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ABSTRACT

Ryabov, Vladimir 
Handling Imperfect Temporal Relations 
Jyväskylä: University of Jyväskylä, 2002, 75 p. (+included articles) 
(Jyväskylä Studies in Computing, 
ISSN 1456-5390; 24) 
ISBN 951-39-1359-7 
Finnish summary 
Diss.

In many areas of Artificial Intelligence (AI) there is a need to represent temporal 
information and reasoning about it. Temporal formalisms are applied in all 
areas where the time course of events plays an important role, for example, in 
temporal databases, process control, planning, natural language understanding, 
and in medical and reservation systems. Similar to almost all the information 
we have about the real world this temporal information is imperfect. In this 
thesis we propose a numerical formalism, based on probability theory, for 
handling imperfect temporal relations. The research problem includes three 
main issues: the representation of imperfect relations, the estimation of 
measures of imperfection, and reasoning about imperfect relations. An 
imperfect temporal relation between two primitives (points or intervals) is 
represented by the probabilities of the basic relations (“<”, “=”, and “>” for 
points, and thirteen Allen’s relations for intervals) between these primitives. 
These probability values are calculated by the proposed formulas taking into 
account the information about the primitives. We further assume that the 
measurements of the temporal values of two primitives may include some 
measurement error, which needs to be taken into consideration during the 
estimation. Taking into account the maximum value of the measurement error, 
we derive the lower and upper probabilities of the basic relations between two 
primitives. The mechanism for reasoning about imperfect relations between 
temporal points includes four operations: inversion, composition, addition, and 
negation. The study presented in this thesis is constructive and includes an 
observation part and theory building. The main contribution of this work is a 
new formal technique for the representation of, estimation of, and reasoning 
about imperfect temporal relations. Finally, we proposed the application of the 
formalism to the area of temporal diagnostics (medical and industrial). 

Keywords: temporal representation and reasoning, temporal relation, 
uncertainty, probability 
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PART I:
OVERVIEW AND SUMMARY 



1 INTRODUCTION 

Representation and reasoning about time is important in modeling dynamic 
aspects of the world. Time plays a critical role, and cannot be considered of 
secondary relevance, as in most natural language systems or hidden in a search 
process, as in most problem-solving systems (Allen & Fergusson, 1994). Indeed, 
there are many AI applications, where the time course of events plays a crucial 
role, for example, in temporal databases (Jensen & Snodgrass, 1999; Tsortas & 
Kumar, 1996), scheduling (Bouzid & Mouaddib, 1998), and in medical 
diagnostic systems (Combi & Shahar, 1997; Chountas & Petrounias, 2000). 
During the last several decades plenty of papers have been published in the 
area of temporal representation and reasoning, in which many formalisms have 
been proposed. Nevertheless, there still exist topics within this area that require 
and deserve further research attention. One such topic is providing temporal 
mechanisms with an ability to handle imperfect information.

Imperfect information surrounds us everywhere - almost all that we know 
about the real world is not fully certain, complete, precise, or consistent. This 
means that when we just study certain information, we only concentrate on a 
small part of a big and complex problem. In the area of temporal representation 
and reasoning, we also need to deal with imperfect information. This topic was 
underlined in recent surveys by Chittaro and Montanari (1996, 2000) as one of 
the important areas of temporal representation and reasoning which requires 
further research. Most of the present temporal reasoning techniques have been 
built on the assumption that precise and certain information is available, even 
though, in reality, this is false. Therefore, as was pointed out by Smithson 
(1989), all models that are built upon such idealizations, fail to describe the 
situations of the real world adequately. Other authors (e.g., Cohen, 1985; Motro, 
1993; Parsons, 1996; Saffiotti et al., 1994) also underline the necessity to be able 
to deal with imperfection in order to model the real world accurately. 

In many situations there is a need to deal with temporal relations. A 
temporal relation is a relation between two temporal primitives (points, 
intervals, etc.), which includes the temporal meaning characterizing the 
difference between these primitives. Reasoning is a procedure, in which a 
conclusion can be inferred from known facts and from the relations between 
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facts and conclusions. These relations are the core of reasoning. However, 
information about temporal relations might not be always perfect. One 
particular type of situation when this is the case is when there are two or more 
alternative values for a particular relation. To model this situation accurately, 
we need to be able to formalize this imperfect information, and take it into 
account during further reasoning. 

The research problem of this thesis is situated at the convergence of the 
topic of temporal representation and reasoning with that of handling imperfect 
information. The main problem considered is the development of a formalism 
for handling imperfect temporal relations. Such a formalism needs to address 
three important issues: representation, estimation, and reasoning. An imperfect 
temporal relation needs to be represented along with the numerical measures of 
imperfection of this relation. The estimation of imperfection suggests how these 
measures can be obtained, because they are not readily available in many 
situations. The reasoning mechanism defines the operations for reasoning about 
imperfect temporal relations. These operations allow us to derive previously 
unknown imperfect temporal relations, taking as operands known imperfect 
relations.

The rest of the thesis is organized as follows. The research problem 
addressed by the thesis and the research methodology used are described in 
Chapter 2. In Chapter 3 we present three classifications of imperfect 
information, and define the concepts of imperfection used throughout this 
thesis. Chapter 4 presents a brief introduction to the main numerical formalisms 
for handling imperfect information, such as probability theory, possibility 
theory, and the Demspter-Shafer theory of evidence. After that, we address the 
main limitations of the numerical formalisms, and select the formalism used. In 
Chapter 5 we present the basic concepts of time ontology, including the 
representation of temporal primitives. In Chapter 6 we consider the two 
representations of imperfect relations between temporal points used in the 
thesis. Chapter 7 deals with the representation of imperfect relations between 
temporal intervals. The reasoning operations are presented in Chapter 8. 
Chapter 9 presents two possible application areas for the formalism proposed in 
the thesis. The organization of the study and the summary of the articles 
included in the thesis are discussed in Chapter 10. Finally, the main 
contribution of the thesis, limitations, and directions for further research are 
summarized in Chapter 11.



2 RESEARCH PROBLEM AND METHODOLOGY 

In this chapter we present the main research problem considered in the thesis 
and the research methodology used. 

In this study we are concerned with the topic of handling imperfect 
temporal information, and more specifically, we are interested in handling 
imperfect temporal relations. The main issues related to this topic are: 
representation and estimation of temporal relations, and reasoning with 
temporal relations. Figure 1 presents the conceptual schema showing the logical 
connection between these issues.

FIGURE 1 Conceptual schema for the basic notions related to handling imperfect 
temporal relations 

Temporal primitives 

edba c

Representation
and estimation

Imperfect temporal 

ra,b
ra,c rb,c

Reasoning
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In Figure 1 at the lower level there are temporal primitives. At the upper level 
there are imperfect temporal relations between these primitives. A temporal 
relation between two primitives is derived using the information about these 
primitives through representation and estimation procedure. With imperfect 
temporal relations we can perform reasoning using reasoning operations as 
inversion, composition, and addition. 

Let us consider the main issues related to handling imperfect temporal 
relations in more detail. 

- Representation and estimation of imperfect temporal relations. The 
representation should be able to formalize imperfect temporal relations, 
and should include the numerical measures of imperfection to 
distinguish between different imperfect temporal relations. Often the 
information about the temporal relation between two primitives is not 
readily available but needs to be derived, for example, by using the 
information about the temporal primitives. The information about the 
primitives can also be imperfect, and which leads to an imperfect 
relation between them. The estimation of an imperfect temporal relation 
is the process of deriving the measures of imperfection for this relation. 

- Reasoning with imperfect temporal relations. Reasoning is a procedure for 
deriving new temporal relations in using reasoning operations. The 
operands and the derived relation might be imperfect. Reasoning 
operations need to calculate the measures of imperfection for the 
derived relation using the measures of imperfection for the operand 
relations.

Compounding the above main issues of handling imperfect temporal 
relations together with the probabilistic approach, the selection of which is 
discussed in Chapter 4, let us state the main research problem considered in this 
thesis as the following: 

The development of a formal approach to represent an imperfect 
temporal relation between two temporal primitives, to estimate the 
imperfection of this relation, and to reason with imperfect temporal 
relations using a probabilistic approach. 

The study presented in this thesis is constructive and includes two main 
stages: observation and theory building. Observation is useful when little is 
known about the research area, providing a hypothesis for testing or enabling 
the further focusing of the research. Our study is based on the approaches to 
temporal representation and reasoning and the approaches to handling 
imperfect information as proposed in the literature. The overview of these 
revealed, that there exists a problem in handling imperfect temporal relations, 
which was stated as a goal of the present study. 

Theory building includes the development of new ideas, concepts, 
conceptual frameworks, and models. Analysis of the current approaches to 
processing imperfect information (Chapter 4) and requirements with regard to 
handling imperfect temporal relations, lead to the selection of the probabilistic 



17

approach as a basis for the developed theory. The theory was developed along 
the directions: representation and estimation of imperfect temporal relations, 
and reasoning with such relations. Combining the representation and reasoning 
mechanisms for temporal relations, together with probabilistic measures of 
imperfection, we obtained the representation, estimation, and reasoning 
mechanism for imperfect temporal relations.



3 CLASSIFICATIONS OF IMPERFECT 
INFORMATION

In this chapter we present three classifications of imperfect information, and 
define the concepts and types of imperfection used throughout this thesis. 

There is no general consensus among researchers about the terms used 
regarding information which is not perfect, certain, complete, or precise. Prior 
to considering the classifications of imperfect information, it is necessary to 
clarify the difference between the uses of the terms “uncertainty” and 
“imperfection”. As has been underlined by Parsons (1996), the term 
“uncertainty” in the literature is overloaded, and is commonly used both as a 
generic term for imperfection in data, and as a term for a particular form of 
imperfect knowledge, that is, whether or not a statement is true. We support 
this point of view and aim to use the term “imperfection” in its generic sense, 
and the term “uncertainty” in the specific sense according to Parsons’ 
classification (Parsons, 1996). 

In the literature one can find many attempts to classify different types of 
imperfect information and to establish the relationships between them. None of 
these classifications however, has been widely recognized as better than the 
others, although several of them seem to be reasonable. In the following three 
sections we present the classifications of Bonnissone and Tong (1985), Bosc and 
Prade (1993), and of Parsons (1996). In the last section we summarize the 
concepts of imperfection that are used in this thesis. 

3.1 Bonnissone and Tong’s classification 

One of the earliest classifications, proposed by Bonnissone and Tong (1985) 
includes three main types of imperfection: incompleteness, imprecision, and 
uncertainty (Figure 2).
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FIGURE 2 Types of imperfection according to Bonnissone and Tong’s classification (1985)  

According to this classification, incompleteness arises from the absence of a 
value, and can be of two types: existential and universal. Existential 
incompleteness occurs when a particular instance of the value of an attribute is 
unknown. Alternatively, universal incompleteness occurs when all instances of 
particular attributes are unknown. Imprecision arises from the existence of a 
value, which cannot be measured with suitable precision. Imprecision is 
interval-valued when the value of a variable is given within some interval, for 
example: “The meeting will be between 5 p.m. and 8 p.m.”. 

Fuzzy-valued imprecision occurs when some fuzzy concept is used, for 
example: “It is quite late”. Discrete forms of imprecision arise from disjunctive 
information, for example: “The meeting will be either at 5, 6, or 7 p.m.”. Finally, 
imprecision can arise from negation, as in the statement “The meeting will not 
be on Monday”. This information is of little value for us, since the meeting can 
easily be on any other day of the week. 

In Bonnissone and Tong’s classification (Bonnissone & Tong, 1985), both 
imprecision and incompleteness are objective to some degree. Uncertainty is 
considered here as a subjective thing. It is supposed that some person makes his 
estimation of the truth of some fact. This estimation may be made, by using 
different formalism, e.g., probabilities, degrees of possibilities, etc. 

3.2 Bosc and Prade’s classification 

Bosc and Prade (1993) proposed another classification, which is an extension of 
an earlier classification by Dubois and Prade (1988). It includes four types of 
imperfection: uncertainty, imprecision, vagueness, and inconsistency (Figure 3).

Imperfection 
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Fuzzy-
valued

Interval-
valued

Discrete
imprecision 

Imprecision arising 
from negation 



20

FIGURE 3 Types of imperfection according to Bosc and Prade’s classification (1993)  

The definitions for the concepts in this classification are slightly different from 
the definitions given by Bonnissone and Tong’s classification. Particularly, 
uncertainty arises from the lack of information about the state of the world. In 
this case, we are unable to determine if certain statements about the world are 
true or false, but it is possible to estimate the tendency of a statement to be true 
or false. In order to do this, we again can use some numerical formalism or 
symbolic approach. 

Imprecision can be considered arising from the granularity of the 
language that is used to make imprecise statements. So, the statement “it is 2 
o’clock now” is considered imprecise when we are interested in an exact time 
given in hours and minutes. Bosc and Prade (1993) point out that uncertainty 
and imprecision can arise together in the same piece of information as it is, for 
example, in the statement “the meeting will be between 5 and 8 p.m.”. This 
statement can be considered imprecise if we are interested in exact time of the 
meeting given in minutes and uncertain since the certainty of this statement 
might depend on the knowledge of the source of this information. It is 
interesting that very imprecise statements might be more correct than precise 
ones. Vagueness is considered similar to the fuzzy-valued type of imprecision 
according to the classification of Bonnissone and Tong. A vague statement 
includes a vague predicate, e.g., “it is quite late”. 

Inconsistency represents the situation when there are two or more 
conflicting values, and there is no a possibility to find a consensus among them. 
Inconsistency can arise from a number of information sources, for example, 
after merging databases. One approach to resolve inconsistency is to select the 
information from the most reliable source, although we might not always have 
information about the reliability of the information sources. Another solution 
includes assigning different pieces of information with credibility rates, and 
then selecting the most credible information. Finally, there is an approach 
(Roos, 1992), which aims to locate and eliminate the information source that 
makes information inconsistent. For example, when three information sources 
suggest non-conflicting values for a variable and the forth one suggests a 
different (conflicting) value, the latter one will not be taken into account. 

