
JYVÄSKYLÄ STUDIES IN COMPUTING 22

Alexandr Seleznyov

An Anomaly Intrusion Detection System
Based on Intelligent User Recognition

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksessa (Ag Aud. 2)

syyskuun 21. päivänä 2002 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in the Building Agora, (Ag Aud. 2), on Semptember 21, 2002 at 12 o'clock noon.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2002

An Anomaly Intrusion Detection System
Based on Intelligent User Recognition

JYVÄSKYLÄ STUDIES IN COMPUTING 22

Alexandr Seleznyov

An Anomaly Intrusion Detection System
Based on Intelligent User Recognition

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2002

Editors
Seppo Puuronen
Department of Computer Science and Information Systems, University of Jyväskylä
Pekka Olsbo, Marja-Leena Tynkkynen
Publishing Unit, University Library of Jyväskylä

ISBN 951-39-1192-6 (nid.)
ISSN 1456-5390

Copyright © 2002, by University of Jyväskylä

URN:ISBN:9513912876
ISBN 951-39-1287-6 (PDF)

ABSTRACT

Seleznyov, Alexandr
An Anomaly Intrusion Detection System Based on Intelligent User Recognition
Jyväskylä: University of Jyväskylä, 2002, 186 p.
(Jyväskylä Studies in Computing,
ISSN 1456-5390; 22)
ISBN 951-39-1287-6
Finnish summary
Diss.

Recently computer systems have become a critical part of network-connected
system, possessing essential economic and human values to individuals and or-
ganizations. This key role of the systems has increased the requirements for
their protection. They have to be more resistant against malicious activities. In-
trusion detection is aimed at detecting and preventing such activities. It forms
the last line of defense in the overall protection scheme of a computer system.
It is useful not only in detecting successful breaches of security, but also for
monitoring attempts to breach security, which provides important information
for timely countermeasures. Thus, intrusion detection systems are useful even
when strong preventive steps are taken to protect computer systems. In anomaly
detection, computer systems compare current events with expected or predicted
events. In this thesis, a typical decision problem in anomaly detection is trans-
formed into three scenarios: what event is going to happen in the future, when,
and how much danger it may cause. In the thesis we concentrate on the first two
scenarios. We use three layers of information representation for constructing
a time-probabilistic network for online event learning and prediction. Online
prediction usage in our approach provides us with the possibility to automat-
ically reveal possible dangerous sequences of events, while it does not arouse
the person’s suspicions. This thesis describes an approach aimed at catching
and representing peculiarities of user behavior and recognizing them later. It
also presents an architecture for the intrusion detection system based on the
temporal-probabilistic network approach. This hybrid architecture combines
anomaly and misuse detection models attempting to make the resulting archi-
tecture free of the specific disadvantages of these models when used separately.
Based on the described architecture and devised user verification approach a
prototype was built. The prototype was tested on a number of real users prov-
ing viability of the approaches discussed in this thesis.

Keywords: network security, intrusion detection, online learning, probabilistic
network, behavioral pattern, user verification

ACM Computing Review Categories

C.2.3 Computer Systems Organization: Computer-Communication Networks:
Network Operations: Network monitoring, Public networks

C.5.3 Computer Systems Organization: Computer System Implementation:
Microcomputers: Personal computers, Workstations

D.4.6 Software: Operating Systems: Security and Protection: Access controls,
Information flow controls, Invasive software

I.2.4 Computing Methodologies: Artificial Intelligence: Knowledge
Representation Formalisms and Methods: Relation systems, Temporal logic

I.2.6 Computing Methodologies: Artificial Intelligence: Learning: Knowledge
acquisition, Parameter learning

I.5.1 Computing Methodologies: Artificial Intelligence: Pattern Recognition:
Statistical

Author’s address Alexandr Seleznyov
Department of Computer Science and Information Systems
University of Jyväskylä
P.O.Box 35, FIN-40351 , Jyväskylä, Finland
E-mail: alexandr@it.jyu.fi

Supervisor Seppo Puuronen
Department of Computer Science and Information Systems
University of Jyväskylä
Finland

Reviewers Dr. Steven Furnell
Department of Communication and Electronic Engineering
University of Plymouth, UK

Prof. Ravi Sandhu
Department of Information and Software Engineering
George Mason University, USA

Opponent Dr. Dipankar Dasgupta
Computer Science Division
University of Memphis, USA

ACKNOWLEDGMENTS

I am deeply indebted to my academic adviser, Seppo Puuronen for his constant
help, support, and guidance. Special thanks to Vagan Terziyan for his time and
energy in teaching me how to perform research and survive as a researcher in
academic community; for his encouragement to overcome the temptations to
throw it all away. Without their valuable contribution I would not be able to
finish this work.

Many thanks to COMAS graduate school, which has provided funding for
these studies.

Computer Science and Information Systems department of the University
of Jyväskylä was very helpful in providing me with excellent working environ-
ment, without which it would be difficult to perform my research. I would also
like to thank professor Kalle Lyytinen for his valuable comments and support
during these studies.

I am thankful to the examiners of my Ph.D. thesis, Dr. Steven M. Fur-
nell (Network Research Group, University of Plymouth, United Kingdom) and
Dr. Ravi Sandhu (Department of Information and Software Engineering, George
Mason University, USA) for their time and insightful comments. I would like
to sincerely thank Dr. Dipankar Dasgupta (Mathematical Science Department,
University of Memphis, USA) for being my opponent.

This work has greatly benefited from extensive numerous reviews of Dr.
Steven M. Furnell, which he made for my Licentiate and Ph.D. theses. His con-
tribution to the quality of this study is very much appreciated.

Many thanks to Oleksiy Mazhelis who was heavily involved into the pro-
cess of development and testing of the software prototype used in this work.
Without his help it would have taken significantly longer time to finish this the-
sis.

I thank professors Seppo Puuronen and Jari Veijalainen for their valuable
help with preparation of the Finnish summary.

Finally, I would like to thank my parents for encouraging me to begin this
work. I also thank my wife Katja for tolerating many evenings and weekends
spent in writing this thesis.

Jyväskylä
August 2002

CONTENTS

1 INTRODUCTION . 13
1.1 Research Area . 13

1.1.1 Computer Security . 14
1.1.2 Security Problems . 15
1.1.3 Intellectual Attacks . 16

1.2 Intrusion Detection . 17
1.3 Requirements to Intrusion Detection Systems 19
1.4 Research Objectives . 21
1.5 Structure of the Thesis and Paper Summary 24
1.6 Summary . 26

2 RELATED WORK IN INTRUSION DETECTION 27
2.1 Introduction . 27
2.2 Misuse Detection . 27

2.2.1 Expert Systems in Intrusion Detection 28
2.2.2 State Transition Analysis . 29
2.2.3 Keystroke Monitoring . 30
2.2.4 Model-Based Intrusion Detection 30
2.2.5 Pattern Matching with Colored Petri Nets 31

2.3 Anomaly Detection . 33
2.3.1 Statistical Approaches . 33
2.3.2 A Generic Model of Intrusion Detection 34
2.3.3 Data Mining . 34
2.3.4 Probabilistic Networks . 35
2.3.5 Predictive Pattern Generation 36
2.3.6 Neural Networks . 37
2.3.7 Instance-Based Learning . 38

2.4 Limitations of the Existing Approaches 39
2.5 Summary of Reviewed Intrusion Detection Methods 41

3 ARCHITECTURE FOR AN INTRUSION DETECTION SYSTEM 44
3.1 System Architecture . 44

3.1.1 Auditing Facility . 46
3.1.2 Anomaly Detector . 48
3.1.3 Misuse Detector . 50
3.1.4 Control and Report . 50

3.2 Networked Architecture Components and their Interactions . . . 51
3.3 Summary . 53

4 TEMPORAL RELATION BETWEEN EVENTS 55

4.1 Basic Concepts . 56
4.2 Consistency of Relations . 63
4.3 Coefficient of Reliability and Concept Drift 68
4.4 Incorporation of Layer Structure into Profiling Component 68
4.5 Summary . 69

5 USING RELATIONAL MATRIX TO DETECT ANOMALIES 71
5.1 User Profile . 72
5.2 Relations between Action Classes 75
5.3 Detecting Abnormal Behavior . 77
5.4 Summary . 82

6 DETECTING ANOMALIES IN USER BEHAVIOR USING
TEMPORAL-PROBABILISTIC TREES 84
6.1 Temporal-Probabilistic Tree Definition 85
6.2 Training the Temporal-Probabilistic Tree 90

6.2.1 Tree Initialization . 91
6.2.2 Optimization . 93

6.3 Detecting Abnormal Behavior . 98
6.3.1 Defining the ”When” . 98
6.3.2 Predicting the ”How Much” 103

6.4 Summary . 107

7 DEALING WITH ANOMALIES IN USER BEHAVIOR 108
7.1 Monitoring Natural Behavior Changes 109

7.1.1 Learning User Normal Behavior Changes 110
7.1.2 Dealing with Concept Drift 112

7.2 Detecting the Abnormal Learning 115
7.2.1 Profile Evaluation Criteria 116

7.3 Summary . 118

8 OVERVIEW OF THE IMPLEMENTATION ARCHITECTURE 119
8.1 Architecture of the Prototype . 120

8.1.1 Application Architecture . 121
8.1.2 Client-Server Information Exchange 123

8.2 Host Agent . 123
8.2.1 Host Agent Operations . 124
8.2.2 Information Collection . 127

8.3 Learning the Classifier . 129
8.3.1 Data Model Used for our Approach 129
8.3.2 Learning Process . 131

8.4 Summary . 134

9 EXPERIMENTAL SETTINGS AND OBTAINED RESULTS 135

9.1 Experimental Settings . 135
9.1.1 Note on the Evaluation and Simulation Process 135
9.1.2 Data Collection . 136
9.1.3 Experiments . 137

9.2 Performance . 138
9.2.1 Space Requirements . 138
9.2.2 Accuracy . 140
9.2.3 Timing Results . 145
9.2.4 Analysis . 146

9.3 Profile Cross-Validation . 147
9.4 Comparison with Other Approaches 150
9.5 Evaluation of Results . 153
9.6 Summary . 155

10 CONCLUSIONS AND FUTURE WORK 156
10.1 Conclusions . 156
10.2 Directions for Future Work . 158

YHTEENVETO (FINNISH SUMMARY) . 163

Bibliography . 166

Appendix 1 Pattern Generation for Misuse Detection 175
1.1 System Architecture . 175
1.2 Pattern Generation Process . 177
1.3 Summary . 180

Appendix 2 Signals Used by Host Agent . 181

Appendix 3 Prototype’s Detection Accuracy Test Results 183

Appendix 4 Terminology . 184

List of Figures

2.1 A production rule structure for an expert system 28
2.2 A state transition diagram of the penetration example 30
2.3 A simple pattern of attack represented as Colored Petri Net 32
2.4 A generic intrusion detection model 34
2.5 Information flow inside the instance-based anomaly detection sys-

tem . 38

3.1 Information flow inside HIDSUR 44
3.2 HIDSUR . 45
3.3 Networked HIDSUR components 52

4.1 Layer structure of a simple user session: the upper layer is the
event layer, in the middle is the action layer, and the lower is the
activity layer . 59

4.2 Basic relations ”before” and ”during” 64
4.3 A structure of the profiling component 69

5.1 Structure of information stored in user profiles 73
5.2 Action class ”X”: a) cases distribution depending on their tempo-

ral lengths; b) distribution of the coefficient of reliability changes
inside this action class . 74

5.3 Classification algorithm of the classifier that uses a relational ma-
trix to describe a user behavioral model 78

6.1 An example of activity . 88
6.2 An example of a simple pattern . 89
6.3 A visualized example of user profile 89
6.4 Creating set of nodes in the temporal-probabilistic tree 91
6.5 Optimizing the patterns . 94
6.6 Classification algorithm implemented in the classifier that uses

temporal-probabilistic trees to describe a user behavioral model . 99
6.7 Coefficient of reliability change . 105

7.1 Simple example of instance splitting 111
7.2 Dynamic of mean change . 113
7.3 Part of HIDSUR with embedded profile analyzer to aimed at the

detection of intelligent attacks . 115
7.4 An example of splitting an action instance 118

8.1 Prototype architecture . 122
8.2 Data flow inside the prototype during online classification 123

8.3 Main algorithm . 124
8.4 System daemon . 125
8.5 Inactive mode . 126
8.6 Gathering information about an active user process 127
8.7 An example of a pattern . 133
8.8 A real pattern example . 133

9.1 The size in Kb of each user profile (matrix approach) 139
9.2 The size in Kb of each user profile (temporal-probabilistic tree ap-

proach) for different number of conditions 139
9.3 Class approach: dependence of the overall error rate on the length

of the training period for different window lengths 142
9.4 Dependence of the overall error rate on the number of conditions

for the prototype . 142
9.5 Temporal-probabilistic tree approach: dependence of the overall

error rate on the length of the training period for different window
lengths . 143

9.6 Dependance of the accuracy on the number of profiles in the system 144
9.7 ROC curve for the classifier based on the matrix approach 145
9.8 ROC curve for the classifier based on the temporal-probabilistic

tree approach . 145
9.9 Coefficients of reliability for all users: (a) each column displays

a single profile tested against all test sets; (b) all profiles tested
against all test sets . 149

1.1 Part of HIDSUR with pattern generator 176
1.2 An example of a session with root attack 177
1.3 Landmarks of attack for gaining root privileges 178
1.4 Architecture of the automatic pattern generator 178

List of Tables

2.1 A penetration scenario . 29
2.2 A summary of characteristics of intrusion detection approaches . 42

4.1 Correspondence between Allen’s and our basic relations 65
4.2 Minimal time required to move between time zones 66
4.3 Probabilities of moving between time zones 66

5.1 Relational matrix for two instances 77

8.1 Structure of proc . 128
8.2 /proc File system files used for obtaining user behavior statistics . 128
8.3 A user structure . 129

9.1 Timing results for the relation matrix approach 146
9.2 Timing results for the temporal-probabilistic tree approach 146
9.3 The results of masquerader detection 148
9.4 A summary of characteristics of intrusion detection approaches

developed in this thesis . 154

2.1 Types of signals used by host agent 181
2.2 System calls for file system operations 182

3.1 Relational matrix approach: dependence of the detection accuracy
change on the training time and sliding window size 183

3.2 Temporal-probabilistic tree approach: dependence of the detec-
tion accuracy on the sliding window size and length of the train-
ing period . 183

1 INTRODUCTION

This chapter presents an introduction as well as a brief description of our work.
It outlines the research area, provides the motivation for the present work, as
well as stating the objectives of the thesis.

1.1 Research Area

Our society is becoming increasingly dependent on the rapid access and pro-
cessing of information. More information is being stored and processed on com-
puters. The fast expansion of inexpensive computers and computer networks
has increased the problem of unauthorized access and tampering with data. An
increased connectivity not only provides access to larger and more varied re-
sources of data more quickly than ever before, it also provides an access path to
the data from virtually anywhere on the network (Power, 1998). Thus, the sys-
tems should be more resistant against misuse activities. These activities may be
successful due to many reasons, for example, hardware or software failures, in-
correct system administration, etc. Software bugs represent a great danger, since
software designers do not learn from past mistakes, they still reproduce ”clas-
sical” programming mistakes (such as buffer overflow in sendmail (Sendmail
Mail Program, 2000)). In many cases, the security controls themselves intro-
duce weaknesses and protocols developed for secure communications tend to
provide unintended services (Focardi and Gorrieri, 2000). For example, it has
recently been discovered that SSH protocol (Ylönen et al., 2002) designed to
provide secure communications between two hosts provide such unintended
services. Despite encryption and authentication mechanisms it uses, SSH leaks
inter-keystroke timing information, which makes an eavesdropper able to learn
the lengths of user passwords and keystrokes that the user is typing during SSH
sessions (Song et al., 2001). Lowe estimated that approximately half of the pro-
tocols published fail to achieve their goals in some respect (Lowe, 1996).

Lately, the amount of successful intrusion incidents has grown quite high:
even 90% of all major companies and government agencies have detected at least

14

one major intrusion incident during the last twelve months, 78% detected em-
ployee internal abuse of access rights and privileges (Power, 2002). Nowadays
the Internet is becoming more and more popular constantly creating new appli-
cations that at the same time brings about new possibilities with which to abuse
it. Recently it has become a place for electronic terrorism or vandalism. It is also
used as one of the primary means that people use to try to influence world opin-
ion and as a result we can see cyber-fights between groups of people sharing
opposite opinions. As a result, in 2001 an increase of 15 per cent in computer
penetrations was observed relatively to 2000 (computerheadline.com, 2002).
Thus, computer protection against attacks is a very important problem and it
is unlikely to be completely solved in the near future.

