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The substantial changes transforming the Internet from a communication and browsing infras-
tructure to a medium for conducting personal business and e-commerce are making Quality of
Service (QoS) an increasingly critical issue. However, QoS of networks by itself is not sufficient to
support end-to-end QoS. To avoid high priority network traffic being dropped at the server, Web
servers should have mechanisms and policies for delivering end-to-end QoS. More importantly, in
the future multiclass Internet, each class of customers may have to pay their service providers
for the received level of QoS based on the Service-Level-Agreements negotiated and committed
between them.

In this dissertation, we first propose a novel Arrival-Related Dynamic Partitioning mech-
anism for enabling differentiated services in cluster-based Web server systems, which works well
even when the Web cluster system is heavily loaded and does not have enough server resources
to be allocated. Then, a scalable Web cluster architecture – the two-level cluster architecture, is
proposed for implementing scalable service differentiation in cluster-based Web server systems,
whose scalability is theoretically determined only by the scalability of its layer-4 switch.

Next, we link the issue of resource partitioning scheme with the pricing strategy in a Service-
Level-Agreement (SLA) and address the problem of maximizing the SLA revenue obtained in a
IP network node under a given amount of resources by optimally allocating the resources among
the supported service classes. First, the revenue-aware resource allocation schemes, which can
achieve the maximization of the SLA revenue obtained in a multiclass-supported network node
under a given amount of network resources and linear pricing strategy, are proposed. Then we
derive a novel upper bound on mean packet delay of GPS-based (Generalized Processor Sharing
based) Fair Queueing (FQ) algorithms under the probabilistic traffic model of Poisson arrival and
any general packet length distribution, which is much simpler and tighter than the known ones
by M. Hawa et al and fits a class of GPS-based FQ algorithms including Weighted Fair Queuing
(WFQ), Self-Clocked Fair Queuing (SCFQ) and Starting Potential-based Fair Queuing (SPFQ).
Furthermore, based on this novel upper delay bound, the suboptimal resource allocation scheme
is presented for maximizing the SLA revenue attained under a constrained amount of network
resources and flat pricing strategy in a network node which deploys a GPS-based packetized fair
queueing algorithm.

In the end, the problem of maximizing the SLA revenue attained for the hosting of
an e-commerce Web site upon a cluster-based Web server system by optimally partitioning
the server resources among all supported service classes is analyzed. The optimal resource
partitioning scheme is derived, which can implement the maximization of the SLA revenue
obtained for the hosting of an e-commerce site under a given amount of server resources and
linear pricing strategy. Moreover, the suboptimal resource partitioning scheme is also proposed
for achieving the highest SLA revenue in the hosting of an e-commerce site under a given amount
of server resources and flat pricing strategy.

Keywords: Cluster-based Web Server System, IP Network Node, Quality of Service, Service
Level Agreement, QoS- and Revenue-aware Resource Allocation Scheme
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1 INTRODUCTION

Resource allocation in the multiservice communication networks presents a very
important problem in the design of the future multiclass IP networks. The main
motivation for the research in this field lies in the necessity for structural changes
in the way the Internet is designed. The current Internet offers a single class
of ’best-effort’ service, although some traffic prioritization will be active in the
new network router implementations. However, the Internet is changing and it is
becoming an important channel for critical information and the fundamental tech-
nology for information systems of most advanced companies and organizations.
Users are becoming increasingly reliant on the Internet for up-to-date personal,
professional and business information. The substantial changes transforming the
Internet from a communication and browsing infrastructure to a medium for con-
ducting personal business and e-commerce are making Quality of Service (QoS) an
increasingly critical issue. Meanwhile, to realize the above changes, the future IP
networks must be able to support a wide range of different traffic types with differ-
ent QoS requirements. For example, new sophisticated real-time applications such
as Voice over IP (VoIP), Video-on-Demand (VoD) and Video-Conferencing require
firm performance guarantees from the network where certain resources should be
reserved for them. Hence, efficient resource allocation mechanisms are needed to
distribute network resources among all competing service classes for achieving their
QoS requirements.

As a result of the complexity of the Internet infrastructure, many factors affect
the performance of Internet services. Hence, to guarantee the assessed service
levels for QoS, actions on all components of the WWW would be required: from
network technology and protocols, to hardware and software architectures of Web
servers and proxies. Many efforts in the field of QoS provisioning have focused
on the solutions at network side, e.g., Integrated Services (IntServ) architecture
[8] and Differentiated Services (DiffServ) architecture [7] have been proposed by
the Internet Engineering Task Force (IETF) and also novel Fair Queuing (FQ)
algorithms have been proposed (e.g., [64, 29, 82]) to implement QoS in packet-
switched networks. However, QoS of networks by itself is not sufficient to support
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end-to-end QoS. Furthermore, with network bandwidth increasing much faster than
server capacities, it is more likely that the bottleneck will be on the server side. To
avoid high priority network traffic being dropped at the server, Web servers should
have mechanisms and policies for delivering end-to-end QoS.

As we know, the exponential growth of the Internet, coupled with the in-
creasing popularity of dynamically generated content on the World Wide Web,
has created the need for more and faster Web servers capable of serving over 100
million Internet users. The only solution for scaling server capacity in the past
had been to completely replace the old server with a new one. Organizations must
discard their investment in the old server and purchase a new one — an expensive,
short-term solution. Nowadays, Web servers based on clusters of commodity PCs
or workstations offer a cost-effective and scalable solution to the increasing perfor-
mance demands placed on popular Web sites. Therefore, to enable QoS support in
such cluster-based Web server systems is of practical importance.

However, many results about enabling QoS support in Web clusters consider
Web server farms as the target cluster architecture, where multiple Web sites co-
located on the same platform, e.g., [4]. Few results exist on the topic of providing
QoS support in a cluster-based Web server system that hosts a single Web site.
Chen et al evaluated the impact of the request admission control and dispatching
mechanisms in [12]. Kanodia et al [43] have proposed a QoS policy that uses both
admission control and performance isolation mechanisms to guarantee different
classes of service to have latencies within pre-specified targets. Cardellini et al [9]
described and evaluated some mechanisms that can be integrated into existing Web
cluster architectures to support quality of Web services. A dynamic resource par-
titioning algorithm for static and dynamic Web requests is proposed in [98], where
QoS principles are addressed as an optimization problem. But it has assumed that
the processing rates of the incoming requests have exponential distribution in a
Web cluster system, which is not true in the real situation. In this dissertation,
we focus on the kind of Web cluster architecture where only a single Web site is
hosted. The issue of enabling differentiated services in the above target Web clus-
ter architecture is first addressed. Specifically, by extending the QoS research work
in [9] and publications PI [42] and PIV [87], we proposed a new mechanism [88]
for enabling differentiated services in the target cluster architecture, which dynam-
ically partitions the back-end server nodes in a cluster-based Web server system
into different server subsets so that each class of requests will be served only by
its own assigned server set. More importantly, two different dynamic partitioning
algorithms are designed in this mechanism to be used under different arrival load
intensities so as to achieve better performances in the case that the system is heav-
ily loaded and does not have enough server resources available. We call this novel
mechanism the Arrival-Related Dynamic Partitioning mechanism (ARDP mecha-
nism). The simulation results demonstrated that our proposed ARDP mechanism
can provide different classes of customers with different QoS targets and succeed
in achieving the goals of service differentiation in target cluster-based Web server
systems.

Additionally, state-of-the-art cluster-based systems employ a specialized front-
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end node, which acts as the single input point of customer requests and is respon-
sible for distributing the accepted requests among the back-end server nodes. Typ-
ically, all the server nodes in a Web cluster resides at a single network location and
the front-end distributes requests such that the load among the back-end nodes
remains balanced. To support the differentiated services in a cluster-based Web
server system, the front-end node must be able to examine at least the content of
the header field of each access to identify the requested service class. This addi-
tional overhead at the front-end node can dramatically limit the scalability of the
existing cluster architectures. For instance, conventional PC/workstation based
front-ends with QoS support can only scale to a small number of server nodes
(less than ten on typical Web workloads [63]). In this dissertation, we extend the
studies in publication PII, further examine the scalability problems of the existing
cluster architectures and propose a much more scalable one – the two-level cluster
architecture in Chapter 3. Moreover, the proposed QoS-aware resource partitioning
mechanisms in publications PIV [87] and PVI [88] are generalized to achieve differ-
entiated services in the two-level cluster architecture, which has been published in
publication PVIII [89]. In Chapter 3, the issue of enabling scalable service differ-
entiation in cluster-based Web server systems is addressed systematically and more
simulation results are presented under different parameter settings to demonstrate
the effectiveness and feasibility of our proposed scalable Web cluster architecture
and scheduling algorithms.

On the other hand, in the future multiclass Internet, each class of customers
may have to pay network service providers for their received level of QoS based on
the pricing strategy agreed upon in the Service-Level-Agreements between them.
A Service-Level-Agreement (SLA) defines the QoS metrics for each class of service,
the anticipated per-class workload intensity and the pricing strategy by which the
service payment will be determined. Obviously, the pricing strategy will specify
the relationship between the QoS level offered to each class of customers and the
relevant price which should be paid by them. For example, the service provider will
receive a certain amount of revenue from a class of customers if the offered QoS
level is more than the minimal requirement of that class and suffer another certain
amount of penalty for failing to meet that. Thus, from service providers’ point of
view, the optimal resource allocation scheme, which can achieve the maximization
of SLA revenues under a given amount of network resources (e.g., bandwidth) and
a given pricing strategy, is very desirable.

The use of pricing as a means for allocating resources in communication net-
works has received much attention in recent years. A smart charging method
for network usage is presented in [59]. This paper studies individual packet bid
for transporting while the network only serves packets which bid above a certain
(congestion-dependent) cutoff amount. Charges that increase with either realized
flow rate or with the share of the network resources consumed by a traffic flow is
studied in [47, 48]. Packet-based pricing schemes (e.g. [28]) has also been pro-
posed as an incentive for more efficient flow control. The fundamental problem of
achieving the system optimum that maximizes the aggregate user utility using only
the information available at the end hosts is studied in [52]. They assume that the
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users are of elastic traffic and can adjust their rates based on their estimates of net-
work congestion level. Pricing and link allocation for real-time traffic that requires
strict QoS guarantees is studied e.g. in [67, 68]. Such QoS guarantees can often be
translated into a preset resource amount that has to be allocated to a traffic flow
at all links in its route through the network. If the resource is bandwidth, this re-
source amount can be some sort of effective bandwidth (see, e.g., [46] for a survey of
effective bandwidth characterizations and [66] for similar notions in the multiclass
case). In this setting, [45, 17] propose the pricing scheme of real-time traffic with
QoS requirements in terms of its effective bandwidth. Their pricing scheme can also
be called as a static one and it has clear implementation advantages: charges are
predictable by end users, evolve in a slower time-scale than congestion phenomena,
and no real-time mechanism is needed to communicate tariffs with the users.

However, none of the above papers addressed the issue of combining the pricing
strategies in SLAs and the resource allocation mechanisms in multiclass IP networks
to maximize service providers’ revenues. J. Joutsensalo et al studied the problem
of maximizing service providers’ revenues obtained in a network node under linear
pricing strategy in [38, 39, 40, 41]. In this dissertation, I first extended our previous
QoS and revenue-maximization research in [38, 39, 40, 33, 41] and addressed the
issue of maximizing SLA revenues in a IP network node under a constrained amount
of network resources by novel revenue-aware resource allocation schemes. The linear
and flat pricing strategies are deployed in a SLA, which have been demonstrated
to be practical ones in the real world [22, 84]. The closed-form solution to the
optimal network resource allocation scheme under linear pricing strategy is derived
in publications PIX [90] and PXI [92] when the packet delay is chosen as the
QoS metric in a SLA while publication PX [91] presented the closed-form solution
under linear pricing strategy for the QoS metric of mean packet delay in a SLA.
Furthermore, the suboptimal network resource allocation scheme was proposed
PXIII [94] for achieving the highest SLA revenues under linear pricing strategy
for the case that the firm QoS guarantees are required for all the supported service
classes. Chapter 4 summarizes the contributions in these publications.

Next, a novel upper bound on mean packet delay of GPS-based Fair Queueing
(FQ) algorithms was derived in publication PXIV [95] under the general proba-
bilistic traffic model of Poisson arrivals and any general packet length distribution.
The resulted upper delay bound is much simpler and tighter than the ones by M.
Hawa et al [34]. Moreover, it fits a class of GPS-based FQ algorithms including
Weighted Fair Queuing (WFQ) [21, 64], Self-Clocked Fair Queuing (SCFQ) [29]
and Starting Potential-based Fair Queuing (SPFQ) [82]. In Chapter 5, the deriva-
tion of this novel upper bound on mean packet delay is summarized and then based
on this upper delay bound, the suboptimal resource allocation scheme is derived for
maximizing the SLA revenue obtained under a given amount of network resources
and flat pricing strategy in a network node which deploys a GPS-based packetized
fair queueing algorithm.

Cluster-based Web server systems have become a major means to hosting e-
commerce sites. The issue of maximizing SLA revenues in the cluster platform of
Web server farms was recently studied by Liu et al in [56]. A Web server farm is
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typically deployed to host several Web sites simultaneously on the same platform.
Liu et al assumed that each back-end server node in a Web server farm can serve
multiple service classes simultaneously. Then they tried to optimally allocate the
resource (e.g., processing capacity) of each server node among its supported service
classes to maximize the SLA revenues in [56], where the closed-form solution to the
optimal resource allocation scheme (i.e., the optimal weights) in each back-end node
did not be provided. Diao et al [22] proposed a profit-oriented feedback control
system for maximizing SLA profits in Web server systems, which automated the
admission control decisions in a way that balances the loss of revenue due to rejected
work against the penalties incurred if admitted work has excessive response times
by a fuzzy control algorithm. Additionally, the issue of maximizing the expected
value of a given cluster utility function by allocating server resources of a cluster-
based Web server system dynamically was studied in [54], where the closed-form
solution was also not derived.

In this dissertation, we focus on the cluster platform which hosts a single Web
site in a cluster-based Web server system, as was studied in Chapter 2. Chapter
6 analyzes the problem of maximizing the revenues attained in the hosting of a e-
commerce site with a SLA contract by optimally partitioning the server resources
of a cluster-based Web server system among the supported service classes. It first
summarizes the optimal server resource partitioning scheme derived in publication
PXII [93], which can achieve the maximization of SLA revenues under a con-
strained amount of server resources and linear pricing strategy in the above target
cluster-based Web cluster system. Then the suboptimal server resource allocation
scheme for revenue maximization under a given amount of server resources and flat
pricing strategy is proposed in Chapter 6. Below the basic concepts in the area of
this dissertation are discussed.

1.1 Cluster-based Web Server System

A cluster-based Web server system (briefly, Web cluster) consists of a number of
commodity workstations or PCs connected by a network. Typically, the server
nodes are connected by a high-speed LAN. In this dissertation, we focus on the
kind of Web cluster architecture where a collection of all the server nodes work
for only a particular Web site and refer to it as Web cluster. Whereas, the term
”Web farm” denotes the architecture for the co-location or co-hosting of several
Web sites.

Specifically, a basic Web cluster consists of a dedicated front-end server node
and a number of back-end server nodes. The authoritative DNS server for the
Web site built upon the Web cluster always translates the site name into the IP
address of the front-end server node. The front-end node, hereafter called Web
switch, receives all inbound packets destined for the Web site and then distributes
them among the back-end server nodes for serving, thus making the distributed
nature of the site architecture completely transparent to both the user and the
client application.
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Note that the key role in a Web cluster is played by its Web switch and each
back-end server node in a cluster is identified uniquely by the Web switch through
a private address that can be at different protocol levels (an IP address or a MAC
address) depending on the specific cluster architecture. Moreover, the Web cluster
architectures are normally first classified according to the OSI protocol stack layer
at which the Web switch routes inbound packets to the back-end server node, that
is layer-4 or layer-7 Web switches [75, 10].

Layer-4 Web switches determine the target back-end server node when the
client asks for establishing a TCP/IP connection, upon the arrival of the first
TCP SYN packet at the Web switch. As the client packets do not reach the
application level, the routing mechanism is efficient but only content-blind/QoS-
blind request distribution strategies can be deployed at layer-4 switches where
the requested content/QoS is not examined. Nowadays, very fast layer-4 Web
switches are available that can act as front-ends for Web clusters where content-
aware request distribution or QoS support is not required [15, 36]. The hardware-
based switch fabric of these layer-4 switches can support a very large number of
back-end server nodes of layer-4 Web clusters.

In contrast to layer-4 Web switches, layer-7 Web switches first establish a
complete TCP connection with the client, examine the HTTP request at application
level and then relay it to the target back-end server node. This routing mechanism
is much less efficient and introduces a severe process overhead at the layer-7 Web
switch, which can significantly limit the scalability of a layer-7 Web cluster where
a centralized request distribution strategy is deployed at the front-end [3, 79].
Conventional, PC/workstation based layer-7 switches can only scale to a relatively
small number of back-end server nodes (less than ten on typical workloads [63]).
On the other hand, however, layer-7 Web switches can efficiently support content-
aware/QoS-aware dispatching policies by examining the content of inbound HTTP
requests.

Web cluster architectures based on layer-4 and layer-7 Web switches can be
further classified on the basis of whether the data from back-end server nodes to
clients (outgoing data) go through the Web switch. The kind of cluster architecture,
where the back-end nodes respond directly to the clients without passing through
the front-end node as an intermediary, is called the one-way architecture whereas it
is referred to as the two-way architecture if the outgoing data have to pass through
its Web switch. Typically, one-way architectures are more scalable as the Web
switch processes only inbound packets.

