by Verk-
hovsky and Polyakov, who critize the increased computational complexity (dou-
ble cost for each iteration) of the Drezner’s method. In FASFL, coordinate-wise
acceleration factors are used, which means that a converging sequence may form
a curved trajectory. Li proposes in [253] an N-Weiszfeld algorithm by including
transition from a Weiszfeld step to a Newton step of the system of nonlinear equa-
tions. This is somewhat different approach when compared to the previous ones.
More general case of accelerating the Fermat-Weber problem with [,-distances is
considered by Brimberg et al. [49]. They present a procedure for determining the
acceleration factor as a function of 4.

6.2 Reformulation of spatial median problem

In order to solve (38) by the usual gradient-based optimization or iterative nu-
merical methods, approximated and differentiable reformulations can be used.
In the following, two smoothed approximating formulations for the problem are
proposed.

Modified gradient

As the cost function of problem (38) is potentially problematic only at a finite
number of points, well-definiteness can be obtained by disturbing the sub-differential
with a small constant (e.g., ¢ = 10~8), whenever a data point is an inlier, that is,
too close to a solution (cf. Section 4.6.3). Hence, a well-defined gradient reads as

(u—x7);
max{||u — x;[|2, €}

VJ5(u) = i@i, with (¢;); = forall x;. (48)
i=1

By exploiting a convention that 8 = 0, this formula actually equals the treatment
where the points that are too close to the solution, are left out from the cost func-
tion and its gradient (cf. the extended definition of the gradient by Kuhn [241]).
This is reasonable, because the inliers do not significantly contribute to the value
of the cost function (for all x; (i € {1,...,n}) that are close to solution u, it follows
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that ||x; — u||2 ~ 0). Hence, by utilizing this approximated gradient given by (48),
for instance, the gradient-based optimization methods, such as the CG algorithm,
can be applied to the non-smooth problem (38).

e-approximating problem

In order to avoid problems caused by the non-smoothness of problem (38), small
and positive € can be introduced into the problem similarly to [335, 262, 289, 216].
This leads to the following perturbed, but consequently smooth, e-approximating
problem formulation

n
min Jw), - for Ju(w) = /-l o 49)

where ¢ is a smoothing constant (e.g., ¢ = 1078). According to [289], the approx-
imating cost function converges uniformly to the original one as ¢ — 0. As a
result, the gradient is well-defined everywhere and reads as

(u—x);

VIw=xil3+e

The smooth perturbed problem can then be solved using gradient-based opti-
mization methods or iterative algorithms. The approximation problem together
with the Weiszfeld algorithm has been applied, e.g., to single and multi-facility
location problems (see [289, 335]).

VJi(u) = Y& where (&), = (50)
=1

1

6.3 SOR accelerated iterative methods for computation of spatial
median on incomplete data

In this section, two variants of the SOR accelerated iterative algorithm for solv-
ing (38) are introduced. In order to avoid the problems concerning inconsistent
properties of the estimator, an inlier elimination approach and the modified cost
function (49) are utilized.

6.3.1 SOR accelerated Weiszfeld algorithm for the perturbed problem formu-
lation with missing data treatment

The basic iteration is based on the first-order necessary conditions for a stationary
point of the cost function of the perturbed problem (49):

y =X . (51)

=1/ [lw =[5+ ¢

In order to deal with incomplete data, the perturbed algorithm is generalized
by available case strategy for missing data. This is realized by redefining the
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perturbed problem by using the projector technique as given in (9). Hence, the
perturbed condition in (51) is redefined as:

- Pi(u —x;)
i=1 \/HPi(u —x;)|3+e

First, (52) is “linearized” by defining explicit weights using the denominator:

= 0. (52)

al = !
- .
VIPi(ut —xi) 3+

Assuming that sample X does not contain empty columns (that is a variable with-
out any values), the candidate solution v is solved, by combining (52) and (53),
from

(53)

n

ZD&EP,’(V — Xl') =0

i=1

n n
& (Z (foi) V= Z(foixi
i=1 i=1
n -1,
&S V= (Z ocfPl-) Zocfx,-. (54)
i=1

i=1

The obtained solution is then accelerated using the SOR type stepsize factor as

follows

t+1

Wl =u 4 wiv-u), wel02], (55)

where w is the stepsize factor, (v — u') is the search direction, and v is an ap-
proximate solution to (38) obtained from (54). The overall algorithm is given as:

Algorithm 6.3.1. SOR
Step 1. Initialize u and set w.
Step 2. Solve a!s fori =1,...,n using (53).
Step 3. Solve the basic iterate v from (54).
Step 4. Accelerate u using (55).

Step 5. If the stopping criterion is satisfied then stop, else return to step 2.

Proof of convergence

In order to obtain convergence, the basic iteration (i.e. without the acceleration
step (55)) of the perturbed algorithm 6.3.1 must decrease the value of the strictly
convex function (49). This is shown by proving the next theorem.
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Theorem 6.3.1. If v # u/, then J:(v) < J:(u').
Adapting the ideas of Kuhn [241], the above theorem is proven herein.

Proof. v is the candidate solution for the next iterate as given in (54). Then it is
the unique minimum of the strictly convex cost function

~ o ||V—Xi||%+€

j(V) - 7 (56)
=y lut = xill3+ e

which is obtained from (49). Let us denote ¢;(u) = /|lu — x;||3 + ¢. Since u # v,

n 52 v B n 52 ut n
0= L5 < g = DL < ) = a)
On the other hand,
7o) — 3 16w + [ei(v) —ei(u)]}?
T = ; ej(u')
_ ‘7€(ut) + 2\75(V) _ 2\78(111?) + i [el(v)ezuez)(ut)]z
i=1 1
Further,
" le:(v) — e;(uf)]?
T06) = i)+ 2) ~ 2wy + Y D < g
" fe.(v) — e: t\12
@2‘78(‘,)_\78(‘115)_’_21[ l( )Ei(u;)(u )] < k78(1115)
PN 2\73(V) + il [ez(v)e;j:)(ut)]z < 2;75(111%)
Since : -
LCELCI
i=1 1

it follows that
27 (v) <2J (") = J(v) < J(uh).
O

Valkonen [381] has extended the above proof to encompass the missing
value treatment and acceleration step. Hence, also the next theorem is proved.

Theorem 6.3.2. If w €]1,2], then J.(u!*!) < J.(u").
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6.3.2 SOR-accelerated Weiszfeld algorithm with inlier trimming and missing
data treatment

This approach is based on the results of Chapter 4 indicating that the well-known
“curse of dimensionality” problem is actually a beneficial feature for the inlier
problem because of the increased sparsity of the data, which leads to the de-
creased probability of inliers. This algorithm is called ASSOR and it corresponds
to the one presented in Section 6.3.1, but the well-defined subgradient defined
in (39) for u # x; is used. The non-smoothness is handled by ignoring the cur-
rent inliers at each iteration. A somewhat similar principle, called Winzorizing,
is also applied by Brown et al. [55]. However, they utilized the quasi-Newton
optimization algorithm in the function minimization. In order to realize the idea,
the neighborhood ¢ must be defined for the solution. Hence, if x; € B(u, ¢) for
somei € {i,...,n}, then these points are discarded from the current solution of v.
The treatment of missing data follows the principles of the above SOR-algorithm.
The optimality condition is now given as

Pi(u —x;)
—0. (57)
i:xiéBZ(u,(p) V ||Pi(u - xi) ”2

The ASSOR algorithm is as follows:

Algorithm 6.3.2. ASSOR
Step 1. Initialize u and set ¢ and w.

Step 2. Discard all x; € B(u, ¢) (The number of remaining data points is denoted
by m).

Step 3. Solve als fori € {1,..,m} using (53).
Step 4. Solve the basic iterate v using the remaining data and (54).
Step 5. Accelerate u using (55).

Step 6. If the stopping criterion is satisfied then stop, else return to step 2.

6.4 Numerical and statistical experiments

Accuracy, reliability, and computational requirements including the scalability
issues for the implemented algorithms are compared through the following nu-
merical experiments. In order to ensure the adequacy of the results, a number of
synthetic data sets, involving varying numbers of data points, dimensions, and
shapes, were generated and utilized. The sensitivity to initial conditions was
evaluated by running each algorithm from several different starting points.
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From a statistical point of view, the properties, such as bias and efficiency
of the consequent spatial median estimators, are validated through statistical ex-
periments. As a part of the validation, the performance of the chosen missing
data treatment is also inspected. The ultimate goal of the experiments is to find
out which methods and formulations produce fast and consistent solutions with
high statistical efficiency for the problem of the spatial median.

Because of the missing closed-form formulation and consequent absence
of exact analytical solutions for the spatial median, the reference values for the
experiments were obtained by using the Nelder-Mead algorithm and extremely

strict stopping criterion ( {max }Hxl — X[l < 107!2). The starting points for
i€{2,.. n+1

the NM algorithm were approximated by CG method. This was done, because
the convergence is not guaranteed for NM from arbitrary points. Moreover, the
exact solutions are obtained in shorter time in this way. The reference results are
presented in Table 15. Scalability of the SOR-based algorithms to high dimen-
sional problems is also validated.

6.4.1 Implementation of the algorithms and test settings

MATLAB software was used as a test environment. Except Nelder-Mead, the
algorithms were self-implemented. In the case of Nelder-Mead, a MATLAB Tool-
box implementation was employed. The Polak-Ribiere variant was the chosen
CG method. The self-implemented GS algorithm was utilized in the one dimen-
sional line search of CG. Because different gradient approximations were tested
with the CG method, acronyms CG1 and CG2 are used in the text and tables to
indicate the applied formulation. CG1 refers to the approximated formula in (48)
and CG2 to the one given by (50).
The following parameters were used in the experiments.

CGINM GS line search length was s;,; = 1. Stopping criteria in GS and CG:
[u*! — uf]|e < 1073 and [|u!*! — u!|| < 1072, respectively. The max-
imum iteration counts in GS and CG: 50000 and 2000, respectively. Ap-
proximation parameter in (48): ¢ = 1.49 x 1078, Stopping criterion in NM:

max  ||x; — X[l < 107°.
i€{2,..,.n+1}
NM Parameter values equal the ones in CGINM.

CG1/CG2 GS line search length equals CGINM. Stopping criteria in GS and CG:
[ut! —ul]|e < 1078 and ||[u!*! — u!|| < 107°, respectively. The max-
imum iteration counts in GS and CG: 50000 and 1000, respectively. The
approximation parameter in (48): ¢ = 1.49 x 1075,

SOR/ASSOR The over-relaxation parameter w was tuned according to experi-
ments on the test data sets (see, App. 2-3). The results show that the best
value of w varies significantly with respect to the data sets. Therefore, a
compromise w = 1.5 was used. Stopping criteria: |[u*! — uf|| < 107°.
Maximum iteration count: 500.
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FIGURE 25 2D plots of the test data sets 5-8.

Modified Weiszfeld Stopping criteria: |[u'™! — uf||c < 107°. Maximum number
of iterations: 500.

The accuracy is evaluated according to error that is defined with respect to the
corresponding reference value as (see Table 15):

e(J(u*)) = T (u) - T ("),

where u* is the solution obtained by one of the experimented methods and J (u"*f)
is the reference result obtained using NM with a strict stopping criterion. Corre-
spondingly, the displacement error is defined by

e(u) = [lu* — u'|c.
6.4.2 Synthetic data sets

The first numerical tests were performed on eight two-dimensional data sets. The
data sets were generated manually or by random sampling from the normal or
Laplace distribution (see Figures 24 and 25). Note that instead of the actual sta-
tistical parameter values, the numerical accuracy of the solution is of concern in
these experiments. Hence, the exact parameters of the underlying distributions
are ignored here. In the case of data set 1, the exact solution for (38) is trivial and
the error of the numerical solution can be computed precisely.

Starting points

Let us denote by X any of the experiment data sets. In order to test the reliability
under different conditions, four different starting points were used on each data
set. The following points were utilized:
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¢ The sample mean of the data set.
¢ A data point x; such that x; € X.
* An arbitrary point x such that x ¢ conv(X).

e An arbitrary point x such that x € conv(X).
6.4.3 Comparison of the results

In this section, accuracy, efficiency, and scalability of the algorithms are compared
and discussed from a computational point of view.

Accuracy of algorithms on bivariate data sets

Figures 26 and 27 present trajectories of some interesting test cases. Each starting
point is pointed by an arrow and the number of a test run. The trajectories are
marked by dashed lines and their ending points by squares. The results show that
CGINM, CG1, Modified Weiszfeld, SOR, and ASSOR produce precise solutions
with respect to the reference results (cf. Tables 16-18). The displacement errors
were, at worst, approximately 10~#, which is clearly a sufficient result. Data set 2
was the most problematic for CG1, SOR, and ASSOR.

The CG2 method gives inaccurate solutions. It seems that the smooth for-
mulation of the problem leads to such rough approximations that the optimal
solutions can not be attained by the CG2 method. Two samples of the trajectories
illustrating the progress of CG2 can be found in Figures 26 and 27. Particularly
the solutions of CG2 in Figure 27 are badly displaced for being the representative
points of the data set.

Another problem concerning the CG2 method is presented in Figure 26.
One can see that although the approximately optimal solution is attained, CG2
makes “zigzag” steps that slow down the convergence speed. While “zigzag”-
steps are typical for the steepest descent method, they should be avoided by us-
ing the CG method. The better behavior by CG1 is shown by Figures 26 and 27.
Results in Table 17 show that when initialized with starting points two and three,
CG2 needs approximately 80 function evaluations more than CG1 for solving the
problem on data set 1. On this basis, CG2 is a slow, unreliable, and inaccurate
solver for the spatial median estimate.

NM method worked well except for the last run on data set 5, where the
obtained solution was inaccurate in comparison to CGINM, CG1, SOR, and AS-
SOR. In Figure 25 one can see that data set 5 is a kind of split set. The inaccurate
convergence of NM may be due to initialization in this case as the difference
between NM and CGINM is in the initialization. Practically speaking, in the
case of CGINM, the NM algorithm is initialized with an approximate solution by
CGL1. Hence, the inaccuracy in NM solution is in line with the general assumption
which says that the Nelder-Mead method is not guaranteed to converge from all
arbitrary starting points (cf. Section 4.2.2), although it should converge relatively
fast in the close neighborhood of the solutions. Hence, the errors on data set 5
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FIGURE 26 Trajectories of CG1 (top) and CG2 (bottom) methods on data 1.
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*** Method:CG1 —— dataset:2 ***
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warn us, at least on this particular type of data set, about the sensitivity of the
simplex based methods to initial conditions. It is good to note that otherwise its
solutions are consistent with the ones obtained by CG1INM.

As a remark from the DM aspect, it should be remembered that although
data set 5 contains two quite clearly separated bunches of data, it can also be
viewed as a single cluster. This is due to the ambiguities concerning the "true’
number of clusters that is a resolution dependent question (see, Chapter 3). For
example, the data may be interpreted as one coherent cluster if the other clusters
are distant to this particular cluster. Thus, sometimes one might need to compute
estimates for such clusters and this gives a rationale to do experiments on this
kinds of divided data.

It should be noted that the stopping criterion in the simplex-based Nelder-
Mead optimization is not exactly comparable with the ones used in the other
methods. However, as a whole, the results of these experiments show that re-
garding the accuracy of the obtained solutions, iterative SOR, conjugate gradient
CGl1, and the simplex method NM, provided that it is cautiously initialized, are
precise algorithms for solving the problem of the spatial median.

Computational requirements

Because the basic principles in the considered algorithms differ, computational
requirements can be analyzed only approximately. In order to approximate the
costs, the number of the cost function evaluations are counted for the NM1CG
and CG1 algorithm, and the number of iterations for the SOR and ASSOR solvers.

It is clear that more vector operations of the order O(p) (u € R”) are needed
during the computation by CG and NM than by the simpler SOR-based methods.
However, here we follow the main concerns of this thesis and analyze the results
from the DM aspect using the more usual case when n > p and the loops over
the data dominate the computational cost. Hence, it is assumed that approxi-
mate but also adequate knowledge about CPU costs is obtained by comparing
the aforementioned measures.

For evaluating the cost function given in (38), one pass through the whole
data set is needed and means O(n) time complexity as the worst case. One SOR
iteration approximates to two evaluations of the cost function as the whole data
set must be passed through twice for one iteration. The first pass gives the so-
lution of (53) and the second of (54), which then lead to O(2n) worst case time
complexity. The worst case time complexity of ASSOR is approximately O(3n),
which approximates three evaluations of the cost function. One more iteration
compared to SOR is required for finding and pruning the inliers.

Comparison of CG1, CGINM, and SOR-based algorithms Tables 16 and 17
show that CG needs 3.87 times more function evaluations than CGINM method.
This underpins the common arguments about the fast convergence of the NM al-
gorithm in the neighborhood of the optimal solution. The solutions obtained by
CG1 methods are slightly more precise than the ones obtained by CGINM. This
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may also be a consequence of the different stopping criteria used in the simplex
and gradient based methods. A practical NM stopping criterion is based on the
size of the simplex, whereas in gradient based methods, it is usual to evaluate the
change of the solution. This gives a chance to use a somewhat looser stopping cri-
terion for CG1, which terminates it earlier and thereby leads to a reduced number
of cost function evaluations. However, if the number of the function evaluations
accomplished by CGINM is split between CG1 and NM parts, one can see that
CGI1 needs many more function evaluations even though it is used only in the
initialization part of CG1INM with the clearly looser stopping criterion. Hence,
due to the inherent properties of the ”gradient-free” NM algorithm for solving
non-smooth optimization problems and, moreover, the smaller number of the
cost function evaluations, CGINM is preferred to CG1. Therefore, CGINM will
next be compared to the SOR-based algorithms.

According to the above interpretation, the computational cost of one SOR
iteration corresponds to two evaluations of the cost function. In the case of AS-
SOR, the same ratio is three. Let us first compare the requirements by SOR and
CGINM. By applying the above ratio number to the results presented in Tables
16-18, the average cost by CGINM is six times greater than by SOR. When the
results by ASSOR (see Table 18) are compared to the results by CGINM, the
CGINM seems to be four times more expensive on average. This leads to the
approximating result that CGINM needs six times more computation for solving
the spatial median problem than SOR and, respectively, four times more when
compared to ASSOR.

It should also be noticed that in addition to the cost function evaluations,
the NM algorithm makes, for instance, sorting operations to the data in every it-
eration, which requires additional O(nlogn) computing, especially on huge DM
data sets.

Comparison of SOR-based algorithms to the modified Weiszfeld algorithm
The SOR-based algorithms are also compared with the non-accelerated modified
Weiszfeld algorithm. The results do not show significant differences in accuracy
of the solutions. The number of iterations needed by the modified Weiszfeld al-
gorithm is approximately 1.5 times greater than by SOR and ASSOR. Because the
SOR iteration is also simpler and faster than the modified Weiszfeld iteration,
both SOR and ASSOR are preferred to the modified Weiszfeld algorithm. On
the other hand, the modified Weiszfeld algorithm can also be accelerated, which
seems to produce enhancements similar to the SOR and ASSOR methods. Results
for the accelerated versions of modified Weiszfeld algorithms are presented, e.g.,
in [387, 90]. The proposed methods do not provide any treatment or results for
missing or high dimensional data.

The above results given in this chapter show that the SOR-type of algo-
rithms are fast and accurate solvers for the spatial median (38). Therefore, they
are good candidates of fast and reliable algorithms for computation of robust
cluster location parameters in huge, noisy, and incomplete data sets. In order to
know more about the large-scale behavior, the scalability of SOR and ASSOR to
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high dimensional data mining problems will be evaluated.

Before moving on to do further analysis about scalability to the high dimen-
sions, it is good to analyze the differences of the proposed SOR-based algorithms.
It is obvious that the computational requirements of the ASSOR algorithm are
greater than those of SOR because the inliers are pruned at each iteration. On the
other hand, if a sufficient number of data points are removed as inliers, it follows
that the evaluation of (53) and (54) takes less time due to the reduced amount of
data. Thereby;, it is clear that on a certain, even though perhaps rare, type of data
sets, ASSOR may need less computation than SOR. As this kind of data sets may
however occur in the DM context, a short careful discussion is in order.

DM tasks focus on data sets that are too large for the fast memory of PCs.
Computation on such large data sets requires a lot of hard-disk accesses, because
all the data can not be loaded at the same time into the fast main memory. This
means that by pruning the data points the number of hard-disk accesses during
the evaluation of (53) and (54) might be reduced as a result. On the other hand,
it is known that DM usually considers high dimensional data sets that are likely
to be less dense than lower dimensional data sets. This decreases the chance
of inliers and, therefore, the speed gain achieved by pruning of the data points
may become negligible. Furthermore, the characteristics of data depend on the
preprocessing and data transformation operations, particularly on dimension re-
duction and feature selection, that change the dimension before the computation
takes place (e.g., the dimension reduction shortens distances between the data
points). Hence, it is difficult to give a unique guideline for SOR and ASSOR.
Nevertheless, the most important issues to be taken into account are the amount
of available memory and data, and the number of dimensions that are used in the
computation.

Scalability of algorithms to high dimensions

The scalability to the large-scale problems was measured by using eight high di-
mensional data sets (chosen dimensions were R8, R'®, R32, and ]R64). The data
sets were generated by duplicating the data sets 5 and 6 (see Figure 25). CGINM
was again used as the reference solver. The stopping criteria were the same as in
R? experiments.

Table 19 shows that the simplex-based NM algorithm does not scale to high
dimensions. The solution involves errors even though the maximum number
of iterations were exceeded in some cases. The CG1NM algorithm combination
seems to result in quite precise estimates, but the amount of the function evalua-
tions increases significantly due to the high dimensions. CG1 (see Table 20) seems
to be more efficient, but equally precise to CG1NM regardless of the number of
dimensions. It is interesting that the solutions obtained by CG1 are even more
accurate than the reference solutions. As in the R? experiments, CG2 produces
very imprecise results. Figure 28 illustrates the remarkable difference between
the classic optimization approach and iterative methods. Iterative methods are in
the sense of computational costs tolerant against increasing dimensions. Accord-
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FIGURE 28 Scalability (top: n = 100 and bottom: n = 300) of the CGINM and SOR
methods to the high dimensional problems.

ing to the numerical experiments, CG1 seems to be the best solver of the classical
optimization methods for the spatial median problem on high dimensional data
(see Tables 19 and 20).
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TABLE 2 Summary of the results for NM, CGINM and CG on the bivariate test data
sets (See Figures 24 and 25). "#CG”, "#NM" and “total” are the numbers of
function evaluations taken by CG, NM and the complete algorithms, respec-

tively.
NM CGINM CG
e(J(u*)) total e(u*) e(J(u*)) #CG  #NM  total e(u*) e(J(u*)) total e(u*)
min 0.00e+00 37 0.00e+00 0.00e+00 4 37 41 0.00e+00 0.00e+00 4 0.00e+00
max 4.35e-04 112 4.34e-03 5.37e-07 158 76 211 1.29e-06 4.23e-07 1583 1.63e-06
mean 1.36e-05 104 1.36e-04 7.45e-08 95 52 147 3.78e-07 3.31e-08 583 1.77e-07
median 1.48e-11 111 2.82e-07 1.34e-11 96 51 147 2.98e-07 2.35e-13 477 3.42¢-08

TABLE 3 Summary of the results for the modified Weiszfeld, SOR and ASSOR on the
bivariate test data sets (See Figures 24 and 25). ”it” is the number of iterations

taken by an algorithm.
MW SOR ASSOR
data e(J(u*)) it e(u*) e(J(u*)) it e(u*) e(J(u*)) it e(u*)
min 0.00e+00 1 0.00e+00 0.00e+00 1 0.00e+00 0.00e+00 1 0.00e+00
max 7.36e-07 41 3.08e-06 3.42e-05 26 1.42e-04 4.57e-07 26 1.49¢e-06
mean 8.93e-08 21 1.31e-06 4.31e-06 14 1.84e-05 6.61e-08 14 5.76e-07

median 9.93e-11 19 1.16e-06 1.51e-11 13 3.88e-07 1.81e-11 12 3.99e-07

Discussion

The summary of the results on the bivariate test data sets is presented in Tables
2 and 3. The results show that the iterative SOR-based algorithms clearly out-
perform the classical optimization approach. The precision of the results is the
same and the scalability is superior to any of the classical optimization methods
used. The number of iterations needed by the SOR-based methods seems to be
independent of the number of dimensions. Moreover, it seems that the effect of
the over-relaxation parameter w is constant for the different number of dimen-
sions. The obtained results, especially the scalability of the algorithms, are very
remarkable and encouraging from the DM point of view.

