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ABSTRACT

Lensu, Anssi
Computationally Intelligent Methods for Qualitative Data Analysis
Jyväskylä: University of Jyväskylä, 2002, 57 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 23)
ISBN 951-39-1374-0
Finnish summary
Diss.

This study focuses on computationally intelligent methods, which are applied to
the analysis of survey data in educational research. The methods can be used
with complex data sets, which contain several data types. Each data type is an-
alyzed in a separate subanalysis, and the results from these subanalyses can be
combined. The methodology makes it possible to locate groups of similar an-
swers from the subanalyses, and to identify these groups using background in-
formation. It also allows one to compare groups that are selected from different
subanalyses, from different populations, and to locate and identify similar textual
answers. In connection to this study, a software application has been created to
test the developed methods.

Keywords: exploratory data analysis, data mining, knowledge discovery, self-
organizing maps, model selection, information theory, parallel
computing
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LIST OF SYMBOLS

General symbols used throughout the thesis
#A Evaluates the number of items in set A

dv Dimensionality of a model used for describing data
dx Dimensionality of the data Ω

E Expectation
G Categorical scale
Nv Number of clusters (or neurons in a SOM)
Nx Number of data points in Ω

Ω Data set to be analyzed
Ωk Cluster of similar data items
x Single variable
x(j) Data vector of Ω

Y Set of features representing all answers of a person

Self-Organizing Map and its evaluation
α(t) Training speed function
c(·) Function to choose the closest neuron
E Value of the SOM potential function
ε Representation error of a principal surface
hc,k Value of the neighborhood kernel function
� TS-SOM layer containing 2dv� neurons
σ(t) Neighborhood size or kernel width function
v Point on a principal surface
v̂(k) Neuron prototype k

w(k) dx-dimensional weight vector of neuron k

x(v) Principal surface in data space

Fuzzy Set Theory
µs̃(x) Membership function for fuzzy set s̃

s̃ Fuzzy set



Statistical Natural Language Processing
ci Character within text
dj One document from corpus
d(j) Index term vector for document dj

κ Number of previous conditioning characters
n Index of the word to be predicted (n-gram model)
Nt Number of terms in T
ωi Word within a document
q Index term vector for the query
T Set of index terms
ti One term of the set T
wi(j) Weight for term ti within document dj

Model selection
C(·) Coding function
ε(j) Residual for data vector x(j)

f(·) True model or distribution
fH(·) Parametric histogram density
fG(·) Gaussian kernel function
g(·) Candidate model or distribution
H(·) Function to calculate the Shannon’s entropy of a

probability distribution
IKL(·) Kullback-Leibler distance (or divergence)
ISC (·) Stochastic complexity of parametrized data
K Number of estimated parameters in the model
L(·) Likelihood of model given data
L(·) Code length evaluation function
M Model family or set of models
mi One chosen model from model family M
Nm Number of histogram pins or kernel functions
p(x) Probability density function for a discrete x

θ Parameter vector for candidate model g

X Set of possible values for X

X Random variable, which takes values in X
y Integration variable



1 INTRODUCTION

Once upon a time, statisticians only explored.
Then they learned to confirm exactly –
to confirm a few things exactly,
each under very specific circumstances.
As they emphasized exact confirmation,
their techniques inevitably became less flexible.

John Tukey

The field of educational research contains a large number of research problems,
which are typically solved using either qualitative research methods (Tesch 1990,
Miles and Huberman 1994) or traditional parametric statistical analyses, depend-
ing on the type of the data. The problems with qualitative methods are that they
require a lot of human work, and that (normally) their results are not quantita-
tively measurable. And even though the parametric statistical methods are used
in qualitative data analysis to provide exact measurable results, they depend on
the chosen hypotheses. Since all possible hypotheses cannot be tested, the inter-
esting and essential contents of the data set may be left unnoticed. Other key
problems with the parametric statistical methods are that they include strict as-
sumptions regarding the distribution of the data, and that their applicability is
limited to cases, where the number of variables is low. Therefore, there is a need
for computer assisted analysis methods, which could be used with both quan-
titative and qualitative data. These methods are needed in order to reveal the
intrinsic similarities between the multivariate or otherwise complex data items.

Educational research data sets may contain several data types, which all de-
scribe the characteristics or opinions of the human beings. For example, surveys
contain questions, to which the answers are given in numerical, categorical or tex-
tual form. In addition, the number of questions and the number of respondents
may be large, which increases the work needed for analyzing the data set manu-
ally. Therefore, the analysis methods need to be able to efficiently make a compact
representation of the contents of the data even though the data set may be poly-
morphic, complex and large. To be able to get a condensed idea of the opinions
of real people and their collaborative (Dillenbourg 1999) behavior, the groups of
data items, which are similar to each other, can be located and identified. These
groups can then be studied instead of the individuals to find the underlying rea-
sons, which make the group representatives different from the rest of the survey
sample. Other questions about the contents of the data can also be answered
more easily using the located groups.

The Exploratory Data Analysis (EDA) (Tukey 1962, Tukey 1977), and data min-
ing and Knowledge Discovery in Databases (KDD) (Frawley et al. 1992, Fayyad 1996,
Fayyad et al. 1996) methods that are presented in this work are data-driven.
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These methods avoid making prior assumptions on what kind of data items
should be found or what the data distribution is. Instead, they try to locate sim-
ilarities from the multivariate data sets using computational methods, such as
unsupervised statistical learning (Hastie et al. 2001). However, to be able to choose
the correct preprocessing methods and to make the results more clear and moti-
vated, the prior knowledge of the researcher has to be used to guide the analysis.

Typically, the role of the data analysis is the developing of qualitative un-
derstanding of the contents of data. Exploratory data analysis can be used to the
analysis of qualitative data by developing suitable preprocessing methods. The
EDA or data mining methods can be used in connection with qualitative research
methods, such as grounded theory (Glaser and Strauss 1968) or transcendental real-
ism (Miles and Huberman 1994). The interactive nature of the computer assisted
methods also allows the researcher to backtrack to an earlier phase of the analysis
easily, if the results are not satisfactory. Therefore, the researcher may get a more
thorough insight into the data than is possible with traditional methods.

1.1 Studied Educational Research Problems

We have concentrated on problems where data has been difficult to analyze us-
ing traditional statistical methods, or has typically required a lot of manual work.
Survey data with many data types and lots of variables are hard problems for
educational researchers. In addition to textual answers, they usually contain
multiple-choice questions, as well as categorical and numerical background in-
formation.

This study does not address the problems related to survey planning, such
as questionnaire design, or sampling. The design of questionnaires is strongly
related to the field of research, and thus general methods can only be developed
for the post evaluation of answering consistency. A general theory of sampling
using unequal probabilities and probability-weighted estimation was suggested
in (Horvitz and Thompson 1952). Using that theory, the located results of data
analysis can be extended to reflect the situation in the whole population.

One good example of a complex data set is the survey (called Perus-
koulun arviointi 1995) conducted by the Institute for Educational Research of
the University of Jyväskylä in 1995. In this survey a questionnaire containing 29
multiple-choice questions, 16 free-form textual questions, and some numerical
and categorical background information was used to assess school satisfaction
in Finnish comprehensive schools. The multiple-choice questions (or actually
statements) were designed to be responded to on a 4-point agree-disagree scale
G1 = {definitely disagree,mostly disagree,mostly agree, definitely agree}, which is
an ordered categorical or ordinal scale. The textual questions contained variable
length answers, which were only about one to three sentences long. The back-
ground information was not supposed to be used for locating similar items. Instead,
it was to be later utilized for the identification of the located groups of people.
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The sample size was 1380 students from different parts of Finland.
The multiple-choice questions (Williams and Batten 1981) were designed to

measure students’ feelings about school using Quality of School Life as the per-
spective. They have been used to evaluate the quality of school life in at least
30 countries around the world. For example, in 1991 the questions were used
in connection with the IEA (International Association for the Evaluation of Ed-
ucational Achievement) International Reading Literacy Study, where the sample
size was more than 100 000 students. Williams and Roey summarize the design
process in (Williams and Roey 1997) and explain why the questions have been di-
vided into six semantic categories: General affect, Negative affect, (Achievement
and) Opportunity, Teachers, Identity, and Status. Factor analysis (Thurstone 1949)
has been used to show that these categories (or factors) mostly agree with their
theoretical design. The textual questions also measured the same kind of aspects
of school life as the multiple-choice questions, and were designed by the Finnish
researchers.

Regarding these data sets, the educational researchers have been interested
in at least the following research questions (Linnakylä 1996, Linnakylä and
Brunell 1997, Linnakylä and Malin 1997, Linnakylä and Malin 1998, Malin and
Linnakylä 2001):

• What are the background factors affecting school satisfaction?

• What kind of groups of similar individuals can be found from the whole
survey sample if only their answers to the presented questions are studied?

• How do the answers of the individuals in some located group differ from
the answers given by the rest of the survey sample?

• If a group of unsatisfied students is found, what are the underlying reasons,
which make them negative towards school?

• Do negative teacher – student relations cause negative attitude towards
school in general?

• How do survey samples from different populations, for example from dif-
ferent countries, differ from each other?

• How have the school satisfaction and teacher – student relations changed
in the Finnish population from 1991 to 1995?

• How could exact meaning be extracted from inexact qualitative data?

• Do the textual answers support the opinions obtained from the multiple-
choice answers within one semantic category?