Thus, according to the above classifications, these kinds of basic Web clus-
ter architectures exist: layer-4 one-way architecture, layer-4 two-way architecture,
layer-7 one-way architecture and layer-7 two-way architecture. In a layer-4 one-way
architecture, each back-end server node in the cluster is configured with a unique
private IP address which can be either at IP level (layer-3) or MAC level (layer-2);
and routing to the target back-end node may be done using several mechanisms,
such as packet single-rewriting [23], packet tunnelling [70] and packet forwarding.
For a layer-4 two-way architecture, the private address of each back-end node is
at IP level; both inbound and outbound packets are rewritten at TCP/IP level by
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Figure 1: The model of our target multiclass-supported network node.

the Web switch based on the IP Network Address Translation approach [24]. On
the other hand, in a layer-7 one-way architecture, the mechanism of TCP handoff
[63] or TCP connection hop [72] may be used to relay the established TCP con-
nection to the target back-end server node; and the layer-7 Web switch in a layer-7
two-way architecture may deploy TCP gateway or TCP splicing [16] approach to
route inbound requests to the target back-end node. A survey on these basic Web
cluster architectures can be found in [75, 10]

1.2 Multiclass-supported Network Node

In general, network node 1 architectures may be classified into two main categories
based on whether packets are buffers at the inputs or the outputs of the node [44].
In an input-buffered network node, packets are stored at the inputs of the node
and the traffic scheduling can be simplified by dividing the problem into two levels:
(i) scheduling transmissions among the input ports of the node transmitting to a
common output port, and (ii) scheduling a packet from the chosen input port. In an
output-buffered network node, packets are immediately available for transmission
as they arrive in the node, and can be regarded as being buffered at the output
ports of the network node. In this dissertation, the output-buffered network node
is our target node architecture.

If m service classes are supported in an output-buffered network node, packets
with the same priority will be buffered at the same queue and each queue corre-
sponds to one service class. Then, the function of a scheduling algorithm is to
select, for each outgoing link of the network node, the packet to be transmitted
in the next cycle from the available packets belonging to the queues sharing the
output link. We assume that each outgoing link of the network node can support
all m service classes, thus our target multiclass-supported network node may be
abstracted as the model in Figure 1, where C is the bandwidth of the output link.

1In this work, we will use the term ”network node” to designate either a router or an ATM
switch, unless otherwise specified.
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1.3 Quality of Service and Service Level Agreement

Over the last few years the Internet has undergone phenomenal growth and there
are no signs that this will stop or abate. In fact, the convergence of other networks,
such as radio, telephone and television, to the Internet will likely accelerate its
growth. These events are not only providing the impetus for a change of the
nature of the current Internet but are also the driving forces behind it [80].

It is relatively easy to understand why the Internet is facing these demands.
The Net has become an important facet of many people’s lives, whether that be for
email, web surfing, online shopping or banking or any of the other possible uses.
Also fuelling the growth of the Internet is the proliferation of commercial activities
using it to both conduct and support business. Of course, both of these factors
are placing strenuous requirements on the Internet, most of which can hardly be
achieved because they fall on the border or outside of the Net’s origin design goals
and resultant capabilities.

The current architecture of the Internet is based on best-effort traffic model.
In other words, it is able to provide only best effort delivery of data. This has
sufficed for traditional Internet applications (e.g. email, file transfer and web surf-
ing). However, the Internet is increasingly required to support many new IP-based
applications which have widely differing operational requirements. Multimedia el-
ements can be found in these new applications demonstrating the need for more
bandwidth to carry audio and video. In addition, some of them, for instance, real-
time applications, certainly have strict timing demands that the best effort service
of the Internet is just not able to meet. The point is that the Internet’s best effort
is likely to result in unacceptable, if not completely unusable, service to some ap-
plications, particularly the next generation of Internet applications. The solution
is that some intelligence (i.e. complexity) must be introduced into the Internet so
that it can differentiate traffic with strict timing requirements from those that can
tolerate delay and loss and enable different service levels for different users and ap-
plications. What this means is that the enhanced architecture of IP networks must
first be able to provide different Classes of Service (CoS) to indicate the needed
service level of individual packets or traffic flows being transported and then be
able to allocate network resources among these service classes supported based on
their QoS requirements.

On the other hand, in the future multiclass Internet, users will have to pay
the service providers for their used resources based on the pricing strategies agreed
upon in their Service-Level-Agreements (SLAs). Obviously, the pricing strategy
will specify the relationship between the price paid by each class of customers and
the QoS (e.g., delay, jitter) provided by a service provider. For example, the service
provider will receive a certain revenue from a class of customers if the offered QoS
is more than the minimal requirement of that class and suffer a certain penalty for
failure to meet that. Hence, for a service provider to obtain as high SLA revenues
as possible under a given amount of resources, the network elements in the future
multiclass IP networks must deploy revenue-aware resource allocation mechanisms
based on the SLAs negotiated and committed between the service provider and its
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customers.
In this work, the network architecture is assumed to support packet classi-

fication already and we concentrate on studying novel QoS- and revenue-aware
resource allocation mechanisms in both cluster-based Web server systems and IP
network nodes. The basic concepts about QoS and SLA are reviewed below.

1.3.1 QoS definitions

Quality of Service (QoS) can be defined in various ways, most of which are equiva-
lent or complimentary. It is the ability of a network element (e.g. a router/switch
or Web server) to have some degree of assurance that its traffic and service require-
ments can be satisfied [80]. It describes the assurance of sufficiently low delay and
packet loss for certain types of applications or traffic [97]. The provision of QoS
in a network, especially one as large as the global Internet, is not a trivial matter.
The cooperation of all network layers from top-to-bottom (i.e. layer one to layer
seven of the ISO-OSI model) in addition to every network element from end-to-end
(i.e. from sender to receiver) is required.

The need for QoS is becoming progressively more evident daily. For example,
many companies rely on the Internet for the day-to-day management of their global
enterprises. Many more also utilize the Internet to conduct business (e.g. to
place order with their suppliers, interact with customers, etc.). These companies
are willing to invest a substantial amount of money for the best possible QoS
from the Internet. After all, building and maintaining private high-speed global
communication networks would represent a major capital investment for any multi-
national corporation. On a potentially much larger scale, there are myriads of
individual users and organizations that are willing to pay a higher Internet service
fee for better QoS in order to take advantage of demanding applications like IP-
telephony, video-conferencing and online games. Of course, there will always be
a large constituency of users who want to pay nothing at all (excluding Internet
service provider fees) for the more traditional services such as email and Web
surfing.

As is expected, applications differ in their QoS requirements. A loss-sensitive
application is one that cannot accept the loss of data. For example, an ftp file trans-
fer is loss-sensitive since every bit is important while a telephony application can
handle the loss of an occasional packet (without retransmission). A delay-sensitive
application is dependant on the timely arrival of its packets. File transfers are not
delay sensitive although human patience places lower bounds on throughput. Mul-
timedia applications like streaming video and audio can only handle small delays
with predictable variation (jitter) and still maintain their utility.

QoS has two components: performance assurance and service differentiation.
The former relates to bandwidth, delay, jitter and packet loss. Bandwidth is
the fundamental resource since it affects the other three. Service differentiation
addresses providing different QoS to different applications with differing require-
ments. In both cases, this is also a way for Internet Service Providers (ISPs) to
increase revenues.
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Absolute QoS vs Relative QoS

Performance assurance typically relies on absolute (quantitative) QoS specifications
that in some way deal with loss or delay bounds. As an example consider the
statements ”no packet will experience a delay greater than 200 ms” or ”packet
loss will not exceed 1%”. In the absolute model, if the network can guarantee
the user’s requested performance level, he or she will be admitted access to the
network. Typically the user will be rejected if the network can not provide the
requested assurances. It is an all or nothing proposition. This is typically between
specific endpoints.

Relative QoS is precisely what service differentiation addresses. The only
assurance from the network is that a higher class will receive better or at least
no worse service than any lower class. This model can not offer hard guarantees
on delay or packet loss because the amount of service received by a class and the
resulting QoS perceived by an application depend on the current network load in
each class. This model also requires integration with a pricing or policy-based
scheme to make higher classes more costly than lower classes. Disincentives (e.g.
high cost) must exist so that everyone does not prefer to use the higher priority
classes since this would effectively shrink the relative QoS differences between
the classes. The existence of QoS classes supports the dynamic change of classes
by a user or application that is able to actively adapt based on the observed
performance. For example, a telephony application can dynamically switch classes
to find an acceptable QoS at the most economical cost (i.e. no need to pay
for a high priority class if a lower priority, and hence cheaper, class meets its
requirements). Typically, this model supports arbitrary endpoints.

End-to-End QoS

The QoS protocols of IntServ [8] and DiffServ [7] are capable of furnishing a QoS to
flows or aggregates of flows in an end-to-end manner but it is unlikely that either
one will ever be ubiquitous enough to do that. Instead, they will likely be used
together in the real world to provide end-to-end QoS. By mixing and matching
their capabilities in a variety of possible architectures, the goal of end-to-end QoS
is nearing reality. Now at least MPLS (Multi-Protocol Label Switching [5, 73])
and the combination of RSVP and DiffServ have been proposed to provide end-to-
end QoS. However, end-to-end QoS does not take place only between the network
nodes of a network. The end hosts play an integral part in this. Most of the
research on QoS is oriented towards network issues such as scheduling and rout-
ing. However, network QoS by itself is not sufficient to support end-to-end QoS
because bandwidth management and congestion avoidance cannot resolve schedul-
ing or bottleneck problems at the end hosts (Web servers). The FIFO scheduling
performed by most servers can undermine any QoS improvements made by the
network since a busy Web server can indiscriminately drop high priority network
packets. Thus, a true end-to-end Internet QoS solution has as an essential com-
ponent a Web server with QoS mechanisms to provide overload protection and to
enable differentiated services.

In addition, satisfying the end-to-end QoS requirement (delay in particular)
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of an application traversing a number of network elements is usually addressed
by partitioning the end-to-end QoS requirement into the local QoS requirements
in each individual element involved and then achieving them respectively [62, 57].
Hence, the problem of allocating resources among multiple service classes based on
the local QoS requirements in a single network element is of practical importance.

1.3.2 QoS parameters

The fundamental QoS parameters can be defined as a set of parameters where other
sets can always be mapped to [25, 50]. Following this definition, a sufficient set of
QoS parameters include delay, throughput, jitter, packet loss ratio and availability
[83]. In this work, we put our emphasis particularly on the delay guarantee or
differentiation in individual network elements.

Delay is the first QoS parameter that one usually considers. From the user’s
point of view, end-to-end delay is the measure that matters. Specifically, an end-
to-end delay guarantee along a network path can usually be partitioned into the
local delay guarantees in each individual network element across that network path
[62, 57].

Throughput equals to the bandwidth guarantee of the traffic. It is defined as
the effective amount of data transported per unit time. The traffic entitled to this
bandwidth guarantee can be modelled simply as constant bit rate, or models like
leaky buckets can be used to better capture the nature of traffic distribution. As
examples of mechanisms to handle throughput, we refer to two equivalent versions
for the Generic Cell Rate Algorithm (GCRA) as defined in ITU-T Recommendation
I.371 [37], namely the Virtual Scheduling (VS) and continuous-state Leaky Bucket
(LB) algorithm. They are defined for cell based networking, but the algorithms
can also be enhanced for packet based networking.

Jitter or delay variation is a critical parameter in real-time applications deal-
ing with applications like VoIP or online live-video. There is a number of ways to
define how to calculate jitter. It is quite common to calculate it accumulatively and
to have a smoothing equation to give more weight to the latest samples [76, 77].

Packet loss ratio indicates the probability for a packet to get lost in the
network.

Availability is usually directly related to the services of the network. It
has a close relation to reliability, and there are lots of mechanisms to enhance the
availability of the Internet, such as router redundancy protocols VRRP [49] and
HSRP [55].

1.3.3 Service Level Agreement

A Service-Level-Agreement (SLA), which is negotiated and committed between ser-
vice providers and service consumers (either another service providers or common
users or both), defines the QoS metrics for each class of service, the anticipated
per-class workload intensity and the pricing strategy by which the service payment
will be determined. The problem with SLAs is that the rules that are readable and
understandable for human beings have to be translated into a form that is readable
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for machines. Differentiated Services framework [7] suggests that the negotiated
and committed SLA may be represented by Service Level Objectives (SLOs) for
machine readability. As a summary of terminology related to SLAs, we refer to the
definitions of RFC 3198 [83] as follows:

• Service Level Agreement (SLA): The documented result of a negotiation
between a customer/consumer and a provider of a service, which specifies
the levels of availability, serviceability, performance, operation or other
attributes of the service [7].

• Service Level Objective (SLO): Partitions an SLA into individual metrics
and operational information to enforce and/or monitor the SLA. SLO may
be defined as part of an SLA, an SLS, or in a separate document. It is a
set of parameters and their values. The actions of enforcing and reporting
monitored compliance can be implemented as one or more policies.

• Service Level Specification (SLS): Specifies the handling of customer’s traf-
fic by a service provider. It is negotiated between a customer and a service
provider. For instance, in a DiffServ network environment, it defines pa-
rameters such as specific Code Points and the Per-Hop-Behavior, profile
characteristics and the treatment of the traffic for those Code Points. An
SLS is a specific SLA and its SLOs (the individual metrics and operational
data to enforce) guarantee the QoS required by customer’s traffic.

1.4 Outline of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 summarizes our
contribution for enabling differentiated services in cluster-based Web server sys-
tems. The novel Arrival-Related Dynamic Partitioning mechanism proposed in
publication PVI [88] is also presented in clearer format there. The issue of im-
plementing scalable service differentiation in cluster-based Web server systems is
addressed systematically in Chapter 3. Chapter 4 presents our contributions for
maximizing SLA revenues obtained in a multiclass-supported network node un-
der a given amount of network resources and linear pricing strategy by optimally
allocating the resources among the supported service classes. Our derived upper
bound on mean packet delay of GPS-based Fair Queueing (FQ) algorithms is first
summarized in Chapter 5, then we utilize this upper delay bound to derive the
suboptimal resource allocation scheme for maximizing the SLA revenue acquired
in a GPS-based network node under a given amount of network resources and flat
pricing strategy. Chapter 6 analyzes the problem of maximizing the SLA revenue
attained in the hosting of an e-commerce Web site by cluster-based Web server
systems. First, the optimal resource partitioning scheme proposed in publication
PXII [93] under linear pricing strategy is summarized and then the suboptimal
resource partitioning scheme is derived, which can achieve the highest SLA revenue
for the hosting an e-commerce site under a given amount of server resources and
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flat pricing strategy. We make the conclusions of this dissertation in Chapter 7.
Finally, all my publications are attached at the end of this dissertation.



2 SUPPORTING DIFFERENTIATED SER-

VICES IN CLUSTER-BASED WEB SERVER

SYSTEMS

As we know, to avoid high priority network traffic dropped at the Web server
side, a true end-to-end Internet QoS solution has as an essential component: a
Web server with QoS mechanisms to provide overload protection and to enable
differentiated services. Nowadays Web servers based on clusters of commodity
PCs or workstations offer faster and more cost-effective solutions to the increasing
performance demands placed on popular Web sites. Therefore, to enable QoS
support in such cluster-based Web server systems is of practical importance.

However, many results about enabling QoS support in Web clusters consider
Web server farm as the target architecture, where multiple Web sites are co-located
on the same platform, e.g., [4]. Few results exist on the topic of providing QoS
support in a cluster-based Web server system that hosts a single Web site. Chen et
al. evaluated the impact of the request admission control and dispatching mecha-
nisms in [12]. Kanodia et al. have proposed a QoS policy that uses both admission
control and performance isolation mechanisms to guarantee different classes of ser-
vice to have latencies within pre-specified targets [43]. Cardellini et al. described
and evaluated some mechanisms that can be integrated into existing Web cluster
architectures to support quality of Web services [9]. A dynamic resource parti-
tioning algorithm for static and dynamic Web requests is proposed in [98], where
QoS principles are addressed as an optimization problem. However, the work [98]
has assumed that the processing rates of the incoming requests have exponential
distribution in a Web cluster system, which is not true in the real situation.

This dissertation first addresses the issue of enabling differentiated services
in cluster-based Web server systems built upon layer-7 one-way Web cluster ar-
chitecture. In extending the QoS work in [9], publication PI [42] and publication
PIV [87], we propose a new mechanism [88] for enabling differentiated services
in layer-7 one-way cluster architecture, which dynamically partitions the back-end
server nodes in a cluster-based Web server system into different server subsets



25

so that each class of requests will be served only by its own assigned server set.
More importantly, two different dynamic partitioning algorithms are designed in
this mechanism to be used under different arrival load intensities so as to achieve
better performances in the case that the system is heavily loaded and does not
have enough server resources available. We call this novel mechanism the Arrival-
Related Dynamic Partitioning mechanism (ARDP mechanism). The simulation
results demonstrated that our proposed ARDP mechanism can provide different
classes of customers with different QoS targets and succeed in achieving the goals
of service differentiation in target cluster-based Web server systems. In this Chap-
ter, the proposed ARDP mechanism and its target Web cluster architecture are
explained more clearly. Then the contribution of publication PVI [88] is summa-
rized.

2.1 Target Web cluster architecture

A Web cluster consists of a number of commodity workstations or PCs connected
by a network. Typically, those server nodes in a Web cluster are connected by a
high-speed LAN. As for the target Web cluster architecture in publication PVI [88],
it consists of a front-end component called Web switch and a number of back-end
server nodes, although our proposed mechanism may be applied to other cluster-
based architectures. The Web switch acts as the network representative for a Web
site built upon the target cluster architecture. In such a way, the authoritative
DNS server for the Web site translates the site name into the IP address of its
Web switch, which receives all incoming requests destined for the site and makes
the distributed nature of the site architecture completely transparent to both the
users and the client applications. The Web switch can use various mechanisms
to distribute inbound requests among the back-end server nodes. The above Web
cluster architecture can be further classified on the basis of whether the data from
the back-end server nodes to clients (outgoing data) go through the Web switch. To
provide the system with more scalability, the outgoing data will not pass through
the Web switch in the target architecture. Figure 2 shows the main components of
the target Web cluster architecture.

To enable QoS support in the target cluster architecture, the Web switch must
be able to examine the content of a HTTP request and identify its requested service
class. Therefore, the target Web cluster architecture is actually the layer-7 one-way
architecture according to the classifications in Chapter 1. Additionally, the Web
switch of the target cluster architecture will monitor the load information (based
on the number of active connections) of each back-end server node and maintain
the dynamic server-partitioning map for each supported service class.