Imperfection 

Vagueness InconsistencyImprecision Uncertainty
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3.3 Parsons’ classification 

Combining the classifications of Bonnissone and Tong and of Bosc and Prade, 
Parsons (1996) proposed to distinguish between the following types of 
imperfect information: uncertainty, imprecision, incompleteness, inconsistency, 
and ignorance (Figure 4). 

FIGURE 4 Types of imperfection according to Parsons’ classification (1996)  

Uncertainty is a situation when we do not have enough certain information 
about the state of the world. This can stem from subjectivity (or error) of the 
information source. Imprecision can be of three types: disjunctive, existential, 
and universal. Incompleteness is simply a lack of relevant information. 
Inconsistency is similar to the definition given in the previous section. 
Ignorance describes a lack of knowledge, particularly, a lack of knowledge 
about the relative certainty of a number of statements.

3.4 Concepts used in the thesis 

In this section we summarize the concepts of imperfection used throughout this 
thesis and briefly discuss possible sources of imperfection. 

We have selected the model of imperfection as outlined in Parsons’ recent 
classification for use in this thesis, as it is self-consistent and intuitively 
acceptable, as well as having the advantage of combining concepts and 
definitions proposed by other researchers. In this thesis we will use the notions 
of uncertainty, inconsistency, and disjunctive form of imprecision. The latter 
one will be referred to as indeterminacy, as defined in the temporal database 
concepts glossary (Jensen & Dyreson, 1998). Disjunctive imprecision describes 
the situation, when a number of propositions or statements are present, but 
only one of them is true for the current state of the world. We will not consider 
in this thesis incompleteness, ignorance, and existential or universal forms of 
imprecision.

Imperfection 

Incompleteness IgnoranceInconsistencyImprecision Uncertainty

UniversalExistentialDisjunctive
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In general, different types of imperfect information can arise from 
different sources, and these ones might also depend on particular applications. 
For instance, different kinds of imperfection can result from unreliable sources, 
as was suggested by Motro (1993), such as faulty sensors and input errors, or 
from the inappropriate choice of representation. Secondly, if data is recorded 
statistically, it is inherently uncertain. Moreover, some information can be 
intentionally made uncertain for the reasons of security, as it was pointed out 
by (Kwan et al., 1993). Measurement instruments might also introduce some 
imprecision in recorded data. 

Particularly, the main origin of uncertainty is subjective error in the 
information provided by some information source. Imprecision stems from 
granularity mismatch, i.e. the situation when the particular value was obtained 
in one granularity but is recorded in a system with a finer granularity. 
Inconsistency often occurs after merging of a number of data sets, for example, 
databases, or as a result of combining opinions in expert or decision making 
systems.

In this chapter we have considered three classifications of imperfect 
information, and defined the concepts to be used later in the study. In the next 
chapter we overview the numerical methods for handling different kinds of 
imperfection.



4 NUMERICAL APPROACHES TO HANDLING 
IMPERFECTION

There are two general classes of techniques for handling imperfection: 
numerical and symbolic. In this thesis our interest is with the class of numerical 
techniques, which is motivated by the wish to use numerical measures for 
handling imperfect temporal relations. The reader interested in symbolic 
formalisms can find an excellent overview of the most essential ones (as well as 
numerical formalisms) in Parsons (1996), and in Parsons and Hunter (1998). 
These overviews present such symbolic formalisms as nonmonotonic logic, 
circumscription, default logic, autoepistemic logic, and the numerical 
formalisms presented later in this chapter. Usually, only one formalism from 
any one class (symbolic or numerical) is applied in a particular task, but there 
are also a number of proposals for combining numerical and symbolic 
formalisms. For example, Parsons (1996) suggested that in some applications, it 
might be reasonable to apply numerical and symbolic techniques sequentially.

In this chapter we present three main numerical techniques for handling 
imperfection: probability theory, possibility theory, and Dempster-Shafer 
theory of evidence, which are considered in the next three sections 
correspondingly. In Section 4 we discuss the main limitations of all the 
numerical approaches. In Section 5 we evaluate three presented techniques, 
based on the criteria by Walley (1996). Finally, in Section 6 we select an 
approach to be used in the thesis. 

4.1 Probability theory 

The oldest numerical technique for handling imperfection is definitely 
probability theory, which existed already in different forms several hundred 
years. During that time a number of definitions and formulations for this theory 
have been proposed. A brief overview of the basics of probability theory 
presented below is drawn from Parsons (1996), which in turn is based on the 
discussion of probability theory by Lindley (1975). 
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The classical definition of probability given below is drawn from 
Neapolitan (1990, 28), but is based on Laplace (1951):

“The theory of chance consists in reducing all the events of some 
kind to a certain number of cases equally possible, that is to say, such 
as we may be equally undecided about in regard to their existence, 
and in determining the number of cases favorable to the event whose 
probability is sought. The ratio of this number to that of all the cases 
possible is the measure of the probability”. 

Neapolitan (1990) was formally to define the notion of probability used 
within the framework of this classical approach, which we will also use as a 
definition of probability in this thesis: 

“For each event E F, there corresponds a real number P(E), called 
the probability of E. This number is obtained by dividing the number 
of equipossible alternatives favorable to E by the total number of 
equipossible alternatives”. (Neapolitan, 1990, 31) 

A probability measure is an estimate of the degree to which an uncertain 
event is likely to occur. According to Lindley (1975), probability theory is based 
on three axioms or laws that define the behavior of probability measures. These 
ones are convexity, addition, and multiplication laws. 

The convexity law suggests that the probability measure for an event A
given information H is such that: 

0 1Pr A H .

The addition law relates the probabilities of two events to the probability 
of their union. For two exclusive events A and B, that is two events that cannot 
both occur, we have: 

Pr Pr PrA B H A H B H .

Often, explicit reference to the information H is omitted, since this 
information is the same in all cases. When the events are not exclusive we have: 

Pr Pr Pr PrA B A A A B .

The sum of the probabilities of a set of n mutually exclusive and 
exhaustive events Ai is equal to 1: 

1)Pr(
1

n

i
iA .

The multiplication law derives the probability of two events A and B
occurring together: 

Pr Pr PrA B A B A .
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The probability measure Pr(B A) is the conditional probability of B given 
A, that is, the probability that B will occur when A is known to have occurred. 
There is a well-known further rule concerning probability measures - the Bayes’ 
theorem, which is crucial from the AI point of view. It can easily be derived 
from the fundamental laws of probability theory stated above: 

Pr
Pr Pr

Pr
A B

B A A
B

.

There have been several extensions of probability theory within artificial 
intelligence literature (e.g., Duda et al., 1976; Quinlan, 1983; Tawfik & Neufeld, 
1998). An important approach when using probability theory in computing, is 
that of a probabilistic network, also called a Bayesian network or a causal 
network (Heckerman & Wellman, 1995; Pearl, 1987; Pearl, 1988). Using 
conditional probabilities combined with further structural information these 
networks are intended to represent and describe more efficiently probabilistic 
information. Much attention has been given to the problem of propagating 
probabilities through probabilistic networks efficiently (e.g., Pearl, 1992). The 
interested reader can find a further discussion in Parsons (1996), Parsons and 
Hunter (1998), and in Hunter and Parsons (1998). 

Clear interpretation of numerical measures is very important not only to 
justify the usefulness of the theory but also to guide applications of the theory. 
The issue of interpretation is distinguished from that of mathematical 
representation. There are many kinds of probability models, and any of these 
models can be given various interpretations. Similarly, any single interpretation 
of probability can be given various mathematical representations. The basic 
distinctions between different interpretations of probability were proposed by 
Walley (1991). According to that, the most fundamental distinction is between 
aleatory and epistemic probabilities. Aleatory probabilities model randomness 
in empirical phenomena. Epistemic probabilities model logical or psychological 
degrees of partial belief of a person or an intentional system. 

Among epistemic probabilities, which depend on available evidence, we 
can distinguish between logical, personalist, and rationalist interpretation. In its 
logical interpretation the epistemic probability of some hypothesis, related to a 
particular evidence, is uniquely determined. In personalist interpretation 
probabilities are constrained only by axioms of coherence and not by evidence. 
Finally, rationalistic interpretation lies between logical and personalist 
interpretations and requires probabilities to be consistent in certain way with 
the evidence, without requirement to be uniquely determined. 

Epistemic probabilities could also be classified as having behavioral and 
evidential interpretations. In behavioral interpretation probabilities are 
interpreted in terms of behavior, e.g., betting behavior. In evidential 
interpretation a probability measures a logical or linguistic relation between the 
hypothesis and the available evidence. The interpretation of probabilities can 
also be classified according to the issue of measurement. They could be 
measured either by observation of quantities that they influence, or by 
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construction of probabilities from knowledge of the factors influencing them. 
Finally, interpretations are distinguished between operationalist and theoretical 
interpretations. In operationalist interpretation probabilities are identified with 
the observations obtained from specified procedures. In theoretical 
interpretation probabilities model the underlying theoretical quantities that are 
not directly observable, but influencing the observable quantities through 
interaction with them and other quantities. 

4.2 Possibility theory 

Another well-known numerical formalism for handling imperfection is 
possibility theory, which emerged from the notion of fuzzy sets (Zadeh, 1965), 
and was firstly introduced by Zadeh (1978). A fuzzy set is a set whose 
membership is not absolute, but a matter of degree, for example the set of 
young people. A fuzzy set F is characterized by a membership function F
which specifies the degree to which each object in the universe U is a member 
of F. Let X be a variable which takes values in U. The assignment of a value u to 
X has the form: 

X u uF: ,

where F (u) is the degree to which the constraint F is satisfied when u is 
assigned to X. To denote the fact that F is a fuzzy restriction on X we write: 

R(X)=F.

Now, the proposition “X is F” translates into “R(X)=F”, and associates a 
possibility distribution x with X, and this distribution is taken to be equal to 
R(X):

x = R(X).

Along with this, we have a possibility distribution function X  that is 
defined to be equal to the membership function of F:

X = F .

Thus X (u), the possibility that X=u, is taken to be equal to F (u). For 
example, let U be the set of different people’s ages, and F be the fuzzy set of 
young people. This set is described by the following set of pairs, each of the 

form u uX, ( ) :

F = (15,1),(16,1),(17,1),...,(30,0.5),(31,0.48),...,(40,0.1) .

Given this, the proposition “X is a young person” associates the possibility 

distribution X with X where X is written as a set of pairs u uX, ( ) :

X = (15,1),(16,1),(17,1),...,(30,0.5),(31,0.48),...,(40,0.1) .
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According to the above distribution, the possibility, for example, that a 
person of age 16 is young is 1, and the possibility of the same proposition for a 
person of age 40 is only 0.1. Possibility distributions are used to define 
possibility measures. If A is a fuzzy subset of U, then the possibility measure 

(A) of A is defined by 

Poss(X is A) = (A) = sup min ,
u U

A Xu u .

When A is a strict subset of U the above equation is written as: 

(A) = sup
u U

X u .

The following equations define the rules for combining possibility 
measures:

(A B) = max ( (A), (B))  and (A B) = min ( (A), (B)).

There is a heuristic connection between possibility and probability as 
noticed by Parsons (1996), since if something is impossible, it is likely to be 
improbable, on the other hand, a high degree of possibility does not imply a 
high degree of probability, nor does a low degree of probability reflect a low 
degree of possibility. At the same time, as was pointed out by Neapolitan 
(1990), possibility theory addresses a fundamentally different class of problems 
than that addressed either by probability theory or by the Dempster-Shafer 
theory. These two deal with propositions that are definitely true or false.

There have been attempts to combine possibility theory with classic logic 
to form a possibilistic logic (e.g., Bigham, 1998; Dubois et al., 1991; Dubois & 
Prade, 1987; Dubois & Prade, 1989). 

4.3 Dempster-Shafer theory 

The third well-known numerical formalism for dealing with imperfection is the 
theory of evidence, which is also often referred to as the Dempster-Shafer 
theory (Shafer, 1976). The theory deals with the so-called frame of discernment, 
the set of base elements  = 1, ..., n  in which we are interested, and its power 
set 2 , which is the set of all the subsets of the base elements. The basis of the 
measure of uncertainty is a probability mass function m( ) that assigns zero 
mass to the empty set, m( ) = 0, and a value within the interval 0,1  to each 
element of 2 , the total mass distributed being 1 so that: 

m A
A

( ) 1 .

In the evidence theory we deal with all possible subsets of the set of 
propositions. Therefore, we can distribute the probability mass between 
particular subsets as we wish. The belief in a subset A of the set of all 
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propositions, is defined as the sum of all the probability masses that support its 
parts:

Bel(A) = m B
B A

( ) .

The plausibility of A is defined as the probability mass not supporting A:

Pl(A) = 
AB

Bm )( .

The interval Bel(A),Pl(A)  is considered as a measure of ignorance about 
A, and can vary from zero, when we have the same degree of belief in A as 
would be generated by probability theory, to 1 when A has belief 1 and 
plausibility 1. The latter means that no mass is assigned to A or any if its 
subsets, but equally no mass is assigned to A.

Evidence is combined by Dempster’s rule of combination. It calculates the 
probability mass assigned to C  using the probability mass assigned to A and 
B, where A and B are also subsets of . If we let the distribution function 
assigning probability mass to A be m1( ) and the function distributing 
probability mass to B be m2( ), then the probability mass assigned to C is 
calculated by the equation: 

m C
m A m B

m A m B
A B C

A B

12

1 2

1 21
.

The division in the above equation normalizes the new distribution by 
reassigning any probability mass that is assigned to the empty set by the 
combination.

