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ABSTRACT

Tsymbal, Alexey
Dynamic Integration of Data Mining Methods in Knowledge Discovery Systems
Jyväskylä: University of Jyväskylä, 2002, 69 p. (+included articles)
(Jyväskylä Studies in Computing,
ISSN 1456-5390; 25)
ISBN 951-39-1354-6
Finnish summary
Diss.

The purpose of this study is to develop the theoretical background and practical
aspects of dynamic integration of data mining methods in knowledge discovery
systems. Currently, the most popular approach to integrating a number of
predictive data mining methods is majority voting or simply averaging.
However, majority voting and other static approaches to integration have the
important shortcoming that they do not take into account local expertise. An
advanced technique for the dynamic integration of classifiers is developed in
this thesis. The main assumption is that each learned model is best suited in
some subareas of the whole application domain, where its local error is
comparatively less than the corresponding errors of the other available models.
Different strategies of dynamic integration are developed and analyzed: (1)
Dynamic Selection (DS), (2) Dynamic Voting (DV), and (3) a combination of
dynamic voting with dynamic selection – Dynamic Voting with Selection
(DVS). It is proposed to apply the developed technique of dynamic classifier
integration to local feature selection, by generating the base classifiers on
different subsets of features. A number of different distance functions which
can be used in dynamic classifier integration are analyzed. The application of
dynamic classifier integration in a hierarchical classifier integration scheme
called an arbiter tree is also considered. Additionally, it is proposed to use
dynamic classifier integration instead of static voting in decision committee
learning approaches like bagging and boosting. The application of dynamic
classifier integration in ensemble feature selection is considered. Feature
selection based ensembles generated with the contextual merit measure and
with the random subspace method are also analyzed. Every algorithm
developed in this study is evaluated experimentally on a number of datasets
from the UCI machine learning repository, and some algorithms are applied to
large real-world datasets.

Keywords: ensemble of classifiers, integration of data mining methods,
classification, data mining, knowledge discovery in databases,
machine learning, feature selection
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1 INTRODUCTION

Knowledge discovery or data mining is the process of finding previously
unknown and potentially interesting patterns and relations in large databases
(Fayyad et al., 1997). Current electronic data repositories are growing quickly
and contain a huge amount of data from commercial, scientific, and other
domain areas. The capabilities for collecting and storing all kinds of data exceed
the abilities to analyze, summarize, and extract knowledge from this data.
Numerous data mining methods have recently been developed to extract
knowledge from these large databases. Selection of the most appropriate data-
mining method or a group of the most appropriate methods is usually not
straightforward. Often the method selection is done statically for all new
instances of the domain area without analyzing each particular new instance.
Usually better data mining results can be achieved if the method selection is
done dynamically taking into account characteristics of each new instance.

During the past several years in a variety of application domains
researchers have tried to learn how to create and use an ensemble of data
mining methods. For example, Dietterich (1997) has presented the integration of
multiple classifiers as one of the four most important directions in the machine
learning research. The main discovery is that ensembles are often more accurate
than the individual methods alone. According to Skalak (1997), the two
advantages that can be reached through combining classifiers are: (1) the
possibility that by combining a set of simple classifiers, we may be able to
perform classification better than with any sophisticated classifier alone, and (2)
the accuracy of a sophisticated classifier may be increased by combining its
predictions with those made by an unsophisticated classifier.

The basic assumption in this thesis is that each data mining method is best
suited inside certain subareas of the whole domain area. Thus if we are able to
collect and derive the benefit of the information with respect to these
“competence areas” of the mining methods, then better mining results can be
achieved. The problem is to estimate these competence areas in a way that helps
the dynamic integration of data mining methods. From this point of view data
mining using an ensemble of methods has much in common with the problem
of using multiple experts (Terziyan et al., 1998). In both situations knowledge is
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received from several sources and a mechanism is needed to decide about the
use of this knowledge.

In this thesis, the emphasis is on the dynamic integration of classifiers.
Classification is a typical data mining task where the value of some attribute for
a new instance is predicted based on the given collection of instances for which
all the attribute values are known (Aivazyan, 1989). In Chapter 2, the
background to the research is considered. First, knowledge discovery and data
mining are discussed. An integrated knowledge discovery management system
is then presented. The basic definitions for the problem of classification and
inductive learning, which are the focus of this thesis, are given; learning
algorithms used throughout the thesis are reviewed, and basic approaches for
evaluating learned models that are used in experiments are presented. In
Chapter 3, the research problem of the thesis is considered, and related work is
briefly reviewed. Two basic approaches to the integration of classifiers
(combination and selection) suggested by researchers are discussed, and
ensemble goodness criteria are considered. Chapter 4 presents our approach to
the problem of the integration of multiple data mining methods. In Chapter 5,
the research design of the thesis is considered. First, the research methods used
are discussed. Then, the experimental design is considered, and information
about datasets used in the experiments given. Chapter 6 contains summaries of
the articles included in the thesis with each section providing a summary of the
corresponding included article. In Chapter 7, main contributions of the thesis
are summarized, and limitations of the research and future work are discussed.



2 RESEARCH BACKGROUND

This chapter gives a more detailed overview of the area of knowledge discovery
and outlines the necessity for automated discovery algorithms. It overviews the
different stages classically associated with the knowledge discovery process
and goes on to propose a flexible, modular architecture for an integrated
knowledge discovery management system. Next the different learning
approaches used in the experimental work including, decision trees, instance
based learning and Bayesian classification are explained. This is followed by an
overview of the sampling techniques employed in the experiments, including,
cross validation, random sampling and bootstrapping. The remainder of the
chapter overviews how the results were interpreted statistically using the
paired t-test, McNemar’s test and the test for the difference of two proportions.

2.1 Knowledge discovery and data mining

Currently, electronic data repositories are growing quickly and contain huge
amounts of data from commercial, scientific, and other domains. According to
some estimates, the amount of data in the world is doubling every twenty
months (John, 1997). The capabilities for collecting and storing all kinds of data
exceed the development in abilities to analyse, summarise, and extract
knowledge from this data. The commercial need for tools to handle the data
glut has risen sharply in the last number of years: a large community of users
need tools to mine databases for patterns that can be used to improve business
processes, analyze scientific experiments, help doctors better understand the
effects of treatments, and so forth (John, 1997).

Knowledge discovery in databases (KDD) is a combination of data
warehousing, decision support, and data mining - an innovative approach to
information management. KDD is the process of finding previously unknown
and potentially interesting patterns and relations in large databases (Fayyad et
al., 1997).
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Before the terms “knowledge discovery” and “data mining” became
popular, researchers in areas such as statistics, machine learning, databases,
neural networks, pattern recognition, econometrics, and many others were all
working on the same kinds of problems. However, without a term under which
to unite, the research suffered from fragmentation. KDD unites all of these
disciplines together under the premise that there exists much valuable
knowledge in databases, and that due to the tremendous and growing volumes
of data involved, advanced computer algorithms running on fast hardware are
a more economical way to discover this knowledge than tedious manual
searches and queries by human analysts (John, 1997).

KDD is usually defined as “the nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data”
(Fayyad et al., 1996, 84). KDD is a process comprising of many steps, which
involves data selection, data pre-processing, data transformation, data mining
(search for patterns), and interpretation and evaluation of patterns. The basic
steps of the KDD process are presented in Figure 1 (these steps were defined,
for example, in (Fayyad et al., 1997).

FIGURE 1 Basic steps of the KDD process (Fayyad et al., 1996, 85)

The steps depicted start with the raw data and finish with the extracted
knowledge, which was acquired as a result of the KDD process. The set of data
mining tasks used to extract and verify patterns in data is the core of the
process. Data mining (DM) consists of applying data analysis and discovery
algorithms for producing a particular enumeration of patterns (or models) over
the data (Brunk et al., 1997). Most of current KDD research is dedicated to the
DM step. However, this core area typically takes only a small part (estimated at
15%-25%) of the effort of the overall KDD process. The additional steps of the
KDD process, such as data preparation, data selection, data cleaning,
incorporating appropriate prior knowledge, and proper interpretation of the
results of mining, are also essential to derive useful knowledge from data (Gaul
& Säuberlich, 1999).
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2.2 An integrated knowledge discovery management system

The current generation of database systems is based mainly on a small number
of primitives of Structured Query Language (SQL) that is sufficient to support a
vast number of business applications, but not sufficient to capture the emerging
family of new applications dealing with knowledge discovery (Imielinski &
Mannila, 1996). Most current KDD systems offer only isolated discovery
techniques (tree inducers, neural nets, or rule discovery algorithms). Very few
systems use a combination of available discovery techniques. Most current
KDD systems are based on a loosely coupled architecture, where the database
and the data mining subsystems are realised as separate independent blocks.
This architecture demands continuous context switching between the data
mining engine and the database. Such KDD systems are known as first-
generation database mining systems (Imielinski & Mannila, 1996).

Numerous KDD systems have recently been developed. There are two
basic branches of modern KDD systems. One branch includes domain-specific
tools that support discovery in a single domain only. Such systems commonly
use the user’s language, and the user needs to know very little about the
analysis process itself. The other branch refers to technique-oriented systems
(Gaul & Säuberlich, 1999), which use one or several techniques for knowledge
discovery and can be applied in different domains. Most of these systems use
only a single discovery technique (e.g. decision tree, neural network, instance-
based learning, or rule discovery). Very few systems propose a combination of
the available techniques. Examples of systems which combine several discovery
techniques are considered in (Anand et al., 1997; Brunk et al., 1997).

Nowadays there is a growing need for second-generation database mining
systems to manage KDD applications in a similar way SQL-based systems
successfully manage business applications. These systems should integrate the
data mining and database subsystems and automate all steps of the whole KDD
process (Figure 1) as much as possible. In this approach, the data mining engine
is usually combined with the execution engine of the database, avoiding context
switching between the database and data mining. These systems should be able
to discover knowledge by combining several available KDD techniques. An
essential part of the integrated KDD-process is the subpart that enables
situation-dependent selection of appropriate KDD technique(s). In Figure 2, a
general architecture of the integrated KDD-management system is proposed,
which enables integration of multiple discovery techniques forming a platform
upon which different KDD applications can be built.

Each subsystem presented in Figure 2 is intended to automate one basic
step of the KDD process and when added together, the whole KDD process as
much as possible. The database management subsystem performs data storage,
retrieval, and manipulation using standard SQL operations. It is important that
this subsystem should support distributed and heterogeneous data and
complex data types, adopt a client/server architecture, and can access databases
of standard widely-used formats, e.g. ODBC-compatible databases. For
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example, the ODMG-93 standard can be supported as is proposed by Anand et
al. (1997).

Graphical User Interface

Data
Preprocessing/
Visualisation
Subsystem

Data Mining
Methods

Subsystem

Result
Visualisation/

Report
Generation

Programming Language Interface

DBMSs
Knowledge

Base

End-user

Method
Evaluation/
Selection
Subsystem

FIGURE 2 Integrated KDD management framework

The data pre-processing and visualisation subsystem provides tools to prepare
the data for data mining and visualisation facilities by applying exploratory
data analysis before the use of data mining techniques. The data pre-processing
tools are used to remove noise, handle missing data fields, reduce data and
make data projections.

The data mining subsystem incorporates different mining techniques for
creating models and extracting patterns from the data, e.g. classification,
clustering, and dependency modelling techniques. It is important that this
subsystem be open (extensible), allowing the easy addition of new techniques
through a “plug-in” interface as external tools or implemented as internal
procedures using a built-in programming language. This allows rapid extension
of the system without redeveloping the system core.

The method evaluation/selection subsystem is very important, helping
the user to select an appropriate data mining method. In this thesis, the focus is
on this subsystem. Different techniques for the integration of data mining
methods were considered for example by Koppel & Engelson (1996); Merz
(1996); Merz (1998); Merz (1999); Oza & Tumer (1999); Puuronen et al. (1999a);
Puuronen et al. (1999b); Skalak (1997); and Wolpert (1992). An overview of
techniques for integration of classifiers is given in (Dietterich, 1997). A
technique for advanced dynamic integration of data mining methods is
developed in this thesis. This technique is based on the assumption that each
method is best suited only within certain subdomains of the whole application
domain.

The result visualisation/report generation subsystem includes tools for
the visualization of the models built and patterns discovered and for the
generation of reports including discovery results. This subsystem helps the user
to interpret and evaluate extracted patterns and models, which is essential for
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the process of obtaining new knowledge. It also helps the user to determine the
patterns that can be considered as new knowledge and to make correct
conclusions.

The built-in programming language offered by the programming
language interface is needed to provide the extensibility of the system and to
make it configurable to different applications. SQL is extended in (Imielinski &
Mannila, 1996) to the notion of KDD query language that is proposed for use in
knowledge and data discovery management systems, i.e. in second-generation
database mining systems. KDD query language can be used as a base for the
built-in programming language.

The graphical user interface guides the user through the discovery
process, helping to reduce the requirements in the user’s expertise in KDD. This
module hides the power and complexity of discovery subsystem deep inside
the KDD management system. The graphical user interface should allow an
end-user without any abilities in programming to use the system.

2.3 The task of classification and inductive learning: basic
definitions

A typical data mining task is to explain and predict the value of some attribute
of the data given a collection of fields of some tuples with known attribute
values (Chan, 1996). This task is often solved with inductive learning. The goal of
inductive learning is to build a general decision procedure based on a set of
examples. The resulting model is then used to make predictions on previously
unseen examples. Often an example (also called an instance or a case) is defined
by specifying the value of each attribute. This is known as attribute-value (or
feature-value) notation, and may be written as a row vector using the following
notation:

x = [v(x1), v(x2),…,v(xl)],
where v(xi) denotes the value of feature (attribute) xi, and l is the number of
features. Features which take on a value from an unordered set of possible
values are called nominal or categorical. The feature Sex is categorical with the
possible values {Male, Female}. Features, such as Age, Weight and Height,
which can take on numeric values are said to be continuous. Continuous features
are used whenever there is a linear ordering on the values, even if they are not
truly continuous (e.g., Age). The features used to define x may be paired with an
extra nominal or continuous attribute y, called the output attribute, class value (if
y is nominal) or regression value (if y is continuous).