2.2 Mechanism design and analysis

To provide service differentiation, we first refer to service class to denote the dif-
ferentiation of incoming requests and users into classes. Given multiple request
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Figure 2: Target Web cluster architecture.

classes supported in a Web cluster with a number of homogeneous server nodes,
we want to design a QoS-aware (server) resource allocation mechanism which can
achieve some basic goals of service differentiation. First, it should be guaranteed
that the requests from higher priority class will receive better services than the ones
with lower priority, especially when the Web cluster is heavily loaded. Secondly,
the admission control mechanism is needed to prevent the Web cluster from being
overwhelmed by excessive user requests. These goals are reasonable because they
ensure prioritized services in a cluster-based Web server system without overload-
ing it. Admission control has been proposed as the first key mechanism to prevent
performance degradation of Web services [13]. It is also considered and included in
our ARDP mechanism. We select as a load index the number of active connections
that in various implementations of Web clusters has been proven to be the most
effective measure [75]. Normally, for a server subset assigned to service class i, the
Web switch periodically gathers the number of active connections from each server
node, calculates the current sum (denoted by SumLoadi) of the server load in that
server subset, and then determines if the incoming requests from that service class
will be dropped or accepted. The rejection phase starts when SumLoadi exceeds a
given threshold Thri and ends when the load sum returns below the same thresh-
old value. This threshold may be set to ni ·MaxConn, where ni is the number of
server nodes in that server subset, and MaxConn denotes the maximum number
of active connections which each server can sustain without performance degrada-
tion. In our ARDP mechanism, the server nodes from different server subsets have
different values of MaxConn. More importantly, to provide a flexible mechanism
and achieve better performances, especially when a Web system is heavily loaded,
in our ARDP mechanism the dynamic partitioning algorithm of server resources
can be adjusted based on the arrival rate λ of incoming requests.

To simplify the presentation, we consider without loss of generality three ser-
vice classes named High, Medium and Low classes supported in a Web cluster.
Obviously, the requests belonging to the High class hold the highest priority and
the ones belonging to the Low class the lowest priority. Thus we need to parti-
tion the server resources in the Web cluster into three server subsets, denoted by
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High Set(HS), Medium Set(MS) and Low Set(LS) and then the incoming requests
belonging to one service class will be distributed only to the server nodes in the
server subset assigned to that service class. In other words, the server nodes in
HS will serve only the requests from the High class, the ones in MS will serve only
the requests from the Medium class and the ones in LS will serve only the requests
from the Low class. Our ARDP mechanism is concerned with how to dynamically
partition the server resources among all supported classes to enable differentiated
services in the target Web cluster architecture.

Below we present our ARDP mechanism in detail. Note that for our ARDP
mechanism, there is a given threshold λthr (requests/second) of request arrival
rate, whose value is determined by the parameter settings of a Web cluster. Two
different dynamic partitioning algorithms may be chosen in our ARDP mechanism
by comparing a real or estimated request arrival rate (λ) with the above threshold
(λthr). Let’s assume that there are a total of N homogeneous back-end server nodes
in a Web cluster built upon our target Web cluster architecture. At time t, the
resulted server subsets are denoted by HS(t), MS(t) and LS(t) and the number
of server nodes in the three subsets is denoted by nHS(t), nMS(t) and nLS(t),
respectively, where HS(t) ∩ LS(t) = �, MS(t) ∩ LS(t) = �, HS(t) ∩MS(t) = �
and nHS(t) + nMS(t) + nLS(t) = N . Thus the initial number of server nodes in the
three subsets is nHS(0), nMS(0) and nLS(0) and the chosen dynamic partitioning
algorithm of our ARDP mechanism will update the values of nHS(t), nMS(t) and
nLS(t) periodically based on Web switch’s server load measurements.

First, the values of nHS(0), nMS(0) and nLS(0) should be determined. Spe-
cially, when λ is less than λthr, we think it indicates that the Web cluster is not
heavily loaded and still has enough server resources to be allocated. In this case,
the dynamic partitioning algorithm 1 of our ARDP mechanism is chosen and the
values of nHS(0) and nMS(0) are set to �ρHC · N� and �ρMC · N�, respectively,
where ρHC represents the percentage of connection requests belonging to the High
class while ρMC is the percentage of connection requests belonging to the Medium
class and �x� means the ceil of x. When λ is not less than λthr, it indicates that
the Web cluster becomes heavily loaded and does not have enough server resources
to be allocated. In this case, the dynamic partitioning algorithm 2 of our ARDP
mechanism is used and nHS(0) and nMS(0) are set to ρHC ·N and ρMC ·N , respec-
tively, which shows that the number of server nodes assigned to a service class does
not have to be an integer. That means that when the server resources in a Web
cluster are not enough, a server node may actually be assigned to serve multiple
service classes simultaneously and each class takes a portion of that server, i.e.,
the requests from multiple classes will be scheduled to that server in proportion to
their share of that server node. In our simulations, we assume that higher class
requests may share one server node only with the lowest class requests in order to
reduce the complexity of implementation.

Next we explain our ARDP mechanism’s method to update the partitioning
of server resources among all supported classes periodically. Suppose that the
last partitioning of server nodes among HS, MS and LS happened at time t1 and
the resulted number of server nodes in HS, MS and LS was nHS(t1), nMS(t1) and
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nLS(t1), respectively. Now at time t2, the server partitioning will be updated
again based on new load measures: the sum of the server loads in HS and MS
at time t2 are SumLoadHS(t2) and SumLoadMS(t2), respectively. As mentioned
above, in our ARDP mechanism, MaxConn has different values for server nodes
belonging to HS, MS and LS and they are denoted by MaxConnHS, MaxConnMS

and MaxConnLS, respectively. Then, as for both dynamic partitioning algorithm
1 and 2 of our ARDP mechanism, the process of updating the partitioning of server
resources at time t2 goes as follows.

1. First compute the values of dynamic load thresholds Hthr1, Hthr2 and
Mthr1, Mthr2 at time t2:

Hthr1(t2) = nHS(t1) ·MaxConnHS,

Hthr2(t2) = (nHS(t1)− 1) ·MaxConnHS,

Mthr1(t2) = nMS(t1) ·MaxConnMS,

Mthr2(t2) = (nMS(t1)− 1) ·MaxConnMS;

2. If SumLoadHS(t2) is more than Hthr1(t2) and nLS(t1) ≥ 2, the least loaded
server node in LS is moved into HS, i.e., nHS(t2) = nHS(t1) + 1 and
nLS(t2) = nLS(t1) − 1. Otherwise, if SumLoadHS(t2) < Hthr2(t2) and
nHS(t1) − nHS(0) ≥ 1, the most loaded one among those serve nodes in
HS which were moved-in from LS before will be returned back to LS, i.e.,
nHS(t2) = nHS(t1)− 1 and nLS(t2) = nLS(t1) + 1;

3. If SumLoadMS(t2) is more than Mthr1(t2) and the resulted nLS(t2) in Step
2 is more than 2, the least loaded server node in LS is moved into LS, i.e.,
nMS(t2) = nMS(t1)+1 and nLS(t2) = N−nHS(t2)−nMS(t2). Otherwise, if
SumLoadMS(t2) < Mthr2(t2) and nMS(t1)− nMS(0) ≥ 1, the most loaded
one among those serve nodes in MS which were moved-in from LS before
will be returned back to LS, i.e., nMS(t2) = nMS(t1) − 1 and nLS(t2) =
N − nHS(t2)− nMS(t2).

Based on the above procedure, the new partitioning of server resources among
the High, Medium and Low classes at time t2 are calculated. Then for an incoming
request of a given class, our ARDP mechanism will distribute it to the least loaded
server node within its assigned server subset. Note that if a server node in LS is
required to move into HS or MS at an updating time point, this server node will
receive new requests only from the High or Medium class, while it will continue to
serve the requests belonging to the Low class which were already accepted. More
importantly, if SumLoadLS(t2) is more than nLS(t2) ·MaxConnLS, all incoming
requests belonging to the Low class will be dropped at the Web switch from t2 till
the next updating time. We found in the simulations that only dropping Low class
requests is not enough to achieve the above goals of service differentiation. So, in
our ARDP mechanism, when SumLoadMS(t2) > Mthr1(t2) and there are not any
more server nodes available in LS which could be moved into MS, the incoming
requests belonging to the Medium class will also be dropped at the Web switch.
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Now we know that the difference between the dynamic partitioning algorithm 1
and 2 of our ARDP mechanism is only the initial number of the server nodes in
HS, MS and LS, i.e., the values of nHS(0), nMS(0) and nLS(0) are different.

2.3 Summarized Contribution

By extending the QoS research work in [9], publication PI [42] and publication PIV
[87], we propose a new mechanism for enabling differentiated services in layer-7 one-
way cluster architecture in publication PVI [88], which dynamically partitions the
back-end server nodes in a cluster-based Web server system into different server
subsets so that each class of requests will be served only by its own assigned server
set. More importantly, two different dynamic partitioning algorithms are designed
in this mechanism to be used under different arrival load intensities so as to achieve
better performances in the case that the system is heavily loaded and has no
enough server resources available. We call this novel mechanism the Arrival-Related
Dynamic Partitioning mechanism (ARDP mechanism).

To evaluate the performance of our ARDP mechanism, a simulation environ-
ment was built including the queuing model and workload model of the target Web
cluster architecture to conduct the simulations. The simulation results in publica-
tion PVI [88] demonstrate that our proposed mechanism (ARDP) can guarantee
that the requests from higher priority class will receive better services than the
ones from lower priority class and enable differentiated services in a Web cluster
system built upon the target cluster architecture. Furthermore, the simulation re-
sults show that the ARDP mechanism works well when the Web cluster system is
heavily loaded and does not have enough server resources to be allocated.



3 ENABLING SCALABLE SERVICE DIFFER-

ENTIATION IN CLUSTER-BASED WEB

SERVER SYSTEMS

Web servers based on clusters of commodity PCs or workstations offer a cost-
effective and scalable solution to the increasing performance demands placed on
popular Web sites. As described in Chapter 1.1, a Web cluster architecture typically
consists of a specialized front-end server node Web switch and a number of back-
end server nodes connected by a high-speed LAN. The Web switch receives all
inbound requests destined for a Web site built upon the cluster architecture and
then distributes them among the back-end server nodes for serving, thus making
the distributed nature of the site architecture completely transparent to both the
user and the client application.

To support the differentiated services in such a cluster-based Web server sys-
tem, the Web switch must be able to examine the content of each inbound HTTP
request and identify its requested service class when deciding which back-end node
should handle the request. This additional overhead at the Web switch can dra-
matically limit the scalability of existing cluster architectures. For instance, con-
ventional PC/workstation based front-ends, which support QoS-aware scheduling
algorithms, can only scale to a small number of back-end server nodes (less than ten
on typical Web workloads [63]). Whereas, extremely fast layer-4 switches [15, 36]
are available which can support a large number of back-end server nodes in a single
layer-4 Web cluster. However, layer-4 switches can not support QoS-aware request
distribution because the latter requires the layer-7 (HTTP) process at the Web
switch to examine the requested service class.

In this Chapter, by summarizing our previous QoS research work in publi-
cations PII [86], PIV [87], PVI [88] and PVIII [89], the issue of implementing
scalable service differentiation in cluster-based Web server systems is addressed.
First of all, the problems of the existing cluster architectures are examined and
then a much more scalable one – the two-level cluster architecture is proposed
based on the analysis in [3] and IBM Network Dispatcher [35], which includes a
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layer-4 switch (at the first-level) and a number of parallel layer-7 sub-clusters (at
the second-level). The layer-4 switch acts as the single point of contact with the
clients, which is just responsible for making the loads among those parallel sub-
clusters balanced and does not perform any QoS-aware distribution. Whereas,
the layer-7 front-end of each parallel sub-cluster performs QoS-aware dispatching
mechanisms to enable differentiated services in the scalable cluster architecture.
Thus, the process overhead at the Web switch of a conventional layer-7 Web clus-
ter is distributed among a number of second-level layer-7 front-ends in the two-level
cluster architecture, which results in much improved scalability at the expense of
minimal additional latency penalty (the link delay between the layer-4 switch and
the layer-7 front-end of each sub-cluster).

Then the relevant scheduling algorithms are investigated for enabling differ-
entiated services in the two-level cluster architecture. Specifically, Pick2X [27]
and Round-Robin (RR) algorithms are illustrated as the first-level scheduling al-
gorithm and our Dynamic Partitioning algorithm (DP) is proposed to serve as the
second-level scheduling algorithm. Through the simulations, it is demonstrated
that the proposed two-level cluster architecture can be significantly more scalable
compared to those existing ones by having a highly scalable layer-4 switch at the
first-level and more parallel sub-clusters co-existing at the second-level. Theoreti-
cally the scalability of the two-level cluster architecture is determined only by the
scalability of its layer-4 switch. Nowadays, hardware-based, highly scalable layer-4
switches are commercially available. Thus, our proposed scalable cluster architec-
ture is feasible to implement. Furthermore, the simulation results show that our
selected/designed scheduling algorithms (Pick2X-DP and RR-DP) can succeed in
enabling differentiated services in the two-level cluster architecture under different
workload intensities and parameter settings.

3.1 The design of a novel scalable cluster architecture

In this part, the bottlenecks of the existing cluster architectures are identified and
then a new configuration – the two-level cluster architecture is proposed, which is
significantly more scalable one with QoS-enabled capability.

M. Aron et al [3] separated a layer-7 front-end functionally into two com-
ponents: dispatcher and distributor as shown in Figure 3. The dispatcher is the
component that implements the content-aware or QoS-aware request distribution
strategy. In other words, its task is to decide which back-end server node should
handle an incoming request. The distributor component interfaces with the client
and is responsible for routing the client requests to their target back-end nodes
through either TCP handoff [63] or TCP splicing mechanism [26, 16]. The server
component represents the server node running at the back-end and serving incom-
ing requests.

Then, M. Aron et al argued that the bulk of the overhead at the layer-7
front-end is incurred by the distributor, not the dispatcher component, and the
distributor component can be readily distributed as its individual tasks are com-
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pletely independent while it is the dispatcher component that typically requires
centralized control. Thus, a more scalable content-aware/QoS-aware request dis-
tribution can be achieved by distributing the function of the distributor component
of a layer-7 front-end over multiple cluster nodes while leaving the function of the
dispatcher component on a dedicated node.

In [3], M. Aron et al first analyzed a cluster configuration where the distributor
component is distributed across several front-end nodes while the dispatcher com-
ponent resides on a dedicated node as shown in Figure 4. In such a configuration
with multiple front-end nodes, a choice must be made as to which front-end should
receive an incoming client request. This choice can be made either explicitly by the
user with strategies like mirroring, or in a client transparent manner using DNS
round-robin. However, these approaches are known to lead to poor load balancing
[35], in this case among the front-end nodes. They argued that another drawback
of the cluster configuration shown in Figure 4 is that efficient partitioning of cluster
nodes into either front-end or back-end nodes depends upon the workload and is
not known a priori.

Then, an alternate cluster design (in Figure 5) where the distributor com-
ponents are co-located with the back-end server components was proposed by M.
Aron et al in [3]. In the cluster configuration of Figure 5), the function of the
distributor component is decentralized to each back-end server node, eliminating
the bottleneck imposed by a centralized distributor, and the dispatcher component
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still resides on a dedicated node and perform the content-aware/QoS-aware request
distribution policies. Moreover, a layer-4 switch acts as the front-end of the cluster
configuration, making the load among those decentralized distributors balanced.
The experimental results in [3] indicated that the cluster configuration in Figure 5)
is much more scalable than conventional layer-7 cluster architectures. But, as the
dispatcher component is still centralized, its performance determines the scalability
of the cluster configuration of Figure 5). They discovered that the key to achieving
greater cluster scalability is to reduce the communication overhead between the
dispatcher node and other cluster nodes.

Actually, the dispatcher component of a layer-7 switch may also be decen-
tralized especially in the scenario that the Web cluster hosts only a single Web
site. Based on the above analysis and IBM Network Dispatcher [35], we construct
a novel cluster configuration which can performs QoS-aware request distribution
strategies while being much more scalable than the above one proposed by M. Aron
et al. It is named the two-level cluster architecture shown in Figure 6. Specifically,
the two-level cluster architecture consists of a very fast layer-4 switch at the first-
level and a number of parallel layer-7 sub-clusters co-existing at the second-level.
The layer-4 switch acts as the single point of access to the two-level architecture,
which receives all inbound client requests and then distributes them among the
parallel sub-clusters using a simple QoS-blind scheduling algorithm (referred to as
the first-level scheduling algorithm) to prevent it from becoming the bottleneck of
the architecture. Moreover, with this single switch the distributed nature of the
two-level cluster architecture becomes completely transparent to the clients. Each
parallel sub-cluster contains a layer-7 front-end and multiple back-end server nodes
connected via a high-speed LAN. Within each sub-cluster, its layer-7 front-end as-
signs incoming requests across its back-end server nodes by a QoS-aware scheduling
algorithm (referred to as the second-level scheduling algorithm) and furthermore
the TCP handoff mechanism [63] is used to enable the back-end nodes respond to
the clients directly without passing through the front-end nodes as an intermediary.

In this case, the layer-7 front-end is not separated into the distributor com-
ponent and the dispatcher component. However, as multiple sub-clusters co-exist



34

LAN

Layer-4
switch

. .
 .

Back-end
server node

Back-end
server node

. .
 .

Back-end
server node

Back-end
server node

. .
 .

. .
 .

Back-end
server node

Back-end
server node

. .
 .

sub-cluster 1

sub-cluster 2

sub-cluster N

High-speed
LAN

Layer-7
front-end

Layer-7
front-end

Layer-7
front-end

. .
 .