There is a potential problem with the computational complexity of 
Dempster’s rule of combination, which has been discussed by several 
researchers. Barnett (1981) showed that the apparent exponential time 
requirement of the theory could be reduced to simple polynomial time if the 
theory was applied to a single hypothesis, rather than to sets of hypotheses, and 
if the evidence was combined in an orderly fashion. Barnett’s approach was 
extended by Gordon and Shortliffe (1985), and further by Shafer and Logan 
(1987). Furthermore, Shenoy and Shafer (1990) introduced a method for the 
efficient propagation of belief functions in networks by means of local 
computations. Whereas, Wilson (1992) proposed a method in which the explicit 
use of Dempster’s rule of combination is avoided and which allows us to 
perform belief function calculations in better than exponential time but worse 
than in polynomial time. Three examples of the applications of evidence theory, 
such as in the retrieving of documents, in the running of a radio 
communications system, and in automated inspection, can be found in (Hunter 
& Parsons, 1998). 
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4.4 Limitations of the numerical approaches 

There are a number of other numerical formalisms for dealing with imperfect 
information, for example, certainty factors (Shortliffe, 1976). This approach 
assigns a numerical weight, called the certainty factor, to the consequent of 
every rule in a rule-based system. The value of the certainty factor belongs to 
the interval -1,1 , and is a difference between the degree of belief and the 
degree of disbelief assessed by the domain expert. However, several researchers 
have challenged the validity of the certainty factors model, e.g., Heckerman 
(1986). Generally, none of the proposed techniques for handling imperfection is 
blameless. There are three clear problems common to all numerical formalisms: 

1) Obtaining the “numbers”. 
2) The interpretation of the results. 
3) Computational expense. 
The first limitation is considered obtaining the “numbers” needed to apply 

formalism, since sophisticated computational mechanisms are of little value 
without good numerical assessments (Parsons, 1996). For example, to apply 
probability theory in its “frequentist” interpretation we often need to obtain the 
kind of strong statistical data, which might not be possible in many application 
domains, as it was noted in Fox (1986). Other schools of probability theory, i.e. 
the personalist and necessarian schools (Shafer, 1988), argue that probabilities 
may always be obtained, either from rational human reasoning, or because they 
exist as a measure of the degree to which sets of propositions confirm one 
another. As it was pointed out by Parsons (1996), there is no clear better 
argument in the dispute about obtaining the numbers for numerical 
formalisms. It is apparent, that if there is a possibility to obtain numbers, then a 
particular numerical technique could be applied. If there is not, then perhaps a 
symbolic method for handling imperfection should be utilized. 

The interpretation of the results produced by formalism might not be 
always obvious, and therefore is considered also as a limitation of numerical 
formalisms. All numerical techniques generate results as numerical values. 
However, these values can represent and denote different things in different 
techniques, and to interpret them correctly, it is perhaps necessary to label them 
with the type of belief that they measure.

Complexity of computations can be considered as the third limitation of 
numerical approaches, because sometimes computations become too expensive 
and might require a massive amount of time. To overcome this obstacle special 
techniques, for example, certainty factors, were proposed. In overall, the main 
problem of computational expense remains; there have been a number of 
attempts to identify efficient calculation methods in particular situations. 
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4.5 Evaluation of the numerical approaches 

In this section we compare the three main numerical approaches (probability 
theory, possibility theory, and the Dempster-Shafer theory of evidence) for 
handling imperfect information. We assess them using the criteria proposed by 
Walley (1996, 3-4). 

- Interpretation. The technique should have a clear interpretation that is 
sufficiently definite to be used to guide assessment, to understand the 
conclusions of the system and use them as a basis for action, and to 
support the rules for combining and updating measures. 

- Imprecision. The technique should be able to model partial or complete 
ignorance, limited or conflicting information, and imprecise assessments 
of uncertainty. 

- Calculus. There should be rules for combining measures of imperfection, 
updating them after receiving new information, and for drawing 
conclusions and making decisions. 

- Consistency. There should be methods for checking the consistency of all 
imperfection assessments and default assumptions used by the system, 
and the rules of the calculus should ensure that the conclusions are 
consistent with these assessments. 

- Assessment. It should be practicable for a user of the system to make all 
the imperfection assessments that are needed as input. The system 
should give some guidance on how to make the assessments. 

- Computation. It should be computationally feasible for the system to 
derive inferences and conclusions from these assessments. 

Walley (1996) does not claim that this list of criteria is exhaustive and 
sufficient for any situation, but he believes that they are important in the 
evaluation of numerical imperfection handling techniques. The first four criteria 
are theoretical in the sense that one would expect an adequate theory of 
imperfection to show that they can be satisfied, irrespective of the specific 
application. The last two criteria are practical in the sense that they will be 
satisfied in some applications but not in others, depending on different factors. 
Walley (1996) further underlines that the first criteria (“interpretation”) is the 
most fundamental, because an interpretation is needed to support the rules of 
the calculus, to guide assessment, and to understand conclusions. Therefore, the 
“interpretation” criterion is a prerequisite for “calculus”, “consistency”, and 
“assessment”.

Table 1 presents an evaluation of the three main numerical techniques for 
handling imperfection, based on the six criteria above. We can see that 
probability theory does well on the criteria of “interpretation”, “calculus”, and 
“consistency”, because probabilities have a simple behavioral interpretation 
(Walley, 1996). The rules of probability calculus can be justified through this 
interpretation, and these rules guarantee consistency.

There is no a consensus among the researchers about the marks for the 
criteria “imprecision” and “assessment” for probability theory. Many of them 
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claim that probability theory does not do very well on “imprecision” and 
“assessment”, because in practice, it can be both difficult to make the many 
precise assessments of probabilities that are needed to determine the complete 
probability model, and to check that the assessments are consistent and that 
they determine a unique probability model. On the other hand, adherents of 
probability theory, people dealing with this formalism often, suggest that they 
do not face unsolvable problem with getting the numbers. Whatever mark we 
will put here for the probability theory, it might be criticized for subjectivity. 
Nevertheless, we propose “average” for “imprecision” and “assessment” 
criteria to reflect different opinions on this subject. 

TABLE 1 Comparative evaluation of probability and possibility theory and the 
Dempster-Shafer theory of evidence, based on the criteria of Walley (1996) 

Probability theory Possibility theory Theory of evidence 
Interpretation well fair poor 
Imprecision average mainly well mainly well 

Calculus well poor poor 
Consistency well poor poor 
Assessment average mainly well mainly well 

Computation mainly feasible mainly feasible average 

Lastly, “Computation” is feasible for some important types of models, for 
example, singly connected networks (Walley, 1996). Overall, probability theory 
is highly developed, especially for dealing with judgments of conditional 
independence, and useful for many practical problems. 

Possibility theory translates natural-language expressions into a 
mathematical formalism of possibility measures. It is widely recognized that 
possibility is distinct from probability and that this distinction is central to all 
theories of probability (e.g., de Finetti, 1974, 1975). Some early attempts to 
provide possibility measures with a clear interpretation can be found, for 
example, in Zadeh (1978) and in Dubois and Prade (1988). The recent work by 
Dubois, Prade, and Smets (Dubois et al., 2001) proposes new semantics for 
qualitative possibility theory giving a clear idea of how possibility measures 
should be interpreted. 

Possibility measures can be used to model some types of imprecise or 
partial information. Especially if second-order possibility measures are allowed 
(although they are more complicated than first-order measures), possibility 
measures can model a wide variety of uncertainty judgements, including 
imprecise judgements in natural language (Walley, 1996). However, the 
calculus rules and methods for checking the consistency of possibility measures 
appear to be quite arbitrary. Assessment on the other hand is mainly feasible, 
and is easier for first-order distributions. There is some help in the literature on 
how to go about selecting the required functions (e.g., Dubois & Prade, 1988). 
Finally, the computation of inferences and decisions from possibility 
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distributions requires in general, the solution of a nonlinear programming 
problem (Walley, 1996). Therefore, computations will often be difficult, despite 
the apparent simplicity of the calculus. These computations are generally easier 
for first-order possibility distributions than for second-order distributions. 

Belief functions in the Dempster-Shafer theory of evidence lack a single 
clear interpretation. A survey of various interpretations can be found in Smets 
(1991). Belief functions can model partial ignorance and limited or conflicting 
evidence. However, due to the lack of a clear interpretation, the calculus rules 
and methods for checking consistency are often arbitrary. Belief functions can 
be assessed through multivalued mappings or in other ways, and the 
assessment strategies suggested by the theory are useful in many applications 
(Walley, 1996). As belief functions can be represented in terms of a probability 
mass function, they in many cases appear to be mathematically and 
computationally simple.

A further discussion regarding the assessments provided in Table 1 can be 
found in Walley (1996). 

4.6 Selection of the theory to be used 

After an overview of the main numerical techniques, a discussion of their 
limitations and their comparative evaluation, we can select the technique to be 
used in this thesis for modeling imperfect temporal relations.

The research problem considered in the thesis as discussed in Chapter 2 
imposes some requirements on the technique to be used to model imperfect 
temporal relations. 

1) Alternative relations. One type of an imperfect temporal relation (an 
uncertain relation) is defined as a number of alternative basic relations 
that can hold between two primitives. Only one of these basic relations 
definitely holds between the primitives, but we are simply uncertain 
about which one. The selected technique should accurately model this 
situation and provide numerical measures for the alternatives. 

2) Dependent values. The values of the endpoints of two temporal intervals 
can be dependent. To model accurately the relation between these 
intervals we need to model accurately these dependencies. 

3) Calculus. We need to have clear and explicit rules for combining the 
imperfection measures. These rules are an essential part of the 
combination of the imperfection measures, and are needed to define 
the reasoning operations. Clear and explicit calculus rules stem from a 
clear interpretation of the imperfection measures as shown in Table 1. 

In this study as we are only dealing with precise assessments of 
imperfection measures, we are not interested in the ability of a formalism to 
model imprecision, and therefore, we can ignore the evaluations describing 
imprecision in Table 1. 
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Probability theory does well on the first criteria, because we can easily 
provide different probability values for different alternatives. Possibility theory 
however, does not do as well, because in a fuzzy set, a number of propositions 
within this set can be true. This does not correspond to the situation within an 
uncertain relation, where only one of the basic relations is the true relation, 
which also does not require us to consider all the possible subsets within the set 
of possible values as in the Demspter-Shafer theory. Probability theory includes 
a rich and highly developed mathematical means for modeling dependencies, 
although, dependencies in general can be modeled by all three formalisms. 
Probability theory has also very clear calculus rules, which stem from the clear 
interpretation of probability measures. In overall, it seems that probability 
theory more than the other techniques suits the three requirements above, and 
taking into account also assessments form Table 1, we select the probabilistic 
approach to be used in this thesis to model imperfect temporal relations. 

In this chapter we have considered the three main numerical approaches 
to handling imperfection. We have discussed their limitations, undertaken a 
comparative evaluation and, finally, selected the probabilistic approach for use 
in the thesis. In the next four chapters we are going to overview the basic 
concepts within the field of temporal representation and reasoning that are 
used in this study.



5 TIME ONTOLOGY AND TEMPORAL PRIMITIVES  

In the first section of this chapter we present ontology of time, including the 
selection of temporal primitives to be used and the structure of time. In the 
second section, we consider the representation of temporal primitives. 

5.1 Ontology of time 

Approaches to temporal representation and reasoning in AI have been situated 
in the context of philosophical theories of time (e.g. Hamblin, 1972; Newton-
Smith, 1980; van Benthem, 1983). The modeling of the notion of time initially 
most important in AI, was within the areas of natural language understanding, 
medical decision making, and planning. However, it was only from the 
beginning of the 1980’s that more general theories of time and action were 
proposed, such as McDermott’s temporal logic (McDermott, 1982), Allen’s 
theory of action and time (Allen, 1984), and Vilain’s theory of time (Vilain, 
1982). These theories established the basic representational issues and reasoning 
algorithms, and proposed two main temporal ontological primitives: temporal 
points (also called instants in the literature) and temporal intervals (also called 
periods). A possible third approach uses a combination of the above primitives. 
Each approach has its own adherents and opponents, and there is no standard 
agreement on which of these primitives is generally more applicable, this is 
rather decided according to the context of a particular application. 

Early representations of time used points as temporal primitives such as in 
Situational Calculus (McCarthy & Hayes, 1969), in Time Specialist (Kahn & 
Gorry, 1977), and in McDermott’s temporal logic (McDermott, 1982). Other 
authors on the other hand argued for using temporal intervals as ontological 
primitives. This direction was initiated by Allen (1983), who proposed thirteen 
basic relations between two temporal intervals and an Interval Calculus. A 
further discussion on this subject can be found in Vila (1994), Böhlen et al.
(1998), and Steiner (1998). 

In this thesis, we believe that both types of temporal primitives are 
important for the accurate modeling of time across different applications. We 
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select temporal points as our main ontological primitives, whereas a temporal 
interval is constructed as a pair of temporal points denoting the start and the 
end of the interval. 

After deciding on the ontological primitives, it is necessary to define the 
structure of time. This will determine the desired properties of time and the 
behavior of temporal primitives and relations. The question of the structure of 
time needs to be considered very carefully, because the complexity of a 
reasoning formalism strongly depends on this structure, almost independently 
of the defined formalism itself. The structure of time needs to be defined along 
three important dimensions, as is proposed in Vila (1994). 

Discrete vs. Dense. The time axis is either considered as a sequence of 
discrete temporal elements, or in the case of the dense model, it is 
assumed that between two temporal elements there is always another 
element.
Bounded vs. Unbounded. A time axis can be finite or infinite in either or 
both directions. 
Precedence. Time can be linear, branching, parallel, or circular. 

In this thesis, time is represented by a time axis which is unbounded in 
both directions, and linear. We assume that the time model is discrete, that is 
that the time line is considered as a sequence of indivisible temporal elements 
(chronons) of minimal duration. We further assume that a temporal point is 
located during one particular chronon.