The range of all possible values of the features of x is referred to as the
input space, instance space or example space. The range of possible values of y is
referred to as the output space.

Typically, examples with a given classification or regression value are
used for building predictors, and are called training or learning set, or simply a
dataset. The predictors are usually applied to examples without an output value,
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sometimes called test or unseen examples. Predictors can perform one of two
tasks. When the output is continuous, the task is regression, and when the
output is nominal, the task is classification. The task of classification is the focus
of this thesis.

The task of placing an example into one of a finite set of possible
categories is called classification, i.e.,

C(x) ∈ range(y),
where range(y) denotes the set of possible values for the categorical output
attribute y. Examples of the task of classification include the prediction of
whether a person has heart disease (as well as many other medical diagnostics
problems), technical diagnostics, and weather prediction, etc.

A common measure of a classifier’s performance is the error rate, and it is
calculated as the percentage of misclassified test examples (Merz, 1998). And
conversely, classification accuracy (also called generalization performance) is the
percentage of correctly classified test examples. More generally, the accuracy of
a classifier is the probability of correctly classifying a randomly selected
instance (Kohavi, 1995b).

The task of classification has been defined as the process of predicting the
value of the class attribute for an unseen example using a prediction method or
a classifier. Classifiers may vary widely from simple rules to neural networks. A
classifier can be viewed as a general description or a model for a particular
classification task. Typically, the construction of a model is guided by a
collection of examples for which the correct output value is already known, i.e.,
the training data or learning data. The process of building a model from a training
data is called inductive learning (Merz, 1998). In other words, inductive learning
is the task of identifying regularities in some given set of examples with little or
no knowledge about the domain from which the examples are drawn (Chan,
1996). The ability of a learned model (a classifier) to make predictions on
“future” unseen data, or generalization performance is usually measured using a
loss function and test data taken from the same distribution.

2.4 Learning algorithms

As it was noted, classifiers may be learnt (trained) using different learning
algorithms from rule learning to neural networks. In this section, learning
algorithms used throughout the dissertation are briefly described. They are the
C4.5 decision tree learning, the k-nearest neighbor algorithm, and the Naïve-
Bayes learning algorithm. These learning algorithms were used in experiments
to build the base classifiers in the ensembles. All of these are well known in the
data mining and machine learning communities and represent three completely
different approaches to learning from data.
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2.4.1 Decision tree learning

Decision tree learning is one of the most widely used inductive learning
methods (Breiman et al., 1984; Quinlan, 1986; Quinlan, 1993; Quinlan, 1996). A
decision tree is represented as a set of nodes and arcs. Each node usually contains
a feature (an attribute) and each arc leaving the node is labelled with a
particular value (or range of values) for that feature. Together, a node and the
arcs leaving it represent a decision about the path an example follows when
being classified by the tree.

Given a set of training examples, a decision tree is usually induced in a
“top-down” fashion by repeatedly dividing up the examples according to their
values for a particular feature. This is known as a “divide and conquer” or
“recursive partitioning” approach to learning. Initially all the examples are in
one partition and each feature is evaluated for its ability to improve the
“purity” of the classes in the partitions it produces. The splitting process
continues recursively until all of the leaf nodes are of one class.

In general, decision tree learning algorithms are biased toward producing
trees with the fewest number of decision nodes. This bias is known as Occam’s
razor, which, for the task of learning, states that the simplest decision structure
which correctly classifies the data should be accepted. The requirement that all
the data be correctly classified may result in an overly complex decision tree.
Extra nodes may be added in response to minor variations in the data. The
problem of being overly sensitive to minor fluctuations in the training data is
known as overfitting, and it is a general problem for all learning algorithms. A
common strategy for avoiding overfitting in decision trees is to “prune” away
subtrees of the decision tree if it improves generalization performance on a too
small set of pruning validation examples.

The decision tree learning algorithm used in this research is the C4.5
decision tree learning algorithm (Quinlan, 1993), which is the most widely used
decision tree learning approach used today. C4.5 uses gain ratio, a variant of
mutual information, as the feature selection measure. C4.5 prunes by using the
upper bound of a confidence interval on the resubstitution error as the error
estimate; since nodes with fewer instances have a wider confidence interval,
they are removed if the difference in error between them and their parents is
not significant (Quinlan, 1993).

2.4.2 Instance-based learning

An instance-based learning algorithm stores a series of training instances in its
memory and uses a distance metric to compare new instances to those stored.
Prediction on the new instance is based on the example(s) closest to it (Aha et
al., 1991; Wettscherech, 1994).

The simplest and most well studied instance-based learning algorithm is
known as the “nearest neighbor” (NN) algorithm and is used to classify points in
the instance space. The most elementary version of the algorithm is limited to
continuous features with the Euclidean distance metric. To classify an unseen
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example, its distance to all the training examples is calculated and the class label
corresponding to the closest training example is assigned to the example. A
more sophisticated version of the nearest neighbor classifier returns the most
frequent class among the k closest training examples (denoted k-NN) (Aha et al.,
1991).

In experiments, we use the PEBLS instance-based learning algorithm (Cost
& Salzberg, 1993). This algorithm is a kind of a nearest-neighbor algorithm,
which uses a special distance metric called Value Difference Metric (VDM) for
nominal features. In PEBLS, the distance between two values of a nominal
feature is based on their class separability. A simplified version of the VDM
(without weighting) used in our experiments defines the value of the distance
function between two values x and y of a given nominal feature a as:
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where Na,x is the number of instances in the training set that have value x for
feature a; Na,x,c is the number of instances that have value x for feature a and
class c; C is the number of classes in the problem domain; Pa,x,c is the conditional
probability that the class is c given that feature a has the value x, i.e., P(c|xa).
Using the VDM, two values are considered to be closer if they have more
similar classifications. Continuous features in PEBLS are discretized into a
number of equal-sized discrete ranges, and then these values are treated as
nominal.

2.4.3 Bayesian classification

The Naïve-Bayes classifier (John, 1997) uses Bayes rule (or Bayes’ theorem) to
optimally predict the class of a previously unseen example, given a training set.
Bayes’ theorem defines how to compute the probability of each class given the
instance, assuming the features are conditionally independent given the class.
The chosen class is the one that maximizes the probability:
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where ci is the i-th class, xtest is a test example, and P(A|B) is the conditional
probability of A given B.

If the l input features are independent given the class, P(xtest|ci) can be
broken down into the product P(x1|ci)… P(xl|ci), where xj is the value of the j-th
feature in the example xtest. Then, the predicted class is the one which
maximizes the probability:
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Estimating the probability P(xtest) is unnecessary because it is the same for
each class ci. The remaining probabilities can be estimated from the training set.
This is known as the naïve Bayesian classifier, referred to Bayes in this thesis.
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More sophisticated Bayesian classifiers were developed, e.g. by John (1997), but
only the naïve Bayesian classifier is used in the experiments in this dissertation.

The naïve Bayesian classifier relies on an assumption that is rarely valid in
practical learning problems: that the features used to derive a prediction are
independent of each other, given the predicted value. The earliest known
reference to the naïve Bayesian classifier is the book “Perceptrons” by Minsky
and Papert (1969).

Due to its perceived limitations, the simple Bayesian classifier has
traditionally not been the focus of research. It has sometimes been used as the
base against which more sophisticated algorithms are compared. However, it
has been recently shown that, for classification problems where the predicted
value is categorical, the independence assumption is less restrictive than might
be expected (Domingos & Pazzani, 1996; Domingos & Pazzani, 1997; Friedman,
1997). Domingos and Pazzani (1997) have presented a derivation of necessary
and sufficient conditions for the optimality of the simple Bayesian classifier
showing that it can be optimal even when the independence assumption is
violated by a wide margin. They showed that although the probability
estimates that the simple Bayesian classifier produces can be inaccurate, the
classifier often assigns maximum probability to the correct class.

A large-scale comparison of the simple Bayesian classifier with state-of-
the-art learning algorithms on standard benchmark datasets was performed in
(Domingos & Pazzani, 1997). The simple Bayesian classifier was found to be
superior to each of the other learning algorithms even on datasets with
substantial attribute dependencies. Besides, it has advantages in terms of
simplicity, learning speed, classification speed, storage space, and
incrementality. It also can easily handle a missing feature value of a learning
instance allowing its other feature values still to contribute. Nevertheless, the
simple Bayesian classifier is limited in expressiveness because it can only create
linear frontiers (Duda & Hart, 1973). Therefore, even with many training
examples and no noise, it does not approach the maximal accuracy on some
problems.

2.5 Evaluation of learning algorithms and learned models

2.5.1 Estimating the error rate

For the purposes of algorithm comparison and selection, as well as for
parameter setting, methods of estimating the performance of a set of learned
models are needed. The goal of the model selection task is to estimate the
generalization performance of a collection of learning algorithms and to select
the algorithm with the lowest error estimate (Kohavi, 1995a). This section
describes several evaluation methods that will be used throughout this
dissertation.
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The simplest way to estimate the accuracy is to use the resubstitution
estimate, in which the model is tested on the same data it was built on (Kohavi,
1995b). However, the resubstitution estimate is a highly optimistic estimate of
accuracy because learning algorithms attempt to minimize it. For some learning
algorithms, e.g. linear discrimination, where it is usually hard to fit large
amounts of data, the resubstitution estimate is reasonable. In (Kohavi, 1995b) it
was also noted that for large enough samples, there is no need to look further
than the resubstitution estimator when seeking a robust method.

Except for the resubstitution estimate, all methods of evaluating a learned
model’s performance consist of a sampling process wrapped around the
induction process. Typically, a sample of the available examples (all having
output values) is placed in a training set and the remaining examples are placed
in a test set. This is sometimes called “holdout” approach, or simply test set
estimation. The training set is used to derive the learned models (classifiers or
regression models). The learned models are then used to make predictions on
the test set and generalization performance is measured using the appropriate
loss function.

Three major nonparametric statistical methods follow this methodology:
(1) cross-validation, (2) random sampling or Monte Carlo cross-validation, and
(3) bootstrapping (Merz, 1998). The method of sampling from the available
examples is what distinguishes these evaluation methods. That is the focus of
the rest of this section.

In cross-validation (CV) (Schaffer, 1993; Kohavi, 1995a), sometimes called
rotation estimation, the examples are randomly split into v mutually exclusive
partitions (the folds) of approximately equal size. A sample is formed by setting
aside one of the v folds as the test set, and the remaining folds make up the
training set. This creates v possible samples. As each learned model is formed
using one of the v training sets, its generalization performance is estimated on
the corresponding test partition. Typically CV is used to select a learning
algorithm: the learning algorithm with the best average generalization
performance is selected as the “winner”. In this thesis, CV is also used to collect
spatial cross-validation history of a learning algorithm’s performance, which
can later be used for dynamic selection of learning algorithms. Sometimes,
stratified CV (Kohavi, 1995a) is used, where the folds are stratified so that they
contain approximately the same proportions of classes as the original dataset. It
was shown that in many cases stratification gives better estimation (Kohavi,
1995a). Sometimes, multiple runs of cross-validation can be useful for
stabilization of the estimations (Kohavi, 1995b).

Random sampling or Monte Carlo cross-validation (Kohavi, 1995a) is a
special case of v-fold cross-validation where a percentage of training examples
(typically 2/3) are randomly placed in the training set, and the remaining
examples are placed in the test set. After learning takes place on the training set,
generalization performance is estimated on the test set. This whole process is
repeated for many training/test splits (usually 30) and the algorithm with the
best average generalization performance is selected. Random sampling is used
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in most experiments throughout this dissertation to evaluate developed
methods and to compare them with existing ones.

Bootstrapping (Kohavi, 1995a) is the process of sampling with replacement
from the available examples to form the training and test partitions. If M
examples are available, a sample of size M is drawn with replacement to form
the training set. In the purest form of bootstrapping, the test set is the entire set
of available examples. However, several “holdout” methods have been
developed recently that form test sets from those examples not appearing in the
training set (Kohavi, 1995a; Merz, 1998). In (Kohavi, 1995a) it was shown that
on average, cross-validation methods are better than bootstrapping, and could
be recommended for accuracy estimation and model selection.

2.5.2 Bias/variance decomposition of error

A number of recent investigations of learning algorithms have successfully
analysed error performance in terms of the bias plus variance decomposition
(Webb, 2000). According to Geman et al. (1992), in this decomposition we can
view the expected error of a learning algorithm on a particular target function
and training set size as having three components: (1) a bias term measuring how
close the average model produced by the learning algorithm will be to the
target function; (2) a variance term measuring how much each of the learning
algorithm’s guesses will vary with respect to each other (e.g., how often they
disagree in the case of classification); and (3) a term measuring the minimum
classification error associated with the Bayes optimal classifier for the target
function (this term is sometimes referred to as the intrinsic target noise).

In the case of classification models, the bias can be considered as a measure
of the contribution to error of the central tendency or most frequent
classification of the learner when trained on different training data. The variance
can be considered as a measure of the contribution to error of deviations from
the central tendency.

