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ABSTRACT

Maaranen, Heikki

On Heuristic Hybrid Methods and Structured Point Sets in Global Continuous
Optimization

Jyvéskyld: University of Jyviskyld, 2004, 42 pages (+ included articles)
(Jyvaskyld Studies in Computing,

ISSN 1456-5390;43)

ISBN 951-39-1994-3

Finnish summary

Diss.

In this work, we concentrate on improving the performance of global methods for
continuous optimization via hybridization and the use of structured point sets. Op-
timization is an important part of solving real-life problems. The problem solving
process involves modeling, simulation and optimization of the simulated model,
after which the results can be applied into practice, for example, in product man-
ufacturing. Many of the real-life problems can be formulated as global continuous
optimization problems. Efficient global optimization methods are needed because
realistic mathematical models are often very complex with nonconvex objective
functions.

Hybridization is widely recognized to be one of the most attractive areas of
method development. By hybridization we mean a combination of different meth-
ods or elements. Through hybridization, it is possible to form new methods that
posses the strengths, but not the weaknesses of the original elements. Here, we
construct new hybrid methods based on popular metaheuristics. We combine a
simulated annealing with the proximal bundle method and a real-coded genetic
algorithm with the Nelder-Mead simplex method and are able to improve both the
efficiency and the reliability of the original algorithms. In addition, we form inter-
disciplinary hybrids by using structured point sets such as quasi random sequences
and spatial point processes in initial populations of a real-coded genetic algorithm.
We study the properties of the point generators and test what effects the different
initial populations have on the objective function value. We also point out some
difficulties in method comparison. We show that the change of test problems or
other test settings may strongly affect the outcome of the comparison.

The efficiency of all the methods developed is evaluated through numerical
experiments. In general, we show that hybridization, in its different forms, may be
a very useful tool for improving the performance of existing methods.

Keywords: Operations research, global optimization, nonlinear optimization, con-
tinuous variables, hybridization, metaheuristics, simulated annealing, real-coded
genetic algorithms, structured point sets, quasi random numbers, simple sequen-
tial inhibition (SSI) process, nonaligned systematic sampling, method comparison,
test problems.
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1 INTRODUCTION

This thesis is devoted to improving efficiency of global optimization methods via
hybridization and the use of structured point sets. We concentrate on nonlinear
optimization problems with continuous variables. Optimization is an important
part of solving real-life problems. A numerical problem solving process involves
modeling, simulation and optimization of a simulated model, after which the results
can be applied into practice, for example, in product manufacturing.

In the modeling and simulation phase, first a mathematical model is formed
that sufficiently accurately corresponds to a physical phenomenon, process or sys-
tem under investigation, and then a numerical model, which can be used in com-
puter simulations, is formed. The models may incorporate anything from atomic
level properties of materials, such as structural, thermodynamic and kinetic proper-
ties [11], to macroscopic processes, such as casting of steel [20] or business processes
[37]. For simplicity, from here on, we call all objects of modeling and simulation
jointly as processes.

The cost effectiveness and usability have made modeling and simulation preva-
lent in different areas of research. Currently, popular objects for modeling and
simulation in industry are, for example, development of virtual environments and
electrical components. In [12], the areas of application for simulation are divided
into two main areas, manufacturing systems and public systems. Other topics
include, for example, transportation, construction, restaurant and entertainment
systems, business process reengineering, food processing and computer system per-
formance [12].

The advantages of successful modeling and simulation are many [87]. For
example, the process can be explored without disrupting ongoing operations, and
hypotheses about how and why certain phenomena occur can be tested. New
designs can also be tested without committing resources for their acquisition. For
example, preliminary tests can be done in simulation and, therefore, building replica
is not required until on a later stage. Hence, simulation helps detecting mistakes
early in the design cycle, which lowers the repair costs dramatically. In addition,
time can be compressed or expanded in order to speed up or slow down the process
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under investigation. Furthermore, insight can be obtained about the interaction
and importance of the variables, and “what if” questions can be answered.

However, simulation has also disadvantages [87]. For example, the benefit
of the simulation is strongly related to the quality of the model. If the model is
inaccurate, then simulation results may be useless. In addition, model building
requires special training and simulation results may be difficult to interpret. Fur-
thermore, modeling, simulation and analysis of the results can be time consuming
and expensive, and sometimes simulated models are used, when analytic solution
is possible or even preferable.

Often, these disadvantages can be overcome by the following means [87]. For
example, simulation software packages are helpful for model building and they are
already available and actively developed. The simulation packages often also in-
clude tools for result analysis, and, thus, the time required for the whole simulation
process decreases rapidly. This is due to the increasing computational capacity of
the computers and also to the development of more comprehensive and easier to
use simulation packages. Finally, analytic solutions should be used, when they are
preferable. However, many complex systems cannot be thoroughly analyzed using
the analytical solutions.

If the simulated model is good then it accurately enough corresponds to the
real process. However, when quality of the solutions plays an important role,
finding a solution through simulation is not always enough. Then optimization can
be used to find feasible and improved solutions for the simulated model and, hence,
for the real process. This is related to the product development and repair. By a
solution, we now mean the whole process, not just the end product, because it is
often important to take into consideration also, for example, the energy and raw
material consumption and environmental issues.

Without loss of generality, we may consider minimization problems of the form

minimize  f(x) (1.1)
subject to LB; <x; <UB; forallt=1,...,n, '

where the objective function f : R® — R is nonlinear, x = (z1,...,x,) is the
vector including the variables, n is the number of variables, and the feasible region
S C R" is here defined by vectors LB and UB € R" containing the lower and
upper bounds for each variable, respectively.

Traditional (local) optimization methods solve convex problems, that is, prob-
lems where both the feasible region and the objective function are convex. How-
ever, many times, mathematical and physical theory behind real-life processes is
very complex and realistic modeling of continuous real-life problems often results
in nonconvex minimization problems, which may have several local minima. They
are hard to solve and, therefore, require efficient global optimization methods. The
increased computational capacity of computers have made it possible to solve opti-
mization problems with more and more accurate simulated models. The availability
of new resources has aroused a lot of interest in the last few decades leading to
increasingly growing number of research papers including [8, 9, 22, 23, 47, 86, 96]
and books [36, 52, 85] published on global optimization containing new methods



11

for solving problems with continuous variables.