5.2 Representation of temporal primitives 

Information concerning temporal points can also sometimes be imperfect. One 
example of this is temporal indeterminacy (Dyreson & Snodgrass, 1993), which 
means that we do not know exactly when a particular event happened. This 
type of imperfection is similar to the disjunctive form of imprecision, according 
to our classification of imperfect information (Chapter 3, Figure 3). In terms of 
our own time ontology, this means that we do not know exactly during which 
particular chronon the temporal point is located, rather, that the point is located 
somewhere during a set or range of chronons. An indeterminate temporal point 
is described by a lower bound, an upper bound, and a probability mass 
function (Dyreson & Snodgrass, 1993; Voss, 1997). The bounds are the chronons 
that delimit where the point is located. The indeterminate point a cannot be 
earlier than the lower bound (denoted as al ), or later than the upper bound 
(denoted as au ), as is shown in Figure 5. 

FIGURE 5 Indeterminate temporal point a al,au

Time axis 

al au

a
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In many cases not all the possible chronons are equally probable. For 
example, it might be possible that the chronons located in the middle of the 
interval al,au  are more probable than the chronons near the endpoints al and
au. The probability mass function (p.m.f.) f(a) gives the probability of each 

chronon within al,au . The p.m.f. is defined so that f a
a a

a

l

u

1 , and f(x)=0 when 

x<al or x>au. The requirement that the sum of all the probabilities of the 
chronons is equal to 1 results from the definition of our time ontology, 
according to which, a temporal point occurs exactly during one particular 
chronon. A determinate point is defined within the interval consisting of only 
one possible chronon with an underlying probability value equal to 1. 

Often it is supposed, that the p.m.f. is supplied when an indeterminate 
point is created. The possible sources for this p.m.f. were suggested in Dyreson 
and Snodgrass (1993), these are: 

- Granularity mismatch, which occurs when an event is known in one 
granularity but is recorded in a system with a finer granularity. In this 
case, we often have no reason to favor one possible chronon over 
another.

- Dating techniques. Some dating techniques are inherently imprecise and 
possibly might provide the typical distribution of the variable, for 
example, the normal distribution. 

- Analysis of past data can sometimes provide a hint to defining the p.m.f.
- Clock measurements might assume the specific distribution. For details, see 

(Petley 1991). 
Several other additional means of determining the p.m.f. were suggested 

in Dey and Sarkar (1996). Moreover, the distribution can be specified as missing 
if the underlying p.m.f. is unknown (Dyreson & Snodgrass, 1993), although 
partially known distributions can be allowed as in the Probabilistic Data Model 
(Barbara et al., 1992). In this thesis however, we assume that the p.m.f.’s for the 
indeterminate points are totally known, do not allow partially known 
distributions, and make no provisions for joint or dependent probabilities. 

An indeterminate temporal interval A is a temporal interval, the endpoints 
of which a (the starting point of the interval A) and b (the endpoint of A) are the 
indeterminate temporal points, defined according to the definition above. We 
also suppose, that a<b. We further assume, that the intervals within which the 
endpoints are defined, do not overlap, i.e. au<bl. This assumption can be relaxed 
in a particular implementation by providing an additional mechanism for 
checking the consistency of the indeterminate interval. Since the indeterminate 
interval A starts during any chronon within the interval al,au  and ends up 
during any chronon within bl,bu , the duration of this indeterminate interval 
might be imprecise. 

In the next chapter we consider the representation of imperfect relations 
between temporal points. 



6 RELATIONS BETWEEN TEMPORAL POINTS 

In many situations there is a need to know the temporal relation between two 
primitives. In the first section of this chapter we will present the general 
properties of, and types of temporal relations between points. In the second and 
third sections we consider two types of imperfect relations and their 
representations correspondingly: inconsistent and uncertain relations. 

6.1 General properties 

A temporal relation is a relation between two temporal primitives (points, 
intervals, etc.), which includes the temporal meaning characterizing the 
difference between these primitives. In the literature, one can often find the 
term “constraint” used regarding a temporal relation, which can be interpreted 
as a constraint on the temporal entities (primitives). Generally, temporal 
relations can be divided into two main classes: qualitative and quantitative 
(metric). Also, there are several temporal formalisms that use both classes of 
relations together (e.g., Kautz & Ladkin, 1991; Meiri, 1996). Throughout this 
thesis, we will consider only qualitative temporal relations (temporal relations 
for short) between temporal points and intervals. 

A temporal relation takes its symbolic value over a finite domain of the 
basic temporal relations. For temporal points, taken as ontological primitives, 
there are three basic qualitative relations: “before” (<), “at the same time” (=), 
and “after” (>). It is supposed that a particular temporal relation can have only 
one definite temporal value. When there are several alternative values, the 
temporal relation is often represented as a disjunction of these values. For 
example, using the relations between temporal points, we can obtain four such 
disjunctions: “ ” (“before” or “at the same time”), “ ” (“at the same time” or 
“after”), “ ” (“before” or “after”), and “?” (“before” or “at the same time” or 
“after”).
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6.2 Inconsistent relations 

According to the classification of imperfect information by Parsons (1996), 
inconsistency is one type of imperfect information that describes the situation 
when there are two or more conflicting values for a variable. It is common to 
consider knowledge consistent if it supposes the absence of contradiction, and 
inconsistent when it contains contradiction (Roos, 1992). Generally, 
inconsistency arises from having too much information from too many sources. 
For example, through merging the opinions of experts we might derive a 
contradiction, and hence, inconsistent knowledge. 

There are two general approaches to deal with inconsistency. The first 
approach identifies inconsistency with a kind of error, which needs to be 
corrected before a reasoning system can continue working properly. Usually, 
the consistency of information is restored by eliminating one or more of the 
information sources that have brought about inconsistency within the resulting 
knowledge. There are several means of selecting information that can be taken 
into account, such as estimating the reliability of the information source and 
estimating the credibility of information (e.g., Ekenberg et al., 1997). For 
example, all information sources might be assigned with reliability degrees, and 
to restore consistency, the information from the most reliable source is selected.

This approach has been adopted in many reasoning systems dealing with 
temporal relations. For example, van Beek (1989) and van Beek and Cohen 
(1990), develop approximate algorithms for reasoning about temporal relations. 
One of the key concepts they use is the “consistent scenario” for a relational 
network, which means that no contradiction in the network exists. Generally, 
restoring consistency according to this approach often means that some 
information will not be taken into account and probably will be lost, which in 
some situations can lead to a misleading result if the ignored information was 
essential.

The second approach considers inconsistency more as a phenomenon of 
normality than as a kind of error. Supporting this point of view, Gabbay and 
Hunter (1991, 1993) have pointed out that inconsistency in information is the 
norm, and we therefore should delighted if we are able to formalize it. They 
also underline, that there is a fundamental difference between artificial and 
human intelligent behavior: a human often resolves inconsistencies not by 
“restoring” consistency as is so often done in AI, but by applying rules telling 
one how to act when an inconsistency arises. This point of view concords with 
ours, in suggesting that there are many applications in which inconsistency 
needs to be formalized, but not necessarily resolved immediately. 

The area of temporal representation and reasoning is not an exception, for 
in many situations we can derive the conflicting values for a particular temporal 
relation. These situations include, for example, merging information from 
several temporal databases, and in combining experts’ opinions in an expert 
system dealing with temporal information. We believe however, that not in all 
of those situations when an inconsistency is derived, is it necessary to restore 
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consistency immediately. This also might be impossible, for example when at a 
particular moment in time we might not have enough relevant information to 
select one of the conflicting values. In this situation, it might be possible to 
formalize the conflicting information but possibly leave any decision about 
restoring consistency to further reasoning. 

Let us suppose, that an inconsistent temporal relation between two points 
includes the conflicting values of the temporal relations between these points, 
and is represented as a conjunction of these values. It is important to notice, that 
the basic relations within the inconsistent relation in our formulation are not 
alternatives, but rather separate parts of the whole inconsistent relation. For 
example, let us obtain information from a first data set, so that the relation ra,b

between the points a and b is “<”. At the same time, let us have information 
derived from a second data set where the value of this relation is “>”. If we 
know nothing else about this relation and the datasets, but can assume the 
hundred percent reliability of information in each data set, then the inconsistent 
relation can be derived, and we suggest to represent it as “< and >”. 

Formally, let the inconsistent relation between two points be presented by 
three values [d<,d=,d>], where the values d<, d=, d> are the percentages, divided 
by 100, of each of the three basic relations within the inconsistent relation, and  
d<+ d=+ d> = 1 (Ryabov et al., 1999). In the above example, we suppose that both 
of the basic relations “<” and “>” equally contribute to the inconsistent relation, 
and so we suggest that the inconsistent relation ra,b includes 50% of the relation 
“<” and 50% of the relation “>”, and is represented as [0.5,0,0.5]a,b. In some 
other situations, the percentages can be different, depending on, for example, 
the number of information sources supporting each of the basic relations, and 
the credibility of information provided. 

6.3 Uncertain relations 

Uncertainty is another type of imperfect information, according to the 
classification presented in Chapter 3. Uncertainty arises from the lack of 
information about the state of the world, which makes it impossible to 
determine if certain statements about it are true or false. We are able only to 
estimate the tendency of a statement to be true or false using, for example, a 
numerical measure of the degree of our belief.

Let the uncertain temporal relation between two points be represented as a 
disjunction of the basic relations that can hold between these points. This 
means, that the basic relations within the uncertain relation are alternatives, and 
only one of them definitely holds between the two points. To estimate the 
tendency of one of the basic relations to hold between the two points, we 
propose to provide the basic relations within the uncertain relation with their 
probabilities. Generally, let us distinguish between two cases. The first case is 
when we do not need to formalize inconsistent temporal relations, and we can 
assume that all the inconsistencies are resolved immediately after their 
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occurrence by ordinary means. In the second case, we suppose that any derived 
inconsistent temporal relation needs to be formalized, as argued in the previous 
section. The principal difference between these two situations, is that in the first 
case, we are dealing with the three basic relations that can hold between two 
points: “<”, “=”, and “>”. In the second case, we are dealing with four basic 
relations: “<”, “=”, “>”, and an “inconsistent relation”. For each situation we 
propose a separate representation of the imperfect relation between two points. 

When we do not need to formalize inconsistency, we can formally 
represent the imperfect relation between temporal points a and b by a vector 
with the three probability values e e e a b, , , , where: e< is the probability that a

< b, e= is the probability that a = b, and e> is the probability that a > b. The sum 
of the probability values e<, e=, and e> is equal to 1, because in this case they 
represent all the possible basic relations between two temporal points.

In the situation when the inconsistent temporal relation is one of the basic 
relations, we can represent the imperfect relation between two temporal points 

a and b by a vector e e e e d d di
a b

, , , , ,
,

, where the value e< is the 

probability that a<b, the value e= is the probability that a=b, the value e> is the 
probability that a>b, and ei is the probability that the relation between a and b
is inconsistent. The inconsistent relation is represented by three values 
[d<,d=,d>], as it is in the previous section. We also suppose that the percentage 
values of d<, d=, and d> are defined only when ei 0. The sum of the probability 
values of e<, e=, e>, and ei is equal to 1, because these values represent the 
probabilities of all the possible basic relations that can hold between the points 
a and b.

Let us consider two examples illustrating the two above representations. 
Let us suppose, that the information about the temporal relation between the 
points a and b is obtained from one information source. This source suggests 
that a b. In this case, within the vector representing this relation, the 
probability needs to divided equally between the two alternatives, i.e. ra,b= (0.5, 
0.5, 0)a,b. Another situation is when we suppose, that the information about the 
temporal relation between two temporal points a and b is obtained from three 
information sources, as in the example discussed in the previous section. The 
first source suggests that a<b. The second source says, that a=b, and the third 
information source suggests that a>b. In this situation, we suggest that the 
relation ra,b is totally inconsistent and the probability ei is equal to 1. In this 
example, the percentages of the three relations “<”, “=”, and “>” within the 

inconsistent relation are distributed equally ra,b= 0 0 0 1
1
3

1
3

1
3

, , , , ,
,a b

.

In this chapter we have considered the representation of, and different 
types of imperfect relations between two temporal points. In the next chapter 
we will consider the imperfect relations between temporal intervals, and after 
that we will review some relevant approaches to the representation of imperfect 
temporal relations as proposed in the literature. 



7 RELATIONS BETWEEN TEMPORAL INTERVALS 

In this chapter we consider the two main ways to represent the relation between 
two temporal intervals. The first approach, considered in the first section, uses 
Allen’s thirteen interval relations. The second approach, presented in the 
second section, uses the four relations between the endpoints of the intervals. In 
the third section, we provide a discussion of related research. 

7.1 Allen’s interval relations 

Allen (1983) developed an Interval Algebra based on thirteen interval relations, 
(Figure 6) corresponding to the simple definite mutually exclusive relations that 
may exist between two intervals. 

FIGURE 6 Allen’s interval relations (1983, 835) 

A before (b) B B after (bi) A

A meets (m) B B met-by (mi) A

A overlaps (o) B B overlapped-by (oi) A

A starts (s) B B started-by (si) A

A during (d) B B contains (di) A

A finishes (f) B B finished-by (fi) A

A equals (eq) B B equals A

A B
A B

A B

B
A

A
B

A
B

B
A
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Generally, to represent the imperfect relation between two intervals using 
Allen’s thirteen relations, we need to allow for any arbitrary disjunctions on 
these relations. Allen for this task proposed using vectors of relations that are 
interpreted as the disjunction of the basic relations. For example, the vector (A b 
m o B) means that the interval A is “before”, “meets”, or “overlaps” the interval 
B. Allen (1983) proposed to maintain the temporal relations within the 
relational network, which is simply a directed graph. The nodes of the network 
represent the individual intervals. Each arc is labeled to indicate the possible 
relations between the two intervals represented by its nodes. 