The bias/variance analysis is useful in focusing our attention on two
significant factors that govern the accuracy of classifiers learned by a learning
system. If a learning system, when provided with different training data,
develops classifiers that differ in their predictions, then the extent of such
variations provides a lower limit on the average error of those classifiers when
applied to any subsequent set of test data.

However, preventing such variance between the classifiers will not
guarantee the elimination of prediction error. This error is also governed by
both the degree to which the correct classifier for an object can differ from that
for other objects with identical descriptions (irreducible error) and the accuracy
of the learning bias.

A number of different formulations of bias and variance have been
proposed in the field of classification learning (Geman, 1992; Breiman, 1996;
Webb, 200). Two bias/variance related metrics are used in this study.
Contribution of bias to error is that portion of the total error, across the
distribution of test sets, that is due to errors committed by the central tendency
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of the learning algorithm. This is the proportion of classifications that are both
incorrect and equal to the central tendency. Contribution of variance to error is
that portion of the total error across the distribution of test sets that is due to
errors that are deviations from the central tendency of the learning algorithm.
This is the proportion of classifications that are both incorrect and not equal to
the central tendency. These two terms must sum to total error.

These metrics are used to evaluate the extent to which variations in the
classifiers formed from one training set to another affect the error of the
learning algorithm. High contribution of bias to error indicates high error
resulting from the learning bias whereas high contribution of variance to error
indicates high error resulting from the algorithm’s responsiveness to variations
between training sets (Webb, 2000). These two definitions have the desirable
properties that: (1) bias is a direct measure of the contribution of the central
tendency to total error, (2) variance is a direct measure of the contribution to
error of deviations from the central tendency, and (3) the two terms (bias and
variance) sum to total error (Webb, 2000).

2.5.3 Tests of hypotheses

The cross-validation methods considered in Section 2.5.1 are commonly used
for comparing the generalization performance of two learning algorithms.
Sometimes it is necessary to determine how significant the observed differences
are. Most studies to date have relied upon the resampled Student’s t-test (also
known as the resampled paired t-test) for measuring the significance of the
observed difference in generalization performance (Dietterich, 1998).

For the resampled paired t-test, a series of (usually) 30 trials is conducted.
In each trial, the available sample is randomly divided into a training set of a
specified size (e.g., typically two thirds of the data) and a test set. Learning
algorithms A and B are both trained on the training set and the resulting

classifiers are tested on the test set. Let )(i
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, and n is the number of trials. Under the null hypothesis,

this statistic has a t distribution with n-1 degrees of freedom. For 30 trials, the
null hypothesis can be rejected if 04523.2975.0,29 => tt .

As discussed in (Dietterich, 1998), there are many potential drawbacks in

this approach. First, the individual differences )(ip will not have a normal
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distribution, because )(i
Ap and )(i

Bp are not independent. Second, the )(ip ’s are

not independent, because the test sets in the trials overlap (and the training sets
in the trials overlap as well).

Recent studies (Dietterich, 1998; Salzberg, 1999) have shown that the
resampled t-test and other commonly used significance tests have an
unacceptably high probability of detecting a difference in generalization
performance when no difference exists (Type 1 error). This is primarily due to
the nature of the sampling process in the experimental design and the number
of examples available. Some conclusions made in this dissertation are checked
also with the McNemar’s test, and the test for the difference of two proportions,
which are claimed to have acceptable Type 1 error (Dietterich, 1998). In this
thesis, the same results were obtained with all the tests, sometimes with
different levels of significance.

Let us conclude this chapter by words from (Mitchell, 1997): “No single
procedure for comparing learning methods based on limited data satisfies all
the constraints we would like. It is wise to keep in mind that statistical models
rarely fit perfectly the practical constraints in testing learning algorithms when
available data is limited. Nevertheless, they do provide approximate confidence
intervals that can be of great help in interpreting experimental comparisons of
learning methods”.



3 RESEARCH PROBLEM: INTEGRATION OF
MULTIPLE DATA MINING METHODS

In this chapter, the research problem of the thesis is considered, and related
work is briefly reviewed. Additionally criteria for assessing the
competency/accuracy of ensembles are reviewed.

3.1 Ensembles and two basic aspects of their construction

Integration of multiple models (or an ensemble of models) to improve the
generalization performance is currently an active research area. Dietterich
(1997) showed that this area is currently one of the four most important
directions in machine learning research and presented a thorough overview of
different approaches. Integration of an ensemble of models has been shown to
yield higher generalization performance than the best base model alone in
different real-world tasks. The benefits of creating an ensemble of models were
successfully presented for both the task of classification and the task of
regression (Merz, 1998).

In general the ensemble prediction process (Figure 3) consists of a set of
base models h1, …, hS, where S is the size of the ensemble formed during the
learning phase. Each base model in the ensemble (models h1 … hS in this case) is
trained using training instances of the corresponding training set Ti, i = 1, …, S.
For the ensemble prediction, the predictions of the base models are combined
during the application phase in some way h* = F(h1, h2, …, hS) to produce the final
prediction of the ensemble.
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T

T 1 T 2 … T S

Learning
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Application
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(x, ?) h* = F(h1, h2, … , hS)

(x, y*)

h1 h2 … hS

FIGURE 3 The general ensemble prediction process

The task of using multiple models generated with different data mining
methods can be broken down into two basic questions: (1) what set of learned
models should be generated?; and (2) how should the predictions of the learned
models be integrated? (Merz, 1998).

3.1.1 Generation of a set of models to be combined

It was shown by several independent researchers, both in experiments and
analytically, that the more diverse the predictions of the combined learned
models are, the better will be the integration results achieved (Ali & Pazzani,
1996; Asker & Maclin, 1997; Merz, 1998; Skalak, 1997; Tumer & Chosh, 1996a;
Tumer & Ghosh, 1996b). To generate a set of diverse learned models, several
approaches have been tried.

One way of generating a diverse set of models is to use learning
algorithms with heterogeneous representations and search biases (Merz, 1998),
such as decision trees, neural networks, instance-based learning, etc. For
example, in (Puuronen et al., 1999a) we use C4.5 decision tree learning, PEBLS
instance learning algorithm, and Bayesian learning to generate base classifiers
in the ensembles.

Another approach is to use models with homogeneous representations
that differ in their method of search or in the data on which they are trained.
This approach includes several types of techniques for generating base models,
such as learning base models from different subsets of the training data. For
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example, two well-known ensemble methods of this type are bagging and
boosting (Quinlan, 1996). Bagging builds each base model from data that are
drawn from the training data with replacement using bootstrap sampling. On
each draw, each training instance has an equal probability of being drawn. The
construction of base models is independent of one another. In contrast, boosting
builds its base models sequentially. On each trial a boosting technique draws
examples following a probability distribution that insures that instances
misclassified by a model constructed on a previous trial are more likely to be
drawn for purposes of constructing the model on the current trial or, in the case
with weighted instances, those examples just receive more weight. In (Tsymbal
& Puuronen, 2000; Tsymbal, 2000) we considered a combination of the bagging
and boosting approaches for generating base classifiers with our approach for
the dynamic integration of classifiers.

The base models with homogeneous representations may be binary
classifiers that are integrated to implement a multiclass learner (i.e., where the
number of class labels is greater than 2). Each classifier in such an ensemble is
learnt to distinguish one class label from the others. For example, Dietterich and
Bakiri (1995) map each class label onto a bit string prior to learning. Bit strings
for class labels are designed to be well separated, thus serving as error-
correcting output codes (ECOC). An off-the-shelf system for learning binary
classifications (e.g., 0 or 1) can be used to build multiple classifiers, one for each
bit in the output code. An instance is classified by predicting each bit of its
output code (i.e., label), and then classifying the instance as the label with the
“closest” matching output code.

Another technique for building models with homogeneous
representations is the use of different subsets of features (attributes) for each
model. For example, in (Oza & Tumer, 1999) base classifiers are built on
different feature subsets, where each feature subset includes features relevant
for distinguishing one class label from the others (the number of base classifiers
is equal to the number of classes). In (Tsymbal & Puuronen, 2000) we built base
classifiers on different feature subsets to provide local feature selection using
dynamic classifier integration. Finding a set of feature subsets for constructing
an ensemble of accurate and diverse base models is also known as ensemble
feature selection (Opitz, 1999).

Also, natural randomisation in the process of model search (e.g., random
weight setting in the backpropagation algorithm for training neural networks)
can be used to build different models with homogeneous representation. The
randomisation can also be injected artificially. For example, in (Heath et al.,
1996) a randomised decision tree induction algorithm, which generates different
decision trees every time it is run, was used for that purpose.

Sometimes, a combination of the techniques considered above can be
useful in order to produce the desired characteristics of the generated models.
For example, a combination of boosting and wagging (which is a kind of
bagging technique) is considered by Webb (2000).

In addition to these general-purpose methods for generating a diverse
ensemble of models, there are several techniques that can be applied to the
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backpropagation algorithm for training neural networks. For example, Opitz
and Shavlik (1996) employ a kind of genetic algorithm to search for a good
population of neural network classifiers.

3.1.2 Integration of multiple learned models

This thesis is focused on the second issue, identified in Section 3.1 namely,
“how should the predictions of the learned models be integrated?”. Brodley
and Lane (1996) have shown that only increasing coverage of an ensemble
through diversity is not enough to insure increased prediction accuracy. If the
integration method does not utilize the coverage, then no benefit arises from
integrating multiple classifiers. Thus, the diversity and coverage of an ensemble
are not in themselves sufficient conditions for ensemble accuracy. It is also
important for ensemble accuracy to have a good integration method that will
utilize the diversity of the base models.

A new technique for the integration of multiple data mining methods was
developed and analyzed in this work. This technique was applied with the
different ensemble generating schemas considered above. This work
concentrated on the task of integrating multiple classifiers. The technique
proposed in the thesis can be easily extrapolated to other data mining tasks
such as regression. Furthermore in this section the problem of the integration of
multiple classifiers is considered, and two basic approaches to the integration
(combination and selection) suggested by researchers are discussed.

The integration of multiple classifiers, to improve classification results, is
currently an active research area in the machine learning (Dietterich, 1997;
Mitchell, 1997) and neural networks (Opitz & Maclin, 1999; Baxt, 1992; Hansen
& Salamon, 1990; Krogh & Vedelsby, 1995; Opitz & Shavlik, 1996) communities.
Deitterich (1997) showed that this area is currently one of the four most
important directions in machine learning research and presented a thorough
overview of different approaches. Different techniques to integrate an ensemble
of classifiers have been considered for example in (Bauer & Kohavi, 1999;
Breiman, 1996; Chan & Stolfo, 1997; Domingos, 1998; Kohavi, 1995a; Koppel &
Engelson, 1996; Merz, 1998; Oza & Tumer, 1999; Puuronen et al., 1999c;
Schapire, 1999; Skalak, 1997; Tsymbal & Puuronen, 2000b; Tsymbal, 2000;
Tsymbal et al., 1999; Webb, 2000). The integration of an ensemble of classifiers
has been shown to yield higher accuracy than the most accurate base classifier
alone in different real-world tasks.

The challenging problem of integration is to decide which one(s) of the
classifiers to rely on or how to combine the results produced by the base
classifiers. The problem of integration can be defined as follows. Let us suppose
that there is a training set T and a set of classifiers C. Let the training set T  be
{ }( , ), ,...,x i iy i n= 1 , where n is the number of the training instances, xi={ }x j lj , ,...,= 1

is the vector of the attribute values of the i-th training instance (the values of the
attributes are allowed to be continuous or nominal), and { }y c ci k∈ 1,...,  is the
classification of the i-th instance, where k is the total number of the classes. Let
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the set of classifiers C  be { },,...,1 SCC  where S is the number of the base classifiers.
Each base classifier is either derived using some learning algorithm or a hand-
crafted classifier constructed using some heuristic knowledge. A new instance
x* is an assignment of values to the vector of the attributes { }xj

. Let each base

classifier be able to classify the new instance. Then the problem of integrating
the classifiers is to derive a technique to classify the new instance x* using the
classifiers of the set C .

Most existing classifier integration methods can be considered as
instantiations of the stacked generalization (or stacking) framework (Wolpert,
1992) presented in Figure 4. The goal of stacking is to combine the predictions
of a set of learned models based on information learned about their particular
biases with respect to the training data. The basic idea is to perform another
layer of induction over the outputs (or approximated outputs) of the learned
models with the goal of learning how to correct for inappropriate biases
(Wolpert, 1992).

meta-level training set

{ })),(),...,(( 1 jjSj yCC xx

...C1 C2 CS

example
x*

Base
classifiers

Ci

base
predictions

Ci(x
*)

C1(x
*) C2(x

*) CS(x
*)

combining (meta-level)
classifierM M

final prediction
M(C1(x

*),..., CS(x
*) )

FIGURE 4 The stacked generalization framework

In the basic form of the stacked generalization layered architecture, the base
classifiers { }SCC ,...,1=C  form the first layer, and a single combining classifier M
forms the second layer. The combining classifier M is trained using the
predictions of the base classifiers { })( jiC x  and the training set T (Wolpert, 1992).

When a new instance x* is classified, then first, each of the base classifiers Ci

produces its classification result Ci(x*), and then the combining classifier M
produces the final classification using these classification results. The technique
proposed in this thesis can also be considered as an instantiation of the stacking
framework. However, meta-level data, containing spatial information about
errors of the base classifiers is used, instead of classifier predictions.