Figure 6: The two-level cluster architecture.

at the second-level of the cluster architecture, the proposed cluster configuration
functions as if both the distributor component and the dispatcher component are
decentralized. Since the layer-7 front-end in each sub-cluster distributes the as-
signed requests only across the back-end nodes of its sub-cluster, the communi-
cation overhead at the layer-7 front-end is significantly reduced and is no longer
the key impact on the cluster’s scalability. The scalability of the two-level clus-
ter architecture will be determined only by the performance of its layer-4 switch.
Nowadays hardware-based, highly scalable layer-4 switches are commercially avail-
able. Therefore, our proposed cluster architecture may become significantly more
scalable compared with those existing ones by using a highly scalable layer-4 switch
at the first-level and having more parallel sub-clusters co-existing at the second-
level. Additionally, the performances of both the layer-4 switch and the layer-7
dispatcher will impact on the scalability of the cluster configuration proposed by
M. Aron et al and its scalability is determined by the smaller one of the above
performances. Hence, the two-level cluster architecture is also more scalable than
the one proposed by M. Aron et al in [3].

Moreover, as each parallel sub-cluster co-existing at the second-level is actually
a layer-7 cluster, QoS-aware request distribution can readily be supported in the
two-level architecture by the second-level (QoS-aware) scheduling algorithms. Note
that in the two-level cluster architecture, each sub-cluster may be required to report
its load information to the layer-4 switch periodically. Moreover, the layer-7 front-
end of each sub-cluster maintains the load information of its back-end server nodes
based on the number of active client connections handled by each back-end node.
Note also that although in this Chapter, homogeneous back-end server nodes are
deployed in the two-level cluster architecture, heterogeneous back-end nodes can
also be supported in the proposed cluster architecture by adjusting the parameters
of both first-level and second-level scheduling algorithms.
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3.2 Enabling service differentiation in the novel scalable
cluster architecture

This section investigates the scheduling algorithms which can be used in the pro-
posed scalable cluster architecture – the two-level cluster architecture to enable
service differentiation. First of all, a service class is defined as a category of client
requests that enjoy the same level of QoS support. Thus, client requests belonging
to different service classes will receive differentiated services. Note that the service
class of a client request may be classified based on client identities or service types.

Given multiple service classes supported in the two-level cluster architecture
consisting of a layer-4 switch and a number of parallel layer-7 sub-clusters, the
first-level and second-level scheduling algorithms should be chosen or designed to
achieve the basic goals of service differentiation in the architecture. We recall that
the layer-4 switch does not perform any QoS-aware request distribution and it
just distributes the inbound requests among the parallel sub-clusters to have their
loads balanced by a simple QoS-blind scheduling algorithm. Recall also that each
parallel sub-cluster may be required to report its load information to the layer-
4 switch periodically (the period referred to as Tpost). Hence, the layer-4 switch
may utilize the load information of sub-clusters to select the target sub-cluster for
inbound requests.

In this section we investigate two kinds of algorithms which could be used as
the first-level scheduling algorithm: the first kind of algorithms select the target
sub-cluster without considering the load distribution among those parallel sub-
clusters while the second kind will consider that. The Round-Robin algorithm is
chosen as the representative of the first kind of algorithms to be studied. Although
the least loaded approach is commonly used in commercial products, selection of
the least loaded server can result in pathologically poor performance. This poor
performance is due to the so-called ”herd effect” that is well known in distributed
systems [61, 20]. The Pick-KX method proposed in [27] is one solution to deal with
the ”herd effect”. Here the Pick-2X algorithm [27] is investigated as the representa-
tive of the second kind of algorithms, which means that, in a Tpost interval, whenever
a client request reaches the two-level cluster architecture, the target sub-cluster of
the request is selected from two randomly chosen sub-clusters by weighting their
latest reported loads. In other words, given two randomly chosen sub-clusters, the
probability P1, which an incoming request selects the first sub-cluster of them, is
P1 = L2/(L1 + L2) and the probability P2, which the incoming request selects the
second one of them, is P2 = L1/(L1 + L2), where Li indicates the latest reported
load of the ith one of the two randomly chosen sub-clusters. For instance, given
two sub-clusters with loads of 10 and 5, the probabilities of selection would be 1/3
and 2/3, respectively. Note that the number of active connections is selected as
the load index, which has been proven to be the most effective measure in vari-
ous implementations of Web clusters [75]. The Round-Robin algorithm selects the
target sub-cluster cyclically without considering the load distribution among those
parallel sub-clusters.

As the layer-4 switch just performs a simple QoS-blind scheduling algorithm
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to prevent it from becoming the bottleneck of our proposed architecture, the front-
end node of each parallel layer-7 sub-cluster should employ a QoS-aware scheduling
algorithm to enable differentiated services in the two-level cluster architecture. As
we know, the dynamic partitioning algorithms proposed in Chapter 2 can succeed
in enabling service differentiation in a existing layer-7 cluster architecture. In this
section, they are combined and extended to a more general one named Dynamic
Partitioning algorithm, which is to be used by the front-end of each layer-7 sub-
cluster for implementing differentiated services in the two-level cluster architecture.
Furthermore, the Dynamic Partitioning algorithm can enable service differentiation
under different workload intensities and different system parameter settings, which
will be demonstrated in the following simulations. Since the Dynamic Partitioning
algorithm is performed only within each parallel sub-cluster, below we explain how
it works in the scope of one sub-cluster.

Let us assume that there are a total of M service classes supported in the
two-level cluster architecture and each parallel sub-cluster in the architecture can
provide all services which the whole architecture offers. Assume also that there
are N homogeneous back-end server nodes in a layer-7 sub-cluster. Then, within
this layer-7 sub-cluster, the main idea of the Dynamic Partitioning algorithm is to
dynamically partition the N back-end server nodes into M disjoint server subsets
so that each class of requests reaching this sub-cluster will be served only by the
server subset assigned to that class.

Specifically, si(t) is used to denote the server subset assigned to class i at time
t (in this Chapter, i=1 indicates the highest class and i=M the lowest class) and
ni(t) is used to denote the number of back-end server nodes in si(t). Then the two
equations, si(t) ∩ sj(t) = �, i, j ∈ [1,M ], i �= j and

∑M
i=1 ni(t) = N , hold for each

time t. In addition, the Dynamic Partitioning algorithm sets the initial number of
back-end server nodes in si(t) as follows:

ni(0) = γiρiN

where i ∈ [1,M ], ρi represents the percentage of the client requests belonging to
class i with

∑M
i=1 ρi = 1 and γi is a constant factor with

∑M
i=1 γiρi = 1. Note that

the number of back-end server nodes assigned to a service class does not have to
be an integer. That means a back-end node may actually be assigned to multiple
service classes and each class takes a portion of that node, i.e., the requests from the
multiple classes will be scheduled to that node in proportion to their share of that
back-end server node. Note also that the initial number of back-end server nodes in
si(t) is the guaranteed portion of server resources assigned to class i except for the
lowest class, i.e., for each service class i other than the lowest one, ni(t) ≥ ni(0)
for each time t. Whereas, for the lowest class M, a constant factor ε is set by
our Dynamic Partitioning algorithm to denote the guaranteed minimum number
of back-end server nodes in server subset sM(t), i.e., nM(t) ≥ ε at each time t.
Obviously, the value of ε depends on the QoS requirements of the lowest class and
ε ∈ [0, nM(0)]. Additionally, the value of the factor γi should also be set carefully
based on the QoS requirements of class i.

Recall that the front-end node of each parallel sub-cluster maintains the
load information of its back-end server nodes. Based on the load measurement,
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the Dynamic Partitioning algorithm will update the server partitioning among
the M service classes periodically (this period referred to as Tupdate). Addition-
ally, MaxConni denotes the maximum number of active connections from class i
that a back-end server node can handle without performance degradation. Then,
MaxConni ≤ MaxConnj needs hold to enable differentiated services in a layer-7
sub-cluster if class i is higher priority than class j. Note that the concrete value of
MaxConni should be considered together with γi and set carefully based on the
QoS requirements of class i.

Below we present how our Dynamic Partitioning algorithm updates the server
subsets periodically in a sub-cluster. Suppose that t1 is the last updating time, the
resulted server subsets in the layer-7 sub-cluster are s1(t1),...,si(t1),...,sM(t1) and
the number of back-end server nodes in them is n1(t1),...,ni(t1),...,nM(t1), respec-
tively, for the M service classes. Now at time t2 = t1+Tupdate, the server partitioning
among the M classes will be updated based on new load measurements ( the sum
of server loads in server subset si(t1) at time t2 is denoted by SumLoadi(t2)). Then
the server subsets assigned to the M service classes are updated at time t2 by using
the following pseudo-code on next page.

Thus, at time t2, M new disjoint server subsets are created: s1(t2), ..., si(t2),
..., sM(t2). For each service class i, the sum of the server loads in si(t2) at time t2 can
be calculated based on the above load measurements and denoted by SumLoad

′
i(t2).

Then, during the time period [t2, t2+Tupdate), the admission control mechanism of
the Dynamic Partitioning algorithm operates on class i requests (i ∈ [1,M ]) as
follows: if SumLoad

′
i(t2) > βini(t2)MaxConni, the incoming requests belonging to

class i will all be dropped by the layer-7 front-end of the sub-cluster; otherwise, all
class i requests are accepted into the sub-cluster. As the M disjoint server subsets
are updated periodically, the conditions in the admission control mechanism will
also be updated periodically. Note that βi is another constant factor, which value
should also be set based on the QoS requirements of class i.

3.3 Simulations and results

3.3.1 Simulation environment

To evaluate the performances of our proposed scalable cluster architecture and
relevant scheduling algorithms, a simulation environment was built to hold the
simulations including the system model and workload model. First of all, in the
simulations we focus on enabling differentiated services in the proposed two-level
cluster architecture and the details of the external networks which connect the
clients to the cluster architecture did not be modelled because that will not affect
the main evaluation conclusions. As mentioned above, within each parallel sub-
cluster of the two-level architecture, all the back-end server nodes are connected
with the layer-7 front-end via a high-speed LAN. However, the layer-4 switch may
connect to the layer-7 front-ends of those sub-clusters through a normal LAN.
Hence, the transmission delays within each sub-cluster can be neglected due to
high-speed LAN connections while the link delays between the layer-4 switch and
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Initialize: sM(t2)← sM(t1);
nM(t2)← nM(t1);

for i← 1 to M do
if i �= M then

calculate the values of the two dynamic load thresholds of class i at
time t2;
Thr1i(t2) = ni(t1)MaxConni;
Thr2i(t2) = (ni(t1)− 1)MaxConni;
if SumLoadi(t2) > Thr1i(t2) and nM(t2) ≥ ε + 1 then

the least loaded server node in sM(t2) is moved into server subset
si(t1) to form server subset si(t2) and server subset sM(t2) is
refreshed;
ni(t2) = ni(t1) + 1;
nM(t2) = nM(t2)− 1;

else if SumLoadi(t2) < Thr2i(t2) and ni(t1) > ni(0) then
the most loaded one among those server nodes in server subset
si(t1) which were moved in before is returned back to sM(t2) to
form server subset si(t2) and server subset sM(t2) is refreshed;
ni(t2) = ni(t1)− 1;
nM(t2) = nM(t2) + 1;

end
else

nM(t2) = N −∑M−1
i=1 ni(t2);

thus server subset sM(t2) is formed;
end

end

Pseudo-code: For updating the server subsets assigned to the M service
classes periodically.

the layer-7 front-ends must be considered.

Recall that in the two-level cluster architecture, the TCP handoff mechanism
[63] is used to enable the back-end server nodes respond to the clients directly
without passing through the front-ends as an intermediary. Thus each parallel
sub-cluster in the two-level architecture can be abstracted as a queuing system
shown in Figure 7. Additionally, the processing delay at the layer-4 switch can
also be neglected due to the fact that in a Web environment the client-to-server
packets are typically much less than the server-to-client packets. Based on the
analysis in Chapter 2, the service time of a client request at the back-end server
nodes is proportional to the size of its requested Web object, i.e., ServiceT ime =
L/C + σ, where L denotes the size of the requested Web object in bytes, C is the
effective processing capacity of a back-end Web server and σ a constant factor.
In the following simulations, the homogeneous back-end server node is used and
parameters C and σ were set to 5.95MB/s and 4.2ms, respectively, based on the
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Figure 7: Queuing model of a parallel sub-cluster in the two-level cluster archi-
tecture.

experimental measurements.
Furthermore, throughout the following simulations, the Pick2X [27] and

Round-Robin (RR) algorithms were used as the first-level scheduling algorithm,
respectively, and our proposed Dynamic Partitioning algorithm (DP) was deployed
as the second-level scheduling algorithm. The well-known Least Load algorithm
(LL) was sometimes also used as the second-level scheduling algorithm to evaluate
the performances of our DP algorithm. The Least Load algorithm just chooses the
least loaded back-end server node within a parallel sub-cluster to serve the requests
assigned to that sub-cluster without considering the requested service classes, which
also does not include any admission control mechanism.

For actual Web workloads, it is recognized that Web object sizes are dis-
tributed with a heavy tail. Here the Bounded Pareto distribution (BP (p, q, α))
[19] is used to model the heavy-tailed characteristic of Web objects. Specifically,
the mean size of Web objects is set to 21KB as measured in [2] and p=1KB and
q=10MB are chosen as the reasonable minimum and maximum Web object size,
respectively. The resulting α=0.8037 is within the range of α values measured in
[1] and [18]. The arrival process of client requests destined for the two-level cluster
architecture was modelled by Poisson distribution.

3.3.2 Parameters and methods of evaluation

The parameters and methods of evaluation in the simulations are summarized in
this part. Throughout the following simulations, the High, Medium and Low classes
were illustrated and supported in the two-level cluster architecture; moreover, we
deployed eight homogeneous back-end server nodes within each parallel sub-cluster
of the two-level architecture and the values of parameters γ and MaxConn were set
as follows: γHS = 1, γMS = 1, γLS = 1, MaxConnHS = 15, MaxConnMS = 40 and
MaxConnLS = 60. To investigate the impacts of link delays between the layer-4
switch and parallel sub-clusters, two groups of link delays were deployed for each
simulation. As we concentrate on enabling differentiated services, in particular,
differentiated request delays, in the two-level cluster architecture, the 90-percentile
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Table 1: The parameters deployed in the first and second set of simulations.

For the first set of simulations For the second set of simulations

The number of parallel sub-clusters 4 8
The percentage of inbound requests ρHS=20% ρHS=20%
belonging to different service classes ρMS=30%, ρLS=50% ρMS=30%, ρLS=50%
Group 1 of link delays LinkDelay1=50ms LinkDelay1=50ms

LinkDelay2=55ms LinkDelay2=55ms
LinkDelay3=60ms LinkDelay3=60ms
LinkDelay4=57ms LinkDelay4=57ms

LinkDelay5=65ms
LinkDelay6=54ms
LinkDelay7=62ms
LinkDelay8=52ms

Group 2 of link delays LinkDelay1=100ms LinkDelay1=100ms
LinkDelay2=105ms LinkDelay2=105ms
LinkDelay3=110ms LinkDelay3=110ms
LinkDelay4=115ms LinkDelay4=115ms

LinkDelay5=112ms
LinkDelay6=103ms
LinkDelay7=108ms
LinkDelay8=120ms

Arrival rates (requests/s) 3200, 4000, 4800, 5600 6400, 8000, 9600, 11200
Tpost (ms) 500 500
Tupdate (ms) 100 100
β βHS=3, βMS=1, βLS=1 βHS=3, βMS=1, βLS=1

of request delay [51, 9] and the percentage of dropped requests were chosen as the
performance metrics. Note that the notion of request delay in this section means the
delay which an accepted request experiences in the proposed cluster architecture,
including link delay between the layer-4 switch and its target sub-cluster, possible
queuing delay and its service time. For example, in this case, 90-percentile of
request delay of the Low class means the value which 90% among the delays of all
accepted Low class requests are exactly less than.

Specifically, the first set of simulations were carried out with the parameters
in Table 1 to investigate whether our selected/designed scheduling algorithms can
enable differentiated services in the proposed cluster architecture under different
workload intensities. Then the number of the parallel sub-clusters in the two-
level cluster architecture was doubled in the second set of simulations to evaluate
the ability of our proposed cluster architecture and selected/designed scheduling
algorithms supporting scalable service differentiation.

Next, the third and fourth sets of simulations were made to investigate the
impacts of parameters Tpost and Tupdate on system performances, respectively, as
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Table 2: The parameters deployed in the third and fourth set of simulations.

For the third set of simulations For the fourth set of simulations

The number of parallel sub-clusters 4 4

The percentage of inbound requests ρHS=20%, ρMS=30%, ρLS=50% ρHS=20%, ρMS=30%, ρLS=50%

Group 1 of link delays LinkDelay1=50ms, LinkDelay2=55ms LinkDelay1=50ms, LinkDelay2=55ms

LinkDelay3=60ms, LinkDelay4=57ms LinkDelay3=60ms, LinkDelay4=57ms

Group 2 of link delays LinkDelay1=100ms, LinkDelay2=105ms LinkDelay1=100ms, LinkDelay2=105ms

LinkDelay3=110ms, LinkDelay4=115ms LinkDelay3=110ms, LinkDelay4=115ms

Arrival rates (requests/s) 4000, 5600 4000, 5600

Tpost (ms) 400, 800, 1200, 1600 500

Tupdate (ms) 100 80, 160, 240, 320

β βHS=3, βMS=1, βLS=1 βHS=3, βMS=1, βLS=1

Table 3: The parameters deployed in the fifth set of simulations.

The number of parallel sub-clusters 4

The percentage of the High class requests ρHS=15%, 30%, 45%

Group 1 of link delays LinkDelay1=50ms, LinkDelay2=55ms

LinkDelay3=60ms, LinkDelay4=57ms

Group 2 of link delays LinkDelay1=100ms, LinkDelay2=105ms

LinkDelay3=110ms, LinkDelay4=115ms

Arrival rates (requests/s) 4000, 5600

Tpost (ms) 500

Tupdate (ms) 100

β βHS=2, βMS=1, βLS=1

they are crucial for the implementation of service differentiation in the two-level
architecture. Note that parameter Tpost is not valid when the Round-Robin al-
gorithm is used as the first-level scheduling algorithm. Their deployed simulation
parameters were summarized in Table 2, where it is noticed that a normal workload
intensity (4000 requests/s) and a stressing one (5600 requests/s) were both used to
further evaluate whether the impacts of Tpost and Tupdate on system performances
are consistent under different workload levels.