7.2 Relations between the endpoints of the intervals 

The relation between two intervals can also be represented by the four relations 
between the endpoints of these intervals, as is shown in Figure 7. 

FIGURE 7 The four relations between the endpoints of the intervals A and B

This representation is quite obvious and has been used, for example, in van 
Beek (1992), Hirsch (1994, 1996), Vilain and Kautz (1986), and Wetprasit et al.
(1997). It is convenient to represent the relation between two temporal intervals 

using the matrix  = r r
r r A B

11 12

21 22 ,
, where r11, r12, r21, and r22 are the relations 

between the endpoints of the intervals. The matrices corresponding to Allen’s 
interval relations are represented in Figure 8. 

       

“equals”   “before”     “after”   “during”         “includes” 

      “overlaps”     “overlapped-by”  “meets”   “met-by”   “starts” 

        “started-by”        “finishes”        “finished-by” 

FIGURE 8 Matrices of Allen’s interval relations (Hirsch, 1996, 279) 

A

B

r22
r12

r11

r21
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In many situations, as was discussed in the previous chapter, these four 
relations between the endpoints can be imperfect, and, in this case, the relation 
between the intervals is imperfect also. We suggest to represent the imperfect 
relation between two intervals using the modified matrix representation 

 =
( , , ) ( , , )
( , , ) ( , , )

,

e e e e e e
e e e e e e

r r

r r A B

11 12

22 22

,

where the relations between the endpoints are represented by the vectors of 
imperfect point relations as is proposed in the previous chapter. 

Using the modified matrix , it is possible to represent any disjunction of 
Allen’s thirteen relations between intervals. However, this representation has 
some weak points. In many applications it is more natural to use 
representations based on interval relations rather than on points. We can use 
intervals instead of points as the basic entity, which does significantly increase 
the expressive power, but in general however, involves a loss of tractability 
(Hirsch, 1996). For example, when the probabilities within the vectors in the 
matrix are non-zero, it is difficult to guess which of Allen’s relations are 
probable, and how probable they are, and this makes representation using the 
four relations between the endpoints less informative compared to 
representation using Allen’s relations. However, in many practical situations 
this is the only way to estimate the imperfect relation between two 
indeterminate temporal intervals. 

Therefore, in this thesis we propose a transition from representation using 
endpoints to representation using Allen’s relations, when the relation between 
two intervals is imperfect. In a representation using the relations between 
endpoints we will use the matrix , as shown in this section. In a representation 
using interval relations we propose to calculate the probabilities of Allen’s 
relations between two intervals (Ryabov, 2000). This calculation uses the 
probability values within the vectors from the matrix .

7.3 Related research 

A number of formalisms for handling imperfect temporal information have 
already been proposed, but only a few of them consider the representation of 
imperfect temporal relations. Of the latter, almost all of them are built on the 
assumption that there is present several alternative values for the temporal 
relation.

Allen (1983) when proposing his representation of interval relations, 
assumed that in many practical situations we cannot be sure about which of the 
basic relations holds between two temporal primitives, as several alternative 
relations may be available. Allen represented the imperfect temporal relation 
between two intervals as a disjunction of the basic thirteen relations that are 
possible. He also discussed the importance of reasoning algorithms and 
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analyzed their complexity. This representation however, did not include any 
numerical measures of imperfection. 

Van Beek (1989, 1990, 1991) proposed a formalism for dealing with 
imperfect temporal relations (referred to as indefinite relations). He considered  
the representation of imperfect relations using a relational network approach, 
where the temporal entities are represented by nodes, and the temporal 
relations among these entities are represented by arcs. The main research 
problem considered by van Beek was to make explicit the strongest possible 
assertions about temporal relations when we are given a set of events, 
represented as intervals, and when we have some knowledge of the relations 
between some of the intervals. Van Beek in his formalism also did not specify 
any numerical measures of imperfection, although he did not consider them as 
a research goal.

Freksa (1992) presented a generalization of Allen’s interval-based 
approach to temporal reasoning. The notion of a “conceptual neighborhood” of 
qualitative relations between events is central to the presented approach. 
Relations between semi-intervals rather than intervals are used as the basic 
units of knowledge. In addition to the logical constraints considered by Allen, 
Freksa takes into account neighborhood relationships between temporal 
relations. Two relations are conceptual neighbors if they can be derived from 
each other by shifting one of the four interval endpoints, leaving the other three 
fixed. A set of relations forms a conceptual neighborhood if each relation is a 
conceptual neighbor of at least one other relation in the set.

One important problem to be solved by temporal logic is interval 
representation problem. The core of this problem is in representing the relation 
which exists between the truth of an assertion over an interval and the truth of 
an assertion over internal points and/or subintervals of an interval. Several 
solutions of this problem proposed in the literature are observed and critically 
evaluated in Trudel (1991). That paper also proposes another approach to this 
issue based on first-order temporal logic called GCH. This logic uses different 
approach to represent information associated with an interval, based on the 
assumption that what is true at every point in an interval completely 
determines what is true over the interval. 

An approach to represent temporal knowledge based on elementary 
calculus was proposed in Trudel (1997). Many traditional methods for 
representing temporal information in a first-order logic suppose associating the 
information with a temporal point or interval via a relation. Trudel (1997) 
proposed a new paradigm in which all point-based information is translated to 
real-valued functions in the Cartesian plane. In this way, information that is 
true/false at a point becomes a 0-1 function. 

In the area of temporal databases the topic of dealing with imperfect 
relations has also received attention. Dyreson (1994), Dyreson and Snodgrass 
(1993, 1998), and Cowley and Plexousakis (2000) considered the problem of 
handling temporal indeterminacy in databases, by calculating the probabilities 
of the three basic relations between two temporal points. They stressed the need 
for the development of a query language for querying temporal information 
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and have studied the complexity of processing different queries, which requires 
dealing with temporal indeterminacy. They did not however consider imperfect 
interval relations, nor the representation of imperfect relations between points. 

Many other authors have attempted to incorporate the handling of 
imperfection in their reasoning about temporal relations. The probabilistic 
approach is a numerical technique most widely used for that purpose, and 
which is incorporated, for example, into probabilistic temporal networks (also 
called Bayesian networks), see for example (Heckerman & Wellman, 1995; 
Tawfik & Neufeld, 1994, 1996; Young, 1996; Young & Santos, 1996). In the 
research area of integrating time and probability for instance, there are a 
number of approaches that have introduced into temporal contexts 
mathematical formalisms such as Bayesian networks (e.g., Haddawy, 1994; 
Pearl, 1992) and Markov processes (e.g., Shafer, 1988). Moreover, a number of 
approaches to handling temporal uncertainty by integrating probabilistic 
reasoning into temporal logic have been proposed, e.g. (Goodwin et al., 1994; 
Eberbach & Trudel, 1993).

Some research attention has also been paid to non-probabilistic methods 
for handling imperfect temporal relations. For example, Godo and Vila (1995) 
proposed a propositional temporal language based on fuzzy temporal relations. 
This language is provided with a natural possibilistic semantics to account for 
the imperfection issued by the fuzziness of temporal relations. The authors 
(Godo & Vila, 1995) also have presented an inference system, based on specific 
rules for dealing with temporal relations. Logical formalisms have also been 
applied for dealing with temporal intervals (e.g., Barber, 2000). Furthermore, 
Almeida (1999) proposed a new system of relations for reasoning about general 
intervals of time. This system is an integration of Allen’s theory (Allen, 1983, 
1984) and a one-dimensional version of Region Connection Calculus (Cohn et
al., 1997). And, finally, an extension of Allen’s Interval Algebra based on fuzzy 
sets was proposed, for example, by Badaloni and Giacomin (2000).

In this chapter we have considered the representation of imperfect 
relations between temporal intervals. In the next chapter we will present the 
basics of the reasoning mechanism used in this thesis, and review some relevant 
reasoning techniques. 



8 REASONING ABOUT TEMPORAL RELATIONS 

Formalisms for reasoning about temporal relations are intended to handle 
temporal relations between temporal primitives (points, intervals, etc.), on the 
basis of the properties of the underlying time ontology. In this chapter, we 
overview the basics of the approaches intended for reasoning about temporal 
relations. In the first section, we present the reasoning operations that are used 
in the thesis. In the second section, we discuss the related temporal reasoning 
mechanisms.

8.1 Reasoning operations 

In this thesis we consider three main reasoning operations: inversion, 
composition, and addition. Two of these operations, inversion (Figure 9a) and 
composition (Figure 9b), are widely used operations within different temporal 
reasoning formalisms. 

a) Inversion     b) Composition 

FIGURE  9 Inversion and composition operations 

The operation of inversion allows us to derive the relation rb,a between two 
temporal points b and a, when the relation ra,b between a and b is known, and 
rb,a = bar ,

~ , as is presented in Figure 9a. The operation of composition ( ) derives 

the relation ra,c between the temporal points a and c, when the relation ra,b exists

rb,a = bar ,
~

ra,b

a b

ra,b rb,c

ra,c = ra,b rb,c

a

b

c
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between the points a and b and the relation rb,c between the points b and c, as is 
presented in Figure 9b. 

The rules for performing these operations using a symbolic representation 
of the basic relations have been proposed by Vilain and Kautz (1986). In this 
thesis we extend these proposals to the reasoning about imperfect temporal 
relations between points. We propose formulas to calculate the probabilities of 
the basic relations within the resulting relation, taking into account that the 
operands are imperfect relations. 

In many situations, we need to deal with more than one possible imperfect 
relation between two temporal points. This happens when the information 
about a relation, for instance, is collected from a number of information sources 
or experts. For example, according to the first expert we might know that the 
relation between the points a and b is r1a,b. At the same time, the second expert 
suggests that the relation between these points is r2a,b. The binary operation of 
addition ( ) combines r1a,b and r2a,b into a single imperfect relation ra,b between 
the points a and b, as is illustrated in Figure 10. 

FIGURE 10 Operation of addition  

The operation of addition is similar to the operation of intersection as defined, 
for example, in the Interval Algebra of Allen (Allen, 1983), in the Point Algebra 
of Vilain and Kautz (Vilain & Kautz, 1986), and further in the extensions of 
these by van Beek (van Beek, 1990, 1991, 1992), and Dey et al. (1996). We extend 
the operation of intersection, which uses a symbolic representation of temporal 
relations, with probabilistic measures of imperfection, and provide formulas to 
calculate the probability values within the resulting vector. 

8.2 Related research 

Allen’s Interval Algebra (IA) (Allen, 1983) is definitely one of the most relevant 
formalisms for dealing with qualitative temporal relations. IA models the 
relation between two temporal intervals as a suitable subset of the set of the 
thirteen basic relations (Figure 6, Section 7). In such a way, 212 relations can be 
specified between any pair of intervals, including the empty relation 
corresponding to the empty set of the basic relations. In IA the unary operation 

r r ra b a b a b, , ,1 2

r1a,b

r2a,b

a b



48

of inversion, and the binary operations of intersection and composition were 
defined. However, Allen’s formalism proved to be computationally intractable. 
Further research in this area therefore, paid significant attention to identifying 
the tractable fragments of IA, obtained by restricting the set of allowed 
relations. The three most important results from this perspective, Vilain and 
Kautz’s Point Algebra (Vilain & Kautz, 1986), van Beek’s Continuous Endpoint 
Algebra (van Beek, 1990), and Nebel and Bürckert’s ORD-Horn Algebra (Nebel, 
1996; Nebel & Bürckert, 1995), are overviewed below. 

Vilain and Kautz (1986) proposed a Point Algebra (PA), which models the 
relation between any two points as a subset (disjunctions) of the set of the three 
basic relations. In this way, they allow the specification of the following 
relations: “<”, “=”, “>”, “ ”, “ ”, “ ”, “?”, plus the empty relation. To facilitate 
reasoning concerning these relations, Vilain and Kautz defined the unary 
operation of inversion, and the binary operations of intersection and 
composition. The relation between two temporal intervals is represented in PA, 
as it is in this thesis, as a conjunction of the four relations between the endpoints 
of the intervals. However, PA does not allow the representation of any 
disjunction of Allen’s relations between two intervals. So, for example, it allows 
the representation of the interval relation “before” or “meets” or “overlaps”, but 
does not allow the representation of “before” or “after”, because in the latter 
case a disjunction of point relations is required to represent it. 

Van Beek (1989, 1990, 1992) identified a relevant proper subset of PA, 
called Continuous Endpoint Algebra (CEA), which only models continuous 
relations between time points. A relation ri between two points P1 and P2  is said 
to be continuous if, for any admissible value x of P1 , from the fact that x ri y1 and 
x ri y2, where both y1 and y2 are admissible values for P2 and y1 < y2 , it follows 
that x ri y, for any value y of P2 such that y1 < y < y2 , and visa versa (Chittaro & 
Montanari, 2000). It is possible to show that all the relations, except for “ ”,
between two temporal points are continuous. This however means, that van 
Beek’s CEA is not able to model any relation between two intervals whose 
representations involve the relation “ ” between the endpoints of the intervals. 
CEA covers approximately 1% of IA (Nebel & Bürckert, 1995).

Nebel and Bürckert’s ORD-Horn subclass of IA (OH) (Nebel, 1996; Nebel 
& Bürckert, 1995) is a strict superset of Simple Interval Algebra (SIA) (Tawfik & 
Neufeld, 1996), and it can be viewed as on the borderline between tractability 
and intractability, as was pointed out in Chittaro and Montanari (2000). OH is 
claimed to be the only maximal subset of IA which includes all the basic 
relations, and for which path-consistency is sufficient for deciding satisfiability 
(Nebel & Bürkert, 1995), and in which Ladkin and Reinefeld’s algorithm 
(Ladkin & Reinefeld, 1992) is sound and complete (Nebel, 1996). It has been 
shown that PA and CEA are proper subclasses of OH, which covers 
approximately 10 % of IA (Nebel, 1996).