In this thesis, we concentrate on improving the efficiency of global contin-
uous optimization methods by using hybridization and structured point sets. In
hybridization, different methods are combined to form new methods. The aim in
hybridization is to preserve the advantages and tackle the disadvantages of the
original methods. Hybridization is widely recognized as one of the most attractive
new trends in global optimization in general [54, 88, 90]. The use of structured
point sets [28, 39, 49], on its behalf, has provided promising results in various fields
of science, such as, simulation [56, 62], numerical integration [17, 81, 89, 103, 115],
and random search methods [63, 81, 98, 104]. However, the idea has not yet been
widely exploited in optimization. Before going further into these two focus areas,
let us first give a short overview of the field of continuous optimization in general.

1.1 Local Optimization

Traditional methods in continuous minimization use gradients to determine the
most attractive search directions for finding a local minimum of the objective func-
tion f : R" — R. A solution x;,. is a local minimum, if there exists some § > 0
such that f(x},.) < f(x) for all x € S satisfying ||x — x| <.

Next, we define a concept of decent direction that is closely related to mini-
mization. A direction d € R" is said to be a decent direction at x if V f(x)'d < 0,
since this implies that there exists ¢ > 0, such that f(x + sd) < f(x) for all
s € (0,t]. For direct search methods, which do not use gradient information, a
decent direction is usually defined experimentally: if there exists a sample point x’
so that f(x') < f(x), then the a move from the point x to x’ is said to be a move to
a decent direction. Collectively, the methods following only descent directions are
called local search methods or local (optimization) methods and problems where it
is sufficient to find a local minimum are called local optimization (or minimization)
problems.

Probably the best-known gradient-based method is the steepest descent method
[55], that repeatedly moves to a steepest decent direction until the gradient V f
becomes zero (within some tolerance ¢ > 0). To be more exact, the new point x’'
is obtained from the current point x by the formula

x' = x+ sd,

where d is the negative gradient direction —V f(x) and the step size s is chosen by
a line search [14].

Gradient-based methods are often powerful tools for problems that are differ-
entiable and convex. Some of the disadvantages of the traditional gradient-based
methods become evident when the above mentioned very restrictive conditions are
not met.

For continuous nondifferentiable problems, several methods have been devel-
oped that do not require gradients. They approximate the negative gradient direc-
tion either by using subgradients like the bundle methods [58, 69], or by using only
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objective function values like the direct search methods. Well-known examples of
direct search methods are Nelder-Mead simplex method [79] and the Hooke and
Jeeves direct search method [51]. The methods that only approximate the negative
gradient direction can be applied to a wider range of continuous minimization prob-
lems than the gradient-based methods, because they do not require the objective
function to be differentiable. However, all the traditional direct search methods and
methods that approximate gradients as well as gradient-based methods terminate
the search after finding the first local minimum.

1.2 Global Optimization

Many times it is desirable to search for the best possible local minimum, which is
called a global minimum. Mathematically we define that a solution x* is a global
minimum if f(x*) < f(x) for all x € S. Here, we consider problems, where it is
sufficient to find one global minimum and we call the problem a global minimization
problem. The methods that are designed to tackle global minimization problems
are called global search methods or global (optimization) methods.

Next, we give a definition and formulate a theorem which are both closely
related to global minimization. We define the basin of attraction of a local minimum
X;,. as the largest set of points such that for any starting point from that set the
infinitely small step steepest descent algorithm will converge to x;j,. [112]. We also
formulate the following theorem

Theorem 1 Let S be a nonempty convex set in R" and f : S — R and consider
the problem to minimize f(x) subject to x € S. Suppose that z* € S is a local
optimum to the problem. If f is convex, then x* is a global optimum.

For a proof of the theorem, see, for example, [14]. The condition of Theo-
rem 1 that f is convex can be relaxed, for example, to strict quasiconvexity.
Furthermore, in our case, feasible regions are always nonempty and convex, since
we defined them by using lower and upper bounds for each variable. Hence, if
the minimization problem is of the form (1.1), then, according to Theorem 1,
the convexity of the objective function f is sufficient to guarantee that a local
optimum is also a global optimum, and, thus, local optimization methods can be
used.

In addition to convex problems, local search methods usually work well for
multimodal problems, that is, problems with more than one local minimum, if a
good initial guess is available or if the number of local minima is small and the
basin of attraction of a global minimum is large. In these cases, the probability
that the starting point is located in the basin of attraction of a global minimum
is quite high. However, many real-life problems have several local minima and no
good initial guesses are necessarily available. Then local search methods generally
fail to find a global minimum. Indeed, practical global continuous optimization
problems are in general very difficult to solve to the optimality.
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Next, we further motivate the use of global optimization methods. We note
that even though the conditions in Theorem 1 may be relaxed, they are still quite
restrictive [10, 14]. Hence, in a general case, we cannot assume that the objective
function would have only one local minimum and one basin of attraction. In
addition, it is, in practice, often hard to prove the convexity or strict quasiconvexity,
for example, if the problem has a black box type of objective function. Hence, global
optimization methods are needed.

Global optimization methods either operate globally on several solutions at
the same time or they operate locally and include a mechanism that enables them
to escape the basin of attraction of a local minimum in order to search for better
local minima and eventually a global minimum. Methods that guarantee to find
a global minimum (within some positive tolerance) using deterministic rules are
called ezxact (global) methods. Examples of exact methods are covering methods
[112] (e.g., branch and bound type of methods) that iteratively detect and exclude
subareas not containing a global optimum. The conditions for using exact methods
are quite restrictive and, therefore, the exact methods can usually be applied only
for some specific problems. In addition, for complex problems the exact methods
are very time consuming. Due to these two reasons, heuristic methods have been
developed for solving global minimization problems. Heuristic methods use rules of
thumb when searching for a global optimum, but, in practice, they cannot guarantee
to find it. Heuristic methods are often stochastic, which means that they involve a
certain degree of randomness. For many stochastic methods there exist theoretical
convergence proofs. For example, stochastic convergence means that the algorithm
converges to a global minimum with probability 1, that is, the probability for
convergence approaches one as the running time goes to infinity.

A good reference for both exact and heuristic global search methods is [112].
Heuristic methods include, but are not restricted to, clustering methods, level set
methods, generalized descent methods and random multistart (restart) methods.
More recently, methods called metaheuristics have been developed.