These questions can be reformulated into a few data analysis or data mining ques-
tions:

• How can groups of similar data items (answers) be located?

• What background information is available about these groups?

• How can the correlations between different parts of data be evaluated and
represented?
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• How can different data sets with several semantic aspects be compared?

• How can textual data be analyzed and clustered?

1.2 Data Analysis Problems

It would be almost impossible to directly and automatically convert the textual
and the categorical answers into commensurable parts of a feature vector, which
would represent all the answers of a person. Using a lot of manual work in-
cluding reading of all textual answers many times and analyzing the quantitative
variables with statistical methods, a set of features Y representing the contents
of the answers probably could be found. In the included articles we propose an
interactive system where the different data types and theoretical aspects of the
questionnaire are analyzed separately.

If the number of multiple-choice questions is large, locating similar re-
sponses becomes difficult due to the large number of possible value combina-
tions. The use of clustering methods becomes difficult due to the curse of dimen-
sionality (Bishop 1995, Duda et al. 2001, Hastie et al. 2001), and because it is hard
to decide on a suitable number of clusters if the responses are about evenly dis-
tributed in the space of possible answer combinations. This problem can also
be formulated another way: Which data items should be considered similar and
which different, if no distinct clusters can be found?

Free-form textual data is complex due to the almost infinite number of pos-
sibilities how the letters of some alphabet A can be combined into variable length
words. The words are further used to form variable length sentences, which in-
tegrate into paragraphs and documents. Even though the letters cannot be freely
combined in natural languages, the size of the dictionary is always huge, and
new words are introduced frequently. In agglutinative languages, such as Finnish,
prefixes and suffixes are used to create inflections and derivations (morphological
forms) from the base words, and several words can even be combined into com-
pound words. There could also be locally used dialects, which affect the spelling
of some words.

The same kind of versatility applies also to words within sentences, because
the word order need not be strict and changes in the order may affect the meaning
of the sentences. The meaning may be more severely affected by a simple nega-
tion. However, there are application areas, in which the text data has more struc-
ture and similar expressions occur frequently. For example, answers to direct
questions typically do not contain as poetic language as some other text corpora,
and can therefore be analyzed more easily.

1.3 Other Application Areas for Presented Methods

Surveys and censuses are conducted by national statistical bureaus, statistical de-
partments of cities, universities, companies, and so on, all the time. If the ques-
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tionnaires are not simple, efficient data analysis methods are needed. Textual
data are used almost everywhere, and therefore efficient filtering and classifica-
tion methods are needed a lot. Typical application areas include querying the
World Wide Web, Email filtering to reduce the amount of spam, searching the
library catalogs, and so on.

Typically the problem is to build useful description vectors for the docu-
ments to be queried, filtered or ordered, and for the query if applicable, and then
somehow classify whether each document is relevant or not. Rule based systems,
which are created using domain knowledge, may be efficient for some specific
data sets, see the discussion in (Sebastiani 2002), but they have to be created and
updated by a true expert of the domain. However, model based systems, which
are created using statistical learning, can be built without any expert knowledge,
but then a lot of data is needed for the training.

In addition to surveys, we have applied our textual data analysis methods
also for locating similar data communication problem descriptions using real-
world data from the Sonera Corporation. The goal was to develop a user in-
terface with which a large text database could be queried using a new problem
description, and the solutions to previously occurred similar problems could be
obtained. This has been briefly referred to in Article [D].

1.4 About the Content of the Preface

The studied problem types and typical contents of the data sets were first pre-
sented in Chapter 1.1. Next, a review of the data analysis and modeling method-
ology behind the methods used in the articles is presented in Chapter 2. The
unsupervised learning methods have to be regularized to avoid over-fitting to
data. An idea how this can be done is presented in Chapter 3, which contains
a review of model selection and assessment, and describes our approach for the
Tree-Structured Self-Organizing Map (TS-SOM). Finally, a parallel TS-SOM train-
ing method for large data sets (often obtained from document collections) is in-
troduced in Chapter 4.
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2 DATA ANALYSIS METHODOLOGY

This chapter presents a literature review of some of the methods used for data
analysis. The methodology has been chosen to support the arguments given in
the included articles. Qualitative research methods are introduced to give insight
about their strengths and weaknesses, and to point out possibilities of computer
programs in this context. However, our approach is to use exploratory data anal-
ysis methods for data modeling and visualization. In exploratory data analysis
unsupervised learning methods can be used to assist exploration. Our methods
are mostly based on the Self-Organizing Map and its use for the visualization of
data and models. Methods for the preprocessing of categorical and textual data
are also introduced by presenting the idea of fuzzy sets and natural language
processing methods.

2.1 Qualitative Research

Strictly speaking, there is no such thing as qualitative research.
There are only qualitative data.

Renata Tesch

Qualitative research is still a term used by many scholars in human sciences in-
cluding sociology, psychology, and education (Tesch 1990). It is used while refer-
ring to the process of knowledge production from qualitative data. Qualitative
data usually means descriptive information, for which exact and unambiguous
distance metrics cannot be defined. Typically, it can be words, but also pictures,
video clips, and music could be thought to be qualitative. In this thesis, only
textual and categorical (or discrete) data are considered and studied. Statisticians
often regard categorical data as qualitative (Hastie et al. 2001), which can be mo-
tivated by noting the limitations of numeric representation.

The categorical variables, which take one value from a set of Nc possible
attribute values, G = {value1, value2, . . . , valueNc}, are in many cases represented
with numbers G ′ = {1, 2, . . . , Nc} in computers. However, this does not always
indicate that there would be an order between the choices. The reason to use
numbers is just that numbers are more economical in both for the storage and for
the comparison of categories. Ordered categorical or ordinal variables use a scale, on
which there exists an order between the choices, for example value1 < value2 <

· · · < valueNc , but still the numbers need not indicate the “magnitude” of the
choices, or the distances between adjacent choices need not be uniform. People
may also disagree on how much each choice differs from the others quantitatively.

Because there is a clear structure in categorical data, it is usually not analyzed
using qualitative research methods. Instead, the analysis of categorical data is
usually considered as a statistical problem. The meaning of certain categorical



19

answers or their combinations can be evaluated after some statistical analysis
method, such as clustering, is applied.

The ordering of textual expressions is much more difficult. Usually only
quite similar textual expressions can be located automatically. A human expert is
the only real judge, who is able to say if two completely different sentences mean
the same thing in the real world. Therefore, computer systems are only able to
notice similarities in the texts and point them out to the user. Qualitative research
methods are able to continue the analysis from there.

2.1.1 Qualitative Analysis Types

For the analysis of textual data Tesch presents a comprehensive taxonomy
(Tesch 1990). The study or exploration of language is divided into two main cate-
gories: study of language as a structure and its study as communication. Linguistics
and anthropology belong to the first category. Linguists are mostly interested in
the syntax of sentences, the morphological forms of the words, ambiguity of
expressions, exact semantics of words, and so on. And anthropologists study the
cultural aspects, such as what meaning a word has in a culture, and how other
words relate to it. Recently, the cultural aspects have also become more important
in the other fields of study. Social sciences, especially educational research, study
the second category of communicational aspects. Literary criticism (humanities)
and interpretation of text (hermeneutics) also study communicational aspects, but
the goals are quite different. Figure 1 illustrates the different tasks of exploration
of language, and how they relate to each other.

As a structure As communication

Literary critisism

Linguistically Culturally In humanitiesIn hermeneuticsIn social sciences

As system
 of cultural
knowledge

Interpretation
      of text

Exploration or study of language

Text as
   data

FIGURE 1: The high level taxonomy of exploration of language adopted from
(Tesch 1990) p. 57.

In educational research the textual information is in many cases seen as data, and
content analysis or discourse analysis is done, depending on what kind of study the
data relates to. If the communication is seen as a process, for example as in a con-
versation, discourse analysis can reveal how language is used in certain situations
or how the presence of other people affect the communication. However, the sur-
vey data only contains static content and therefore content analysis accompanied
by discovery of regularities is the most reasonable approach. The central ideas in
content analysis are to categorize words or sentences into a few groups, which
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are relevant for the research purpose, or to make inventories of how frequently
each word is used, or to explore in what kind of contexts the words have been
used. Figure 2 illustrates how the different tasks of qualitative research relate to
each other. The approach depends on the research interest, which can also be
comprehension of the meaning of text/action or reflection, which have been omitted
from the figure.

The characteristics
      of language

The discovery
of regularities

As communication As culture

Content Process

Content
analysis

Discourse
analysis

 Identification of elements, and
exploration of their connections

Transcendental
    realism

Grounded
   theory

Depending on the
research interest

Discerning
of patterns
(many app−
 roaches)

FIGURE 2: The hierarchy of qualitative research adopted from (Tesch 1990) pp.
59, 61 and 63.

Traditionally, the discovery of regularities from a text corpus is done by reading
texts through many times, categorizing similar textual expressions, and present-
ing what kind of relations exist between them. According to Tesch there are two
main approaches: grounded theory (Glaser and Strauss 1968), and transcendental
realism (Miles and Huberman 1994). The term transcendental realism was used
by Tesch, because the qualitative data analysis methods used by Miles and Hu-
berman were not given a specific name in the first edition of their book in 1984.
However, in the second edition Miles and Huberman themselves indicated that
’We see ourselves in the lineage of “transcendental realism” ’, which means that they
agree that social phenomena exist also in the objective world, not just in the mind.