In this section we introduce the computer security area and describe the se-
curity problems that are currently being considered as the most important ones.

1.1.1 Computer Security

According to (Russel and Gangemi, 1991), a computer security infrastructure
is based on the following three security services: confidentiality, integrity, and
availability in a computer system. Confidentiality requires that the information
stored in a computer or transmitted over a network may be accessible only to
those authorized for it. Integrity provides a mechanism for protecting infor-
mation against accidents or malicious tampering. Availability means that the
computer system remains working without degradation of access and provides
resources for authorized users when they need it. For instance, it must assure
protection against denial of service attacks, which consume an abnormally large
portion of available resources, denying access to other users. A secure computer
system protects its data and resources from unauthorized access, tampering, and
denial of service.

There is a fourth security service - accountability. It is an incorruptible
record of activity on a system that positively identifies the users and actions
involved. A high importance has been recently attached to it (Avizienis et al.,
2001), (Powell et al., 2001). One reason is that the number and complexity of
intrusion detection systems have grown; therefore, these systems require a more
detailed and complete audit log. Another reason is a usage of log files as evi-
dence in court; thus, they must not have been tampered with and they must
have as full a description of a case as possible. As well as unauthorized users,
authorized users sometimes make mistakes, or even commit malicious acts. In
these cases, a system administrator needs to determine what has been done, by
whom, and what was affected; thus an audit is the only way to achieve these
results.

The security services described above provide preventive measures for en-
suring the security of the system by helping to avoid security policy violations
that can occur. A security policy defines the requirements of acceptable usage
of the computer resources and establishes the correct procedures for their us-

15

age. Policy plays three major roles: makes clear what to protect and why, states
the responsibilities for that protection, and defines a ground on which to inter-
pret and solve any conflicts. It also defines security priorities, since different
organizations have different security concerns and must set their priorities by
establishing the proper policies. For example, in a banking environment, the
integrity and accountability are the most critical concerns, while in some mil-
itary systems that processes classified information, confidentiality may be the
first priority, and availability the last.

1.1.2 Security Problems

Computer systems have become an essential part of the critical systems that
have a crucial importance and, hence, they must have as high a tolerance as
possible against misuse. In many cases, such as the Internet worm attack of
1988 (Spafford, 1989) or the Melissa virus (Melissa Virus, 1999), network in-
truders have easily overcome the intrusion prevention mechanisms, such as au-
thentication and authorization, designed to protect systems. Nowadays, when
e-commerce is gaining wide acceptance, it also becomes a popular target for in-
truders. For instance, computer hacking by organized criminal groups in Russia
and the Ukraine have already resulted in more than one million stolen credit
card numbers (CNN.com/SCI-TECH, 2002).

According to the ISO standard 10181 (ISO, 1991) the threats for which
protection is needed include:

• Masquerading - both users and hosts. Usually, it is solved by various
identification and authentication procedures using cryptographic tech-
niques.

• Unauthorized use of resources. It is solved by access control mecha-
nisms and policies.

• Unauthorized disclosure of information. This is usually solved by en-
cryption applied to the data during transfer over the network.

• Tampering with information and/or resources. This is solved by access
control as well as usage of cryptographic techniques to assure the in-
tegrity of information.

• Repudiation of actions, proving the origin and validity of actions and
messages. It is solved by the cryptographic techniques, such as digital
signature.

• Denial of service - usually solved by the correct service implementation.

• Auditing and accountability - logging facility. The system must provide
enough information that describes internal events for external review to
prove a system’s accountability.

16

An intruder, in order to make an intrusion successful, may exploit the threats
described above. Basically, there are different kinds of attacks that were defined
in the literature (Anderson, 1980), (Mell, 1999), (Kumar, 1995), (Krsul, 1998).
They group attacks basing on different characteristics (such as attack’s end-effect
or methods involved in it). A classification scheme presented earlier by Smaha
(1988) is general enough to encompass all the above schemes and it classifies the
intrusions by their types into the following six types:

• Attempted break-in: often detected by the abnormal behavior profiles
or violations of security policy.

• Masquerade attack: often detected by the abnormal behavior profiles or
violations of security policy.

• Penetration of the security control system: usually detected by monitor-
ing the specific patterns of activity.

• Leakage: often detected by atypical usage of I/O resources.

• Denial of Service: often detected by the abnormal usage of the system
resources.

• Malicious use: often detected by the abnormal behavior profiles, viola-
tions of security policy, or the use of special privileges.

The described in this section types of potential threats and attacks present a great
danger to networked computer systems. Therefore, it is necessary to use a track-
ing mechanism to detect or even prevent current and future attacks originated
from outside, as well as insider abuses. In the next section we are going to de-
scribe systems and employed by them techniques aimed at preventing or/and
detecting threats described in this section.

1.1.3 Intellectual Attacks

There is a threat that was not covered in the previous section. It is an intellectual
attack (or meta-attack). It is a distinct challenge presented to intrusion detection
and it is one of the most dangerous ways to subvert the anomaly intrusion de-
tection system. An insider or other well-informed user may issue this kind of
attack. It uses the main problem of statistical approaches in anomaly detection -
a gradual training possibility; i.e. after some malicious actions the anomaly in-
trusion detection systems may recognize an intrusive behavior as normal in the
future. For the anomaly detection system that uses online learning techniques
intellectual attacks represent a great danger. It is almost equal to putting a trojan
horse into the system, but much more dangerous since it is much more difficult
(or almost impossible) to detect.

It is supposed that the intruder has full knowledge of the system’s de-
fenses, including the anomaly detection system and its user profiles. Having

17

such knowledge, the intruder may attempt to adapt his or her behavior, to that
recorded in a profile for a valid user, and avoiding notice by the anomaly detec-
tion system. On the second step after initially conforming to expected behavior
(not necessary for insider) the intruder needs to mask anomalous behaviors. He
tries to subvert the detection system by training it gradually, changing to ma-
licious behavior in such a way that it does not appear to be suspicious (force
abnormal learning). In other words the intruder hides his malicious behavior as
normal changes in behavior on the part of a valid user and the adaptive anomaly
detection system accepts this and updates its profiles. After this the intruder has
a safe passage to the system, since it will be accepting this kind of malicious
behavior as normal in the future. We call this process an intellectual attack.

From the first look it seems that the intellectual attack may refer several
classes of attacks in a scheme given in Section 1.1.2. This classification provides
a grouping of intrusions based on their end effect and the method of carrying
out the intrusions. If we conduct further analysis it is possible to note that it is
not possible to refer the intellectual attack directly to any of these classes. It is
obviously not denial of service. It can not refer either to attempted break-in nor to
masquerade attack since a user can train his own profile. There might be some
implicit leakage of information, for example, when the user is training the system
he/she might get some feedback to his/her actions when the workstation locks
or a system administrator during the incident investigation contacts the user.
However, leakage means that the system provides unintended services (due to
flawed design or bad implementation) and this is not the case here. It is also not
a penetration of the security control system since in this case it is not necessary to
penetrate it in order to subvert. It might be malicious use of resources, but the
user is not directly abusing anything that he/she has access to. Therefore, we
can see that the intellectual attack does not refer to malicious use in this sense.
Thus, it is a very complicated and dangerous kind of attack to detect and should
be paid enough attention to in the future.

Summarizing this section we can say that in general the introduced prob-
lem is one of distinguishing real concept drift (introduced by valid user) from
abnormal training and in the following chapters we propose our methods in
solving this problem.

1.2 Intrusion Detection

Most computer systems provide an authentication mechanism as their first line
of defense. However, this only defines access restrictions to an object in the sys-
tem, but does not restrict how a subject may manipulate with the object itself,
if it has the access to it (Denning, 1982). Access control cannot prevent unau-
thorized information flow through the system because such flow can take place
with authorized accesses to the objects. Also the access controls and protection
models are not helpful against insider threats or compromise of the authentica-

18

tion module (Kumar, 1995). If a password is weak and is compromised, access
control measures cannot prevent the loss or corruption of information that the
compromised user was authorized to access. A dynamic method, such as be-
havior tracking, is therefore needed to detect and perhaps prevent the breaches
in security.

An intrusion is defined in (Heady et al., 1990) as any set of actions that
attempt to compromise the integrity, confidentiality, or availability of a resource.
An earlier study done by Anderson (1980) characterizes the intrusion as a threat
and defines it to be the potential possibility of a deliberate unauthorized attempt
to access information, manipulate information, or render a system unreliable or
unusable. In other words, an intrusion is a violation of the security policy of the
system (Kumar, 1995). The definitions above are general enough to encompass
all the threats mentioned in the previous section.

Any definition of intrusion is, of necessity, imprecise, as the security policy
requirements do not always translate into a well-defined set of actions. Whereas,
a policy defines the goals that must be satisfied in a system, detecting the breach-
es of policy requires knowledge of steps or actions that may result in its violation
(Kumar, 1995).

Due to hardware or software failures, an incorrect system administration,
or software bugs, computer systems are likely to remain not properly secured
in the nearest future. Thus, there must be means to detect security breaches,
i.e., identify the intruders and intrusions and where possible collect the imper-
turbable evidence to establish a criminal case. The intrusion detection system is
a tool that is capable of filling this role and it usually forms the last line of de-
fense in the overall protection scheme of a computer system (Allen et al., 1999).
The intrusion detection systems use a number of generic methods for monitor-
ing the exploitations of vulnerabilities (Sundaram, 1998). They are useful not
only in detecting successful breaches of security, but also in monitoring attempts
to breach security, which provides important information for timely counter-
measures. Thus, the intrusion detection systems are useful even when strong
preventive steps are taken to protect computer systems, placing a high degree
of confidence in their security (Kumar and Spafford, 1995).

There are two major categories of intrusion detection systems which exist:
misuse intrusion detection and anomaly intrusion detection (Smaha, 1993). The
systems of the first category are based on the detection of intrusions that follow
well defined patterns of attack, exploiting known systems and applications soft-
ware vulnerabilities (Kumar, 1995). A misuse intrusion detection system has
knowledge about poor or unacceptable behavior, which it directly searches for
(Smaha, 1992). It is not possible to implement an online learning (meaning an
automatic creation of attacks’ signatures) for such systems; hence these kinds
of systems are unable to recognize attacks that are not precisely encoded in the
system. Moreover, it is extremely difficult to perform proper testing of such
systems due to an insufficient amount of information about the real intrusion

19

cases (Allen et al., 1999) and an impossibility to create all possible variations of
attacks.

The intrusion detection systems of the second category are based on the
detection of the anomalous behavior or the abnormal use of the computer’s re-
sources (Kumar and Spafford, 1994). For example, if a user uses a computer
only during working hours and only from his office, a connection established
using his/her userid during the night from a remote host is absolutely anoma-
lous and, moreover, may be an intrusion.

The main problem with anomaly intrusion detection is that it is based on
the assumption that all intrusive activities are necessarily anomalous, which is
not always true. In real life the set of intrusive activities only intersects the set of
anomalous activities instead of being exactly the same. Another issue is that an
anomaly intrusion detection system may be trained to accept intrusive activities.
Also the selection of threshold levels so that the misclassification rate would
be minimal is difficult. Anomaly detection systems are also computationally
expensive because of the overhead of keeping track of, and possibly updating
several system profile metrics.

The basic principles of detecting intrusions by identifying ”abnormal” be-
havior are outlined by Anderson (1980). He presents a threat model that classi-
fies intrusions as external penetrations, internal penetrations, and misfeasance.
External penetrations are defined as intrusions that are carried out by the unau-
thorized computer system users. Internal penetrations are those that are carried
out by the authorized users of computer systems who are not authorized for the
data that is compromised; and misfeasance is defined as misuse of authorized
data and other resources by otherwise authorized users.

This classification, as well as the one described in Section 1.1.2, provides
a grouping of intrusions based on their end-effect and the method of carrying
them out, but the main techniques for detection of these intrusions are the same:
the anomaly detection, and the precise monitoring of well-known attacks in the
misuse detection.

After Anderson’s work (1980), the intrusion detection area has been ex-
tensively developed and many approaches have been suggested, for example
(Liepins and Vaccaro, 1989), (Lunt et al., 1989), (Heberlein et al., 1991), (Ilgun
et al., 1995). We are going to consider them in more detail in the next chapter.

1.3 Requirements to Intrusion Detection Systems

There are certain key points that any intrusion detection system should address,
regardless of what model it is based on. The following issues are identified as
desirable for an intrusion detection system (based on (Crosbie and Spafford,
1995)):

• It must run continually. The system must be reliable enough to be run in
the system being observed.

20

• The system should require a reasonable amount of computer resources
and employ minimum manual and ad-hoc elements in its architecture.

• It must be fault tolerant. It must survive a system’s crash and should not
have to rebuild its knowledge base at the restart.

• It should be survivable. The system should not stop working if some of
its components stop working for any reason.

• It should be flexible enough. Using different usage patterns - the defense
mechanism should adapt easily to these patterns.

• It should be scalable to monitor a large number of hosts.

• It should allow dynamic reconfiguration without restarting the system.

• It must resist direct physical subversion. The system should monitor itself
to ensure its integrity and the integrity of users’ profiles.

• It should handle concept drift (Schlimmer, 1987) - normal changes in
user behavior, i.e. distinguish an abnormal behavior from a normal user
behavior changing and then opportunely updating the users’ profiles
(for anomaly detection).

• It should detect intellectual attacks (mainly important for systems that
use an online learning). A malicious person can train the system to ac-
cept abnormal behavior as normal. Knowing how the system works, he
tries to pose an abnormal behavior as a normal behavior changing and
updating a profile to accept it as normal in the future.

• It should avoid misclassification errors.

The above list of desirable characteristics is very demanding and challenges the
researchers. The last point raises an issue about the type of errors that can occur
in the system. If we consider the traditional security mechanisms as a wall which
protects our resources from attackers, there are four kinds of events that an intru-
sion detection system should react to (Lindqvist, 1999): probing/provocation,
circumvention, penetration, and insider. Everything else is considered as mis-
classification errors. These can be categorized as:

• Not intrusive but detected as an intrusion (false positives). The activ-
ity is not intrusive, but because it is anomalous or it partially matches
a pattern of intrusion, the system reports it as intrusive. Since the used
approaches are not ideal, the intrusive activity in anomaly detection is
a subset of anomalous activity; therefore, the intrusion detection system
sometimes falsely reports an intrusion. The occurrences of this type of
error should be minimized, since it may not be possible to completely

21

eliminate them, the useful information has to be provided to the opera-
tors.

• Intrusive but not detected (false negative). Since an activity is not anoma-
lous or it does not match any of the misuse signatures, the system fails to
detect an intrusion and falsely reports its absence. A false negative error
occurs when an action proceeds even though it is an intrusion. The false
negative errors are more serious than the false positive errors because
they give a misleading sense of security.

• Subversion errors. They occur when an intruder modifies the operation
of an intrusion detector or profiles (by modifying it physically or train-
ing) in a way that the system produces false negative errors.

The requirements described above should be carefully taken into account while
developing an intrusion detection system. Additional attention must be paid
to the described above categories of the potential errors since they may give a
misleading sense of security by missing actual attacks or otherwise require large
amounts of additional work to investigate false intrusion cases.

1.4 Research Objectives

Both intrusion detection models (anomaly and misuse) have disadvantages that
are peculiar to the specific model. In this thesis, we have developed a hybrid
model that combines these two models. The anomaly and misuse detection
models are combined in a way that, working cooperatively, each model can com-
pletely or partially eliminate the shortcomings of another. Thus, at the end, we
expect to achieve better parameters of the resulting model, satisfying the com-
mon requirements for such systems.

In this thesis we attempt to provide the answer to the question: Is it possible
to detect the computer intrusions using the machine learning algorithms adapted for
online user verification?

A complete statement of the thesis is:

A person’s interaction with a computer consists of different activities that he/she per-
forms in order to achieve his goals. These activities consist of actions. Each action
causes a series of events in the operating system. Each user performs similar activities,
which are expressed by repeated sets of actions and which differ on a per-user basis. This
gives the possibility to differentiate an intruder from a valid user.