1.3 Metaheuristics

Metaheuristics [24, 42, 83, 94, 118] are heuristic methods that contain some sort
of a metastrategy that guides the heuristic search towards a global optimum. The
concept of a metastrategy is not well-defined and, therefore, also the difference
between heuristic methods and metaheuristics is sometimes unclear. The list of
metaheuristics often includes, but is not limited to, genetic algorithms [26, 46,
50, 73, 75, 74], simulated annealing [6, 15, 53, 57, 84, 100, 116, 119], tabu search
(2, 13, 21, 25, 40, 43, 99], scatter search [40, 41, 42, 44, 59, 61], differential evolution
[24, 83, 91, 107, 108], ant colony and other particle swarm optimization [16, 30,
31, 32, 33, 34, 114, 117, 121], memetic algorithms [24, 27, 72, 78] and controlled
random searches [7, 92]. The main emphasis of the above listed references is on
methods capable of solving problems with continuous variables. However, many of
the metaheuristics have their roots in discrete optimization and, therefore, the lists
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also include some established references to those methods. As the names suggest,
many of the metaheuristics imitate some natural phenomenon such as annealing of
steal or glass, natural genetic and cultural evolution, bird flocking and behavior of
ant colonies.

Metaheuristics can be divided into single solution -based and population-based
methods. In single solution -based methods, like simulated annealing and tabu
search, the neighborhood of one solution is considered at a time. These methods
essentially move from one local minimum to another and they use some algorithm-
specific escape mechanisms in order to avoid stagnating to a local minimum. For
example, in simulated annealing, non-descent moves may be selected and, in tabu
search, the search is directed to attractive and less-explored areas by declaring some
sets of solutions forbidden or “tabu.” In addition, the balance between global and
local operations in single solution -based methods can be adjusted by adapting the
size of the neighborhood considered. There are also population based variants of
simulated annealing [9] and tabu search. The population-based tabu search method
is called a scatter search, which was developed in parallel with tabu search, and
includes a similar ideology.

In population-based methods, such as genetic algorithms, differential evolution,
scatter search, particle swarm optimization and memetic algorithms, several solu-
tions are considered at the same time. These methods operate globally by scanning
the whole feasible region to some degree before concentrating on the promising
areas. The initial populations of all the basic versions of the population-based
methods are uniformly distributed over the feasible region, but operations how
the population is evolved are different. In genetic algorithms, the population is
evolved by using genetic operators like selection, crossover and mutation, whereas
differential evolution evolves the population by adding a weighted difference of two
solutions in a population to a third solution. In particle swarm optimization, the
search is guided by moving the solutions towards the all-time best and current best
solutions according to prescribed rules. Memetic algorithms, on the other hand,
combine local search heuristics to the operators of genetic algorithms. Memetic
algorithms are, therefore, usually called hybrid genetic algorithms.

1.4 Hybrid methods

In hybridization, elements from different origins are combined in a way that they
form a new optimization method. The aim of hybridization is to combine the
elements so that they complement each other in the best possible way. The elements
do not necessarily have to be complete optimization methods, but they may be any
components that can be embedded in methods. In hybridization, it is desirable
that the new hybrid method possesses the strengths, but not the weaknesses, of the
original elements. One common way to form a hybrid is to combine a global method
and a local method. Then, the aim is to combine the efficiency and accuracy of the
local method to the reliability of the global method as illustrated in Figure 1. By
efficiency and accuracy we mean the total computing time used by the algorithm



15

and how close the final solution is to the nearest local minimum, respectively. On
the other hand, by reliability we mean, how well the algorithm finds the global
minimum. Hence, if we manage to form a hybrid that is efficient, accurate and
reliable, then it converges fast to the proximity of a global minimum.

Local methods Global methods
Good efficiency Poor efficiency
Good accuracy Poor accuracy
Poor reliability Good reliability

Hybrid methods
Good efficiency
Good accuracy
Good reliability

FIGURE 1: Hybridizing a local method and a global method.

Metaheuristic methods and different hybridizations of them are more com-
monly used for discrete than for continuous problems. However, there is an in-
creasing number of continuous hybrid metaheuristics available, as well, and we do
not intend to give an exhaustive list of them here. Many of the above-mentioned
more or less established benchmark metaheuristics are not “pure”, but are, in fact,
hybrid methods. Some other recent hybrid metaheuristics for continuous optimiza-
tion are, for example, [9, 48, 124, 125] for simulated annealing, [22, 47, 71, 106] for
genetic algorithms, [23, 96, 113, 126] for tabu search and [117] for particle swarm
optimization.

Hybrid methods can be characterized using different taxonomies [90, 110,
123]. The main part of the taxonomy in [90] is illustrated in Figure 2, where
sequential and parallel hybrid methods form the two main branches. Note that the
hybridizations considered in [90, 110, 123] are limited to combinations of different
optimization methods, not elements as we have defined here.

In the part of the taxonomy illustrated in Figure 2, the division is made based
on the order in which the combined methods are executed. In sequential hybrids,
the previous method is executed from start to finish before the next one is started,
whereas in parallel hybrid methods, the next method starts before the previous
one ends. The parallel methods have synchronous and asynchronous methods as
subbranches. In synchronous methods, the execution order is predefined, whereas
for asynchronous methods, the execution order may be different on each iteration.
For a more detailed presentation of the taxonomy, see [90, 110].
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Hybrid method
Sequential Parallel

Synchronous Asynchronous

FIGURE 2: Taxonomy of hybrid methods.

1.5 New hybrid methods

Henceforth, we concentrate on the work done in papers [A]-[E]. In [A], we presented
new hybrid methods that combine a simulated annealing [45] and the proximal
bundle method [58, 69]. Simulated annealing is a global search method and the
proximal bundle method is a local search method that uses subgradients and whose
speed of convergence is comparable to the gradient-based methods [64]. The aim
in this hybridization was to combine the reliability of simulated annealing to the
efficiency and accuracy of the proximal bundle method. The total number of simu-
lated annealing based global search methods that we developed and tested was 32,
and four hybrids were presented. In the literature, simulated annealing has been a
popular building block for hybrids. In [84] alone, 13 optimization methods based
on simulated annealing were presented and 8 of them were hybrids.

In [A] the new hybrid methods were called biased proximal bundle, hybrid A,
hybrid B and hybrid C, and, although they are all parallel synchronous hybrids,
they were constructed in different ways. Figure 3 shows the main structure of the
hybrids, where SA stands for simulated annealing, PB for the proximal bundle
method and PB, for proximal bundle method with variation of accuracy.

el ] [#le )] [#FkE]) (sl

Biased proximal bundle Hybrid A Hybrid B Hybrid C

Fi1GURE 3: Structure of the hybrids.

In our hybrids proposed in [A], we used the simulated annealing described in
[45]. As mentioned earlier, simulated annealing considers only one solution at a
time. A new trial solution is generated from the current solution by varying each
component according to prescribed rules, (see [A] or [45], for further details). The
trial solution y is accepted and becomes a current solution of the next iteration if
the trial solution has a better objective function value than the current solution x
or if a so-called Metropolis criterion is valid. In other words,

eI IO/ 5
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where p is a uniformly distributed random number from [0, 1]. Here, the parameter
t > 0 is a so-called temperature and it is decreased during the algorithm.