Techniques using two basic approaches have been suggested as a solution
to the integration problem: (1) combination approach, where the base classifiers
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produce their classifications and the final classification is composed using them;
and (2) selection approach, where one of the classifiers is selected and the final
classification is the result produced by it. Several effective techniques for the
combination of classifiers have been proposed. One of the most popular and
simplest techniques used to combine the results of the base classifiers, is simple
voting (also called majority voting and select all majority (SAM)) (Bauer &
Kohavi, 1999). In the voting technique, the classification of each base classifier is
considered as an equally weighted vote for that particular classification. The
classification that receives the biggest number of votes is selected as the final
classification (ties are solved arbitrarily). Often, weighted voting is used: each
vote receives a weight, which is usually proportional to the estimated
generalization performance of the corresponding classifier. Weighted voting
works usually much better than simple majority voting (Bauer, 1999).

More sophisticated combination techniques, which can be considered as
instantiations of the stacking framework, include the SCANN method based on
the correspondence analysis and using the nearest neighbor search in the
correspondence analysis results (Merz, 1998; Merz, 1999); and techniques to
combine minimal nearest neighbor classifiers within the stacked generalization
framework (Skalak, 1997). Two effective classifier combination techniques
based on the stacked generalization called “arbiter” and “combiner” were
presented in Chan (1996). Hierarchical classifier combination has also been
considered. Experimental results of Chan (1996); Chan & Stolfo (1997) showed
that the hierarchical (multi-level) combination approach, where the dataset was
distributed among a number of sites, was often able to sustain the same level of
accuracy as a global classifier trained on the entire dataset.

There are still many open questions in the area of combining classifiers;
even within such a widely used architecture as stacked generalization. For
example, no clear guidelines exist as to how to decide which base classifiers
should be used, which features should be used to form the meta-level training
set for the combining classifier, and which combining classifier should be used.
Different combining classifier algorithms have been considered by various
researchers, including the boosting algorithm using weighted voting (Schapire,
1999), ID3 for combining nearest neighbor classifiers (Skalak, 1997), and nearest
neighbor classification (Merz, 1999) to search in the space of correspondence
analysis results (not directly on the predictions).

A number of selection techniques have also been proposed to solve the
integration problem. One of the most popular and simplest selection techniques
is the cross-validation majority (CVM) (Schaffer, 1993; Kohavi, 1995a). In the
CVM, the cross-validation accuracy for each base classifier is estimated using
the training set, and then the classifier with the highest accuracy is selected (ties
are solved using voting). More sophisticated selection approaches include
estimation of the local accuracy of the base classifiers by considering errors
made in instances with similar predictions (Merz, 1996), learning a number of
meta-level classifiers (“referees”) that predict whether the corresponding base
classifiers are correct or not for new instances (each “referee” is a C4.5 tree that
recognizes two classes) (Koppel & Engelson, 1996). Todorovski & Dzeroski
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(2000) trained a meta-level decision tree, which dynamically selected a base
model to be applied to the considered instance, using the level of confidence of
the base models in correctly classifying the instance. Applications of classifier
selection in medical diagnostics have been considered in (Skrypnyk et al., 1999;
Terziyan et al., 1996; Tsymbal et al., 1998). The local accuracy of the base
classifiers is predicted there by analyzing the accuracy in near-by instances of
the learning set, and in this thesis an advanced version of this classifier
integration approach is considered.

The approaches of classifier selection techniques can be divided into two
subsets: static and dynamic selection. The static approaches propose one “best”
method for the whole data space, while the dynamic approaches take into
account each new instance to be classified. The CVM is an example of the static
approach, while the other selection techniques above and the one proposed in
this thesis are examples of the dynamic approach.

Techniques for combining classifiers can be static or dynamic as well. For
example, widely used weighted voting (Bauer et al., 1999) is a static approach.
The weights for each base classifier’s vote do not depend on the instance to be
classified. In contrast, the reliability-based weighted voting (RBWV) introduced
in (Cordella et al., 1999) is a dynamic voting approach. It uses classifier-
dependent estimation of the reliability of predictions for each particular
instance. Dynamic Voting (DV) and Dynamic Voting with Selection (DVS)
techniques, which are focused upon in this thesis, are also examples of dynamic
combination approaches. The weights for each base classifier’s vote do depend
on the instance to be classified (the weights are proportional to estimated
classifiers’ local accuracies). Usually, better data mining results can be achieved
if the classifier integration is done dynamically taking into account the
characteristics of each new instance.

3.2 Ensemble goodness criteria and their interrelation

An ensemble is generally more accurate than any of the base classifiers in the
ensemble. Both theoretical and empirical research have shown that an effective
ensemble should consist of base classifiers that not only have high classification
accuracy, but that also make their errors in different parts of the input space
(Bauer & Kohavi, 1999; Krogh & Vedelsby, 1995; Opitz & Maclin, 1999; Tumer
& Gosh, 1996). Brodley and Lane (1996) show that the main objective when
generating the base classifiers is to maximize the coverage of the data, which is
the percentage of the instances that at least one base classifier can classify
correctly. Achieving coverage greater than the accuracy of the best base
classifier requires diversity among the base classifiers. Several researchers have
presented theoretical evidences supporting this claim (Hansen & Solomon,
1990; Krogh & Vedelsby, 1995; Tumer & Gosh, 1996).

For example, Hansen and Salamon (1990) proved that, if the average
classification error rate for an instance is less than 50% and the base classifiers in
the ensemble are independent in the production of their errors, then the
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expected error for that instance can be reduced to zero as the number of base
classifiers included into the ensemble goes to infinity, when majority voting is
used for integration. Such assumptions rarely hold in practice (for example, an
outlier may easily have predicted classification error rate that is higher than
50%), and then the classification error rate over all the instances cannot
necessarily be reduced to zero. But if we assume a significant percentage of the
instances are predicted with less than 50% average error, gains in generalization
will be achieved. A key assumption in this analysis is that the base classifiers
should be independent in their production of errors.

Krogh and Vedelsby (1995) have shown that the classification error for an
ensemble of neural network base classifiers is related to the generalization error
of the base networks and to how much disagreement there is between them.
They have proved that AEE −= , where E  is the ensemble generalization error,
E  is the average of the generalization errors of the base networks weighted by
corresponding beliefs, and A  is the ensemble ambiguity measured as the
weighted average of the squared differences in the predictions of the base
networks and the ensemble. The ambiguity A  that they used as a way to
measure the disagreement, is common when disagreement among numeric
predictors such as neural networks is measured.

A similar dependency derived by Tumer and Ghosh (1996) for classifiers
that predict the a posteriori probabilities of the output classes is:
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where E  is the ensemble generalization error (beyond the Bayesian one), S is
the size of the ensemble, Pi is the prior probability of class i, iδ  is the average
correlation factor among the classifiers in the prediction of the a posteriori
probabilities of class i, and E  is the average error of the base classifier. Here the
disagreement is measured as the correlation in the predictions of the a
posteriori probabilities.

Ho (1998) presents another measure of agreement for two base classifiers
producing categorical classifications in an ensemble. For two classifiers hi and hj,
the classifier agreement si,j is the amount that their decision regions overlap:
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where { })()( xhxhxR ji == , and p(x) is the probability density function of x. Ho

(1998) shows that for some decision trees the agreement si,j can be calculated
exactly in theory. When the exact calculation is infeasible, one may get an
approximation by Monte-Carlo estimation, generating random points, or using
testing samples that are representative for the given problems.

The most commonly used measure of a base classifier’s diversity is the
average difference *

iDiv  between the base classifier and the ensemble (Brodley
& Lane, 1996). Let Dif(a,b) be the difference in two classifications a and b, which
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is zero if the classifications are the same and one if they are different, then *
iDiv

is:
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where hi(xj) denotes the classification of the instance xj by the classifier hi, and M
is the number of instances in the test set.

    However, this measure depends on the integration procedure. This
measure is used mostly for voting or averaging types of integration. For some
integration procedures (e.g., static selection) this measure cannot reflect the real
disagreement between a classifier and the rest of the classifiers in the ensemble.
In this study we experimented with different integration procedures, and thus
we needed an integration-independent measure.

We measure the disagreement of a base classifier hi and the whole
ensemble using a diversity Divi of the classifier on test instances as the average
difference in predictions in all the pairs of classifiers including hi as:
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where S denotes the number of the base classifiers. The total diversity of the
ensemble is the average diversity of its members. It can be shown that in the case
of numeric predictors where the simple average is used as the integration
procedure, when the function Dif is redefined as the squared difference in
predictions of two classifiers, the diversity estimate (3) is proportional to the
integration-independent measure (4).

One simple alternative metric for determining the agreement of classifiers
in an ensemble is classification overlap, which is the percentage of test instances
that were classified in the same way by each of the classifiers (Brodley & Lane,
1996). In (Cunningham & Carney, 2000) it was proposed to use entropy as the
appropriate measure of the ambiguity of classification ensembles. However,
there was no research showing that this measure is better than the commonly
used measure (3).



4 OUR APPROACH TO THE PROBLEM

In this chapter we present the motivation for dynamic integration of learned
models, and briefly discuss the proposed approach.

In a similar way as Hansen and Salamon (1990) proved their theorem for
the base classifiers with less than 50% classification error rate, it is possible to
prove that, for majority voting ensembles, if the average classification error rate
for an instance is more than 50% and the base classifiers in the ensemble are
independent in the production of their errors, the expected ensemble
classification error for that instance will approach 100% as the number of
classifiers combined goes to infinity, even when the coverage approaches 100%.
Moreover, in some hard learning problems and especially in multi-class
problems, average local accuracy below 50% can hold on quite a big percentage
of instances. The accuracy in this case can be significantly improved with an
integration technique that is capable of identifying the regions of expertise of
individual base classifiers instead of simple majority voting (e.g., with dynamic
integration).

In Figure 5, a simple example of failure of static voting is considered. Let
there be three base classifiers C1, C2, and C3 generated with a boosting
approach, and the ensemble is used to classify a hard instance x*. It is very
probable that the first two classifiers will give wrong predictions, and only the
last classifier, after the adaptive boosting distribution change, will classify
correctly. This is a very common situation with boosting. It seems that the idea
of boosting has worked, and the instance is classified correctly by the last base
classifier, but the final ensemble prediction will be wrong in most cases,
depending on the weights used in the weighted voting-based integration
procedure. This example shows the important shortcoming of static voting
approaches in that they do not take into account local expertise of the base
classifiers, and thus provides the motivation for the use of dynamic integration.
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FIGURE 5 An example of classification failure with static voting in boosting

In Figure 6, a simple example of the distribution of errors of a model built by a
C4.5 decision tree learning algorithm (Quinlan, 1993) over the instance space is
considered. The classification problem includes two features x1 and x2, and two
classes “class_1” and “class_2”. The target function is x1>x2. The greyed areas
represent instances, which are incorrectly classified by the model. It can be seen
that the errors are concentrated in triangular regions in this case.

x1

x2

class_1

class_2

FIGURE 6 An example of the distribution of errors of a C4.5 decision tree

In (Gama, 1999) it was shown that the distribution of the error rate over the
instance space is not homogeneous for many types of classifiers. Depending on
the classifier, the error rate will be more concentrated on certain regions of the
instance space than in others.

The basic idea of dynamic integration is that the information about a
model’s errors in the instance space can be used for learning just as the original
instances were used for learning the model. In (Giacinto & Roli, 1999), a
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theoretical framework of dynamic classifier selection was presented showing
that the accuracy of dynamic selection approaches the accuracy of the optimal
Bayesian classifier when the number of instances in the dataset grows.

In this thesis, a dynamic integration approach is presented that estimates
the local accuracy of the base classifiers by analyzing their accuracy on nearby
instances to the instance to be classified (Puuronen et al., 1999a). Instead of
directly applying selection or combination as an integration method, we use
cross validation to collect information about the classification accuracies of the
base classifiers and use this information to estimate the local classification
accuracies for each new instance. These estimates are based on the weighted
nearest neighbor classification (WNN) (Cost & Salzberg, 1993).

The proposed dynamic integration technique contains two main phases
(Puuronen et al., 1999a; Puuronen & Tsymbal, 2001). First, at the learning phase,
the training set is partitioned into folds. During the cross validation run, we
estimate the local classification errors of each base classifier for each instance of
the training set according to the 1/0 loss function. These local errors together
with the features of the instances of the training set form a meta-level training
set used by WNN.  The learning phase finishes with training the base classifiers
on the whole training set. The application phase begins with determining the K-
nearest neighborhood for the new instance using a distance metric based on the
values of its features. Then, the meta-level classifier (WNN) is used to predict
the local classification errors of each base classifier for a new instance using the
meta-level training set. In WNN, to weigh the classification errors for an
instance k from the K-nearest neighborhood of the test instance, we use a tri-
cube function (Hastie & Tibshirani, 1996):
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where dk is the distance from the instance k to the test instance, and dK+1 is the
distance from the test instance to the first nearest instance not included in the K-
neighborhood.

We have proposed three different approaches based on the local accuracy
estimates: Dynamic Selection (DS) (Puuronen et al., 1999a), Dynamic Voting
(DV) (Puuronen et al., 1999a), and Dynamic Voting with Selection (DVS)
(Tsymbal et al., 2001). All these are based on the same local accuracy estimates
obtained using WNN and (5). DS simply selects a classifier with the least
predicted local classification error, as was also proposed in (Giacinto & Roli,
1999; Woods et al., 1997). In DV, each base classifier receives a weight that is
proportional to the estimated local accuracy of the base classifier, and the final
classification is produced by combining the votes of each classifier with their
weights.  In DVS, the base classifiers with highest local classification errors are
discarded (the classifiers with errors that fall into the upper half of the error
interval of the base classifiers) and locally weighted voting (DV) is applied to
the remaining base classifiers.