The main objective of this thesis is to build a portable intrusion detection
approach, taking the anomaly detection as basis and implementing online ma-
chine learning techniques, instead of or together with the statistical ones, for
online user verification. We have concentrated on the following goals:

• overcoming the existing disadvantages of anomaly intrusion detection
systems (IDS);

22

• improving the following parameters:

– intrusion detection probability - the probability that an intrusion
will be detected and the probability that any detected case of ab-
normal activity will be a case of intrusive activity;

– detection time - time between the beginning of an intrusive activity
and its actual detection;

– guarantee online intruder recognition - real time disclosure of the
real source of an intrusive activity;

– protection against intellectual attack (malicious learning) - it is pro-
tection against an intrusion the main goal of which is to force the
intrusion detection system to learn in a way that it will recognize
the intrusive activity as normal in the future;

– recognition based on incomplete information.

In this thesis, the main research objective is reached by dividing it into the fol-
lowing research directions:

• usage of AI methods and tools for anomaly detection;

• development of special event representation for the AI methods and
tools used;

• development of special methods for knowledge discovery based on pro-
posed information representation;

• development of special methods for protection against undesirable or
malicious learning (cross validation of knowledge for discovering mu-
tual inconsistencies);

• choose thresholds in classification algorithms to minimize a false posi-
tives alarm rate.

Basically, the research, being presented in this thesis, can be divided into two
phases. The first phase is the development of an information representation
method for intrusion detection. This method includes temporal aspects of knowl-
edge representation of the users’ behavior to construct behavioral patterns. The
representation uses Allen’s temporal interval algebra (Allen, 1983), (Allen and
Ferguson, 1994) to describe the temporal relations between events caused by a
user. This representation is also useful in a concept drift (Schlimmer, 1987) han-
dling when the set of training samples is reduced by removing old data that is
no longer used for classification. In previous works, a classification was based
on the sequences of actions where each action was followed by another, which
means that they are not suitable to be used with modern operating systems and
auditing facilities, where many processes may be running at the same time. In

23

this work, the information representation method is developed in a way that
allows actions to overlap and thus, may be used in GUI environments.

According to one definition given by Garfinkel and Spafford (Garfinkel
and Spafford, 1991), a secure computer system can be depended upon to behave
as it is expected to. By analogy with this definition, the approach being devel-
oped is based on the assumption that the user’s behavior includes regularities,
which can be detected and coded as a number of patterns. The information de-
rived from these patterns could be used to detect the abnormal behavior and to
train the system.

The second phase uses the proposed representation to develop a new ap-
proach to the anomaly detection employing machine learning, in order to catch
and then recognize the diversity of a certain user’s actions. The pattern encoding
and matching mechanisms are based on the probabilistic networks approach. It
is adapted to use the information representation developed during phase one to
catch the temporal behavioral aspects.

Typically, in anomaly detection, computer systems are trying to compare
the current events with the expected or predicted events (Liepins and Vaccaro,
1989). So we then transform the decision problem into three scenarios: what,
when and how much. What is happening - this is the problem of the identifi-
cation of the different aspects of a user’s behavior. A person’s interaction with
a computer consists of different activities that he performs in order to achieve
his goals. These activities consist of actions. Each action causes a series of events
in the operating system, which are usually stored in audit trail logs. Each user
performs similar activities which are expressed by repeated sets of actions and
which differ on a per-user basis. Thus, the answer to the question ”what?” would
be a recognition of a certain user’s activity. To recognize a certain activity it is
necessary to collect related events and group them into an action. Related ac-
tions, in turn, are grouped into activities, which is the answer to the given ques-
tion. In other words, the first scenario represents the translation of events, which
are mostly an operating system/logging facility specific and are not very infor-
mative and representative as parts of a user behavior model, to activities that are
described in an independent way and they tell what is happening from a user’s
behavior point of view.

When? - in order to answer this question, we try to observe the temporal
aspects of a user’s behavior (when an activity is happening and how long) by
analyzing and tracing it in its temporal context using Allen’s temporal algebra
(Allen, 1983), (Allen and Ferguson, 1994) to describe relations between the tem-
poral intervals or actions. Addressing the second scenario we discover temporal
regularities between the actions. Therefore, having a model of a user’s behavior
(in profile) it is possible to predict how long a certain action is going to be and
when the next action is expected (the first scenario defines what kind of action
to expect).

24

The answer to the question ”how much?” would help us to determine the
possible danger, by identifying objects that were manipulated in an intrusive
sequence. This is the third scenario, but in this thesis we are going to concentrate
mostly on the first two.

Dealing with these scenarios has made it possible to capture more behav-
ioral aspects, which, in turn, leads to additional flexibility in managing the in-
formation stored in the profiles.

1.5 Structure of the Thesis and Paper Summary

Chapter 2 depicts related work in intrusion detection. We describe several key
approaches to intrusion detection. None of them uses temporal-probabilistic
networks directly to represent and detect intrusions.

This thesis includes ten research papers. The first paper ”A Hybrid Model
for Intrusion Detection” (Seleznyov, 2000a) and the second paper - ”HIDSUR: A
Hybrid Intrusion Detection System based on Real-time User Recognition” (Seleznyov
and Puuronen, 2000) constitutes Chapter 3. It discusses the problem of building
architecture for the intrusion detection systems. Many attempts have been made
to build an intrusion detection system that satisfies the common requirements
for such a system. The intrusion detection systems that are developed for re-
search or commercial purposes have a number of problems, which are usually
inherent to a certain architecture that the system is based on. Sometimes, devel-
opers combine two architectures in hybrid systems in order to merge advantages
that both these architectures possess. Unfortunately, quite often, they combine
shortcomings of both architectures as well, which usually does not significantly
increase the overall performance of the resulting system. In this chapter, we pro-
pose our architecture for an intrusion detection system based on online learn-
ing. It combines the anomaly and misuse detection in hybrid architecture in
a way that helps to overcome some of their disadvantages. We use temporal-
probabilistic trees as a main representation for the creation and maintenance of
user profiles in the system.

The third paper is ”Anomaly Intrusion Detection Systems: Handling Temporal
Relations Between Events” (Seleznyov and Puuronen, 1999). Its topic is discussed
in Chapter 4. This chapter discusses a temporal knowledge representation of a
users’ behavior that is used to construct the behavior patterns. These are used
to decide whether a current behavior follows a certain normal pattern or dif-
fers from all known users’ behavior patterns. The representation uses Allen’s
temporal interval algebra to describe the temporal relationships between events
caused by the user. We also discuss how our representation is used to help in
the concept drift when the set of training samples is reduced by removing old
data that is no longer used for classification.

Chapter 5 discusses the topic described in paper four ”A Methodology to
Detect Anomalies in User Behavior Basing on its Temporal Regularities” (Seleznyov,

25

2001). In this chapter we have formulated an anomaly detection problem as one
of user behavior classification in terms of incoming multiple discrete sequences.
Although, here we focus on user-oriented anomaly detection. Monitoring multi-
ple streams of discrete events, such as GUI events, system call traces, keystrokes,
a system learns in order to classify (or recognize) a user according to his/her be-
havior. By developing our approach we aim to eliminate, as much as possible,
manual and ad-hoc elements from the creation and manipulation of the user
profiles by introducing online learning. We develop an approach that allows
creating and maintaining users’ behavior profiles relying not only on sequential
event information but taking into account events’ lengths and possible relations
between them. Information about user ”normal” behavior is accumulated in
user profile. We define it as a number of predefined classes of actions with ac-
cumulated temporal statistics for every class, and matrix of possible relations
between classes. Every class contains a number of instances, i.e. a number of
patterns that are allowed for this class. In other words, an instance of a certain
class contains temporal information that is peculiar for a certain pattern. A rela-
tion matrix describing possible relations between classes gives us the possibility
not only to check the ”normality” of each action in the incoming sequence of
events, but also to check whether current relationships between the actions are
”normal” for a certain user.

Chapter 6 is based on papers five-seven: ”Temporal-Probabilistic Network
Approach for Anomaly Intrusion Detection” (Seleznyov, Terziyan and Puuronen,
2000), ”Detecting Abnormal Behavior Using Temporal-Probabilistic Networks”
(Seleznyov, Mazhelis and Puuronen, 2000), and ”Learning Temporal Regularities of
User Behavior for Anomaly Detection” (Seleznyov et al., 2001). It continues the dis-
cussion from the previous chapter towards building a portable approach that is
able to catch and represent a model of user behavior as fully as possible. Here a
typical decision problem in anomaly detection is transformed into the following
scenarios: what event is going to happen in the future and when. In this chapter,
we develop algorithms that cope with these scenarios. An online prediction us-
age in our approach gives us the possibility to reveal possible dangerous event
sequences while it does not arouse the intruder’s suspicions and to estimate the
possible damage to the system.

A problem of importance in information systems security is to differentiate
normal behavior changes from malicious learning attempts. Being able to recog-
nize these types of behavior efficiently the system is able to minimize misclassi-
fication errors caused by inconstancy of the behavior and prevent undesirable or
malicious learning of systems that use online learning to detect the presence of
an intruder, masquerading as a valid user, or abusive actions of a legitimate user.
We discuss this topic in paper eight - ”Temporal-Probabilistic Network Approach for
Anomaly Intrusion Detection: Detecting Abnormal Learning” (Seleznyov, 2000b)
and continue the discussion in Chapter 7 where we use an anomaly detection
approach based on a kind of probabilistic network presented in the form of a

26

tree to develop a method of detecting the abnormal learning. We define and use
an information context in this chapter to achieve a more complete coverage of a
user’s behavioral aspects. Finally, the usage of a coefficient of reliability pun-
ishment mechanism was developed in order to distinguish between malicious
learning and natural user behavioral change (concept drift).

The ninth paper - ”Learning Temporal Patterns for Anomaly Intrusion Detec-
tion” (Seleznyov and Mazhelis, 2002) is put as a foundation of Chapter 8. This
chapter extends the questions raised in the paper - main problems we were faced
with when designing the prototype and our solutions to them. The prototype
architecture is presented and important parts of it are discussed in detail.

Chapter 9 is based on paper ten - ”An Anomaly Intrusion Detection System
Based on Online User Recognition” (Seleznyov et al., 2002). They consider tempo-
ral patterns of user behavior in detail showing that they are actually present in
user behavior and it is possible to use them together with sequential patterns in
order to reliably differentiate a legitimate user from an intruder. Chapter 9 de-
scribes experimental settings, discusses our choice of parameters, and presents
and analyzes performance results of the prototype.

Chapter 10 concludes the thesis. It discusses the limitations of the de-
scribed studies and outlines future research directions.

Additionally, in Appendix 1 we present an idea described in the paper -
”Using Temporal-Probabilistic Network Approach for Automatic Pattern Generation
for Misuse Detection” (Seleznyov, 2000c). Here we show one possible way to
solve the problem of misuse intrusion detection, i.e. that they are not able to rec-
ognize future attacks since misuse detectors only search for previously encoded
patterns. The approach is a part of our hybrid intrusion detection model. We use
anomaly detection based on time-probabilistic tree network for the detection of
abnormal sequences in an input stream and then we use grouping and filtering
techniques for picking out the key events in these sequences. Finally, the key
events are encoded in a pattern for misuse detection.

1.6 Summary

Intrusion detection is an important component of the security controls and mech-
anisms provided in a system. It usually forms the last line of defense against
security threats. These mechanisms are intended to detect breaches of policy
that cannot be easily detected other than using intrusion detection methods or
prevented using an access control. Intrusion detection is usually based on one of
two models: the anomaly or the misuse model. Both models make assumptions
about the nature of intrusive activity that can be detected.

2 RELATED WORK IN INTRUSION DETECTION

A full description of existing intrusion detection systems is beyond the scope of
this dissertation. There are at least 92 intrusion detection systems that have been
developed to date (Sobirey, 2002). Therefore, the main goal of this chapter is not
to describe all specific systems, but to outline the main approaches used in their
implementations. None of them use the probabilistic trees directly, to represent
and recognize the variations of user behavior.

2.1 Introduction

Basically, there are two main approaches to intrusion detection: misuse detection
and anomaly detection. Sometimes, their combination is referred to as a separate
approach - hybrid detection (Mounji, 1997).

The misuse intrusion detection systems detect intrusions that follow well-
defined patterns of attack, exploiting known systems and applications software
vulnerabilities. They have knowledge about intrusive or unacceptable behavior,
which they directly search for (Smaha, 1992).

The anomaly intrusion detection systems are based on the detection of the
anomalous behavior or the abnormal use of the computer’s resources (Kumar
and Spafford, 1994). The basic principles of detecting intrusions by identifying
abnormal behavior are outlined by Anderson (1980).

2.2 Misuse Detection

The misuse intrusion detection refers to the detection of intrusions by precisely
encoding them into patterns or signatures and seeking them in a current event
stream. These signatures specify the features, conditions, and relationships be-
tween events that lead to an intrusion. Therefore, a certain signature refers to
a certain intrusion and if the signature is found among events, it indicates an
intrusion. A partial signature satisfaction may be considered to be an intrusion

28

attempt. In the following sections, we describe the main approaches to misuse
detection.

2.2.1 Expert Systems in Intrusion Detection

Expert systems are developed in a way that separates the rule-matching phase
from the action phase. Every detection rule in the rulebase represents a particu-
lar scenario and detects its occurrence by matching the corresponding signature
against a current event stream. Matching is done according to audit trail events.
The intrusion detection rules should be made general enough to capture all vari-
ations of the same attack.

In Snapp and Smaha (1992) an example of the use of such systems in intru-
sion detection is described. This system encodes knowledge about attack cases
as if-then rules in CLIPS (Giarratano, 1992) and asserts the facts corresponding to
audit trail events. When all the conditions on the left side of a rule are satisfied,
the actions on the right side are performed. The IDES intrusion detection system
uses P-BEST a general rule-based expert system (Lunt et al., 1992) (see Figure
2.1 for example of decision engine). Some other systems as, for example, OSIRIS
(Baur and Weiss, 1988) use Prolog rules to encode the intrusion signatures.

IF

condition1

condition2

.

.

.




antecedent

THEN

derived fact1

derived fact2

.

.

.




consequent

Figure 2.1 A production rule structure for an expert system

There are some practical problems associated with rule-based intrusion detec-
tion:

• The expert system has to be formulated by a security professional and
thus the system is only as strong as the security personnel who program
it (Lunt, 1993).

29

• It is also very difficult to manipulate rules in rule base, since all ac-
tions must take into account the inter-dependencies between different
rules (Snapp and Smaha, 1992).

• There is no recognition of the sequential ordering of data, because of the
various conditions that make up a rule are not recognized to be ordered
(Sundaram, 1998).

2.2.2 State Transition Analysis

In the state transition analysis approach, developed in STAT (Eckmann et al.,
2001), the monitored system is represented as a state transition diagram. In this
diagram, an attack pattern corresponds to the system’s state and have Boolean
assertions associated with them that must be satisfied to transit to that state and,
as the data is analyzed, the system makes transitions from one state to another.
Arcs represent the events required for changing a state (Ilgun et al., 1995).

Consider an example (Ilgun et al., 1995). Table 2.1 presents a penetration
scenario for 4.2 BSD UNIX operating system (CERT advisories, 1999). The main
goal of this exploit is to obtain the root privileges. In this scenario, the attacker
exploits a flaw in the mail utility, in which the mail fails to reset the setuid bit of
the file to which it appends the message and changes the owner. As a result, the
attacker is able to gain the root privileges.

Table 2.1 A penetration scenario

Step Command Comment

1. %cp /bin/csh /usr/spool/mail/root -assumes no root mail file
2. %chmod 4755 /usr/spool/mail/root -makes a setuid file
3. %touch x -creates an empty file
4. %mail root < x -mails root empty file
5. %/usr/spool/mail/root -executes a setuid-to-root shell
6. root%

The above scenario succeeds when the following assertions hold:

1. the attacker must have ”write” access to a mail directory;

2. the attacker must have an ”execute” access to cp, mail, touch, and chmod;

3. a root’s mail file must not exist or must be writable;

4. the attacker cannot be root.

According to these assertions, it is possible to build a state transitional di-
agram of the penetration scenario (Figure 2.2).