Our original idea was to embed the Metropolis criterion of simulated annealing
in the proximal bundle method, so that it could escape local minima. The method
was called biased proximal bundle. Unfortunately, the results of the numerical tests
were not promising. We assume the the directions provided by the proximal bundle
were “too good” and the Metropolis criterion was not strong enough a mechanism
to efficiently force the search out of the basins of attraction of local minima.

In hybrid A, we used the proximal bundle inside simulated annealing and not
vice versa as in biased proximal bundle method. Now, the proximal bundle method
was applied starting from a candidate solution accepted in simulated annealing.
Hybrid B is otherwise the same as hybrid A, but now the proximal bundle method
was replaced by the biased proximal bundle method. In this way, both methods
combined in hybrid B could escape a basin of a local minimum before searching the
local area exhaustively. Hybrid B was in [A] called a two-level parallel synchronized
hybrid, because it combines two hybrid methods. In hybrid C, the proximal bundle
method is started with a relatively low accuracy and the accuracy is increased
towards the end of the search. The control parameter for the increase of accuracy
of proximal bundle method was defined to be proportional to the temperature of
simulated annealing. This way both the methods intensify the search in parallel.
Moreover, low accuracy of the local search during the early iterations decreases
computational cost of hybrid C when compared to hybrid A.

Parallel synchronous hybrids based on simulated annealing are presented also,
for example, in [48, 96]. Our methods in [A] differ from those in [48, 96] in some sig-
nificant ways. For example, we used a different local search method and especially
the hybrid B has quite a different structure.

The performances of the methods were evaluated by solving 38 test problems
from the literature. The numerical experiments in [A] show that the hybridization
can improve both the efficiency and the reliability of simulated annealing. However,
when comparing the efficiency we should keep in mind that the hybrid methods
use subgradients, which increases the computational efforts, but which does not
show in the number of function evaluations. As benchmark methods we used the
original simulated annealing of [45] with the parameter values recommended in [45]
and [101]. In general, the parameter values used in [45] emphasize reliability at the
expense of computational cost, and the converse is true for the values used in [101].
However, the hybrids A, B and C were more robust than the original algorithm
emphasizing reliability and more efficient than the one emphasizing efficiency. This
indicates that the hybridization was well realized.

We evaluated the efficiency by using the number of function evaluations and
the reliability using success rates among other things. The test problems were
solved ten times with each method and a run was considered to be successful if
the difference between the final objective function value and the know optimal
value was less than 0.1. The best of the hybrid methods was hybrid C. It had
a 90.5% average success rate of finding a global minimum, and it used on the
average 12,284 function evaluations, where the averages are taken over all the
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runs and over all the test problems. The respective values for the benchmark
methods were 73.9% and 58.4% for the success rate and 3,089,906 and 104,007 for
the average number of function evaluations. Let us remind that the number of
objective function evaluations are not quite comparable since the proximal bundle
method used in hybrids computes also subgradients. However, the hybridization
improved the reliability of the methods quite significantly, and often for global
optimization methods reliability is considered to be more important than efficiency.

In [B], we presented another parallel synchronous hybrid method, where we
again combined a global search with a local search. This time we combined a
real-coded genetic algorithm with the Nelder-Mead simplex method so that the
hybrid method operates directly on function values not requiring any gradient
information. Consequently, this type of a hybrid can be used for a wide range
of problems. We applied it for training a Multi Layer Perceptron (MLP) neural
network for solving a regression problem. Genetic algorithms have been used for
training neural networks also, for example, in [97], where three different types of
neural networks are trained: MLPs, radial basis functions and probabilistic neural
networks. Other metaheuristics, such as tabu search [66] and scatter search [60]
have also been applied to train neural networks. In [70], twelve different training
(optimization) methods are compared.

The initial idea in [B] was only to use a modern metaheuristic for training
the MLP neural network. First, a scatter search implementation was applied but
the results were discouraging. Then we applied the real-coded genetic algorithm
with similar results: the final objective function values were inferior to the ones
of a simple multistart method using a gradient-based local search method that
was being used as a benchmark. In a simple multistart method, a local search
is started from random trial points. Then, we hybridized the real-coded genetic
algorithm with a local search method using gradient information, and the accuracy
of the solutions improved considerable while the speed also remained better than
that of the multistart method. Finally, the gradient-based local search method was
replaced both in the multistart and hybrid genetic algorithm by the Nelder-Mead
simplex method, so that no assumptions about the differentiability of objective
functions had to be made. In [B], only the results of the final hybrid versions are
reported.

The implementation of the hybrid genetic algorithm was kept simple. In
the first phase of the algorithm, the Nelder-Mead simplex method was run on
10 random starting points within the specified feasible region, and the solutions
were added to the initial population of the genetic algorithm. This improved the
performance of the genetic algorithm considerably. However, the number of added
local minima was kept small since adding too many local optima to the initial
population could increase the danger of loosing diversity within the population.
This might lead to a premature convergence to a local minimum far from a global
minimum. In the second phase, the genetic algorithm was run from start to finish,
and, in the end the, the Nelder-Mead simplex method was again applied to the
best solution found by the genetic algorithm.

The performance of the hybrid genetic algorithm was evaluated by solving a
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regression problem and by comparing the results to those of a simple multistart
method. In a regression problem, given a noisy data set, the aim is to find a
mapping that approximates the original data without noise. For the numerical
experiments, we generated 20 sinus curves with normally distributed random noise.
Each noisy sinus curve represents one test problem and each test problem was solved
20 times with both of the methods. Now, the task for the methods was to recover
the original sinus curve based on 50 training data points for each test instance.
The original sinus curve and one set of training (noisy) data is illustrated in Figure
4.

FIGURE 4: The original sinus curve and one noisy training data set.

The performance of the proposed method was validated by using numerical
experiments and statistical tests. The analysis of the results showed that the hybrid
method is both more efficient and more reliable than the simple multistart method.
The hybrid genetic algorithm used on the average 65,000 function evaluations,
where the average values were computed over all the runs and over all the test
problems. This is far less than the average of 150,000 function evaluations used
by the multistart method. The accuracy of the solutions of the hybrid genetic
algorithm was also better than that of the multistart as can be seen in Figure 5,
where 20 solution curves are plotted for the above described training data set.