Glaser and Strauss motivate grounded theory by claiming that qualitative
data has been used in nonsystematic and nonrigorous ways before the World
War II, and that monographs based on qualitative data contained just lengthy
explanations of results instead of theory. They thus suggested that the genera-
tion of theory by comparative analysis could be used in order to make qualitative
analysis more systematic. The main idea and the working scheme of grounded
theory are clearly illustrated in (Hutchinson 1988). Using the full potential of the
method requires that data collection, coding, and analysis are done simultane-
ously in such a way that focus can be changed, if needed. The goal is to discover
theory by sorting incidents found in textual data into categories, which are inter-
preted by listing their properties, and comparing the categories at the same time
until the most coherent categories with clear properties stand out. There are three
levels of coding: i) breaking data into pieces and abstracting them, ii) condens-
ing the resulting codes into categories, and iii) deriving theoretical constructs for
categories using academic and empirical knowledge. The constant comparing of
data and interpretations assisted by memoing of ideas, sampling from data, and
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sorting of codes are supposed to help the researcher achieve a sense of closure,
which is called saturation.

In the work by Miles and Huberman the aim is to build a qualitative de-
scription of the data using matrices and causal networks, which ’pull together
independent and dependent variables and their relationships into a coherent picture’
(Miles and Huberman 1994). In their analysis model there are three concurrent
flows of activity. These flows, data reduction, display, and conclusion draw-
ing/verification, are active already when the data is being collected, and they
are continued in the post-collection period. Several methods are suggested for
data collection, reduction, visualization, and conclusion drawing.

Both of these analysis processes can be assisted by text data base managers
and text retrievers (Tesch 1990). The categorization or data reduction is also a key
part in both methods, and therefore a statistical learning method, which would
be able to detect similar content from text, could be quite useful for exploration,
and for the identification of discoveries. The qualitative research methods can
really dig out deep knowledge from the text. However, the results typically are
qualitative the same way as the source data.

2.2 Exploratory Data Analysis and Data Mining

In Exploratory Data Analysis (EDA) (Tukey 1962, Tukey 1977) the idea is to avoid
making prior assumptions about the contents or distributions of the data. In-
stead, statistical inferences are made by first conducting an exploratory phase,
which is mostly data driven. The goal of this phase is to reveal the intrinsic rela-
tions within the data and present them in a form that can be understood easily.
The results can be later verified in a confirmatory phase.

Modern EDA methods can be used for Knowledge Discovery in Databases
(KDD) (Frawley et al. 1992, Fayyad 1996, Fayyad et al. 1996). In this field the
goal is to discover frequently occurring or novel patterns from data. Typi-
cally, KDD is seen as a process with many phases including data selection, pre-
processing, transformations, data mining, and interpretation and evaluation of
the obtained results. Since the terminology is not quite stabilized, yet, people
may use the term data mining also to mean the whole KDD process. For the
data mining phase, several methods can be used including pattern recognition
(Bishop 1995, Duda et al. 2001) and statistical learning (Hastie et al. 2001). In our
view, illustrative visualization of the results and evaluation of the data mining
process (in addition to evaluation of the results) should be included due to the
reasons presented in Chapters 2.7 and 3.

2.3 Unsupervised Statistical Learning

The unsupervised statistical learning methods (Hastie et al. 2001) are well suited
for data analysis and mining, because in them only the input features themselves
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are observed. No measurements of outputs or responses, such as physical out-
puts of a process or classification information for the inputs, are needed. These
methods can be adapted to each situation by developing suitable feature extraction
or data preprocessing methods. Statistical information about the data is needed for
the preprocessing phase, and prior knowledge can be of substantial use, but other
information is not necessary for the analysis. The unsupervised learning methods
are fully capable of handling multivariate data, because they either cluster simi-
lar items together or project the high-dimensional data onto a lower dimensional
latent space.

Clustering methods (Anderberg 1973) attempt to partition data Ω into point-
wise separate groups of items, clusters Ωk, within which items are pairwise more
similar than items which have been taken from different clusters. If the goal is
to simplify the representation, the number of clusters, Nv, has to be less than the
number of data items, Nx. Other goals may include the representation of rela-
tions between individual data points using a hierarchy. Clustering can be seen as
a hard problem, because the number of ways how Nx observations can be sorted
into Nv clusters is a Stirling number (Anderberg 1973) of second order

SNx(Nv) =
1

Nv

Nv∑
k=0

(−1)Nv−k

(
Nv

k

)
kNx . (1)

So, for the small problem of assigning 25 observations to 5 groups, S25(5) =

2 436 684 974 110 751 ≈ 2.4 × 1015. Therefore, efficient algorithms for clustering
are needed.

The clustering algorithms can be divided into a few types. Anderberg sug-
gests the division into hierarchical and non-hierarchical methods, and Hastie, et
al. in their recent work (Hastie et al. 2001) suggest three types: combinatorial al-
gorithms, mixture modeling, and mode seeking. Combinatorial algorithms do not
assume any underlying probability model. Mixture models suppose that there
is a probability distribution from which data have been sampled i.i.d. Once the
model has been fitted using maximum likelihood or Bayesian methods, the distri-
bution can be characterized as a mixture of parametrized component densities.
Mode seekers instead just attempt to directly locate the bumps in the probability
density.

The goal of projection methods is to locate a linear or non-linear dv-
dimensional approximation for the dx-dimensional data by minimizing the rep-
resentation error. Typically dv � dx, which makes the representation easier to
interpret than the original data. The data points are projected onto a line (Princi-
pal Component Analysis, PCA), curve (principal curves (Hastie and Stuetzle 1989)),
plane, surface (principal surfaces (Hastie and Stuetzle 1989, Hastie et al. 2001)), or
cluster centroids (several methods exist for this, for example the Self-Organizing
Map (see below), Generative Topographic Mapping (GTM) (Bishop et al. 1998),
kernel-based topographic map (Van Hulle 2001), and so on).

The Self-Organizing Map (SOM) (Kohonen 1982, Kohonen 1997) is a method,
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which combines clustering and projection. It divides the data into clusters, which
belong to a typically 1-D string or 2-D lattice, which can be used to visualize the
contents of and relations between the clusters. This property makes the SOM
an efficient visualization tool. Figure 3 illustrates the differences between a few
commonly used clustering and projection methods, k-means clustering, Principal
Component Analysis, principal curve, and the Self-Organizing Map.

k−means clustering Principal Component Analysis

Principal curve Self−Organizing Map

FIGURE 3: Some frequently used clustering and projection methods applied to
2-D data.

2.4 The Self-Organizing Map

The Self-Organizing Map has been successfully applied to the analysis of many
different data types by developing clever preprocessing and feature extraction
methods, see (Kohonen 1997). The SOM representation of data can be character-
ized as a nonlinear manifold, or as a principal surface (Hastie et al. 2001), whose
dimension, dv, is usually one or two, and thus lower than the dimension, dx, of
original data. The points of this surface, v ∈ R

dv , go through the mean of the data
x ∈ R

dx such that x(v) = E[X |v′(X) = v].
A rigid surface cannot go through all data points, and therefore the model

has a representation error ε = X − x(v), which can be interpreted as noise or
quantization error. A very flexible surface would be able to represent all data
points directly, but then the surface could become folded and the complexity of
the representation high, which would make the interpretation of the model diffi-
cult. In the Self-Organizing Map this principal surface x(v) is approximated with
a finite rectangular or hexagonal lattice of nodes, neurons, v̂(k), k = 1, 2, . . . , Nv,
which act as cluster prototypes. Figure 4 illustrates a two-dimensional SOM,
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which has been trained using 3-D data. The same figure also illustrates how the
SOM can be visualized.
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FIGURE 4: A 2-D SOM trained using 3-D data. a) In the data space the SOM at-
tempts to follow data distribution, but still keeps the neighboring neurons similar
to each other. b) The SOM surface can be used for the visualization of training and
background data. The bars depict the coordinates x1, x2, and x3 of the neurons.

A SOM with a large number of neurons typically corresponds to a flexi-
ble principal surface while a small number of neurons makes the surface rigid.
When using the SOM the exact number of distinct clusters in the data need not
be known, because a large amount of similarity between several cluster proto-
types indicates that a smaller number of clusters might suffice, and intra-cluster
dissimilarity suggests that a larger SOM should be used. Therefore, the num-
ber of neurons for a particular problem has typically been chosen intuitively, and
the result has been evaluated using visualization of intra-cluster similarity mea-
sures. There are also quantitative criteria (see Chapters 3.2 and 3.3) with which
the choosing can be performed without human intervention.

Each neuron v̂(k) is associated with a prototype (or reference or weight) vec-
tor w(k) = [w1(k), w2(k), . . . , wdx(k)]T, whose dx weight values correspond to the
elements of the data vectors x(j) = [x1(j), x2(j), . . . , xdx(j)]

T. The purpose of the
training process is to iteratively find positions w(k) for the neurons v̂(k) in the
data space R

dx such that the SOM potential function, E, is minimized. The poten-
tial function is calculated using

E =
∑

j

∑
k

hc,k‖x(j) − w(k)‖2 , where (2)

c = c(x(j)) = arg min
k

‖x(j) − w(k)‖2 . (3)

There is a shrinking neighborhood kernel, hc,k, in this function, and it is used also for
the updating of w(k) in order to make the lattice smooth in data space. The dis-
tance measure is typically Euclidean, but other measures (Manhattan, Hamming,
etc.) could also be used.
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2.4.1 Effective Self-Organizing Map Training

One effective variation of the SOM is a tree-structured training algorithm, the
TS-SOM (Koikkalainen and Oja 1990, Koikkalainen 1995, Koikkalainen 1999). In
this batch algorithm several SOMs are built starting from simple SOM models
and advancing to more complex ones. Each SOM model is called a TS-SOM layer,
indexed by �, and where the number of neurons Nv = 2dv�. Each layer is fixed after
it has been trained. Using a tree search through the simpler layers, the correct
area of the current layer can be found without performing a full search of all
neurons. Therefore, the TS-SOM improves the training in its most critical step
and reduces the computational complexity of the search from O(dx ×Nx ×Nv) to
O(dx × Nx × log Nv).