There are a number of other approaches to reasoning about temporal 
relations, for example, Golumbic and Shamir’s Macro-Relation Algebra 
(Golumbic & Shamir, 1993), Ligozat’s Generalized Interval Calculus (Ligozat, 
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1991), Dechter, Meiri, and Pearl’s Distance Algebra (Dechter et al., 1991), the 
reasoning about repeating events by Morris and Khatib (1999), and the 
reasoning about qualitative and quantitative temporal information by Wetprasit 
and Sattar (1998). An overview of these and other approaches can be found in 
Chittaro and Montanari (2000).

8.3 Constraint Satisfaction Problem 

One of the main research problems considered in the area of reasoning about 
temporal relations is the so-called Constraint Satisfaction Problem (CSP). In 
many applications it is supposed that we are given a set of temporal events, 
represented using temporal primitives, and a set of temporal relations between 
these events. Such kinds of situations are often represented as a directed graph 
with nodes representing temporal events, and arcs representing the temporal 
relations.

A general CSP can be represented by a finite set of variables (or nodes), 
their associated domains, and a set of constraints on these variables (Chittaro & 
Montanari, 1996, 2000). The domain of a variable is the set over which the 
variable takes its values. Each element of the domain is called a label. The 
association between a variable v and a label l is denoted by the pair (v,l).
Relations can be distinguished between unary, binary, ternary, ..., n-ary 
relations over (v,l) pairs. The basic constraint satisfaction problem consists of 
finding one (or all) assignments of labels to variables which satisfy the given 
relations. The early formulations of the CSP were proposed by Mackworth 
(1977) and by Mohr and Henderson (1986).

The CSP can be divided into two sub-problems according to the two 
general types of temporal relations: qualitative CSP and quantitative CSP. In 
qualitative CSP variables take their values over a set of possible relations 
among temporal entities. In the framework of temporal points taken as 
ontological primitives, a variable takes its values over a set of three basic 
relations (before, at the same time, and after) that can hold between any two 
temporal points. In the framework of temporal intervals taken as ontological 
primitives, a variable takes its values from the set of the thirteen interval 
relations proposed by Allen (1983).

Two fundamental problems arise in this area: 1) deciding whether or not 
there exists an instant of the variables that satisfies the given set of relations; 2) 
determining for each pair of temporal entities, the strongest implied relation 
between them. In the sub-area of interval based formalisms the first problem is 
often referred to as the interval satisfiability problem (ISAT), and the second 
problem is called the minimal labeling problem (MLP), as in van Beek (1989, 
1991) or the deductive closure problem (van Beek & Cohen, 1990).

Approaches for reasoning about temporal relations use a number of 
different reasoning algorithms for constraint satisfaction, which are based on 
the early works of Montanari (1974), Mackworth (1977), and Freuder (1978, 
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1982). These approaches use a network representation of relations by 
associating temporal entities to nodes, and labeling the arcs with the algebraic 
elements that denote the temporal relation between the nodes they connect. The 
problem of computing the minimal representation of a set of temporal relations, 
or proving its unsatisfiability, concerns the problem of computing the minimal 
consistent labeling of the correspondent network, a problem which was 
considered by van Beek (1989, 1992), by Kautz and Ladkin (1991), and by Vilain 
and Kautz (1986). The complexity of this problem depends on the 
expressiveness of the temporal formalism used.

Dechter et al. (1991) presented network-based method for constraint 
satisfaction that is able to handle continuous variables. The proposed by 
Dechter et al. framework allows to specify bounds on a temporal point, 
similarly as we do in this thesis, i.e. a point can be represented with lower and 
upper bounds of the interval, where the point is actually can be found. In that 
approach it is also possible to specify the bound on the difference between 
events, and this can be generally compared with the notion of maximum 
measurement difference in our work.

The temporal information might be relative (for example, A occurred 
before B) or metric (A had finished at most 5 minutes after B finished). The 
unique feature of the approach of Dechter et al. (1991) is in allowing the 
processing of metric information, i.e. assessments of time difference between 
events. Also in that paper the algorithms have been proposed for performing 
the following reasoning tasks: 1) finding all feasible times that a given event can 
occur; 2) finding all possible relationships between two given events; and 3) 
generating one or more scenarios consistent with the information provided. 



9 APPLICATIONS 

In this chapter we will discuss two possible application areas for the formalism 
proposed in this thesis. These are medical and industrial diagnostics, which are 
actually the two sub-areas of the big research field of automated diagnostics. 
Nevertheless the formalism to be applied is almost the same for both 
application areas; the motivation for the application and background of these 
areas and related research in those areas will be discussed separately in two 
sections below. 

9.1 Medical diagnostics 

It is almost inconceivable to try to represent clinical data and reason about them 
without a temporal dimension. As it was pointed out in many papers, i.e., 
(Nguyen et al., 1999), dedicated to the problem of medical applications, the 
ability to reason with time-oriented data is central to the practice of medicine. 
Monitoring clinical variables over time often provides information that drives 
medical decision-making (e.g., clinical diagnosis and therapy planning). In 
some medical diagnostic applications, temporal information about the 
occurrence of the symptoms is vital for correct diagnostics and some medical 
expert systems, for example, Hamlet and Hunter (1987) tried to deal with this 
aspect. The crucial role of temporal representation and reasoning for modern 
medical information and decision support systems was also underlined by 
Shahar (2000), Dojat and Sayettat (1996), Combi and Shahar (1997), and Gamper 
(1996).

In Wainer and Rezende (1997) a temporal extension to the Parsimonious 
Covering Theory (PCT) was proposed to allow one to associate to a disease a 
temporal evolution of its symptoms. PCT is based on a model that associates to 
each disease a set of symptoms it may cause. Thus, PCT assumes that, at the 
moment of diagnostic, all symptoms are observable and that the order of 
occurrence of these symptoms is irrelevant for the diagnostic. The work of 
Wainer and Rezende extends the PCT model in such a way that to each disease 
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one associates evolutions of symptoms (or sets of possible histories of 
symptoms). Thus, at diagnostic time, one will not just describe the symptoms 
present, as one would in a static diagnostic system, but describe the whole 
evolution of the symptoms.

One way, incorporating fuzzy temporal reasoning within diagnostic 
reasoning, was proposed by Wainer and Sandri (1999). Disorders are described 
as an evolving set of necessary and possible manifestations. Ill-known moments 
in time, e.g. when a manifestation should start or end, are modeled by fuzzy 
intervals, which are also used to model the elapsed time between events, e.g. 
the beginning of a manifestation and its end. Patient information about the 
intensity and times in which manifestations started and ended are also modeled 
using fuzzy sets. The paper discusses the ways to use that information to make 
predictions about future and past events in diagnosis. 

A template system is described in Lowe et al. (1999) that uses fuzzy set 
theory to provide a consistent mechanism of accounting for uncertainty in the 
existence of events, as well as vagueness in their starting times and duration. 
Fuzzy set theory allows the creation of fuzzy templates from linguistic rules. 
The fuzzy template system that is introduced in this paper can accommodate 
multiple time signals, relative or absolute trends, and obviates the need to also 
design a regression formula for pattern matching. The target application for the 
fuzzy template system was anesthesia monitoring. 

In Nejdl and Gamper (1994) a framework is described for model-based 
diagnosis of dynamic systems by using and expressing temporal uncertainty in 
the form of qualitative Allen's interval relations. Based on a logical framework 
extended by qualitative and quantitative temporal constraints it was shown 
how to describe behavioral models, how to use abstract observations and how 
to compute abstract temporal diagnoses. This yields an expressive framework, 
which allows the representation of complex temporal behavior with temporal 
uncertainty. An example of hepatitis diagnosis was considered. In later work 
(Gamper & Nejdl, 1997) the similar example of hepatitis B was considered to 
describe a model-based framework for complex temporal behavior. The concept 
of abstract observations was introduced as an abstraction from observations at 
time points into assumptions over time intervals. This leads to a more intuitive 
representation and makes diagnosis independent of the number of actual 
observations and the granularity of time. 

All the mentioned above references underline the necessity to take into 
account temporal dimension in many areas of medicine, including diagnostics. 
Let us consider one possible situation. Imagine, that a patient has come to a 
therapist already when his unknown illness has quite neglected form. The 
therapist asks about dynamics of symptoms and usually the patient cannot 
answer precisely what particularly happened and when. Even more, the patient 
does not always remember which symptoms occurred first, i.e. temporal 
relations between symptoms are uncertain. From such a story the therapist 
derives quite uncertain scenario of the illness’ dynamics but still needs to 
estimate possible diagnosis to decide about further investigation. To be able to 
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solve such and similar diagnostic problems we propose to use the following 
approach.

We assume that there exist a certain number of symptoms (events) that are 
critical for particular diseases that we are able to classify. Examples of such 
symptoms are “body temperature exceeded 39 C” and “a qualitative 
characteristic of hemoglobin according to the blood analysis is lower than 90”. 
We believe that in many diagnostic situations it is easier to put the diagnosis 
and it will be more precise if we will take into account temporal relationships 
between the symptoms occurred.

The core of the approach to temporal diagnostics we propose is generation 
and further use of temporal scenarios of known illnesses. Such scenario is a 
relational network, where the nodes are the symptoms from the set of possible 
symptoms, and the arcs are the temporal relations between the symptoms. We 
propose to represent these relations using the formal mechanism proposed in 
this thesis, i.e. these relations are uncertain temporal relations. A particular 
course of illness for a particular patient is formalized using also a relational 
network with symptoms and relations between them. By this it is probable that 
the relations will be certain at this stage. When we observed a number of cases 
of this particular illness from a number of patients, we can generate a temporal 
scenario (pattern). At this stage we combine the networks for the illness into the 
one scenario. By this, it is very probable that the relations between the 
symptoms will become uncertain, since the same illness can have a different 
course for different patients. 

Temporal scenarios for known illnesses are stored in a database and can 
be accessed when we try to put the diagnosis. In this situation, we can compare 
a relational network, describing the particular course of illness, with known 
temporal scenarios using the mechanism proposed in Article 8. To perform this 
comparison we use original measures of distance between different uncertain 
relations, and between network and scenario. In this way, we are able to 
provide a therapist with potential diagnoses (if appropriate) and their 
probabilities.

9.2 Industrial diagnostics 

Industrial diagnostics is also one important application area for AI formalisms. 
In many industrial process control and monitoring tasks there is a need to 
identify and classify the situation occurred, and this need is crucial to enabling 
process improvements and the successful operation of industrial equipment. 
The examples of such situations are: automated inspection (flaw location) 
(Wilson et al., 1998), automated diagnosis of failures occurred (Struss, 1992), 
fault localization in power transmission networks (Beschta et al., 1993), and real-
time diagnosis of the situation to prevent failures in future.

As it was pointed out by Struss (1997) the task of diagnosing technical 
systems becomes increasingly challenging. The complexity of these systems 
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grows up rapidly, and therefore the complexity of the task of diagnostics does 
also. This relates to many types of industrial systems, such as production plants 
and factories, communications networks, and transportation systems.

In industrial, as well as in medical, diagnostics we use the approach of 
model-based diagnosis. The key idea of this approach is that we explicitly 
represent the knowledge about the device monitored, its structure, and 
operational behavior as a model. The diagnostics itself is organized as an 
inference process based on this model and the observed behavior (Dressler & 
Struss, 1996).  This approach created the demand for rigorous theoretical 
foundations for automated diagnosis, and became one of the major fields of 
application and an important touchstone for the utility of many AI theories. 

A number of techniques to temporal diagnostics have been proposed so 
far, but there still exist problems there require further research attention. One 
such problem is when the temporal information obtained from an industrial 
object is uncertain. Many researchers have paid their attention to this problem 
and a number of formalisms for handling imperfect information have been tried 
in those applications. For example, Markov chains were used in modeling 
temporal evolutions in model-based diagnosis by Portinale (1992). It was 
assumed in that paper, that probabilistic temporal knowledge is available for 
each component of the system.

The need for combination of uncertainty management techniques and 
temporal reasoning formalism for medical and industrial diagnosis and 
prediction was underlined in Arroyo-Figueroa and Sucar (1999). In that paper a 
novel representation called Temporal Nodes Bayesian Networks was proposed. 
In such a network each node represents an event or state change of a variable, 
and an arc corresponds to a causal-temporal relationship. Multiple granularity 
was also allowed based on the assumption that temporal intervals can differ in 
number and size for each temporal node. The proposed approach was applied 
to fault diagnosis and prediction as a subsystem for a fossil power plant. 

The main advantage of temporal diagnostics is that it considers not only a 
static set of symptoms, but together with the time they were monitored, and 
which allows to have a broader view on the situation. Moreover, sometimes 
only considering temporal evolution of relations between different symptoms 
can give us a hint to precise diagnostics.

In general, the mechanism for industrial temporal diagnostics using 
generation and recognition of uncertain temporal scenarios is similar to the one 
already discussed in the previous section. The conceptual schemas for our 
approach to industrial temporal diagnostics can be found in Article 9 of this 
thesis.



10 ORGANIZATION OF THE THESIS 

In this chapter we present the logical structure of the thesis and explain the 
organization of the articles included in the thesis.

10.1 Logical structure of the thesis 

We presented above the introduction to the work, the classifications and 
methods used for dealing with imperfect information, and an overview of the 
current approaches to temporal representation and reasoning. We also 
summarized the research problem addressed by the thesis. The reminder of the 
study, which is also the main part of the thesis, includes nine articles. The 
classification of these articles and logical relationships between them are 
presented in Figure 11. 