In the end, the fifth set of simulations was carried out to evaluate the sensitiv-
ity of system performances to the percentage of High class requests. The deployed
simulation parameters are presented in Table 3. It is shown that the percentage
of High class requests increases from 15% to 45%, which is reasonable in the real
world. To reduce the degrees of freedom, the ratio between the Medium class
requests and the Low class requests was kept at 3/5. Similarly, in the fifth set
of simulations, a normal workload intensity (4000 requests/s) and a stressing one
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Figure 8: For the first set of simulations: (a) 90-percentile of request delay when
using Pick2X-DP, RR-DP and Group 1 of link delays; (b) 90-percentile of request
delay when using Pick2X-LeastLoad, RR-LeastLoad and Group 1 of link delays;
(c) 90-percentile of request delay when using Pick2X-DP, RR-DP and Group 2
of link delays; (d) 90-percentile of request delay when using Pick2X-LeastLoad,
RR-LeastLoad and Group 2 of link delays.

(5600 requests/s) were both used to further investigate whether the sensitivity of
system performances to the percentage of High class requests is consistent under
different workload levels.

3.3.3 Simulation results

The simulation results for the first set of simulations are presented in Figure 8 and
Table 4. It is shown that differentiated services are enabled in the two-level cluster
architecture as long as the Dynamic Partitioning algorithm is used as the second-
level scheduling algorithm whereas the Least Load algorithm can not achieve any
service differentiation at all. In other words, both Pick2X-DP and RR-DP com-
binations can succeed in enabling QoS support in our proposed scalable cluster
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Table 4: The percentage of dropped requests in the first set of simulations.

The group 1 of link delays is deployed

when using the Pick2X-DP combination when using the RR-DP combination

the offered arrival rate for the for the for the for the for the for the

(request/s) High class Medium class Low class High class Medium class Low class

3200 0 0.44% 1.87% 0 0 0.56%

4000 0 2.26% 10.89% 0.28% 3.71% 11.58%

4800 0 7.87% 29.78% 1.66% 9.06% 32.34%

5600 1.55% 15.59% 49.48% 2.57% 18.94% 46.76%

The group 2 of link delays is deployed

when using the Pick2X-DP combination when using the RR-DP combination

the offered arrival rate for the for the for the for the for the for the

(request/s) High class Medium class Low class High class Medium class Low class

3200 0 0.34% 2.16% 0 0.24% 1.23%

4000 0 3.03% 13.28% 0 3.04% 12.71%

4800 0.23% 9.55% 34.05% 0 10.38% 30.81%

5600 1.57% 18.07% 48.60% 1.61% 20.32% 47.45%

architecture, however Pick2X-LL and RR-LL combinations both failed to achieve
that. Furthermore, we notice that although the link delays in group 2 are almost
doubled compared with the ones in group 1, the service differentiation is still en-
abled in the two-level architecture when the group 2 of link delays are deployed.
Hence, we can conclude that the differentiated services can always be achieved in
the two-level cluster architecture by our selected/designed scheduling algorithms as
long as the link delay between the layer-4 switch and the layer-7 front-end of each
parallel sub-cluster is not the dominant contributor to the request delay, otherwise,
new first-level scheduling algorithms must be designed for the layer-4 switch. For-
tunately, the above assumption about the link delays is true for most cluster-based
Web server systems built upon the two-level cluster architecture as the layer-4
switch is connected to all parallel sub-clusters also via a fast LAN in most cases
nowadays.

In addition, the sub-figures (b) and (d) in Figure 8 indicate that when the
arrival rate of client requests reaches 4800 requests/s or more, the simulation-
generated request delays by the Least Load algorithm will become much larger
(over 3700 ms), which shows that the two-level cluster architecture is overwhelmed
by excessive client requests. Whereas, the sub-figures (a) and (c) in Figure 8
show that the proposed cluster architecture works well and differentiated services
is enabled by our Dynamic Partitioning algorithms (DP) even under the workload
intensity of 5600 requests/s. It is due to the admission control mechanism in our
Dynamic Partitioning algorithm, which guarantees the implementation of service
differentiation and makes the request delay within acceptable ranges even under
overloaded situations. By having more parallel sub-clusters co-existing in the two-



44

6400 8000 9600 11200
100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

The request arrival rate to the two−level cluster architecture (requests/s)

90
−

pe
rc

en
til

e 
of

 r
eq

ue
st

 d
el

ay
 in

 th
e 

tw
o−

le
ve

l c
lu

st
er

 a
rc

hi
te

ct
ur

e 
(m

s)

for High class requests using Pick2X−DP
for Medium class requests using Pick2X−DP
for Low class requests using Pick2X−DP
for High class requests using RR−DP
for Medium class requests using RR−DP
for Low class requests using RR−DP

6400 8000 9600 11200
200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

The request arrival rate to the two−level cluster architecture (requests/s)

90
−

pe
rc

en
til

e 
of

 r
eq

ue
st

 d
el

ay
 in

 th
e 

tw
o−

le
ve

l c
lu

st
er

 a
rc

hi
te

ct
ur

e 
(m

s)

for High class requests using Pick2X−DP
for Medium class requests using Pick2X−DP
for Low class requests using Pick2X−DP
for High class requests using RR−DP
for Medium class requests using RR−DP
for Low class requests using RR−DP

(a) (b)

Figure 9: For the second set of simulations: (a) 90-percentile of request delay
when using Pick2X-DP, RR-DP and Group 1 of link delays; (b) 90-percentile of
request delay when using Pick2X-DP, RR-DP and Group 2 of link delays.

Table 5: The percentage of dropped requests in the second set of simulations.

The group 1 of link delays is deployed

when using the Pick2X-DP combination when using the RR-DP combination

the offered arrival rate for the for the for the for the for the for the

(request/s) High class Medium class Low class High class Medium class Low class

3200 0 0.07% 0.60% 0 0.45% 0.96%

4000 0 2.29% 11.24% 0 2.55% 13.57%

4800 0.60% 9.08% 31.36% 0.49% 8.36% 31.53%

5600 2.43% 16.81% 46.05% 2.43% 17.96% 46.05%

The group 2 of link delays is deployed

when using the Pick2X-DP combination when using the RR-DP combination

the offered arrival rate for the for the for the for the for the for the

(request/s) High class Medium class Low class High class Medium class Low class

3200 0 0.28% 0.44% 0 0 1.21%

4000 0 3.68% 11.38% 0.69% 2.15% 11.60%

4800 0.88% 10.46% 30.07% 0.75% 8.27% 29.80%

5600 1.92% 16.96% 44.85% 2.47% 17.47% 47.45%

level cluster architecture, it will be able to serve even much heavier workloads while
differentiated services can still be enabled using our selected/designed scheduling
algorithms, which is shown below.

The simulation results of the second set of simulations are presented in Figure
9 and Table 5, which clearly indicate that the two-level cluster architecture with
doubled parallel sub-clusters (i.e., the number of parallel sub-clusters is increased
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from 4 to 8) works well and service differentiation is also successfully achieved in it
under the doubled workload intensities (up to 11200 requests/s) by both Pick2X-
DP and RR-DP algorithm combinations no matter which group of link delays are
used. Therefore, it is demonstrated that the proposed two-level cluster architecture
can be significantly more scalable compared to those existing ones by having more
parallel sub-clusters co-existing at the second-level of the architecture. Moreover,
theoretically the scalability of the two-level cluster architecture is determined only
by the scalability of its layer-4 switch.

Figures 10-11 show the simulation results about the impacts of Tpost and Fig-
ures 12-15 show the ones about the impacts of Tupdate, which demonstrate that
the differentiated services can be enabled in the two-level cluster architecture by
our selected/designed scheduling algorithms (i.e., Pick2X-DP or RR-DP algorithm
combination) under different settings of Tpost and Tupdate, different workload inten-
sities and different group of link delays. Moreover, Figures 10-11 show that the
simulation-generated request delays and dropped rates of High, Medium and Low
classes all fluctuate within small ranges when Tpost increase from 400ms to 1600ms.
The above small fluctuation of service performances is achieved due to the ad-
mission control mechanism in our Dynamic Partitioning algorithm, otherwise, the
service performances (i.e., request delay and dropped rate) may vary a lot and the
service differentiation can not be guaranteed.

In addition, Figures 12-15 indicate that the simulation-generated request de-
lays and dropped rates of High, Medium and Low classes almost always increase
along with the increment of Tupdate. The reason is that for the Dynamic Partition-
ing algorithm, Tupdate determines the updating rate of the server subsets in each
parallel sub-cluster and thus affects the request delays and dropped rates directly.
A faster updating rate of those server subsets in a parallel sub-cluster means that
the server resources in the sub-cluster can be better utilized to serve the incoming
requests from different service classes, hence Tupdate should be set to a smaller value
to achieve better QoS performances. As within each parallel sub-cluster, the front-
end is connected to all back-end server nodes via a high-speed LAN, it is feasible
for Tupdate to have a small value in the two-level cluster architecture. Furthermore,
from the simulation figures, we notice that the above impacts of Tpost and Tupdate

on system performances are almost consistent under different workload intensities.

Finally, the simulation results of the fifth set of simulations, which investi-
gated the sensitivity of the performances of our proposed cluster architecture and
scheduling algorithms to the percentage of High class requests, are shown in Figures
16-19. From these figures, it is clear that the support of service differentiation can
be enabled by both Pick2X-DP and RR-DP combinations under different percent-
age of High class requests, different workload intensities and different group of link
delays, which is implemented by adjusting the value of the factor βHS. Specifically,
the value of βHS in this set of simulations is decreased to 2 especially when the
percentage of High class requests is increased to 45%, which affects the condition
of the admission control mechanism in our DP algorithm to drop more High class
requests for guaranteeing the support of differentiated services. Note that when
the percentage of High class requests grows higher than 45%, we should also adjust
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Figure 10: For the third set of simulations when using Pick2X-DP and Group
1 of link delays: (a) 90-percentile of request delay vs Tpost; (b) The percentage of
dropped requests vs Tpost.
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Figure 11: For the third set of simulations when using Pick2X-DP and Group
2 of link delays: (a) 90-percentile of request delay vs Tpost; (b) The percentage of
dropped requests vs Tpost.

the value of β of other service classes (e.g. βMS) carefully to enable service dif-
ferentiation in the two-level cluster architecture especially under heavier workload
intensities as our DP algorithm allots the initial server resources to a certain class
based on the percentage of its requests and thus fewer percentage of incoming re-
quests from that class lead to fewer server resources assigned to that class, which
make the issue of QoS support more sophisticated. Hence, under different QoS
performance targets and different workload intensities, different settings of those
constant factors should be deployed carefully for different service classes.
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Figure 12: For the fourth set of simulations when using Pick2X-DP and Group 1
of link delays: (a) 90-percentile of request delay vs Tupdate; (b) The percentage of
dropped requests vs Tupdate.
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Figure 13: For the fourth set of simulations when using Pick2X-DP and Group 2
of link delays: (a) 90-percentile of request delay vs Tupdate; (b) The percentage of
dropped requests vs Tupdate.

3.4 Summarized Contributions

In this Chapter, the problem of how to enable scalable service differentiation in
cluster-based Web server systems is addressed. First of all, the problems of the
existing cluster architectures are examined and then a much more scalable one –
the two-level cluster architecture is proposed, which includes a layer-4 switch (at
the first-level) and a number of parallel layer-7 sub-clusters (at the second-level).
Thus, in the two-level cluster architecture, the expensive operations of TCP con-
nection establishment, the identification of requested service classes as well as TCP
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Figure 14: For the fourth set of simulations when using RR-DP and Group 1
of link delays: (a) 90-percentile of request delay vs Tupdate; (b) The percentage of
dropped requests vs Tupdate.
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(a) (b)

Figure 15: For the fourth set of simulations when using RR-DP and Group 2
of link delays: (a) 90-percentile of request delay vs Tupdate; (b) The percentage of
dropped requests vs Tupdate.

handoff are distributed among a number of parallel layer-7 front-ends, rather than
being centralized in a single front-end node. Only a minimal additional latency
penalty (the link delay between the layer-4 switch and the layer-7 front-end of
each sub-cluster) is paid for much improved scalability. Moreover, the relevant
scheduling algorithms are investigated for enabling differentiated services in the
proposed cluster architecture. Specifically, Pick2X [27] and Round-Robin (RR)
algorithms are illustrated as the first-level scheduling algorithm and our Dynamic
Partitioning algorithm (DP) is proposed to serve as the second-level scheduling al-
gorithm. Through the simulations, it is demonstrated that the proposed two-level
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Using Pick2X−DP algorithm combination and Group 1 of link delays

for High class requests under arrival rate 4000 reqs/s
for Medium class requests under arrival rate 4000 reqs/s
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Figure 16: For the fifth set of simulations when using Pick2X-DP and Group 1 of
link delays: (a) Sensitivity of request delay to the percentage of High class requests;
(b) Sensitivity of dropped rate to the percentage of High class requests.
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Figure 17: For the fifth set of simulations when using Pick2X-DP and Group 2 of
link delays: (a) Sensitivity of request delay to the percentage of High class requests;
(b) Sensitivity of dropped rate to the percentage of High class requests.

cluster architecture can be significantly more scalable compared to those existing
ones by having a highly scalable layer-4 switch at the first-level and more parallel
sub-clusters co-existing at the second-level. And theoretically the scalability of the
two-level cluster architecture is determined only by the scalability of its layer-4
switch. Nowadays, hardware-based, highly scalable layer-4 switches are commer-
cially available. Thus, our proposed scalable cluster architecture is feasible to be
implemented. Furthermore, the simulation results show that our selected/designed
scheduling algorithms (Pick2X-DP and RR-DP) can succeed in enabling differen-
tiated services in the two-level cluster architecture under different workload inten-
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for High class requests under arrival rate 4000 reqs/s
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Figure 18: For the fifth set of simulations when using RR-DP and Group 1 of link
delays: (a) Sensitivity of request delay to the percentage of High class requests;
(b) Sensitivity of dropped rate to the percentage of High class requests.
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Using RR−DP algorithm combination and Group 2 of link delays

for High class requests under arrival rate 4000 reqs/s
for Medium class requests under arrival rate 4000 reqs/s
for Low class requests under arrival rate 4000 reqs/s
for High class requests under arrival rate 5600 reqs/s
for Medium class requests under arrival rate 5600 reqs/s
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Figure 19: For the fifth set of simulations when using RR-DP and Group 2 of link
delays: (a) Sensitivity of request delay to the percentage of High class requests;
(b) Sensitivity of dropped rate to the percentage of High class requests.

sities and parameter settings.



4 REVENUE-AWARE RESOURCE ALLOCA-

TION SCHEMES IN A MULTICLASS-

SUPPORTED NETWORK NODE

Resource allocation in the multiservice communication networks presents a very
important problem in the design of the future Internet. The main motivation for
the research in this field lies in the necessity for structural changes in the way
the Internet is designed. The current Internet offers a single class of ’best-effort’
service. However, the Internet is changing and a diverse set of services should
be provided in the future Internet to support the requirements of various applica-
tions and customers, which result in the definition of different service classes with
different requirements of QoS levels. For instance, new sophisticated real-time ap-
plications (video conferencing, video on demand, distance learning, etc) demand
a better and more reliable network performance. Moreover, these applications re-
quire firm performance guarantees from the network where certain resources should
be reserved for them. On the other hand, in the future multiclass Internet, each
class of customers may have to pay network service providers for their received level
of QoS based on the pricing strategy agreed upon in the Service-Level-Agreements
between them. A Service-Level-Agreement (SLA) defines the QoS parameters for
each class of service, the anticipated per-class workload intensity and the pricing
strategy by which the service payment will be determined. Obviously, the pricing
strategy will specify the relationship between the QoS level offered to each class of
customers and the relevant price which should be paid by them. For example, the
service provider will receive a certain amount of revenue from a class of customers
if the offered QoS level is more than the minimal requirement of that class and
suffer a certain amount of penalty for failing to meet that. Thus, from service
providers’ point of view, the optimal resource allocation scheme, which can achieve
the maximization of SLA revenues under a given amount of network resources (e.g.,
bandwidth) and a given pricing strategy, is very desirable.

Pricing research in the communication networks has been quite intensive dur-
ing the last few years (e.g., [47, 17, 67, 68]). Also a great deal of work (e.g.,
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[78, 58, 60]) has been done concerning the issues of resource allocation and fair-
ness in a single-service environment. However, the combination of pricing research
and multiclass resource allocation mechanisms have not been analyzed widely. A
number of works [71, 11, 74, 53] recently used end-users’ utility as the maximizing
objective for resource allocation schemes. All of these approaches have a common
objective of maximizing the network performance in terms of the users’ utility. Our
research differs from these studies by linking the resource allocation scheme with
the pricing strategy in a SLA and allocating a certain amount of network resources
(e.g., bandwidth) among the supported service classes optimally to maximize SLA
revenues. A revenue-maximizing pricing scheme for the service provider is pre-
sented in [6], where a noncooperative (Nash) flow control game is played by the
users (followers) in a Stackelberg game with the goal of setting a price to maximize
revenue. Our study focuses on deriving the optimal resource allocation scheme
under the given pricing strategy in a SLA for revenue maximization.

Specifically, we focus on the delay performance of each service class and mean
packet delay and packet delay are chosen as the QoS metric in a SLA, respectively,
in this Chapter. When the mean packet delay is used as the QoS metric in a SLA,
the measurement period of packet delays should also be specified in the SLA so
that the SLA revenues can be collected periodically based on the deployed pricing
strategies and the periodical QoS performance measurements (in this case, the mean
packet delay). Whereas, with packet delay as the QoS metric, the SLA revenues
are collected based on the used pricing strategies and the delay of each inbound
packet; in other words, a certain amount of revenue or penalty is obtained as long
as an inbound packet is served.