1−D 2−D
Layer 0

1

2

3

Layer 0

1

2

FIGURE 5: 1-D and 2-D TS-SOM structures.

Figure 5 illustrates the 1-D and 2-D TS-SOM structures. Each layer is either a
1-D string or a 2-D lattice of neurons. Since the models are simple in the begin-
ning and eventually become more complex, the neighborhood kernel can be fixed
to only the two (1-D TS-SOM) or four (2-D TS-SOM) closest neighbors, because
the previously trained models, and previous layer based initialization of neuron
weights ensure topological ordering of the lattice. The hierarchical structure also
reduces the need to adjust or optimize the SOM training parameters (training
speed and neighborhood size).

A significant advantage of the TS-SOM is the availability of several model
resolutions. All these models can be later used for the visualization of training
or background data. Using a simple layer, an overview of the contents of the
data can in many cases be obtained, and the more complex models are able to
represent small clusters, such as outliers.

2.5 Fuzzy Set Theory

Fuzzy set theory (Zadeh 1965, Zimmermann 1985) was proposed in order to make
the definition of uncertainty possible, while working with sets. Traditionally, sets
have a crisp definition where an object either belongs to a set or it does not. In
the Zadeh’s approach an object can belong to a fuzzy set with a degree (or grade)
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of membership between 0 (does not belong) and 1 (belongs). Formally, fuzzy sets
are defined as a set of ordered pairs s̃ = {(x, µs̃(x)) |x ∈ Ω}, where Ω denotes
a collection of items (typically real or discrete numbers), and µs̃(x) is the fuzzy
membership function, which maps the items x of Ω to a membership space, which
is typically the range [0, 1]. The membership function µs̃(x) can be defined as a
formula, such as

µs̃1(x) =
1

1 + x2
(4)

for “Real numbers close to 0”. A discrete definition is also possible, such as for
x ∈ {1, 2, 3, 4}, the fuzzy set “Discrete value close to 3” could be specified with

s̃2 = {(1, 0.25), (2, 0.5), (3, 1.0), (4, 0.5)} . (5)

Figure 6 illustrates these fuzzy sets.
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FIGURE 6: The example fuzzy sets. a) “Real numbers close to 0”. b) “Discrete
value close to 3”.

Another advantage of the use of fuzzy sets is that linguistic interpretations can
be attached to quantitative data. For example, by defining suitable fuzzy mem-
bership functions µs̃i

: x → [0, 1] for three fuzzy sets {small, medium, large} one
can convert the value of x into a linguistic definition. If the memberships µs̃i

(x)

were 0.7, 0.3 and 0.0 to the above mentioned sets, one could say that “the value
of x is between small and medium; closer to small”.

Fuzzy membership functions can be overlapping, and there are no strict rules
that they should sum up to 1.0 at each value of x. However, some mathemat-
ical formalisms for fuzzy sets include more strict requirements. Typical shapes
for fuzzy membership functions are triangular, trapezoidal and Gaussian. If the
Gaussian membership functions are used, and a probabilistic interpretation is
needed, the functions need to fulfill

∫
µs̃(x) dx = 1.

2.6 Statistical Natural Language Processing

A comprehensive review of Natural Language Processing (NLP) methods can be
found in (Jurafsky and Martin 2000), which also covers speech recognition and
text-to-speech techniques. A statistical approach to NLP is described in (Manning
and Schütze 1999).
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FIGURE 7: The taxonomy of natural language processing. The three main re-
search areas are divided to numerous tasks, which are usually combined when
building language processing systems.

NLP covers a wide range of research areas, including parsing, semantics interpre-
tation, and pragmatics (Jurafsky and Martin 2000). The tasks related to each of
these areas are illustrated in Figure 7. Almost always the text has to be decom-
posed into words, but models for spelling, morphological parsing (detection of
inflectional or derivational forms), stemming (removal of morphological affixes),
study of syntax (word class detection or part-of-speech tagging), grammar con-
struction, and grammar checking (or parsing with a grammar) are not necessarily
needed in parsing. Semantics is the study of the meaning of the text, including
disambiguation of word sense, semantic analysis (the building of meaning rep-
resentations and assigning them to textual data), and lexical semantics (detection
of synonyms, homonyms, hyponyms, hypernyms, antonyms, etc.). Finally, prag-
matics is ’the study of how knowledge about the world and language conventions interact
with literal meaning’ (Manning and Schütze 1999). For example, the study of the
structure of discourses, reference resolution, and dialog interpretation are tasks
in the area of pragmatics.

In statistical NLP the main goal is to describe the linguistic content using
probabilistic models. The models can be used for many tasks in parsing and se-
mantics interpretation, including word sense disambiguation and part-of-speech
tagging. Due to the availability of large masses of textual data in electronic form,
three key areas have emerged to assist the locating of relevant information: infor-
mation retrieval, text categorization, and text clustering (or text mining).

The complexity of a natural language is usually illustrated by calculating the
cross entropy of the probability distributions indicating the belief, what the next
character, cr, is when κ previous characters are known, Pr(cr | cr−1, cr−2, . . . , cr−κ)

(Shannon 1948). Shannon used an alphabet of 26 letters and the space for the
English language (case distinctions and punctuation were omitted). This kind of
probability model can also be used for generating text, whose quality typically
increases when κ gets larger if enough model training material is available.

Similar models can also be built for the words, ωi, of the documents
Pr(ωn |ω1, ω2, . . . , ωn−1). These models are called word n-gram models (bigram,
trigram, and so on) according to the number of previous words that are taken
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into account. These models become very complex, and a lot of data is needed for
their building, if the vocabulary is large. Therefore, the n-gram model typically is
not the best approach for similarity detection from textual data, especially if the
word order is not strict.

2.6.1 Modern Information Retrieval

Information Retrieval (IR) (Baeza-Yates and Ribeiro-Neto 1999) differs from data
retrieval (from databases for example), because the main motivation is not to just
satisfy a given query, but instead retrieve relevant information about a subject. So,
even though queries are frequently used in IR to specify what the user is inter-
ested in, the goal in IR is to organize or rank the potential results according to
expected relevance. The classical IR models are called Boolean, vector, and proba-
bilistic.

All these models are based on a set of index terms (or keywords), T =

{t1, t2, . . . , tNt}, whose semantics is important for the contents of those docu-
ments in which they occur. Usually the order of words is not taken into ac-
count, and thus the text documents, dj , are described using index term vectors,
d(j) = [w1(j), w2(j), . . . , wNt(j)]

T, which indicate with weights wi(j) the relevance
of all terms ti ∈ T , for dj . There are many heuristic methods for choosing the set
of index terms. It is at least quite usual to remove the most common stopwords
(such as prepositions, particles, and so on), and in many cases also those regu-
lar words, which occur in almost all documents (because they do not improve
retrieval performance).

Another way to reduce the size of the index term set is to use Latent Semantic
Indexing (LSI) (Deerwester et al. 1990). In this method, a document vs. index term
matrix is decomposed into parts by using Singular Value Decomposition (SVD),
and only the most important informative terms are retained. The calculation of
frequencies can be a difficult problem in languages with rich morphology due
to the large number of different forms of the same word. However, stemming
algorithms can be used in converting the words into their basic form.

In the Boolean models document descriptions, d(j), are binary vectors,
which means that either an index term occurs in the document, 1, or not, 0. Re-
trieval is based on expressions, which are specified using Boolean logic (∧, ∨,
¬), and which can be converted into the disjunctive normal form, which specifies
whether a subset of T should occur in the document or not. Boolean models are
simple and the formalism is clean. However, they lack the ability to make partial
matches, and thus cannot rank the results.

The vector model (Salton and McGill 1983) uses non-binary weights, wi(j),
for the index terms both in the query, q, and in the document description, d(j),
vectors. The query vector consists of Nt weight values, wquery

ı , and similarity,
sim(dj, query), is typically assessed by calculating the cosine of the angle between
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the query and document vectors

sim(dj, query) =
d(j) · q

‖d(j)‖ ‖q‖ , (6)

where the numerator is a dot product, and the denominator multiplies the vector
lengths. The value of similarity varies from 0 to 1, and allows partial matches and
the ranking of documents.

The index term weight, wi(j), for each document, dj , are usually calculated
by multiplying the relative term frequency tf i(j) within the document by inverse
document frequency idf i within the corpus

wi(j) = tf i(j) × idf i =
freq i(j)

maxl freq l(j)
× log

Nd

ni

, (7)

where freq i(j) indicates how many times ti occurs in dj , Nd is the total number
of documents, and ni indicates the number of documents in which ti appears.
Several other weighting methods exist, but tf-idf based schemes have been the
most popular.