FIGURE 11 Articles included in the thesis 

Representation and reasoning 

Representation and estimation Application

Article 1 Article 6 

Article 8 

Article 9 

Article 4 

Article 5 Article 3 

Article 2 

Article 7 
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The nine articles included in the thesis can be classified in two ways. The first 
classification can be made based on the type of temporal primitives used in the 
articles. So, the first group (shown with a white background in Figure 11), 
includes articles 1, 4, and 6, and is concerned only with the representation of 
and reasoning about the relations between temporal points. The second group 
(shown with a gray background), includes articles 2, 3, and 5, and is concerned 
with the relations between temporal intervals. Finally, the third group, 
including articles 8 and 9, deals with both types of primitives. 

The articles can also be divided into tree other groups using the criteria of 
research problem they deal with. The group of articles 2, 3, 4, and 5 deals with 
the representation of imperfect temporal relations and the estimation of these 
relations using the information about temporal primitives. Articles 1, 6 and 7 
consider representation and reasoning with imperfect relations between 
temporal points and intervals. Finally, the group consisting of articles 8 and 9 
discusses one possible application area for the formalism proposed in the thesis. 

Arrows in Figure 11 stand for the logical connection between particular 
articles. For example, an arrow from Article 1 to Article 2 means that the latter 
one uses the results obtained in Article 1.

All the articles use the same representation of the imperfect temporal 
relations using the probabilities of the basic relations. The proposed approaches 
for estimating these uncertain relations show how this representation can be 
“filled” with the particular probability values. The reasoning operations show 
how the obtained imperfect relations can be used further to derive the 
previously unknown relations in a relational network combining the already 
known relations. We also show one possible application area (temporal 
diagnostics) for the formalism proposed in the thesis. 

10.2 Contents of the thesis in brief 

In the article, titled “Representation and Reasoning with Uncertain Temporal 
Relations”, we propose the representation of uncertain relations between 
temporal points, which includes explicit probability values of the consistent and 
the inconsistent parts of a temporal relation. The probability of the consistent 
part of the relation is divided between the basic temporal relations, i.e. “<” 
(before), “=” (at the same time), and “>” (after). The inconsistent part of the 
relation has one probability value, which is divided between the three basic 
relations presenting the percentage values of their support among knowledge 
sources. Both the probabilities and the percentage values are used in our 
reasoning mechanism, which consists of three operations: inversion, 
composition, and addition. These can be used to derive the probability and 
percentage values for a relation between any two temporal points. 

In the article, titled “Uncertain Relations between Indeterminate Temporal 
Intervals”, we estimate the uncertain relation between two indeterminate 
intervals. The relation between two intervals is represented using the four 
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relations between the endpoints of these intervals, as it is in Chapter 6. We first 
estimate these four relations between the endpoints, and then calculate the 
probabilities of Allen’s relations between the intervals. To estimate the relation 
between two endpoints we compose three formulas for the three probabilities 
of the basic relations. 

In the article, titled “Probabilistic Estimation of Uncertain Temporal 
Relations”, we estimate the uncertain relation between two temporal intervals. 
The main problem discussed in this chapter is how to compose the probabilities 
of Allen’s relations using the probabilities of the basic relations between the 
endpoints of the intervals. We formalize the dependencies between the values 
of the four relations between the endpoints of the intervals. After that, we 
compose the conditional probabilities for different combinations of these four 
relations. The probabilities of Allen’s relations are composed as the joint 
conditional probabilities of the relations between the endpoints. 

In the article, titled “Estimation of Uncertain Relations between 
Indeterminate Temporal Points”, we are concerned with estimating uncertain 
relations between two indeterminate temporal points assuming that the 
temporal values of these points might be obtained with some measurement 
error, and this error needs to be taken into account when estimating the 
temporal relation between two indeterminate points (Ryabov & Puuronen, 
2000). We assume that the probability mass functions of the values of these two 
temporal points, and the maximum measurement error are known. Using these 
assumptions we derive formulas for the lower and the upper bounds of the 
probabilities of the basic relations between two indeterminate temporal points. 

In the article, titled “Estimating Uncertain Relations between 
Indeterminate Temporal Points and Intervals”, we estimate the uncertain 
relation between two indeterminate temporal intervals, when the 
measurements of their temporal values may include some error. Combining the 
approaches proposed in Articles 3 and 4 we propose the formulas for the lower 
and upper probabilities of Allen’s intervals relations between two 
indeterminate intervals. 

In the article, titled “Probabilistic Reasoning about Uncertain Relations 
between Temporal Points”, we present an extension of the approach proposed 
in the first article. The basic representation of the uncertain relation between 
two temporal points is proposed to be simpler for those situations where the 
formalization of inconsistent information is not required. The four reasoning 
operations (inversion, composition, addition, and negation) are redefined, 
taking into account the new representation. 

In the article, titled “Handling Uncertain Interval Relations” we continue 
considering the topic of reasoning with imperfect temporal relations. The 
results achieved in (Ryabov & Puuronen, 2001) are extended to the 
representation using Allen’s interval relations. The definitions for the 
probabilistic representation, as well as for the operations of inversion, 
composition, and addition, are given for interval relations. In this paper, we 
also show how to translate uncertain interval relations using Allen’s 
representation into the representation using the relations between the endpoints 
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of these intervals, which can simplify further reasoning in some practical 
situations.

In the article, titled “Abstract Diagnostics Based on Uncertain Temporal 
Scenarios” we showed one possible application area for the formalism proposed 
in the thesis. This area is temporal diagnostics. Particularly, in this article we 
considered the case of medical diagnostics, where identification of temporal 
patterns plays an important role. Temporal scenarios of different diseases, 
therapy protocols, and other temporal graphs provide important additional 
information for medical decisions. In this paper we propose to use the algebra 
of uncertain temporal relations in diagnostic problems. We represent uncertain 
temporal relations within a scenario graph using the probabilities of the basic 
relations that can hold between two temporal primitives. Also in the paper we 
show how:  (a) to generate temporal scenarios by integrating appropriate 
relational networks from already diagnosed cases; and (b) to classify a new case 
using the measure of the distance between a network and a scenario. 

In the article, titled “Industrial Diagnostics using Algebra of Uncertain 
Temporal Relations” we continue discussing possible applications for our 
formalism. Another application sub-area (within the area of automated 
diagnostics) is industrial diagnostics. Often, the information taken from an 
industrial object could be uncertain making the task of diagnostics more 
complex. We propose to use the algebra of uncertain temporal relations in 
solving this problem. We estimate temporal relations between the set of 
symptoms (crucial values of important variables) obtained from an industrial 
object to build the temporal relational network for this particular situation. 
After that, we compare the obtained network with known temporal scenarios 
(patterns) of failures, using the numerical measure of the distance between a 
network and a scenario. Using this approach we derive the probabilities of 
possible diagnoses for the particular situation. We also show how the learning 
for the database of scenarios can be performed, which will make diagnostics for 
future cases more precise. 

10.3 About the joint articles 

The first article introducing the new representation of imperfect temporal 
relations and basics of reasoning mechanism is co-authored with Seppo 
Puuronen and Vagan Terziyan. My particular contribution is in the definition of 
the representation of uncertain and inconsistent relations (Section 2), and 
partially in the definition of the reasoning operations (Section 3). 

Article 4, presenting the formalism for estimation of uncertain relations 
between indeterminate temporal points is co-authored with Seppo Puuronen. 
My major contributions to that paper are related to the general idea of that 
approach, definitions of the basic concepts (Section 2), developing the 
formalisms for estimation of uncertain relations (Sections 3 and 4), and the 
motivating example (Section 5). 
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Article 6, presenting the approach to reasoning with uncertain temporal 
relations between points is co-authored with Seppo Puuronen. My contribution 
to that paper relates to the definition of the basic concepts (Section 2), the 
properties of reasoning operations (partially Section 3), reasoning mechanism 
(Section 3), and the example (Section 4). 

In Article 8, the proposed in this thesis approach is applied to abstract 
temporal diagnostics, and the particular case of medical diagnostics is 
considered. My contribution to that paper is partially in the development of the 
general idea of that approach, the definition of the basic concepts (except for the 
measure of distance), definitions of the reasoning operations, and the 
algorithms for generation and recognition of temporal scenarios. 

Article 9 proposes the industrial diagnostics as another application area 
for the mechanism described in this thesis. My contribution in that paper is 
partially in the conceptual schema for industrial diagnostics, the definition of 
the basic concepts and the algorithms for generation and recognition of 
temporal scenarios.



11 CONTRIBUTION, LIMITATIONS, AND 
FUTURE WORK 

In this chapter we discuss the contribution of the thesis. We also address the 
major limitations of the study. 

In this thesis we are dealing with the problem of handling imperfect 
temporal relations between temporal points and intervals. The work is situated 
in the area of temporal representation and reasoning and in the area of 
numerical techniques for handling imperfect information. We propose a formal 
numerical technique for the representation of, estimation of, and reasoning 
about imperfect temporal relations based on the probabilistic approach. The 
contribution of the thesis is described according to the three main issues related 
to handling imperfect temporal relations: representation, estimation, and 
reasoning. We also distinguish between two sub-areas: handling temporal 
relations between points and between intervals.

The main representational idea of the thesis is that an imperfect temporal 
relation between points is presented by providing the probability values of the 
basic relations that can hold between these points. For that purpose, we propose 
to use the uncertainty vector, which includes the probabilities of the basic 
relations. We define two types of representation: 1) the representation of 
uncertain and inconsistent temporal relations between points; and 2) the 
representation of uncertain temporal relations between points. The difference 
between these two representations was discussed in Chapter 6.

According to the classification presented in Section 1 of Chapter 4 we 
assume the epistemic interpretation for the probabilities. Also, our probabilities 
are rationalistic, theoretical, and behavioral. Finally, our probabilities are 
constructive since we allow assessing them from the available evidence, e.g., 
using the information about indeterminate temporal primitives we estimate the 
probabilities of the basic relations between them. 

From the estimation of the imperfect temporal relation between two 
temporal points, we derive the probability values for the three basic relations, 
using the information about the points. We assume that the temporal points can 
be indeterminate, as was discussed in Chapter 5, which means that they are 
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defined within the intervals of possible values, together with their probability 
mass functions. We propose formulas for the probabilities of the basic relations. 
Although this question has already been discussed in some papers in the area of 
temporal databases, we propose the formulas for the probabilities of the basic 
relations between two endpoints, which is a novel element. Moreover, we 
suppose that the measurements of the values of the temporal points may 
include some error, which needs to be taken into account during the estimation. 
We assume that the maximum value of this measurement error is known, and 
derive the formulas for the lower and upper probabilities of the three basic 
relations.

The proposed reasoning mechanism for temporal points, including the 
four operations, derives new imperfect relations in a relational network 
combining known imperfect relations. Our contribution here is, that we extend 
the standard definitions of the reasoning operations to ability to process 
imperfect temporal relations, which are represented as uncertainty vectors. The 
resulting relation is also represented as an uncertainty vector. 

There are the two main ways to represent the temporal relation between 
two intervals. We either can use Allen’s thirteen interval relations (Allen, 1983), 
or we might consider the four relations between the endpoints of these 
intervals, as was shown in Chapter 7. In the case when the intervals are 
indeterminate, it is in many situations not evident, which Allen’s relation holds 
between the two indeterminate intervals. Moreover, a number of Allen’s 
relations might be probable. We propose to estimate the imperfect relation 
between two indeterminate intervals by calculating the probabilities of Allen’s 
relations, taking into account the information about the endpoints of the 
intervals. In that way, we show the transition between the two ways of 
representation of the imperfect relation between two indeterminate temporal 
intervals, which is also an important contribution of the thesis. 

To compose the formulas for the probabilities of Allen’s relations between 
two indeterminate intervals, we study and formalize the dependencies between 
the temporal values of the endpoints of these intervals. After that, we compose 
the probabilities of Allen’s relations as the joint conditional probabilities of the 
relations between the endpoints, taking into account the dependencies derived.

We discuss the computational complexity of the estimation of Allen’s 
relations. This discussion provides hints to the understanding of the behavior of 
the approach in real applications. In the thesis we also consider several 
examples from the area of temporal databases, which use synthetic but realistic 
settings, and help to illustrate the possible applications for the mechanism 
proposed in the thesis. 

We proposed an application for the presented formalism in the area of 
temporal diagnostics (medical and industrial). Temporal diagnostics is based on 
analyzing temporal relations between values of crucial variables. We estimate 
temporal relations between the set of symptoms (crucial values of important 
variables) obtained from an industrial object (in industrial diagnostics) or a 
patient (in medicine) to build the temporal relational network for this particular 
situation. After that, we compare the obtained network with known temporal 
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scenarios (patterns) of failures (diseases), using the numerical measure of the 
distance between a network and a scenario. Using this approach we derive the 
probabilities of possible diagnoses for the particular situation. 

The presented work has several limitations. The study is mainly 
theoretical and we concentrated on the development of a formal approach to 
handle imperfect temporal relations. Nevertheless, we have proposed the 
application area where the formalism could be useful.

The approach proposed in this thesis is limited to the use of the discrete 
time model. This is motivated by the wide use of this model in many 
application areas of temporal reasoning, and particularly in the area of temporal 
databases. Moreover, the basic idea of the continuous time model can be 
modeled to some extent on the discrete time model by defining different time 
granularities (Bettini et al., 1996; Bettini et al., 2000; Wang et al., 1997). The 
discrete time model is easier to implement compared to the continuous model, 
and its formalisms are simpler.

In the articles included in the thesis, where we discuss the estimation and 
representation of imperfect relations, we make the independence assumption 
when we derive the probabilities for the basic relations between two 
indeterminate points. Particularly, the points a and b are defined within two 
intervals of indeterminacy, and we consider the probabilities of pairs of values 
from these intervals. In this situation we assume that values of a and b are 
independent, and therefore we assume that the probability of the pair is a 
multiplication of the corresponding values of the p.m.f. functions for these 
points. This independence assumption made does not hold in some application 
areas, and which in its own turn limits the applicability of the proposed 
formalism.