J. Joutsensalo et al studied the problem of maximizing service providers’ rev-
enues obtained in a network node under linear pricing strategy in [38, 39, 40, 41].
In this dissertation, I first extended our previous QoS and revenue-maximization
research in [38, 39, 40, 33, 41] and addressed the issue of maximizing SLA revenues
in a multiclass-supported network node under a given amount of network resources
by novel revenue-aware resource allocation schemes. The closed-form solution to
the optimal network resource allocation scheme under linear pricing strategy is
derived in publications PIX [90] and PXI [92] where the packet delay is chosen
as the QoS metric in a SLA while publication PX [91] presented the closed-form
solution under linear pricing strategy for the QoS metric of mean packet delay
in a SLA. Furthermore, the suboptimal network resource allocation scheme was
proposed PXIII [94] for achieving the highest SLA revenues under linear pricing
strategy for the case that the firm QoS guarantees are required for all the supported
service classes. This chapter summarizes the contributions in these publications.

4.1 Linear pricing strategy

In this section, the linear pricing strategy, which has been demonstrated to be of
practical importance in the real world [84], is deployed in the derivation of optimal
resource allocation schemes for maximizing SLA revenues. Consider a multiclass-
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supported network node with network bandwidth C bits/s, where m service classes
are supported and the inbound packets are queued in a multi-queue system (each
queue corresponds to one service class). Moreover, the delay of class i packets in
the network node is denoted by di and the mean delay of class i packets during one
measurement period is denoted by d̄i, i ∈ [1,m]. Then, when mean packet delay is
chosen as the QoS metric, the linear pricing strategy for class i is characterized by
the following definition of the linear pricing function.

Definition 1: The function

ri(d̄i) = bi − kid̄i, i = 1, 2, ...,m, bi > 0, ki > 0 (4.1)

is called the linear pricing function of class i under the QoS metric ”mean packet
delay”, where bi and ki are positive constants and bi ≥ bj and ki ≥ kj should hold
to ensure differentiated pricing if class i has higher priority than class j (in this
dissertation, we assume that class 1 is the highest priority and class m is the lowest
one).

With packet delay as the QoS metric, the linear pricing strategy of class i is
characterized by the linear pricing function defined below.

Definition 2: The function

ri(di) = bi − kidi, i = 1, 2, ...,m, bi > 0, ki > 0 (4.2)

is called the linear pricing function of class i under the QoS metric ”packet delay”,
where bi and ki are positive constants and bi ≥ bj and ki ≥ kj should also hold to
ensure differentiated pricing if class i has higher priority than class j.

4.2 Optimal resource allocation schemes for maximizing
SLA revenues under linear pricing strategy

Consider the above multiclass-supported network node fed by m Poisson packet
streams with arrival rates λ1, λ2, ..., λm, respectively. We assume that in this
section the packet length distribution is exponential and use L̄i to denote the
mean packet length of class i in bits. Let the weight allotted to class i be wi,
i=1,2,...,m, which means that the reserved bandwidth for class i packets is wiC
(bits/s). Without loss of generality, only non-empty queues are considered, and
thus wi �= 0. Therefore, the natural constraint for the weights is

∑m
i=1 wi = 1, wi ∈

(0, 1]. As class i is guaranteed to use a portion of the network resource wiC and
the packets of class i arrive at queue i with rate λi, the analytic mean delay of

class i packets in the network node (referred to as ˆ̄di) can be denoted as:

ˆ̄di =
1

wiC
L̄i
− λi

=
L̄i

wiC − λiL̄i

(4.3)
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based on queueing theory. The natural constraint of Eq. (4.3) is wiC > λiL̄i due
to the fact that delay can not be negative.

With the mean packet delay chosen as the QoS metric in a SLA, we use ˆ̄di

to estimate the real mean delay of class i packets d̄i in the network node during
one measurement period. Thus, the SLA revenues F obtained in the network node
during one measurement period is defined by the following equation under linear
pricing strategy:

F =
m∑

i=1

ri(d̄i) =
m∑

i=1

ri(
ˆ̄di) =

m∑
i=1

(bi − kiL̄i

wiC − λiL̄i

). (4.4)

Based on the above definition, publication PXI [91] derived the closed-form solu-
tion to the optimal resource allocation scheme (the optimal weight) for this case
under the linear pricing strategy:

wi =

√
kiL̄i(C +

∑m
j=1

√
kjL̄j√

kiL̄i

λiL̄i −
∑m

j=1 λjL̄j)

C
∑m

j=1

√
kjL̄j

, i = 1, 2, ...,m. (4.5)

When packet delay is the QoS metric in a SLA, the real delay of class i packets

di in the network node is also estimated by ˆ̄di. As in this case a certain amount
of revenue or penalty is attained as long as one inbound packet is served, we try
to maximize the SLA revenues obtained in the network node per time unit (also
denoted by F ). Thus, in this case, F is defined as follows under linear pricing
strategy:

F =
m∑

i=1

λiri(di) =
m∑

i=1

λiri(
ˆ̄di) =

m∑
i=1

λi(bi − kiL̄i

wiC − λiL̄i

). (4.6)

And the closed-form solution to the optimal resource allocation scheme for this
case is presented in publications PX [90] and PXII [92]:

wi =

√
λikiL̄i(C +

∑m
j=1

√
λjkjL̄j√

λikiL̄i

λiL̄i −
∑m

j=1 λjL̄j)

C
∑m

j=1

√
λjkjL̄j

, i = 1, 2, ...,m. (4.7)

Furthermore, publication PXIII [94] proposed the suboptimal resource allocation
scheme for the case that all the supported service classes have their firm QoS
(mean delay) requirements, which can satisfy those required QoS guarantees while
still being able to achieve very high revenue close to the analytic maximum one
under linear pricing strategy.

4.3 Summarized contributions

By extending our previous QoS and pricing research work in extended our previous
QoS and revenue-maximization research in [38, 39, 40, 33, 41], we addressed the
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problem of maximizing SLA revenues under a given amount of network resources
(e.g., bandwidth) and the linear pricing strategy in a SLA using novel revenue-aware
resource allocation schemes. Specifically, publication PX [91] derived the closed-
form solution to the optimal resource allocation scheme for revenue maximization
in a multiclass-supported network node under linear pricing strategy when mean
packet delay is chosen as the QoS metric in the SLA. Moreover, with packet delay
as the SLA QoS metric, the similar closed-form solution to the optimal resource
allocation scheme under linear pricing strategy is presented by our publications
PIX [90] and PXI [92]. The simulation results in these publications demonstrated
the effectiveness of our derived optimal resource allocation schemes for maximizing
SLA revenues under a given amount of network resources and the linear pricing
strategy.

Furthermore, publication PXIII [94] proposed the suboptimal resource al-
location scheme for the case that all the supported service classes have their firm
QoS (mean delay) requirements and it can not only satisfy those required QoS level
guarantees but also achieve very high SLA revenue close to the analytic maximum
one under linear pricing strategy, as is demonstrated by the simulations in [94].



5 STOCHASTIC ANALYSIS OF UPPER DE-

LAY BOUND OF GPS-BASED PACKE-

TIZED FAIR QUEUEING ALGORITHMS

The provision of Quality-of-Service (QoS) guarantees such as bandwidth, delay,
jitter and cell loss to applications with widely different characteristics is a primary
objective in the design of next-generation networks. One important issue in the
provision of QoS guarantees is the study of the queueing algorithms employed
at network nodes. Among the queuing algorithms that have been proposed, the
class of algorithms which aim at approximating the Generalized Processor Sharing
(GPS) policy are most popular. GPS [64, 65] is an idealized fluid discipline with
a number of very desirable properties: (i) it provides minimum QoS guarantees to
each traffic session 2, regardless of the behavior of other sessions; (ii) it provides
the deterministic worse-case delay bound to each session whose traffics are leaky-
bucket constrained; and (iii) it ensures fairness in the amount of service provided
by a network node to competing sessions. Since this policy is a fluid model, it is not
adapted for packet-by-packet transmission. Therefore, its packet-based extensions
that we call GPS-based Fair Queueing algorithms have been proposed, well-known
examples of which include Weighted Fair Queuing (WFQ) [21, 64], Self-Clocked
Fair Queuing (SCFQ) [29], Frame-based Fair Queuing (FFQ) [82] and Starting
Potential-based Fair Queuing (SPFQ) [82].

A significant volume of work in the literature [21, 64, 29, 30, 31, 81, 82, 14] has
been concerned with evaluating the deterministic worst-case delay guarantees that
GPS-based Fair Queueing (FQ) algorithms can provide when the burstiness of the
traffic feeding them is bounded (mostly shaped by a leaky bucket). However, little
work has been reported on analyzing the stochastic delay bounds of such packetized
policies under a general probabilistic traffic model. This has been mainly due to
the difficulty of stochastically modelling the complex behavior of a GPS-based FQ

2in this Chapter and publication PXIV [95], the notion of session actually means the aggregate
of packet streams which require the same QoS level and thus it is exchangeable with the notion
of service class.
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algorithm. Indeed an important advantage of stochastic modelling of FQ systems
as compared to worst-case deterministic analysis is that statistical analysis takes
into account the actual dynamics of the packet arrival process, thus being more
accurate in predicting the QoS guarantees provided to each traffic session and also
being able to derive more efficient revenue-aware resource allocation scheme for
maximizing SLA revenues in a network node deploying GPS-based FQ algorithms.

Zhang et al [96] studied the statistical behavior of GPS discipline using ex-
ponentially bounded burstiness processes [85] as the session source traffic model
and derived upper bounds on the tail distributions of session backlog and delay.
However, no simulation results were provided to verify the quality of those bounds.
Pekergin [69] derived stochastic bounds on the delay distribution of GPS-related
FQ algorithms fed by a Switched Bernoulli Batch process. The analysis in [69] is
quite complex and does not result in explicit analytical equations, thus limiting
its usefulness for back-of-the-envelope calculations and comparisons. The analysis
also makes some limiting assumptions such as the use of fixed packet lengths and
the need to set all sessions other than the tagged one to be greedy all the time.
M. Hawa et al used the bounded fairness criterion of FQ algorithms to derive the
upper and lower bounds on mean packet delay of those algorithms under Poisson
arrivals [34]. However, the analysis in [34] assumes that all sessions have the exact
same packet length distribution, which limits its application scope.

In publication PXIV [95], we extend the notion of feasible partition intro-
duced by Zhang et al [96] for the analysis of idealized GPS discipline and apply
it to the stochastic bound analysis of GPS-based FQ algorithms. With the help
of this notion, we derive our new upper bound on mean packet delay under the
general probabilistic traffic model of Poisson arrivals and any general packet length
distribution. The resulted upper bound is much simpler and tighter than the ones
by M. Hawa et al [34]. Moreover, it fits a class of GPS-based FQ algorithms in-
cluding WFQ, SCFQ and SPFQ, which aims at approximating GPS discipline and
thus validate the notion of feasible partition. Finally, in this Chapter our new upper
bound on mean packet delay is utilized to derive the suboptimal resource alloca-
tion scheme under a given amount of network resources and flat pricing strategy
for maximizing SLA revenues in a network node deploying a GPS-based packetized
FQ algorithm.

5.1 Upper Bound on Mean Packet Delay of GPS-based
Packetized FQ Algorithms

Consider a single-server GPS-based FQ system with capacity C bits/s, which mul-
tiplexes N sessions with Poisson arrival rates λ1, λ2, ..., λN (packets/s). In the FQ
system, each session has its own queue. Assume that the queues corresponding to
different sessions are infinite in length and the packets in the same queue are served
in the order they arrive. We use Li to denote session i packet length (in bits). As
mentioned above, the distribution of Li can be any general distribution and L̄i

is used to denote session i mean packet length, i.e., E[Li] = L̄i. As a necessary
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Figure 20: Decomposition of a GPS-based FQ system.

stability condition,
∑N

i=1 λiL̄i < C is required. Furthermore, the service weight wi

determines the minimum guaranteed share of capacity assigned to session i when
session i is backlogged. Obviously,

∑N
i=1 wi = 1 and 0 < wi ≤ 1, i ∈ [1, N ].

Let N= {1, 2, ..., N}. In publication PXIV [95], first a sequence of disjoint
sets, H= {Hk}1≤k≤m, where m ≥ 1 and H1 ∪ · · · ∪Hm = {1, 2, ..., N}, is defined as
the feasible partition of N with respect to the given sets of arrival rates {λiL̄i}i∈N
(bits/s) and service weights {wi}i∈N . Then, using the decomposition approach
introduced in [96], the above GPS-based FQ system can be analyzed through a
set of N separate single-queue systems, each of which has a dedicated server with
capacity ci (referred to as the virtual decomposed system) (see Figure 20).

Let Xi = Li/(wiC) denote the service time of session i packets in the cor-
responding virtual decomposed system where a dedicated server with capacity
ci = wiC serves session i packets and E[Xi] = X̄i and E[X2

i ] = X̄2
i . Moreover, the

mean delay of session i packets in the FQ system is denoted by d̄i, which equals the
mean waiting time in queue plus the mean service time. Publication PXIV [95]
derives the following upper bound on mean packet delay d̄i as long as λiL̄i < wiC
(i.e., session i in the GPS-based FQ system is a session in H1):

d̄i ≤ X̄i +
λiX̄2

i

2(1− λiX̄i)
. (5.1)

It can be noticed that the above upper bound on mean packet delay is derived
under the general probabilistic traffic model of Poisson arrivals and any general
packet length distribution. Moreover, the simulation results in Publication PXIV
[95] demonstrates that the derived upper bound is much tighter than the ones
by M. Hawa et al [34] and it fits a class of GPS-based packetized FQ algorithms
including WFQ [21, 64], SCFQ [29] and SPFQ [82].

5.2 Revenue-aware resource allocation scheme in a GPS-
based network node under flat pricing strategy

Similarly, when mean packet delay is chosen as the QoS metric in a SLA, a network
server provider may receive SLA revenues or penalties in a GPS-based network node
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based on the offered QoS (mean packet delay here) guarantees and the deployed
pricing strategy. In this part, the above upper bound on mean packet delay in Eq.
(5.1) is utilized to derive the revenue-aware resource allocation scheme in a GPS-
based network node under flat pricing strategy. Specifically, first the flat pricing
function which characterizes the flat pricing strategy is generally defined. Then the
suboptimal resource allocation scheme is presented for maximizing SLA revenues
in a GPS-based network node under flat pricing strategy, whose performances are
investigated in the following simulation part.

5.2.1 Flat pricing strategy

Consider the above GPS-based FQ system. As mean packet delay is deployed as
the QoS metric in the SLA, the flat pricing strategy for class 3 i is characterized
by the following definition of a flat pricing function.

Definition 3: The function

ri(d̄i) =

{
Ri if d̄i ≤ Di

−Pi if d̄i > Di
, i = 1, 2, ..., N (5.2)

is called the flat pricing function of class i, where Di is the QoS (mean packet delay)
guarantee requested by class i packets and Ri and Pi are both positive constants.
Obviously, the above flat pricing function specifies that if the real mean packet
delay of class i is less than Di, the network service provider receives a revenue
Ri, otherwise a penalty Pi is incurred for failing to meet that QoS guarantee Di.
Moreover, Ri ≥ Rj and Pi ≥ Pj should hold to ensure differentiated pricing if class
i has higher priority than class j, which are actually what we expect based on the
SLA requirement. Figure 21 presents a example of the flat pricing functions of
Gold, Silver and Bronze classes.

5.2.2 Suboptimal resource allocation scheme in a GPS-based network
node under flat pricing strategy

Consider a GPS-based network node with capacity C bits/s and a total of N service
classes supported. As the QoS metric in the SLA is mean packet delay, obviously
the SLA revenue F obtained in the GPS-based network node under one charging
period is defined as follows.

F =
N∑

i=1

ri(d̄i). (5.3)

Based on the definition of flat pricing function in Eq.(5.2), it is clear that
if d̄i ≤ Di holds for each service class i ∈ [1, N ], F achieves its maximum value∑N

i=1 Ri. Since the mean packet delay of class i is bounded tightly by our derived

3The notion of class is used instead of session hereafter in this Chapter as they are exchange-
able.
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Figure 21: The flat pricing functions of Gold, Silver and Bronze classes.

upper delay bound as long as λiL̄i < wiC, the problem of deriving the suboptimal
resource allocation scheme for maximizing F under flat pricing strategy can be
formulated as follows by linking parameter Di in the flat pricing function of class
i with the upper delay bound in Eq. (5.1).

Solve d̄i ≤ X̄i +
λiX̄2

i

2(1− λiX̄i)
≤ Di (5.4)

s.t.
N∑

i=1

wi ≤ 1, 0 < wi ≤ 1, (5.5)

wiC > λiL̄i. (5.6)

The formula of our upper delay bound in Eq. (5.1) is presented based on a
general packet length distribution. Below, we illustrate how to derive the subop-
timal resource allocation scheme by solving the right inequality in (5.4) under
some practical packet length distributions in IP networks. First, under expo-
nential packet length distribution, E[Li] = L̄i and E[X2

i ] = 2(L̄i)
2, resulting in

E[Xi] = X̄i = L̄i/(wiC) and E[X2
i ] = X̄2

i = 2[L̄i/(wiC)]2. Substitute the above X̄i

and X̄2
i into (5.4), then the right inequality in (5.4) becomes:

L̄i

wiC − λiL̄i

≤ Di

leading to the following solution under the exponential packet length distribution:

wi ≥ L̄i

C
(λi +

1

Di

), i = 1, 2, ..., N. (5.7)

That is to say that we should allocate at least the capacity of Ci,min = wi,minC =
L̄i(λi + 1/Di) to class i so that its mean packet delay can be guaranteed to be
less than Di during the charging period. As a result of the above solution to
wi in (5.7), we present the suboptimal resource allocation scheme for maximizing
the SLA revenue obtained in a GPS-based network node under a given amount of
network resources and flat pricing strategy as follows:



61

1. Set Ci,min = wi,minC = L̄i(λi + 1/Di), i=1,2,...,N,

2. If
∑N

i=1 Ci,min ≤ C, to reserve capacity Ci,min for any class i ∈ [1, N ] is
the suboptimal resource allocation scheme in this case. By the subopti-
mal scheme, the network service provider will receive the maximum SLA
revenue

∑N
i=1 Ri during one charging period under flat pricing strategy,

3. Otherwise, it means that the total capacity C of the GPS-based network
node is not enough to satisfy the reservation of capacity Ci,min for all the
supported service classes. Hence, we should first guarantee the reservation
of capacity Ci,min for a set of selected service classes so that the obtained
SLA revenue is the highest in this situation. Then the remaining resources
are allocated to all the supported service classes other than the above
selected ones uniformly.