Our DS integration procedure is similar to DCS_LA (for Dynamic
Classifier Selection based on Local Accuracies) presented in (Woods et al., 1997),
and to DCS presented in (Giacinto & Roli, 1999). The main differences between
our DS and the others are as follows. (1) DCS_LA does not use distances for
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weighting the local accuracy estimates. (2) Neither DCS_LA nor DCS use cross-
validation to estimate the training local accuracies, estimating them directly on
the training or validation datasets. (3) Both DCS_LA and DCS can be based on
the local accuracy estimate, which takes into account also the classification
produced by the corresponding base classifier. The local accuracy is calculated
in this case only for those instances in the neighborhood that are classified into
the same class as the test instance by the corresponding classifier. This local
accuracy is called the local class accuracy in (Woods et al., 1997), and a posteriori
accuracy in (Giacinto & Roli, 1999; Giacinto & Roli, 2001), and it was shown to be
slightly superior with respect to the simple local accuracy (used in our DS, DV,
and DVS).

As regarding these differences, it was discussed in (Giacinto & Roli, 2001)
that distance-weighted local accuracies are better as they allow us to handle
more effectively the problem of the choice of the size of the neighborhood, and
provide more robust estimates of local accuracies. The use of cross-validation
for building the history of base classifiers’ accuracy is necessary in order to get
unbiased accuracy estimates, especially when there is not enough data for a
separate validation set. Using cross-validation, accuracy estimates are provided
for each training instance. By sacrificing efficiency, several cross-validation runs
can be used in order to get more exact accuracy estimates. For some classifiers,
the use of cross-validation is necessary, as the training set based estimates are
too biased. This is especially true of 1-nearest neighbor and some unpruned
decision trees that always have zero training-set error. When heterogeneous
classifiers are being integrated, cross validation is also desirable as different
classifiers have different degree of bias with respect to the resubstitution
(training-set-based) error. The use of the a posteriori local accuracy within DS,
DV, and DVS is an interesting issue for further research. We presume that the a
posteriori local accuracy will be superior with respect to the simple local
accuracy also for our DS, DV, and DVS integration procedures.



5 RESEARCH DESIGN

This chapter provides details of the experimental design and a description of
the different datasets used in the experiments in terms of how many instances,
the number and type of attributes and number of classes, they each have.

5.1 Research methods

Three basic research approaches are used in this thesis: the conceptual-theoretical
approach, the constructive approach, and the experimental approach. These
approaches are tightly connected and are applied in parallel. The theoretical
background is exploited during the constructive work and the constructions are
used for experimentation. The results of constructive and experimental work
are used to refine the theory.

Accordingly, several research methods are applied. In the conceptual-
theoretical approach, conceptual basics and formalisms of the integration of
multiple data mining methods in knowledge discovery systems, and especially
dynamic integration, are reviewed and discussed. A technique for the dynamic
integration of data mining methods is developed. Formal methods are also used
in analysing developed and existing algorithms and meta-level data generation.
During the constructive part of the research, software that implements the
developed theory is constructed, with an emphasis on the use of meta-level
data to integrate different mining techniques in knowledge discovery. The
constructive part results in a software prototype that enables one not only to
discuss the aspects of the integration of multiple mining methods but also to
experiment with them. In the experimental part of the research, widely
available benchmark databases (artificial and real-world ones) are used to
evaluate characteristics of the developed integration approach in order to
receive a deeper understanding about its behaviour in different subject
domains. In the next two subsections, the experiments are considered in more
detail. First, general issues of the experimental design are considered, and then
datasets used in experiments throughout the thesis are discussed.
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5.2 Experimental design

In this section, the techniques used in the experiments throughout this
dissertation are described.

To compare the developed algorithms and existing ones, 30 runs of
random sampling or Monte-Carlo CV (described in Section 2.5.1 of this thesis)
are used. In each run the dataset is first split into the training set and the test set
by random sampling. Each time about 30 percent of the instances of the dataset
are first randomly assigned to the test set. The other 70 percent of the instances
are then passed to the learning algorithm where they are divided into 10 folds
using stratified random sampling. In the test environment 10-fold cross-
validation is applied to build the cross-validation history for the dynamic
integration of base classifiers. Cross-validation is not used for generating the
performance history in the experiments with the arbiter meta-learning in Article
IV (Tsymbal et al., 1999), and decision committee integration (bagging and
boosting) in Article V (Tsymbal, 2000), as those base classifiers are being built
using one learning algorithm on different subsamples of the initial dataset. In
this case, the performace history is simply collected on the whole dataset. In the
experiments with the arbiter meta-learning, 10-fold cross-validation was also
used to compare classification accuracies of considered learning algorithms. In
Article VII (Tsymbal et al., 2002), the original division of the datasets into the
training and test sets was used for the sake of performance comparison.
Additionally, in each run, 20 percent of the instances of the training set were
randomly assigned to the validation set used in the feature subsets refinement.

In the experiments, three base learning algorithms are used: PEBLS (Cost
& Salzberg, 1993), C4.5 (Quinlan, 1993), and BAYES (John, 1997), all of which
were considered in Section 2.4 of this thesis. PEBLS is an instance-based
learning algorithm, which uses a value-difference metric, designed specially for
nominal features. The three learning algorithms represent three completely
different approaches to learning and are able to provide different learning
biases for successful integration. Where homogeneous base classifiers are
integrated (feature selection in Article II (Puuronen & Tsymbal, 2000), arbiter
meta-learning in Article IV (Tsymbal et al., 1999), bagging and boosting in
Article V (Tsymbal, 2000), and ensemble feature selection in Article VI (Tsymbal
et al., 2001) and Article VII (Tsymbal & Puuronen, 2002)), the C4.5 decision tree
learning is used. In the experiments, the Heterogeneous Euclidean-Overlap
Metric was usually used (Wilson & Martinez, 1997). In Article III (Puuronen et
al., 2000), six different distance functions are compared in the framework of
dynamic integration of classifiers. When needed (as for the PEBLS and BAYES
algorithms), the values of continuous features are discretized dividing the
interval of the values of the feature into intervals with equal length. The whole
experimental environment was implemented within the MLC++ framework
(the machine learning library in C++) (Kohavi et al., 1996).

Significance of observed differences in the generalization performance of
two algorithms is usually checked with the paired differences t-test based on
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train/test cross-validation splits (Dietterich, 1998), as described in Section 2.5.3.
Some conclusions made in this dissertation are checked also with the
McNemar’s test, and the test for the difference of two proportions, which are
claimed to have acceptable Type 1 error (Dietterich, 1998). In this thesis, the
same results were obtained with all the significance checking tests, sometimes
with different levels of significance.

5.3 Datasets used in the experiments

The datasets used in the experiments were taken from the University of
California at Irvine Machine Learning Repository (Blake et al., 1998), except for
the Acute Abdominal Pain (AAP) datasets provided by the Laboratory for
System Design, Faculty of Electrical Engineering and Computer Science,
University of Maribor, Slovenia and the Theoretical Surgery Unit, Dept. of
General and Trauma Surgery, Heinrich-Heine University Düsseldorf, Germany
(Zorman et al., 2001), and the Dystonia dataset taken from the Medical Research
Centre of Kharkov Medical University, Ukraine (Terziyan et al., 1998). The main
characteristics of the datasets used in experiments throughout the thesis are
presented in Table 1. The table includes the name of the dataset, the number of
instances included in the dataset, the number of different classes of instances,
and the numbers of different kind of features included in the instances.

The Acute Abdominal Pain (AAP) datasets represent the same problem of
separating acute appendicitis (class “appendicitis”), which is a special problem
of acute abdominal pain, from other diseases that cause acute abdominal pain
(class “other diagnoses”). The early and accurate diagnosis of acute appendicitis
is still a difficult and challenging problem in everyday clinical routine. Each
dataset includes 18 parameters (features) from history-taking and clinical
examination.

The Balance dataset was generated to model psychological experimental
results. Each example is classified as having the balance scale tiped to the right,
tiped to the left, or balanced. The attributes are the left weight, the left distance,
the right weight, and the right distance. The correct way to find the class is the
greater of (left-distance * left-weight) and (right-distance * right-weight).  If they
are equal, it is balanced.

TABLE 1 Characteristics of the datasets

Features
Dataset Instances Classes

Categorical Numerical
Acute Abdominal Pain I 1251 2 17 1
Acute Abdominal Pain II 2279 2 17 1
Acute Abdominal Pain III 4020 2 17 1
Balance 625 3 0 4

(continues)
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TABLE 1 (continues)

Breast Cancer Ljubljana 286 2 9 0
Car Evaluation 1728 4 6 0
Pima Indians Diabetes 768 2 0 8
DNA 3186 3 180 0
Dystonia 150 3 0 7
Glass Recognition 214 6 0 9
Heart Disease 270 2 8 5
Ionosphere 351 2 0 34
Iris Plants 150 3 0 4
LED 300 10 7 0
LED17 300 10 24 0
Liver Disorders 345 2 0 6
Lymphography 148 4 15 3
MONK-1 432 2 6 0
MONK-2 432 2 6 0
MONK-3 432 2 6 0
Soybean 47 4 0 35
Thyroid 215 3 0 5
Tic-Tac-Toe Endgame 958 2 9 0
Vehicle 846 4 0 18
Voting 435 2 16 0
Zoo 101 7 16 0

In the Breast Cancer Ljubljana dataset the task is to determine whether breast
cancer will or will not recur. The data were originally obtained from the
University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia.

The Car Evaluation dataset was derived from a simple hierarchical
decision model that evaluates cars according to a concept structure. The Car
Evaluation dataset contains examples with the structural information removed,
i.e., it directly relates a car to the six input attributes: buying, maintenance,
doors, persons, lug_boot, and safety. The four classes are “unacceptable”,
“acceptable”, “good”, and “very good”.

The task for the Pima Indians Diabetes dataset is to determine whether the
patient shows signs of diabetes according to World Health Organization
criteria. There are eight continuous features: the number of times pregnant,
plasma glucose concentration, diastolic blood pressure, triceps skin fold
thickness, 2-hour serum insulin, body mass index, diabetes pedigree function,
and age.

The DNA dataset is drawn from the field of molecular biology. Splice
junctions are points on a DNA sequence at which “superfluous” DNA is
removed during protein creation. The task is to recognize exon/intron
boundaries, referred to as EI sites; intron/exon boundaries, referred to as IE
sites; or neither. The features provide a window of 60 nucleotides. The
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The Dystonia dataset (Terziyan et al., 1998) was taken from the Medical
Research Centre of Kharkov Medical University, Ukraine. The task is to
distinguish three types of dystonia. Dystonia is a neurological disorder marked
by strong involuntary muscle spasms that cause painful and disabling twisting
of the body.

In the Glass Recognition dataset the task is to identify which one of the six
types of glass is present from chemical elements in a sample.

The task for the Heart Disease dataset is to distinguish the presence or
absence of heart disease in patients. The features include: age, sex, chest pain
type, resting blood pressure, fasting blood sugar, max heart rate, etc.

The Ionosphere dataset includes radar data that was collected by a system
in Goose Bay, Labrador. This system consists of a phased array of 16 high-
frequency antennas with a total transmitted power in the order of 6.4 kilowatts.
The targets were free electrons in the ionosphere. "Good" radar returns are
those showing evidence of some type of structure in the ionosphere. "Bad"
returns are those that do not; their signals pass through the ionosphere.
Received signals were processed using an autocorrelation function whose
arguments are the time of a pulse and the pulse number.  There were 17 pulse
numbers for the Goose Bay system.  Instances in this dataset are described by 2
attributes per pulse number, corresponding to the complex values returned by
the function resulting from the complex electromagnetic signal.

The Iris Plants dataset created by R.A. Fisher is perhaps the best known
database in the machine learning literature. The task is to classify iris plants into
one of three iris plants varieties: Iris Setosa, Iris Versicolour, and Iris Virginica.
This is an exceedingly simple domain and very low error rates have already
been achieved long ago.

The LED dataset contains data about the LED display problem, where the
goal is to learn to recognize decimal digits having information about whether
the seven corresponding LED segments are on or off. The LED 17 dataset
represents an extension of the LED display problem, with an additional 17
irrelevant attributes being added to the instance space. Their values are
randomly assigned the values 0 or 1.

The Liver Disorders dataset was created by BUPA Medical Research Ltd,
and the task is to predict liver disorders that might arise from excessive alcohol
consumption.

The Lymphography dataset was obtained from the University Medical
Centre, Institute of Oncology, Ljubljana, Yugoslavia. There are 15 categorical
and 3 numerical attributes, and the classes being predicted are: “normal find”,
“metastases”, “malign lymph”, and “fibrosis”.

The MONK’s problems are a collection of three artificial binary
classification problems over the same six-attribute discrete domain (a1,…,a6).
All MONK’s datasets contain 432 instances without missing values,
representing the full truth tables in the space of the attributes. The ”true”
concepts MONK-1, MONK-2, and MONK-3 underlying each MONK’s problem
are given by: (a1=a2)or(a5=1) for MONK-1, exactly two of {a1=1, a2=1, a3=1,
a4=1, a5=1, a6=1} for MONK-2, and (a5=3 and a4=1)or(a5<>4 and a2<>3) for
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MONK-3. MONK-3 has 5% additional noise (misclassifications) in the training
set. The MONK’s problems were the basis of the first international comparison
of learning algorithms (Thrun et al., 1991).

The Soybean dataset includes data about the soybean disease diagnosis.
This is a small subset of the original Soybean-large database. There are 35
numerical attributes, and 4 classes, representing soybean diseases.

In the Thyroid dataset, five laboratory tests are used to try to predict
whether a patient's thyroid is in the class “euthyroidism”, “hypothyroidism” or
“hyperthyroidism”. The diagnosis (the class label) is based on a complete
medical record, including anamnesis, scan etc.