The considered approach can detect the cooperative attacks and attacks
that span across multiple user sessions. However, the attack patterns can only

30

�� �
−�� �

−�� ��

� � � � 	
 �
 	
 � � � � � � � � � � 	 � � � � � � 	
 �
 � � � � � � ! " � � � � � � 	 � � � � � � 	
 �
 � � � � ! " � � � � � � 	 � �

�
& � ' " � � � � � � � � 	 � � * , � - � ��
& � � � � 	
 �

 � � �≠

�
& � / 1 �
 � � � � � 	 � � * � � � � 	
 �
�
& � � � ! " � � � � � � 	 � � * � " � � � - � � �

& � / 1 �
 � � � � � 	 � � * � � � � 	
 �
�
& � � � ! " � � � � � � 	 � � * � 1 � � - � �

�
& � / 1 �
 � � � � � 	 � � � � � � 	
 �
�
& � � � ! " � � � � � � 	 � � * � 1 � � - � �≠

Figure 2.2 A state transition diagram of the penetration example

specify a sequence of events; so more complex ways of specifying events are
not permitted. Furthermore, there are no general-purpose methods to prune
partial matches of attacks other than through assertion primitives built into the
model. And finally, approaches based on the state transition analysis cannot
detect denial of service attacks (Sundaram, 1998).

2.2.3 Keystroke Monitoring

Keystroke monitoring is a technique that monitors a user’s keystrokes for an
attack pattern. The attack pattern is a specific keystroke (i.e. sequences of events)
that indicates an attack (Lane and Brodley, 1997a), (Lane and Brodley, 1997b).

Unfortunately, there is an unlimited number of ways of expressing the
same attack at the keystroke level. Furthermore, the feature of shells (like bash,
ksh, and tcsh), in which a user is able to define aliases, defeats the technique and
forces it to use an alias expansion and a semantic analysis of the keystrokes.

Due to this technique analyzes only the keystrokes, unsupervised attacks
that are a result of malicious program executions cannot be detected. Also, the
operating systems do not offer much support for keystroke capturing; therefore,
a facility for the keystroke capturing must be provided additionally, and, finally,
in some countries keystroke monitoring is considered illegal, without special
permission. For example, in USA due to ambiguities of current laws (they are
outdated sometimes) it may be illegal to conduct keystroke monitoring of a user,
even if it is only conducted for the purpose of detecting system intruders. More-
over, according to the 18 U.S.C. Section 2512 et seq. (U.S.C., 2002), the design,
manufacture, possession, advertisement, and use of the keystroke monitoring
software is illegal.

2.2.4 Model-Based Intrusion Detection

Originally, this approach was proposed by Garvey and Lunt (1991) and is a vari-
ation of misuse intrusion detection that combines the models of misuse with
evidential reasoning to support the conclusions about the occurrence of misuse.

31

This approach assumes that there is a database of attack scenarios, each
of which is a sequence of events making up the attack. At any moment, some
subset of attacks scenarios are considered as the likely ones by which the system
might be under attack. Then the system attempts to verify these scenarios by
seeking an audit trail for evidence.

The events in the audit trail are monitored and it is possible to find the in-
trusion attempts by looking at events that infer a certain intrusion scenario. The
model consists of three important modules (Garvey and Lunt, 1991). The antici-
pator predicts the next steps in the scenario by using active models and scenario
models (a knowledge base with intrusion scenarios). The planner determines
how the hypothesized behavior is reflected in the audit data and translates it
into a system-dependent audit trail match. It uses the predicted information to
determine what to search for next. The interpreter then searches for this data
in the audit trail. The system proceeds collecting evidence of the attack until a
threshold is crossed; at this point, it alerts the system administrator.

This approach is based on a mathematical theory of reasoning in the pres-
ence of uncertainty. It can potentially reduce the substantial amount of noise
present in the audit data, since the interpreter and planner know what they
are searching for. Also the planner provides an independence of representation
from the underlying audit trail representation (Kumar, 1995).

In contrast to the advantages above, this approach creates more difficulties
for the person creating the intrusion detection model to assign meaningful and
accurate evidence to various parts of the graph representing the model. This ev-
idence must be distinguished and may not be associated with any other normal
behavior.

2.2.5 Pattern Matching with Colored Petri Nets

Kumar (1995) proposes an intrusion detection approach, which provides a pat-
tern matching-based computational model.

The model of matching consists of:

• context representation that allows the matching to correlate various events,

• semantics that accommodates the possibility of several intrusion patterns
being mixed in the same event stream,

• specification of actions that provides execution of specified actions when
the pattern is matched.

This model has its own classification hierarchy to categorize the intrusion sig-
natures based on the structural interrelationships among events used to repre-
sent the signature. This hierarchy is independent of any underlying matching
techniques. Defining the requirements, that patterns in all categories of classifi-
cations must meet (specification of context, actions, and invariants of intrusion
patterns), the model of matching was devised for the misuse detection.

32

The model based on a variation of Colored Petri Nets (CP-nets) represents
and detects the intrusion patterns. Each signature is represented by a Colored
Petri Net, in which a context is modelled as colors of tokens in each state. The
matching is done against the audit trail and performed by moving tokens from
(possibly several) initial states to the only final state.

Each CP net has several variables assigned to it. The value of each variable
can only be assigned once. Each token has its own copy of each variable and it
maintains it itself because each token can make its own binding as it flows from
state to state.

A CP net has a set of directed arcs that connect states to transitions and
vice versa. Each transition is associated with an event type, which must occur
in the input stream in order to fire this transition. A single transition may be
associated with more than one kind of event. A transition is enabled if each
of its input states contains at least one token. Optional expressions (guards)
may be placed to each transition, which permits assignment to the token local
variables that flow through the transition. It is possible to assign event data
fields, expressions, and user-defined functions to the guards. A transition fires
if it is enabled and an event of the same type as transition’s label that satisfies
the guard as the transition occurs. After this a set of consistent tokens is unified,
and a copy of this unified token is placed in each output state of the transition.

States of a CP net may be associated with actions performed to each token
that comes into the state. This allows countermeasures to be defined when a
partial signature match is encountered.

In order to illustrate the use of this approach, Figure 2.3 depicts a graphical
representation of the penetration scenario that uses a mail security vulnerability
exploitation described in Section 2.2.2. The path in this diagram represents the
activity:
> cp /bin/sh /usr/spool/mail/root
> chmod 4755 /usr/spool/mail/root

The node labeled s4 represents a final node where an intrusion alarm is
made. It must contain at least one token before the alarm will fire.

� � � � � � � �� � � � � �

�
 � � � � � � � � � � �
� � �
 � � � � � ! � � # $ % ' ($ �) * * , $ - ' � , $ (* * � #
� � 0 � 2 � � �
 � � � � � ! �

8 (� � 9

�
 � � � � � ! � � 0 � 2 �

:
 - * ; :
 * 8 =

�
 � � � � � ! � � 0 � 2 �
� � * 8 = 9 (> �
 � � � � � ! � ? � # (* * � #

Figure 2.3 A simple pattern of attack represented as Colored Petri Net

An intrusion detection system called IDIOT (Intrusion Detection In Our Time)
has been developed based on this approach (Crosbie et al., 1996).

33

This approach has several problems. It is very difficult to extract and iden-
tify the crucial elements of exploitations and translate them into general descrip-
tions to detect exploitation variations. It requires human expertise, since it is
very difficult to automate this process. It also requires the consistency of audit
information and sometimes, it requires information that may not be provided
by the protection mechanism and audit trails, e.g. operating system facilities;
therefore, additional auditing mechanisms have to be implemented.

2.3 Anomaly Detection

In this section, we make an overview of the techniques that make their decision
based on the predicted or expected behavior from the observed behavior. These
techniques do not base their decision on the occurrence of specific landmark
activities.

2.3.1 Statistical Approaches

An anomaly detector based on statistical approaches, observes the activity of
subjects and generates profiles for the user and the system as in NIDES (Javitz
et al., 1993), (Lunt et al., 1992) or applications as in SAFEGUARD (Anderson
et al., 1995). As the system continues running, the anomaly detector periodically
generates a value that is a measure of the abnormality of the profile.

A statistical profile is a set of metrics M1...Mn, each of them is related to a
particular aspect of behavior. It may be CPU usage, I/O usage, file access, typing
rate, error rate, etc. Each metric is associated with a threshold beyond which the
activity is considered abnormal.

In NIDES (Lunt et al., 1992) a set of S represents the abnormality val-
ues of the profile measures M respectively, and a higher value of Si indicates
greater abnormality. Combining the functions of the individual Si values may
be a weighted sum of its squares a1S

2
1 +a2S

2
2 + ...+anS

2
n, where ai > 0 and reflect

the relative weight of the metric Mi.
In general, the measures {M} may not be mutually independent, and may

require a more complex function for combining them. The anomaly measures
are just numbers without a well-defined theoretical basis for combining them
(Kumar, 1995).

The advantage of the statistical anomaly intrusion detection is that well-
studied techniques in statistics can often be applied, which are able to adaptively
learn the behavior of users. However, intruders may gradually train these sys-
tems so that intrusive events are considered as normal. Also, it is very difficult
to choose measures to monitor and set their thresholds. Finally, relationships
between events are missed because of insensitivity of statistical measures, thus
a purely statistical intrusion detection system may miss intrusions that are indi-
cated by the sequential interrelationships among events.

34

2.3.2 A Generic Model of Intrusion Detection

Dorothy Denning (1987) proposed a model of intrusion detection independent
of the system, type of input, and the specific intrusions to be monitored and it
can be viewed as a generalization of most intrusion detection systems built up
to date.

The system based on this model looks for audit-recorded events, network
packets, or any other observable activity. These events serve as the basis for the
detection of abnormality in the system (Denning, 1987).

The central point in this model (Figure 2.4) is the abstract concept of the
activity profile, which is the global state of the intrusion detector. This profile is
a description of normal activities in terms of statistic metrics: the event counters
metric accounts for the number of audit records occurring during a period of
time and satisfying some properties; the internal timer metric measures the time
separating related audit records; the resource usage metric quantities resources
consumed by an event (Mounji, 1997).

� � � � � 	 � � � � � � � �
� � � � � � � � � 	 � " # � � � � �

% � " � � (�
� " � + (� �

� � , � � � �

- � " (+ � , (� � � % � " � � (�
� � � 0 � � � � � � �

1 2 � (�
0 � � � � � �

3 5 6 7 8 7 6 : < > ? A 7 B C D F B C H C 6

K B ? 5 L

M 8 C O 6 R C O C > T 6 ? >

� � � � 	 V � (� � W � � 	 � � � X 0 (, X � 	 �

Figure 2.4 A generic intrusion detection model

Each of these metrics may be associated with a statistical model that character-
izes the normal distribution of the metric. The activity profile can also generate
new profiles dynamically for newly created subjects and objects based on the
pattern templates. If new users are added to the system, or new files created,
these templates make new profiles for them. Denning (1987) uses a rule-based
component to specify an action to be taken when an audit record is anomalous.

2.3.3 Data Mining

The main goal of introducing data mining in intrusion detection is to develop
an automated approach for building the intrusion detection models. It is aimed

35

to be applied on a variety of audit data sources, to automatically generate intru-
sion detection models. Therefore, an intrusion detection is considered, as a data
analysis process of finding the normal usage patterns from the audit data (Lee
et al., 1998), (Lee et al., 1999a), and (Lee et al., 1999b).

Data mining approach eliminates the need to manually analyze and en-
code the intrusion patterns, as well as the guesswork in selecting statistical mea-
sures for the normal usage profiles. More importantly, the same data mining
tools can be applied to the multiple streams of evidence, each from a detection
module that specializes on a specific type(s) of intrusion to train the combined
detection model that considers all the available evidence.

Data mining generally refers to the process of extracting the descriptive
models from the large stores of data (Holsheimer and Siebes, 1994). The recent
rapid development in data mining has made available a wide variety of algo-
rithms, drawn from the fields of statistics, pattern recognition, machine learning,
and databases. Basically, they may be divided into three categories:

• Classification: maps a data item into one of several predefined categories.
These algorithms normally output classifiers, for example, in the form
of decision trees or rules.

• Link analysis: determines relations between fields in the database records.
The correlation of system features in audit data, the correlation between
command and argument in the shell command history data of a user,
can serve as the basis for constructing the normal usage profiles.

• Sequence analysis: models sequential patterns. These algorithms can dis-
cover what time-based sequence of audit events frequently occur to-
gether.

Data mining usage for intrusion detection is a very young, but quite promising
topic in the intrusion detection field.

2.3.4 Probabilistic Networks

Sometimes, in order to combine anomaly measures, the intrusion detection sys-
tems use Bayesian or other belief networks. A Bayesian network (Acid and
de Campos, 1996) allows the representation of causal dependencies between
random variables in a graphical form and permit the calculation of the joint
probability distribution of the random variables, by specifying only a small set of
probabilities that relate only to neighboring nodes. This set consists of the prior
probabilities of all the root nodes and the conditional probabilities of all non-
root nodes (Cheeseman et al., 1991). The Bayesian networks represent causal
dependencies between the parent and the child. Usually, each node represents a
binary random variable with values representing either its normal or abnormal
condition. If the values of some of these variables may be monitored, it is pos-
sible to use the Bayesian network calculus to determine P (Intrusion|Evidence).

36

However, in general, it is not trivial to determine the apriori probability values
of the root nodes and the link matrices for each directed arc (Charniak, 1991).

Bayesian classification (Charniak, 1991) is a technique of unsupervised
classification of data. Autoclass (Cheeseman and Stutz, 1995) uses the Bayesian
statistic techniques to search for classes in the given data and determines the
most likely processes that generate the data. It does not partition the given data
into classes but finds a probabilistic membership function of each data record
in the most likely determined class. It may automatically determine the most
probable number of classes of the given data. It does not require any measures,
stopping rules, or clustering criteria and continuous and discrete attributes may
be freely mixed (Cheeseman and Stutz, 1995).

The Bayesian classification technique permits the determination of the op-
timal number of classes by grouping users with similar profiles, and thus natu-
rally classifying a set of users. As almost all statistical methods, it also suffers
from the same generic failings of statistical systems, such as the difficulty in de-
termining the right anomaly thresholds and the user ability to gradually train
the system.

2.3.5 Predictive Pattern Generation

A predictive pattern generation-based system (Cheeseman and Stutz, 1995),
(Lee et al., 2000), (Teng et al., 1990) uses a dynamic set of rules for detecting in-
trusions, while expert systems use a static predefined set. These rules are induc-
tively generated based on the sequential relationships and temporal properties
of the observed events and they are modified dynamically during the learning
phase. Only rules with a high accuracy of prediction (if it is correct most of the
time) and a high level of confidence (if it can be successfully applied many times
in the observed data) remain in the system.

By revealing regularities in past event sequences, the inductive engine is
able to determine that some event types are more likely to occur next in the
input stream, than other types of events, and it assigns a probability to each
most likely event. Here is an example of an inductively generated rule:

E1, ..., Ek : − (Ek+1, P (Ek+1)), ... , (En, P (En)) (2.1)

This means that if the input stream contains the event sequence E1, ..., Ek, the
events Ek+1, ..., En with probabilities P (Ek+1), ..., P (En) are more likely to be
found in the rest of the input stream. An example of a rule generated by TIM
(Teng et al., 1990) may be:

E1 → E2 → E3 ⇒ (E4 = 90%, E5 = 10%) (2.2)

where E1 − E5 are security events. This shows that for the pattern of observed
events E1 followed by E2 followed by E3, the probability of seeing E4 is 90% and
that of E5 is 10%.

37

According to this method, if a sequence of events matches the left side of a
rule, then the next event is considered anomalous if it is not one of the predicted
events, form the right side. The ability to effectively predict future events de-
pends on training the system on patterns that are the most representative of the
normal user behavior, which is a difficult task. A primary weakness of this ap-
proach is that the inductively generated rules may not cover all possible normal
user behaviors and produce many false alarms.

The strengths claimed for this approach are:

• better handling of a wide variety of user behavior;

• ability to separate a few relevant security events rather than the entire
session that has been labeled suspicious;

• better sensitivity to intellectual attacks. Malicious person who attempts
to train the system can be discerned more easily because of the semantics
built into rules.