Note that the above set of selected service classes in Step 3 is acquired by the
comparison of the analytic SLA revenues under all possible resource allocation
schemes, which makes its calculation complexity increases quickly with larger values
of N. Hence, instead we may first reserve capacity C1,min for the highest priority
class, then reserve capacity C2,min for the second highest priority class until the
remaining capacity is not enough to satisfy the reservation of capacity Ci,min for
class i (we have assumed that class 1 is the highest priority class and class N is the
lowest one), which also tries to achieve the highest SLA revenue in this case as the
incurred penalty due to failing to meet the QoS guarantee of higher class is larger.

For the network traffics which exhibit self-similarity nature, we use Bounded
Pareto to model the heavy-tailed distribution as used in [19]. In this Chapter,
BP (pi, qi, αi) is used to denote Bounded Pareto packet length distribution of class
i, where pi is the smallest length of class i packets, qi the largest (pi ≤ Li ≤ qi),
and αi the shape parameter. Then, E[Li] = L̄i = αip

αi
i (p1−αi

i − q1−αi
i )/[(αi−1)(1−

(pi/qi)
αi)] and E[L2

i ] = L̄2
i = αip

αi
i (p2−αi

i − q2−αi
i )/[(αi− 2)(1− (pi/qi)

αi)], resulting
in E[Xi] = X̄i = L̄i/(wiC), E[X2

i ] = X̄2
i = L̄2

i /(wiC)2. Thus, the right inequality
in (5.4) becomes as follows:

2L̄i(wiC − λiL̄i) + λiL̄2
i

2wiC(wiC − λiL̄i)
≤ Di

leading to the solution under the Bounded Pareto packet length distribution:

wi ≥
(1 + λiDi)L̄i +

√
[(1 + λiDi)L̄i]2 − 2λiDi(2L̄i

2 − L̄2
i )

2DiC
, i = 1, 2, ..., N, (5.8)

i.e., Ci,min = wi,minC =

[
(1 + λiDi)L̄i +

√
[(1 + λiDi)L̄i]2 − 2λiDi(2L̄i

2 − L̄2
i )

]
/2Di

in this case. Then the suboptimal resource allocation scheme under the Bounded
Pareto packet length distribution can also be derived based on the above approach.
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Figure 22: Mean packet delay in the first simulation where exponential packet
length distribution is deployed.

5.2.3 Simulation results

In this section, we present some simulation results to illustrate the effectiveness
of the above derived suboptimal resource allocation scheme in GPS-based network
node under flat pricing strategy. Throughout the following simulations, three rep-
resentative GPS-based FQ algorithms were used in a GPS-based network node:
WFQ [21, 64], SCFQ [29] and SPFQ [82].

In the first simulation, we consider a GPS-based network node which has
initial capacity C=1Mb/s and supports two service classes (namely Gold class and
Silver class) with Poisson arrivals. The arrival rates of Gold and Silver classes are
λ1 = 350 packets/s and λ2 = 200 packets/s, respectively (class 1 indicates Gold
class and class 2 means Silver class). The packet length distributions of the two
classes are both exponential with L̄1 = 1000 bits and L̄2 = 2000 bits. Moveover, the
parameters deployed in the two flat pricing functions are summarized as follows:
D1 = 10ms, R1 = 10 money units, P1 = 15 money units and D2 = 20ms, R2 = 5
money units, P2 = 8 money units.

By the calculation of the inequality in (5.7), it is shown that at least capacity
0.45Mb/s should be reserved for Gold class (i.e., C1,min=0.45Mb/s) and at least
capacity 0.5Mb/s for Silver class (i.e., C2,min=0.5Mb/s) to guarantee the satisfac-
tion of both d̄1 ≤ D1 = 10ms and d̄2 ≤ D2 = 20ms. As C1,min + C2,min < C, the
suboptimal resource allocation scheme is that the reserved capacity for Gold class
is 0.45Mb/s, the reserved capacity for Silver class is 0.5Mb/s and only 0.95Mb/s
of capacity is needed. Hence, the real capacity of the GPS-based node is set to
0.95Mb/s in the first simulation and the simulation results are presented in Fig-
ure 22, where it can be seen that d̄i ≤ Di holds for each class i ∈ [1, 2] during
each charging period (20s here) when any one of WFQ, SCFQ and SPFQ is de-
ployed. Hence, it is demonstrated that the derived suboptimal resource allocation
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Figure 23: Mean packet delay in the second simulation where Bounded Pareto
packet length distribution is deployed.

scheme achieves the maximum value
∑2

i=1 Ri=15 money unit of SLA revenue in
the GPS-based network node under flat pricing strategy.

In the second simulation, the above GPS-based network node is fed by two
classes of Poisson packet streams with arrival rates λ1 = 100 packets/s, λ2 = 120
packets/s and a heavy-tailed packet length distributions. The packet length distri-
butions of the two classes are both modelled by Bounded Pareto with parameters
b1 = 40 bits, p1 = 12800 bits, α1 = 0.137 (thus L̄1 = 2000 bits), and b2 = 320 bits,
p1 = 16000 bits, α2 = 0.164 ( thus L̄2 = 3360 bits). The parameters of the two
flat pricing functions in this case are: D1 = 15ms, R1 = 20 money units, P1 = 30
money units and D2 = 20ms, R2 = 10 money units, P2 = 15 money units.

Similarly, by the calculation of the inequality in (5.8), it is gotten that C1,min =
0.3694Mb/s, C2,min = 0.5857Mb/s and C1,min + C2,min = 0.9551Mb/s < C =
1Mb/s. Hence, the suboptimal resource allocation scheme in this case is that the
reserved capacity for Gold class is 0.3694Mb/s, the reserved capacity for Silver
class is 0.5857Mb/s and only 0.9551Mb/s of capacity is needed. Hence, the real
capacity of the GPS-based node is set to 0.9551Mb/s in the second simulation and
Figure 23 shows the simulation results.

The results in Figure 23 also indicate that d̄i ≤ Di is satisfied for each class i ∈
[1, 2] during each charging period (50s in this case), leading to the achievement of
the maximum SLA revenue

∑2
i=1 Ri=30 money unit obtained within one charging

period in this case.

Finally, the third simulation was made to evaluate the performance of the
suboptimal resource allocation scheme derived by the above approach for the case
that the capacity C of a GPS-based network node is not enough to guarantee the
reservation of Ci,min for all its supported service classes. Hence, the same parameter
settings and exponential packet length distributions as the ones in the first sim-
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Figure 24: Mean packet delay in the third simulation where exponential packet
length distribution is deployed.

ulation are deployed in the third simulation except that the arrival rates of Gold
and Silver classes are λ1 = 450 packets/s and λ2 = 200 packets/s, respectively.
By the inequality in (5.7), we know that C1,min=0.55Mb/s, C2,min=0.50Mb/s and
C1,min + C2,min = 1.05Mb/s> C =1Mb/s. Thus, according to our proposed ap-
proach, the suboptimal resource allocation scheme under flat pricing strategy in
this case is as follows: the reserved capacity for Gold class is 0.55Mb/s, the reserved
one for Silver class is 0.45Mb/s and all of the capacity C=1Mb/s of the GPS-based
node is used. The simulation results are presented in Figure 24. It is shown in Fig-
ure 24 that both d̄1 ≤ D1 and d̄2 ≤ D2 are satisfied when any one of WFQ, SCFQ
and SPFQ is deployed, which also results in the achievement of the maximum SLA
revenue

∑2
i=1 Ri=15 money units, although the reserved capacity for Silver class

is less than C2,min in this case. The reason is that in a network node which de-
ploys any GPS-based FQ algorithm, the reserved resources (the capacity in this
case) for a certain class indicate only the minimum guaranteed resources allotted
to that class and the actual real resources received by that class may exceed the
reserved one. However, as we do not know the exact amount of resources received
by a certain class in the real situation due to the characteristic of GPS-based FQ
algorithms, it is the best to derive the suboptimal resource allocation scheme by
the tightest upper delay bound of GPS-based FQ algorithms.

Therefore, based on the above simulation results, we can conclude that the
above approach of deriving the suboptimal resource allocation scheme in a GPS-
based network node is effective and the derived resource allocation scheme can
achieve the highest SLA revenue under a given amount of network resources and
flat pricing strategy. More importantly, it also fits a class of GPS-based packetized
FQ algorithms.



65

5.3 Summarized contributions

Fair Queueing (FQ) algorithms which aim at approximating the Generalized Pro-
cessor Sharing (GPS) policy remain most popular for the provision of Quality-of-
Service guarantees in IP networks. In publication PXIV, we extends the notion
of feasible partition introduced by Zhang et al for the analysis of idealized GPS
discipline and apply it to the stochastic delay bound analysis of GPS-based packe-
tized FQ algorithms. A novel upper bound on mean packet delay is derived there
under the general probabilistic traffic model of Poisson arrivals and any general
packet length distribution and it is much simpler and tighter than the known ones
by M. Hawa et al. Moreover, the derived upper bound on mean packet delay fits a
class of GPS-based FQ algorithms including WFQ, SCFQ and SPFQ. Furthermore,
this Chapter utilizes our upper bound on mean packet delay to analyze the prob-
lem of deriving the suboptimal resource allocation scheme under a given amount
of network resources and flat pricing strategy for maximizing SLA revenues in a
network node deploying a GPS-based packetized FQ algorithm. The simulation
results presented in this Chapter demonstrate the effectiveness of our derived sub-
optimal resource allocation scheme, which also fits a class of GPS-based packetized
FQ algorithms.



6 MAXIMIZING SLA REVENUES IN

CLUSTER-BASED WEB SERVER SYS-

TEMS

The Web is changing from a sole communication and browsing infrastructure to
an important medium for conducting personal business and e-commerce, which
makes the Quality of Service (QoS) an increasingly critical issue. A fundamental
characteristic of e-commerce environments is the diverse set of services provided
to support the requirements of various businesses and customers, which result in
the definition of different service classes. In a typical e-commerce environment, an
e-business operator contracts with a Web service provider to provide applications
and services to its business customers, which can be consumers (B2C) or other
businesses (B2B); in other words, a Web service provider hosts an e-commerce Web
site via a contract with the e-business operator. In many e-commerce contracts, the
Web service provider agrees to offer a certain level of QoS to each class of service in
the hosting of the e-commerce site, and in return the e-business operator agrees to
pay the service provider based on the QoS levels received by its customers. These
contracts are based on a SLA (Service-Level-Agreement) between the e-business
operator and the Web service provider that defines the QoS metrics for each class of
service, the anticipated workload intensity of per-class requests from the e-business
and the pricing strategy by which the SLA payment will be determined.

The exponential growth in Internet usage, much of which is fueled by the
growth and requirements of various aspects of e-commerce, has created the demand
for more and faster Web servers capable of serving over 100 million Internet users.
As mentioned in Chapter 2, server clustering has emerged as a promising technique
to build faster, scalable and cost-effective Web servers [75] during recent years,
which has made cluster-based Web server systems a major means to hosting e-
commerce sites. A state-of-the-art cluster-based Web server system consist of a
number of back-end server nodes and a specialized front-end node, which acts as
the single input point of customer requests and is responsible for distributing the
inbound requests among the back-end nodes. That is to say that the back-end
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server nodes of a cluster-based Web server system which hosts an e-commerce Web
site are shared by the inbound requests of different service classes.

As discussed in Chapter 2, a number of papers [43, 9, 98, 87, 88] have proposed
the mechanisms of partitioning the back-end server nodes among the supported
service classes to enable differentiated services in the above cluster-based Web
server system. In this Chapter, we further analyze the problem of maximizing the
revenue attained in the hosting of an e-commerce site with a SLA contract under
a given amount of server resources by optimally partitioning the server resources
among all the supported classes. Little work has been reported on this topic. The
issue of maximizing SLA revenues in the cluster platform of Web server farms was
recently studied by Liu et al in [56]. A Web server farm is typically deployed
to host several Web sites simultaneously on the same platform. Moreover, they
assumed that each back-end server node in a Web server farm can serve multiple
service classes; they then tried to optimally allocate the resource (e.g., processing
capacity) of each server node among its supported service classes to maximize the
resulted SLA revenues. However, the closed-form solution to the optimal resource
allocation scheme (i.e., the optimal service weights) in each back-end node was not
derived in [56]. Diao et al [22] proposed a profit-oriented feedback control system
for maximizing SLA profits in Web server systems, which automated the admission
control decisions in a way that balances the loss of revenue due to rejected work
against the penalties incurred if admitted work has excessive response times by a
fuzzy control algorithm. Additionally, the issue of maximizing the expected value
of a given cluster utility function by allocating server resources of a cluster-based
Web server system dynamically was studied in [54], where the closed-form solution
was also not derived.

In this dissertation, we focus on the cluster platform which hosts a single e-
commerce site in a cluster-based Web server system, as was studied in Chapter 2.
Publication PXII [93] has addressed the problem of maximizing the SLA revenue
obtained for the hosting of an e-commerce site by such a Web cluster system under a
given amount of server resources and linear pricing strategy, where the closed-form
solution to the optimal resource partitioning scheme is derived from the revenue
target function by a Lagrangian optimization approach. This Chapter first presents
the target Web cluster architecture upon which an e-commerce site is built and
then summarizes the contributions in publication PXII. Finally, the suboptimal
resource partitioning scheme is proposed, whose simulation results demonstrate
its performance of maximizing the SLA revenues obtained in the hosting an e-
commerce site under a given amount of back-end server nodes and flat pricing
strategy.

6.1 Target Web cluster architecture for the hosting of an
e-commerce Web site

The target Web cluster architecture consists of a front-end component called Web
switch and a number of homogeneous back-end server nodes connected by a high-
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Figure 25: Queuing model of the target Web cluster architecture upon which an
e-commerce Web site is built.

speed LAN. The Web switch acts as the network representative for an e-commerce
Web site built upon the target cluster architecture, making the distributed nature
of the site architecture completely transparent to its customers. In such a way,
the authoritative DNS server for the e-commerce site translates the site name into
the IP address of its Web switch, which receives all inbound requests destined for
the site and then distribute them across the back-end nodes. Moreover, to enable
QoS support in the e-commerce site, the Web switch must be able to examine the
content of a HTTP request and identify its requested service class, i.e., it is the so-
called layer-7 Web switch [75]. The above Web cluster architecture can be further
classified on the basis of whether the data from the back-end server nodes to clients
(outgoing data) go through the Web switch. In our target cluster architecture, the
TCP handoff mechanism [63] is deployed to enable the back-end nodes respond to
the clients directly without passing through the front-end nodes as an intermediary.
Thus the target cluster architecture can be abstracted as a queuing system shown
in Figure 25.

Suppose that an e-commerce Web site built upon the target cluster architec-
ture consists of a layer-7 Web switch and N homogeneous back-end server nodes,
each of which has the processing capacity C bits/s; there are a total of m service
classes supported in the site. The idea of partitioning server resources among the
supported service classes is to partition the N back-end server nodes into m dis-
joint server subsets so that each class of requests will be served only by its own
server subset assigned. Specifically, the server subset assigned to class i is denoted
by Si and the number of server nodes in Si is denoted by ni, then Si ∩ Sj = �,
for i �= j and i, j ∈ [1,m], and

∑m
i=1 ni = N . Thus, the problem of deriving

the optimal/suboptimal resource partitioning scheme is actually to find the op-
timal/suboptimal value of ni, i ∈ [1,m]. Note that ni does not have to be an
integer, which means that a back-end server node may actually be assigned to mul-
tiple service classes with each class taking a portion of it. In this case, we have
that back-end node serve those service classes by WFQ algorithm and the WFQ
weights equal their shares in that node, respectively.

Based on the analysis in [88], the service time of a class i request at a back-end
node is proportional to the size of its requested Web object, i.e., Xi = Li/C, where
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Li denotes the size (Bytes) of the Web object requested by class i customers and
C (Bytes/s) is the processing capacity of the back-end node. Thus, L̄i = E[Li],

L̄i
2 = E[Li

2] and X̄i = E[Xi] = L̄i/C, X̄i
2 = E[Xi

2] = L̄i
2/C2. In our scheme,

the layer-7 Web switch distributes the inbound requests from class i uniformly
among the back-end server nodes within server subset Si to make the server loads
balanced. In other words, if the overall arrival rate of class i requests to the e-
commerce site is λi requests/s and a back-end server node in Si is used exclusively
by class i requests, the mean arrival rate of class i requests to that back-end node
can be estimated as λi/ni. Furthermore, in this dissertation, the processing delay
at the layer-7 switch is neglected due to the fact that in a Web environment the
client-to-server packets are typically much less than the server-to-client packets and
the chosen QoS metric in a SLA is the mean request delay in the e-commerce Web
site. Hence, according to the queuing theory of M/G/1, the analytic mean delay

of class i requests ˆ̄di in the e-commerce site can be calculated as follows.

ˆ̄di = X̄i +
λi

ni
X̄i

2

2(1− λi

ni
X̄i)

=
L̄i

C
+

λiL̄i
2

2C(niC − λi)L̄i

. (6.1)

The natural constraint of Eq. (6.1) is niC > λiL̄i due to the fact that delay can
not be negative.