The probabilistic models use relevance information from the user for refin-
ing the set of retrieved documents. Also other term reweighting schemes exist,
with which retrieval performance can be improved. The number of retrieved rel-
evant documents can also be increased by query expansion techniques, where the
assumption is made that relevant documents contain frequently the same terms,
and non-relevant documents have different kind of index term vectors. Suppose
that the set of documents, which match some query, q, have also some other com-
mon terms, ti, which are not included in q, but whose weights wi(j) are high.
These terms could be added to the query, and it could be re-evaluated to find also
such relevant documents, which do not match the original query.

The Information Retrieval models are typically evaluated using two mea-
sures: precision and recall. Precision indicates the fraction of the retrieved docu-
ments, which are relevant to the query

precision =
#(relevant_retrieved)

#(retrieved_documents)
. (8)

Recall indicates the fraction of all relevant documents retrieved

recall =
#(relevant_retrieved)

#(relevant_documents)
. (9)

Figure 8 illustrates the sets required for calculation. Both of these measures re-
quire that the judgment of relevance is assessed for the retrieved documents, and
recall also requires that the total number of relevant documents must be known.

2.6.2 Classification and Clustering of Text Documents

In text categorization (Sebastiani 2002) the task is to classify text documents into
predefined categories. Rule based and supervised statistical learning methods
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FIGURE 8: The sets used for the calculation of precision and recall.

have been suggested for the classification task, such as probabilistic, decision rule
based, decision trees, neural networks (Bishop 1995), Support Vector Machines
(Vapnik 1995), and committee models. However, because a category structure is
in many cases not available, and cannot be easily constructed, unsupervised sta-
tistical learning techniques have also been applied. This kind of approach where
similarities are detected from text documents without a predefined classification
is called text clustering or text mining. Text categorization methods are especially
useful for the filtering or classification of incoming information, and text cluster-
ing methods for browsing or exploring large collections of unfamiliar content.

In text categorization and text clustering, many approaches use index term
based description techniques as in IR, but quasi-orthogonal random vectors and
word context based (Ritter and Kohonen 1989, Kaski et al. 1996) methods have
also been suggested. Text categorization has the advantage that the document
classification information can be used for the choosing of the set of most infor-
mative or separative terms, T inf . This kind of optimization may improve the
categorization of the training data set a lot, but may have negative effects for the
testing. In text clustering such exogenous information is not available, and the
term set has to be chosen otherwise.

Text categorization methods are typically evaluated using the same measures
as in IR methods, precision and recall , but the interpretations are somewhat dif-
ferent. If the system is asked to retrieve all documents which belong to certain
category, precision indicates the fraction of retrieved documents which are cor-
rectly classified to the chosen category, and recall expresses the fraction of the
whole category retrieved. Text clustering methods cannot be evaluated the same
way if no background knowledge about the documents exists.

For the analysis of completely new data, unsupervised text clustering meth-
ods are applicable. A Self-Organizing Map based model has the advantage to
other clustering methods in that the clusters are ordered according to similarity,
and therefore the map can be used for searching similar content. A query can first
be used to locate a good starting point, and then map units close to that point can
be explored to find documents which are similar in content. This could be seen
as a query expansion technique, because such documents can be found, which
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do not match the query, but which still have other common features with those
documents matching the query.

SOM exploration of text documents have been proposed by several authors.
Quasi-orthogonal random vectors were suggested in (Ritter and Kohonen 1989),
and have been applied by Kohonen et al. (Honkela et al. 1995, Kohonen et al. 1996,
Kaski et al. 1996, Lagus et al. 1996, Kohonen 1997, Lagus 1997, Honkela et al. 1997,
Honkela 1997, Kaski et al. 1998, Kohonen 1998, Lagus 1998, Kohonen et al. 1999,
Lagus et al. 1999, Kohonen et al. 2000). With some corpora also contextual infor-
mation has been used for document description. This method has been called
the WEBSOM since 1996. Miikkulainen has developed a system called DISCERN
(Miikkulainen 1993, Miikkulainen 2000), which uses the Hierarchical Feature Map
(Miikkulainen 1990) for similarity detection. Merkl has experimented with MLP
neural network based compression of input vectors (Merkl 1995), the use of
the Hierarchical Feature Map (Merkl 1997a, Merkl 1997b), and tf-idf weighted
terms (Rauber and Merkl 1998, Rauber and Merkl 1999, Merkl 1999). Bernard
introduced a method for detecting word classes from text written in French lan-
guage (Bernard 1997). And finally, Kurimo and Lagus (Kurimo and Lagus 2002)
suggested an improved word co-occurrence model to combine local n-gram sta-
tistical models.

The size of the training corpora has varied from a few hundred documents
up to almost 7 million with average lengths ranging from a few to a few hundred
words. The chosen preprocessing method has typically been chosen after the
statistical properties of the corpus have been assessed. In many cases, stopwords
are removed manually or using a stopword list, and some of the most frequent
and most rare words have been removed from the index term set.

2.7 Visualization of Data and Models

There is no more reason to expect one graph to “tell all”
than to expect one number to do the same.

John Tukey

Several advantages and limitations of graphs are listed in (Tukey 1977) p. 157
for plots of y against x, such as ’Graphs force us to note the unexpected; nothing
could be more important’, and the quotation above. It can be even more difficult
to understand graphs when data dimensionality is higher. But by using clus-
tering and projection methods for dimensionality reduction, the visualizations
can be made more understandable. However, when visualizing one should keep
in mind that visual presentations must be easy to read, and their contents must
be explained thoroughly. This is essential, because in many cases the final con-
clusions are drawn by the person who has collected the data and who has the
necessary background knowledge, but who is not a statistician nor an expert in
computer science.
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Tukey lists two main motivations for exploratory analysis:
• ’Anything that makes a simpler description possible makes the description more

easily handleable.’

• ’Anything that looks below the previously described surface makes the description
more effective.’

He further continues that even ’to be able to say that we looked one layer deeper, and
found nothing, is a definite step forward – though not as far as to be able to say that we
looked deeper and found thus-and-such’. All of these motivations support the use of
a system with which it is possible to interactively browse graphs, whose contents
can be chosen and which allow the user to choose parts of the data for further
studies.

Miles and Huberman have an even stronger opinion about visualizations
in the context of qualitative data analysis (Miles and Huberman 1994). They say
that ’The dictum “You are what you eat” might be transposed to “You know what you
display.” ’, which stresses the advantages of their descriptive approach. Miles
and Huberman also motivate using an interactive approach to data analysis us-
ing the diagram in Figure 9. This diagram includes the data collection phase,
because in their methodology reduction and display are used already while col-
lecting the data, in order to be able to decide if the collecting should be simplified.
For already collected data this model can be used without data collection. What
remains is a completely interactive model.

   Data
collection   Data

display

  Data
reduction

  Conclusions:
drawing/verifying

FIGURE 9: The interactive model of data analysis adopted from
(Miles and Huberman 1994).

2.7.1 Visualization of the SOM

Since the Self-Organizing Map divides the training data into clusters, which
are ordered according to a (typically) two-dimensional lattice, this lattice can
be used to efficiently describe the statistical properties of the clusters. Several
basic and advanced SOM visualization techniques have been suggested for nu-
merical data, see for example (Kohonen 1997, Häkkinen and Koikkalainen 1997a,
Häkkinen and Koikkalainen 1997b, Vesanto 1999, Häkkinen 2001).

The lattice can be visualized as a two-dimensional graph, where each cluster
is represented by a square, a circle, or a hexagon (if the hexagonal lattice is used),
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within which the statistical information can be rendered. For each cluster one
can, for example, calculate the averages and variances, or locate the minimums,
quartiles, medians, and maximums of the training and/or background variables.
Then these values can be visualized as background color (one variable at a time),
as surface height in 3-D (one variable), or as line or bar graphs (several variables
at the same time). The use of a distance matrix for varying the neuron rectangle
sizes can be useful for indicating large distances between neighboring neurons.
Another method for showing the (approximate) distances between neurons (or
cluster centroids) is to use Sammon’s mapping (Sammon Jr. 1969) or two principal
components to project the multivariate cluster prototype vectors, w(k), into a
two-dimensional space. However, this kind of illustration is not able to show all
distances accurately if the original data has more than two dimensions and the
variables are not correlated. Illustrations of possible SOM visualizations can be
found from the articles, especially [H] and [I].

In addition to fancy graphics, the interactivity of the user interface is also one
of the key features of an exploratory analysis system. Interactive tools may allow
the user to

• Select a neuron in order to get to see the raw data classified to that neuron.

• Compose groups of neurons in order to obtain statistical information about
all the data points classified to those neurons.

• Select data (using neuron prototypes) for more thorough analyses.

• Visually disclose data, which is similar to a query.

2.7.2 Visualization of Text Document Maps

Text document maps are typically visualized using keywords, and document
lists, which are opened according to user selections. Lagus and Kaski proposed
a keyword selection method (Lagus and Kaski 1999), which is based on relative
frequencies of a word, ω, within a cluster of the SOM, Ωk. The goodness of each
word is evaluated by noting the importance of ω for the current cluster k, and
by finding out if the word is used more in this cluster than elsewhere. In or-
der to take into account the fact that those units of the SOM lattice, which are
close to k may also contain ω frequently, they also suggested another measure of
goodness, which does not take into account the close clusters on the SOM lattice
(the distance limit is chosen experimentally). The paper also contains a method
for assigning representative words for larger map areas of several clusters using
another measure.