6.5 Statistical experiments

After presenting the results from the computational point of view, the focus is
turned to the statistical issues. Some testing for statistical properties were per-
formed, and the results will be commented here. Basic properties for the spatial
median estimator are tested and discussed, e.g., in [54, 92]. It is commonly known
that robustness is often obtained at the cost of basic properties, such as unbiased-
ness, consistency, and efficiency? (cf. requirements in Section 4.4.3 and, see also,
general statistical results on robust estimators [276]). Algorithms that are devel-

2 NOTE: This means efficiency in a statistical sense.
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oped for solving computationally unstable and expensive problems, such as the
spatial median, may finally produce inconsistent estimates due to the approxi-
mations that must be done for cutting down the computation costs, for avoiding
non-differentiability and extremely small numbers, and so on. Hence, the theo-
retically promising properties may become unachievable in real-world applica-
tions. In order to assure that the fast SOR-based spatial median estimators retain
the statistical properties, a couple of statistical experiments were performed. Be-
cause the algorithms are generalized to the missing data cases using the available
case strategy, the experiments were also performed on incomplete data sets. The
experiments are a kind of Monte Carlo test for several sample sizes. The samples
were drawn from the symmetric spherical multivariate normal and coordinate-
wise independent Laplace distributions with the symmetry points (coordinate-
wise mean/median= 0) at the origin and unit variance/scatter.

6.5.1 Consistency
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FIGURE 29 Estimated bias of the SOR estimator.

In order to analyze the consistency of the implemented spatial median es-
timators, the asymptotic behavior of the bias was estimated in a number of di-
mensions. For a consistent estimator, the bias approaches zero as n — oco. The
estimator bias was measured as the average Euclidean distance between the esti-
mates and the true parameter value of the generating distribution as

t

. 1
bias = i Z I T(x1,...,%xn) — ptll2,
i=1

where p is the true parameter of the sampling distribution and T is the tested es-
timator. In all tests the distribution is centered to the origin, hence y = 0. For es-
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FIGURE 30 Estimated bias of the ASSOR estimator.

timating the asymptotic behavior of the bias, the experiments were accomplished
on data sets of several sizes.

In the first tests, the bias was estimated for both SOR and ASSOR as the av-
erage of 1000 estimator biases on complete normal data that was sampled from
N, (0,1) distribution. The test dimensions were p = {2,3,4,5,15,25,35,45} and
the size of the samples n € {100,250, 500, 750, 1000, 2000,4000}. Figures 29 and 30
illustrate the results. Both of the estimators show consistent behavior, that is di-
minishing bias due to the sample size, in all the sample dimensions on complete
normal data. The increased bias with respect to dimensions is simply explained
by the fact that the Euclidean distance grows along with the number of dimen-
sions.

The bias effect of the missing data treatment was also considered by esti-
mating the bias on samples from which 15% or 40% of values were eliminated by
MCAR mechanism. Two sampling distributions were used. The expected bias
was computed as the average of 100 estimates for each case. Table 23 shows that
both SOR and ASSOR estimators indicate consistency, because the estimated bias
mitigates for both as the size of the sample grows. One can also see that the bias of
the spatial median estimators behaves nearly equally with the sample mean bias
estimates when the underlying distribution is Gaussian. In the case of Laplace
distribution, the coordinate-wise sample median is naturally the least biased es-
timator, but the difference to other estimators is insignificant. Furthermore, the
behavior of the bias estimates is approximately the same for the complete and
incomplete data. As a whole, the results follow theoretical assumptions as all the
estimators should be unbiased estimators of symmetric distributions. As a result,
it can be concluded that neither the algorithmic approximations nor the missing
data strategy cause bias to the spatial median estimates obtained by SOR and
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The relative statistical efficiency of the SOR type of spatial median estimator
and the sample median with missing data treatment to the sample mean
on 1000 samples of size of 200 from N,(0,1) in the presence of different
proportions of missing data. (SOR parameters: w = 1.65 and stopping
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ASSOR algorithms.
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6.5.2 Efficiency on large-scale samples

The relative efficiency of the estimators was measured by estimating the average
coordinate-wise sample variance on multivariate normal and Laplace-distribu-
tions. As the samples were drawn from symmetric distributions, the average
coordinate-wise sample variance is a reasonable estimate of the estimator’s vari-
ability for measuring its relative efficiency. The distributions were centered at
the origin and scattered symmetrically with unit variance. The efficiency is ex-
pressed as a relative value with respect to the maximum likelihood estimator of
the particular distribution. A somewhat similar approach is used, e.g., by Brown
in [54]. He inspected the relative efficiency of the spatial median by compar-
ing the variances in the direction of the principal components of the multivariate
elliptical samples. The interesting question is the size of losses that the approxi-
mation and pruning implementations can cause to the estimators. Further, how
does the chosen missing data strategy influence the efficiency of the estimators?
The experiments were performed on several incomplete data sets as well.

The results are summarized in Table 22. At first, as explained in the theoret-
ical part of this thesis, the coordinate-wise median is the most inefficient estimate
on multivariate normal conditions. The results approximate well the theoretical
value (2/ 7 ~ 0.64). The behavior on normal conditions points out its univariate
nature, since the growing number of dimensions does not provide any support
for the estimates and their efficiency remains at a poor level. Because the spatial
median coincides with the coordinate-wise median in the univariate case, the rel-
ative efficiency of the spatial median estimators is also weak in low dimensions.
However, as the previous results (e.g., [54]) have shown, their efficiency should
asymptotically approach the sample mean as the sample dimension grows. Ac-
tually, the SOR-based accelerated algorithms with missing data treatment seem
to satisfy this well: the efficiency of the spatial median estimator and the sample
mean should coincide if p — oo. This behavior for SOR-based implementations
is illustrated in Figure 31 for a complete case and for several incomplete ones.

Table 4 presents a number that indicates the relative effect of the MCAR
missing data to the efficiency of the SOR-algorithm with respect to the efficiency
of the sample mean computed before the missing data was generated. The effi-
ciency values are very closely related to the amount of missing data. The result is
interesting, because it shows that the algorithmic realizations or the missing data
technique used do not cause additional efficiency loss by themselves. It is im-
portant that the efficiency of any DM estimator is not collapsed by missing data,
because missing data usually exists in real-world cases.

The variability of the estimators were also estimated on the symmetric coor-
dinate-wise Laplace distribution. Also in this case, the results in Table 22 follow
the theoretical assumptions about the position of the coordinate-wise median as
the maximum likelihood estimator of the Laplace distribution. The relative ef-
ficiency of the sample mean varies between 53% and 59% independently of the
number of dimensions or the amount of missing data.

The behavior of the spatial median estimators is equal to the earlier experi-
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TABLE 4 Relative normal efficiency of the spatial median estimator in MCAR case with
respect to the sample mean on complete data. Columns: dimension. Rows: %
of missing data. Estimated from 10000 samples (n=100).

2 4 8 16

0%  1.0000 1.0000 1.0000 1.0000
10% 0.9035 0.8985 0.9013 0.8988
20% 0.8005 0.7952 0.7989 0.7984
30% 0.6975 0.7026 0.6970 0.6977
40% 0.5993 0.5968 0.5975 0.5949
50% 0.5101 0.4972 0.5006 0.4937

ments under normal conditions, since their relative efficiency approach the sam-
ple mean as the number of dimensions grows (see Figure 32). As the relative
amount of missing data is increased for the Laplace distributed samples, the rel-
ative efficiency of the spatial median and the sample mean show slight improve-
ment.

6.5.3 Discussion

In general, the experiments show that the statistical assumptions are satisfied
by the new modified spatial median implementations. The chosen missing data
treatment seems to maintain the efficiency of the spatial median estimator, since
the efficiency lost is comparable to the amount of missing data. In other words,
the chosen missing data treatment does not cause additional efficiency loss to the
spatial median estimators. These results follow and complete previous results,
for example, by Brown [54] and satisfy the theoretical assumptions presented by
the statisticians in the course of years since the sixties. The results also show
that the developed algorithms and implementations do not lead to biased and
inconsistent estimates. The asymptotic relative normal efficiency of the spatial
median with respect to the number dimensions is also a significant result, since
the usual data mining tasks handle very high dimensional data sets.

6.6 Conclusions

The goal of this chapter was to develop fast and reliable algorithm with miss-
ing data strategy for the robust estimator called spatial median. Several differ-
ent formulations and methods were tested and compared both numerically and
statistically in order to find the most consistent and fastest realizations. The con-
vergence of the perturbed Weiszfeld iteration was considered. The implemented
SOR-based estimators can be applied in many clustering methods, such as the
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ones presented and initially tested in Chapter 5. Since the real-world data sets
usually contain erroneous and missing values, a special missing data treatment
was implemented. Hence, a new formulation for the problem of the spatial me-
dian taking into account missing values was given. Its influence on the statistical
properties is investigated through the statistical experiments.



7 INITIALIZATION METHODS FOR CLUSTERING
ALGORITHMS

One of the underlying problems concerning data clustering is the global non-
uniqueness of the solution. This problem is due to non-convex nature of cluster-
ing problem, or its cost function itself. Non-convexity of a function means that it
possesses multiple local minima. Therefore, the use of arbitrarily chosen initial
points in a clustering problem often ends up with a locally optimal, but unsat-
isfactory, partition. Moreover, for a bad initial guess, an increased number of
clustering iterations is usually required. On the other hand, finding the globally
best partition by exhaustive search is not practical due to the huge number of
different partitions even for small data sets (see Section 3.3).

Prototype-based partitioning algorithms, such as K-means [265] and K-spa-
tialmedians [208], are particularly dependent on the initial cluster centers as they
are based on the local-search principle and, thereby, converge to some locally
best partition in the neighborhood of the initial points. Furthermore, they are of-
ten prone to so-called dead clusters, providing the initial points are poorly chosen.
Dead cluster is a cluster that does not attract any data points upon convergence
[182]. As it is unachievable to create a universal, data-independent, clustering
method [220], it is not realistic to aim at developing a universal initialization
method either. Perhaps for this reason the strategy of multiple repetitions with
random initial points has remained as the de-facto method for the initialization
[43].

Although the random initialization obtains the initial points extremely fast,
the problem is that the number of iterations needed by the actual clustering al-
gorithm grows with unsuccessful initialization. Hence, the multiple repetition
from random points is perhaps a feasible solution for small data sets, but on large
data sets, with hundreds or thousands of dimensions and, perhaps, thousands or
millions of objects, it may take hours or even days to repeat the clustering algo-
rithm. Moreover, one needs to define a criterion to choose the “best” result from
the solutions obtained starting from different random initial solutions. A more
sophisticated way to solve the problem of multiple local minima is to apply some
heuristic method to determine the initial conditions for a clustering algorithm.
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Basically, various initialization methods have been developed for clustering
algorithms, see, e.g., [9, 273, 315, 43, 218, 222, 6, 182, 119, 365, 140, 264]. However,
only some of them have so far been developed or tested for DM purposes. Con-
sequently, they have not been tested on DM type data sets, which are often large,
incomplete, heterogeneous, and erroneous.

7.1 Basic methods for the cluster initialization problem

He et al. [182] classify the initialization methods into three classes: random, dis-
tance optimization, and density estimation. In the following, short descriptions
about these basic methods are given.

7.1.1 Random initialization

Perhaps the most common, naive and de-facto method of the clustering initializa-
tion problem is the random initialization [9]. There are actually several ways to
realize random initialization, but the basic idea is to simply initialize the cluster
centers with random data points. This approach is also referred to as Monte Carlo
codebook design by Gersho and Gray [140, p.359]. When the random initializa-
tion is used as an initialization strategy, the algorithm must be run several times
in order to obtain enough conviction about the quality of the clustering.

By restricting the choice of the random data points, different variants for
the random initialization are obtained. First of all, the initial cluster centers can
be restricted to the given data points, that is {m;}X; C {x;}_;. One may also
choose the initial centers arbitrarily using the range of the individual variables,
in which case they will be unlikely to intersect with the individual data points
and, hence, the chance that the initial points lie outside the convex hull of the
data set remains. If all values, even outside the data range, were allowed to be
chosen as the initial points, some of them might be so distant to the actual data
cloud as to become unable to capture any data points and, consequently, dead
clusters would unavoidably occur. Therefore, in order to avoid dead clusters and
obtain fast convergence, it may be better to restrict the random initial points to the
convex hull of the data set. A strategy, that is assumed to decrease the chance of
dead clusters, is to slightly and randomly disturb the mean of the whole data set
for a required number of times and use these points as the initial cluster centers
[182]. This is supposed to give at least nearly even probability to all cluster centers
of being selected as the closest prototype during the first clustering iterations.

When sequential clustering algorithms, such as the MacQueen’s K-means
algorithm [265], are used, one may initialize them by using the K first data points
as the initial points. This is a practical approach, for example, in real-time appli-
cations that receive the data in sequence and prior information about its internal
structure may not be available. For highly correlated data sets Gersho and Gray
[140, p.359] suggest to use every Kth rather than the first K data points as initial
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centers.

Since quality of the clustering solutions obtained with the random starting
may vary a lot, some heuristics for the cluster initialization problem have been
developed. In the following, some of the common approaches are presented more
precisely.

7.1.2 Distance optimization methods

The main idea behind the distance optimization methods is to maximize the dis-
tances between the cluster centers beforehand. This is reasonable, since cluster-
ing criteria are often based on the minimization of intra-cluster distances and
maximization of inter-cluster distances, which actually leads to a kind of multi-
objective optimization problem [280]. However, many of the popular cluster-
ing algorithms, for example, K-means [265], K-medoids (or PAM) [220], or K-
spatialmedians [208, 104], ignore the between-cluster distances. Hence, such clus-
tering algorithms may benefit from taking the between-cluster distances into ac-
count as a part of the initialization.

Katsavoudinis et al. [218] propose a very fast distance-based initialization
technique for the generalized Lloyd’s iteration, which corresponds to K-means
iteration (c.f. Section 3.3.2). Following the convention by Al-Daoud and Roberts
[6], the method will be termed here as KKZ. The main principle of the KKZ algo-
rithm is to take the data point which differs most from all the existing prototypes
as the next prototype and repeat this process until the desired number of pro-
totypes is found. An interesting detail is that no input parameters are needed,
which is especially an attractive feature from the DM point of view. The method
has produced very competitive results in the experiments presented in [6] and
[182].

The detailed algorithm is given next.

Algorithm 7.1.1. KKZ

Input parameters: Data set X = {x;}?_,, wherex; € RV foralli =1,...,n, and the
desired number of clusters K.

Output parameters: The initial prototypes {my, ..., mg}.

Step 1. Set k = 1. Compute the norm (e.g., Euclidean norm) for all data points
x; (i =1,...,n). The first prototype m; is the one with the largest norm

m; = arg max||x;]|.
Xj

Step 2. For all the remaining data points in X, define the closest prototypes of
the hitherto determined ones as

(c); = argmin||m]~ — x|,
je{1,...k}
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where ¢ € IN" is a code-vector that contains the index of the closest proto-
type for every point. The next prototype is defined as

my; = argmax|m o, — x|
Xj

Setk =k+1.
Step 3. If k < K then repeat Step 2. Otherwise, stop.

The KKZ algorithm is very fast as the distances from the data points to the
existing cluster centers need to be computed only with respect to the newest pro-
totype. The computational complexity of KKZ is O(Knp), which is comparable
with the K-means algorithm. A difficult problem is, however, the treatment of
the missing data values that are typical in the DM context. Another problem is
its sensitivity to outliers, which is illustrated in Figure 33. In this thesis, KKZ will
be generalized to the missing data cases.

SCS (Simple Cluster-Seeking Algorithm) is another promising distance op-
timization method [182]. The results by SCS are actually nearly comparable to
KKZ [372]. It was originally introduced as a clustering method, but later used
also as an initialization method. From the DM point of view, the problem of SCS
is the determination of a threshold parameter, since such prior knowledge is not
expected to be available. Hence, this method will not be further considered in
this thesis.

7.1.3 Density estimation method

Use of the density estimation strategy for the cluster initialization problem is
based on the observation that random sampling yields information about the
modes of a multivariate data set. The mode estimates can then be used as initial
locations of the cluster centers. In the case of large data sets, it is more efficient
to draw a number of small random subsets from the data and use them for find-
ing high-density areas of the data for initialization. The sub-dataset clustering
is an interesting approach in the sense that it also produces information about
the number of clusters. Many clustering validation methods, such as resampling
[336], stability-based [243, 291], and prediction-based methods [370, 95], are based
on reproducibility of cluster assignments. Hence, the variability in the clusters
found for the random sub-datasets can possibly be exploited in the determina-
tion of the number of clusters.

Cluster refinement algorithm

Bradley et al. [43] introduce a refinement procedure for the initialization problem.
The method is referred to here by the acronym BF. It can be used for a wide
class of clustering algorithms that assume the compact spherical shape of clusters.
Although Bradley et al. talk about sub-samples, in this thesis these are called sub-
datasets, and the terms data and dataset are used to replace the term sample.
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The idea of the BF algorithm is to create a refined dataset by clustering a
number of small random sub-datasets, and then cluster the refined dataset by
using the cluster centers of the sub-datasets as initial points. As the final initial
points are chosen the ones with the smallest distortion. BF takes as an input the
number | of sub-datasets. Bradley et al. used ] = 10 in their experiments. The
same approach can be used for any other prototype-based clustering algorithm

(e.g., [119]).

KMeansMod

For the sub-dataset clustering, a special KMeansMod algorithm is given that ter-
minates when K non-empty clusters, denoted by {Cx}K_,, are found. The dead
clusters are avoided by re-initializing the clusters having zero assignments of data
points with the worst fitting data points and running the algorithm again. The
worst fitting point is the one from which the distance to the closest cluster cen-
ter is largest. After running the KmeansMod algorithm we have K non-empty
clusters that are applied in the successive steps of the BF algorithm.

Algorithm 7.1.2. KMeansMod

Input parameters: Data set X = {x;}_; wherex; € R” foralli =1,...,n and the
number of clusters K.

Optional input parameters: Initial centers {m;}X | where m; € R for all k =
1,...,K.

Output: Cluster centers {m} }X_| so that for all clusters C; C X, it holds |Cy| > 1
forallk=1,...,K.

Step 1. (K-means clustering) Using predetermined or random initial points, parti-
tion X into K clusters by the K-means algorithm. If provided, use the initial
centers, or generate random initial points.

Step 2. (Re-initialization) If one or more clusters that capture zero data points are
met, re-initialize with the worst fitting points, that is, the points that have
the largest distance to their closest cluster centers. Go back to Step 1 and
use the current cluster centers as the initial centers. If there are no empty
clusters, then terminate.

When the data set is complete, that is no values are missing, the most un-
fitting point can be determined by using, e.g., the [;-norms. But, in the presence
of missing values, one should use a more general distance measure, such as the
Gower’s general distance measure [147] or the one given by (6). By standardiz-
ing the distances by the number of available variables, these measures make the
distances between the points with different numbers of available values compa-
rable.

Next the actual BF algorithm is described. At the beginning, a predeter-
mined number of random sub-datasets of equal size are drawn from a given data
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set X. The probability of becoming selected into the sub-dataset is equal for each
point in X. The number and size of sub-datasets are denoted by | and 7, respec-
tively. If i is large, more information is utilized, but more computation is also re-
quired. A good choice might be 7i = n/]. In order to have | set of cluster centers
with non-empty clusters for X, all sub-datasets are clustered by the KmeansMod
algorithm. The centers of the sub-dataset clusters constitute the refined data set,
which is denoted by X,.r. X.r will be further clustered | times by using the ob-
tained cluster centers as initial points in turn. The final set of initial points is the
set of centers that have the smallest distortion with respect to the refined data set.
The complete BF algorithm reads as follows:

Algorithm 7.1.3. BF

Input parameters: Data set X = {x;}' ; where x; € R foralli = 1,...,n, the
number of clusters K, the number of sub-datasets |, and the size of the sub-
datasets 71

Output: Cluster centers C* = {m}}X_, so that for all clusters C; C X, it holds
|ICk| > 1forallk=1,...,K.

Step 1. Set Xjer = ¢.
Step2. Fori=1,...,].

Step 2.1. Draw fi data points with equal probability from X. Let us denote the
resulting sub-dataset by X.

Step 2.2. Find K cluster centers for X using Algorithm 7.1.2. Let us denote the
centers by C;.

Step 2.3. Extend the refined dataset as X, = Xjr U C;.
Step 3. Set C" = ¢.
Step4.Fori=1,...,]

Step 4.1. Take C; as the initial points and find K centers for X, ¢ by using the
K-means algorithm. Let us denote the set of center points by é;‘.

Step 5. The refined centers are C* = arg min Distortion(C?, X, £)-
Ci

Hence, the center points with the smaller Distortion, that is the smallest
sum of the squared errors with respect to the refined data set X,., are chosen as
the initial points for the actual clustering method. K-means clustering solutions
obtained with the BF initialization using | = 10 are compared to the ones ob-
tained using random initial points in [43]. The results show that K-means finds
the true clusters more efficiently when initialized with BF. Moreover, using the
BF initialization the K-means algorithm converges in less iterations.
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7.2 New methods

As far as the author of this thesis is aware, robust methods have not been utilized
in the clustering initialization problems. It is well-known that the derivative of
the cost function of the sample mean is unbounded. From this it follows that K
means, i.e. the K cluster centers for data obtained by the K-means method, are
unbounded as well. This makes the cluster centers extremely sensitive towards
outlying values. In order to build robust algorithms, robust M-estimates with
bounded derivatives are often used instead of the sample mean (e.g., [220, 208,
104, 207]).

Modifications for the existing methods are presented and aimed at making
them robust against outliers and contamination. The methods are also general-
ized to handle missing data. In the case of the BF algorithm, this means that
the sample mean estimates are replaced by the spatial median, and a particular
strategy is applied to the missing data cases.

In order to diminish the tendency to empty or singleton clusters, a trimming
procedure is applied. The trimming means, herein, removal of predetermined
fraction of data points that are lying on the edge of a data cloud. Its use is based
on the facts and ideas presented in [11], where the authors, Garcia-Escudero and
Gordaliza, state that the generalized K-means-type algorithms do not inherit ro-
bust properties from the bounded M-estimators. They show that the bounded
derivative of the cost function of the M-estimator does not necessarily extend to
the corresponding prototype-based clustering problem. As a result, an impartial
trimming procedure is proposed for building a robust K-means method.

In this section, the trimming is performed only as part of the initialization
problem, not in the actual clustering step. The overall goal is to find initial points
where clustering algorithms converge to a local minima that optimally represent
the high-density and compact areas of the data space. Before introducing the new
methods, an imputation method, which is needed for the random and distance-
optimization-based initialization, is presented.