6.2 Optimal resource partitioning scheme for the hosting
of an e-commerce site under linear pricing strategy

Consider an e-commerce Web site built upon the target cluster architecture with N
back-end server nodes and m service classes supported. The processing capacity of
each back-end node is C bytes/s. Additionally, the arrival rate of class i requests is
denoted by λi requests/s and the mean delay of class i requests in the e-commerce
site denoted by d̄i. The linear pricing strategy for class i requests is characterized
by the following definition of the linear pricing function ri(d̄i).
Definition 4: The function

ri(d̄i) = bi − kid̄i, i = 1, 2, ...,m, bi > 0, ki > 0 (6.2)

is called the linear pricing function of class i, where d̄i is the mean request delay of
class i, bi and ki are both positive constants and bi ≥ bj and ki ≥ kj hold to ensure
differentiated pricing if class i has a higher priority than class j.

As the QoS metric considered in the SLA is the mean request delay, the mean
delay d̄i of class i requests in the e-commerce site will be measured periodically
and the SLA revenue due to serving class i requests can be determined also peri-
odically based on class i pricing function and the above QoS (mean request delay)
measurement. Specifically, we use Eq. (6.1) to estimate d̄i. Thus, the SLA revenue
F obtained in the hosting of the e-commerce site during one measurement period
is defined as follows under the linear pricing function in Eq. (6.2):
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F =
m∑

i=1

ri(d̄i) =
m∑

i=1

[bi − ki(
L̄i

C
+

λiL̄i
2

2C(niC − λiL̄i)
)]. (6.3)

Moreover, the issue of maximizing SLA revenue in the hosting of an e-commerce
Web site under linear pricing strategy can be formulated as follows:

max F =
m∑

i=1

[bi − ki(
L̄i

C
+

λiL̄i
2

2C(niC − λiL̄i)
)] (6.4)

s.t.
m∑

i=1

ni = N, 0 < ni < N, (6.5)

niC > λiL̄i. (6.6)

By the Lagrangian optimization approach, we derived the following optimal
resource partitioning scheme in publication PXII [93], which can achieve the max-
imum SLA revenue F under linear pricing strategy when hosting an e-commerce
site built upon the above target cluster architecture.

ni =
(CN −∑m

j=1 λjL̄j)

√
kiλiL̄i

2

2

C
∑m

j=1

√
kjλjL̄j

2

2

+
λiL̄i

C
, i ∈ [1,m]. (6.7)

Publication PXII [93] made two sets of simulations to evaluate the effectiveness of
the derived optimal resource partitioning scheme for maximizing the SLA revenue
under linear pricing strategy, where the Bounded Pareto distribution (BP (p, q, α))
[19] is used to model the heavy-tailed characteristic of Web objects. The simulation
results there demonstrate that our derived optimal resource partitioning scheme can
succeed in implementing the maximization of SLA revenues under a given amount
of server resources and linear pricing strategy when a Web service provider hosts
an e-commerce Web site by the above target Web cluster architecture.

6.3 Suboptimal resource partitioning scheme for the host-
ing of an e-commerce site under flat pricing strategy

The suboptimal resource partitioning scheme is proposed here for maximizing SLA
revenue in the hosting of an e-commerce Web site under flat pricing strategy.

6.3.1 Flat pricing strategy for the hosting of an e-commerce site

As mean request delay is deployed as the QoS metric in the SLA, the definition of
flat pricing strategy in this case is almost the same as the one defined in Chapter
5.2.1 except that d̄i denotes the mean request delay of class i here. Specifically, con-
sider an e-commerce Web site built upon the above target cluster architecture with
N back-end server nodes and m service classes supported. The flat pricing strategy
for class i is characterized by the following definition of flat pricing function.
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Definition 5: The function

ri(d̄i) =

{
Ri if d̄i ≤ Di

−Pi if d̄i > Di
, i = 1, 2, ...,m (6.8)

is called the flat pricing function of class i in the hosting of an e-commerce Web site,
where Di is the QoS (mean request delay) guarantee required by class i requests
and Ri and Pi are both positive constants. The above flat pricing function specifies
that if the real mean delay offered to class i requests is less than Di during one
charging period, the Web service provider will receive a revenue Ri, otherwise a
penalty Pi is incurred for failing to meet that Di. Moreover, Ri ≥ Rj and Pi ≥ Pj

should hold to ensure differentiated pricing if class i has higher priority than class
j, which are expected under the SLA requirement.

6.3.2 Suboptimal resource partitioning scheme under the flat pricing
strategy

Suppose that an e-commerce Web site built upon the above target cluster archi-
tecture consists of N homogeneous back-end server node, each of which has the
processing capacity C bits/s, and supports a total of m service classes with Pois-

son arrival rate λ1, λ2, ..., λm, respectively. As the analytic mean delay ˆ̄di of class i

requests in Eq. (6.1) can be used to estimate the real mean request delay d̄i,
ˆ̄di has

to be less than Di so that the SLA revenue Ri can be obtained during one charging
period for serving class i requests. The minimum number of back-end server nodes
which has to be assigned to class i to meet its QoS guarantee Di can be derived

from the inequality ˆ̄di ≤ Di. However, the real mean request delay d̄i of class i

will definitely differ by a small amount from ˆ̄di as shown in publication PXII [93].
Hence, to guarantee d̄i ≤ Di in the real situation, we may deploy a small constant
parameter εi for class i and then construct the following inequality:

ˆ̄di + εi =
L̄i

C
+

λiL̄i
2

2C(niC − λi)L̄i

+ εi ≤ Di. (6.9)

By solving this inequality, the solution to ni for a general distribution of Web object
size can be calculated as follows:

ni ≥ λiL̄i
2

2C[(Di − εi)C − L̄i]
+

λiL̄i

C
(6.10)

under the constraint
m∑

i=1

ni ≤ N, 0 < ni ≤ N. (6.11)

Note that the parameter εi determines how well the inequality d̄i ≤ Di will be
guaranteed. We should set the value of εi carefully based on the system parameter
settings and the burstiness of class i traffic. As a result of the above solution to ni
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in (6.10), we present the suboptimal resource partitioning scheme for maximizing
the SLA revenue in the hosting of an e-commerce site built upon the target clus-
ter architecture under a given amount (N back-end server nodes here) of server
resources and flat pricing strategy as follows:

1. Set ni,min = λiL̄i
2

2C[(Di−εi)C−L̄i]
+ λiL̄i

C
, i=1,2,...,m,

2. If
∑m

i=1 ni,min ≤ N , then the above ni,min, i=1,2,...,m, is the suboptimal
resource partitioning scheme in this case,

3. Otherwise, it means that the N back-end server nodes are not enough
to guarantee that d̄i ≤ Di, i ∈ [1,m] for all the supported service classes.
Hence, we should first satisfy the QoS guarantees of a set of selected service
classes so that the obtained SLA revenue (actually revenue plus penalty)
is the highest in this situation. The remaining server resources are allo-
cated to all the supported service classes other than those selected ones
uniformly.

Note that the above set of selected service classes in Step 3 is acquired by the
comparison of the resulted SLA revenues under all possible resource partitioning
schemes, which makes its calculation complexity increases quickly with larger values
of m. Hence, instead we may first assign n1,min back-end server nodes to class
1, n2,min nodes to class 2,..., and nj,min nodes to class j (j ∈ [1,m − 1]) until∑j+1

i=1 ni,min > N . The derivation of suboptimal resource partitioning scheme is
illustrated in the next section.

6.3.3 Simulation results

Here some simulation results are presented to illustrate the effectiveness of our
above approach by which the suboptimal resource partitioning scheme can be
derived for the hosting of an e-commerce Web site under flat pricing strategy.
Throughout this section, we study an e-commerce site built upon the target Web
cluster architecture which consists of a layer-7 Web switch and 16 homogeneous
back-end server nodes (N=16) that support three service classes (m=3, namely,
Gold, Silver and Bronze classes). Moreover, each back-end server node has the
processing capacity of C=5.95MB/s and the parameters of the three flat pricing
functions for Gold, Silver and Bronze classes are summarized below: D1=18ms,
R1=10 money units, P1=15 money units, D2=25ms, R2=5 money units, P2 =8
money units, and D3=45ms, R3=2 money units, P3=4 money units. Further-
more, ε1=3ms, ε2=4ms and ε3=6ms are set for Gold, Silver and Bronze classes,
respectively.

For actual Web workloads, it is recognized that Web object sizes are dis-
tributed with a heavy tail. Here the Bounded Pareto distribution (BP (p, q, α))
[19] is used to model the heavy-tailed characteristic of Web objects. Specifically,
the mean size of Web objects is set to 21KB as measured in [2] with p=1KB and
q=10MB are chosen as the reasonable minimum and maximum Web object size,
respectively. The resulting α=0.8037 is within the range of α values measured in
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Table 6: For the first simulation: mean request delay in the e-commerce Web site.

Mean request delay Mean request delay Mean request delay

of Gold class (d̄1) of Silver class (d̄2) of Bronze class (d̄3)

By the suboptimal scheme 16.2579 ms 22.4538 ms 36.1440 ms

By the proportional scheme 25.7174 ms 24.1147 ms 23.8124 ms

[1] and [18]. The arrival process of client requests destined for the e-commerce site
was modelled by Poisson distribution. Additionally, for each of the following sim-
ulations, we first derive the suboptimal resource partitioning scheme by our above
approach and then deploy it as well as another proportional resource partitioning
scheme in the simulation for comparison. Specifically, the proportional resource
partitioning scheme assigns the following number of back-end server nodes to class
i requests: ni,proportional = λiL̄i/

∑m
j=1(λjL̄j), i ∈ [1,m].

In the first simulation, λ1=100 requests/s, λ2=150 requests/s and λ3=250 re-
quests/s. Thus, we see that n1,min=5.3899, n2,min=5.4919 and n3,min=4.9559 by
Eq. (6.10). As

∑3
i=1 ni,min=15.8377 < N=16, the e-commerce site has enough

server resources to satisfy the QoS guarantees of Gold, Silver and Bronze classes
and the above set of n1,min, n2,min and n3,min is the suboptimal resource parti-
tioning scheme in this case. Moreover, because the remaining server resources
(N−∑3

i=1 ni,min=0.1623) is less than 1 and in a back-end server node which will
serve multiple service classes, the requests from the multiple classes share the back-
end node by WFQ algorithm, we allotted the remaining server resources to Gold
class requests in the simulation. Hence, the deployed suboptimal resource par-
titioning scheme is as follows: n1,suboptimal = 5.5522, n2,suboptimal = 5.4919 and
n3,suboptimal = 4.9559. The simulation results of the mean request delays in the
e-commerce site are presented in Table 6.

It can be seen from Table 6 that d̄1 ≤ D1 = 18ms, d̄2 ≤ D2 = 25ms and
d̄3 ≤ D3 = 45ms are all satisfied by the derived suboptimal resource partitioning
scheme. Hence, the suboptimal resource partitioning scheme achieves the maximum
value

∑3
i=1 Ri=17 money units of the SLA revenue during one charging period

(400s here) for the hosting of the e-commerce site under the flat pricing strategy.
Whereas, the proportional resource partitioning scheme can not have d̄1 ≤ D1 hold,
which results in −P1 + R2 + R3 = −8 money units of the SLA revenue during the
same charging period. In other words, the service provider will get the loss of 8
money units due to failing to satisfy the QoS guarantee of Gold class requests when
using the proportional scheme.

Next, the workload intensity with λ1=120 requests/s, λ2=180 requests/s and
λ3=300 requests/s is fed into the e-commerce Web site in the second simulation,
which leads to n1,min=6.4679, n2,min=6.5903 and n3,min=5.9471 by Eq. (6.10). As∑3

i=1 ni,min = 19.0053 >N=16, it means that the e-commerce site does not have
enough server resources available to satisfy the QoS guarantees of all supported
service classes (Gold, Silver and Bronze classes here). However, it is noticed
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Table 7: For the second simulation: mean request delay in the e-commerce Web
site.

Mean request delay Mean request delay Mean request delay

of Gold class (d̄1) of Silver class (d̄2) of Bronze class (d̄3)

By the suboptimal scheme 16.7959 ms 21.8557 ms 90.8417 ms

By the proportional scheme 26.3930 ms 27.4331 ms 30.4962 ms

that n1,min + n2,min < 16 holds in this case. Hence, we can derive the follow-
ing suboptimal resource partitioning scheme by first guaranteeing the satisfaction
of QoS requirements of both Gold and Silver classes: n1,suboptimal=n1,min=6.4679,
n2,suboptimal=n2,min=6.5903 and n3,suboptimal=N − n1,min − n2,min=2.9418. The sim-
ulation results for this case are presented in Table 7.

Table 7 shows that d̄1 ≤ D1 = 18ms and d̄2 ≤ D2 = 25ms both hold although
d̄3 > D3 = 45ms when the above suboptimal resource partitioning scheme is
deployed. Hence, the suboptimal scheme can achieve the highest revenue in this
case, i.e., R1 + R2 − P3=11 money units. Whereas, although the proportional
resource partitioning scheme satisfies the QoS guarantee of Bronze class (d̄3 <
45 ms), it sacrifices the QoS performances of Gold and Silver classes (i.e., d̄1 >
18 ms and d̄2 > 25 ms). Thus, the Web service provider will get the loss of
P1 +P2−R3=21 money units during each charging period for the hosting of the e-
commerce site by the proportional resource partitioning scheme. Therefore, based
on the above simulation results, it can be concluded that the suboptimal resource
partitioning scheme derived by our proposed approach is able to achieve the highest
SLA revenue for the hosting of an e-commerce site under flat pricing strategy.

6.4 Summarized contributions

Cluster-based Web server systems have become a major means to hosting e-
commerce sites. In this Chapter, we link the issue of resource partitioning scheme
with the pricing strategy in a Service-Level-Agreement (SLA) and analyze the
problem of maximizing the revenues obtained in the hosting of an e-commerce
site with a SLA contract by optimally partitioning the server resources among all
supported service classes. In publication PXII [93], the optimal resource partition-
ing scheme is derived under a given amount of server resources and linear pricing
strategy when the QoS metric in the SLA is mean request delay, which has the
closed-form solution to the optimal number of the back-end server nodes assigned
to each service class. Moreover, the closed-form solution can apply to any general
distribution of requested Web object size. This Chapter first presents the target
Web cluster architecture upon which an e-commerce site is built and then sum-
marizes the contributions in publication PXII. Finally, the suboptimal resource
partitioning scheme is proposed based on the analysis of the target cluster archi-
tecture when the mean request delay is chosen as the QoS metric in the SLA, which
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can achieve the highest SLA revenue obtained for the hosting an e-commerce site
under a given amount of back-end server nodes and flat pricing strategy. The sub-
optimal resource partitioning scheme can also apply to any general size distribution
of requested Web object.



7 CONCLUSIONS

In this dissertation, we studied the QoS- and Revenue-aware resource allocation
mechanisms in both cluster-based Web server systems and IP network nodes.

Chapter 1 contained the introduction, where the cluster architectures for
building cluster-based Web server systems, the target multiclass-supported net-
work node and the basic concepts of QoS and SLA were described.

Chapter 2 summarized our contribution for enabling differentiated services in
cluster-based Web server systems. The novel Arrival-Related Dynamic Partitioning
mechanism proposed in publication PVI was also presented in a clearer format
there.

Chapter 3 was dedicated to addressing the issue of implementing scalable
service differentiation in such a cluster-based Web server system where a single
Web site is hosted.

In Chapter 4, the revenue-aware resource allocation schemes for a multiclass-
supported network node were presented, which aims at the maximization of SLA
revenue obtained in the node under a given amount of network resources and linear
pricing strategy by optimally allocating the resources among the supported service
classes.

Chapter 5 first summarized our proposed upper bound on mean packet delay
of GPS-based FQ algorithms and then utilized this upper delay bound to derive the
suboptimal resource allocation scheme for maximizing the SLA revenues acquired
in a GPS-based network node under a given amount of network resources and flat
pricing strategy.

In Chapter 6, the problem of maximizing the SLA revenue attained in the
hosting of an e-commerce Web site by cluster-based Web server systems was an-
alyzed. First, the optimal resource partitioning scheme proposed in publication
PXII under linear pricing strategy was summarized and then the suboptimal re-
source partitioning scheme was derived, which can achieve the highest SLA revenue
for the hosting an e-commerce site under a given amount of server resources and
flat pricing strategy.

The main contributions of this dissertation are highlighted shortly as follows:
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• A novel Arrival-Related Dynamic Partitioning mechanism was proposed to
enable differentiated services in cluster-based Web server systems, which
works well even when the Web cluster system is heavily loaded and has no
enough server resources to be allocated.

• A scalable Web cluster architecture – the two-level cluster architecture,
was proposed, whose scalability is theoretically determined only by the
scalability of its layer-4 switch. Moreover, the relevant scheduling algo-
rithms for enabling scalable service differentiation in the two-level cluster
architecture were selected and designed.

• The revenue-aware resource allocation schemes were proposed which can
achieve the maximization of the SLA revenue obtained in a multiclass-
supp-
orted network node under a given amount of network resources and linear
pricing strategy. More importantly, in some cases, the closed-form solu-
tions to the optimal resource allocation schemes were derived from the
revenue target function by Lagrangian optimization approach under linear
pricing strategy.

• A novel upper bound on mean packet delay of GPS-based FQ algorithms
was derived under the probabilistic traffic model of Poisson arrival and any
general packet length distribution and it is much simpler and tighter than
the known ones by M. Hawa et al. Moreover, the derived upper bound fits
a class of GPS-based packetized FQ algorithms including WFQ, SCFQ
and SPFQ.

• The suboptimal resource allocation scheme was proposed for maximizing
the SLA revenue in a GPS-based network node under a given amount of
network resources and flat pricing strategy.

• The optimal resource partitioning scheme was derived, which can imple-
ment the maximization of the SLA revenue attained for the hosting of an
e-commerce Web site by cluster-based Web server systems under a given
amount of server resources and linear pricing strategy. Additionally, the
suboptimal resource partitioning scheme was also proposed for achieving
the highest SLA revenue in the hosting of an e-commerce site under a given
amount of server resources and flat pricing strategy.
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