Merkl and Rauber have also proposed an automatic labeling method for
SOM based document maps (Merkl and Rauber 1999). This LabelSOM method
is based on the simple fact that all those terms are listed, which are strongly rep-
resented in each cluster, Ωk, and also in the neuron weight vector, w(k). Two
criteria are needed in their approach, because the document description vectors
are long, and the weight values may not quite directly represent the group of doc-
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uments, because of the neighborhood smoothing used in the SOM. The keyword
lists obtained with this method are longer than in the method proposed by Kaski
and Lagus, and therefore cannot be shown as labels in a SOM visualization.

2.8 Discussion

Qualitative research is clearly different from all other presented methods due to
the subjective human approach. Most other methods attempt to provide means
for quantitative or visual study of the contents of data.



35

3 MODEL SELECTION

When the proposed methodology for the SOM based survey data analysis was in-
troduced, many important problems were omitted. Perhaps the most important
of these is the question about the complexity of the model versus real-world ob-
servations. In Article [H] we have illustrated that the use of TS-SOM allows one
to model data with several resolutions. Simple SOMs are models that strongly
average the data, whereas complex models are able to capture individual obser-
vations, including noise. Sometimes this is not a problem as it allows the human
observer to capture the information from the data. But in automated analysis, for
example in a text clustering task, it is most important that the complexity of the
word category map is selected properly. This problem is studied in Article [G].

Formally the questions are:
• How to define the complexity of the SOM?

• How to select the complexity of the SOM for certain data?

• What are the effects of the complexity selection?
The first part of this chapter introduces general model selection and assess-

ment methods, which are important while working with statistical learning meth-
ods. The next part introduces methods, which have been used for the evaluation
of SOM models. And the last part describes our complexity selection method for
the TS-SOM.

3.1 Model Selection and Assessment

Pluralitas non est pondena sine necessitate.

William of Ockham

In statistics a true distribution, which describes the characteristics of the data gen-
erating process, is often assumed, but the type and the number of parameters of
the real-world processes are unknown. Therefore, statisticians have created many
model evaluation methods, with which the plausibility or the prediction perfor-
mance of models can be assessed. One should keep in mind that there are two
aspects in this process, model selection and model assessment (Hastie et al. 2001).
Model selection is the process of estimating the performance of models for given
data, and assessment refers to the evaluation of the applicability of the model for
other data sampled from the same real-world distribution.

The representation or prediction performance of a model depends on many
things, for example model type, the number of parameters, and parameter values.
The optimal parameter values are typically estimated (or learned) for each model
before the evaluation. The quotation above (in English: ’Plurality should not be
assumed without necessity.’, which could be interpreted as ’Keep it simple, stupid.’)
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refers to one of the main applications of model selection methods, which is the
choosing of the number of model parameters, when the model type has already
been chosen. The basic idea of simplicity has also been frequently referred to as
Occam’s razor due to an idea of shaving away all that is unnecessary. This idea is
called the principle of parsimony in statistics, and has traditionally been addressed
by using the bias-variance decomposition of the model prediction error, and by lo-
cating a tradeoff between them.

The bias (prediction error at certain point x0) of a very simple model is large
and the variance (variability of the model) is small. If the number of parameters
is gradually increased, the model is usually able to represent the data better all
the time, and the bias gets smaller. However, at the same time the variability
of the model typically increases. After certain number of parameters is reached,
the generalization performance for new data begins to get worse (Hastie et al. 2001),
see Figure 10. A solution to this problem is to divide the data into three separate
sets: training, validation, and test. The models are fit using the training set, the
“best” model is chosen by calculating the prediction error using the validation
set, and the generalization error is estimated using the test set. However, there are
situations, where either there is not enough data for the division or the prediction
error cannot be calculated (if we are not predicting or classifying anything). If the
amount of data is somewhat small, resampling techniques such as cross-validation
(Stone 1974) or bootstrap (Efron 1979) can be used.
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FIGURE 10: Behavior of test sample and training sample error as the model com-
plexity is varied, adopted from (Hastie et al. 2001) p. 194.

The selection of the number of model parameters is essential for universal ap-
proximators (models, which can approximate any continuous functions) to avoid
over-fitting the model to the specific training data. Also, the interpretation of the
model is easier if the model is not too complex. These non-parametric models
can be adapted to almost any data by increasing the number of parameters. The
presented bias-variance decomposition, and the data division or resampling ap-
proaches can be used with many universal approximator models, too. However,
the information theoretic model selection methods presented in this chapter have
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the advantage that they can be used also in situations where the prediction error
is not applicable.

3.1.1 Information Theoretic Methods

Information theory has traditionally been a part of communication theory, and
was developed to give answers to two questions of utmost importance: what is the
ultimate data compression, and what is the ultimate transmission rate of communication
(Cover and Thomas 1991). These were already solved in (Shannon 1948) with the
introduction of entropy and channel capacity. Entropy is a measure of uncertainty
of a random variable, and channel capacity sets a limit for the communication
rate. For a discrete random variable X with probability density function p(x) =

Pr(X = x), where x belongs to the set, X , of possible values of X , the entropy H

(in bits) can be calculated with

H(X) = −
∑
x∈X

p(x) log2 p(x) . (10)

Shannon also showed that a sequence of symbols, where certain symbols occur
more frequently than others, can be transmitted the most efficiently, if the fre-
quent symbols are represented by short description strings, and rare symbols are
given longer descriptions. Entropy actually gives the lowest achievable average
number of bits per symbol needed to communicate some sequence of symbols
to a receiver if their probability density is p(x). Since the entropy represents a
p(x)-weighted average of values − log2 p(x), these (if they are integers) represent
the optimal code lengths to be used for the symbols. The fact that codes of such
lengths are truly optimal is proved in (Cover and Thomas 1991), where it is also
shown that calculations can be done using fractions of bits, because the expected
code length per symbol can be achieved using large blocks of symbols.

Statistical inference is a key application area of information theory, and sev-
eral model selection methods have been developed. Information theoretic model
selection methods have their roots in independent development of algorithmic
probability by Solomonoff (in 1964) and algorithmic complexity by Kolmogorov
(in 1965) and Chaitin (Chaitin 1966), see the discussion in (Kolmogorov 1968).
The complexity of data, Ω, is defined as the length (in bits) of the minimal com-
puter program (for a universal computer), which can generate Ω. Since the short-
est computer program cannot be determined in practice, exact Kolmogorov com-
plexity cannot be calculated. Practical implementations of model selection use
another approach where some class of models is used for data description in-
stead of the universal computer. The simplicity and sufficiency of the model are
evaluated at the same time either by comparing the data distribution to the model
or by constructing a decodable message for each candidate model and residuals
(observed data = model fit + residuals), which indicate how much the actual data,
Ω, differ from the model. If the model is suitable, then the data can be described
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using the model with substantially less bits than would be needed for the de-
scription of the original data.

3.1.2 AIC and BIC

Akaike’s Information Criterion (AIC) by Akaike (1973) and Bayesian Information Cri-
terion (BIC) (Schwarz 1978) are criteria with which models from different families
can be compared to the distribution of data to be fitted. A good description of
AIC can be found from (Burnham and Anderson 1998). AIC is based on Kullback-
Leibler distance (or discrepancy or divergence) (Kullback and Leibler 1951), which is
a directed distance between the true model f and some candidate model g with
parameters θ, which can be optimized for the data using least squares or maxi-
mum likelihood methods to obtain estimated parameters θ̂. The Kullback-Leibler
(or K-L) distance is defined as

IKL(f, g) =

∫
f(y) log

(
f(y)

g(y |θ)

)
dy , (11)

where y is just an integration parameter.
The K-L distance can be interpreted as the amount of “information”, which

would be lost, if g is used for approximating f (Burnham and Anderson 1998),
or ’inefficiency of assuming that the distribution is g when the true distribution is f ’
(Cover and Thomas 1991). The K-L distance IKL(f, g) ≥ 0 always, and it is 0 iff
f(y) = g(y) ∀ y. Figure 11 illustrates two candidate distributions g1 and g2, and a
true distribution f .
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FIGURE 11: An example of comparing f and gi. The idea to this figure is adopted
from (Burnham and Anderson 1998) p. 39.

If the true distribution f , from which data x ∈ Ω are sampled, was known, K-L
distance could be directly used to compare f to the distributions obtained us-
ing some candidate models gi(x | θ̂) with optimized parameters. In data analysis
the true (real-world) distribution is unknown (only data is available), and thus
the exact K-L distance cannot be calculated. However, Akaike noticed, that the
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expected estimated K-L distance

E„̂[ÎKL(f, g)] =

∫
f(x)

[∫
f(y) log

(
f(y)

g(y | θ̂(x))

)
dy

]
dx , (12)

where θ̂(x) are the optimized parameters for data x, could be written into another
form

E„̂[ÎKL(f, g)] =

∫
f(x)

[∫
f(y) log(f(y)) dy

]
dx

−
∫

f(x)

[∫
f(y) log(g(y | θ̂(x))) dy

]
dx , (13)

which can be used for relative K-L distance calculation, since the first part is con-
stant (f and data do not change). The second part can also be written as the
expectation ExEy[log(g(y | θ̂(x)))], which can be estimated for large samples using
a reduced log-likelihood, log(L(θ̂ |x)) − K, where K is the number of estimated
parameters. For historical reasons, this estimation is multiplied by −2 to obtain
Akaike’s Information Criterion

AIC = −2 log(L(θ̂ | x)) + 2K . (14)

The Bayesian Information Criterion

BIC = −2 log(L(θ̂ |x)) + (log(Nx))K , (15)

where Nx denotes the number of samples in the data, Ω, is very similar to AIC ,
but penalizes complex models more heavily (Hastie et al. 2001). Even though the
criteria are similar, the motivations for BIC are completely different. BIC is based
on a Bayesian approach where ratios of posterior probabilities are calculated.