2.3.6 Neural Networks

The core of this approach is to train the neural net on a sequence of information
units (events) (Fox et al., 1990). A neural network consists of many simple pro-
cessing elements (units) that interact using weighted connections (Kondratoff
and Michalski, 1990). The net is trained using the current and past commands.
The length of the past commands history is determined by the size of the win-
dow of past commands that the neural net takes into account in predicting the
next command. Once the neural net is trained on a set of representative com-
mand sequences of a user, it encodes the knowledge in its structure, by creating
on learning stage connections between the units and assigning weights for them
(Gent and Sheppard, 1992).

The intrusion detection approaches that use the neural nets have been de-
veloped (Debar et al., 1992), (Fox et al., 1990), and (Gent and Sheppard, 1992)
and showed that the neural network-based anomaly detection overcomes the
difficulty of devising the statistical features, and consequently, the problem of
selecting a good subset of the features is irrelevant. They handle the noisy data
quite well and do not depend on statistical assumptions about the nature of the
data.

The drawbacks of the neural net approach are:

• they do not provide explanatory information for detected anomalies
(Debar et al., 1992),

• the net topology and its weights are determined only after considerable
trial and error (Debar et al., 1992),

38

• the command history size is an independent variable in the neural net
design. If it is too low, the net will do poorly, if it is too high, the net will
suffer from irrelevant data (Mounji, 1997).

2.3.7 Instance-Based Learning

The instance-based model (Aha et al., 1991) classifies data according to its re-
lation to a set encountered exemplar instances. It stores historical examples of
user behavior to reference when classifying newly encountered behavioral data.

This model is represented by a set of instances that exemplify the concept.
If a previously unseen case is encountered it is classified according to its rela-
tionships to the stored instances. A common scheme to define the relations is
k-nearest-neighbour classification, in which a new case is classified as the ma-
jority of the k stored instances closest to it. In continuous domains, the Euclidian
distance is a simplest similarity measure.

To apply the instance-based learning on the anomaly detection it is neces-
sary to define a fixed-length vector representation of the data and the concept
of distance in this domain. Cases of the valid user’s normal behavior serve as
labeled instances of multiple classes.

Significant work in this area was done by Lane and Brodley (1997a , 1997b ,
and 1999). They proposed an anomaly detection system approach based on the
instance-based learning. Figure 2.5 shows schematically the system information
flow.

� � � � �

	 � � �

� � � � � � � �
 �

� � � � � � � � �

� � " � � �

$ � �
 � � & � � � � � " � � �

� � � � � �
 � � �

) +)) +)

Figure 2.5 Information flow inside the instance-based anomaly detection system

They use a shell command log as a source of user behavior information. This
information goes through a parser where it is converted into an internal sys-
tem format. Then it is compared with a user profile (stored instances) in the
similarity measurement part that produces the instantaneous similarity mea-
sure stream. This stream is extremely noisy and the classification on its basis
is very difficult. To solve this problem a filter is introduced and it serves as a

39

noise suppressor. After the similarity stream is smoothed it comes into the clas-
sifier where the classification takes place. Finally, the system produces a binary
stream, which is the detector’s estimation of the current state of the input data
(”1” - normal, ”0” - abnormal). Feedback is added to the scheme (Figure 2.5) to
update profiles and thresholds when user behavior changes with time.

As can be seen from above that the authors presented a framework for
instance-based anomaly detection. They claim that it has a relatively short time-
to-alarm. However, other advantages and disadvantages hardly depend on
which method will be chosen for classification. Also this framework was built
using sequential data from a command shell, therefore it cannot be used, as it
is, for modern workstations. Users use GUIs for their work. It means that they
run numerous applications at the same time, they may have background appli-
cations and they may switch between those applications. The events will not be
sequential any more, they overlap each other. Thus, the instance-based model,
described above, cannot be used as it is.

2.4 Limitations of the Existing Approaches

The intrusion detection approaches that have been developed to date basically
may be divided into two types: misuse and anomaly. In this section, we consider
some limitations of these approaches that most intrusion detection systems are
based on; we describe them according to their affiliation to a certain type.

The main assumption of the misuse intrusion detection is that there are at-
tacks that can be precisely encoded in a manner that captures variations of the
activities that exploit the same vulnerability. The primary limitation of this ap-
proach is that it only looks for known weaknesses, and may not be of much use
in detecting unknown future intrusions. It is difficult for such a system to learn
(Kumar, 1995); hence these kinds of systems are unable to recognize attacks that
are not precisely encoded in the system. Misuse detection is harder to automate
since it requires the application of many rules (as in NIDES (Lunt et al., 1989))
or searching for many patterns (as in Shieh and Gligor (1991) or Kumar and
Spafford (1994)). It is extremely difficult to implement automatic pattern learn-
ing; therefore an intrusion pattern database requires constant manual updating.
Moreover, it is almost impossible to perform a proper testing of such systems
due to an insufficient amount of information about the real intrusion cases.

Misuse detection depends on what is being audited. Current auditing
mechanisms do not reveal the input or output data of a program. They catch
only system calls that the application makes. This means that often user-level
calls to read and write functions do not always appear in a one-to-one correspon-
dence in the audit trail because of buffered I/O. Furthermore, the passive meth-
ods of security breaches like wire-tapping cannot be detected directly because
they do not produce a detectable signature (Kumar and Spafford, 1994).

40

This approach also assumes the integrity of the event data. Thus, those at-
tacks that involve spoofing, which produce the same events but from a different
source, cannot be reliably detected.

The main assumption of anomaly intrusion detection is that intrusive ac-
tivity is a subset of anomalous activity. Ideally, the set of anomalous activities
is the same as the set of intrusive activities. Then, flagging all anomalous activ-
ities exactly flags all intrusive activities, resulting in no false positives or false
negatives. However, the existing approaches are not ideal, therefore, an anoma-
lous activity does not always correspond to an intrusion. There are four possible
activities:

1. Intrusive but not anomalous (false negative). Since the activity is not
anomalous, a system fails to detect an intrusion and falsely reports its
absence. This happens mostly because of an imperfection of the used
approaches. Thus, new approaches should be developed or used ones
should be improved.

2. Not intrusive but anomalous (false positives). The activity is not in-
trusive, but because it is anomalous, the system reports it as intrusive.
Since used approaches are not ideal, the intrusive activity is a subset of
anomalous activity; therefore, the intrusion detection system sometimes
falsely reports an intrusion. This means that a used approach does not
fully cover a possible set of normal activity. To correct this, new ap-
proaches should be developed, which catch and encode more diverse
features of systems’ or users’ normal activities.

3. Not intrusive as well as not anomalous (true negatives). The activity is
not intrusive and is not reported as an intrusion.

4. Intrusive and anomalous (true positives). The activity is intrusive and
is reported as such because it is also anomalous.

Sometimes, the anomaly detection tends to be computationally expensive (rel-
atively to misuse detection) because several metrics are often maintained that
need to be updated against every system activity. Finally, the anomaly intrusion
detection systems may be gradually trained to recognize intrusive behavior as
normal in the future.

The intrusion detection systems (misuse and anomaly) so far have been
written for the single environments and have proved difficult to use in other
environments that may have similar policies and concerns. The existing audit
trail formats are dependent on machine architectures, which, in turn, requires
preprocessing in order to ensure the independence of the intrusion detection
system with respect to the underlying layout of audit records. However, prepro-
cessing of the audit data is only a partial solution since the audit data sometimes
contains numerous kinds of events, which are not being used for classifications

41

and must be filtered. Such preprocessing (translation to the unified format) and
filtering require additional computational power that entails some performance
penalty, which may be critical for real-time intrusion detection systems.

There is even a bigger problem since it is not always possible to directly
map all elements in the model of normal or misuse behavior to audit data fields
in the audit data. In this case the audit trail does not provide enough (or detailed
enough) information that is required by the detector to function properly.

Despite of how much research has been done the anomaly and misuse ap-
proaches still exhibit weaknesses that are primarily related to the lack of a com-
plete model of normal and misuse behavior respectively. The completeness for
anomaly detection means that it actually covers all possible instances of nor-
mal behavior. Similarly, for misuse detection it is necessary to build a complete
model of misbehavior.

As it is possible to see from what is said in this section, most shortcomings
of the misuse intrusion detection may not be overcome by improving the misuse
detection methods. These limitations are introduced by a misuse detection defi-
nition. Additionally, a model of intrusive behavior is directly related to a partic-
ular security policy of the organization. As the security policy may change over
time or differ significantly from one organization (or site) to another a model of
misuse behavior must reflect these changes.

Contrary to the misuse intrusion detection, an anomaly detection lacks
precise methods, which distinguish normal from abnormal activities with high
probability, and are able to build a complete model of user behavior. The rea-
son is that commonly used methods do not take into account all aspects of user
behavior.

2.5 Summary of Reviewed Intrusion Detection Methods

In this section we present a summary of reviewed before intrusion detection ap-
proaches. We summarize their advantages and disadvantages in terms of limita-
tions of the intrusion detection approaches discussed in the previous section. We
would like to note that our classification is based on the approaches described
in this chapter and their implementations1. However, it is possible that there
are different implementations of the same approach which may be found with
slightly different characteristics. These differences in characteristics may be a
result of a combination of different methods in an intrusion detection system’s
implementation.

We chose five different characteristics upon which we are going to build
our summary. The summary in presented in Table 2.2.

1 The discussed implementations do not combine different detection techniques. Each of them
is based on a single intrusion detection approach, which gives the possibility to evaluate the
approach itself.

42

Table 2.2 A summary of characteristics of intrusion detection approaches

Intrusion Easy Easy Online Complete- Source
detection to to model ness of the indepen-
approach program manage update model dence

Expert Systems - - - + -
State Transition

Analysis - - - - +
Keystrokes
Monitoring - - - + -

Model-based - - - + +
Colored Petri Nets - - - - +

Statistical + + + - -
Generic Model + + - + +
Data Mining + - - + +
Probabilistic - + + + +

Predictive Patterns
Generation - + + - -

Neural Networks + - - + -
Instance-based

Learning + + - + -

”+” means that the characteristic is specific for this class of classification tech-
niques;
”-” means that the feature is not present in this class of intrusion detection ap-
proaches.

Easy to program. By this we imply how easily a model for normal (misuse) behav-
ior may be built for each of the intrusion detection approaches. In other words,
is it possible to automatically create (without participation of experts) profiles
required by a classifier for a classification with acceptable accuracy.

Easy to manage. This means whether it is easy to manage created models
when they must be updated. For example, for some systems it is extremely dif-
ficult to remove patterns from the profile since they might contain interdepen-
dencies, which are difficult to track, and in some systems (for example, based on
statistical anomaly detection) it is easy to manage the metrics, stored in a profile,
by changing their statistical parameters.

Online model update. By this we imply a system’s ability to efficiently dis-
tinguish normal behavior changes from abnormal learning attempts, and as a
result automatically update a model accordingly to the changes in user behav-
ior or take some preventive steps in the case of the system training attempts.

Completeness of the model. To classify according to this characteristic we
take published performance results of approaches’ implementations and ana-
lyze whether there were reported problems with descriptions of different sce-

43

narios: was a model able to represent all cases/patterns of attack or normal
behavior.

Source independence. This characteristic shows whether an approach is able
to handle data produced by different operating systems or logging facilities.

In Table 2.2. we use ”+” and ”-” to identify whether an approach has a
certain feature or not. If there is a ”+” in a column it means that a feature rep-
resented by the column most likely refers to the advantages of the approach; if
there is a ”-” then lacking of this characteristic may be considered as a disadvan-
tage.

The misuse detection approaches are concentrated in the upper half of the
table and the anomaly detection approaches in the lower half. As it possible to
see from the table that all misuse detection approaches mostly have difficulties
with creation, management, and updating models, whereas for anomaly detec-
tion approaches ”+”s and ”-”s are more or less mixed. This observation provides
additional support to our claims in the summary of limitations for anomaly and
misuse intrusion detection systems provided in the previous section.

3 ARCHITECTURE FOR AN INTRUSION
DETECTION SYSTEM

Here we introduce our architecture of the Hybrid Intrusion Detection System
based on Real-time User Recognition (HIDSUR). We outline its main compo-
nents and show the interactions between them. Later, in the following chapters,
we will concentrate on some particular parts of this architecture describing them
in detail.

3.1 System Architecture

The HIDSUR architecture consists of three main components grouped accord-
ing to their primary functions: a group of host agents, a control center, and a
detection server. Figure 3.1 depicts the information flow between them.

� � � � � �

� � 	 � � 	
 � �

� � � 	 � � �

� � � 	 � �

� � � � � � " � $ % " � " (* " � � , -

. 0 � � 	 2

3 � 2 	

Figure 3.1 Information flow inside HIDSUR

The control center is a special part of the system centralizing all control functions.
It is responsible for the manipulation of host agents, checking the system, i.e.
providing services for identification, integrity verification, and execution con-
trol. Finally, it makes decisions about tasks distribution over the network. The
detection server contains all previously learned knowledge and the system detec-
tion code. It does not provide any network services except making decisions

45

about the nature of incoming events. The host agents is an auditing facility of
the HIDSUR. They are special agents that remain resident in each of the target
network hosts and each of them has the responsibility for local gathering and
initial information processing in one host. It also has the ability to control the
workstation in order to stop an intrusion in progress. There are possibly two
basic ways of a response to an intrusion: to lock the workstation, if an intruder
has physical access to the workstation, and abort the connection if it is a remote
intrusion. However, in the case of remote intrusion, it is more interesting to for-
ward the connection to a ”honeypot” (Spitzner, 2000) and perform some online
investigation before exposing the detection to the intruder.

Figure 3.2 includes a more detailed description of the HIDSUR structure.
In addition to the different structural parts Figure 3.2 shows the main parts of
the above discussed two approaches: anomaly and misuse detection, which in
the HIDSUR work together. Below we describe the components of the structure,
using this logical division into anomaly and misuse subparts of the system.

� � � � �
	 �
 � �

� �
 � �
� � �

� � � �
� � � �
 � �
 �

� � � �
 � �
� � � �
 �

� � !
� � � � # � $

	 � � % � �

� � � & ')) + - /
0 ') ' 2 ' 3 +
5 /) - 7 3 8 : /

; : / 8) : - 8 / >
' / ?

@ : /) - : A

� � � B % �

	 � � � C D
 �E C $ �
 F

� � � B % �
� � � B % �

G $
 �

� � � �
	 � � � C D
 �

5 / H + 3) 8 > ' J
) 8 : / ' / ?

L + M : -)

	 � � % � �
O
 F Q � � �
 $

R
 �
 � � � � �
� � � �
 � �

� � � $ $ % B %
 �

� � � � � � � �
 � �
 �
U WX WY

XZ [
\]W^
_W^

	 � � � F

� % $ ` $
 !
 �
 � � % � � � � F Q � �
 � � $

b � $ � 	 �
 � �

Figure 3.2 HIDSUR

In the following sections we are going to discuss all components of the HIDSUR
architecture (Figure 3.2) grouping them by their primary function.

46

3.1.1 Auditing Facility

Here we discuss the elements of the HIDSUR architecture that have the pri-
mary function of collecting and initially preprocessing information about user
behavior. This is the main functionality of the host agent. It includes: local
agent, event log, data converter, event log, pattern matcher and action templates
database. All host agent software is run with local daemon privileges. It means
that it can not be accessed or tampered with by anyone, unless the workstation
is completely compromised (up to root level). The system detects (or at least is
supposed to) an intrusion if an intruder gains privileges gradually - starting as a
normal user and continuing to upper level of privileges. However, if an intruder
logs in directly into root account the system can not notice this because it does
not maintain profiles for roots1.

Local agent

The local agent is a loadable kernel module that is permanently resident in the
the operating system’s memory. It monitors communications between operating
system and running applications. It also intercepts an internal kernel message
exchange (between kernel’s modules). The captured information includes shell
commands, GUI events, and system calls. After this the local agent has to collect
additional auxiliary information that is required for further processing (but not
directly included in event description), such as parent/child process id, etc.

Event log

Initially, the host agent stores the information locally into the event log, where it
waits for further processing. The event stream stored in the event log covers a
time interval, length of which depends on the user’s activity rate: a more active
user creates more events.

Action templates database

This is a database containing action templates. By templates we imply ”skele-
ton” for each possible action defining a required and possible auxiliary infor-
mation. This information is needed later on to convert a stream of events into
a stream of actions. It consists of the action’s starting and finishing events, re-
quired or allowed events between them, allowed relations, etc.