The Tic-Tac-Toe Endgame dataset encodes the complete set of possible
board configurations at the end of tic-tac-toe games, where ”x” is assumed to
have played first. The target concept is ”win for x” (i.e., true when ”x” has one
of 8 possible ways to create a ”three-in-a-row”). The dataset contains 958
instances without missing values, each with 9 attributes, corresponding to tic-
tac-toe squares and taking on 1 of 3 possible values: ”x”, ”o”, and ”empty”.

In the Vehicle dataset, the goal is to classify a given silhouette as one of
four types of vehicles (“Opel”, “Saab”, “Bus”, and “Van”), using a set of 18
numerical features extracted from the silhouette. The vehicle may be viewed
from one of many different angles. This dataset comes from the Turing
Institute, Glasgow, Scotland.

The Voting dataset includes votes for each of the U.S. House of
Representatives Congressmen on the 16 key votes identified by the
Congressional Quarterly Almanac in 1984. The goal is build a classification
model to predict the voting congressman to be either a democrat or a
republican.

Zoo is a simple dataset created by Richard S. Forsyth with instances
containing 17 Boolean valued-attributes, and representing 7 types of animals.

A survey of widely used learning algorithms (decision trees, neural
networks, and rule-based classifiers) on twenty-nine datasets from the UCI
machine learning repository is given in Eklund (1999). This survey connects the
properties of datasets examined with the selection of learning algorithms. In
(Lim et al., 2000) twenty-two decision tree, nine statistical, and two neural
network algorithms are compared on thirty-two datasets in terms of
classification accuracy, training time, and (in the case of trees) number of leaves.
Fifteen of the datasets are available from the UCI repository.

In (Salzberg, 1999) the use of the datasets from the UCI repository was
strongly criticized. The main message in (Salzberg, 1999) is: “In conducting
comparative studies, classification researchers and other data miners must be
careful not to rely too heavily on stored repositories of data (such as the UCI
repository) as its source of problems, because it is difficult to produce major
new results using well-studied and widely shared data. … Any new
experiments on these and other UCI datasets run the risk of finding
“significant” results that are no more than statistical accidents.” However, we
do believe that nevertheless, the UCI datasets provide useful benchmark
estimates that can be of great help in experimental analysis and comparisons of
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learning methods, even though these results must be looked at carefully before
final conclusions are made.



6 SUMMARY OF THE INCLUDED ARTICLES

This chapter provides an overview of the refereed papers included into the
present thesis. These examine various aspects of dynamic integration for
ensemble classifiers including, the different dynamic integration approaches,
local feature selection, the effects of using different distance functions in
dynamic integration, arbiter meta-learners and decision committees.

6.1 “A dynamic integration algorithm for an ensemble of
classifiers”

Reference: Puuronen, S., Terziyan, V. & Tsymbal, A. 1999. A dynamic
integration algorithm for an ensemble of classifiers. In Z.W.Ras & A.Skowron
(Eds.) Foundations of intelligent systems: 11th International Symposium ISMIS’99,
Warsaw, Poland, Lecture Notes in Artificial Intelligence, Vol. 1609. Berlin: Springer,
592-600.

An algorithm for the dynamic integration of classifiers is considered, which is a
new variation of the stacked generalization framework, and uses a metric to
locally estimate the errors of the base classifiers. Instead of training a meta-level
classifier that will derive the final classification using the classifications of the
base classifiers as in stacked generalization, we propose to train a meta-level
classifier that will estimate the errors of the base classifiers for each new
instance and then use these errors to derive the final classification. Our goal is
to use each base classifier just in that subdomain for which it is most reliable.
Our dynamic approach to the integration of multiple classifiers attempts to
create a meta-model that describes subspaces correctly classified by
corresponding base classifiers. Our approach is closely related to that
considered by Koppel & Engelson (1996). The main difference between these
two approaches is in the combining algorithm. In (Koppel & Engelson, 1996) the
C4.5 decision tree induction algorithm was used to predict the errors of the base
classifiers, whereas we use weighted nearest neighbor classification (WNN)
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(Aivazyan, 1989; Cost & Salzberg, 1993), which simplifies the learning phase of
the composite classifier. It is enough to calculate the performance matrix for the
base classifiers during the learning phase. In the application phase, nearest
neighbors of a new instance among the training instances are identified and the
corresponding base classifiers’ performances are used to calculate the predicted
classifiers’ performance for each base classifier.

Two variations of the application phase are introduced: dynamic selection
(DS) and dynamic voting (DV). In the DS application phase the local
classification error is predicted for each base classifier and a classifier with the
smallest error is selected to make the final classification. In the DV application
phase each base classifier receives a weight that is related to the local classifier’s
performance and the final classification is determined by combining classifier
predictions with their weights. The two variations (DS and DV) of the algorithm
are evaluated and compared in experiments with each other, and with
weighted voting (WV) and cross-validation majority (CVM).

The experiments were conducted on three datasets from the UCI Machine
Learning Repository (Blake et al., 1998) with the paired differences t-test based
on 30 random train/test splits. With two of these datasets, our algorithm
significantly outperformed weighed voting and cross validation majority. The
results were also supported by the McNemar’s test and a test for the difference
of two proportions. However, with the third dataset, results show that our
algorithm does not always produce significant benefit over the other two
methods. It was seen that even in that domain DS did not perform significantly
worse than the other integration methods. It was discovered from the tests also
that the accuracy did not vary significantly with different numbers of nearest
neighbours.

6.2 “Local feature selection with dynamic integration of
classifiers”

Reference: Puuronen, S. & Tsymbal, A. 2001. Local feature selection with
dynamic integration of classifiers. Fundamenta Informaticae 47(1-2), Special Issue
“Intelligent Information Systems”. Amsterdam: IOS Press, 91-117. It was
published as an extended version of (Tsymbal & Puuronen, 2000b).

Data, analyzed and processed in knowledge discovery and data mining is
usually multidimensional and represented by a number of features. When
numerous features are used, the learning process may become computationally
and    analytically    unmanageable.   For instance, many classification
techniques are based on Bayes decision theory or on a nearest neighbor search,
which suffer from a drastic increase in both computational complexity and
classification error in high dimensions (Hall, 2000). Bellman (1961) was the first
to define this phenomenon as the “curse of dimensionality”, while working on
complicated signal processing. Techniques that are efficient in low dimensions



48

fail to provide meaningful results when the number of dimensions goes beyond
a ‘modest’ size.

Multidimensional data in data mining is sometimes feature-space
heterogeneous in that different features have different importance in different
subareas of the whole space (Atkeson et al., 1997; Cardie & Howe, 1997; Dash &
Liu, 1997; Domingos, 1997; Liu & Motoda, 1998). Many methods have been
proposed for the purpose of feature selection, but almost all of them ignore the
fact that some features may be relevant only in context (i.e. in some regions of
the instance space).

We consider a dynamic feature selection technique that uses the wrapper
approach (Kohavi, 1995b), which has been found to yield better results than the
filter approach for feature selection. The evaluation function in our case is the
local classification accuracy obtained by applying the classification algorithm
with different feature subsets. We propose to apply a technique for the dynamic
integration of classifiers (Puuronen et al., 1999a). This allows us to determine
which classifier, with which feature subset, should be applied for each new
instance. This technique can also be applied in the case of implicit heterogeneity
when the regions of heterogeneity cannot be defined by a simple dependency.
In our method the classifiers included in the ensemble (the base classifiers) are
built based on various subsets of the original feature set.

To restrict the number of feature combinations analysed, some recursive
partitioning techniques or some heuristic measures can be used to discard
features that are locally irrelevant with a high probability. Thus, we propose to
combine our wrapper-based method with a filter approach, using it in advance
to restrict the possible feature combinations.

We present our experiments with the use of the C4.5 decision tree
algorithm as a filter to guide the local feature selection process conducted using
the local wrapper approach with the help of the dynamic integration of
classifiers. According to the experimental results, the use of the C4.5 algorithm
with or without pruning for local feature selection significantly reduces the
number of locally analyzed features, often without a loss in the classification
accuracy. On average for many of the datasets, the classification accuracy is
even higher with the guided feature selection. We have shown that the use of
decision trees for guidance (local feature filtering) works quite well with
datasets including only categorical features, when with less than half of the
features it is possible to reach even 10% higher accuracy than with all the
features. When a data set includes also numeric features, then even only 30-50%
of the features are enough to reach about 5% smaller accuracy than using all the
features. According to the results, the guided feature selection is better on
average than the unguided one.

For some datasets, the dynamic integration (local feature selection) is
clearly better than the static approaches. The relationship between dynamic
selection and dynamic voting is usually similar to the relationship between
static selection and static voting. In general, the results achieved are promising
and show that local data mining in comparison with mining the whole space
can be advantageous. In many cases, the mining accuracy is better and the time
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for processing is shorter, due to the fact that only a small set of features are used
to classify each new instance.

6.3 “Distance functions in dynamic integration of data mining
techniques”

Reference: Puuronen, S., Tsymbal, A. & Terziyan, V. 2000. Distance functions in
dynamic integration of data mining techniques. In B.V.Dasarathy (Ed.) Data
mining and knowledge discovery: theory, tools and technology II. Proceedings of SPIE,
Vol.4057. Bellingham, WA: SPIE, 22-32.

One of the most important directions in the improvement of data mining and
knowledge discovery is the integration of multiple data mining techniques. In
this paper we considered two algorithms that use dynamic integration: (1) an
algorithm for the dynamic integration of classifiers, and (2) an algorithm for
dynamic (local) feature selection that is based on dynamic classifier integration.
Our main assumption in these algorithms is that each data mining technique is
the most competent one within certain subareas of the application domain, and
we try to estimate these competence areas so that this information could be
used in the dynamic integration of the techniques.

These algorithms use an instance-based learning approach to collect
information about the competence areas of the mining techniques and apply a
distance function to determine how close a new instance is to each instance of
the training set. The nearest instance or instances are used to predict the
performance of the data mining techniques. Because the quality of the
integration depends heavily on the suitability of the distance function used, the
goal here is to analyze the characteristics of different distance functions. In this
paper we investigate several distance functions: (1) Euclidean distance function,
(2) Heterogeneous Euclidean-Overlap Metric (HEOM), (3) Discretized Value
Difference Metric (DVDM), (4) Heterogeneous Value Difference Metric
(HVDM), (5) Interpolated Value Difference Metric (IVDM), and (6) Windowed
Value Difference Metric (WVDM) (Wettecherech, 1994; Wilson & Martinez,
1997). We analyze the effects of the use of different distance functions to the
accuracy achieved by dynamic integration when the parameters describing
datasets vary.

We consider the algorithm for dynamic (local) feature selection that is
based on the dynamic classifier integration. Many complicated and
heterogeneous data mining problems exist with a heterogeneous feature-space,
where the features that are important for data mining are different in different
regions of the feature space (Apte et al., 1997). To make the feature selection
dynamic and local, we propose to apply the previously considered technique
for the dynamic integration of classifiers (Puuronen et al., 1999a).
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In this paper we also survey the six distance functions that are used in the
experiments. We present experiments with the dynamic classifier integration
and the dynamic feature selection, using the six distance functions.

From the experimental results with the dynamic classifier integration, one
can see that the selection of the distance function really influences the accuracy
of the dynamic classifier integration as we expected. Usually the classification
accuracy changes on the datasets with different distances in the same way as
reported by Wilson & Martinez (1997) for simple nearest neighbor classification.
When a distance function performs badly in some domain with simple nearest
neighbor classification in comparison with the others, then it usually performs
as badly with the dynamic classifier integration.

The influence of the distance function is usually less significant in our case
than in the case of direct nearest neighbor classification. It can be explained by
the fact that the distance function does not influence on the base classifiers in
our dynamic integration, and it influences only at the meta-level, when some
base classifier is selected with the best local accuracy. The distance function
influences only on defining the neighborhood, which is used for estimating the
local accuracies. Dynamic Selection is always better than Dynamic Voting on
average. One surprising result is that the Euclidean metric has the best accuracy
on average (in combination with Dynamic Selection). It can be explained by the
selection of datasets in our experiments.

In the experiments with the dynamic feature selection, the selection of the
distance function also influences the accuracy of the dynamic integration, and
the trends in the accuracy are usually the same as those presented by Wilson
and Martinez (1997). However, IVDM and HVDM are the best metrics in this
case, and it supports in a way results obtained in (Wilson and Martinez, 1997).
Dynamic Selection is again always better than Dynamic Voting on average,
supporting our conclusion from the previous experiment.

6.4 “Arbiter meta-learning with dynamic selection of classifiers
and its experimental investigation”

Reference: Tsymbal, A., Puuronen, S. & Terziyan, V. 1999. Arbiter meta-learning
with dynamic selection of classifiers and its experimental investigation. In
J.Eder, I.Rozman & T.Welzer (Eds.) Advances in databases and information systems:
3rd East-European Conference ADBIS'99, Maribor, Slovenia, Lecture Notes in
Computer Science, Vol. 1691. Berlin: Springer, 205-217.

In (Chan, 1996; Chan & Stolfo, 1997) the arbiter meta-learning technique was
proposed for the parallel integration of multiple classifiers. Meta-learning
encompasses the use of learning algorithms to learn how to integrate results
from multiple learning systems. The whole dataset is partitioned into smaller
subsets, and learning algorithms are applied on these subsets. This is followed
by a part of the learning phase, which combines the learned results. It was
shown in experiments that the accuracy would not suffer in such a scheme, as
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one may presume, in comparison with learning from the entire dataset (Chan,
1996).