The problem with these approaches is that they cannot be used with non-
parametric models, unless strong assumptions are made. This is because other-
wise the calculation of likelihood (Edwards 1972) or the estimation of the effective
number of parameters are not possible.

3.1.3 Minimum Description Length

Minimum Description Length (MDL) (Rissanen 1987, Rissanen 1989) was sug-
gested by Rissanen in 1978. In order to locate the best model from some proposed
class, the code lengths of the data using models from the class are evaluated us-
ing a coding approach. Stochastic complexity is the shortest possible code length
for the model class.

In the basic MDL a two-part coding is used, in which a model mi with pa-
rameters θ = {θ1, θ2, . . . , θK} is first described using a codeword C(θ) of length
L(θ), and then description of data Ω = {x(1), x(2), . . . , x(Nx)} using mi is given



40

another codeword C(Ω |θ), whose length is L(Ω |θ). The full description is the
concatenation of the codewords

C(Ω,θ) = C(θ) C(Ω |θ) , (16)

and thus the description length can be calculated as

L(Ω,θ) = L(θ) + L(Ω |θ) . (17)

In Rissanen’s coding there are some complications due to parameters, which are
real numbers. Thus parameters θi have to be truncated to precisions δi, which
can be optimized and should be transmitted with the model. For large data sets
(Nx 
 K) their impact is negligible, and thus for parametric probabilistic models
the Minimum Description Length criterion can be reduced into a familiar form

MDL = − log(L(θ̂ |x)) +
K

2
(log(Nx)) , (18)

which, if multiplied by 2, is the same as BIC .
However, here the same restriction of parametric models applies as in AIC

and BIC . Therefore, Rissanen has also suggested two two-part coding ap-
proaches for non-parametric model classes. The simpler approach is based on
parametric histogram densities

fH(x | p) =
Nmpi

R
, (19)

where Nm is the number of pins, R is the length of the interval in the real line
within which the data fall, pi are the parameters (

∑
i pi = 1), and i is the index of

the pin containing x. Figure 12 illustrates this kind of histogram density.
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FIGURE 12: Illustration of a histogram density on a real line.

For a histogram, where the number of data points, ni, within each pin i is roughly
equal, Rissanen derived the stochastic complexity

ISC (Ω |Nm, Nx, R) =

Nx log
R

Nm

+ log

(
Nx

n1, . . . , nNm

)
+ log

(
Nx + Nm + 1

Nx

)
, (20)
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where the second term is a logarithm of a multinomial, and the last term is a log-
arithm of a binomial. However, Rissanen stresses that a better density estimator
exists, if the pin frequencies, ni, are not almost equal.

The other approach is based on Gaussian kernels fG(x |µi, σi), which are
summed to get the density

fD(x |µ, σ) =
1

Nm

Nm∑
i=1

fG(x |µi, σi) , (21)

where Nm is the number of kernels, µi are the Nm-quantile points of ordered
observations x(j), and σi are variances calculated from truncated µi using σi =
1/4 (µ̃i+1 − µ̃i−1), where µ̃i denotes the truncated parameter. This behaves better
than the histogram approach with non-uniform densities, but is still problematic
to calculate, if the data is highly peaked (because some σi may become 0).

3.1.4 Minimum Message Length

Minimum Message Length (MML) (Wallace and Boulton 1968) was originally sug-
gested for comparing clustering results, and the idea was later developed in
(Wallace and Freeman 1987). It has also been referred to as minimum encoding in-
ference (Oliver and Hand 1994), and its similarities and differences to MDL have
been studied (Baxter and Oliver 1994). The basic MML is rather easy to calculate,
see (Oliver and Hand 1994), and it does not require that the data should have a
predefined distribution.

The basic idea of using Minimum Message Length for statistical inference
and especially model selection (Oliver and Hand 1994) is to find a model mi

from some set of models, M = {m1,m2, . . .}, which is able to represent some
specific data set Ω with the smallest number of bits. To evaluate the models,
a two-part coding scheme is used, and an encoded binary string, C(Ω,mi), is
constructed, which contains the descriptions of mi and Ω |mi. In practice the
coding of the model parameters and the data using the model may require sev-
eral code strings, which are catenated together, for example see the clustering
evaluation example in (Hansen and Yu 2001). The MML criteria suggested in
(Wallace and Boulton 1968) and (Wallace and Freeman 1987) for parametric mod-
els are somewhat complicated, because each parameter is given a different Accu-
racy of Parameter Value (AOPV). Therefore, it is not easy to compare MML to the
other methods.

Since the exact complexity of the description cannot in general be deter-
mined (the coding used is not the most optimal), MML uses a pragmatic approach
in which the complexity is approximated by the shortest string obtained with the
most efficient known method. The encoded result might not be the most minimal
description for the data using the model mi, but as long as the same encoding
methods are used consistently for all models in M, the most suitable model from
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that set can be found. The problem with MML is that it cannot be used for choos-
ing the model class the same way as AIC, BIC, or MDL, see (Rissanen 1989) pp.
56–57.

3.2 Evaluation of the SOM

Many people have suggested experimental and analytic methods to evaluate a
trained Self-Organizing Map. However, most of these methods only concentrate
in choosing the best training parameters or optimizing the topology of a growing
grid SOM. There are two main parameters in regular SOM training algorithms,
which affect the iteration in SOM training: training speed, α(t), and neighbor-
hood size (including its shrinking speed), σ(t), where t is the iteration number.
Kohonen presents a Voronoi tesselation motivated “optimized” learning rate fac-
tor (Kohonen 1997), and for the neighborhood size he suggests that the initial
radius should be close to or even more than half of the network width, and that it
should shrink linearly down to only a single unit. A semi-empirical learning rate
has also been suggested for the regular SOM (Cherkassky and Mulier 1998).

Heskes suggests a division of evaluation methods (Heskes 1999): quantify-
ing topology preservation, convergence proofs, and energy function explana-
tions for the learning rule. To evaluate how well a map preserves the topol-
ogy of the input space, a geometrical approach was suggested in (Zrehen 1993),
which uses Voronoi regions of the neurons. Kaski and Lagus suggest using
the average distance from data points through the closest neuron along the
map to the second closest neuron of the SOM, in order to find good train-
ing parameters (Kaski and Lagus 1996); Herrmann, et al. review several topol-
ogy preservation measures in order to select optimal model dimensionality,
dopt

v , for given data (Herrmann et al. 1997); and Polani reviews several organi-
zation measures (Polani 1997). Topology preservation partially also relates to
the growing grid type of SOMs, such as GSOM implementations suggested in
(Villmann and Bauer 1997, Villmann 1999), where the possibility of having hy-
percubical structure is constrained to lower dimensional latent spaces depend-
ing on the properties of the training data. Der and Herrmann demonstrate how
the training parameters can be optimized by learning (Der and Herrmann 1999),
and Polani suggested a genetic algorithm based optimization of parameters using
topology measures (Polani 1999). However, none of these approaches attempt to
choose the number of neurons for a certain problem automatically.

There are two approaches where the number of neurons has been chosen ac-
cording to the properties of the training data. Hyötyniemi proposed a method
based on Minimum Description Length (see 3.1.3) by assuming that the SOM can
be interpreted as a mixture model of Gaussian distributions (Hyötyniemi 1997).
In his paper there was an example, where the number of neurons was automat-
ically selected in a situation where there were four Gaussian distributions. The
applicability to real-world problems was not quite apparent. Cottrell, et al. pro-
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posed the use of coefficient of variation, CV (θ) = 100 σθ/µθ
, where σθ denotes the

variance and µθ the mean of θ, calculated from intra-class sum of squares of SOMs
created by resampling the training data (Cottrell et al. 2001). They used the mea-
sure both for the evaluation of clustering stability, and choosing the “right” num-
ber of units for a SOM. However, their example is also simple, and the results are
not easily interpretable.

3.3 Selecting Number of Neurons for TS-SOM

Since many data sets do not come directly from nature, the assumptions made by
parametric modeling approaches may contradict with the properties of the mul-
timodal high-dimensional data, which is to be analyzed or explored. However,
if the idea of evaluating message length is applied in a non-parametric way to
compare clustering results, the most suitable TS-SOM layer for given data can be
chosen as illustrated in Article [G]. The same kind of approach could also be used
for the regular SOM, but then the optimization of training parameters, selection
of model sizes, and so on, would make the process difficult.

According to Baxter and Oliver, the main difference between MDL and MML
approaches is that MDL is used to select both the model class (for example uni-
variate quadratic vs. univariate cubic) and the best model from it, while MML
just picks one model from the specified set of models (Baxter and Oliver 1994). In
the case of universal models, such as the SOM, the difference between model class
and model set becomes unclear, because the model class is the same even though
the number of parameters varies. In practice the MML community seem to favor
measures based on actual implementations, while most of the MDL community
seem to work in a more theoretical setting. Therefore, we have named our tech-
nique MML based. The reason is, however, based only on the practical issues, not
so much on the actual methodology.