The action template database is created only once, and after this it is nec-
essary to update it whenever a new action(s) is taken for monitoring. We would
like to note that the nature of the updates is perfunctory, thus updating the
database sometimes would not require much labor. This database is the only
element in the HIDSUR architecture that is operating system dependent. It is
1 It is not possible to create a behavioral model for such users. The first reason is that no one
is supposed to do normal work under this account. Second - on the highest level of privileges it
is possible to have only one workstation/domain/network managing account, therefore several
system administrators usually share the root account.

47

introduced into the architecture to avoid the necessity of the creation of a sepa-
rate profile for each operation system that a user normally uses. The database
contains descriptions of actions for each operating system where monitoring is
performed. When the host agent initializes it determines the type of the op-
erating system and loads locally action templates for this particular operating
system, which minimizes the usage of the workstation’s memory (RAM).

Data converter

It is the data converter part of the host agent, which takes care of forming the
actions from the stream of events. It translates the information about user behav-
ior from the operating system’s dependent events to an independent description
units (actions). It follows the event stream and removes events forming an action
when there exists a substream of events that fulfills the requirements of the ac-
tion. In Chapter 4 we define the structure of information and there we consider
the process of information transformation from events to actions in detail.

The data converter of the host agent saves the actions that satisfy defined
conditions into the action log of the detection server. In other words, scanning
the user event stream it creates a new information layer (action) and substitutes
the original event layer in the stream by highest - activity, which is stored in the
action log. Thus, this part of information generalization is done locally and this
helps to keep the action profile and action log databases of the detection server
smaller. It also makes the amount of data transferred between the host agents
and detection server smaller. In a way this forms a two-layered structure where
the data converter takes events of the original event layer and forms the actions
of the action layer.

The data converter also assigns a security significance coefficient to every
action instance of the action profile database. These coefficients are initially as-
signed by a system administrator and they define an intrusion detection system
sensitivity to usage of certain actions. They are not the main points for decision-
making; however, they are helpful in managing user profiles. For example, if
a new dangerous vulnerability is discovered, the system administrator may in-
crease security significance coefficients for some actions that may be used for the
exploitation of this vulnerability. This makes the intrusion detection system pay
more attention to the usage of these actions. After all workstations’ operating
systems in the network are patched with new software, the coefficients may be
returned to normal.

The data converter keeps event information in a queue until it is able to
use it as part of an action, or when a predefined time has elapsed. The value of
this time trigger is included in the template of each action and taken from the
correspondent database of the detection server, and when it fires (it means that
information inconsistency is detected) a request is sent to the investigation and
report component (most denial-of-service attacks produce inconsistency into the
log file).

48

Action log

Actions come from the data converter in the order it is able to form them, i.e.
in an arbitrary order, thus, there are possible delays. The main objective of the
action log database is to store the actions and keep them in a time order.

3.1.2 Anomaly Detector

The anomaly detector is based on online learning in order to catch, encode, and
then update regularities of user behavior in a knowledge base. It includes sys-
tem and user profiles, classifier, and data and profile analyzers.

User profiles

These profiles contain a model of normal behavior. The model is divided be-
tween the user profile and system profile databases depending on the context
of action information. The user profile database includes information that is
based on previous behavior of the user. This information is presented as pat-
terns of user behavior. They describe what a certain user typically does with his
account/workstation.

System profiles

The system profile database contains information, which is based on the sys-
tem’s point of view, i.e. what are the notions of the system about the earlier be-
havior of the user. In other words, the user profile database contains user level
behavior patterns and the system profile database system level patterns, corre-
spondingly. A system profile is created relatively to a certain user and it shows
the system’s usual response to his actions. It may be error messages, amount of
the system’s resources allocated to a process requested by the user, etc. In other
words this profile shows what system resources the user normally requests and
how he uses them.

The system and user profiles are not independent. They work coopera-
tively. They may be considered as high and low level control. In order to mini-
mize the false alarm rate, the system does not report the first abnormal event it
encounters. A sequence of abnormal events has to happen in order for it to be
reported. It regulates by the coefficient of reliability change and the length of the
sequence is determined by how big the deviation is between profiled behavior
and this sequence. If this sequence of events is distributed over multiple ses-
sions, it causes very small deviations each time and it may not be detected. Also
we use a ”closed system” assumption, i.e. the system has examples of ”good”
behavior on the learning stage. What if there is also bad behavior? It means that
it is not going to be detected later. These are two problems that the system pro-
file is aimed to solve. Controlling manipulations of resources and objects in an
operating system, it is possible to monitor a number of errors and manipulations
when accessing security sensitive resources.

49

Classifier

The classifier takes the stream of the actions included in the action log database
as an input and classifies the actions based on the knowledge included in the
user profile database of the detection server. The classifier uses a temporal-
probabilistic tree to describe a certain user behavior (as described in Chapter
6). It also uses information of the system profile database.

The classifier calculates according to the tree search algorithm, the coeffi-
cient of reliability for every action (as described in Chapter 6). Thus, the out-
put of the classifier is a stream of actions where each action has assigned some
change to the coefficient of reliability, which shows the probability that the ac-
tion is originated by the user. In other words it shows how well each action fits
into the tree or it is a probability that the specific action belongs to a specific user.

Data analyzer

To avoid the appearance of possible mistakes discussed in Section 1.3 we intro-
duce the second level of user data analysis in our model. The data analyzer is
developed to fill this role by analyzing coefficients of reliability. If it does not find
any suspicions, it reports the action as normal, but if the coefficient of reliability
after classifications of some set of actions goes relatively small, the data analyzer
tries to find out whether the small value is a result of abnormal behavior or is
it probable that the behavior of the user is undergoing a normal change (more
detailed description of the algorithm can be found in Chapter 6). If the situation
is classified as an abnormal behavior, then the data analyzer reports to the in-
vestigation and report component of the control center. If the situation is classified
as a normal behavior change of the user, then the data analyzer updates the user
and the system profile databases and returns the actions to be reclassified and
the action log updated. If a user was caught doing malicious actions, the system
may reassign the security significance coefficients to these actions for this user.
Therefore, it will react faster if the user tries to repeat them in the future.

Profile analyzer

The profile analyzer is intended to expose intellectual attacks. It works asyn-
chronously from the other components. When the system has spare CPU time
it activates and analyzes every user profile. Making tree traversal, it calculates
the coefficient of reliability for every node in the tree and then for the whole
tree. When the coefficient is too low or it grows time after time, then the ana-
lyzer makes some actions on the tree. It may split more general patterns into
several more specific ones, etc. (the detailed description of algorithms may be
found in Chapter 7). It may manipulate the tree parameters to supervise tree
changes in the future. If an intellectual attack is detected, the analyzer reports to
the investigation and report component of the control center.

50

3.1.3 Misuse Detector

The misuse detection component co-operates with the anomaly detection compo-
nent and is intended to support anomaly intrusion detection (in the Figure 3.2
the parts that belong to the misuse detection component are drawn with a bro-
ken line). Since the anomaly detection needs to wait to check for consistency and
to have several levels of information to analyze which may take a significant
amount of time before an intrusion is detected (time-to-detection), the misuse
detection part is supplemented to make real-time detection.

If the investigation and report component of the control center decides that
the current anomaly case is not a false alarm, it has an intrusive sequence of
actions.

Pattern generator

This component is devised for automatic pattern generation. It takes a stream of
abnormal events and creates a signature (pattern of abnormality), which can be
detected later on in real-time.

Intrusion pattern database

All signatures created by the pattern generator are put into the intrusion pat-
tern database. This database may be easily viewed and managed by a system
administrator. Additional, already known intrusion patterns may be uploaded
into the database and used for fast misuse detection.

Pattern matcher

The pattern matcher of the host agent implements one of the pattern matching
algorithms (for example, Colored Petri Nets (Kumar, 1995)2). It takes actions
from the data converter and matches them against the misuse patterns of the
intrusion pattern database. If it finds a pattern match it reports an attack to the
investigation and report component.

3.1.4 Control and Report

This part of the HIDSUR architecture is designed to provide all necessary infor-
mation about a system’s functionality and the tools required to manage it for the
system administrators.

Investigation and report

Since in case of alarm the system has to provide enough explanatory information
to a system administrator, the investigation and report component is designed
to investigate and report cases of abnormal behavior. It is intended to expose the
real sources of intrusions. For example, since more than 70% of intruders are in-
siders 3 (Power, 2002), it may use profile cross-validation to find an intruder (try
2 Colored Petri Net usage was described in Section 2.2.5.
3 FBI identifies ”insider threat” as one of the three most dangerous trends since most dam-
age is done by insiders (FBI WWW page). The Computer Security Institute’s 1998 Computer

51

suspicious stream against profiles of other users and observe if the coefficients
of reliability are higher for them than for the current user). The second goal of
this component is to create a detailed report to the administrator.

Monitoring and control

This component is created to give an interface to a system administrator. It pro-
vides actual tools to view and manage processes inside of the system. It consists
of a number of visualization and management tools that allow a person to view
profiles and their transactions, manage profiles, manage system’s constants and
parameters, investigate and react to reported cases of abnormal behavior, man-
age intrusion signatures, etc.

System code database

All system code that is crucial for the detection process is stored in the code
database of the detection server. System components such as local agents, data
converters, pattern matchers, and classifiers, etc. use routines from this database.
A centralized storage of the code gives certain advantages. It creates the possi-
bility to store the code in read-only memory (such as read-only disk partition)
and protect it from possible misuse tampering. Also the process of system code
integrity verification becomes easier in this way. Since the code storage is cen-
tralized it gives the opportunity to issue certificates of authority for the routines
transferred over the network. These certificates are used for verification by the
receiver that the obtained code is authentic and integral.

If the system administrator recompiles some system routine, the control
center issues a message that the code database was updated and all the other
components that use this database become aware of the need to update them-
selves dynamically. Thus, it allows for a dynamic reconfiguration and system
code change without restarting it.

3.2 Networked Architecture Components and their Interactions

In this section we discuss the system components location and their operation
over the local area network. Figure 3.3 shows one possible task division over a
network.

The control center that centralizes all the control functions, also makes all
decisions about task distribution over the network. The control center includes
three modules, two of which are operating synchronously: the investigation and
report and the monitoring and control component. These modules are connected
to the network through the network interface, which provides authentication and
encryption between the system components. The detection server, which includes
all the centralized databases, is also connected to the local area network by the
network interface component.

Crime Survey (conducted jointly with the FBI) reported the average cost of an outsider (hacker)
penetration at $56,000, while the average insider attack costs a company $2.7 million.

52

�
� �

�
�

��

� �
�

� �
	

�

�

� � � �
�

� � � � �
	 � �� � �

�
� � �

� � � �
� � � �

� �

� � � �
� �

� � �
�

� � �

 � � �
� � �

�
� � �

� � �
�

� � �

�
� � �

� 	
� �

� � � �
� �

�
� % � � � �

& � � � � �
	

�
� � � �� � �

�
� � � � � �

�
� �' �

�
�

�
� � � � � � (� �

* �
 	 � # � � 	 � �
�

� � � �

� �
�

� � � � � �
�

� �
�

	
 �

� � (� � �
� � 	 /�

� � � 	 � �
1 � 2 � �

�

4 � � �
� � �

�
5

4 � � �
� � �

�
6

4 � � �
� � �

�
�

7 7 7

' 	
�

	 9 	 � � �

Figure 3.3 Networked HIDSUR components

When an operating system on a network workstation is being started the initia-
tor program is being loaded from the detection server (system code database)
and executed on a local workstation. It is a very small program aimed to cre-
ate an environment for downloading the host agent for this workstation from the
system code database of the detection server. Initially, the initiator determines
the type of operating system and checks the system’s environment. After this it
establishes an encrypted connection with the detection server through the network
interface and reports the gathered information. According to the received infor-
mation the detection server uploads the host agent’s precompiled code for the right
type of operating system and reports to the control center that a new host agent
has been created. The monitoring and control part of the control center is waiting
for the host agent to finish its initialization. If confirmation of initialization is not
received from the created host agent, then the monitoring and control component
reports the agent’s failure for further investigation.

After being uploaded the host agent installs itself into the operating sys-
tem’s memory: it creates sensors for gathering the required information, initial-
izes the local OS activity monitor and establishes control over OS software. The
latter is required when an intrusion is detected, to enable the control center to ma-
nipulate the workstation (close connection, lock it, etc.) by sending commands
to the host agent and thus, separate the intrusion. After successfully completing
all initialization tasks the host agent establishes a command channel with the con-

53

trol center and data channel with the detection server. The latter is used for the
transfer of user activity information between the agent and the server. Through
the former, the command center may poll agents to see whether they are alive. If
the agent does not respond the control center becomes suspicious and initiates
an investigation. Also through the command channel the control center receives
information about the local OS load. Finally, the host agent establishes an event
cache in case an essential part of HIDSUR is under denial-of-service attack or
had some failures and needs some time to recover. The cache does not allow the
information to be lost, while the recovering process takes place.

The detection server processes information about the user’s actions, classi-
fies it and reports the results to the control center. Getting information about
resource usage, the control center makes decisions about tasks distribution over
the network. If the detection server is busy processing all the incoming infor-
mation, the control center checks the workstations’ resource load. Then it issues
the command and the corresponded host agent begins to perform the initial pre-
processing and misuse pattern matching (as shown in Figure 3.2). Patterns and
required system routines are provided by the system code database, through the
network interface. Therefore, one important task of the control center is dynamic
reallocation of the network’s resources.

3.3 Summary

In this chapter we presented a hybrid architecture for intrusion detection. The
architecture combines the two approaches, the anomaly and misuse intrusion
detection, trying to take benefit of their advantages through their cooperation. It
also employs the network agents (Zamboni et al., 1998) to distribute detection
tasks over the network. The anomaly detector creates a profile to recognize a
certain user in the future. The misuse detector offers fast recognition of misuse
actions that were exposed in the past.

The presented system introduces features of artificial intelligence (i.e. on-
line learning) in intrusion detection and creates the possibility to benefit from
the advantages of the anomaly and misuse intrusion detection. It:

• combines anomaly and misuse detection in a way that anomaly detec-
tion provides detection of unknown attacks by deep analysis of user
actions and misuse detection minimizes the detection time for known
attacks,

• survives denial-of-service attacks by keeping information in local cache
in case of connection loss and being able to transmit it over a network
later when the connection restored,

• allows task distribution over the local network to avoid overloads that
affect the detection speed.

54

The following chapters we devoted to the different HIDSUR components de-
scribing their functionality in more detail, outline different problems and pro-
vide solutions. Therefore, below we:

• provide formal definitions and describe the way the HIDSUR manages
user information/profiles (Chapter 4),

• explore different methods for user profiling employed in the architec-
ture (Chapter 5 and 6),

• discuss a HIDSUR implementation issues and performance of the pro-
totype (Chapter 8 and 9) and, finally

• show how the HIDSUR employs a misuse detection (Appendix 1).

4 TEMPORAL RELATION BETWEEN EVENTS

Anomaly intrusion detection systems are based on the detection of anomalous
behavior or the abnormal use of the computer resources (Kumar, 1995). In most
works the classification is based on the sequence of events in time (i.e. in which
order they follow each other), and time relations between events are not taken
into account at all, or only very little attention is given to them (for example in
Lane and Brodley (1999b) , Lee at al. (1999b) , Lunt at al. (1992) , and Teng at
al. (1990)). Sometimes time relations play a crucial role in attempting to classify
events, i.e. determining whether an event is part of anomalous or normal be-
havior. For instance, if an account has been compromised by an IP spoof attack
(Heberlein and Bishop, 1998), it is easier to recognize it relying on the time rela-
tions between events, since the misuse activity appears as a continuation of the
normal behavior within a single session. Another aspect that has not received
enough attention is the natural change of the users’ normal behavior, when the
user takes new applications in his/her use or when his/her topic of interest
changes. Therefore, some of the old data does not accurately reflect the user’s
behavior any more and should be removed from the training set to handle this
concept drift (Schlimmer, 1987).

This chapter establishes a foundation for our research. It provides all nec-
essary definitions and describes a way how the user information is handled in
the HIDSUR. Here we develop a representation of knowledge about the user
behavior as temporal-probabilistic networks, which are later used to analyze
the behavior patterns and make decisions with them. This representation uses
Allen’s temporal interval algebra (Allen, 1983) to describe the knowledge of
temporal relations between events. We define the notion of layer and event rep-
resentation on each layer in Section 4.1, distance consistency between events in
Section 4.2, and coefficient of reliability in Section 4.3. We discuss how to use our
representation in order to help in handling the concept drift and in reducing the
set of training samples by removing old data which is not used for classification
any more.