Let us summarize that, in [A] and [B], the hybrid methods were formed by
combining two or more optimization methods. If a hybridization is defined in
a general way, as we have done, then embedding any ready-made element in an
optimization method is called hybridization. If the embedded element is not an
optimization method, we refer to the method as an interdisciplinary hybrid. Next,
we consider interdisciplinary hybrid methods that use structured point sets for
generating initial populations of genetic algorithms.

1.6 Structured point sets

In [B], we were able to obtain good results by changing the initial population of
genetic algorithms by adding some local minima to the initial population. This
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FIGURE 5: 20 solution curves obtained with hybrid genetic algorithm (on the left)
and multistart method (on the right).

motivated us to study the initial populations of genetic algorithms more carefully
in [68], and we continued the work in [C] and [D]. We studied the case when no
information about the local minima is available to see whether we could find better
initial populations than the traditional pseudo random ones. To that end, we se-
lected some quasi random sequence generators and spatial point processes. Spatial
point processes are used in statistics [28] and quasi random sequences are used in
numerical integration [18, 102, 105], computer simulations [1, 65] and quasi random
searches [63, 80, 104] with good success. In addition, quasi random sequences have
been used in generating initial solutions for modified controlled random searches [4]
and topographical multilevel single linkage [5], again with good success. Both quasi
random sequence generators and the selected spatial point processes are designed
to produce points that maximally avoid each other.

Very little research has been done on the generation of an initial population
of genetic algorithms. Traditionally, an initial population is said to be selected
randomly, which, in practice, means that pseudo random numbers [39, 49] are
used. It is a well-known fact that truly random numbers cannot be generated
algorithmically [103], and, in practice, pseudo random numbers are designed only
to imitate random numbers. However, the question that is often left unasked is
whether the initial population should be random (or imitate randomness) in the
first place [93]. In [C] and [D], we approached this issue by considering different
features of point generators and studying their effects on the performance of a
real-coded genetic algorithm. We use the term structured point sets jointly for all
point sets that do not imitate random points, but are designed to be very evenly
distributed over the feasible region. We say that a point set has a good uniform
coverage if the points are well spread out to cover the whole feasible region.

Our hypothesis in [C] and [D] was that points that do not form clusters and
yet have some degree of randomness are well suited as initial populations of genetic
algorithms. In [D], we clarified this assumption with the following academic exam-
ple. We selected so-called Griewangk [38] and Katsuura [35] functions as the test
problems and generated heavily clustered initial populations, where each variable
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was restricted to a subinterval with only 80% of length of the variable’s total range.
The first clustered initial populations were generated so that the global optimum
was outside the subspace and the second clustered populations so that the global
optimum was inside the subspace. As a benchmark we generated initial popula-
tions with solutions spread over the whole feasible region. All the solutions in this
test were generated using a pseudo random number generator. See Figure 6 for a
two-dimensional illustration of the test settings, where the large cross illustrates
the global minimum and the range of each variable is [-0.1,1).
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FI1GURE 6: Two clustered populations and one pseudo random population spread
over the whole feasible region.

Here, we consider only the 10-dimensional Katsuura function, which has the
following definition

f(x) 11_0[ 1+'§:|2mxi_tzmx1“ 01 <z <1
X) = 1 ) —Ul=7 ’
=1 m=0 2am

where |-] is a floor function. The global minimum for the Katsuura function
is at x* = (0,...,0) with f(x*) = 1. Note that the feasible region of the Kat-
suura function has been adjusted for this experiment. For the experiments with
the Griewangk function we refer to [D]. Figure 7 shows the convergence curves of
the genetic algorithm with different initial populations. Each curve represents an
average convergence of 100 independent runs. The effects of the different initial
populations are clear even after several dozens of generations as can be seen in
Figure 7. The fastest convergence was obtained, when the initial population was
clustered around the global minimum. Respectively, the slowest convergence was
obtained when the initial population was clustered away from the global minimum,
and the evenly distributed pseudo random initial population provided convergence
curve that was between the other two curves.

Based on the above described simple experiment, we may conclude that the
initial population has effects on the convergence for several iterations. Hence, it
is justified to study the role of initial populations of genetic algorithms. However,
the above described simple experiment is only an academic example with very
strong clustering. In [C] and [D], we consider more realistic ways to generate
initial populations using structured point sets.
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FiGURE 7: The convergence of a genetic algorithm for a Katsuura function with
different initial populations.

Figure 8 shows a simple two-dimensional example of point sets generated with
a pseudo random point generator, a Niederreiter quasi random sequence generator,
a simple sequential inhibition (SSI) and a nonaligned systematic sampling. There
is a distinct difference between the populations. The pseudo random points seem
random, whereas structured point sets have more or less clear patterns and a better
coverage with less clusters.

In [C], we studied quasi random initial populations. Quasi random sequences
[39, 49, 81] are designed to produce points that “maximally avoid each other” [89].
As mentioned earlier, they have been successfully used, for example, in numerical
integration, simulation and quasi random searches. We compared the results of
the genetic algorithms using the so-called Niederreiter [81] and Sobol’ [17] quasi
random sequences to those of the original genetic algorithm using pseudo random
sequences. The Niederreiter and the Sobol” quasi random sequence generators were
selected since they had performed well in our earlier tests reported in [67].

Quasi random sequences are also called low-discrepancy or low-dispersion se-
quences. Discrepancy and dispersion are measures of coverage in a sense that their
low values indicate good uniform coverage. In a point set, discrepancy is large
if there exist clusters or large unexplored areas, and dispersion is large if there
exist large unexplored areas. Hence, every low-discrepancy sequence is also a low-
dispersion sequence, but not vice versa. For our purposes, we are interested in
point sets that have low values for discrepancy or dispersion. For a mathematical
relationship between discrepancy and dispersion, see [81].

In the comparison of the different generators, we used a test suite of 52 com-
putationally difficult global optimization problems (see [C] for further details). We
classified them into two problem sets, P1 and P2, depending on the empirical ex-
periments on their complexity and assigned two sets of optimization parameter
values, respectively. We solved all the problems a hundred times with each of the
three implementations with different initial populations applying pseudo random
numbers, and the Niederreiter and the Sobol’ quasi random sequences. The re-
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FIGURE 8: Point sets of 1024 points generated with different point generators.

sults indicated that the distribution of the initial population may have an effect
on both the final objective function values and the number of generations used.
In about two thirds of test problems, the genetic algorithm applying quasi ran-
dom sequences improved the average final objective function values. The trade
off between the solution quality and the number of function evaluations used was
better than expected. The genetic algorithm using the Niederreiter quasi random
initial population used even less function evaluations than the original algorithm
and, while using the Sobol’ sequences, the increase of function evaluations was very
moderate. Despite the promising results, the effects of different initial populations
were hard to interpret and further research was needed.