Our method is similar to Rissanen’s coding approaches for non-parametric
model classes, but does not require that the data distribution should be roughly
uniform or the use of kernel functions. The only assumptions that need to be
made are that the data values should be real numbers, and there should not be
strong correlation between the variables. The first assumption is needed, because
if the data was binary, for example, more efficient coding methods could be used.
The second assumption is also related to coding efficiency, because if there are
strong correlations, the coding method should take them into account to improve
the coding. Since the data are real numbers, a quantization accuracy is needed
the same way as in Rissanen’s histogram approach. This accuracy, δ, can be op-
timized by minimizing quantization error and by maximizing coding efficiency
at the same time (see Article [G]). Then, all real number data are quantized using
this accuracy.

To apply the method in practice, several cluster models, mi, created for the
same data, Ω, using the same model class, Mc (TS-SOM), are needed. Then each
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model (TS-SOM layer), and data given the model are coded into strings C(mi)

and C(Ω |mi), where the former contains cluster sizes, #(Ωk), and centroids,
w(k), and the latter the residuals, ε(j) = x(j) − w(c), where c = arg mink ‖x(j) −
w(k)‖2. For the coding, universal codes, such as the log* code (Rissanen 1989),
could be used. But if there is plenty of data, better results can be obtained by
using optimal codes of length − log2 p(x̃), where p(x̃) is the frequency of quan-
tized value x̃, a codebook approach (Oliver and Hand 1994), and an efficient pre-
fix coding. Thus the coded string of each model, mi, consists of: cluster sizes
(coded integers), multidimensional cluster centroid vectors (quantized and coded
using codebook), residuals (quantized and coded using codebook), and the coded
description of the codebook. The model, which minimizes the total length of such
message is considered to be the most suitable for the data, Ω.

Because we cannot have completely optimal coding for all parts of the mes-
sage, we consider our message as an upper bound for the minimal code length.
A lower bound can be obtained by removing, from the message, the non-optimal
parts: the codebook and the cluster sizes. The true code length is somewhere
between these two.

3.4 Discussion

Sometimes the SOM model can be selected rather easily, if a suitable visualization
can be used. However, when the intra-cluster variances or inter-cluster distances
of training variables have no clear meaning, the comparison of SOM models may
require considerable amounts of manual work (see the textual data example in
Article [H]). This is often the case when textual data or images are used as source,
and some extracted features are used for SOM training.
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4 ABOUT PARALLEL IMPLEMENTATION OF THE
SOM

Even though the TS-SOM training algorithm, which is used in this work, is com-
putationally light, the learning of huge data sets may take hours or days. This
kind of delays cannot be tolerated in interactive applications, or in the experi-
mentation of coding methods, for example. Algorithmic development allows the
reduction of computational complexity significantly, but even faster training can
be achieved with a combination of fast algorithms and parallel computers. In or-
der to do experiments for the textual analysis, we needed a more efficient training
algorithm. With the developed method, practical tests of our methodology could
be done about two years before the computational power of normal PCs would
have allowed it. Now the methodology can be used on a normal PC.

4.1 Parallel SOM Training Algorithms

There are Single-Instruction-Multiple-Data (SIMD) (Stallings 1998) type of hard-
ware SOM implementations, such as (Mauduit et al. 1992, Melton et al. 1992, He
and Çilingiroǧlu 1993, Macq et al. 1993, Rüping et al. 1997), and the SIMD type
CNAPS Neurocomputer, developed by Adaptive Solutions, can be programmed
to train SOMs (hardware description and specific implementations can be found
from (Steffens and Kunze 1995, Seiffert and Michaelis 2001)). With these systems,
moderately sized networks can be trained quickly. The main problem is that the
dimensionality of data, dx, and the number of neurons in the model, Nv, are lim-
ited, because the number of neurons and input dimensionality cannot exceed
what is implemented on the chip without significant performance losses. There-
fore, one typically has to resort to estimating larger maps based on well trained
smaller ones (Kohonen 1997, Kohonen et al. 2000). A more flexible solution of us-
ing modular maps, which allow several computational modules to be combined
was presented in (Lightowler et al. 1997). In that approach the dimensionality
can be increased by combining additional hardware modules.

Large maps can be constructed directly using software implementations on
parallel Multiple-Instruction-Multiple-Data (MIMD) computers. There are two
main types (Stallings 1998): tightly coupled shared memory computers and
loosely coupled distributed memory systems, such as cluster computers. In the
shared memory computers large amounts of data can be efficiently communi-
cated between processors, which is not always true in clusters. Also the syn-
chronization of processors needed in at least some parts of the SOM training
algorithms is quicker. However, cluster computers usually contain more pro-
cessors and can be built from less expensive hardware. Therefore, at least one
Single-Program-Multiple-Data (SPMD) cluster implementation has been suggested
(Schikuta and Weidmann 1997) for SOM training. Since algorithmic develop-
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ment can change the complexity of some parts of the algorithm by orders of
magnitude, the use of a computationally efficient algorithm is essential also for
parallel implementations.

4.2 Parallel TS-SOM Training

The TS-SOM algorithm is already orders of magnitude faster than regular SOM
algorithms. For large data sets, the training time of the TS-SOM can be further
reduced by using Symmetric Multiprocessing (SMP) computers and our parallel
algorithm, as presented in Article [F]. In this algorithm the training data and
the currently trained TS-SOM layer are divided into as many parts as there are
processors, p. Then, each iteration is divided into three parts, where 1. Each
processor locates the closest neuron for (approximately) 1/pth of the training data
samples, 2. Each processor calculates new positions for 1/pth of the neurons using
the closest data points, and 3. Each processor updates the new positions for 1/pth

of the neurons using the neighborhood. Between the parts, the execution has to be
synchronized to make sure that all processors have finished their work, because
in all parts each processor also needs such results, which have been calculated
by other processors in the previous part. Speed-ups of more than 7 have been
achieved with 8 processors compared to a regular TS-SOM while using large data
sets (dx ≥ 100 and Nx ≥ 50 000).
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All the educational problems and data sets have been provided by the Institute
for Educational Research of University of Jyväskylä. Especially Prof. Pirjo Lin-
nakylä, Prof. Päivi Häkkinen, and MSc Antero Malin have given us a lot of infor-
mation and feedback. Most of the methods used have been developed as team-
work with DrTech Pasi Koikkalainen, and some ideas were discussed with PhD
Erkki Häkkinen. However, all the data preprocessing methods, information theo-
retic coding techniques, text visualization methods, the parallel implementation,
and the user interface for survey data analysis were developed by the author of
the thesis. This is summarized as follows:

Article [A] contains many important ideas for the analysis of categorical data,
but most of the solutions were not developed, yet.

Article [B] includes the key ideas for dividing the data set into parts, which
are analyzed separately. The paper introduces the coding of categorical data us-
ing fuzzy set memberships, the calculation of group memberships, and the com-
bining of the results from the subanalyses.

Article [C] is very similar to [B], but contains additional motivation for the
use of subanalyses, and presents the idea of including textual data to the analysis
model.

Article [D] develops our ideas for text clustering, which is applied in two
problems: similar document detection for error diagnostics, and similar answer
detection from surveys.

Article [E] combines all our methods for the educational research together. It
is targeted to educational researchers, and therefore it was kept on a superficial
level.

Article [F] motivates and presents our parallel implementation of the TS-
SOM training and an idea how the use of massively parallel computers can be
simulated.

Article [G] describes our model selection method for the TS-SOM, and
presents the results obtained from applying it to the word category map (and
to a toy example of function approximation).

Article [H] is the main methodological contribution including a more clear
formalism, and motivation for the methods. This paper also includes the tex-
tual data analysis into the combining of results, and develops visualizations for
presenting relations between the models used in subanalyses.

And finally, Article [I] describes our software implementation for survey data
analysis.
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6 CONCLUSION

In this thesis methodology and software tools are proposed for exploratory analy-
sis of qualitative survey data sets. Different analysis approaches are used for cat-
egorical and textual data, but the results from the subanalyses can be combined
in the end of the analysis, or selections from one submodel can be projected to
all other models in order to reveal correlations. The reduction of manual work
is a notable advantage compared to traditional applying of qualitative research
methods, and the visual results can be more easily interpreted by educational
researchers.
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YHTEENVETO (FINNISH SUMMARY)

Tässä tutkimuksessa on kehitetty laskennallisesti älykkäitä menetelmiä koulu-
tuksen tutkimuksen kyselytutkimuksiin liittyvien tietoaineistojen analyysiä
varten. Menetelmillä on mahdollista käsitellä monimutkaisia ja eri tietotyyppejä
sisältäviä tietoaineistoja siten, että eri tietotyypit käsitellään omissa alianalyy-
seissä, joiden tulokset voidaan lopuksi yhdistää. Menetelmäkehys mahdollis-
taa samankaltaisten havaintojen ryhmien löytämisen, ryhmien identifioinnin
taustatiedon avulla, eri alianalyyseistä valittujen ryhmien vertaamisen, eri po-
pulaatioista valittujen otosten vertaamisen, ja samankaltaisten tekstivastausten
löytämisen. Työn yhteydessä on kehitetty myös ohjelmisto, joka sisältää kehitetyt
menetelmät, ja jolla aineistoja on tutkittu.
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