56

4.1 Basic Concepts

Traditionally, in anomaly detection, user profiles have been built using differ-
ent characteristics, such as consumed resources, command count, typing rate,
command sequences, etc. In these cases information analysis has been made us-
ing system log files, command traces, and audit trails (Lane and Brodley, 1999),
(Lee et al., 1999b). In our approach we store and analyze information taking
its context as a basis. We present information as temporal intervals and apply
Allen’s algebra (Allen, 1983) to discover temporal relationships between tem-
poral intervals (Chen, 1988) and to store them for further classification.

The main goal of this chapter is to establish a basement for the further work
by providing a universal description for the representation of user behavior and
its regularities. There are two main objectives that we are trying to reach by
developing the representation. The first one is to create a source (operating sys-
tem and auditing facility) independent description of a user behavioral model.
The second objective is to cover as fully as possible different aspects of user be-
havior. Here we define all necessary primitives that later will be used for these
purposes.

The term event is widely used within the temporal database area giving it
different meanings. For an operating system’s point of view it is a single line
in the audit trail; for example it can be a request for a connection establishment
between the server and the user workstation. On the other hand, from the user
point of view it is a much more complicated procedure - we call it action. For
example - checking mail, text editing, etc. For the operating system each of these
actions includes several events. Checking mail, for instance, includes establishing
a connection, user authentication, commands execution, data transfer, and closing the
connection.

We define the event as a single indivisible occurrence on the time axis. As can
be seen from this definition the type of a possible occurrence is not defined.
Therefore, we may conclude that the event meaning may depend on the source
of the incoming information. In other words, applying the concept of event
on different types of source information we are going to have different results.
For example, for a GUI log an event may be represented by a GUI message,
for network packets it may be a header of a single packet, etc. Applying our
definition to the examples we can conclude that in these cases a single record in
a log file represents an event.

In order to describe the information abstraction, we define a notion of a
layer that reflects different levels of the information generalization. The higher
the layer the more general and more descriptive the notions describing the user
behavior are. Thus, on the highest layer we describe the user behavior using the
most general way, not depending on the source, where the information comes
from.

57

We use an underlying assumption that a person’s interaction with a com-
puter consists of different activities that he performs in order to achieve his goals.
These activities consist of actions. An action is a sequence of operations the user
performs during the activity. Each action causes a series of events in the op-
erating system. Each user performs similar activities which are expressed by
repeating sets of actions and which differ on a per-user basis. This gives the
possibility to differentiate an intruder from a valid user.

Layer is a concept that actually is a generalization level of relationships
between occurrences, each of which represents a single event on a different level
of generalization. At the lowest instant layer, all occurrences are represented as
time points (instants) on an underlying time axis. A single occurrence on this
layer is called an event. It is the equivalent to a single line in the audit trail.

A single instant, relatively to a particular user, describes the event. Infor-
mation on this layer is source-dependent (for example, it depends on the operat-
ing system and/or logging facility used to collect it). Thus, the same occurrences
may be defined differently on this layer. We add to this description the name of
the event with an integer index that defines the number of the event relative to
the user and also a place from which the user caused this event. Also, the last
field is reserved for the event’s particular information, which differs according
to the type of event: it may be the name of the user, the name of the computer,
an error code, etc. In other words, it is auxiliary information. Thus the whole
description of the event is as follows:

Event : << Name >, < Index >, < Place >, < Absolute time >,

< other information >>
(4.1)

One example can be a mail check using POP3 protocol:

<< Popper >, < 2364 >, < computer name >, < Jan 15 16 : 54 : 54 >,

< user name, 0 0 88 90232 >> .
(4.2)

On the interval or action layer the happenings (i.e. actions) with their relations
are described. The action is considered as a temporal interval, as for example:
LOGIN − LOGOUT .

A relation (Erel) defines a temporal relation between two events as one of
Allen’s point temporal relations (Allen, 1983). Considering the following model
of time: time is linear, time points can be identified with the rationales under the
usual ordering <. The difference of any two-time points is likewise a rational
number (Kautz and Ladkin, 1991). There are three basic relations that are used
to represent relations between events (temporal points): ” < ” − ”less” relation,
” = ” − ”equal” relation, and ” > ” − ”greater” relation.

58

Action : << Eventi >, < Erel >, < Eventj >, < Beginning >,

< Length >>,where Erel ∈ {<, =, >}
(4.3)

The most complicated is the activity layer, which is represented by actions (tem-
poral intervals or moments) and relations between them, because the actions
are extended in time, different actions may overlap in time and interact. One
LOGIN − LOGOUT temporal interval, for instance, includes dozens of mail
check intervals. A single occurrence on this layer we call an activity. Relation be-
tween two actions Arel (temporal intervals) is defined as one of Allen’s interval
temporal relations (Allen, 1983).

Activity : << Actioni >, < Arel1 > < Actionj >>,
<< Actionk >, < Arel2 > < Actionl >>,

...
<< Actions >, < ArelN >, < Actiont >>.

(4.4)

where: Areln ∈ {before, after, meets, met − by, during, includes, overlap,

overlapped − by, starts, started − by, finishes, finished − by, equals}, and
i = 1, ..., N, N ≥ 1.

According to Allen and Ferguson (1994):

1. given any interval, there exists another interval related to it by each of
the thirteen relationships;

2. the relationships are mutually exclusive;

3. the relations have a transitive behavior, e.g. if A is ”before” B, and B

”meets” C then A is ”before” C.

To visualize the layer structure we provide a simple example user session (Fig-
ure 4.1). This example session includes several mail sessions and file editions.
On the activity layer (lowest part of the picture) it is possible to see what is hap-
pening from the user point of view. He/she has some tasks to perform: to edit
some files and check for new mail.

To accomplish these tasks he/she does the following sequence of steps:

• Logs in into the computer.

• Runs mail client program. When initialized, the program establishes the
mail session with the server and downloads the user’s email messages.
After this, the program automatically checks for new mail after a certain
time interval and downloads it if new mail has arrived. Mail session
length depends on the size of the incoming mail.

59

� � � � � �
� �
 �

� � � � � �
� �
 � � �

� �
 �

� � � � �

� � � �

�
 �
� � � � �

� � � �

� �
 �

� � � � �

� � � �

� �

� � � �

� � � � � �

� � � � �
� � � �

� � � � � �

� � � � �
� � � �

� � � � �

� �

� � � �

� � � � �

� �
 �

� � � � �

� � � �

�
 �
� � � � �

� � � �

�
 �
� � � � �

� � � �

" # $ &

" # $ &

" # $ &

') + , - / ') +) 1 3

� �
 �

� � � � �

� � � �

�
 �
� � � � �

� � � �

� � � � � � � � � �
 � � � � � � � � � �
 � � � � � � � � � �
 � � � � � � � � � �

� �

� � � �

4 � � � �

� � � � �
� � � �

4 � � � �

� �
 � � � � � � � � � �

� 4 � � � �

') + , - / ') +) 1 3

� � � � � � � � � �
 � � � � � � � � � �
 � � � � � � � � � �
 � � � � � � � � � �

� �
 � � � � � � � � � �

� 4 � � � �

� �

� � � �

� � � �
 �

� � � � �
� � � �

� � � �
 �

� �
 � � � � � � � �
 �

� �
 � � � � � � � �
 �

Figure 4.1 Layer structure of a simple user session: the upper layer is the event layer, in
the middle is the action layer, and the lower is the activity layer

• Runs text editor and edits two files.

These steps are seen on the action layer (in the middle of Figure 4.1). On the
event layer (upper layer of Figure 4.1) we have shown how the operating system
sees and reacts to the user actions. All events come as a stream:

• To allow the user to login, the operating system has to spawn several
processes (such as login, shell, etc.) and allocate the required resources
for these processes.

• To run a mail client, the user requests the operating system to execute a
certain program.

• To begin the mail session, the operating system has to accomplish a
three-step ”handshake” with the server and send several commands to
it.

• To close the mail session, the operating system has to close the connec-
tion with server.

• To run a text editor the user requests the operating system to execute
some program stored on a disk.

• To open a file the user requests access to an object. To allow this, the
operating system has to check user privileges.

60

• To close the file, the user modifies the object on the disk. The operating
system has to check whether he has sufficient privileges to do this.

• To close the program or log out, the operating system closes the user
applications and related system processes and frees any unneeded re-
sources.

To demonstrate how to use the presented in this section notations we give an
example how a user session, outlined by Figure 4.1, would be described1. The
event layer is presented below. Each numbered part started by an integer num-
ber which corresponds to a single event. For example, the first line describes
a login event. Each event contains fields as described at the beginning of this
section (Equation 4.1). The first field shows the type of event. The second one
is an index number of a sequence. Events that are related to the same sequence
are identified by the same index number. After this it is possible to see when the
login happened and who was logged in. The rest of the events are described in
the same manner. We assume that a POP3 protocol is used for a mail exchange.

1, << login >,< 123 >,< workstation name >, < Jan 15 08 : 05 : 04 >,

< user name >>

2, << run mail client >,<>, < 124 >,< Jan 15 08 : 10 : 32 >,< user name >>

3, << pop3 begin >, < 125 >, < server name >, < Jan 15 08 : 10 : 40 >,

< user name, 0 0 38 90232 >>

4, << pop3 end >,< 125 >, <>,< Jan 15 08 : 11 : 25 >>

5, << pop3 begin >, < 126 >, < server name >, < Jan 15 08 : 20 : 40 >,

< user name, 0 0 26 110902 >>

6, << run text editor >, < 127 >,<>, < Jan 15 08 : 21 : 22 >,< user name >>

7, << pop3 end >,< 126 >, <>,< Jan 15 08 : 21 : 55 >>

8, << open file >, < 128 >,<>, < Jan 15 08 : 28 : 46 >,

< user name, ”1.doc” >>

9, << close file >, < 128 >,<>, < Jan 15 09 : 27 : 25 >>

10, << open file >, < 129 >,<>, < Jan 15 09 : 33 : 28 >,

< user name, ”2.doc” >>

11, << pop3 begin >,< 130 >,< server name >, < Jan 15 09 : 36 : 41 >,

< user name, 0 0 3 8462 >>

12, << pop3 end >, < 130 >,<>, < Jan 15 09 : 37 : 03 >>

13, << close file >,< 129 >,<>, < Jan 15 10 : 09 : 25 >>

14, << close text editor >, < 127 >, <>,< Jan 15 10 : 09 : 43 >>

15, << pop3 begin >,< 131 >,< server name >, < Jan 15 10 : 36 : 11 >,

< user name, 0 0 2 7826 >

16, << pop3 end >, < 131 >,<>, < Jan 15 10 : 36 : 23 >>

1 This is a symbolical example. It is provided to demonstrate the idea presented in this section.
Some events, such as user authorization, data transfer, etc. for mail session, are omitted for
clarity and compactness purposes.

61

17, << close mail client >,< 124 >, <>,< Jan 15 10 : 59 : 34 >>

18, << logout >, < 123 >,<>, < Jan 15 11 : 07 : 23 >>

After obtaining the events (which belong to the event layer) from a local agent, a
data converter of a host agent goes through the log file and constructs temporal
intervals. By doing this it generalizes the information about user behavior up
to the action layer. Below we continue the example and show the action layer
described by the relational notation2. We would like to note that the audit log
file that describes the event layer contains information related to many users
and processes, but the information on the action layer is related to a single user
(the system keeps a separate action log for each user), therefore we do not need
to keep user identification any more.

Equation 4.3 defines the fields of each action. Each line started by an action
name (they are marked with bold font) describes an action. The description
contains the starting and finishing events, the relation that identifies which of
them is the starting, time when the starting event occurs, and a temporal length
between the events.

login session, 1 :<< login >, < ” < ” >, < logout >, < 0 >,< 10939000 >>

mail client, 2 :<< run mail client >, < ” < ” >,< close mail client >,

< 328000 >,< 10142000 >>

mail check, 3 :<< pop3 begin >, < ” < ” >,< pop3 end >, < 336000 >,

< 55000 >>

mail check, 4 :<< pop3 begin >, < ” < ” >,< pop3 end >, < 936000 >,

< 75000 >>

text editor, 5 :<< run text editor >,< ” < ” >,< close text editor >,

< 978000 >,< 6503000 >

access object, 6 :<< open file >,< ” < ” >,< close file >, < 1422000 >,

< 3519000 >>

access object, 7 :<< open file >,< ” < ” >,< close file >, < 5304000 >,

< 2157000 >>

mail check, 8 :<< pop3 begin >, < ” < ” >,< pop3 end >, < 5497000 >,

< 22000 >>

mail check, 9 :<< pop3 begin >, < ” < ” >,< pop3 end >, < 9067000 >,

< 12000 >>

After the action layer is constructed information is independent from the place
of its collection and the tool used for this. However, user activities still differ
based on different program usage for the same goal. For example, if a user wants
to check emails (activity ”checking email”) he can use the mail client, which
downloads them to a user workstation from a mail server using, for example, the

2 In our prototype, described in Chapter 8, time was measured in milliseconds starting from
the first event in the current log file.

62

POP3 protocol. The mail client may use IMAP protocol, which slightly changes
the sequence of actions in the activity. User may also establish a connection to
the mail server and read mail without downloading it. In this case the sequence
of actions would look completely different. Thus, the third layer is used to con-
nect the used programs with user goals. In other words, it is used for abstraction
from the ”what is the user actually doing” to the ”what goals he/she is trying
to achieve”. Being able to abstract the information about the user behavior) it is
possible to discover patterns in the user behavior by looking at ”how the user is
normally achieving his/her goals”. We are going to concentrate on the pattern
discovery and their usage in Chapters 5 and 6.

If we consider our example we can notice (Figure 4.1) that the whole user
session consists of three activities. One of them is denoted by login − logout

interval, which includes all the other user actions:

user session: << login session, 1 >,< includes >, < mail client, 2 >>

<< login session, 1 >,< includes >, < mail check, 3, 4, 8, 9 >>

<< login session, 1 >,< includes >, < text editor, 5 >>

<< login session, 1 >,< includes >, < access object, 6, 7 >>

Nowadays it often happens that the user uses his computer without logging out
for many days. Therefore, the user session activity has a number of subactivities,
which are separated by inactivity intervals, and they represent actual sessions
(for example one per day). Therefore, sometimes it may not be reasonable to
consider a user session as a separate activity. If a system is implemented in a
way that a session is not strictly denoted by login and logout actions a classi-
fier of such system is able to automatically discover and use patterns in these
subactivities. Below there are two other activities from the Figure 4.1.

cheking email: << mail client, 2 >,< includes >, < mail check, 3, 4, 8, 9 >>

<< mail check, 3 >,< before >, < mail check, 4 >>

<< mail check, 4 >,< before >, < mail check, 8 >>

<< mail check, 8 >,< before >, < mail check, 9 >>

editing text: << text editor, 5 >,< includes >, < access object, 6, 7 >>

<< access object, 6 >,< before >,< access object, 7 >>

These three layers are the way by which systems classify certain patterns of
change. No one is more correct than the other, although some may be more in-
formative for certain circumstances (Allen and Ferguson, 1994). They are aimed
to manage incoming information from multiple sources. For example, if the
system detects that a WWW browser is active and it exchanges information us-
ing HTTP protocol then it may conclude that the user is browsing WWW pages
on the Internet. If the system observes network packet headers it may come to
the same conclusion when it detects connection establishment between the user
workstation and some server on port 80, followed by an information exchange.

63

It may come to the same conclusion when observing some sequence of
system messages, between different modules of an operating system. Therefore,
our point is - by monitoring different sources (sequences of events) it is possible
to come to the same conclusions or, in other words, build a string of user activi-
ties, which are source and platform independent, and layer structure is aimed to
make this transformation from the event to the activity layer, creating the possi-
bility to combine multiple strings from different sources. Moreover, wide usage
of I/O caching introduced some uncertainty in determining exact time points
for certain events. System read and write operations may be delayed and appear
later in system logs than the user actually performed them. Getting confirma-
tion from different sources the system is able to reason about the actual time the
user has requested a certain operation3.