7.2.1 Nearest-Neighbor imputation

Many real-world problems suffer from the fact that a part of data is missing. From
this it follows that depending on the used methods, cluster centers my; may con-
tain empty values in some components. In order to proceed in a non-parametric
fashion, the principles of the nearest-neighbor imputation are applied to fill in
missing values according to the ideas of Batista et al. [27, 26, 25]. The basic idea is
that after selecting data vector x; (i = 1, ..., n), either randomly or by using some
heuristics, the missing components of x; are substituted with the existing ones
of the most similar objects. Let Z C {1,..., p} be the index set for the missing
components in a data vector v. The imputation procedure is given by Algorithm
7.2.1.

Algorithm 7.2.1. Nearest-neighbor imputation
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Input parameters: Data vector v € R?, data set X = {x;}_;, where x; € R for all
i=1,...,n.

Output parameters: Complete data vector v.
Step 1. For j =1 to |Z|
Step 1.a. (Nearest-neighbor search) Find X by

X «— argmin||x; — v||g

ie{1,...n}
subject to
(xi)z(jy isavailable for all i.
Notation || - || refer to the general distance measure given by (6).

Step 1.b. (Replacement) Set (v)z(jy = (X)7(j)-

The computational complexity of Algorithm 7.2.1 is O(np?). Hence, it is
somewhat sensitive to the number of variables, but this is not necessarily a seri-
ous problem, because for usual large DM data sets n >> p. The algorithm needs
to be performed only once during the initialization.

7.2.2 robBF - Robust density-estimation initialization method

robBF follows the principles of the algorithm proposed by Bradley and Fayyad
[43]. In order to make the BF method robust and include an efficient treatment for
missing data, the sample mean is replaced with the spatial median and available
data strategy is applied in all computation (see, Section 3.2.8). The spatial median
is computed by using a fast SOR-based algorithm as described in Chapter 6.6 and
[209]. In the presence of these changes, it is assumed that the initial points become
more efficiently directed to the high-density areas of erroneous and incomplete
data sets.

At first, the robust variant corresponding to the KmeansMod is given. As in
the case of the basic K-means algorithm, KmeansMod can also be made robust by
replacing the sample mean estimates with the spatial median. Handling of miss-
ing data values can be realized by projecting all computation to existing values
as, for example, presented in [258, 208]. While the K-means-type algorithms may
converge to a solution where one or more clusters capture no data the Kmeans-
Mod algorithm avoids these problems by re-initializing the empty clusters.

Algorithm 7.2.2. KSpatmedMod

Input parameters: Data set X = {x;}" ; where x; € R foralli = 1,...,n and the
number of clusters K.

Optional input parameters: Initial centers {m; }X , wherem; € R? fork =1,...,K.

Output: Cluster centers {m} }X_,, so that for all clusters C; C X, it holds |Cy| > 1
forallk=1,...,K.
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Step 1. (K-means clustering) Using predetermined or random initial points, par-
tition X into K clusters by the K-spatialmedians algorithm. If provided, use
the initial centers, or generate random initial points.

Step 2. (Re-initialization) If one or more clusters that capture zero data points are
obtained, re-initialize with the worst fitting points, that is, the points that
have the largest distance to their closest cluster centers. Go back to Step
1 and use the current cluster centers as the initial centers. If there are no
empty clusters, then terminate.

As in Algorithm 7.1.2, the worst fitting points in Step 2. can be computed
by using the general dissimilarity measure given by (6). The KSpatmedMod al-
gorithm produces K non-empty clusters that are employed as part of the robust
robBF and TrobBF algorithm, which are given in the following.

As the basic idea of robBF is exactly the same as in BF given by Algorithm
7.1.3, only the algorithm for robBF is given, and for further details the reader is
directed to Section 7.1.3. The only difference between the BF and robBF meth-
ods is that the sample mean estimates are replaced by the spatial median. The
complete robBF algorithm reads as follows:

Algorithm 7.2.3. robBF

Input parameters: Data set X = {x;} ; where x; € R? foralli = 1,...,n, the
number of clusters K, the number of sub-datasets | and the size of the sub-
datasets 7

Output: K non-empty cluster centers {m; }X_.
Step 1. Set Xior = ¢.
Step2. Fori=1,...,]

Step 2.1. Draw fi data points with equal probability from X. Let us denote the
resulting sub-dataset by X.

Step 2.2. Find K cluster centers for X using Algorithm 7.2.2. Let us denote the
centers by C;.

Step 2.3. Extend the refined dataset as X,y = X5 U C;.
Step 3. Set € = ¢.
Step4.Fori=1,...,]

Step 4.1. Take C; as the initial points and find K centers for Xref by using the
K-spatialmedians algorithm. Let us denote the set of center points by C;.

Step 5. The refined centers are C* = arg min Distortion(C}, X, £)-
¢
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7.2.3 ModKKZ - distance-optimization-based initialization method for incom-
plete data

ModKKZ corresponds to the original KKZ method supplemented with a missing
data treatment. The missing data sets extra-requirements for data selection and
distance measures. As the usual Euclidean norm does not straightforwardly suit
for distance comparisons if the data points contain different numbers of missing
components, it is replaced by the general dissimilarity measure (6) in the Mod-
KKZ. Furthermore, if the point chosen as the initial center contains missing val-
ues, it is filled in by the Nearest-neighbor imputation algorithm 7.2.1. In order
to utilize most of the available information, the data will be pruned before the
search of initial centers so that only those points, for which the number of avail-
able values exceeds 50% of the overall dimension of the data space, will remain as
candidates for the initial centers. The rest of the data points are discarded, since
they contain a quite small amount of information about the data. Moreover, the
initial centers that contain missing values (i.e. sort of outliers) in more than half
of the variables are expected to disturb the overall performance of any clustering
method. In summary the main steps of the ModKKZ are:

1. Choose the data points with more than 50% of data values available. If the
number of prototypes is greater than the number of data points containing
at least 50% of the data values, then terminate the algorithm.

2. Find the data point that has the largest value with respect to the general
dissimilarity measure (6) and assign it as the first initial center. If the data
point contains missing values, fill them in by the Nearest-neighbor imputa-
tion algorithm 7.2.1.

3. Find the rest of the initial centers k = (2,...,K) as with KKZ (Algorithm
7.1.1) by applying the general dissimilarity measure (6) and imputation as
in Step 1.

7.24 TrobBF and TModKKZ - robust initialization methods with trimming

In order to reduce the sensitivity of the algorithms to the outlying values, a trim-
ming procedure can be applied to the data before running the robBF or ModKKZ
initializations methods. Trimming can be justified by the assumptions arisen
from the results by Garcia-Escudero and Gordaliza [11]. If the sensitivity to-
wards outlying data points can be reduced, the risk of empty or singleton clusters
should be reduced as well.

Figures 33 and 34 present sample situations about the undesired effect of
outliers when two clusters are searched from the bivariate small data set by us-
ing a robust clustering algorithm with KKZ initialization. In Figure 33, the K-
spatialmedians clustering algorithm is initialized by the ordinary KKZ method.
The initial points are represented in the left plot. They are marked by circles. The
points are the most distant points with respect to each other, but one of them is
clearly an outlier. In the right plot the subsequent cluster centers obtained by
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FIGURE 33 The problem with KKZ initialization. One outlying point prevents the al-
gorithm from finding the useful clusters from the data.
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FIGURE 34 The robust behavior of the trimmed KKZ initialization and K-
spatialmedians clustering.

the robust clustering algorithm are marked by "x’. A singleton cluster is cre-
ated. More interestingly, the result seems to be the global minimum of the K-
spatialmedians cost function. This verifies the results by Garcifa-Escudero and
Gordaliza [11] that the robust clustering methods do not automatically inherit
the properties of the robust estimates. In Figure 34, the trimming approach is
added to the KKZ method. The fraction of trimmed data is 10%. Again, on the
left, initial cluster centers are marked by circles. On the right, one can see that the
robust clustering algorithm, K-spatialmedians, is no more biased by the individ-
ual outlier. The data contains one outlier, and in Figure 33 there are two clusters,
but no outliers. In Figure 34, there are two clusters and one outlier, which means
that the properties of the data are better maintained in the clustering.

The trimming is performed by computing the spatial median of the sub-
dataset and using it as a reference point when evaluating the remoteness of the
data points. The spatial median is considered a better estimate for the center of
the main bulk of the data than, for example, the extremely sensitive sample mean.
Moreover the recognition of the true outliers is thus easier. If, however, the case is
that the data set does not contain any outliers, it follows that the trimming will re-
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move some relevant objects and, thereby, some of the useful information. Hence,
it is important to be careful with trimming and not to trim too large part of the
data. For ensuring the use of all available information at least in some phase of
the clustering process, trimming is applied only in the initialization phase and
finalizing clustering is performed on the whole data. By this way, empty or very
small clusters on the edge of the data cloud may be avoided. Moreover, the in-
formation about the outlying points is not totally lost, because even though they
are not used during the initialization, they will be captured again by the closest
clusters when the complete data is clustered.

The amount of the trimmed data is the most difficult issue from the DM
point of view. It might be possible to use some heuristic for estimating the ex-
istence of the outlying points. For instance, by comparing the locations of the
sample mean and spatial median of the full data set some information about the
existence of outlying values could be achieved.

The use of the TrobBF method is otherwise similar to robBF, but the sub-
datasets will be trimmed. The method is given in Algorithm 7.2.4.

Algorithm 7.2.4. TrobBF

Input parameters: Data set X = {x;}" ; where x; € R? foralli = 1,...,n, the
number of clusters K, the number of sub-datasets |, the size of the sub-
datasets 1, and the trimming percent trim.

Output: K non-empty cluster centers {m} }X_,.
Step 1. Set Xjer = ¢.
Step2. Fori=1,...,]

Step 2.1. Draw fi data points with equal probability from X. Let us denote the
resulting sub-dataset by X.

Step 2.2. Compute the spatial median ji of X.

Step 2.3. Order the points in X according to the distance from the spatial median
Z

Step 2.4. Remove trim percent of the most distant points in X. Denote the
trimmed sample by X;

Step 2.5. Find K cluster centers for X; using Algorithm 7.2.2. Let us denote the
centers by C;.

Step 2.6. Extend the refined dataset as X, = Xjor U C,.
Step 3. Set € = ¢.
Step4.Fori=1,...,]

Step 4.1. Take C; as the initial points and find K centers for Xyef by using the
K-spatialmedians algorithm. Let us denote the set of center points by C;.
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Step 5. The refined centers are C* = arg min Distortion(C}, X, £)-
¢

TModKKZ follows the ideas of KKZ and ModKKZ algorithms except that a
given proportion of the data is removed with respect to the location of the spatial
median. Hence, the main steps are the computation of the spatial median on the
data, ordering the points into descending order with respect to the distance to the
spatial median point, trimming of the most distant points and, finally, performing
the ModKKZ algorithm for trimmed data. The detailed algorithm is not repeated
here.

7.3 Numerical experiments on simulated data

Let u, € RP (k = 1,...,K) be the K true centers of the generating cluster dis-
tributions and m; € RP (k = 1,...,K) the K centers that are estimated by the
chosen clustering algorithms (K-spatialmedians and K-means) over the full data
set. Let 7(K) denote any permutation on {1,...,K}. The error of the obtained
clustering solution is defined by the permutation 77(K), which minimizes the dis-
tance between the true centers pu; that were used for cluster generation and the
centers computed using the clustering algorithms over the full data set from a
given initial starting point:

K
err = min —m 2. (58)
H(K)k_zl [ — My (i) 12

The error estimate for a particular method is the average error of 100 trials given
by
err({m}Y ) = —err. (59)

In order to compare errors for different number of dimensions and clusters, the

error estimates are scaled by

1 __
err = K—err, (60)

where K is the number of clusters and p the data dimension. The estimated CPU
time expresses the time elapsed from the start of initialization to the accomplish-
ment of the final clustering process over 100 trials.

Seven different combinations of initialization and clustering methods were
tested. K-spatialmedians clustering was tested together with six different ini-
tialization methods. As a comparison, the original K-means-based approach by
Bradley and Fayyad was used to compare the K-means clustering with K-spatial-
medians clustering when the non-robust BF method was used in the initializa-
tion. Hence, the following combinations were used in the experiments:

¢ BF + K-spatialmedians
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* TrobBF + K-spatialmedians
¢ robBF + K-spatialmedians
¢ Random + K-spatialmedians
¢ BF + K-means
* ModKKZ + K-spatialmedians
¢ TModKKZ + K-spatialmedians

The size of the sub-datasets used in BF, robBF, and TrobBF was 10% of the over-
all data set. In TrobBF 10% of the sub-datasets were trimmed away. The initial
centers for clustering of the sub-datasets were chosen in random. The stopping
rules for the K-spatialmedians and K-means methods were that no more changes
occur in the cluster assignments or the maximum number of iterations 1000 is ac-
complished. In the sub-dataset clustering the maximum iteration count was set
to 100. The KKZ-based methods do not generally require initial parameters, but
TModKKZ needs the percent of eliminated data, which was chosen to be 10. In
all experiments, all variables were scaled to the range [0, 1] before the clustering
process.

7.3.1 Test 1: Compact, well-separated and spherical Gaussian clusters

2D Sample 3D Sample
T .

i

oF - $ud
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! ! | ! |
o A& w N Bk O kN

FIGURE 35 2- and 3-dimensional examples of the data sets used in test 1.

Clearly, it is practically impossible to test clustering methods with all dif-
ferent situations in mind. We first tested the methods on a set of very easy
data sets. It is a minimum requirement for any clustering method to show ac-
curate and efficient performance on well-separated clusters without noise and
missing values. In order to evaluate this, we did a set of experiments on well
separated 2-,5-,15- and 30-dimensional data sets with various number of clusters
(K =2,3,4,5,6,7,8). Two and three dimensional examples of the data sets are
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FIGURE 36 From left to right and top to down the mean estimates (N=100) of the scaled
clustering error err on 2-,5-,15-, and 30-dimensional complete Gaussian test
samples, respectively.

presented in Figure 35. The data sets were sampled randomly from a mixture of
spherical and symmetric normal distributions defined by Zszl N,(my, 0.1 x L,).
All clusters consisted of 50 data points and were of equal size, which means that
any feasible methods would not mistake the clusters for outliers. The components
of center vectors {my} (k =1, ..., K) were restricted to range from —5 to 5 and the
Euclidean distance between any pair of cluster centers was always greater than
one. This means that each time when the generated cluster center my failed
to satisfy the between-distance rule ||my,; —my| > 1forall k¥ = 1,...,k, it
was discarded and regenerated. The relatively small within-cluster variance and
the predefined minimum gap of the between-cluster distance makes the clusters
well-separated. Noise or missing values were not added into the data sets. Using
these settings, all relevant methods should perform relatively well. We computed
the estimates for the squared errors, CPU times, and the number of clustering it-
erations needed to converge from the initial points generated by the different
methods. The estimates were computed as the averages of one hundred tests
runs.
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FIGURE 37 From left to right and top to down the maximum of the scaled clustering
error err from 100 trials on 2-,5-,15-, and 30-dimensional complete Gaussian
test samples, respectively.

Comparison of error estimates

As it is expected, in average all the methods produce quite good results except
the random initialization (see Figures 36 and 37). It is viable for two cluster data,
but for K > 3 the quality collapses. Plots in Figure 38 represent the average
and median estimates of the scaled error er7 when the K-spatialmedians clus-
tering was performed using random initialization. It seems that the error does
not increase anymore when K > 3, but it increases along the dimensionality.
The mean estimates for the other methods are acceptable. For K € {5,6,7,8}
slightly increased errors are shown especially for the non-robust BF-initialization
and it does not matter whether the K-means or K-spatialmedians method is used
as the final clustering method. One can also see from Figure 37 that even if
the average error estimates for the BF-initialized methods are quite small when
K = 5or K = 6, some bad results already exist. Another problem with the
BF-initializations are the empty clusters. Table 5 shows that the K-means-based
initialization is much more sensitive to empty clusters than its robust variants.
Even the random initialization performed better than the K-means-based meth-
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FIGURE 38 The mean and median estimates (N=100) of the scaled error err for K-
spatialmedians clustering from random initial points.

TABLE 5 The number of trials that led to an empty cluster on noise- and error-free nor-
mally distributed test cases. The total number of trials in each case is 800.

p | BE TrobBF robBF random BF-K-means ModKKZ TModKKZ
2 6 1 1 0 10 0 0
5 136 2 1 1 41 0 0
15| 15 0 1 6 13 0 0
30 | 13 2 0 4 8 0 0

ods in this sense. Hence, according to the results, it seems that the use of robust
estimates in density-estimation based initialization is effective even if the clus-
ters are sampled from the complete, well-separated, and error-free normal dis-
tributions. In some rare cases, the results of TrobBF are slightly more disturbed
than the results from the non-trimmed procedure robBF. This is likely due to the
fact that, in error-free cases, the density-based trimmed initialization methods are
more dependent than the non-trimmed variants on the size of data. This is obvi-
ous since on non-erroneous data correct sample points are removed in trimming,
which leads to inefficiency in statistical estimation. It is interesting to note that
such a problem is avoided by using the trimmed distance-optimization method
TModKKZ. TModKKZ searches mutually distant points and if any is left in a
distant cluster after trimming, the cluster will be taken into account in the initial-
ization. Hence, the statistical efficiency is not as much dependent on the number
of members in the cluster. Notice that this property of TModKKZ could be fur-
ther exploited by initializing the sub-clustering processes of the density-based
initialization methods by distance-based methods.

Comparison of computational costs

CPU times are presented for different numbers of clusters and dimensions in Fig-
ures 39 and 40, respectively. The clearly fastest solutions are obtained with the
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FIGURE 39 CPU times on 2-,5-, and 30-dimensional clean data.

distance-optimization methods ModKKZ and TModKKZ. The estimated CPU
time of the K-spatialmedians clustering combined with the ModKKZ or TMod-
KKZ initialization is even smaller than in random initialization. This is due to
the smaller number of clustering iterations taken from the initial points (see, Fig-
ure 41). The required computation time by BE, robBF, TrobBF and BF+K-means
are almost equal to each other. Although one iteration taken by the K-means al-
gorithm is faster when compared to the K-spatialmedians algorithm, the latter
usually needs fewer iterations to converge. From this it follows that the overall
time required for the clustering process is shorter for the robust K-spatialmedians
clustering.

Discussion

In summary, the distance-optimization initialization gives better quality for the fi-
nal clustering methods than the density-estimation or random initialization even
on these relatively well-clustered data sets. This holds with respect to the size of
errors in the final clusterings, the number of empty clusters, and CPU time. The
results show that the random initialization does not perform well even on these
well-separated cluster samples. In addition to the quality of the clustering results,
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FIGURE 40 CPU times on 2-,5-, and -8 clusters data sets.

the overall time to converge is poor for the random initialization as well. This is
due to poorly chosen initial points, starting from which it takes more iterations
by final clustering algorithm to converge.

When the density-estimation initialization is applied, the robust methods
seem to overtake the K-means-based methods. They produce smaller errors and
are clearly less prone to empty clusters. However, the trimming leads to larger
errors with robust variants as well. These results favor distance-optimization
initialization methods. The following experiments will evaluate the effects of
more complex situations, such as missing values and outliers, to the methods.

7.3.2 Test 2: Compact, well-separated and spherical Gaussian clusters with
missing data

The experiments were performed using the same test configurations as in Test 1,
but missing values were uniformly generated into the data. The obtained errors
are presented in Figure 42. When compared to the complete data cases, one can
easily note that the errors are significantly larger when missing data is present.
The only exception is observed in the two clusters case, in which all methods
produced almost the same average error as in the complete data cases. The dis-
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initialization methods.

tributions of the errors, CPU times, and final clustering iterations are illustrated
by histograms in Figures 45 and 46. The means and medians of the results are
depicted by vertical lines and denoted by p,, jt, and y; for the means, and med,,
med;, and med; for the medians, in the figures. From the histograms in Figure 46
one can see that the large average error estimate of TrobBF on the two cluster test
with 45% of missing data is caused by a single significantly erroneous test run
and the median estimate for the error equals that in the other methods. A distin-
guishable average error estimate was also obtained with the random initialization
on the two cluster case when 15% of data is missing. Also in this case the median
estimate does not differ, since the error is caused by only one individual gross
error during the test runs (see Figure 45).

As in the case of complete data, the worst error estimates on the incomplete
data sets are obtained by the random initialization method. The K-means-based
initialization methods also ended up with quite poor quality solutions in the pres-
ence of missing data.

ModKKZ is clearly the most efficient initialization method when comparing
the quality of the estimates in the final clustering solutions. Whereas ModKKZ is
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FIGURE 42 The mean estimates (N=100) of the scaled clustering error err on 2-
dimensional incomplete Gaussian test samples with different number of

cluster and missing data values.
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TABLE 6 The numbers of empty clusters with respect to missing data on the 2-
dimensional data sets.

% | BE TrobBF robBF random BF+K-means ModKKZ TModKKZ
0] 6 1 1 0 10 0 0

15| 2 1 1 0 11 0 0

30| 2 0 0 0 2 0 0

45| 3 0 0 0 2 0 0

the best one also in this case, the trimmed variant TModKKZ suffers quite badly
from the missing data values. The average quality of the TModKKZ solutions
is even lower than the K-means-based sub-sampling-methods when 45% of the
data is missing and there are more than four clusters. For the same settings,
ModKKZ performs extremely well. One should note that when 30% or less of
data is missing, the estimated error by TModKKZ is the second lowest. Removing
10% of data points, that is the applied trimming fraction, simultaneously with
45% of missing data values leads to a loss of more than half of the data during the
initialization. If, at the same time, the number of clusters is high, some clusters
may almost disappear from the data. Such a loss of information may lead to
serious errors with the distance-based methods. Interestingly the same behavior
is not observed with the trimmed sub-sampling based method. This might be
due to the multiple subsampling, which assures the more thorough use of all
data. Hence, TrobBF does not suffer from the trimming as much as TModKKZ.
This may indicate that the sub-sampling-based methods are more robust than
distance-based methods as the fraction of missing data approach to 50%. It seems
also that there are no big differences between the robust and K-means-based sub-
sampling methods when 30% or 45% of data is missing. This is not supposed
to be the case if also some outliers were present in the data. It seems that the
amount of missing data does not influence remarkably the sensitivity to empty
clusters. Table 6 shows that worst performers in this sense are BF and BF-K-
means as they were in the case of complete data. The numbers show that larger
fractions of missing data enhance the performance of the methods rather than
impair it. Other than K-means-based methods do not suffer from the problem of
empty clusters at all.