An arbiter is a classifier that is trained to resolve disagreements between
the base classifiers. An arbiter is generated using the same learning algorithm
that is used to train the base classifiers. When a new instance is classified in the
application phase, first the base classifiers and the arbiter generate their
predictions. Then an arbitration rule generates the final prediction using the
predictions made by the base classifiers and the arbiter. One such arbitration
rule that could be used to derive the final classification is as follows: return the
prediction with the majority of occurrences given by the base classifiers and the
arbiter. This arbitration rule is based on the widely used voting principle. In
(Chan, 1996; Chan & Stolfo, 1997), a hierarchical (multi-level) meta-learning
method called an arbiter tree was also considered. An arbiter tree is a hierarchical
structure composed of arbiters that are computed in a bottom-up, binary-tree
way and it can be generalized to arbiter trees of higher orders.

The voting technique used as the arbitration rule, however, has several
shortcomings. From our point of view the most important shortcoming is that
the voting technique is unable to take into account the local expertise. In order
to improve the meta-learning, we propose the use of our dynamic classifier
selection as the arbitration rule.

We present an experimental evaluation of the arbiter meta-learning with
the dynamic classifier selection. We compare it with the simple arbiter meta-
learning. Our experimental results support the findings and conclusions made
in (Chan & Stolfo, 1997). All the meta-learning strategies do show a consistent
improvement in the classification accuracy over the base classifiers trained on a
subset of the training data. Our experimental results show also that both one-
level meta-learning (Dynamic and Arbiter) and hierarchical meta-learning
(Dynamic Tree and Arbiter Tree) are often able to sustain the same level of
accuracy as a global classifier trained on the entire dataset. Thus meta-learning
over data partitions can maintain or even boost the accuracy of a single global
classifier under certain circumstances. For example, it was done by Dynamic on
the Tic-Tac-Toe dataset, where the best base classifiers on 32 subsets had 73%
accuracy, and the global classifier 87% only, but the one-level dynamic arbiter
meta-learning classifier had 97% accuracy! It can be seen from the experimental
results that this is a very common result.

Our experimental results confirm that maximal parallelism can be
effectively exploited by the meta-learning over disjoint data partitions without
a substantial loss of accuracy. Hierarchically learned classifiers can work better
than single layered meta-learners under certain circumstances. For example, on
the MONK-1, MONK-3, and Tic-Tac-Toe datasets the Arbiter Tree works
significantly better than the Arbiter, and on the MONK-2 dataset the Dynamic
Tree works significantly better than the Dynamic.

One can see from the experimental results that in some cases our dynamic
meta-learning techniques are better than the corresponding simple meta-
learning techniques. For example, on the MONK-1, MONK-3, and Tic-Tac-Toe
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datasets the Dynamic is significantly better than the Arbiter, and on the MONK-2
dataset the Dynamic Tree is significantly better than the Arbiter Tree.

6.5 “Decision committee learning with dynamic integration of
classifiers”

Reference: Tsymbal, A. 2000. Decision committee learning with dynamic
integration of classifiers. In J.Štuller, J.Pokorný, B.Thalheim & Y.Masunaga
(Eds.) Current issues in databases and information systems. Proceedings of ADBIS-
DASFAA 2000, Prague, Czech Republic, Lecture Notes in Computer Science, Vol.
1884. Berlin: Springer, 265-278.

Decision committee learning has demonstrated spectacular success in reducing
classification error from learned classifiers. These techniques develop a
classifier in the form of a committee of subsidiary classifiers. The committee
members are applied to a classification task and their individual outputs
combined to create a single classification from the committee as a whole. This
combination of outputs is usually performed by majority vote. Decision
committee learning can be especially recommended for learning tasks where
there is no prior opportunity to evaluate the relative effectiveness of alternative
approaches, there is no a priori knowledge available about the domain, and the
primary goal of learning is to develop a classifier with the lowest possible error
(Webb, 2000).

Two decision committee learning approaches, boosting (Schapire, 1990;
Schapire, 1997; Schapire, 1999) and bagging (Breiman, 1996), have received
extensive attention recently. They repeatedly build different classifiers using a
base learning algorithm, such as a decision tree generator, by changing the
distribution of the training set. Bagging learns the constituent classifiers from
bootstrap samples drawn from the training set. Boosting learns the constituent
classifiers sequentially. The weights of training examples used for creating each
classifier in boosting are modified based on the performance of the previous
classifiers in such a way as to make the generation of the next classifier
concentrate on the training examples that are misclassified by the previous
classifiers. Both boosting and bagging are generic techniques that can be
employed with any base learning algorithm (Quinlan, 1996).

The voting technique used to combine the outputs of committee members
in bagging and boosting, however, has an important shortcoming. It is unable
to take into account local expertise. When a new instance is difficult to classify,
then the average classifier will give a wrong prediction, and the majority vote
will more probably result in a wrong prediction. Instead of voting, dynamic
integration of classifiers (Puuronen et al., 1999a) can be used to overcome this
problem. Dynamic integration of classifiers is based on the assumption that
each committee member is best suited inside certain subareas of the whole
feature space.
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A technique which is a combination of dynamic voting and dynamic
selection strategies, known as DVS (Dynamic Voting with Selection), is
considered. According to this strategy, first, the local errors for the committee
classifiers are estimated as usual. Then, the classifiers with high local errors are
discarded (the classifiers with local errors that fall into the upper half of the
error range of the committee). Next, locally weighted voting (DV) is applied as
before to the restricted set of classifiers.

In this work, experiments using the dynamic classifier integration
algorithm to combine classifiers generated with AdaBoost and Bagging decision
committee learning approaches, are presented. The experiments are conducted
on nine datasets taken from the UCI machine learning repository (Blake et al.,
1998). From the experimental results one can see that on each dataset
considered at least some dynamic integration strategy works better than either
Bagging or AdaBoost. Dynamic integration outperforms static voting in
Bagging on 6 out of 9 datasets, and static voting in AdaBoost on 4 out of nine
datasets. Commonly this holds true on the datasets for which dynamic
integration is preferable to static integration (voting or cross-validated
selection) as was shown by previous experiments with different ensemble
generation techniques.

Dynamic integration strategies DV and DVS are better than Bagging and
AdaBoost also on average. In general, the results achieved are promising and
show that boosting and bagging have often significantly better accuracy with
dynamic integration of classifiers than with simple voting. More experiments
supporting these conclusions (with bigger committee sizes – 10 and 25, besides
5) are presented in (Tsymbal & Puuronen, 2000a).

6.6 “Ensemble feature selection with dynamic integration of
classifiers”

Reference: Tsymbal, A., Puuronen, S. & Skrypnyk, I. 2001. Ensemble feature
selection with dynamic integration of classifiers. In Int. ICSC Congress on
Computational Intelligence Methods and Applications CIMA’2001, Bangor, Wales,
U.K. 558-564.

Among successful ensemble generation approaches are instance sampling
methods, and methods manipulating either the input features or the output
targets. We manipulate the set of input features so that for training each base
classifier only a subset of features is used. Into each feature subset only the
features with the highest contextual merit measure (CM-measure) (Hong, 1997)
values are selected, as defined by a preset threshold value. Each feature subset
in the ensemble is selected to distinguish one class from the others in a multi-
class problem, so that each ensemble includes as many base classifiers as there
are classes.
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The main assumption of the CM-measure-based heuristic is that features
important for classification should be significantly different in their values to
predict instances from different classes. The CM-measure is robust to both
problems of class heterogeneity and feature-space heterogeneity (Hong, 1997).
The CM-measure assigns a merit to a feature taking into account the degree to
which the other features are capable to discriminate between the same instances
as the given feature. In an extreme situation, if two instances of different classes
differ in only one feature, then that feature is particularly valuable for
classification and additional merit is assigned to it.

CM-measure was used in (Apte et al., 1997) as a main component of the
technique for explicit splitting of the feature space. In our study we directly
apply the CM-measure for feature selection. We slightly modify the original
CM-measure (Hong, 1997) so as to implement ensemble feature selection for
multi-class problems.

In this paper we analyze and experiment with five different ensemble
integration strategies with an emphasis on dynamic integration, applying them
to the ensembles generated with the CM-based heuristic: cross-validation
majority (CVM), weighted voting (WV), dynamic selection (DS), dynamic
voting (DV), and dynamic voting with selection (DVS). We conduct
experiments on seven multi-class problems from the UCI machine learning
repository (Blake et al., 1999).

The goal of the experiments is to investigate how the construction of the
base classifiers with the CM-measure heuristic takes place with both static and
dynamic integration approaches. In order to find the circumstances under
which a particular integration method has an advantage in using the CM-based
heuristic, we mark out several parameters to be adjusted. First, we analyze the
threshold for the feature merit values, which defines the numbers of selected
features. Then we investigate the influence of the use of cross validation in the
evaluation of the base classifiers in dynamic integration. And finally, the
optimal number of nearest neighbors in dynamic integration is analyzed.

As the experiments have shown, each dataset has its own optimal CM-
measure threshold, but on an average, accuracy achieved with the 0.5 threshold
is significantly less than with the 0.25 threshold. This can be explained by the
fact that deleting extra features can lead to irreparable loss of information in
some cases. On the other hand, including more features than necessary does not
have such negative effect because C4.5 decision trees have embedded feature
selection.

The best number of neighboring instances taken into account in dynamic
integration depends on the dataset and whether or not cross validation was
used. The behaviour of the dynamic strategies is changed with the use of cross
validation. When no cross validation is used, for the best DS strategy, the best
average accuracy is achieved with 7 neighbors, and afterwards the accuracy
drops by more than 1 percent. When cross validation is used, the highest
average accuracy is achieved with 63 neighbors.

The use or non-use of cross validation in dynamic integration leads to two
different cases with their own advantages and shortcomings. In the first case,
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we avoid the overly optimistic bias of the training set estimation by sacrificing
the processing time, and in the second case we have exact information about the
training set errors of the base classifiers, but the general error estimation gets
overly optimistic.

6.7 “Ensemble feature selection with the simple Bayesian
classification in medical diagnostics”

Reference: Tsymbal, A. & Puuronen, S. 2002. Ensemble feature selection with
the simple Bayesian classification in medical diagnostics. Int. Journal of Medical
Informatics. Elsevier Science (submitted as an extended version of the conference
article, CBMS’2002).

One effective approach for generating an ensemble of accurate and diverse base
classifiers is to use ensemble feature selection (Opitz, 1999). By varying the
feature subsets used to generate the base classifiers it is usually possible to
promote the diversity and produce base classifiers which make their
classification errors in different subareas of the instance space. While traditional
feature selection algorithms have the goal of finding the best feature subset that
is germane to both the learning task and the selected inductive learning
algorithm, the task of ensemble feature selection has the additional goal of
finding a set of feature subsets that will promote disagreement among the base
classifiers (Opitz, 1999).

Most of ensemble research is concentrated on base classifiers that apply a
decision tree or a neural network approach. Ensembles of simple Bayesian
classifiers have not been widely studied mainly because of their background
assumption: that the features used to derive a classification are independent of
each other, given the predicted value. Another reason is that the simple
Bayesian classifier is extremely stable, and most ensemble techniques aim at
reducing variance thus being unable to take the full advantage of the
integration of simple Bayesian classifiers (Bauer & Kohavi, 1999). However, it
has been recently shown that the simple Bayesian classifier (1) can be optimal
even when the independence assumption is violated by a wide margin
(Domingos & Pazzani, 1997), (2) can be effectively used with boosting (an
ensemble technique which performs also bias reduction) (Elkan, 1997), and (3)
can be successfully applied with ensemble feature selection (Pedersen, 2000).

The algorithm EFS_SBC (Ensemble Feature Selection with the Simple
Bayesian Classification) introduced in (Tsymbal et al., 2002) constructs an
ensemble of simple Bayesian classifiers in random subspaces and uses hill-
climbing search in a refinement cycle for improving the accuracy and diversity
of the base classifiers. The algorithm is composed of two main phases: (1)
construction of the initial ensemble in random subspaces; and (2) iterative
refinement of the ensemble members. EFS_SBC uses the same fitness function as
was used in (Opitz, 1999) in a genetic algorithm, where the fitness of a feature
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subset was selected to be proportional to the classification accuracy and
diversity of the corresponding classifier. The iterative refinement is based on a
hill-climbing search. For all the feature subsets, each feature is tried to be
switched (included or deleted). If the resulting feature subset produces better
performance on the validation set, that change is kept. This process is continued
until no further improvements are possible. The process usually terminates
after no more than four passes through the feature set.

We have applied EFS_SBC to three large datasets in the domain of acute
abdominal pain (AAP) (Zorman et al., 2001), comparing the diagnostic accuracy,
sensitivity, and specificity of EFS_SBC and the original simple Bayesian
technique. These datasets all represent the same problem of separating acute
appendicitis (class “appendicitis”), which is a special problem of acute
abdominal pain, from other diseases that cause acute abdominal pain (class
“other diagnoses”).

In the experiments, in many cases the EFS_SBC ensembles of simple
Bayesian classifiers had higher accuracies than the single “global” simple
Bayesian classifier. For all of the three datasets, most of the integration
techniques in EFS_SBC performed significantly better than the single simple
Bayes. For the datasets AAP I and AAP III, the best results were shown by DVS,
and for the dataset AAP II the best technique was DS.

Dynamic integration was in general much better than static integration for
all the three datasets, better utilizing the diversity of the base classifiers. The
best integration strategy on average was DVS. The achieved average of
sensitivity and specificity rivalled the best previously published results for
these datasets. Using information collected from the refinement cycles, we
analyzed the importance of each of the features on each of the three datasets.