In [D], we continued the study of initial populations of the genetic algorithm,
which was started in [C]. We added more statistical tests and more point generators.
Now, we compared the original genetic algorithm using pseudo random numbers
and the one applying Niederreiter quasi random sequences that was evaluated as
the best quasi random genetic algorithm in [C] and in [67]. We also complemented
the comparison with genetic algorithms using initial populations generated by two
spatial point processes [28], which are point generators commonly used in statistics.
From the various spatial point processes we selected simple sequential inhibition
and nonaligned systematic sampling, which had proved promising in our prelimi-
nary tests.

First, we studied the properties of the generators. We concentrated on ana-
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lyzing the uniform coverage and the genetic diversity of the points as well as the
speed and the usability of the generators. By speed we mean how fast the points
are generated and wusability stands for both the availability and usability of the
generators. The availability means, how easy it is to obtain a well-tested imple-
mentation of each generator. By a genetic diversity we mean the ability to reach
as large part of the feasible region as possible by means of crossover. Crossover is
an operator imitating genetic recombination, which forms new solutions by cross-
breeding selected parent solutions in the population. We point out that all the
above-mentioned properties of the point generators are related to the dimension of
the problem.

We found out that the generators have different strengths and weaknesses,
which was expected, because a good uniform coverage and genetic diversity of the
points are somewhat conflicting properties. This is shown in Figure 9, which illus-
trates points and connecting lines of a rectangular grid, triangular grid, clustered
points and seemingly random points without clustering. The points in Figure 9
illustrate the solutions in a population and the lines illustrate the point sets that
can be reached by means of heuristic crossover [73], that is, the lines provide some
idea of the genetic diversity of the points. By looking at Figure 9, it seems that the
best genetic diversity is obtained using seemingly random points with no clustering.
On the other hand, it is a well known fact that we obtain optimal circle packing
using honeycomb-like hexagonal packing [120], that is, using triangular grid. From
the packing results we immediately deduce that the maximum distance between
points and, thus, good uniform coverage, is obtained using a triangular grid. Hence,
genetic diversity and good uniform coverage may be somewhat conflicting criteria.
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FIGURE 9: Points and connecting lines for a rectangular grid, triangular grid,
clustered points and seemingly random random points with no clustering.

Table 1 shows the summary of the evaluated properties of the different point
generators. On the first column of Table 1 are the property descriptions and the
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following four columns list the evaluations for each generator. As before, SSI stands
for simple sequential inhibition. In the property evaluation, it was suitable to call
problems small, if there were 5 or less variables and large, otherwise. If a generator
scored differently for small and large problems, then these scores are separated with
a slash, for example, good/poor means that the generator performed well for small
problems but poorly for large ones. For more details, see [D].

Properties (small/large) Pseudo Niederreiter SSI Nonaligned
Coverage poor moderate good good/poor
Genetic diversity good moderate  moderate poor
Speed good good poor moder./good
Usability good good moderate  good/poor

TABLE 1: Summary of properties for four generators.

With respect to the coverage properties of the different point sets, we point
out that even the stuctured point sets have their shortcomings. Good coverage
properties of quasi random sequences have been shown to degrade with dimension
[77, 111], the points generated with SSI process tend to concentrate on edges of
the feasible region [111], and nonaligned systematic sampling reduces to pseudo
random sampling in higher dimensions.

After testing the properties of the generators, we used them for generating
initial populations for the real-coded genetic algorithm used in [C]. In the numerical
experiments, we used the same test suite as in [C], but this time classified the
problems into two subclasses depending on the number of variables. In the first
subclass, we put the problems with ten or less variables and the rest of the problems
we put in the second subclass. The results were similar to those in [C]. They gave
some indication that initial populations with good coverage may prevent premature
convergence to a non-optimal solution and that good genetic diversity may fasten
the convergence. However, the differences in the results were small. In fact, even
though there were some differences, they were mainly not statistically significant.

Now that we have summarized the results reported in [C] and [D], let us go a
little bit further using the insight obtained during the research process. By looking
at Figure 7 and considering only the coverage of the initial population, we should
not expect that the various initial populations would cause much difference on the
average objective function values, since, even if there were some harmful clusteri-
zations, there is also expected to be some beneficial clusterizations, and these may
cancel out each other’s effects. We should also not expect to see any differences
if the algorithm is run long enough, since genetic algorithms are Markov chains
(see, e.g., [82, 122]) and they are expected to converge to a global optimum after
a sufficient number of generations. However, this sufficient number of generations
may be very large and there is no practical way to ensure that the algorithm has
converged. Therefore, the algorithm may in practice often have to be stopped be-
fore the global optimum is found. By looking at Figure 7 and considering only
the coverage, we could expect to see some differences in the magnitudes of the
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variances, if the algorithm was interrupted after a small number of generations.

Since the emphasis in papers [C] and [D] was on average objective function
values, we feel obligated to complement the results reported in [C] and [D] by
shortly considering variances after a small number of generations of the genetic
algorithm. Here, we ignore the magnitudes of the variances and consider only
the number of problem instances when the variants of genetic algorithm using
structured point sets had a smaller average variance in the objective function value
than the original algorithm. The check points are selected to be after 10 and 20
generations. The results are given in Table 2. No division to small and large
problems is made, instead, all the 52 problems are considered at the same time.
Hence, the maximum value in Table 2 would be 52.

Niederreiter SSI Nonaligned
After 10 generations 21 17 21
After 20 generations 26 23 31

TABLE 2: Number of instances when the average variance was smaller than that
of the original genetic algorithm.

The results in Table 2 indicate that even in the variances of the early gener-
ations there is no clear difference between the genetic algorithms using structured
point sets and the original genetic algorithm. As a conclusion for the research done
in [C] and [D], along with the brief complementary study here, we may say that
the results obtained with different types of point generators are, in essence, the
same. This means that the genetic algorithm tested is very robust with respect to
changes in initial populations. Moreover, the fast, easy to use and readily available
pseudo random sequence generators may continued to be used to generate initial
populations to the type of genetic algorithm tested here.

Let us note, however, that we reported here the first results concerning the
initial populations for population-based metaheuristics in global continuous opti-
mization. The results cannot not be directly transferred to all problems or all
types of genetic algorithms, not to mention all population-based metaheuristics.
Further research is needed to find out the whether other methods are as robust as
the genetic algorithm tested.