Also, in a number of articles within this thesis defining temporal interval 
consisting of indeterminate points s[sl,su] and e[el,eu] denoting the start and the 
end of this interval accordingly, we made an assumption that su<el. This 
assumption was made to simplify the formulas for estimating the uncertain 
relations between indeterminate intervals, and easily can be relaxed in the 
implementation by providing additional consistency checking for indeterminate 
intervals.

In the thesis we have considered only two types of imperfection within 
temporal relations according to the classification by Parsons (1996), that is, 
uncertainty and inconsistency. The proposed formalism is limited to deal with 
these two types of imperfection. Although we also consider a disjunctive form 
of imprecision (indeterminacy) relative to temporal primitives, which is one 
source of imperfection within the relation between them, there still exists 
imprecision, ignorance, and incompleteness, which in some situations can also 
be found within temporal relations. 

One of further research concerns is the implementation. A possible idea is 
to implement the technique within the context of the Semantic Web. In this case, 
the implementation may consist of a Java class to capture the computational 
aspects of the technique. This Java class could then be used to implement an 
ontology in RDF and e.g., OWL, in this way extending the Semantic Web.
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Secondly, we plan to investigate further the application of the mechanism 
in industrial temporal diagnostics. Preliminary research has revealed that the 
model of branching time might be very relevant in this domain. Even perfect 
knowledge about temporal primitives in each branch can lead to imperfect 
temporal relations since the branches may not be synchronized, as it was 
discussed, for example, by Lamport (1998).

Another possible application for the formalism proposed in this thesis is 
natural language processing. In this domain we can find natural language 
concepts, which can help to estimate the initial probabilities of temporal 
relations necessary for reasoning. We might also perfectly know the temporal 
relations between two such concepts but the information about the primitives 
remains uncertain. It would be interesting to investigate this issue, and to try to 
find a heuristic connection between such temporal language concepts and 
numerical measures of imperfection of temporal relations.

In the situation when the endpoints of a temporal interval are 
indeterminate temporal points, we can consider also a set of probable intervals 
taking as their endpoints different combinations of the values from the intervals 
of indeterminacy. The representation and reasoning technique proposed in this 
thesis could be extended in the future to cover sets of probable intervals. Other 
possible directions for future research include: extending the formalism to deal 
with imprecision, incompleteness, and ignorance. Moreover, we think that the 
proposed approach can be extended to deal with the continuous time model, 
which might be useful in some applications.
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YHTEENVETO (FINNISH SUMMARY) 

Aikatiedon formaalia esittämistä ja siihen perustuvaa päättelyä tarvitaan useilla 
kohdealueilla todellisuuden dynaamisten piirteiden mallintamisessa. Tällaisia 
tapahtumien ajallisen järjestyksen hallintaa vaativia sovellusalueita ovat esi-
merkiksi prosessien säätö, toimenpiteiden suunnittelu, luonnollisen kielen kä-
sittely ja diagnostiikka. Toisaalta lähes kaikki ympäröivään todellisuuteen liit-
tyvät tiedot ovat puutteellisia – vain harvoin tieto on täysin varmaa, täydellistä, 
täsmällistä tai ristiriidatonta. Niinpä myös aikaa koskevien tietojen käsittelyssä, 
niin esittämisessä kuin päättelyssäkin, joudutaan toimimaan puutteellisen tie-
don varassa.

Väitöskirja käsittelee epätäydellisen ajallisen tiedon esittämistä ja käsitte-
lyä tavoitteenaan epätäydellisille aikarelaatioille sopivan formalismin kehittä-
minen. Työssä keskitytään kahteen seikkaan: 1) epätäydellisten aikarelaatioiden 
esittämiseen ja estimointiin sekä 2) niiden pohjalta tapahtuvaan päättelyyn. Ke-
hitetyssä esitystavassa epätäydellinen aikarelaatio kuvataan numeerisin arvoin. 
Koska nämä numeeriset arvot eivät useinkaan ole välittömästi saatavissa, käy-
tetään estimointia tarvittavien arvojen määrittämiseksi. Työssä kuvattuun päät-
telymekanismiin kuuluvilla operaatioilla johdetaan tunnettujen epätäydellisten 
aikarelaatioiden pohjalta uusia arvoltaan aikaisemmin tuntemattomia epätäy-
dellisiä aikarelaatioita mielenkiintoisten aikaprimitiivien välille.

Työssä esitetään todennäköisyysteoriaan perustuva numeerinen formalis-
mi epätäydellisille aikarelaatioille. Siinä tarkastellaan diskreetin aikakäsityksen 
aikaprimitiiveinä sekä yksittäisiä ajankohtia että aikavälejä. Kahden yksittäisen 
ajankohdan välinen epätäydellinen aikarelaatio esitetään antamalla todennäköi-
syysarvo kaikille kolmelle näiden väliselle mahdolliselle ajalliselle perusrelaa-
tiolle (ennen, samaan aikaan ja jälkeen). Kahden aikavälin välinen epätäydelli-
nen aikarelaatio esitetään vastaavasti antamalla todennäköisyysarvo kullekin 
kolmelletoista mahdolliselle, niiden väliselle ajalliselle perusrelaatiolle. Työssä 
on kehitetty laskukaavat näiden todennäköisyysarvojen laskemiseen.  Tarkaste-
luun otetaan myös sellainen tilanne, jossa laskennassa mukana olevien aikapri-
mitiivien (ajankohta tai aikaväli) arvo voi sisältää mittausvirhettä. Tilanteeseen, 
jossa mittausvirheen maksimiarvo tunnetaan, esitetään kaavat todennäköisyys-
arvojen ala- ja ylärajojen laskemiseksi kullekin aikaprimitiivien väliselle perus-
relaatiolle.

Työssä esitetään lähestymistavalle sopivana kaksi diagnostiikan automa-
tisoinnin sovellusaluetta: terveydenhoito ja teollisuus.  Esitetyn lähestymistavan 
soveltaminen taudin diagnosointiin perustuu aikaulottuvuuteen liitetyn 
skenaarion käyttöön. Soveltamisessa lähdetään siitä olettamuksesta, että on ole-
massa tietty joukko kunkin diagnosoitavissa olevan taudin kannalta oleellisia 
oireita.  Itse skenaario esitetään relaatioverkkona, jonka solmut vastaavat oireita 
ja jonka kaaret vastaavat oireiden välisiä epätäydellisiä aikarelaatioita esitettynä 
työssä kehitetyllä esitystavalla. Kokoamalla riittävän laajan aineiston eri henki-
löiden osalta taudin etenemisskenaarioista voidaan muodostaa yhdistetty 
skenaario, jota voidaan käyttää taudin diagnosoinnin apuna. Vastaavasti teolli-



75

suuden vikadiagnostiikkaan esitetään käytettäväksi menettelytapaa, joka 
perustuu laitteen rakenteen ja toiminnan eksplisiittisesti esitettyyn aikaskenaa-
riomalliin, josta mallin ja havaitun toiminnan avulla päätellään diagnoosi 
(kuten terveydenhoidonkin sovellusalueella). 

Tutkimuksen pääkontribuution muodostaa epätäydellisten aikarelaatioiden 
esittäminen ja estimointi sekä siihen pohjaava päättelymekanismi. Tuloksen 
käyttökelpoisuuden rajoitteena voidaan nähdä sen teoreettisuus ja 
keskittyminen formaalin lähestymistavan kehittämiseen pelkästään diskreetille 
aikamallille. Työssä on edelleen esitetty ratkaisu ainoastaan aikarelaatioiden 
epävarmuuden ja epäjohdonmukaisuuden käsittelemiseen jättäen muut epätäy-
dellisyyden ilmenemismuodot tutkimuksen ulkopuolelle. Mielenkiintoinen jat-
kotutkimuskohde olisikin lähestymistavan laajentaminen käsittelemään myös 
muita epätäydellisyyden ilmenemismuotoja, kuten epätäsmällisyyttä, vaillinai-
suutta ja epätietoisuutta. Suunnitteilla oleva lähestymistavan soveltaminen 
teollisuuden diagnosointiongelmiin tarjonnee työssä esitettyä vankemman poh-
jan lähestymistavan käyttökelpoisuuden arvioimiselle. 



J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

1 ROPPONEN, JANNE, Software risk management -
foundations, principles and empirical
findings. 273 p. Yhteenveto 1 p. 1999.

2 KUZMIN, DMITRI, Numerical simulation of
reactive bubbly flows. 110 p. Yhteenveto 1 p.
1999.

3 KARSTEN, HELENA, Weaving tapestry:
collaborative information technology and
organisational change. 266 p. Yhteenveto
3 p. 2000.

4 KOSKINEN, JUSSI, Automated transient
hypertext support for software maintenance.
98 p. (250 p.) Yhteenveto 1 p. 2000.

5 RISTANIEMI, TAPANI, Synchronization and blind
signal processing in CDMA systems.  -
Synkronointi ja sokea signaalinkäsittely
CDMA järjestelmässä. 112 p. Yhteenveto 1 p.
2000.

6 LAITINEN, MIKA, Mathematical modelling of
conductive-radiative heat transfer. 20 p.
(108 p.) Yhteenveto 1 p. 2000.

7 KOSKINEN, MINNA, Process metamodelling.
Conceptual foundations and application.
213 p. Yhteenveto 1 p. 2000.

8 SMOLIANSKI, ANTON, Numerical modeling of
two-fluid interfacial flows. 109 p. Yhteenveto
1 p. 2001.

9 NAHAR, NAZMUN, Information technology
supported technology transfer process. A
multi-site case study of high-tech enterprises.
377 p. Yhteenveto 3 p. 2001.

10 FOMIN, VLADISLAV V., The process of standard
making. The case of cellular mobile
telephony. - Standardin kehittämisen pro-
sessi. Tapaustutkimus solukkoverkkoon
perustuvasta matkapuhelintekniikasta.
107 p. (208 p.) Yhteenveto 1 p. 2001.

11 PÄIVÄRINTA, TERO, A genre-based approach
to developing electronic document
management in the organization. 190 p.
Yhteenveto 1 p. 2001.

12 HÄKKINEN, ERKKI, Design, implementation and
evaluation of neural data analysis
environment. 229 p. Yhteenveto 1 p. 2001.

13 HIRVONEN, KULLERVO, Towards Better
Employment Using Adaptive Control of
Labour Costs of an Enterprise. 118 p.
Yhteenveto 4 p. 2001.

14 MAJAVA, KIRSI, Optimization-based techniques
for image restoration. 27 p. (142 p.)
Yhteenveto 1 p. 2001.

15 SAARINEN, KARI, Near infra-red measurement
based control system for thermo-mechanical
refiners. 84 p. (186 p.) Yhteenveto 1 p. 2001.

16 FORSELL, MARKO, Improving Component
Reuse in Software Development.  169 p.
Yhteenveto 1 p. 2002.

17 VIRTANEN, PAULI, Neuro-fuzzy expert systems
in financial and control engineering.
245 p. Yhteenveto 1 p. 2002.

18 KOVALAINEN, MIKKO, Computer mediated
organizational memory for process control.
Moving CSCW research from an idea to a
product. 57 p. (146 p.) Yhteenveto 4 p. 2002.

19 HÄMÄLÄINEN, TIMO, Broadband network
quality of service and pricing. 140 p.
Yhteenveto 1 p. 2002.

20 MARTIKAINEN, JANNE, Efficient solvers for
discretized elliptic vector-valued problems.
25 p. (109 p.) Yhteenveto 1 p. 2002.

21 MURSU, ANJA, Information systems
development in developing countries. Risk
management and sustainability analysis in
Nigerian software companies. 296 p. Yhteen-
veto 3 p. 2002.

22 SELEZNYOV, ALEXANDR, An anomaly intrusion
detection system based on intelligent user
recognition. 186 p. Yhteenveto 3 p. 2002.

23 LENSU, ANSSI, Computationally intelligent
methods for qualitative data analysis. 57 p.
(180 p.) Yhteenveto 1 p. 2002.

24 RYABOV, VLADIMIR,  Handling imperfect
temporal relations. 75 p. (145 p.) Yhteenveto
2 p. 2002.


	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	2 RESEARCH PROBLEM AND METHODOLOGY
	3 CLASSIFICATIONS OF IMPERFECT INFORMATION
	3.1 Bonnissone and Tong’s classification
	3.2 Bosc and Prade’s classification
	3.3 Parsons’ classification
	3.4 Concepts used in the thesis

	4 NUMERICAL APPROACHES TO HANDLING IMPERFECTION
	4.1 Probability theory
	4.2 Possibility theory
	4.3 Dempster-Shafer theory
	4.4 Limitations of the numerical approaches
	4.5 Evaluation of the numerical approaches
	4.6 Selection of the theory to be used

	5 TIME ONTOLOGY AND TEMPORAL PRIMITIVES
	5.1 Ontology of time
	5.2 Representation of temporal primitives

	6 RELATIONS BETWEEN TEMPORAL POINTS
	6.1 General properties
	6.2 Inconsistent relations
	6.3 Uncertain relations

	7 RELATIONS BETWEEN TEMPORAL INTERVALS
	7.1 Allen’s interval relations
	7.2 Relations between the endpoints of the intervals
	7.3 Related research

	8 REASONING ABOUT TEMPORAL RELATIONS
	8.1 Reasoning operations
	8.2 Related research
	8.3 Constraint Satisfaction Problem

	9 APPLICATIONS
	9.1 Medical diagnostics
	9.2 Industrial diagnostics

	10 ORGANIZATION OF THE THESIS
	10.1 Logical structure of the thesis
	10.2 Contents of the thesis in brief
	10.3 About the joint articles

	11 CONTRIBUTION, LIMITATIONS, AND FUTURE WORK
	REFERENCES
	YHTEENVETO (FINNISH SUMMARY)
	JYVÄSKYLÄ STUDIES IN COMPUTING