It is also important to compare how much time it takes to operate on in-
complete data by the different initialization methods. It is clear from the results
in Figure 43 that the random and distance-based initializations have superior
CPU times. The differences in the computation times of the sub-sampling-based
methods are not noteworthy. The robust methods robBF and TrobBF converge
slightly faster than BF and BF-K-means, which is due to smaller number of K-
spatialmedians iterations accomplished during the final clustering. The numbers
of iterations used by the K-means and K-spatialmedians algorithms for conver-
gence from the different initializations are depicted in Figure 44. On the complete
data sets, the number of the final clustering iterations seemed to be quite inde-
pendent of the number of clusters. Only if the random initialization was used,
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FIGURE 43 Average CPU times from the tests on the incomplete data sets. On the
bottom-right there are the averages of the bars.
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the number of iterations grew with respect to the number of clusters (cf. Figure
41). This is no more the case in the presence of missing data. The number of
final clustering iterations grows both along the number of clusters and amount
of missing data. In most cases robBF, TrobBF, and ModKKZ require the small-
est number of clustering iterations. The only method that sticks out in the tests
is the random initialization that needs a large number of clustering iterations in
all cases. The differences between the others are quite small. Perhaps the most
remarkable detail of the graphs is the growing numbers of clustering iterations
when the TModKKZ initialization is used. As the overall CPU time is very small
for TModKKZ initialized clusterings (Figure 43), it means that the initialization
process itself has to be very fast. One should also note that a higher number of K-
spatialmedians clustering iterations does not automatically mean a good quality
clustering solution (cf. Figures 42 and 44).
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7.3.3 Test 3: Scalability in data size and dimensions

As the focus of this study is mainly to settle down to the KM/KDD/DM aspect,
it is important to test whether the algorithms are efficient and scalable on large
data sets or not. Thereby, bearing this on mind, tests were also performed on a
couple of relatively large data sets. The influence of increasing the size of clusters
(more data points in a cluster) and dimensions were investigated.

Figure 47 provides some graphical information about scalability of the al-
gorithms with respect to the number of data points. The number of clusters and
dimensions are fixed to K = 3 and p = 3, respectively. The results describe
the average of the estimates over 100 simulation runs. The average CPU time
required by the random initialization is clearly the highest. It is neither fast on
small scale problems nor scalable to large clustering problems. The average error
of the solutions is such that it takes far too many iterations, and thereby, far too
much time, to obtain stabilized solutions on large DM data sets. Hence, although
so many times being considered as the de-facto solution in the search for the glob-
ally best partition by the fast K-means algorithm, the multiple random repetition
still seems to be far from optimal when one is dealing with large-scale data sets,
as is usual in the DM context. The distance optimization methods, ModKKZ
and TModKKZ, outperform the density estimation methods in the scalability is-
sues. The better performance is due to the simplicity of the initialization methods
themselves, because the initial configurations obtained by any of these methods
lead to about equal number of k-clustering iterations. Unlike with the random
initialization, the errors for the solutions are very small with all the other meth-
ods. The standardized errors are almost independent of the sizes of clusters. A
couple of solutions with somewhat larger errors are obtained by ModKKZ initial-
ized K-spatialmedians and BF initialized K-means clusterings. Nevertheless, the
errors are quite insignificant.

While the previous results describe the behavior of the different initializa-
tion algorithms with respect to the growing amount of data in the clusters, the
following results present the influence of dimensionality (See, Figure 48). Also
in this case the scalability of the random initialization can not compete with the
other methods, because it takes nearly three times more clustering iterations to
converge from the randomly chosen prototypes. The overall CPU time grows
clearly faster for the random initialized clustering than for the other approaches.
The use of the K-means approach either in the initialization step only or in the
initialization and the final clustering step, seems to decrease the CPU time of
the density based methods, which are slightly faster than their robust variants.
The distance-based methods also scale best in this case. The trimmed variants
of the distance optimization and density estimation seem to require somewhat
more computation with respect to the number of dimensions, but the differences
are not remarkable in these tests. As the errors are approximately equal for all
methods, except for the random method, the distance-optimization methods are
the most efficient methods when the clustered data includes a large number of
dimensions.
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TABLE 7 Test parameters.

data | K| p 1 n | miss%/cl | noise%
A | 3]30]220—-260 | 720 33 30
B |6 |30]|120—180 | 900 33 10
C | 3|50|220—-260| 720 0-40 5
D |7 |50 100—300 | 1455 0-50 15

Because the simulated data sets used in these tests comprised of extremely
clearly separated cluster structures, some experiments are needed to be performed
under more difficult conditions, where the clusters are of arbitrary shape, and
noise, and outliers and missing data exist.

7.3.4 Test 4: Clusters of arbitrary shapes with noise and missing data

In order to evaluate the performance of the different initialization methods un-
der more disturbed conditions, experimental settings that produce more noisy
and incomplete clustered data sets were defined. Table 7 presents the parameters
used. The total number of data points, n varied from 720 to 1455. The relatively
high-dimensional data sets contained 3-7 clusters. The size of the clusters, 11.;, and
in the case of C and D the amount of missing values per cluster as well, varied be-
tween the clusters. Moreover, 5-30% of the data were randomly transformed into
uniform noise in the min-max range of the data. For keeping the proportion of
missing data unchanged, empty values were not allowed to be filled with noisy
ones. The values of the cluster centers were sampled uniformly from the inter-
val [—5,5] for each variable. The minimum Euclidean distance for two cluster
centers was 1.5 and the standard deviations of the Gaussian cluster centers and
the scatter parameters of the Laplace clusters varied uniformly from 0.3 to 0.9.
Hence, the clusters were not necessarily of spherical shape. The error, CPU time,
and the clustering iteration estimates are computed from 100 iterations. Figure 49
presents two low-dimensional examples of the data sets used in the experiments.

Interpretation of the results

The results for data sets A,B,C,D are given in Figures 50-53. Different assump-
tions underlying the methods become clearly visible in these results and the suc-
cess of each method depends heavily on the distributional conditions used in the
data generation. The random initialization is also much more competitive when
compared to the previous well-separated cases. The interesting thing is also that
empty clusters were not met on these data sets. Let us first concentrate on the
sub-sampling initialized variants and on the effects of robustness. The non-robust
BF+K-means combination produces clearly the worst results of the sub-sampling-
based initialization methods. It produces the largest estimates for the clustering
error on all data sets except one. The exception is encountered in data B, in which
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the BF initialization with the K-spatialmedians clustering gives the largest errors.
Hence, robustness seems to provide an advantage on these noisy and incomplete
data sets. TrobBF produces the smallest clustering errors on data sets B and C.
Moreover, robBF is as good as TrobBF on data C. When the non-robust BF ini-
tialization is used, K-spatialmedians clustering gives better results than K-means
on three of the four data sets. On data B, K-means with BF produces smaller
average error estimates than K-spatialmedians, but the behavior is anyway very
similar. The difference is only due to a couple of unsuccessful runs that have pro-
duced very large errors for the latter (see distributions in Figure 51). Hence, these
results also confirm the general assumptions behind this study;, i.e., that robust
clustering methods are more likely to provide better clustering solutions under
disturbed and incomplete conditions. They are not as easily misled by errors and
missing values as the methods based on sample mean estimators.

The results do not give a straight answer about the utility of the trimming
operation used in the robust TrobBF method. On B and C data sets the results are
very good for TrobBF. However, on three of the four data sets the results by the
non-trimmed robBF procedure are as good as, or even better than with TrobBFE.
Although it can be expected that the larger the amount of noise, the better the
behavior of TrobBF when compared to robBE, this is not observed in these tests,
since B and C data sets contain the smallest numbers of noisy values. Neither
does the number of clusters nor the amount of missing values explain the differ-
ences. Hence, on this basis it is not possible to give general and precise recom-
mendations about which one to choose for a clustering task.

As the general distributional assumptions are disturbed, the random ini-
tialization seems to be more and more efficient. It produces the smallest error
estimates on two data sets (A and D) that are actually the most noisy ones (30%
and 15%). Data set D can be considered a very difficult case, because there are
seven clusters, the number of data points varies from 100 to 300, the cluster-wise
fractions of missing values are 0%, 20%, 40%, 15%, 35%, 50% and 5% and, more-
over, 15% of noise exist in the data. Furthermore, as the cluster data are generated
from Gaussian and Laplace distributions with equal probabilities, it is extremely
difficult to define the general assumptions for such data. Hence, the fact seems
to be that the more unstable the conditions, the more biased the initializations of
the heuristic methods become, because they do not assume noisy, arbitrary shape
clusters with cluster-wise varying amounts of missing data.

The promising performance of the distance-optimization methods on well-
separated cases presented in the previous sections fell down on the tests on un-
steady data. ModKKZ gives the second and third smallest errors on data A and
B, respectively, but produce totally unusable solutions for data C and D. The
trimmed variant, TModKKZ, is also acceptable for data A, but produces many
large errors for data B and totally unusable results for data C and D. The fractions
of missing data varies cluster-wise in data C and D. As this is the most significant
difference when the test parameters of A and B are compared to the C and D, it
may be also the problem for the distance-based methods as the definition for the
general distance between the two data points with unequal number of missing
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values is hard to give.

In addition to the large clustering errors produced by ModKKZ and TMod-
KKZ, their CPU times have also grown when compared to the results given ear-
lier. This is due to the increased number of the finalizing K-clustering iterations.
For example, the average numbers of K-spatialmedians iterations on case B are
10.00 and 11.61 whereas the clustering algorithms take approximately four iter-
ations to converge after the density-estimation-based initializations on the same
case (see Figure 51). Hence, the gap in the overall computation time is not that
large after all. Despite the relatively large numbers of K-spatialmedians itera-
tions, the random initialization has the shortest CPU times in cases A and B.
TModKKZ has the shortest CPU times in C and D, but the random initializa-
tion is also very competitive in these cases. The density-based initialization is
computationally a more intensive approach than the random or distance-based
initialization, but it leads to fewer K-clustering iterations. This is an important
property on large data sets, as the clustering iterations over the whole data set
are expensive. For instance, in case D (see Figure 53), the overall CPU times of
the density-estimation initialized methods are very close to the times needed by
the KKZ-type or random methods. This points out the increased computational
cost caused by clustering iterations on full data, which is an important detail from
the DM point of view.

7.4 Conclusions

The numerical experiments under the previously described simulated conditions
have shown the difficulty of finding a general initialization method and an over-
all clustering approach that would produce unique clustering results on all kinds
of erroneous and incomplete data sets. In the DM /KDD context this confirms that
the domain expertise is worth a great deal. The obtained results show that under
nearly ideal conditions, which here refers to data sets that are composed of well-
separated clusters, the random initialization approach and the sensitive K-means-
based initialization methods are outperformed by robust density-estimation-based
or distance-optimization-based initialization methods. The proposed modified
initialization methods do not only give smaller errors, but require less CPU time
as well. This is mainly due to the reduced number of the final clustering itera-
tions. This is a very important result from the DM perspective as the cost of one
full-data clustering iteration is higher on large data sets.

Tables 8,9, and 10 show the ranks of the different methods on complex data
sets A,B,C, and D. Based on the results, some advice to the initialization prob-
lem can be given. On error-free complete data sets, the distance-optimization
methods yield clustering solutions with the best quality in the shortest time. As
Figures 33 and 34 illustrate, in the presence of outliers, it may be useful to trim the
data before the initialization. This prevents empty or very small outlying clusters
covering the true properties of the data as presented in Section 7.2.4. The exper-
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TABLE 8 The rank of the methods according to the mean errors i, taken from Figures

50-53.
data | BF TrobBF robBF random BF+K-means ModKKZ TModKKZ
A 5 7 4 1 6 2 3
B 7 1 4 2 6 3 5
C 1 1 1 5 4 6 7
D 3 4 2 1 5 6 7

TABLE 9 The rank of the methods according to the means of the total CPU time i taken

from Figures 50-53.

data | BF TrobBF robBF random BF+K-means ModKKZ TModKKZ
A 5 7 6 1 4 1 3
B 5 6 6 1 4 2 3
C 5 7 6 2 4 2 1
D 5 7 6 2 3 4 1

TABLE 10 The rank of the methods according to the means of the K-means/K-

spatialmedians iterations y; taken from Figures 50-53.

data | BE TrobBF robBF random BF+K-means ModKKZ TModKKZ
A 3 2 1 4 6 7 5
B 4 2 1 5 3 6 7
C 3 2 1 7 4 6 5
D 2 3 1 6 4 7 5
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iments on the incomplete data sets show that ModKKZ clearly outperforms the
rest of the methods even in the presence of 45% missing data values, but TMod-
KKZ suffers from the missing data, and the quality of its solutions approaches
the density-estimation methods as the fraction of missing values increases. The
amount of uniform missing data, by itself, does not seem to have dramatic effect
to computational costs of the methods. The best scalability with respect to the
data size is obtained by the distance-optimization methods when the clusters are
clearly separated.

Although being clearly the best performers on well-clustered data, Mod-
KKZ and TModKKZ do not work well on more real-world-like data. When the
distributional conditions behind the data become more complex, the robust vari-
ants of the density-estimation initialization methods outperform them in find-
ing the cluster centers. The random initialization becomes also more compet-
itive when the data is more dirty, in other words, erroneous and incomplete.
As the quality of the clustering solutions obtained by ModKKZ and TModKKZ
methods collapse on the high-dimensional and relatively large messy data sets,
they can not be considered as the generally best choices for the DM cluster-
ing tasks that often focus on such data sets. When the distance-optimization
methods are used, one should be satisfied that the data contains relatively well-
separated clusters without noise and non-uniform missing data. Otherwise, ro-
bust density-estimation methods and random initialization would be the most
promising methods. This study is thus not able to deny the de-facto position of
the random initialization, but it provides new, robust, and fast methods for the
initialization problems for the DM clustering tasks.

One of the main contributions of this chapter is the extensive tests per-
formed for the number of existing and modified methods. The results have shown
that the use of the robust elements in any part of the clustering process leads to
better results in very different conditions. As surmised earlier on, universal meth-
ods for clustering problems cannot be given. The best of these methods can be
distinguished, however, by their number of good properties, such as:

* Robustness
¢ Scalability
¢ Missing data treatment

* Minimal number of input parameters (input: data+K, output: clusters)
7.4.1 Future ideas

As already mentioned in the course of this chapter, the obtained results offer
many novel possibilities for the further development of the automatic cluster-
ing algorithms. The methods based on the refined data sets by clustering sub-
datasets produce simultaneous information about variability in the cluster as-
signments and locations. This information might be useful to exploit in the stability-
and prediction-based methods for estimating the number of clusters (cf., [336,
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243, 291, 370, 95]). Furthermore, the density and distance based initialization
methods could be combined into “hybrid methods” that might give better and
more universal performance. An interesting issue is also the distance computa-
tion in the presence of missing data. In trimming, the data could be arranged
with respect to the number of existing variables. This is based on the assumption
that the more information about the similarity of two objects, or, in other words,
the more common features available in two objects, the more closer to each other
they are. A missing value does not contain information about the individual com-
ponent of its data point, for example, be it an outlier or not. On the other hand,
one should be careful with the treatment of missing data, since it may encompass
a lot of information about the data set as a whole. Dorian Pyle [324] emphasizes
that missing data patterns contain sometimes the most important piece of infor-
mation for modelling. Therefore, it is important to take care that the information
related to missing data is not completely lost during data processing. The amount
of information in missing data as dependencies, correlations etc. depends on the
missing data mechanisms that are discussed in more detail in Chapter 3. The
development of these methods requires, nevertheless, a great number of experi-
ments on real-world data sets and are is therefore left outside this work as a future
issue to be addressed.
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FIGURE 49 2- and 3-dimensional clustered data sets from the Gaussian and Laplace

distributions. The data sets contain 30% and 15% of noise, respectively.
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FIGURE 53 7 spherical clusters from a 50D Gaussian and Laplace distribution. The
number of data points is 1455. Min/max size of clusters is 100/300,
noise(%) 15 and missing values (%) 0, 20, 40, 15, 35, 50, and 5. The number
of the generated data sets is 100. The results for the methods are presented
column-wise from left to right: BE, TrobBF, robBF, random, BF+K-means,
ModKKZ, and TModKKZ



8 MINING REAL APPLICATIONS

In this chapter, the practical utility of the developed clustering methods is demon-
strated on a few real world data sets. The obtained clustering solutions are visu-
alized using classical and robust projection techniques. Therefore, a couple of
variants for cluster visualization are introduced before their usage in real appli-
cations. Furthermore, silhouettes and L1-data depth based indices are presented
as promising cluster validity indices. The original silhouettes are replaced with
a more robust modification, whose behavior is then compared to the ReD index
on real-world data. The chapter does not include thorough tests for any of the
proposed methods. The data projection techniques are based on existing robust
covariance estimates and they are only applied to data sets and solutions. The
cluster validity indices are also based on given suggestions from literature and
the robust variant is presented and applied in a tentative manner. As the goal
of this chapter is to provide examples of the usability and utility of the devel-
oped clustering techniques, thorough testing and analysis (especially knowledge
discovery) remains a future challenge. The sample applications involve image
compression tasks (vector quantization), analysis of industrial process measure-
ments, and an analysis of data representing information on more than three thou-
sand software projects.

8.1 Dimension reduction and visualization

Dimension reduction and feature selection are closely related to data clustering.
The basic principles are introduced in Chapter 3. From the perspective of the DM
process, these methods can be used as preparatory tools before the DM step. The
dimension reduction may lead, for example, to a faster clustering process. On
the other hand, they can be used as explorative methods during the visualization
step. When applied to data visualization, dimensionality of the processed data is
lowered to enable visual data exploration. The simplest tools for data visualiza-
tion are, e.g., parallel coordinates and numerous plotting techniques (scatter, trel-
lis, star, box plots, etc.) [170]. The defect of these methods from the DM point of
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view is that they are not necessarily able to reveal dependencies and relationships
in high dimensional spaces, since the data is not always distributed or discrimi-
nated in the direction of individual or pairwise coordinates. Therefore, methods
that find some form of principal directions from data are needed. The principal
directions can be represented, e.g., by principal components of a covariance ma-
trix, so that data variation is maximized. As the most informative directions are
determined for the data, the data points and/or cluster centers can be projected
onto these new coordinate axes. In graphical presentations, the first two or three
of the most informative axes are chosen as the representative directions of the
data.

8.1.1 Robust covariance estimates

Before a more detailed treatment of data projection techniques, some covariance
estimates are introduced. These will be applied in the chosen data projection tech-
niques. When the underlying distribution behind the target data is normal, the
maximum likelihood estimate of the data variability is defined by the sample co-
variance matrix (see, Section 4.3.1). Because of the underlying assumptions, the
sample covariance is highly sensitive to contaminated data, which means that
covariance estimates may break down. This often leads to inflated variances, dis-
torted correlations, and weighting of unnecessary dimensions. By using nonpara-
metric multivariate statistics, robust estimators for covariance matrix have been
developed by many statisticians [272, 389, 390]. When compared to the sample
covariance estimator, these estimates are inherently more robust against contam-
inated data (cf. the sample mean versus spatial median in Chapter 4).

Since the sample covariance matrix estimator is already presented in the
previous sections, only the robust variants are introduced here. In addition to
the classical principal components, the subsequent real-world data sets are vi-
sualized by using principal components that are based on nonparametric robust
estimation techniques. The first one is the sample sign covariance matrix (SCM)
estimate, which is defined as [272, 389]

1 N
Lscm = N Y " S(x; —m)ST(x; — m),
i—1

where S(x) is the spatial sign function that is multivariate generalization of the
univariate sign function (sign(x) € {—1,0,1}, x € R) defined as [290]

o= { ¥ 270 Z

This is the spatial sign function that gives the direction of vector x from the origin.
One can see that (61) is a special case of the general non-smooth optimality con-
dition (39) for the problem of the spatial median. The above formulation shows
that the SCM based estimators assume that the data is first centered with respect
to the spatial median m of the data. The relative efficiency and robustness of SCM



199

based estimators is shown to be very comparable to several other covariance es-
timators by simulation experiments in [272].
The sample Tau covariance matrix (TCM) estimate is defined as [389]

1 N N T
ZTCM:m;; —X]S( —X]').

The benefit of this estimate is that the spatial median is not needed because it
is based on pair-wise directions between the data points. This is, however, a
computationally expensive estimator. The estimators based on SCM and TCM
are rotation equivariant, but not affine equivariant. Hence, they are sensitive to
change of scales.

In order to take into account the robust variability of the data in the direction
of the principal component, Visuri et al. [389] propose a special strategy for con-
structing a robust estimate for the covariance matrix. The eigenvector estimates
(denoted by matrix U) are first constructed using a robust procedure, for example,
the SCM or TCM estimator. The marginal variances, that are called eigenvalues
or principal values and denoted by A = diag(A4,..., /\p), of UTxq,...,UTx, are
then estimated using any univariate robust scale estimate (e.g., median absolute
deviation (MAD)). Finally, the covariance matrix estimate is X = UAUT.

Principal components

Principal component analysis aims at finding such linear combinations of a data
set that preserve the maximum amount of information assuming that the infor-
mation is measured by variance [272]. Hence, it is natural to use it for explorative
data mining. A reduced dimension is obtained when the original high dimen-
sional data is projected from the original R? space into the lower dimensional IR7
space (p > q) that is determined by the principal components.

Let us suppose that the mean pu of a p-dimensional standardized data set X
is at the origin (otherwise data is first centered to the origin). The g-dimensional
projection y; of any vector x; € X is obtained by

Y = Axi/

where A is g x p orthogonal matrix. In the classical PCA analysis, the transfor-
mation matrix A is defined by the eigenvectors of the covariance matrix X of data
set X. The eigenvectors e; and the corresponding eigenvalues A; of the covariance
matrix X are obtained by

Xe;=Ae;, for i=1,...,p.

The eigenvectors corresponding to the largest eigenvalues represent the direc-
tions of the largest variance in the data. By taking some of the largest eigenvectors
as the row vectors of A, one obtains a transformation matrix that maps the points
of the original space R? to the low-dimensional orthogonal representation in RY.
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If data set X is projected onto this new coordinate system, much information is
preserved in the form of variability while the number of dimensions is decreased.

The classical principal components are based on the sample mean and sam-
ple (co)variances and correlations. Therefore, they are very sensitive to erroneous
data. Consequently, robust covariance matrix estimates, such as the aforemen-
tioned sign and rank based SCM and TCM, are used in the principal component
analysis. The available case data strategy from Section 3.2.8 can easily be ex-
tended to all covariance matrix formulae where missing data exist.

In the case of data clustering, one can also determine the principal compo-
nent directions with respect to cluster prototypes. This gives many advantages
when compared to the use of the full data set. The prototypes are usually com-
plete, which means that missing data is not a problem for the computation of
the principal projections. Furthermore, the utilization of prototype data to the
computation of the principal projections significantly reduces the computational
requirements because usually K < n. Moreover, if the chosen clustering crite-
rion maximizes the between-cluster distances, the prototype data should contain
the most discriminative directions of the data. Hence, by using prototypes in the
estimation of the principal directions, the projected data should also contain in-
formation about the most discriminative directions of the clustered data that are
the directions which maximize the between-cluster distances. Directions of the
largest variance do not necessarily guarantee the preservation of the discrimina-
tive features to the projected data. Finally, if the cluster prototypes are produced
by a robust and reliable clustering algorithm, the principal components are prob-
ably better saved from outliers. The risk in the use of the prototype data is that
the global structure of data may be more emphasized than the local.

While the principal component mapping is based on the linear projection
from high to low dimensional space, multidimensional scaling (MDS) refers to a
set of methods that applies non-linear transformation to the data [175, 170]. MDS
is also widely used in visual and explorative data analysis.

In MDS, computation is based on the pairwise distances between the data
points. Let d;; be the distance (e.g., Euclidean distance) between two p-dimensional
observations x; and x;. A standard MDS seeks g-dimensional (7 < p) vectors
{x},...,x;} that minimize the cost function, which is given by

Imps({X1, ..., x,}) = Z i (dij — di;)?,

n
i=1j=i+1

where d; -is the distance between unknown g-dimensional vectors x§ and x.. Hence,
the goal is to find a configuration for the data points in IR7 that preserve the pair-
wise distances of the data vectors as well as possible. The initial configuration
of points to the g-dimensional space can be created, e.g., using the PCA method.
The cost function is minimized by using an appropriate optimization algorithm.