Two main conclusions made in (Zenobi & Cunningham, 2001) were: (1)
the ensembles based on diversity have lower generalization error, and (2) the
base classifiers produced focusing on diversity have less features on average
than those based on error only, indicating that these base classifiers can be
considered as local learners. Our experiments supported these two conclusions.
In addition, we also have shown that the degree of importance of accuracy and
diversity when building ensembles is different for different datasets.

6.8 About the joint articles

The present introductory part and Article V (Tsymbal, 2000) have been written
solely by the author. The author of this thesis is the principal author of Article
IV (Tsymbal et al., 1999), Article VI (Tsymbal et al., 2001), and Article VII
(Tsymbal & Puuronen, 2002). The other joint papers: I (Puuronen et al., 1999a), II
(Puuronen & Tsymbal, 2001), and III (Puuronen et al., 2000) have been written in
close collaboration by the authors. All the articles included have been refereed
by at least two international reviewers and published. Articles I, II, IV-VII are
full-paper refereed, and Article III is extended abstract refereed. All the
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included papers have been edited and revised for final publication by the
author. Articles I, IV, V and VII have been presented by the author personally at
the corresponding conferences and symposiums.

The software implementation of the experimental settings used and
described in Arcticles I-VII, and most of the contents of experimental sections in
those articles also represent the independent work done by the author. Reviews
of related work in the included joint papers (e.g. Chapter 2 in Article I, Sections
2 and 4 in Article III) were also done mainly by the author.



7 CONCLUSIONS

This chapter summarises the novel contributions of the thesis, outlines some
limitations and provides analysis of proposed future directions for the research.

7.1 Contributions of the thesis

This thesis presents a technique for dynamic integration of data mining
methods in knowledge discovery systems. The main contributions of the
present thesis are:

1. The problem of integration of multiple classifiers is considered, and a
framework for the integration of classifiers, which includes two basic
approaches to the integration (combination and selection), is proposed. In this
framework, integration methods are also divided into static and dynamic.
Relevant work in the integration of classifiers, and especially in dynamic
integration, is reviewed.

2. A technique for the dynamic integration of data mining methods is
developed. This technique is based on the assumption that each data mining
method is best suited inside certain subareas of the whole domain area. Several
possible strategies using this technique are analyzed: Dynamic Selection,
Dynamic Voting, and Dynamic Voting with Selection. The experiments show
that DVS is a very stable strategy that combines advantages of DS and DV.
Combinations of our integration technique together with different algorithms
for generating base classifiers are analyzed: bagging and boosting, arbiter meta-
learning, and base classifiers built on various feature subsets.

3. An experimental investigation of the proposed technique for dynamic
integration of data mining methods is made. The influence of distance function
selection on the accuracy of dynamic classifier integration is evaluated. All the
proposed combinations of the dynamic integration technique together with
different algorithms for generating base classifiers are also experimentally
evaluated. The experiments are conducted on benchmark datasets from the UCI
machine learning repository, and on some real-world datasets.
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4. A possible application of the dynamic integration technique within an
integrated knowledge discovery management system is analyzed. A structure
for the system is proposed, objectives of each subsystem are discussed, and
guidelines are given on the implementation of each subsystem. The method
evaluation/selection subsystem, which is the focus of the thesis, is very
important, helping a user to select an appropriate data mining method. This
subsystem can be based on the technique for the dynamic integration of data
mining methods, which is considered in this dissertation.

5. The EFS_SBC (Ensemble Feature Selection with the Simple Bayesian
Classification) algorithm is developed. It constructs an ensemble of simple
Bayesian classifiers in random subspaces and uses hill-climbing search in a
refinement cycle for improving the classification accuracy and diversity of the
base classifiers. It was applied to datasets from the UCI machine learning
repository, and to three large datasets of acute abdominal pain, rivalling the
best previously published accuracy, sensitivity and specificity in many cases. It
was shown that dynamic integration was in general much better than static
integration for these medical datasets, and the best integration strategy was
DVS.

7.2 Limitations and future work

A technique for the dynamic integration of data mining methods in knowledge
discovery systems is proposed in this dissertation. Classification is a typical
data mining task where the value of some attribute for a new instance is
predicted based on the given collection of instances for which all the attribute
values are known. A focus in the thesis is on the dynamic integration of
classifiers. However, the considered algorithm for the dynamic integration of
classifiers can be applied also to other data mining problems, and especially to
regression, with some minor changes. This is an interesting topic for further
research.

In this thesis, experimental results on benchmark datasets have been
promising, but further experiments on real problems are still needed to
evaluate the practical value of the proposed technique, and to analyze the
characteristics of the domains that can benefit of the technique. This concerns all
the combinations of the integration techniques with different algorithms for
generating base classifiers: bagging and boosting, arbiter meta-learning, and
base classifiers built on various feature subsets.

An application of the dynamic integration of classifiers to local feature
selection is another potentially interesting and promising topic for future
research, where only preliminary experiments on benchmark datasets were
made. The issue of dynamic integration for parallel distributed learning is also
an important and interesting topic for future work especially when considering
the increasing size of datasets produced currently in modern scientific
experiments. The implementation of the parallel distributed learning technique
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Dynamic Tree with the Grid Computing technology, which is a computing
infrastructure that provides dependable, consistent, pervasive and inexpensive
access to computational capabilities, could be one step in that important
direction.

The developed dynamic integration approach takes into consideration
(local) accuracy of the components being integrated. However, other
characteristics such as time taken, and memory used by the base models can
also be important for an integration procedure in some cases as considered for
example in (Nakhaeizadeh, 1997). Extension of the dynamic integration
algorithm to take into account different integrated components’ characteristics
is also a potential topic for future research. Besides, it is also important to make
an analysis of the proposed integration techniques with respect to such
characteristics as time taken and memory used, and not only the classification
accuracy, which was the focus of the present thesis.

The proposed dynamic integration techniques are less efficient than the
static ones with respect to the time taken and memory used. Dynamic
integration requires normally extra steps such as building the cross-validation
history during the learning phase, and a nearest neighbor search for finding the
nearest neighborhood, during the application phase. Extra memory is used for
storing the meta-level methods’ performance information or the cross-
validation history. Indexing techniques can be used within dynamic integration
to improve its efficiency by speeding up the nearest neighbor search, and this is
an important topic for further research.

Another interesting topic for future research is the use of the a posteriori
local accuracy (Giacinto & Roli, 1999; Giacinto & Roli, 2001) or the local class
accuracy (Woods et al., 1997) within DS, DV, and DVS, as discussed in Chapter
4.
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YHTEENVETO (FINNISH SUMMARY)

Elektronisesti tallennetun tiedon määrän huima kasvuvauhti on johtanut tilan-
teeseen, jossa tietokannat sisältävät valtavat määrät eri sovellusalueiden tietä-
mystä. Tiedon louhinnassa pyritään löytämään suuresta tietomassasta mielen-
kiintoisia säännönmukaisuuksia, joiden olomassaolosta ei olla etukäteen tietoi-
sia. Tämänhetkiset käytettävissä olevat tiedon keräämis- ja tallennusmahdolli-
suudet kuitenkin ylittävät käytettävissä olevat mahdollisuudet analysoida, yh-
distää ja tiivistää tietämystä tästä valtavasta tietomassasta. Viime aikoina onkin
kehitetty lukuisia tiedonlouhintamenetelmiä tietämyksen muodostamiseksi
laajoista tietokannoista. Sopivimman tiedonlouhintamenetelmän tai menetel-
märyhmän valinta ei ole yleensä kuitenkaan mikään suoraviivainen tehtävä.
Usein menetelmä valitaan staattisesti niin, että samaa menetelmää käytetään
kaikille sovellusalueen uusille tapauksille analysoimatta sitä, kuinka hyvin se
soveltuu kunkin uuden tapauksen luokitteluun. Yleensä on kuitenkin mahdol-
lista saavuttaa parempi luokitustulos, jos menetelmän valinta suoritetaan dy-
naamisesti ottaen huomioon kunkin uuden tapauksen ominaispiirteet

Eräänä mahdollisuutena tutkijat ovat jo useiden viime vuosien ajan yrittä-
neet kehitellä ratkaisua, jossa muodostetaan useamman luokittelijan joukko
luokittelutyyppisen tehtävän suorittamiseksi. Tutkimusten päätuloksena on
havaittu, että yhdistämisellä voidaan taitavasti toimien  saavuttaa yksinker-
taisten luokittelijoiden tuloksia yhdistämällä parempi tulos kuin millään yksit-
täisellä hyvälläkään luokittelijalla yksinään. Sillä voidaan myös parantaa yksit-
täisen hyvän luokittelijan tuottamaa tulosta ottamalla samalla huomioon use-
ampien heikompien luokittelijoiden tuottamat tulokset. Lähestymistavan edut
ovat olleet todettavissa sekä luokittelu- että regressiotehtävissä.

Eri menetelmillä tuotettujen useampien luokittelijoiden käyttöön liittyvät
keskeiset ongelmat voidaan tiivistää kahteen peruskysymykseen: 1) Millainen
opittujen mallien joukko pitäisi luokittelijoina tuottaa? ja 2) Kuinka opittujen
mallien tuottamat tulokset yhdistetään? Tässä väitöskirjassa keskitytään näistä
jälkimmäiseen kysymykseen. Aikaisemmin on osoitettu, että luokittelijajoukon
kattavuuden kasvattaminen pelkästään joukkoon sisältyvien luokittelijoiden
erilaisuutta lisäämällä ei ole riittävä takaamaan parempaa luokittelun lopputu-
losta ellei lopputuloksen muodostava yhdistämismenetelmä kykene käyttä-
mään kattavuutta hyväkseen.

Väitöskirjatyön perusolettamus on, että kukin luokittelija on paras sovel-
lusalueen tietyllä osa-alueella. Parempi lopputulos on mahdollista saavuttaa,
jos näiden asiantuntemusalueiden  tietämys kyetään keräämään ja käyttämään
hyväksi luokittelijoiden antamien tulosten yhdistämisessä kokonaistulokseksi.
Keskeiseksi tutkimusongelmaksi muodostuukin näiden alueiden arviointi yh-
distämisen kannalta hyödynnettävissä olevalla tavalla.

Tämän väitöskirjatutkimuksen tavoitteena onkin kehittää luokittelijoiden
dynaamisen integroinnin teoreettista taustaa ja soveltamista. Tällä hetkellä suo-
situimmat integrointitavat ovat luokittelijajoukkoon kuuluvien luokittelijoiden



69

enemmistön tarjoaman ratkaisun tai keskimääräisen ratkaisun valinta. Näiden
staattisten integrointitapojen heikkoutena on kuitenkin se etteivät ne kykene
ottamaan huomioon luokittelijoiden asiantuntemusalueita. Työssä kehitetään ja
analysoidaan kolmea dynaamisen integroinnin menettelytapaa: 1) dynaamista
valintaa, 2) dynaamista äänestystä ja 3) dynaamisen valinnan ja äänestyksen
yhdistelmää.  Työssä analysoidaan myös luokittelijoiden integroinnissa käytet-
täviä etäisyysmittoja ja dynaamisen lähestymistavan soveltamista päätöskomi-
teoihin perustuvien lähestymistapojen ja piirteiden osajoukkojen käytön yhtey-
dessä.

Väitöskirjassa sovelletaan käsitteellis-teoreettista, konstruktiivista ja ko-
keellista tutkimusotetta tiukasti toisiinsa kytkettyinä tuottaen teoreettiseen
taustaan pohjautuen ohjelmistokonstruktioita, joiden avulla suoritettujen ko-
keilujen perusteella pyritään kehittämään taustalla olevaa teoriaa.

Keskeiset työssä saavutetut tulokset ovat:
1. Viitekehyksen muodostaminen useamman luokittelijan integroinnille.

Viitekehyksen puitteissa tarkastellaan sekä staattisesta että dynaamisesta integ-
roinnista julkaistua materiaalia.

2. Kehitetään uusi dynaaminen integrointitapa, joka perustuu  luokitteli-
joiden asiantuntemusalueiden erilaisuusolettamukselle. Integrointitavan so-
velluksina analysoidaan kolmea toteutustapaa: dynaamista valintaa, dynaa-
mista äänestystä ja näiden kahden yhdistelmää yhdistettynä useampien ole-
massa olevien yksittäisten perusluokittelijoiden tuottamistapojen kanssa. Em-
piirisissä kokeiluissa on todettu dynaamisen valinnan ja äänestyksen yhdistä-
misellä saavutettavan hyvin vakaa ja niiden molempien vahvat ominaisuudet
hyödyntävä integrointitulos.

3. Työssä esitettyä dynaamista integrointia ja erilaisten etäisyysmittojen
käyttöä on kokeellisesti testattu sekä tutkijoiden yleisesti käyttämillä testitieto-
kannoilla että muutamalla muulla tietokannalla. Testauksissa on myös käytetty
useita yksittäisten perusluokittelijoiden tuottamistapoja.

4. Esitetään dynaamista integrointia soveltavan tiedonlouhintajärjestelmän
rakenne ja sen osien toteutuksen suuntaviivat. Tällaisen järjestelmän keskeinen,
tiedon louhinnan välineiden arviointia ja valintaa suorittava osajärjestelmä voi
perustua työssä esitettyyn dynaamiseen integrointiin.

5. Kehitetään algoritmi piirteiden valitsemiseksi yksinkertaisten Bayesian
–tyyppisten luokittelijoiden joukon muodostamiseksi. Menetelmässä tuotetaan
ensimmäinen luokittelijoiden joukko satunnaisuutta hyödyntäen. Muodostettua
luokittelijajoukkoa kehitetään asteittain lisäämällä siihen sisältyvien luokitteli-
joiden erilaisuutta kunnes luokittelun kokonaistulos ei pienellä muutoksella
enää parane.
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