1.7 Method selection problem

While evaluating the hybrid methods proposed in [A]-[D], we noticed how hard it
is to compare different methods. Even the comparison of two similar methods is
demanding, as stated in [95], where two genetic algorithms were compared. When
the methods are inherently different, a fair comparison becomes very challenging,
for example, because it then involves separate tuning of the optimization parameter
values.

In [E] we considered the method selection problem for global continuous op-
timization. The selection of an optimization method is based on its performance,
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which is usually evaluated using measures such as reliability, efficiency and accu-
racy as mentioned earlier. We concentrated on the case, where one repeatedly
needs to solve similar type of problems and wants to find the best method for the
task. The results in [E] are also helpful in method development.

The method selection process can be described with four steps. On the first
step, one selects the test problems so that they, as accurately as possible, represent
the whole set of problems that will be solved with the method. On the second
step, one selects the optimization methods for the comparison. If one has solved
similar problems earlier, the methods used can be included as benchmark methods.
One should also study what kind of methods have been used in the literature for
solving that type of problems and select the most attractive methods and then solve
the problems. The third step involves the analysis of the results. If none of the
methods has acceptable performance, one needs to return to step two and select new
methods or go to step four and try to improve the methods. On the other hand, if
one method has the best performance for all the test problems, and the performance
is satisfactory, then that method is selected and the method selection process is
finished on the third step. The selection process is ended also if some methods
have acceptable overall performance without any obvious shortcomings. Then one
of these methods may be selected. However, it is sometimes recommendable to take
a fourth step in the method selection process. On the fourth step, if one method
performs well for one type of problems and another method for another type of
problems, then one may form a toolbox and use the best method for each type of
problem. One may also combine different methods to form hybrids. In [E], the
main emphasis was on the test problems and test settings in general. The method
selection process is illustrated in Figure 10.

Select test problems.

v

Select competing methods
and solve the test problems.

v

Compare the methods.
Does the use of severa
methods give an advantage?

o/ N

Select the method that

Select methods for the toolbox

outperforms others or the one
that is the best compromise.

or combine different methods
to form a hybrid.

FIGURE 10: Method selection process.
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By using numerical examples we pointed out four pitfalls, which all may lead
to the selection of a wrong method, that is, a method whose performance is inferior
to some other methods in the comparison. The pitfalls were examined in a prac-
tical study involving the real-coded genetic algorithm described in [76], multistart
method applying Nelder-Mead simplex method and two hybrid methods. We called
the first hybrid genetic algorithm with a local search GALS. In that hybrid, genetic
algorithm was the main optimizer and it was combined with the Nelder-Mead sim-
plex method. Every time the genetic algorithm found a solution, whose objective
function value was the best so far, the Nelder-Mead simplex method was started
on that solution. In the second hybrid, which we called QSGA, a type of multistart
method was the main optimizer, and it provided locally optimal solutions as initial
populations for micro genetic algorithm. By micro genetic algorithm we mean a
genetic algorithm that has a small population size.

We used these four methods and the results obtained with three state-of-the-
art metaheuristics in the literature to illustrate pitfalls in method selection. The
first pitfall occurs, if the test problems do not accurately enough correspond to
the problems that one will be solving with the algorithm. This was illustrated by
solving two test suites using a multistart method applying an SQP solver as a local
minimizer. For the first test suite the multistart method was very competitive,
even when compared to the state-of-the-art metaheuristics, but for the second test
suite its performance collapsed. The main difference between the test suites was
the number of local minima.

The second pitfall occurs if not all the performance criteria are considered
in the comparison. This was illustrated by first evaluating the efficiency of the
methods based on CPU-time alone. When the number of function evaluations was
also taken into account, the conclusions changed significantly, even though all the
computations were made on the same computer.

The third pitfall occurs, if inefficient stopping criteria are used. This was
illustrated by evaluating the performance of the methods after 20,000 and after
100,000 objective function evaluations. Although the genetic algorithm was the
best method at both check points with respect to successful runs, some other
methods switched places. The best way, of course, would be to use performance
profiles [29] or modified performance profiles [3], which record the performance
throughout execution of an algorithm.

The fourth pitfall concerns method development. It is important that the
performance criteria (and the test problems) are carefully selected already when
developing the methods. If incomplete performance criteria are used, they may
guide the development off the track. This was illustrated, by developing the hybrid
method QSGA using only CPU-time as the efficiency measure and ignoring the
number of objective function evaluations. However, many times it is not possible
to know all the performance criteria in advance. If the performance criteria are
changed, then additional analysis and tests may be required and the necessary
adjustments need to be made to the conclusions.

Our study of method comparison was not exhaustive, but we presented a
fraction of possible pitfalls. We concluded that method comparison is extremely
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difficult. The change of the test suite and the changes in other test settings have
strong effects on the conclusion of the comparison. We also pointed out that well-
defined and widely used standardized test suites would help to compare different
methods. Another important thing would be to report also the results for the
problems for which the proposed method did not work so well. For practitioners
that piece of information is often just as valuable as knowing when the method
performs well.

1.8 Conclusions

The work was devoted to two subareas of global continuous optimization. The first
focus area was the hybridization of metaheuristics and the second was the use of
structured point sets as initial populations of genetic algorithms. We also included
a note on optimization method selection.

The first focus area, hybridization, is widely recognized as one of the most
attractive new trends in global optimization in general. In hybridization, elements
of existing methods are combined in a way that they best complement each other
resulting in a new hybrid method which desirably has the advantages, but not the
disadvantages, of the original elements. We gave some general outlines how hybrid
methods are formed and presented several new hybrid methods involving simulated
annealing and genetic algorithms.

In the hybrids based on simulated annealing, we combined simulated annealing
with the proximal bundle method that is a local search method that approximates
a decent direction using subgradients. The proximal bundle method can solve
even nondifferentiable problems and its efficiency is comparable to gradient-based
methods. We evaluated the performance of the methods using 38 test problems
from the literature, and the results showed that the hybridization improved both
the efficiency and the reliability of original simulated annealing.

We also hybridized a genetic algorithm and the Nelder-Mead simplex method
and, again, were able to increase both the efficiency and the reliability of the original
methods operating alone. We used the hybrid for training an MLP neural network
and evaluated the method by solving a regression problem.

As a general note to hybrids combining different optimization methods, we
would like to point out that our experiments in [A], [B] and [E] indicate that, for
the test problems used, simple hybridizations worked better than more complex
ones. It also became evident that not all combinations of a global and a local
search provide any advantage over the original methods.