Some variants of the standard formulation of the MDS problem exist. Per-
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haps the most popular is the Sammon’s mapping that is given by

Sy v o )
jSummon({xlr--'rxn}) = Z Z d:: :
1

i=1j=i+1

Due to the normalization by the pairwise distances of the original space, smaller
distances are better emphasized. Smaller weighting for large distances could also
be obtained by omitting the squaring of the subtraction term. A good side of
MDS is that only pairwise distances are required. It also generalizes to any dis-
similarity measure. The weakness of MDS is the computational load.

The Sammon’s mapping was preliminary tested by us for full data sets and
cluster prototypes. Because the mapping did not produce remarkable improve-
ments (i.e., changes) to the principal component projections, it is not applied in
the subsequent real-world examples. In these tests, also a relatively large amount
of computation time was needed.

Another interesting approach to the cluster projection and visualization is
the classical linear discriminant analysis [94]. Based on the Fisher’s linear dis-
criminant and its generalization, Dhillon et al. [86] propose a formulation of
class-preserving projections for cluster and class visualization. The objective is
to maximize the following ratio

tr(WZEW)
tr(WZywW)’

where W represents the most discriminant low-dimensional orthonormal basis
and Xp and Xy are the between-scatter and within-scatter matrices. Dhillon et al.
[86] ignore the within-cluster scatters Xy in order to reveal the multidimensional
class-structure from the data.

8.2 Data-based indices for the correct number of clusters

Cluster validation is an interesting and challenging problem. The traditional it-
erative relocation methods, such as K-means, do not provide information about
the number of clusters K. It is clear that the sum of the squared error criterion
monotonically decreases as K increases and reaches its minimum when K = n
(e.g., Duda et al. [93, p.241]). Hence, this favors small clusters and is of no use
per se for cluster validation. Usually validation indices measure compactness and

separability of clusters. There are several approaches to measure the inter-cluster
distance [156]:

* Single linkage that measures the distance between the closest members of
the clusters.

¢ Complete linkage that measures the distance between the most distant mem-
bers of the clusters
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¢ The distance between the cluster prototypes.

Moreover, based on experimental results, Bezdek et al. [35] emphasize that inter-
cluster separation has a more important role in cluster validation than within-
cluster scatter.

Consequently, a number of internal and external indices exist for cluster
validation and for the problem of choosing the correct number of clusters (see,
e.g., [283, 157]). External indices are based on test data sets on which the ob-
tained clustering solutions are validated. Internal indices are typically based on
the between- and within-cluster distances. A third approach is to use a relative
criterion that compares the results of different clusterings obtained with the same
algorithm, but with different parameter settings [158]. Sometimes the heuristic
for the problem of unknown number of clusters is integrated to the clustering al-
gorithm. Furthermore, also visual validation methods have been introduced. An
extensive review on the methods and indices can be found in [156].

Estimation of the correct number of clusters is a difficult task. For a thor-
ough examination of different indices, several different clustered data sets, ex-
perimental settings, and clustering algorithms must be considered (see, e.g., [283,
91, 173]). Moreover, the results of data clustering are always somewhat data de-
pendent. Here, a new variant for an existing index is proposed. The new index
is applied to the real-world data sets in this chapter, but not thoroughly tested
yet. The results of the new index are shown by graphical curves that are expected
to give a clue for the analysts about the most appropriate and “natural” clus-
ter models. These can (and preferably should) then be compared to the models
considered best by the visual “"human validation”. Hence, when applying these
computational indices one should recall the general nature of the cluster analy-
sis process explained in Chapter 3, which should not be structure imposing, but
rather let the data tell about itself. Before introducing the methods used, a brief
review of the existing methods is given.

Milligan et al. [283] investigate the performance of 30 procedures for es-
timating the number of clusters. The best method found in their study is the
Calinski and Harabasz index (CH) defined for n data points and K clusters as

tr(Xp)/(K—1)
tr(Zy)/(n —K)’

where Xz and XLy are the between cluster scatter matrix and the sum of the within
cluster scatter matrices, respectively. CH performs consistently across data sets
with varying numbers of clusters. The second best index is the ratio criterion
Je(2)/ Je(1) introduced by Duda and Hart [93]. J.(1) and J,(2) are the sum
of squared error criterions for one and two clusters, respectively. A predeter-
mined critical value for the index is used for deciding whether or not the split-
ting of a cluster is justified. Although this index has some difficulties when the
true number of clusters is small (K = 2), its performance is otherwise compara-
ble to CH. The examination showed poor performance of the traditional indices,
tr(Zw) tr(Z,'Lp), and | T|/Zw (T = Ly + Zp) that assume multivariate normal-
ity (see, [130]).
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Dubes [91] presents the results of thorough experiments for two internal
validation indices called the Davies and Bouldin index (DB) and modified Hubert T
statistics (MH). As a result, the latter is shown to perform better under all experi-
mental conditions.

Hardy [173] presents good results in estimating the true number of clusters
for three methods based on hyper-volume criterion. He compares these meth-
ods against four other indices, such as the well-known Marriot’s k?|Zyy| index
[275], that has been available in Clustan! cluster analysis software. As a result,
Hardy recommends the application of several clustering strategies and validation
indices to learn more about the clusters and use all this information.

Bezdek et al. [35] show that the so-called Dunn’s index is very sensitive to
noisy data points. They introduce 17 generalized variants for the Dunn’s index
and compare those against DB, MH, and the original Dunn’s index. They find
that the Dunn’s index in its original form is not a suitable for cluster validation,
but it can be enhanced with a proper modifications. As a conclusion, they sug-
gest, similarly to Hardy [173], to use several clustering methods and strategies,
vary the parameter settings and collect many “votes” using various indices. Con-
sistent results across various trials indicate that the true number of clusters is
found.

Halkidi et al.[160] propose the SD index that measures the weighted sum of
the average within-cluster scattering and the total inter-cluster separation. An-
other validity index called S_Dbw by Halkidi et al. [159] is based on the principle
that the density of points between clusters should be low in comparison with the
intra-cluster density. Low inter-cluster density indicates well-separated clusters.
Hence, the S_Dbw index measures the sum of the inter-cluster density and within
cluster scattering.

Maulik et al. [277] introduce a new validity index Z and compare it against
the DB, CH, and Dunn’s indices. The Z index performs best on each of the test
cases. The CH index is the second best in this test.

Kim et al. [225] proposed recently a subdivision of cluster validation indices
into summation type and ratio type indices. The idea is to separate the coupling of
inter- and intra-cluster distances to each other. They introduce six new alterna-
tives for DB, SD, S_DBw, and two fuzzy indices, and compare the new indices
against the old ones. The results show that the modifications lead to improve-
ments and generally ratio-based indices show better performance than summa-
tion based indices.

Nakamura et al. [293] introduce an algorithm that simultaneously computes
the number and locations of cluster prototypes. The method is called Multi-scale
clustering (MSC). The idea is to vary the problem resolution by changing a special
scale parameter. The correct number of clusters is defined to be the one that tol-
erates the largest changes of the scale parameter, in other words, has the longest
lifetime.

Visual validation techniques for the cluster analysis are proposed by Ling
[256], Bezdek et al. [34], Hathaway et al. [177], and Huband et al. [194]. Instead of

1
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using a single number as a measure of cluster validity, they apply dissimilarities,
grids, and shades of gray to the validation.

Hamerly et al. [161] propose the Gaussian-means algorithm that starts with
a small number of clusters. The number of clusters is increased after each it-
eration by splitting the clusters which do not satisty the Gaussian assumption
according to a statistical test. The algorithm stops after the hypothesis that the
data assigned to the cluster is Gaussian is accepted. The method outperforms
the X-means algorithm [314] based on the Bayesian information criterion (BIC) on
data with non-spherical clusters. X-means tends to overestimate the number of
clusters on such data. Another example of the BIC criterion based methods with
multivariate normal mixture model clustering is introduced by Fraley et al. [126].

Bischof et al. [37] introduce a robust clustering algorithm whose validation
is based on the Minimum Description Length (MDL) criterion.

Smyth [353] introduces a clustering algorithm that is based on the Monte
Carlo Cross-validation. He applies two approaches known as the MCCV and v-fold
cross-validation. The performance of the MCCV method is roughly comparable
with the AutoClass method [67] and slightly better than the BIC criterion based
clustering. The v-fold cross validation method shows unreliability.

Tibshirani et al. [371] introduce the Gap-statistic method, which compares
the curve of log Wy (W is the total sum of within-cluster distances) to the curve
obtained from data uniformly distributed over a smallest hyper-rectangle con-
taining the data. The optimal number of clusters is obtained when the gap be-
tween the curves is largest.

Prediction strength method is proposed by Tibshirani et al. [370]. This
method splits data in two halves and runs the clustering algorithm for both.
Then, applying the nearest-centroid principle, the other half, test data, is clas-
sified using the prototypes obtained with training data. The similarity of the
clusterings is measured as the average of co-memberships in the worst matching
clusters. The clustering that best predicts the classification is selected.

Levine et al. [250] introduce a resampling-based method for estimating the
correct number of clusters for data. The idea is to assess the average similarity
between solutions that are computed for the full data and for a given number of
subsamples of size fn, where f € [0,1]. The merit M(K) for each clustering is
calculated. It measures the agreement between the clusterings obtained on the
sub-sample and full data. M (K) = 1 means perfect agreement. The clustering
with the highest value of the merit M (K) is chosen to be the best solution.

Roth et al. [336] and Lange et al. [243] present a resampling approach to
cluster validation that is based on the concept of cluster stability. The basic idea
behind the method is again to split data into two halves and apply the clustering
algorithm to both. Then the other half is used to train a classifier and predict the
classes of the remaining half of the data. The distances of the solutions obtained
for the latter half of data are computed as misclassification rate. K that yields the
smallest average misclassification rate is chosen as the number of clusters.

Dudoit et al. [95] introduce a prediction-based sampling method, CLEST,
for estimating the number of clusters. In the CLEST procedure, the data is first
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split into two non-overlapping sets. The learning set is clustered and a classifier
is built using the obtained labels and applied to the test set. The test set is then
also clustered and the obtained labels are then compared using an external index
(the authors suggest the FM index [122]). This is repeated perhaps 20 times and
the median estimate for the similarity statistics is computed. The same procedure
is repeated for the data sets generated under null hypothesis. The statistics are
then compared in order to decide the number of clusters.

In summary, many attempts to invent a reliable validity index for clustering
problems have been proposed. The earliest methods have mainly been internal
indices. Later, the collection of validity indices have diversified as computation-
ally intensive variants, such as cross-validation, BIC, MDL, resampling, stability,
and even visual methods have become more common. Although it is difficult to
find the best index, one may recognize some weak indices, such as the Dunn’s
index. Hence, a good index should perform well at least under well-defined clus-
ter structures [106, p.103]. To obtain the best result, one should perhaps take
several indices, parameter settings, and clustering algorithms, and then perform
“voting” to find the largest agreement between the methods [173, 35, 143, 106].
On the other hand, one may also get bad results if the voting is based on wrong
assumptions (concerning normality, missing data, outliers, etc.)

8.2.1 Silhouettes

Silhouettes [220] and ReD [207] are the chosen validity indices in this chapter.
Actually, the first one is made robust by a trimming technique, while the second
one is used in its original form. These are simple data-based internal indices.
ReD is initially based on robust estimates and Silhouettes can be easily made
more robust by trimming.

Silhouette width is an internal cluster validation approach that measures the
cluster tightness and separation [337, 220]. The silhouettes can be used for graph-
ical illustration of the clustering solution. Here the principle is used as an internal
validation index.

Let us next consider how the silhouette values are computed for a parti-
tioned data set X. Let a(x;) be the average dissimilarity (usually with respect to
the Euclidean distance) of x; € X to all other objects in the same cluster. Further-
more, let C be the second closest cluster to x;. Then b(x;) denotes the dissimilarity
from x; to C, which is defined as the average dissimilarity from x; to the objects
in cluster C. The silhouette width s(x;) is then calculated by

b(xi) — a(xi)
) nax{ala), x) ) 2
If the cluster consists of only a single object, the definition of a(x;) is unclear.
Kaufman et al. [220, p.85] suggest to set s(x;) = 0. The average silhouette width
for k cluster solution is known as the silhouette coefficient [220]
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Hence, the "best” number of clusters is obtained by

arg max35(k).

k=1,..n—1
Practically, the maximum value of k is much less than n — 1 in real-world appli-
cations.

8.2.2 ReD

A related index to silhouettes is the ReD selection index [207]. It is an internal
cluster validation index, which measures the difference between the within- and
between-group data depths. As a rank-based method, ReD is independent on the
scales of the clusters and is not dominated by high variance clusters.

The ReD index is based on the Li-data depth function, which is introduced
using the spatial median [382]. Let us next present the ReD validity index for a
partitioned data set X according to [207].

Based on (61), the spatial rank of point z € IR” is defined as [290]

1
R(x = ; S(x (63)
The data depth of z with respect to data X is then defined by [382, 207]
D(z) =1 —max(0, [[R(x; — 2)[| = f(2)), (64)
where ' Iz = x)
i=1 i)

f(z) = ==L

I(z = x;) gives the number of points x; € X that overlap with z. The statistical
interpretation of the data depth relies on the observation that 1 — D(z) is the
minimum additional weight needed at point z to make it the spatial median of
{z} U {x;}1_, [207].

Let us denote the data depth of point x; with respect to cluster Cx by D(x;|k).
The size of cluster Cy is denoted by 1. The cluster-wise data depths are made
comparable by normalizing them as

D(elk) — D2
Zii1 D (Xi |k)
From this it follows that the average data depth is 1 for each cluster.

Let us denote the within-cluster data-depth of data points x; € Cy as DY =
D(x;|k). The between-cluster data-depth of point x; € Cj is defined as DY =
D(x;|k") where k' is the second closest cluster to x;. An observation x; is well-
clustered if D}’ > Df’ . Hence, the ReD validation index is defined by

Y1 ReD;
n 4

forall z € RP. (65)

ReD(K) = (66)

where
ReD; = DY — D! (67)

The number of clusters K is the one that maximizes ReD(K).
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8.2.3 Trimmed Silhouettes

Instead of using the original silhouette index, a trimmed version is proposed and
later applied in Section 8.3. This is a new approach to compute the index for clus-
ter validation, as far as the author is aware. The idea is based on the assumption
that up to a half of the real-world data sets may consists of noise and outliers.
Even if the clusters were relatively distant to each other, there may exist some
noise and outliers far from the clusters. These might influence significantly the
value of the index, because even a small bunch of outliers far from the cluster
center increases the average of the within cluster distances considerably. How-
ever, it may not be necessary to create a new cluster each time such an outlying
set of points occur.

The original silhouettes are based on the average of the Euclidean distances
and, therefore, they are very sensitive to outliers. Actually, one outlying data
point can break down the average silhouette value of otherwise compact cluster
structures. Hence, it might be enough to concentrate the validation on the core of
the data clusters. This follows the principles of trimming of data clusters [11].

The computation of a trimmed silhouette is started by finding the cluster-
wise closest 50% of the data with respect to the prototype (the spatial median of
the cluster data). If missing data exist, general distance measure (6) is applied to
the distance computations in order to make the distances from the points to the
cluster centers mutually comparable. Thereafter, a pre-determined fraction (at
maximum 50%) of the data is removed cluster-wise so that only the most central
points are left for the index computation. The average distance a(Cy) from the
most central points to the closest cluster center my is then computed. Hence, a(Cy)
gives information about the tightness of the cluster k. Similarly, the average of
the distances from each point of the most central ones is computed to the second
closest (neighbor) cluster centers (g,?(d (x;,C}))) and this is denoted by b(Cy).

The robust silhouette width for cluster k is then defined as
__ b(C) —a(Cy)
) = mafat@,pCay
The "best guess” of K is the one that yields the largest value for the robust silhouette
coefficient, which is defined by

5/(K) =

Rl

K
215<Cl)

This approach is utilized in the real-world examples and compared to the robust
ReD index. More thorough statistical tests are left for future efforts.

8.3 Real-world applications

Three quite different real-world sample applications are presented to illustrate
the usability of the introduced methods.
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In the first example, a sample data set from paper industry is clustered and
analyzed. Large industrial processes are a good example for the use of DM meth-
ods, because huge amounts of data are collected in many different formats. This
data contains a lot of useful and valuable information for process control and
production management. In the second example, a couple of standard test im-
ages are quantized by clustering. Color images are inherently of large size and,
thereby, serve as an excellent example for DM methods that are intended to large-
scale problems. These types of image clustering tasks are better known as vector
quantization and signal compression [140, 175]. The third example is focused on
the software project data. The data set used describes various properties from
3024 software projects. The data set is very sparse, which makes it extremely
challenging for any data clustering or mining approach.

Based on the experiments and results of this thesis, a new spatial median
based clustering method, K-spatialmedians, together with the robust refinement
initialization method robBF and the two aforementioned heuristics for estimating
the “best number” of clusters, are used for clustering all the aforementioned data
sets.

In this chapter, all the examples are realized using the MATLAB 6.1. en-
vironment with self-implemented codes. Only the very basic MATLAB library
functions were utilized, while the others were implemented using MATLAB macros
or C-language and mex-gateway interface. The hardware consisted of a usual PC-
computer system with 1.4 GHz AMD Atlon processor, 256 MB of RAM, and the
Windows XP professional operating system.

In all cases, the variables and observations that contain only missing values
were eliminated during the preprocessing step. In the data transformation step,
all variables were shifted and scaled to the closed interval [0, 1]. After these op-
erations, the data were clustered by the K-spatialmedians clustering algorithm
using several values for K. Each start of the K-spatialmedian algorithm was ini-
tialized by the result of the RobBF method. RobBF used 10 sub-datasets for the
refinement. Trimming was not used in any of the algorithms. The number of
clusters was estimated by using the proposed validation indices.

Three different covariance matrix estimates were used for principal compo-
nent estimation. Classical sample and sign covariance matrices were computed
and two eigenvectors having the largest eigenvalues were used as estimates of
the principal directions. Tau covariance matrix, TCM, was combined with the
robust estimates of scale as described in Section 8.1.1. Furthermore, some appli-
cation specific visualization techniques were also used in order to improve the
interpretation of the results.

8.3.1 Paper industry

This example illustrates the utility of the proposed methods in analyzing large
industrial processes. In reality, capability and possibilities of DM and KM are
much broader in the process industry than this example shows. The main inten-
tion of the example is to study the functionality and usability of the methods and
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techniques in the context.

Paper is an outcome of a large production process, where an enormous
amount of mineable data is produced and collected. This data includes several
facts, for example, values of physical and chemical measurements that are con-
tinuously collected automatically or manually from the pulp and paper making
machine. On the other hand, a lot of settings and parameters are configured
and adjusted so that the process remains stable. Information about these settings
provides valuable information for later analyzes. Furthermore, a number of on-
line and off-line laboratory measurements are collected about the quality of the
produced paper. This helps the operators to adjust the process. Finally, a lot of
human knowledge related to the paper making process is transferred, and some
amount of this is, or at least should be, digitized to directly mineable formats.
The knowledge about the process exists in many forms, such as reports, e-diaries,
e-mails, instructions, html-pages, educational material, electronic customer feed-
back, etc. In order to enhance and control this kind of industrial processes and,
especially, to maximize profit, all related persons should be able to refine, com-
press, and convert the most valuable and significant information to knowledge
from the available data.

In order to keep the focus on technical issues, a minor example by using the
proposed clustering and visualization techniques is given next?. The KM process
was carried out so that the interesting data sets were first selected by domain
experts. In this work they were supported by information system specialists who
investigated information and communication flows in organization by using the
genre-based analysis approach (see Section 2.3.1). The target data is simply called
here "paper data’.

The mining process including the tasks from storage type conversions to
visual presentations was then performed by the author. At the same time new
algorithms were tested and compared with more traditional methods.

Finally, the graphical interpretation and evaluation of the results was per-
formed together with the domain experts. Due to the confidential nature of the
application, technical parts of the proposed KM model are discussed without go-
ing into detailed interpretations and analysis of the results and their meanings.

The target data set includes 804 measurement points that represent the state
of the process during a continuous period of time. A single measurement point
produces information about 53 physical and chemical quantities in this case. These
are measured both on-line and off-line from the pulp and completed paper. Hence,
the size (n x p) of the processed data matrix is 804 x 53. The data set provides
an excellent example for data mining techniques, because such high dimensional
and numerous data matrices are too complicated for explorative analysis without
partitioning and refinement operations. On the other hand, more data would not
further benefit this example.

2 This example is based on real-world data sets that have been received from Finnish forest

and paper industry companies UPM-Kymmene and Metso Paper. The author of this thesis
has been a member of a research group that has attended many applied research projects
[211, 210, 212] in collaboration with domain experts from the partner companies.
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The missing portion of the data is 26,9%, which means that the missing
data treatment is necessary. The preprocessing step revealed that four out of
the 53 attributes and 20 out of 804 observations were represented by empty val-
ues and consequently they were removed before any further processing. In the
data transformation all columns of the data matrix were scaled to the range [0, 1].
Hence, the actual size of the clustered data matrix was 784 x 49 with approxi-
mately 18.9% of empty values.

Results

K = 7 was chosen to be the maximum number of clusters. The overall time
required by the clustering method for all K = 2,...,7 was measured in seconds.
The robust silhouette and ReD index for each K was computed. The computation
of the robust silhouette index took clearly less time than the computation of ReD.

Robust Silhouette indices ReD indices
059 T T T T 018 T T T T

0.5 : L L L 0.155 : L : L
2 3 4 5 6 7 2 3 4 5 6 7
Number of clusters Number of clusters

FIGURE 54 Indices for the number of clusters on paper industry example.

Figure 54 shows the values of the two indices for K = 2,...,7. The robust
silhouette index indicates that data contains four or six clusters while the ReD in-
dex shows clearly the four cluster structure. These alternatives will be considered
more precisely later, but let us first concentrate on the two cluster case (K = 2).
Figure 55 presents two-dimensional projections of the paper data with two clus-
ters. All projections suggests that despite the index values in the case K = 2,
there actually may exist two reasonable groups in the data. The robust projec-
tions do not give significant improvements when compared to the classical PCA
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UPM data (K=2) - PCA
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FIGURE 55 The classical, SCM and TCM based principal component projections for "pa-
per data” in case K = 2.

projection. The TCM based projection gives the most compact presentation for
the two clusters while the classical PCA projection yields somewhat disordered
view. However, it seems that there are no extreme outliers in the data, because
the variability of the projections has not inflated in either direction, which may
happen for non-robust eigenvalue estimates in the presence of extreme values.
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FIGURE 56 Cluster positions in time.

Figure 56 shows the temporal orders of the cluster members on time axis.
The absolute times of the measurement points are not presented, but the orders
follow the progress of the process. The empty measurement points are repre-
sented by white color. Hence, one can easily recognize the points where, for one
reason or another, all data are lost. This may be of interest for domain specialists.
The graphics clearly shows that two cluster structure splits the process into two
almost non-overlapping temporal periods. Points that are the closest in the data
space to their cluster centers (the spatial median) are represented by the corre-
sponding numbers and colors. Hence, the clustering indicates that the process
period includes two major states, which, moreover, occur in temporally almost
continuous periods. Interestingly, the most central points for the process states
show up at the early phase of the states. For both states, there are only a few
points that clutter up the strict temporal distinction of the states.

The two dimensional projections in Figure 55 reveal well all cluster assign-
ments as well as the approximations for their relative distances. The Euclidean
distance of each data point to its closest prototype, measured in the original 53-
dimensional data space, is illustrated on the time axis using the scale of gray color
in Figure 57. The darker the shade of gray, the closer the point is to its cluster pro-
totype. Previously, for example, Ling [256], Bezdek et al. [34], and Hathaway et
al. [177] have applied the gray-scale shades to the analysis and validation of clus-
ter structures. Because this example concerns the process analysis that has the
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time dimension, the shades of gray were transformed to the time axis for tempo-
ral interpretation.

The gray-scaling is actually equal to the zero-one scaling of the data, but itis
now applied to the relative locations of the data points in the original space. The
gray scale consists of the diagonal values of the well-known RGB-color space®.
Since the shades of gray are adjusted cluster-wise, the cluster-wise measures are
not comparable to each other.

This visual gray-scale approach is not robust, but it is still very informative.
The lack of robustness means that only one extreme outlier can make the rest of
the points to be visualized almost black. This can be avoided by applying dis-
tance ranking (i.e. ordered statistics) and evenly spaced shades of gray, no matter
at what distance to the closest prototype data points are lying. On the other hand,
outliers can be more effectively recognized when the gray-scale preserves the dis-
tance information of the points to the prototype. A large amount of dark shades
means that there are some extreme values.

Let us now examine more closely the internal variability of the clusters. The
distances for the case K = 2 are presented in Figure 57. One easily perceives

Il|I|“ L
0 100

L L
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Distance to prototype — paper process — K=2 — Cluster=1

L L L L
0 100 200 300 400 500 600 700 800
Distance to prototype — paper process — K=2 — Cluster=2

FIGURE 57 Distances to the cluster prototypes when K = 2.

that the data structure may contain more than two reasonable clusters or, in other
words, process states. This conforms with the outcome of the validity indices.
Also by directing the attention to Figure 55 and the classical covariance and SCM
based principal component data projections, one can see that the data is frag-
mented into more than two clusters. Here, one can also see that the prototype-
based projection technique, that means the TCM based principal components of
the prototypes, loses some information about the local structure of the data, be-
cause the cluster-wise data tend to clump very tightly around the cluster proto-

types.

3

RGB is an abbreviation for red, green, and blue color model. RGB is an widely used color
model for computer graphics. The other colors are combinations of RGB color intensities
(see, e.g., [367])
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UPM data (K=4) - PCA
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FIGURE 58 The classical, SCM and TCM based principal component projections for "pa-
per data’ in case K = 4.

Figure 58 shows the projected two dimensional view to the paper data that
is now partitioned into four clusters. The four cluster model is suggested by the
ReD validation index as the most inherent partition for the data set (see, Figure
54). However, the projected views presented in Figure 58 do not necessarily sup-
port this model. Especially, the cluster number one is quite broadly scattered in
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each plot. If we look at the temporal presentations given in Figures 56 and 59,
clusters one and two represent short deviating periods in the middle of the two
main states of the process.

Correspondingly to the principal components also the cluster-wise distances
in Figure 59 suggest that the clusters one and two should both be further parti-
tioned into the sets that occur during the first and second halves of the process.
By inspecting the clusters one and two in Figure 59, one can clearly see that the
short deviating periods during the latter part of the process are distant to the de-
viating ones during the first part of the process. Hence, both the temporal and
two dimensional views to the data make this four clusters instance of partitioning
questionable, even though the ReD validation index supports it.

L L L L L | |
0 100 200 300 400 500 600 700 800

Distance to prototype — paper process — K=4 — Cluster=1

L L L L L | L
0 100 200 300 400 500 600 700 800

Distance to prototype — paper process — K=4 — Cluster=2
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Distance to prototype — paper process — K=4 - Cluster=4

FIGURE 59 Distances to the cluster prototypes when K = 4.

As a last case, the clustering solution with K = 6 is discussed. According
to the new robust silhouette index this is the most inherent partitioning for paper
data. By comparing the projected clusters in Figure 60 to the previous cases, it
turns out that these are actually hierarchical “sub-clusters” among the clusters
obtained using K = 2. Moreover, the cluster number one, which was quite frag-
mented in the four clusters case, is now further partitioned into two sub-clusters,



216

UPM data (K=6) - PCA

05F

-0.5F ° ® o

UPM data (K=6) - SCM-PCA

oA
| N " .
w K
,,,‘,".'i.

%

-1 L L L L
-15 -1 -0.5 0 0.5 1

UPM data (K=6) — TCM (prototypes)

05F

T a
~3£‘*¢$ A

%o

L L L L L L L
-0.5 0 0.5 1 15 2 25 3 35

FIGURE 60 The classical, SCM, and TCM based principal component projections for
‘paper data’ in case K = 6.

which leads to better partitioning of the data. The clusters that overlap for K = 6
are possibly very close to each other.

All projections in Figure 60 indicate that the cluster number one and five
are very close to each other. This seems reasonable as the clusters are, moreover,
connected to each other in the temporal sense and some points in the fifth cluster
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are very distant to the prototype (see Figures 56 and 61). The fourth and sixth
cluster are also overlapped (see, Figure 60). This is also visible in the TCM based
principal component projection. On the time axis, the sixth cluster occurs in the
middle of the fourth cluster, which also suggests that the assumption about the
closeness might be true (see Figure 56). Finally, Figure 56 shows that the both
major clusters of the case K = 2 are now also temporally further partitioned into
three clusters.

The "hierarchical” behavior indicates that the initialization is very stable. It
provides consistent solutions for different choices of K, following the hierarchical
structure of the data, which sometimes makes it difficult to decide how many
clusters there truly exist (cf. discussion about the ambiguity in clusters, Chapter
3). The results show that some intelligence of the hierarchical clustering methods
is captured in the new clustering method.

As a result, we have found that the given process period consists of the
two major states that are temporally almost unbroken. However, because the
clusters are not very compact, which means that the data is possibly compressed
too much, the six cluster model seems to be the next appropriate solution for
more detailed clustering. The result is supported by the robust silhouette index
and ensured by the visual explorations from the three different two dimensional
projections, and also by the temporal view to the progress of the process.

For a comparison, the projected clusters for cases K = 3, K =5,and K = 6
are presented in Appendix 4. The choice K = 3 does not provide coherent and
compact clusters, since all the clusters seem to be quite broadly scattered. With
K =5, the fifth cluster is still very non-uniform whereas the case K = 7 leads to
small clusters that are not well-separated anymore. Thereby, K = 6 seems to be a
very reasonable guess for the number of clusters in the paper data case.

8.3.2 Image quantization

As an image is a kind of multivariate vector signal, clustering of its colors is often
referred to as vector or signal quantization, because it leads to a reduced number
of colors and image data. Thus clustering of image colors is also called simply im-
age compression. Quantization of images [140, 175] can be used as a preprocess-
ing method, for example, in context of image database mining.

In Chapter 2, a couple of applications from the fields of astronomy and geo-
science are presented. Furthermore, modern surveillance and reconnaissance ap-
plications transmit and process a lot of image data under strict real-time require-
ments and limited availability of resources [123]. The image quantization may be
of use for such applications, since the reduced size and simplified color structure
make data transmission, knowledge mining, and object searching from large im-
age databases easier as long as the most significant information remains in the
image.

As images are composed of large amounts of data they also provide a good
sample application for the DM purposes. For this problem, the robust clustering
method with the validation index is applied. The unnecessary shades of colors



218

L L L L
0 100 200 300 400 500 600 700 800

Distance to prototype — paper process — K=6 — Cluster=1

M T T T T
[ L L L L L L L
0 100 200 300 400 500 600 700 800
Distance to prototype — paper process — K=6 — Cluster=2
T T
L L L L L L L
0 100 200 300 400 500 600 700 800
Distance to prototype — paper process — K=6 — Cluster=3
T T
L L L L L
0 100 200 300 400 500 600 700 800
Distance to prototype — paper process — K=6 - Cluster=4
T
L L L L L L L
0 100 200 300 400 500 600 700 800
Distance to prototype — paper process — K=6 — Cluster=5
T T
L L L L L L L
0 100 200 300 400 500 600 700 800

Distance to prototype — paper process — K=6 — Cluster=6

FIGURE 61 Distances to the cluster prototypes when K = 6.

should be compressed away and replaced by “prototype colors”. The results are
evaluated by comparing how well the available information in the original figure
is kept in the quantized figure. The heuristic validity indices are used to predict
the sufficient number of colors. It is desirable that the indices estimate the number
of necessary colors to present the major objects in the figure. The goodness of
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solutions can be evaluated simply by the eye from the resulting images.

Standard test images

FIGURE 62 Standard test images. On the top row from left house and peppers images.
On the bottom row an image of Lena.

As examples of image compression applications, three standard test images,
shown in Figure 62, were used. All images are 3 x 8 bit true color RGB images.
Each component of RGB is treated as a variable, which means that p = 3. The
images do not contain erroneous or missing data.

The house image consists of 256 x 256 RGB pixels. As the image pixels are
three dimensional RGB color values, the size of the house image data matrix is
65536 x 3.

The peppers image is an RGB image of size 200 x 200 x 3. This is reduced
from the original peppers image, available on the Web, and consisting of 512
pixels. The size is compressed in order to reduce the time that is required for
computation.

The Lena image is an RGB image of size 512 x 512 x 3. Due to the large size
of the problem, the estimate for the correct number of clusters is computed only
by the robust silhouette heuristics in the case of Lena image.
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Results
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FIGURE 63 Indices for the number of clusters in the house image.

FIGURE 64 Clustered house image for K = 2.

To start with, let us consider the house image for which the both of the
heuristics suggested K = 2 for the number of clusters. This means that one bit
(black and white) is enough to approximate the patterns in the image without
color information. The index curves are shown in Figure 63. The curve goes
down almost constantly from K = 2 except for K = 4 and K = 6 where some
deviations exist. The compressed image of the case K = 2 is presented in Figure
64.

When compared to the original image, one can see that many constituent
parts of the image remain recognizable. It reveals the house with different ele-
ments, such as windows, roof, guttering, waterspout, fascias, and chimney. Also
the cloudless background is observable.

The lost information are the bricks on the wall and the shadows. This kind
of information could be useful, for example, when one needs to individualize the
house from the image or know the time of the day when the picture was taken.
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However, much significant information is preserved in the image even though
the size is compressed from 256 x 256 x 24 bits to 256 x 256 x 1 bits, that is to
4,7% of the original image. If the color information is added, additional 24 bits
RGB words are needed that can be then pointed by the bitwise pointer.

Let us consider a more colorful image with a number of objects and shad-
ows next. The peppers image in Figure 62 presents a number of peppers with
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FIGURE 65 Indices for the number of clusters in peppers image.

FIGURE 66 Clustered peppers for K = 3 (left) and K = 5 (right).

different sizes and colors. Furthermore, there are shadows and reflections that
expose the direction of the arriving rays of lights. The two indices propose dif-
ferent K’s for this image. The ReD index suggests that the inherent number of
colors is K = 3, whereas the robust silhouette index yields K = 5 (see Figure 65).
When looking at the uncompressed image in Figure 62, one can easily count four
significant colors: red, orange, green, and yellow. Moreover, dark shadows and
light reflections represent important shades of the colors. In this case they are
actually very close to black and white.



222

When comparing the compressed images in Figure 66, one perceives that
three colors is not enough to show all the information visible in the original pep-
pers image. The information loss is, for instance, counted in the number of pep-
pers that have been faded away. The direction of arrival of the light rays is still
visible, but the green peppers are shaded to the dark shadow.

When looking at the right image of the same figure, one can see that five
colors is enough to separate the peppers. The yellow peppers are shaded with
the color of the light reflections on the green peppers and the orange peppers
with the color of the reflections on the red peppers. The dark shade represents
the shadows.

Hence, K = 5 clustering yields very reasonable quantization for the pep-
pers image and preserves the significant information. In other words, the robust
silhouette index is able to point out the most significant colors from the image.
It finds the colors that exist in large amounts with slightly different shades and
discards the rest.

As a result, one can compress the peppers image data by defining pixel-wise
pointers to a five color RGB map. The five color map requires three bit pointer.
Hence, the significant information expressed by 200 x 200 x 3 x 8 bits can be
compressed by the pointer technique into 200 x 200 x 3 bits plus the 5 x 24 bits
color map, which is approximately 12, 5% of the original amount of data.

Lenna - Robust Silhoutte Indices
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FIGURE 67 Robust silhouette index for K = 2,...,7 in Lena image.

The last example, the well-known Lena image, is the most difficult to in-
terpret. The focus is to find out how the change in the robust silhouette index
reflects the change in the quality of the image. Hence, the Lena image is clustered
for K = 1,...,7 and the robust silhouette indices are computed for each K. The
index proposes that the most significant information is compressed by only two
colors (see Figure 67).

The second best index is obtained for K = 4. Actually the most significant
information of the Lena image is observable with only two colors (see Figure
68). One can observe the figure of the woman from the image, but the shape of
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FIGURE 68 Clustered Lena images for K = 2,...,7 (left to right and top down).

the nose and lips have been faded out by the compression. The shadows have
also disappeared. With K = 4 obvious enhancements to the image quality are
obtained as the features and shadows have become clearly visible.

Increasing the number of clusters from K = 2 to K = 3 or from K = 4 to
K = 5 does not produce significant changes to the image quality when compared
to enhancement between the three and four cluster images. This observation cor-
relates to the shape of the robust silhouette index curve. The increment of K
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without significant gains of image quality should reduce the value of a reason-
able index.

Discussion

The image data has been used as an example of data clustering and cluster vali-
dation. The results show clearly that the cluster method used is able to recognize
the most important colors in the particular cases. Thereby the objects or patterns
can be recognized from the images with less colors. This may provide advance-
ments, for example, for edge detection, segmentation, pattern recognition, and
image database mining applications. In edge detection, one tries to find the points
of the image where luminous intensity changes sharply (e.g., [146]). By finding
the edges of the image objects, one can determine the shape of these objects and
recognize them better and quickly. This helps, in turn, in finding the interest-
ing objects from large image databases. As image data contain huge numbers
of pixels, filtering techniques can be used to reduce the amount of computation
(see, e.g., [175, p.467]). To this end, in these experiments, the computing time was
relatively long (hours), especially for the indices.

8.3.3 Software project data

In this example, a data set consisting of 3024 software projects is clustered. The
data was collected by ISBSG* and is available on a CD-rom [202]. It is intended to
benchmark, evaluation, and estimation tasks for software projects and organiza-
tions. Moreover, as in this thesis, it can be used for software engineering research.
The data represent projects from 20 different countries. The software products of
the projects represent several applications and systems, including management
information, transaction/production, process control, and mission critical real-
time systems among others. Several different process model, programming lan-
guages, and platforms are also covered.

The data attributes provide information about several factors such as sizing,
effort, productivity, schedule, quality, and so on. Although there is a lot of back-
ground knowledge about the projects available on the CD-ROM, the exploitation
would require heavy data type conversions and preprocessing operations due to
the problematic data presentation principles. Thus, it is not very much utilized
in these experiments. The data contain also huge amounts of missing values.

The clustering result is compared to the domain knowledge about the qual-
ity of the project-wise data. Data quality rating (DQR) describes the quality and
integrity of the project data submitted to the collection from different projects and
organizations. It is a kind of measure on credibility of the submitted project data
sets that classifies the projects into four classes (A, B, C, and D). Unadjusted Func-
tion Point Rating (UFPR) measures the credibility of the data provided about the
functional size. Four classes are used also for this information (A, B, C, and D).
In both cases the class A signifies the highest credibility.

4 The International Software Benchmarking Standards Group (http://www.isbsg.org/)
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FIGURE 69 Scaled variable-wise variances (blue bars) and the proportion of missing
data (red line).
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FIGURE 70 Scaled variable-wise MADs (blue bars) and the proportion of missing data
(red line).

In order to perform the experimental cluster analysis for the data set, 36 nu-
merical attributes were chosen from the data set (The list of the attributes used is
given in Appendix 5). The fraction of missing values remaining in the selected
data is 49, 9%, which means that it is extremely sparse. The variable-wise frac-
tions of missing data are depicted in both Figures 69 and 70. One can see that for
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many attributes, more than half of the data are missing. The time needed for the
overall computation is some minutes.

The relative variances and MADs are given in the same figures. The bar
plots show that there are very large differences in the relative dispersions of the
variables. At the same time, there are only a few variables that have considerable
variability. The largest variance is found for variable numbers 3 (Value Adjust-
ment Factor) and 26 (Resource Level). On the other hand, the more robust MAD
dispersion estimate shows high variability solely for the variable number 3. This
is due to the fact that more than half of the observations for the discrete variable
number 26 accumulate to a single value that is one in this case.

Robust Silhouette indices ReD indices
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FIGURE 71 Robust silhouettes and ReD indices for K = 2,...,12.

Figure 71 shows the values of the robust silhouette and ReD indices for
K = 2,...,12 after the clustering. The both indices propose that the case K = 2
tits the best to the data. Two dimensional projections of the result are shown in
Figure 73. One can see that the classical principal components break down and
the data becomes very flat in the direction of the second principal component.
Also TCM based principal components lead to shrunken data projections. SCM
based principal components retain the spread of the data set to some extent.

The breakdown of the classical variance based principal components indi-
cates that the data contains extreme values in the direction of the largest variance.
The cluster prototypes are clearly emphasized at the direction of one variable.
This leads to the flat data clusters in the TCM based projection of the two cluster
prototypes. The cluster centers are so distant to each other that the within-cluster
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variation almost vanishes from the clusters. A closer look into the variable-wise
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FIGURE 72 Scaled variable-wise distances between prototypes.

distances between the cluster prototypes shows that one variable dominates the
separation. In Figure 72, the between-clusters distance in the directions of all
variables are normalized by the range of the variables. One can see that variable
26 (Resource level) is the most discriminative feature as it attracts the prototypes
to the both ends of the variable range. Resource level is a categorical variable
whose permitted values are {1,2,3,4}.

A closer look into the partitioning shows that the cluster number one has
captured all the projects for which the resource level is 3 or 4. Correspondingly,
the cluster two has captured the projects for which the resource level is 1 or 2. The
mid-point of this range partly divides the data into two clusters. The cluster pro-
totypes are, moreover, located very near to the outermost values of the resource
level, because the data points in both clusters emphasize the outermost alterna-
tives of the resource level variable (Cluster 1: 22 points on resource level 3 and
341 on resource level 4. Cluster 2: 2412 points on resource level 1 and 247 points
on resource level 2.)

The SCM based projection gives a more dispersed view to the data and clus-
tering (see the middle plot in Figure 73). The cluster structure does not seem very
coherent in this view. Using this picture one might predict six clusters partition-
ing for the data. The six cluster case also indicates slightly deviating change to
the shape of the decreasing curve of the validation indices. The clusters of the six
cluster case are presented in Figure 74. One can see that the resulting clusters are
not very compact. The rest of the projected views to the clustering solutions are
presented in Appendix 6.

To give a domain knowledge point of view, the clustering solutions are com-
pared to the classification of the data rating indices DQR and UFPR. Because the
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FIGURE 73 The classical, SCM, and TCM based principal component projections for the
project data in the case K = 2.

clusters do not match with the rating classes, it is clear that the cluster-wise dis-
tributions of the given DQR and UFPR values do not follow the obtained cluster
structures.

Tables 11-14 show the cluster-wise distributions of the class values. Clearly,
there are no clear relationships between the cluster structures and credibility rat-
ings. This is actually a desirable result, since otherwise the knowledge about the
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FIGURE 74 The classical, SCM, and TCM based principal component projections for the
project data in the case K = 6.

software projects, that is represented by the numbers, could be biased towards
the quality issues of the data collection strategy.

To summarize, the software project data is very difficult for the clustering
algorithms as the data tend to accumulate to the low numbers of the variable-wise
data range. Actually, in 34 out of the 36 chosen variables data almost correlate to
each other. The attribute number 3, namely the value adjustment factor, is the



230

TABLE 11 Division of DQR classes (A,B,C,D) into clusters when K=2.
| A B C D
Cluster1 | 10.35 12.11 1797 15.09

Cluster 2 | 89.65 87.89 82.03 84.91

TABLE 12 Division of UFPR classes (A,B,C,D) into clusters when K=2.
‘ A B C D Empty
Cluster 1 | 8.53 0 19.28 33.33 52.63
Cluster 2 | 91.47 100.00 80.72 66.67 47.37

TABLE 13 Division of DQR classes (A,B,C,D) into clusters when K=4.
A B C D
Cluster1 | 6.27 6.61 391 10.38
Cluster 2 | 24.39 40.13 32.81 24.53
Cluster 3 | 65.26 47.76 49.22 60.38
Cluster4 | 4.09 550 14.06 4.72

TABLE 14 Division of UFPR classes (A,B,C,D) into clusters when K=4.
A B C D  Empty
Cluster 1 | 3.94 0 990 33.33 47.37
Cluster2 | 3491 4091 3891 25.00 27.37
Cluster 3 | 56.56 59.09 41.81 41.67 20.00
Cluster 4 | 4.59 0 9.39 0 5.26

only variable with a somewhat symmetric data distribution. After the scaling to
the range [0, 1], most of the variable-wise distributions resemble very much the
shape of the exponential distribution (see Figure 75). Moreover the tails of the
distributions are heavy suggesting several outliers. Hence, the correct answer
to the clustering problem might also be that the project data consists of a single
non-symmetric and skewed cluster.

8.4 Discussion

In this chapter, three clustering examples using real-world data sets were given.
At first, a data set from process industry was clustered and the results were visu-
alized in many ways. The new validation index referred to as robust silhouettes
indicated reasonable numbers of clusters. The experiment shows that one can
reach, in a few minutes, an extensive understanding about industrial processes
by clustering and by reasonable visualization techniques. This can greatly as-
sist the domain specialists in their work to control and enhance the process by
integrating most of the available data and knowledge.
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FIGURE 75 The shape of the pdf of the exponential distributions.

In the second experiment, a set of RGB-color images were clustered to find
the essential colors and, thereby, compress the data size. Image data are of huge
size in the number of pixels and, therefore, heavy load to any computational
processing. The clustering and the robust silhouette index showed reasonable
performance in this case as well.

The last one, that is the software project data set, contained the most trou-
blesome internal structure from the data clustering point of view. The method
ended up with the two cluster solution, which was the smallest number that was
tried. Because the data contains more than 50% of contamination, it is not surpris-
ing that even robust clustering methods fail in finding reasonable groups from it.
Closer investigation of the data set indicated that perhaps the data is best de-
scribed by only one special shaped density function rather than several clusters.

Robust covariance matrix estimates were also used in data projection and
visualization. SCM without robust scaling in the directions of principal compo-
nents retained better the variability than the classical PCA projection. As the
robust methods are computationally intensive, a TCM covariance matrix with ro-
bust scale estimates to the principal components was applied to the cluster proto-
types in order to save time and obtain cluster-structure preserving projections (cf.
[86]). It seems that cluster based projections ignore local inner-clusters features
from the data.

To summarize, the methods seem to efficiently uncover the essential fea-
tures from various data sets. The efficient and accurate algorithms enable build-
ing the clustering methods using robust techniques. By applying the available
case strategy to missing data in all computation, minimal data preprocessing is
required on real-world data sets. A number of interesting large-scale applica-
tions still remain as a future challenge, such as, e.g., software quality analysis
using code metrics [266], and biomedical applications [1] among many others.
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Data mining and knowledge discovery is a modern and multidisciplinary field of
science and business. Thereby, it provides a number of challenges for a variety of
experts. The problems originate from a diverse set of companies, organizations,
and institutions, where large amounts of data are constantly used, processed, and
managed. Earlier, commonly used database queries were enough to handle all
available data, because the domain experts knew the facts they needed to find. In
the present situation, such content-based methods, which are actually based on
the assumption that the user knows exactly what she/he is searching for, are not
enough. If one wants to keep up with others, especially concerning the field of
rapidly globalizing business world, she/he should also be interested in finding
unexpected facts. This information provides, perhaps, the most critical form of
competitive intelligence in the field of today’s business world. The discoverer of
an underlying, unexpected, and useful fact is one step ahead of the competitors.