The second focus area of this work was the use of structured point sets for
an initial population of a genetic algorithm. The structured points sets include
quasi random sequences, which are used, for example, in numerical integration
and simulation, and various spatial processes used, for example, in statistics. If
hybridization is defined in a very general way, then the use of structured point sets
within an optimization method is a particular type of a hybridization, where all the
combined elements are not from optimization methods, but may be any elements
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that are available and yet not included in the original method. These methods
were here called interdisciplinary hybrids.

Quasi random sequences were the first structured point sets that were applied
in global continuous optimization a few decades ago. Since then, the optimization
methods have developed considerably and the so-called metaheuristics have become
predominant methods for solving complex global optimization problems. However,
the use of quasi random sequences in that context has been rather rare. We applied
quasi random sequences into initial populations of a genetic algorithm. We also
applied two other structured point sets, simple sequential inhibition process and
nonaligned systematic sampling process. In addition, we discussed various features
of structured point sets.

We expected to see difference in the magnitudes of the variances of objective
function values when different initial populations were applied to the genetic al-
gorithm, but the results were quite similar with all the initial populations. We
arrived at the conclusion that based on our tests the genetic algorithm used is
very robust with respect to initial populations. This is a positive result, but we
would like to note that the results presented here are the first results on initial
populations of genetic algorithm for continuous optimization and they cannot be
directly generalized to other problem sets or other algorithms than the one used in
the comparison. In the future, it might be interesting to test the different initial
populations with other population-based heuristics that do not rely so much on
genetic diversity and recombination.

Finally, we considered method selection problem for global continuous opti-
mization. When selecting an optimization method there are many important issues
which are often forgotten in the literature, but which greatly affect the outcome of
the comparison. We pointed out four pitfalls that may lead to selecting a method
whose performance is inferior to some other methods in the comparison. The
pitfalls considered were: carelessly chosen test problems, incomplete performance
criteria while developing the method and while testing the method and inefficient
stopping criteria during the testing. The pitfalls were illustrated by numerical re-
sults of three state-of-the-art metaheuristics in the literature, a genetic algorithm,
two multistart methods using the Nelder-Mead simplex method and SQP-solver,
respectively, and two hybrids combining genetic algorithms and the Nelder-Mead
simplex method. We concluded that it is extremely difficult to compare inherently
different methods and that fixing the test settings is crucial.

We would also like to point out some future challenges in global continuous
optimization. It seems that different phases in optimization alternate. These phases
could be described in familiar optimization terminology as “global” and “local”
phases. In the last few decades, the “global phase” has produced concepts such
as metaheuristics and hybridization, and local phase has developed these ideas
into a variety of different implementations. More recently launched concepts of
“global phase” are, for example, taxonomies of hybrid methods, unifying views
to metaheuristics [109], interdisciplinary hybrids and hyperheuristics [19]. These
emerging areas of “global phase” help to organize and exploit the information and
identify similarities both in structure and in ideology of the methods. This way,
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the global phase generates new ideas by continually guiding the research into new
unexplored areas of optimization.

1.9 Author’s contribution

The papers [B]-[E] are based mainly on the author’s own ideas. The author has also
written them and made the implementations except for the MLP-neural network,
the Fortran code for the genetic algorithms and the pseudo and quasi random gen-
erators. Professor Antti Penttinen was consulted about the spatial point processes
for the paper [D] and he proposed some ways to generate initial populations for
genetic algorithms. The methods for paper [A] were implemented by the author’s
advisers, Professor Kaisa Miettinen and Docent Marko M. Makela, and the paper
was written in close collaborations with them. The whole thesis has been closely
supervised by the advisers. The supervision has included exchange and refinement
of ideas and proof readings. The advisers have also freely shared their professional
expertise, knowledge and experiences.



YHTEENVETO (FINNISH SUMMARY)

Tama vaitoskirja kasittelee sitd, kuinka globaalin optimoinnin menetelmia jatku-
vien muuttujien tehtaville voidaan parantaa hybridisointia ja strukturaalisia pis-
tejoukkoja kidyttamélla. Optimointi on keskeinen osa ongelmanratkaisua, silld
yleisesti reaalielaman ongelmanratkaisuun kuuluu matemaattinen ja numeeri-
nen mallintaminen sekd mallin simulointi ja optimointi. Ongelmanratkaisun tu-
loksia voidaan hyodyntaa esimerkiksi tuotteiden kehityksessa ja valmistuksessa.
Useat reaalimaailman ongelmat voidaan mallintaa jatkuvien muuttujien globaalin
optimoinnin tehtaviksi. Numeerisille malleille on usein hyvin vaikeita loytaa
optimaalista ratkaisua ja siksi tehokkaiden optimointimenetelmien kehittaminen
on tarpeen.

Hybridisointia apuna kayttaen, eli menetelmia yhdistelemalld, on mahdollista
kehittaa uusia entista tehokkaampia optimointimenetelmia. Téssa vaitoskirjassa
muodostetaan erilaisia hybridimenetelmia metaheuristiikkojen pohjalta. Tulok-
set, osoittavat, ettd on mahdollista muodostaa hybrideja, joilla on samat hyvat
ominaisuudet kuin yhdistetyissa menetelmissa, mutta joilla ei ole alkuperaisten
menetelmien heikkouksia.  Tyossa yhdistettiin simuloitu jaahdytys ja kimp-
pumenetelma sekd geneettinen algoritmi ja Nelderin ja Meadin polytooppihaku.
Hybridisoinnin tuloksena sekd menetelmien tehokkuus etta luotettavuus paranivat.
Lisaksi muodostettiin poikkitieteellisia hybrideja kayttamalla esimerkiksi tilasto-
tieteessa ja numeerisessa integroinnissa kaytettyja pistegeneraattoreita geneettisen
algoritmin alkupopulaatioiden muodostamiseen. Pistegeneraattoreiden eri omi-
naisuuksia tarkasteltiin ja ominaisuuksien vaikutuksia optimointimenetelman tu-
loksiin tutkittiin numeerisilla testeilla. Tutkimuksessa kiinnitettiin huomiota myos
menetelmien vertailuun. Osoittautui, ettd optimoinnin testitehtdvien valinta ja
testien alkuasetelmat pitkalti maarittavat vertailun lopputuloksen.

Kaikkien kehitettyjen menetelmien toimivuus on testattu numeerisilla esi-
merkeilld. Yleisesti voidaan sanoa, etta hybridisointi, eri muodoissaan, voi olla
hyvin hyodyllinen tyokalu menetelmakehityksessa.
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