On the other hand, ROI can not always be measured in money. Many fields
of science, such as medicine, yield a lot of "human value” through better un-
derstanding of the collected data sets. The results may be realized in the form
of healthy diets, efficient medicines, awareness of carcinogenic substances, etc.,
that finally lead to a healthier and longer life. Moreover, the enhanced control
and smart decision making concerning large-scale industrial processes can be ob-
tained by uncovering and understanding the most essential facts residing in those
hundreds and thousands of measurements taken from the processes. This may
not only increase the owner’s income, but may also lead to remarkable energy
and raw material savings that are significant gains from the ecological perspec-
tive.

Thus, the topic of this thesis provides a lot of value for many directions.
As the contents of this thesis show, to be fully utilized, further development and
practical application of KM require a lot of co-operation among the experts from
related fields. An applied KM research project may include experts ranging from
researchers to domain experts and from mathematicians to information systems
and organization specialists.

The main results of this thesis are summarized next.
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* Based on the ideas and practical experience from applied industrial processes,
a new merged process model, knowledge mining (KM), was proposed. The
model separates domain and method expertise into the KD and DM processes,
respectively. In this model, a domain expert is able to accomplish knowl-
edge discovery tasks without concern about complex computational and
statistical details. To assist domain experts in managing and finding useful
data, the idea of using the genre-based analysis method was proposed. On
the other hand, due to the clear interfaces between the processes, DM ex-
perts who understand methods of data processing and model building, can
be exempted from the domain level issues.

* As the major result of the thesis, a new robust clustering method with sev-
eral desirable properties was developed. The development of the method
was preceded by an extensive survey on the concepts and elements of data
clustering. The survey clarified several complex issues, such as various de-
finitions of the concept of cluster and ambiguous nature of the “correct”
number of clusters. These are likely met by all method developers. These
problems also explained the existence of so many clustering methods. Later,
the results of the survey were further supported by the results of the numer-
ical experiments. The new and robust clustering method involves several
desirable properties from the KM point of view:

— It is highly automated (i.e., minimal amount of user inputs are re-
quired).

— The method inherently and efficiently handles missing values and tol-
erates large amounts of erroneous data, which frees the user from most
of the difficult preprocessing problems, such as outlier pruning and
imputation.

— It produces more consistent results than the variants that are based on
the normal assumptions.

— The use of the proposed robust silhouette index seems to yield reason-
able results on the best number of clusters on real-data experiments.

— The real-world experiments show that the robust clustering yields use-
ful results for mutually very different real-life applications.

* On the side of the clustering method development, new formulations, al-
gorithms, and proofs were produced for the non-smooth problem of the
spatial median. The numerical and statistical experiments with extensive
discussions showed the accuracy, scalability, and efficiency of the proposed
SOR-algorithm. One should also note that the problem has also been widely
considered in the fields of location/management science and operation re-
search, which means that the results have also multidisciplinary value (e.g.
[262]). Thorough exploration of the computational and statistical properties
of the [1- and I-based multivariate M-estimators produced a lot of useful



234

information for further development of the method. The somewhat shal-
low analytical proofs concerning the spatial median problem is perhaps
the weakness of this thesis (at least from the point of view of mathemati-
cal analysis, since the proofs do not extend to the missing data treatment
and the convergence of the acceleration step of the SOR-type spatial me-
dian solver was not shown). However, this part of the thesis has already
been followed in a more involved mathematical analysis by Valkonen [381].

* Robust covariance estimates were introduced for dimensionality reduction and
data visualization purposes. The experiments showed that these are valuable
tools for data mining applications. The class structure was better retained in the
projected views when the robust covariance estimates were used. The available
data strategy was also applied to the missing data.

* The experiments on real-life data showed the usefulness of data clustering for
analysis and investigations of industrial processes and image segmentation. The
essential information of the test images were quantized into a couple of colors.
This result is of great value when mining large image databases. The fluctuation
of an industrial process was well characterized by the obtained cluster structures.
The proposed graphical techniques clearly assisted in the interpretation of the
results. These results were also successfully validated together with domain ex-
perts. On the other hand, results on the software project data showed that data
clustering was not the best approach to knowledge mining in this case due to the
inherent lack of multivariate structure.

Overall, robustness seems to be a gainful property for data clustering, not only
when there is contamination in the data, but also in the presence of normal con-
ditions. Robust clustering seems to produce more consistent results, even if the
data were normally distributed. Moreover, due to the smaller number of algo-
rithm iterations, the computing time was also shortened when compared to clas-
sical methods. However, the numerical experiments of the initialization methods
supported the fact that universal clustering methods are impossible to define. Al-
though the robust robBF method was on an average considered the most useable
method, KKZ methods were clearly the best performers on well-defined clusters.
Trimming seemed to be useful technique in certain cases, but more practical tests
are still needed before more general usage. A problem is, of course, the trimming
fraction parameter that is difficult to define and in conflict with the black-box
principle.

The strong side of this thesis is its comprehensive scope that extends from
analytical proofs to business processes. In the end, this is really what knowledge
mining (or data mining and knowledge discovery) is about. The available infor-
mation about the properties of the used methods and estimates were also strictly
explored and discussed. The thorough numerical and statistical testing also as-
certained and uncovered several interesting and useful facts about the methods.
The rigorous analysis of the numerical results have clearly shown that robustness
does not only provide advantage on erroneous data, but may lead to correct and
fast results also on well-defined cases.
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9.1 Future work

Finally, a few words about future challenges that have emerged during the course
of this work. The proposed robust clustering method provides some immediate
possibilities for further experiments. The robust refinement initialization method,
robBF, produces information about stability or uncertainty of the obtained clus-
tering that can be exploited for estimating the number of clusters (cf. resampling-
based heuristics [250, 336, 95, 243]). One could, for instance, measure the varia-
tion in the locations of initial cluster prototypes that are computed on the chosen
number of sub-datasets. Large variation in the locations of sub-dataset cluster
prototypes indicates uncertainty in the number of clusters. This approach was
not used in the experiments, but it is an open possibility for development.

Another open question is a reasonable scaling of variables. Especially bi-
nary variables were experienced problematic as they possess maximum variabil-
ity after scaling the data to the interval from zero to one. This gives highest pos-
sible discriminative weight for all binary variables as they always obtain values 0
and 1. One could rather consider binary values as representative values 0.25 and
0.75 of the first and second parts of the range, respectively.

In the applied research projects, the results interpretation was assisted by
ranking variables and plotting the cluster-wise distributions of the variables. Af-
ter data clustering, a ranking index that expresses the discriminative power for
each variable can be computed. One can take as the ranking index, for exam-
ple, the correlation between the cluster-wise distributions or ratio of the within
and between cluster scatters. As the variables are ordered, one obtains a rapid
overview on the distributions of the clusters of the most discriminative variables
by inspecting the cluster-wise histograms. The difficulty of this approach is the
choice of the best ranking index. However, promising results were obtained in the
applied projects by ranking the variables so that the variable with the smallest av-
erage correlation among the cluster-wise distributions (i.e., histograms) received
the highest ranking.

As illustrated in Section 3.2.1, missing data complicates the comparison of
distances between different points. This problem also occurs with the KKZ ini-
tialization method in which the distances between data points are compared. A
missing value can actually be considered as an extreme outlier (it can have any
value). As the data points with missing values on non-overlapping variables
are in different subspaces, they are difficult to order. As a future challenge, a
subspace-ranking index for data points might be useful. The idea is that the less
common the variables in a pair of data points, the more distant the data points
are from each other. This approach was not applied in this thesis, but with an
efficient implementation this could be worth of some experiments.

As the cluster is a very application and data dependent concept, a single
clustering method may not be enough for mining heterogeneous data sets. Per-
haps the most stable and reliable results are obtained by using several indices,
parameter settings, and clustering algorithms, and then performing ”voting” or
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finding the largest agreement between the different results, e.g., [173, 35, 370,
143, 106] (cf. committee machines in neural networks [181]). The survey in Chap-
ter 3 showed that there are many changeable elements in the clustering problem
that can be varied in order to build a clustering ensemble. One may use differ-
ent missing data strategies, norms, trimming fractions, and so on. On the other
hand, it should be noted that bad results can be obtained also with this approach
when the voting is based on wrong assumptions (normality, missing data, out-
liers, etc.). Hence, different ensemble clustering methods are of great interest for
the DM applications, where typically the characteristics of the target data sets
are not known. A probable drawback with ensemble methods might be their
computational efficiency, as all the methods should be highly scalable. There are
several clustering algorithms whose robustness could be enhanced with minimal
changes. One of the most interesting is the LBG-U-method [134]. The idea is to
remove the cluster with minimum utility and move the prototype to a new loca-
tion. The minimum utility is defined as a cluster with the smallest contribution
to the value of the clustering criterion function. The prototype of the minimum
utility cluster is moved to a cluster that currently generates the largest contribu-
tion to the value of the clustering criterion function, which is then split between
the old and new prototypes. This approach always decreases the value of the
criterion function and terminates in a finite number of steps. The method is not
assumed to be as sensitive to initial conditions as, for example, the original K-
means clustering methods that is a local-search strategy. One can easily see that
the LBG-U-method provides several possibilities in the utilization of robust prin-
ciples.
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APPENDIX1 NUMERICAL RESULTS ON SPATIAL MEDIAN

ALGORITHMS

The following notation are used in the tables:

CG

GS

NM
SOR
ASSOR

total

cw-med

conjugate gradient method

golden section method

Nelder-Mead method

the spatial median by successive overrelaxation method
the spatial median by successive overrelaxation method using ac-
tive sets

modified Weiszfeld

CG initialized NM method

number of dimensions

index of data set

number of data points

value of cost function at the optimum

value of the first vector component at optimum

value of the second vector component at optimum

value of the first component of gradient vector at optimum
value of the second component of gradient vector at optimum
number of iterations by CG method

number of iterations by GS method

number of iterations by NM method

number of function evaluations by NM method

number of function evaluations by CG method

total number of function evaluations

total number of iterations

difference between the solution and reference value
location error to reference solution

total number of function evaluations

index of initial clusters

coordinate-wise median
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TABLE 15 Reference solutions of the spatial median problem on the test data sets. Solved with CGINM by starting from the mean of a data

set and terminating according to the following stopping criteria: CG:10~!, GS:107¢ and NM:10~12.

Reference solutions

p data n J* (u*)y (u*) (g")1 (g")2 #CGi #GSi #CG #NMi #NM  #fev

2 1 5 5.6568542495 +0.00e+00 +0.00e+00 +0.00e+00 +0.00e+00 1 0 4 58 117 121

2 20 12.4605534804  -4.76e-02  -4.79e-02  -7.6le-01  -2.61e-02 1 29 62 98 186 248

3 100  52.2666419878  -3.25e-02  -2.43e-02 +4.42e-07 +4.69e-07 1 29 62 68 154 216

4 500 257.1516146174  -1.09e-03  -1.66e-02 +1.65e-06 +5.06e-06 1 29 62 55 132 194

5 40 28.0124414406  +4.34e-03 +2.10e-03  +9.63e-08 +4.17e-08 1 29 62 59 137 199

6 100 83.2955042800 +1.75e-02 +1.46e-02  -1.43e-06 -9.09e-07 1 29 62 61 143 205

7 300 29.7792096461  -8.85e-04 -1.64e-04 +3.52e-06 +1.00e-05 1 29 62 61 134 196

8 100 117.1020022524 +9.66e-02 +2.11e-02  -1.96e-06 +6.66e-07 2 58 121 61 140 261

8 1 100 166.5910085601 1 29 62 359 690 752

2 300  59.5584192922 1 29 62 600 964 1026

16 1 100 235.5952636751 1 29 62 903 1530 1592
2 300  84.2283243165 1 29 62 2708 3730 3792

32 1 100 333.1820171202 1 29 62 2136 3387 3449
2 300 119.1168385844 1 29 62 11261 13776 13838

64 1 100 471.1905273501 1 29 62 11107 14492 14554
2 300 168.4566486331 1 29 62 58780 65696 65758




TABLE 16 Results of NM and CG1NM methods on the bivariate data sets.

2D NM and CGINM
NM CGINM
data sp  e(J(u*)) total e(u*) e(J(u*)) #CG #NM total e(u*)
1 1 3.49¢-07 99 3.37e-07 5.37e-07 96 54 150 5.01e-07
n=5 2 2.88e-07 111 2.82e-07 4.91e-07 96 55 151 4.83e-07
3 3.22e-07 113 2.80e-07 3.45e-07 127 61 188 2.96e-07
4 0.00e+00 37  0.00e+00 0.00e+00 4 37 41 0.00e+00
2 1 4.93e-08 129 1.52e-07 3.42e-07 127 67 194 1.28e-06
n=20 2 2.07e-07 127 5.80e-07 1.35e-07 127 76 203 2.68e-07
3 6.72e-08 132 2.81e-07 3.09e-07 127 70 197 1.29e-06
4 1.24e-07 107 4.96e-07 2.20e-07 65 70 135 5.82e-07
3 1 4.97e-12 96 2.17e-07 8.90e-12 96 52 148 2.99¢-07
n=100 2 1.13e-11 110 3.81e-07 5.78e-12 96 49 145 2.44e-07
3 9.46e-12 111 2.55e-07 1.63e-11 96 49 145 4.44e-07
4 7.11e-12 95 2.82e-07 5.21e-12 65 49 114 2.26e-07
4 1 1.28e-11 100 1.48e-07 7.24e-11 127 38 165 4.41e-07
n=500 2 1.19e-10 106 5.14e-07 4.05e-11 96 38 134 3.25e-07
3 3.67e-11 115 2.64e-07 5.38e-11 127 38 165 3.93e-07
4 2.50e-11 87 2.05e-07 2.22e-11 65 53 118 2.33e-07
5 1 7.39e-13 114 1.57e-07 8.85e-13 127 55 182 2.49e-07
n=40 2 7.14e-13 115 2.85e-07 2.07e-12 96 51 147 3.58e-07
3 1.28e-12 105 3.75e-07 5.51e-13 127 71 198 2.09e-07
4 4.35e-04 39 4.34e-03 4.76e-13 34 52 86 2.21e-07
6 1 4.59¢e-12 92 2.87e-07 8.16e-12 65 46 111 3.90e-07
n=100 2 1.98e-12 117 1.68e-07 8.95e-12 158 46 204 4.26e-07
3 4.15e-12 112 2.04e-07 4.22e-12 96 45 141 2.53e-07
4 1.67e-11 86 5.68e-07 3.89%¢-12 65 45 110 2.28e-07
7 1 5.79e-10 97 2.02e-07 8.16e-10 65 43 108 2.40e-07
n=300 2 1.44e-09 115 3.64e-07 1.14e-09 96 41 137 2.93e-07
3 6.09e-11 119 8.16e-08 2.36e-09 96 47 143 4.67e-07
4 1.15e-09 77 3.61e-07 9.70e-10 34 44 78 3.64e-07
8 1 7.18e-12 101 2.93e-07 1.04e-11 96 50 146 3.88e-07
n=100 2 2.47e-12 127 2.01e-07 4.65e-12 158 53 211 2.59e-07
3 4.96e-12 111 3.38e-07 2.87e-12 96 54 150 2.46e-07
4 1.90e-12 122 1.52e-07 2.30e-12 96 55 151 2.06e-07
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TABLE 17 Results of CG1 and CG2 methods on the bivariate data sets.

2D CG1 and CG2
CG1 CG2
data sp  e(J(u*)) total e(u*) e(J(u*)) total e(u*)
1 1 4.36e-09 240 3.08e-09 4.36e-09 240 3.08e-09
n=5 2 4.06e-09 319 3.90e-09 3.03e-09 398 2.98e-09
3 2.28e-09 398 1.97e-09 4.13e-09 477 4.13e-09
4 0.00e+00 4 0.00e+00 0.00e+00 4 0.00e+00
2 1 4.23e-07 1583 1.63e-06 3.00e-09 477 4.58e-09
n=20 2 2.08e-07 793 8.70e-07 3.38e-09 556 8.93e-09
3 2.21e-07 1504 8.93e-07 2.98e-09 477 1.19e-08
4 1.96e-07 1030 8.12e-07 3.24e-09 398 1.36e-08
3 1 8.53e-14 398 2.50e-08 5.72e-02 556 2.52e-02
n=100 2 9.24e-14 477 2.94e-08 8.61e-04 240 3.24e-03
3 0.00e+00 477 6.23e-09 6.03e-02 1346 2.60e-02
4 1.49e-13 398 3.14e-08 4.93e-02 240 2.44e-02
4 1 3.98e-13 556 2.07e-08 2.93e-01 398 2.46e-02
n=500 2 1.71e-13 398 1.24e-08 5.15e-01 161 3.46e-02
3 1.71e-13 477 9.83e-09 6.74e-02 319 1.30e-02
4 1.71e-13 319 1.07e-08 1.81e-04 398 5.84e-04
5 1 9.59%¢-14 793 1.05e-07 1.23e-03 240 1.22e-02
n=40 2 5.68e-14 714 7.41e-08 1.16e-01 161 1.17e-01
3 1.33e-12 951 3.89e-07 5.35e-01 240 1.92e-01
4 1.07e-14 398 3.82e-08 1.80e-08 240 4.29e-05
6 1 2.84e-14 477 5.52e-09 4.82e-03 398 7.31e-03
n=100 2 4.26e-14 635 2.55e-08 1.34e+00 319 1.20e-01
3 1.42e-14 477 1.39e-08 4.77e-03 240 8.96e-03
4 1.14e-13 398 5.07e-08 7.24e-02 161 2.82e-02
7 1 1.44e-10 556 1.11e-07 2.84e-04 319 1.94e-04
n=300 2 9.83e-12 477 3.69¢e-08 3.45e-04 240 2.19e-04
3 1.68e-11 556 4.47e-08 2.75e-04 319 1.94e-04
4 1.73e-10 398 9.71e-08 1.25e-03 240 4.22e-04
8 1 3.13e-13 635 9.79e-08 2.05e+00 161 2.29e-01
n=100 2 2.98e-13 635 6.15e-08 8.67e-02 398 4.78e-02
3 2.84e-14 556 2.68e-08 4.12e-01 319 1.01e-01
4 7.82e-13 635 1.22e-07 3.66e-02 240 3.20e-02
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TABLE 18 Results of Modified Weiszfeld, SOR, and ASSOR methods on the bivariate
data sets.

2D Modified Weiszfeld, SOR, and ASSOR

MW SOR ASSOR
data sp e(J(u*)) it e(u*) e(J(u*)) it e(u*) e(J(u")) it e(u*)

1 1 2.86e-10 6  2.02e-10 4.34e-07 23 3.07e-07 457e-07 18  3.23e-07
n=5 2 1.69e-14 6  1.44e-14 2.35e-07 19  2.24e-07 2.36e-07 19  2.25e-07
3 1.84e-11 7 1.37e-11 241e-07 19  211e-07 242e-07 19  2.12e-07
4 0.00e+00 1 0.00e+00 0.00e+00 1 0.00e+00  0.00e+00 1 0.00e+00
2 1 7.25e-07 33  3.04e-06 341e-05 20  1.42e-04 2.95e-07 23  1.24e-06
n=20 2 6.42e-07 34  2.69e-06 341e-05 17  1.42e-04 3.04e-07 22 1.27e-06
3 7.36e-07 34  3.08e-06 342e-05 17  1.42e-04 2.81e-07 23  1.18e-06
4 7.01e-07 30  2.94e-06 3.42e-05 15 1.42e-04 2.88e-07 21 1.21e-06
3 1 1.23e-10 19  1.01e-06 6.30e-12 13  2.11e-07 2.2%-11 10  3.92e-07
n=100 2 6.12e-11 20  7.35e-07 1.47e-11 11  3.86e-07 1.77e-11 11 4.06e-07
3 1.36e-10 19  1.08e-06 1.35e-11 11  3.15e-07 1.07e-11 11 2.95e-07
4 1.66e-10 16  1.15e-06 3.73e-12 10  1.57e-07 2.34e-12 10  1.37e-07
4 1 1.63e-10 20  6.48e-07 1.55e-11 12 2.05e-07 222e-11 11 2.45e-07
n=500 2 3.70e-10 17  9.35e-07 1.30e-11 11 1.72e-07 1.69e-11 11 1.94e-07
3 240e-10 18  8.10e-07 2.04e-11 10  2.25e-07 245e-11 10  2.46e-07
4 452e-10 16  1.07e-06 1.00e-11 10  1.51e-07 1.30e-11 10  1.72e-07
5 1 4.25e-11 36  2.26e-06 713e-12 19  9.25e-07 1.11e-11 24  1.16e-06
n=40 2 4.09%-11 34  2.22e-06 1.85e-11 8  1.49e-06 1.85e-11 8  1.49e-06
3 3.76e-11 41 2.13e-06 1.43e-11 26  1.31e-06 1.44e-11 26  1.31e-06
4 578e-11 19  2.64e-06 1.34e-11 13 1.28e-06 1.34e-11 13  1.28e-06
6 1 2.50e-11 19  6.91e-07 1.65e-12 12 1.84e-07 5.64e-12 9  2.85e-07
n=100 2 2.63e-11 21 7.03e-07 222e-12 12 1.83e-07 1.31e-12 12 1.40e-07
3 2.08e-11 18  5.78e-07 2.56e-12 12 2.01e-07 1.5%-12 12 1.58e-07
4 6.16e-11 16  9.84e-07 8.47e-12 9  3.90e-07 1.07e-11 9  4.33e-07
7 1 1.14e-08 19  1.26e-06 9.05e-08 14  2.52e-06 3.90e-09 12 7.39e-07
n=300 2 1.62e-08 16  1.50e-06 8.55e-08 12 2.65e-06 3.00e-09 12 6.48e-07
3 1.47e-08 19  1.43e-06 9.03e-08 13  2.52e-06 227e-09 13  5.64e-07
4 9.85e-09 18  1.17e-06 8.61e-08 7 2.68e-06 1.23e-09 8  4.15e-07
8 477e-11 26  1.16e-06 1.59%-11 17  6.84e-07 4.82e-12 16  3.88e-07
n=100 7.02e-11 29  1.40e-06 1.33e-11 17  6.26e-07 1.28e-11 17  6.15e-07

6.56e-11 22 1.30e-06 217e-11 16 7.33e-07 223e-11 16 7.45e-07
7.55e-11 25  1.40e-06 4.12e-12 16  3.03e-07 443e-12 16  3.15e-07

B W N =
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TABLE 19 Results of NM and CGINM methods on the multidimensional data sets.
(*The algorithm exceeded the maximum number of function evaluations.)

NM CGINM
P data sp e(T*) #fev e(u*) e(J*) #CG #NM #fev e(u*)
8 1 1 2.96e-11 879 6.31e-07 1.87e-11 96 214 310 4.26e-07
n=100 2 2.13e-02 2172  1.71e-02  9.51e-11 220 234 454 9.03e-07
3 1.49e-10 1013 1.09e-06  2.82e-11 189 265 454  5.55e-07
4 4.34e-11 888 5.43e-07 1.65e-11 65 261 326  3.90e-07
2 1 6.82e-09 995 550e-07 1.69e-08 96 282 378  9.14e-07
n=300 2 5.11e-01 1346  8.73e-03  4.64e-09 127 325 452  5.76e-07
3 4.75e-09 1021  6.49e-07  5.74e-09 158 597 755  4.87e-07
4 2.29e-09 755  2.89e-07 4.11e-09 34 384 418  3.69e-07
16 1 1 3.23e-10 4793  1.77e-06  2.19e-11 96 489 585  4.55e-07
n=100 2 2.61e-02 7264  1.76e-02  3.26e-11 251 454 705  5.82e-07
3 1.61e-10 9094 1.0le-06 4.74e-11 220 462 682  6.67e-07
4 2.68e-10 4406  1.52e-06 2.51e-11 65 491 556  3.67e-07
2 1 5.66e-08 5705 1.50e-06  4.87e-08 96 788 884  1.29e-06
n=300 2 6.18e-01 3724 1.13e-02 2.65e-08 158 1187 1345  1.36e-06
3 8.72e-09 7929  524e-07  1.50e-08 220 695 915  8.76e-07
4 1.12e-08 5648  6.24e-07  5.45e-08 34 2132 2166  1.25e-06
32 1 1 1.66e-06 55961 1.30e-04 3.40e-10 127 1906 2033  1.49e-06
n=100 2 4.74e-02 22684 2.25e-02  4.88e-11 344 1187 1531  7.19e-07
3 5.82e+00  100000*  1.98e-01  3.57e-10 282 1586 1868  2.05e-06
4 4.36e-06 47538 1.61e-04 5.12e-11 65 1613 1678  6.86e-07
2 1 9.90e-03  100000*  7.06e-04  9.18e-09 127 1220 1347  6.25e-07
n=300 2 1.39e+00 29798  1.19e-02  1.31e-07 220 5545 5765  2.04e-06
3 4.25e+01  100000* 1.13e-01  7.55e-08 282 2420 2702  1.40e-06
4 2.66e-02 97048 1.34e-03 2.51e-07 34 6339 6373  3.44e-06
64 1 1 3.74e-05 100001*  4.58e-04  6.95e-10 158 5050 5208  3.06e-06
n=100 2 7.34e-02  100000*  2.38e-02  7.13e-11 437 3779 4216  7.57e-07
3 1.03e+00  100000*  1.23e-01  2.06e-11 375 2756 3131  5.64e-07
4 5.69e-05 100000* 5.71e-04 1.88e-10 65 4903 4968  1.09e-06
2 4.76e-02 100000  1.35e-03  1.84e-07 158 6034 6192  2.61e-06
n=300 3.25e+00  100000*  2.64e-02  7.83e-08 282 4757 5039 1.91e-06

2.29e+01  100000*  6.57e-02  1.91e-07 375 11878 12253  3.53e-06
2.24e-04 100000  7.76e-05  7.84e-07 34 18594 18628 7.42e-06

B W N =
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TABLE 20 Results of CG1 and CG2 methods on the multidimensional data sets (*The

algorithm exceeded the maximum number of function evaluations.)

CG1 CG2
P data sp e(J*) #fev e(u*) e(J*) #fev e(u*)
8 1 1 3.13e-13 477  5.35e-08  3.36e+00 161  1.52e-01
n=100 2 8.53e-14 793  4.33e-08 3.43e-02 556  1.81e-02
3 0.00e+00 556  2.78e-08 3.68e-02 556  1.84e-02
4 1.99%e-13 398  5.85e-08 1.45e-01 161  2.82e-02
2 1 1.27e-09 477  2.31e-07 1.12e-03 319 2.75e-04
n=300 2 1.68e-11 556  3.56e-08 3.46e-08 319 1.54e-06
3 6.11e-11 793  4.15e-08 4.14e-05 714 5.39e-05
4 3.47e-10 398  9.64e-08 2.51e-03 240 4.22e-04
16 1 1 1.71e-13 477  6.53e-08 1.32e-01 240 241e-02
n=100 2 -2.27e-13 872  4.72e-08  6.78e+00 635 1.91e-01
3 -2.27e-13 793  5.22e-08 1.29e-02 872  7.14e-03
4 0.00e+00 398  9.73e-08 2.05e-01 161  2.82e-02
2 1 1.21e-09 477  2.33e-07 1.51e-03 319 1.98e-04
n=300 2 2.65e-11 635  3.84e-08 1.37e-03 556  2.40e-04
3 4.31e-11 872  4.61e-08 7.85e-06 872  1.96e-05
4 4.88e-10 398  9.76e-08 3.55e-03 240  4.22e-04
32 1 1 -8.53e-13 635 8.58e-08 6.62e+00 240  1.33e-01
n=100 2 -6.82e-13 1109  8.92e-08 1.78e-01 872  2.88e-02
3 -1.71e-13 951 1.11e-07 4.26e-03 1030 3.76e-03
4 -2.27e-13 398  9.83e-08 2.90e-01 161  2.82e-02
2 1 2.54e-09 556  2.45e-07 1.90e-03 398 2.51e-04
n=300 2 9.09e-12 714  3.81e-08 4.63e-03 793  3.94e-04
3 3.24e-11 1030 4.31e-08 1.09e-03 872  1.67e-04
4 6.90e-10 398 1.15e-07 5.02e-03 240  4.22e-04
64 1 1 -1.19e-12 635 1.70e-07  7.74e+00 398  1.25e-01
n=100 2 -1.93e-12 1346  1.35e-07 3.65e-02 1346 8.21e-03
3 -1.99e-12 1188  1.56e-07 3.85e-03 1030 3.38e-03
4 -1.42e-12 398  1.32e-07 4.10e-01 161  2.82e-02
2 1 -8.83e-11 714 7.73e-08 1.56e-02 556  5.98e-04
n=300 2 3.92e-11 872  8.24e-08 1.87e-03 872  2.05e-04
3 2.11e-11 1267  6.99e-08 2.35e-04 1267 7.64e-05
4 8.72e-10 398 1.61e-07 7.09e-03 240 4.22e-04
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TABLE 21 Results of Modified Weiszfeld, SOR, and ASSOR methods on the multidi-
mensional data sets.

MW SOR ASSOR
P data  sp e(Jx*) #it e(u*) e(JTx) #it e(u*) e(J*) #it e(u*)

1 1 500e-11 19 6.99-07 259%-12 12 1.76e-07 1.13e-11 9  3.00e-07

n=100 2  526e-11 21 7.11e-07 3.04e-12 12 1.66e-07 2.6le-12 12  1.55e-07

3  415e-11 18 587e-07 3.6le-12 12 1.84e-07 3.15e-12 12 1.73e-07

4 12310 16 9.92e-07 2.00e-11 9 4.30e-07 2.13e-11 9  4.41e-07

2 1  228e-08 19 1.26e-06 231e-08 13 9.99e-07 7.81e-09 12 7.38e-07

n=300 2 323e-08 16 1.50e-06 1.40e-08 12 7.45e-07 6.00e-09 12 6.47e-07

3  294e-08 19 1.44e-06 1.82e-08 13 7.83e-07 4.54e-09 13  5.65e-07

4  197e-08 18 1.17e-06 1.21e-08 8 7.15e-07  2.46e-09 8  4.14e-07

16 1 1 7.05e-11 19 7.36e-07 3.75e-12 12 2.16e-07  1.56e-11 9  3.04e-07
n=100 2  7.42e-11 21 7.48e-07 3.64e-12 12 1.64e-07 3.27e-12 12 1.59e-07

3 5.83e-11 18 58le-07 4.52-12 12 1.82e-07 4.09-12 12 1.77e-07

4 1.74e-10 16 1.03e-06 2.90e-11 9 4.73e-07 2.98e-11 9  4.78e-07

2 1 32208 19 1.26e-06 1.10e-08 15 6.36e-07 1.10e-08 12  7.42e-07

n=300 2 457e-08 16 1.5le-06 9.68e-09 12 4.80e-07 849e-09 12 6.51e-07

3  4.16e-08 19 1.44e-06 1.21e-08 13 6.79e-07 6.43e-09 13  5.66e-07

4 278e-08 18 1.18e-06 5.96e-09 8 3.89e-07 3.48e-09 8 4.17e-07

32 1 1 992-11 19 735e-07 4.83e-12 12 218e-07 2.19e-11 9 3.71e-07
n=100 2  1.05e-10 21 7.47e-07 4.72-12 12 2.29e-07 443e-12 12 2.26e-07

3  823e-11 18 6.32e-07 5.80e-12 12 247e-07 557e-12 12  2.44e-07

4  246e-10 16 1.03e-06 4.14e-11 9 4.75e-07 4.19%-11 9  4.78e-07

2 1 456e-08 19 1.28e-06 1.21e-08 12 6.49e-07 1.56e-08 12 7.47e-07

n=300 2 647e-08 16 152e-06 1.12e-08 12 5.69e-07 1.20e-08 12  6.56e-07

3  589%-08 19 145e-06 1.17e-08 13 6.36e-07 9.08e-09 13  5.78e-07

4  394e-08 18 1.19e-06 5.09e-09 8 3.4le-07 491e-09 8  4.23e-07

64 1 1 1.39e-10 19 7.63e-07 8.19e-12 12 2.67e-07 2.98e-11 9  3.86e-07
n=100 2  147e-10 21 7.75e-07 5.46e-12 12 242e-07 5.12e-12 12 2.4le-07

3  1.15e-10 18 7.04e-07 6.93e-12 12 2.60e-07 6.76e-12 12  2.59e-07

4 347e-10 16 1.06e-06 5.78e-11 9 5.04e-07 5.82e-11 9  5.05e-07

2 6.43e-08 19 1.34e-06 1.61e-08 13 6.40e-07 220e-08 12 7.67e-07

n=300 9.14e-08 16 1.58e-06 1.57e-08 12 6.32e-07 1.69e-08 12  6.76e-07

8.32e-08 19 1.5l1e-06 1.41e-08 13 6.68e-07 1.27e-08 13  6.39e-07
556e-08 18 1.25e-06 6.41e-09 8 4.02e-07 6.85e-09 8  4.43e-07

= W N =
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TABLE 22 Normal: Relative efficiency of the coordinate-wise median, SOR, and ASSOR
spatial median estimators with respect to the sample mean. Laplace: Relative
efficiency of the sample mean, SOR, and ASSOR spatial median estimators
with respect to the coordinate-wise median.

Relative efficiency (avg. of p variance estimates over 100 samples)

Normal distribution (N, (0,1))

Y%(missing) p 2 4 8 16 32 64

0 cw-med  0.642 0.615 0.626 0.639 0.642 0.635
SOR 0796 0.864 0928 0972 0985 0.992
ASSOR  0.796 0864 0.928 0972 0.985 0.992

10 cw-med  0.638 0.650 0.647 0.646 0.632 0.639
SOR 0.770 0.876 0923 0969 0983 0.991
ASSOR 0770 0.876 0923 0969 0.983 0.991

20 cw-med 0.654 0.640 0.641 0.641 0.643 0.645
SOR 0.745 0.825 0.924 0957 0.980 0.988
ASSOR  0.745 0.825 0.924 0957 0.980 0.988

30 cw-med  0.666 0.635 0.625 0.644 0.644 0.648
SOR 0.718 0.801 0.899 0951 0976 0.987
ASSOR 0.718 0.801 0.899 0951 0.976 0.987

40 cw-med  0.662 0.639 0.637 0.644 0.645 0.646
SOR 0712 0769 0.877 0934 0970 0.983
ASSOR 0712 0769 0877 0934 0970 0.983

50 cw-med 0.619 0.638 0.648 0.640 0.640 0.640
SOR 0663 0.735 0.838 0922 0960 0.979
ASSOR  0.663 0.734 0.838 0922 0.960 0.979

Laplace distribution(L,(0,1,))

0 mean 0579 0564 0.539 0558 0.560 0.560
SOR 0.864 0.738 0.635 0.606 0.590 0.574
ASSOR  0.864 0.738 0.635 0.606 0.590 0.574

10 mean 0.554 0558 0.565 0.552 0.562 0.563
SOR 0.866 0.745 0.669 0.609 0.591 0.580
ASSOR 0866 0.745 0.669 0.609 0.591 0.580

20 mean 0572 0552 0570 0556 0.566 0.566
SOR 0.860 0.747 0.685 0.622 0.599 0.583
ASSOR  0.860 0.747 0.685 0.622 0.599 0.583

30 mean 0.570 0577 0552 0565 0.561 0.568
SOR 0.886 0.781 0.656 0.633 0.596 0.586
ASSOR  0.886 0.781 0.656 0.633 0.596 0.586

40 mean 0577 0565 0566 0573 0.581 0.581
SOR 0900 0.815 0.709 0.649 0.623 0.603
ASSOR 0900 0.815 0.709 0.649 0.623 0.603

50 mean 0571 0583 0.597 0586 0.577 0.584
SOR 0.893 0.824 0.740 0.675 0.627 0.609
ASSOR  0.893 0.824 0.740 0.675 0.627  0.609
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TABLE 23 Consistency of the estimators in the presence of missing data.

Statistical consistency (avg. bias over 100 sample )

Ny(0,1,)

2D 8D

Y%(missing) n mean  cw-med SOR ASSOR mean cw-med SOR  ASSOR

0 10 3.9e-2 6.9e-2  5.2e-2 52e-2  1.0e-1 1.0e-1  1.0e-1 1.0e-1
10> 9.3e-3 5.6e-3  1.0e-2 1.0e-2 2.3e-2 2.6e-2 2.2e-2 2.2e-2
103 4.5e-3 43e-3 4.1e-3 4.1e-3  9.0e-3 1.3e-2  9.6e-3 9.6e-3
10*  2.1e-3 22e-3 24e-3 2.4e-3  3.5e-3 39e-3 3.4e-3 3.4e-3
10°  4.2e-4 6.8e-4 3.9e-4 39e-4 7.8e-4 8.0e-4 7.5e-4 7.5e-4

15 10  1.9e-2 8.3e-3  2.2e-2 22e2  6.le-2 1.0e-1  5.6e-2 5.6e-2
10> 8.2e-3 1.9e-3  2.1e-2 2.1e-2  3.6e-2 3.8e-2 3.7e-2 3.7e-2
10>  8.5e-3 5.4e-3 8.3e-3 8.3e-3 9.4e-3 8.6e-3  1.0e-2 1.0e-2
10*  2.8e-4 6.5e-4 7.9e-4 79e-4 4.7e-3 55e-3 5.1e-3 5.1e-3
10°  4.5e-4 9.2e-4 9.8e-4 9.8e-4 1.1e-3 1.2e-3  9.8e-4 9.8e-4

40 10 5.7e-2 6.3e-2  6.1e-2 6.1e-2 1.le-1 1.3e-1  1.2e-1 1.2e-1
102 22e-2 2.0e-2  1.6e-2 1.6e-2 3.2e-2 4.1e2 2.8e-2 2.8e-2
103 2.8e-3 29e-3  3.3e-3 33e-3 1.le-2 14e-2  1.2e-2 1.2e-2
10*  3.4e-3 3.7e-3  3.0e-3 3.0e-3 3.4e-3 54e-3 4.2e-3 4.2e-3
10°  7.7e-4 57e-4 4.7e-4 47e-4 8.8e-4 1.2e-3  14e-3 1.4e-3

Ly(0,1p)

2D 8D

% (missing) n mean  cw-med SOR ASSOR mean cw-med SOR  ASSOR

0 10  3.9e-2 7.3e-3  3.0e-2 3.0e-2 1.3e-1 1.0e-1 1.1e-1 1.1e-1
102 8.2¢-3 3.7e-3  5.0e-3 5.0e-3  3.0e-2 1.9e-2 2.8e-2 2.8e-2
10°  2.8e-3 3.8e-:3  2.0e-3 2.0e-3  1.0e-2 7.3e-3 8.1e-3 8.1e-3
10 6.6e-4 8.9e-4 1.1e-3 1.1e-3 3.2e-3 2.7e-3 3.1e-3 3.1e-3
10° 5.3e-4 43e-4 53e-4 53e-4 1.1e-3 79e-4  1.2e-3 1.2e-3

15 10 1.2e-1 7.2e-2  6.8e-2 6.8e-2  1l.4de-1 1.6e-1  1.3e-1 1.3e-1
102 29e-2 9.2e-3 9.7e-3 9.7e-3  4.0e-2 2.7e-2  3.4e-2 3.4e-2
103 2.7e-3 3.2e-3 5.9e-3 59e-3 1.8e-2 1.3e-2  1.6e-2 1.6e-2
10*  1.7e-3 1.1e-3 1.1e-3 1.1e-3 5.1e-3 2.8e-3  4.9e-3 4.9e-3
10° 5.3e-4 6.1e-4 3.2e-4 32e-4 1.5e-3 1.0e-3 1.8e-3 1.8e-3

40 10  5.2e-2 22e-2  6.6e-2 6.6e-2  1.6e-1 1.3e-1  1.5e-1 1.5e-1
10> 1.5e-2 1.0e-2  1.3e-2 1.3e-2  5.5e-2 3.8e-2 3.7e-2 3.7e-2
10>  4.7e-3 4.2e-3 3.3e3 32e-3 22e-2 14e-2 1.8e-2 1.8e-2
10*  2.1e-3 7.3e-4 1.3e-3 1.3e-3 4.2e-3 3.4e-3 3.6e-3 3.6e-3
10°  6.0e-4 3.8e-4 4.6e-4 4.5e-4 1.9e-3 1.0e-3  1.6e-3 1.6e-3




APPENDIX 2 SOR RELAXATION PARAMETER VALUE

The following figures depict the maximum, minimum and mean effect of relax-
ation parameter w to the number of SOR iterations on the synthetic test data sets
(the curves are averages over 50 runs).
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FIGURE 76 SOR relaxation parameter on data sets 1-4.
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FIGURE 77 SOR relaxation parameter on data sets 5-8.
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APPENDIX3 ASSOR RELAXATION PARAMETER VALUE

The following figures depict the maximum, minimum and mean effect of relax-
ation parameter w to the number of ASSOR iterations on the synthetic test data
sets (the curves are averages over 50 runs).
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FIGURE 78 ASSOR relaxation parameter on data sets 1-4.
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FIGURE 79 ASSOR relaxation parameter on data sets 5-8.



APPENDIX 4 PAPER INDUSTRY PROCESS DATA - CLUSTER
VISUALIZATION

UPM data (K=3) - PCA
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FIGURE 80 The classical, SCM, and TCM based principal component projections for
‘paper data’ in case K = 3.
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FIGURE 81 The classical, SCM, and TCM based principal component projections for
‘paper data’ in case K = 5.
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FIGURE 82 The classical, SCM, and TCM based principal component projections for
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APPENDIX 5 ISBSG SOFTWARE PROJECT DATA - FIELD
DESCRIPTIONS

TABLE 24 Used software project data fields. See more detailed descriptions in [202].
Index Label

1 Functional Size

2 Adjusted Function Points
3 Value Adjustment Factor
4 Summary Work Effort

5 Normalized Work Effort
6 Reported PDR (afp)

7 Project PDR (ufp)

8 Normalized PDR (afp)

9 Normalized PDR (ufp)
10 Project Elapsed Time

11 Project Inactive Time

12 Effort Plan

13 Effort Specify

14 Effort Design

15 Effort Build

16 Effort Test

17 Effort Implement

18 Effort unphased

19 Minor defects

20 Major defects

21 Extreme defects

22 Total Defects Delivered
23 User Base - Business Units
24 User Base - Locations

25 User Base - Concurrent Users
26 Resource Level

27 Max Team Size

28 Average Team Size

29 Input count

30 Output count

31 Enquiry count

32 File count

33 Interface count

34 Added count

35 Changed count

[6Y)
o)

Deleted count



APPENDIX 6 SOFTWARE PROJECT DATA - CLUSTER
VISUALIZATION

SW data (K=3) — TCM (prototypes)
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SW data (K=10) - TCM (prototypes)
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SW data (K=3) - PCA
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SW data (K=7) - PCA
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SW data (K=10) - PCA
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YHTEENVETO (FINNISH SUMMARY)

Erilaisten informaatiojdrjestelmien kehittymisen ja yleistymisen seurauksena di-
gitaalisesti tallennetun informaation mdara on kasvanut viime vuosina kiihtyval-
1a vauhdilla. Timén seurauksena nédiden tietoméérien hyddyntdminen on tullut
yhé vaikeammaksi, silld oleellinen informaatio saattaa monesti hukkua merkityk-
settomdn tiedon, kohinan ja virheiden joukkoon. Tiedonlouhinnalla tarkoitetaan
yleisesti ottaen uuden ja odottamattoman tietimyksen etsimistd suurista tieto-
massoista. Tavoitteena on esittdd digitaalisen datan sisdltimd informaatio kaytta-
jalle mahdollisimman ymmarrettdvdssd muodossa ja siten lisdtd hdnen tietamys-
tddn. Tdssd tutkimustyossa kehitetddn tilastollisesti luotettavia ja laskennallisesti
tehokkaita ryhmittelymenetelmid tiedonlouhintaan (engl. data mining, DM) ja tie-
tamyksen etsimiseen (engl. knowledge discovery in databases, KDD) suurista tieto-
massoista. Kehitettyjen menetelmien avulla voidaan suuriakin méaéria virheellis-
td ja puutteellista dataa jalostaa ja yksinkertaistaa kdyttdjan kannalta ymmarret-
tavampaan muotoon.

Tamén tyon padhuomio kohdistuu nk. prototyyppeihin perustuviin ryhmit-
telymenetelmiin, jotka voidaan toteuttaa iteratiivisia uudelleensijoittelualgorit-
meja kdyttden. Prototyypilld tarkoitetaan tdssd yhteydessa jonkin havaintoryh-
mén edustavinta jasentd tai arvoa. Tydssd kdydddn lapi prototyyppipohjaisiin
ryhmittelymenetelmiin perustuvan dataryhmittelyn elementit ja kuvataan pe-
rusalgoritmit. Tutkimuksen pédatuloksena esitellddn datassa esiintyvid virheitd ja
puutteita kestdva sekd loppukdyttdjan kannalta ldhes automaattinen ryhmitte-
lymenetelmd. Menetelmd koostuu useista eri osista, kuten alustus, prototyypin
laskenta ja puuttuvan tiedon késittely, jotka kukin on erikseen kehitetty ja tes-
tattu. Tilastollisten luotettavien tunnuslukujen matemaattisia ominaisuuksia on
perusteellisesti tarkasteltu epédsiledn optimoinnin ndakokulmasta. Lisdksi tyossa
esitellddn uusi mittari datajoukossa piilevien ryhmien lukumdéran arvioimiseen.
Tyossd on myos jatkokehitetty ja sovellettu menetelmid, kuten esimerkiksi luo-
tettavaa ja laskennallisesti tehokasta padkomponenttianalyysia, datasta 16ytyvien
ryhmien visuaaliseen havainnollistamiseen.

Ty0ssé esitellddn myos alkuperdisestd nk. KDD-prosessista tarkennettu KM
("Knowledge Mining”) -prosessimalli. Tdmén tavoitteena on selventdd ja tismen-
tad kehitettyjen menetelmien kaytettavyyttd loppukédyttdjan kannalta. Uudessa
mallissa painotetaan sovellusalueen analysoinnin tarkeyttd ja tiedonlouhinnan
automaattista luonnetta loppukéyttdjan ndkokulmasta. Prosessimallin merkitys-
td ja tarkeyttd on perusteltu esittelemilld kokoelma olemassa olevia tietimyksen
lahteitd ja kdytannon sovelluksia.

Menetelmien laskennalliset ja tilastolliset ominaisuudet kuten robustisuus,
skaalautuvuus sekéd laskennallinen ja tilastollinen tehokkuus, on testattu ja ha-
vainnollistettu useiden numeeristen kokeiden avulla. Numeeristen testien tueksi
annetaan myos joitakin analyyttisia tuloksia ja kdytannon esimerkkeja.
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