4.2 Consistency of Relations

One group of attacks takes advantage of the ability to forge (or ”spoof”) an IP
address, which is sent along with every IP packet. This makes it possible for a
user to pretend that he/she is his neighbor when sending packets to a server.
While he/she will not see any transferred data of his neighbor, he is still able
to take advantage of the situation. For example, he can pretend to be his neigh-
bor on a command channel and ask the server to open a second channel to his
own address. He still does not see any data of the first channel, but the second
channel is wide open for him to exploit.

The situation above creates an inconsistency in the log files, which can be
checked without expending many resources. There exists at least two different
kinds of consistency:

1. information consistency which requires that every action has to begin with
some event and end with a corresponding one, and

2. distance consistency defines the temporal conditions for distances be-
tween actions taking into account spatial places (time zones) these ac-
tions were issued from. It is used to make sure that, when we consider
actions as temporal intervals, there is a temporal distance t for every pair
of actions and it has to be consistent with the temporal distance between
spatial places these actions were issued from.

Checking for the information consistency is a trivial task and so here we concen-
trate on the distance consistency. We base the distance consistency evaluation
between two actions on the IP addresses (i.e. approximate spatial places) of the
source packets of the actions.

We introduce three notions: temporal distance between actions, temporal dis-
tance between places, and coefficient of mobility.
3 Since we are using a user-oriented approach we are interesting in time when a user has
requested a certain action not when it actually has been performed by an operating system.

64

Relation Arel is a relation (one of thirteen presented by Equation 4.4) be-
tween two actions Actioni and Actionj . It is characterized by a temporal dis-
tance between these actions. Thus, the relation itself is a qualitative parameter
that describes what kind of relation it is, and the temporal distance is a quan-
titative parameter that shows how strong the relation is or how much of it is
possible to find between two current actions.

What is a temporal distance in context of user behavior expressed by a se-
quence of actions? Below we consider all the possible relations between actions
and define a notion of temporal distance for them. There are thirteen possible
relationships between two actions (Allen, 1983). In our approach we are not
using all of them. Since we have qualitative temporal characteristics we may
define several basic relations, with which different temporal parameters produce
all possible relations.

We define two relations as basic ones: ”before” and ”during”. Figure 4.2
shows them in temporal axis.

� � � � �
 � � � �

� � � �
� �

� �

� � � � � � � � � �

�
� � � � �

Figure 4.2 Basic relations ”before” and ”during”

Below we define temporal distance t for basic relations. Let there exist two ac-
tions A1 and A2 described as:
A1 :<< A1begin >, < ” < ” >, < A1end >, < A1start >, < A1length >> and
A2 :<< A2begin >, < ” < ” >, < A2end >, < A2start >, < A2length >>.
Then the temporal distance for each basic relation is calculated as shown by
Equations 4.5 and 4.6.

∀ A1 before A2, t = td(A1 before A2) = A2begin − A1end (4.5)

If td(A1 before A2) = 0 then we have the case when A1 meets A2. If td(A1 before

A2) < 0 in terms of Allen’s temporal relations we may say that A1 overlaps A2.

∀ A1 during A2, t = td(A1 during A2) = A2begin − A1begin (4.6)

As it is possible to see from Figure 4.2 a position of the interval A1 relatively to
A2 is defined by t′ and t′′. If t′ = 0 then this basic relation forms A1 starts A2

relation. In case when t′′ = 0 we have A1 finishes A2. When both t′ = 0 and
t′′ = 0 then A1 equals A2. For our purposes we do not need to calculate and
store t′′. Since we have a relation Arel, t′ and A1 length we are always able to

65

reconstruct t′′ when we need it. That is why we defined the temporal distance
for a ”during” relation as t′.

As we can see from Table 4.1 our two basic relations cover all seven direct
Allen’s relations4. It is always possible to revert from our basic relations to the
13 Allen’s relations knowing the temporal lengths of the actions and a basic
relationship that connects them. The basic relations were introduced to simplify
the representation of relations between the actions and to avoid redundancy in
the implementation.

Table 4.1 Correspondence between Allen’s and our basic relations

Basic relation Value of t Allen’s relation

A1 before A2 > 0 A1 before A2
A1 before A2 = 0 A1 meets A2
A1 before A2 < 0 A1 overlaps A2

A1 during A2 > 0 A1 finishes A2 or A1 includes A2 *
A1 during A2 = 0 A1 starts A2 or A1 equals A2 *

* Depends on t′′, which may be always calculated knowing t′ and temporal
lengths of the A1 and A2.

Temporal distance between two places td(placei, placej) is the minimal time needed
by any user to change place from the first place to the second one. For simplic-
ity we include a description of a user to each profile, a matrix, which defines
these minimal times between different time zones. In this thesis we define them
as: department, university, city, country, and world. The choice of time zone
depends on the home network topology and a security policy. The implementa-
tion of this mechanism is relatively simple. It is necessary to identify a range of
IP addresses for the home network. Then the system will automatically analyze
the IP address during every new login. Making the DNS address lookup it will
retrieve all available information including the name and address of the ISP or
the organization that owns the IP block. According to the address it is possible
to identify a time zone of a new login.

The diagonal elements of the matrix (Table 4.2) - td(time zonei, time zonei)

define the minimum time needed to log from different IP address within the
same time zone. This time depends on:

• the local physical network structure which sets constraints on every user
of the network and

• the user related characteristics of the IP address change, as for example
how the user moves from one IP address to anther one.

4 Six reverse relations we do not take into account since it is possible to change the order of
actions.

66

Table 4.2 Minimal time required to move between time zones

Time zone 1 ... Time zone n

Time zone 1 td(time zone1, time zone1) ... td(time zone1, time zonen)
...

Time zone n td(time zonen, time zone1) ... td(time zonen, time zonen)

The coefficient of mobility shows the probability that the next session (i.e. login) of
a user will occur from a different IP address than the previous one. The profile of
each user contains a matrix (Table 4.3) of coefficients p(time zonei, time zonej),
which are statistically created and constantly updated for every user. The di-
agonal elements of the coefficient matrix p(time zonei, time zonei) define the
probabilities of changing IP addresses within the same time zone and the non-
diagonal elements p(time zonei, time zonej) define the probabilities of chang-
ing IP addresses between two time zones.

Table 4.3 Probabilities of moving between time zones

Time zone 1 ... Time zone n

Time zone 1 p(time zone1, time zone1) ... p(time zone1, time zonen)
...

Time zone n p(time zonen, time zone1) ... p(time zonen, time zonen)

The coefficient mobility matrix is mostly defined by each particular user behav-
ior. Consider, for instance, a simple university example:

• A university researcher participates in conferences around the world
and he uses his/her account occasionally from different countries and
continents.

• A system engineer does not travel so much around the world, but he
maintains the network and the computers of the department staff using
his account from many different computers in the department.

• A department secretary maintains a secure student’s credit unit database
using his computer mostly from one location - his/her office.

Let the temporal distance between two events be:

td(eventi, eventj) = |eventi − eventj| (4.7)

The relation between two events i and j is distance consistent if:

∀(eventi �= eventj), ∃td(eventi, eventj) ≥ td(time zonei, time zonej) (4.8)

67

Let the temporal distance between two actions be:

td(actioni, actionj) = |action beginj − action begini| (4.9)

The relation between two certain kinds of actions i and j is distance consistent if:

∀(actioni �= actionj), ∃td(actioni, actionj) ≥ td(time zonei, time zonej) (4.10)

The above distance consistency definition of actions requires that the two ac-
tions be of a certain kind. As can be seen in Figure 4.1 the actions are generally
active during some temporal intervals, which may overlap. Thus the applica-
tion of the distance consistency between actions requires considerations of ac-
tions and the local arrangements. Some of these situations are more obvious
than the other ones. They are introduced by a system administrator to give him
additional control over user profiles. For example, if two users are logged in
from different places during the same time interval under the same login name,
then we can suspect that one of them is an intruder5. If we take an example
of login session, 1 activity from the Figure 4.1 and assume that there is another
activity login session, 2, it is possible to write that if we take two different user
sessions - A1 : login session, 1 and A2 : login session, 2:

∀(A1 before A2), td(A1, A2) ≥ td(time zoneA1, time zoneA2) (4.11)

This means that between a logout and a next login a certain amount of time has
to pass. This time is taken from the Table 4.2 depending on time zones from
where the sessions were initiated. This also implies that the sessions must not
overlap each other. This was a simple example of a consistency requirement and
its usage. Some other requirements in real life may be more complicated. They
should be defined during the learning or system operating processes.

To conclude this section we would like to note that in different time zones
the accuracy of the spatial location of the IP address identification is different.
For example, inside a department a network topology is known and therefore,
precise locations of the IP addresses are known. If a user travels to another
country from which he logs in, the locations of the IP address may be sometimes
identified with possible error in several hundreds kilometers. However, we are
not interested in a very precise location. When a new login happens it is nec-
essary to know only from which time zone it comes (is it from the same time
zone as a previous login, or if it comes from a new location, in which time zone
this location is). This knowledge allows us to introduce statistical measures that
show probabilities of movement, and time usually required by the user to move
inside each time zone as well as between them. These measures help to cover
additional aspects of user behavior in a user profile.
5 Of course, this conclusion requires that the user never forgets to logout the connection or that
there exists some kind of automatic logout system.

68

4.3 Coefficient of Reliability and Concept Drift

One of the main objectives of abnormal behavior detection systems is not only
to expose the abnormal behavior of users, but also to sometimes choose between
two contradictory cases. For example, if two audit records show that there exist
two sessions from different IP addresses at the same time, under the same login
name, the task of the system is not only to detect this, but also to determine
which login is abnormal (perhaps they both are).

The coefficient of reliability r is a value that shows how much current events
(that were claimed to be issued by user ”X”) correspond to the ordinary events
of a real user ”X”. The coefficient of reliability is a real number from the closed
interval from 0 to 1 and it shows, at any certain point of time, the probability r

that there is really the user ”X” who was logged in as ”X” up to the current time
point. We assume that these coefficients are initialized for each user and then
being changed, taking into account the validity of each action. The more doubt
a system has about an action’s nature the more ”punishment” value it assigns to
the coefficient and vice versa. The value of a coefficient change for a new action
is calculated taking into account the previous value of the coefficient, the user’s
mobility, and the temporal distances of time zones and actions.

In the following chapters we suggest an implementation of the concept
drift detection and a way of updating profiles in real time. We suppose that
every action in the training set has a usage frequency value. If an action is often
used for a new case classification, then the frequency value is increased and vice
versa. When the coefficient of an action in a training set becomes smaller than a
certain predefined threshold value then the action is replaced by another action
that reflects the user’s behavior much better. Thus, the threshold value has a
direct influence to the speed of the training set updating.

4.4 Incorporation of Layer Structure into Profiling Component

In this section we suggest layer structure implementation for information gen-
eralization while creating or using profiles. We defined a notion of layer, related
to the level of information abstraction, and the concept of happenings on each
layer in order to clarify our usage of the event concept. In Figure 4.3 the struc-
ture of the profiling system is shown. It consists of four main blocks, which are
briefly described below.

The main purpose of the information preprocessing block (IPB) is to prepare
information for its later use. It takes different event streams as an input. These
streams can be any discrete streams of nominal values, for example, system calls,
keystrokes, GUI events, etc. Then an IPB separates the events of the stream on a
per-user basis and stores them in separate FIFO queues created by IPB for every
active user. A particular queue covers different time intervals, which depends
on the user’s rate of activity.

69

� � � � � 	 � � � � � 	 � � � � �� � � � � � � � � � �
! � � ! � � # � 	 	 � � '

� � � � � � � � � � �
# + � 	 	 � � � # � � � � �

, � � � . � 	 �
� � 2 	 � � 	

! � � � � + � 	

, � � � . � 	 � � �
# � � 	 � 	 � � � # 3

� � 4 2 � � � � � � � 	

Figure 4.3 A structure of the profiling component

After an IPB has started to receive information about a particular user it begins
to scan the user’s queue of events. While scanning the queue the IPB creates
the information of the higher layers (first -actions, and then, after seeking for
temporal relationships between actions, - activities) and substitutes the original
queue of the instant layer by highest one - activity. Finally, the IPB takes from
the database of consistency requirements a list of the consistency constraints pre-
sented using temporal relations. From the database of users profiles IPB takes
the values of the parameter, which are different for each user. These values of
the parameters are updated while the system learns the users behavior.

The database of user profiles contains information about all previous users.
Every user has its own profile in the database. A profile contains information
about the user behavior, for example matrixes of temporal distances, matrixes of
probabilities, and the temporal-probabilistic tree. It may also contain different
characteristics of the user, as typing rate, error rate, consuming resources, etc.

The database of consistency requirements - part that contains the temporal con-
sistency criteria. All incoming events must satisfy these criteria adapted using
the parameters included in the profile of a user. This database also includes the
default values of the parameters, which are used, for example, in the case of a
new user.

The information classification block takes the user profile for the new action
classification, in order to determine to which class it belongs: normal or abnor-
mal. A detailed description of this part will be provided in Chapter 6.

4.5 Summary

In this chapter we have proposed an information representation method that is
used by our intrusion detection system that detects anomalous behavior. Here
we provided all formalisms necessary to establish and handle relationships be-

70

tween actions. Also, the approach makes the information about the user behav-
ior source and operating system independent providing opportunity to process
at the same time all information coming from different environments and oper-
ating systems. The methods and techniques presented in the following chapters
are based on the representation described above.

The approach suggests that in cases where the audit trail information is in-
consistent it is possible to expose it using a temporal interval representation ap-
plying temporal algebra. Thus, some attacks (such as ”spoof” attack (Heberlein
and Bishop, 1998), etc.) may be detected without significant effort and, there-
fore, detection may be performed in real-time. Also, the primary disadvantage
of anomaly detection - the gradual training - may be overcome using temporal
algebra to determine important relations between events by grouping together
actions based on the relations of their endpoints and testing for a trend among
them. We are going to discuss this problem in detail and suggest one of the
possible solutions later in Chapter 7.

Being able to construct a user’s activities from events reported by the op-
erating system gives us an understanding of user behavior, that minimizes the
volume of the information being processed, and simplifies the task of differen-
tiating an intruder from a valid user. The simplification reduces the probability
of possible mistakes.

5 USING RELATIONAL MATRIX TO DETECT
ANOMALIES

While performing an anomaly detection a typical intrusion detection system
compares current events with expected or predicted ones and decides whether
they are normal or anomalous. Thus, the problem of anomaly detection may
be transformed into a typical decision problem (Krishnan, 1995) that consists of
three scenarios: what event is going to happen in the future, when it is going to
happen, and how much danger it may cause.

What is happening - this is the problem of identification of different aspects
of user behavior. Each user performs similar activities which are expressed by
repeated sets of actions and which differ on a per-user basis. Thus, the answer
to the question ”what?” would be a recognition of a certain user’s activity.

”When?” - in order to answer this question we expose and monitor tempo-
ral aspects of the user behavior (when the activity is happening and how long)
by analyzing and tracing it in its temporal context using Allen’s temporal al-
gebra (Allen and Ferguson, 1994) to describe relationships between temporal
intervals or actions.

To answer the question ”how much?”, would help us to determine the pos-
sible danger. The possible loss may be estimated, according to what objects are
manipulated in an abnormal sequence of events. However, it is an approximate
estimation because it is very difficult to reason about potential losses automati-
cally. For example, a buffer overflow attack may lead to a user or root account
compromise. Possible losses may be different in these cases, and it is not feasible
to anticipate them without knowledge of this particular attack.

In this chapter we develop algorithms that cope with these scenarios. They
are used as a main technique for online user verification in the HIDSUR. They
are based on probabilistic networks represented in the form of trees adapted
to the problem of anomaly detection. In particular, they are aimed at automati-
cally finding the normal behavior patterns from audit data, encoding and match-
ing them against current event streams in order to find deviations from normal

72

behavior; and then decide whether it is an intrusion or normal user behavior
changes. The information derived from these patterns could be used to detect
the abnormal behavior and to train the intrusion detection system.

5.1 User Profile

Traditionally, in anomaly detection, user profiles have been built by calculat-
ing statistics for different characteristics, such as consumed resources, command
count, typing rate, command sequences, etc. (Lane and Brodley, 1999). In our
class approach we construct a user profile by defining classes or cases, which are
used as bricks in constructing a model of user behavior, and analyze information
inside classes based on its temporal characteristics. We present incoming infor-
mation as a set of temporal intervals that gives us the possibility to apply Allen’s
algebra (Allen, 1983) to discover relationships between temporal intervals and
to store them for further classification.

In this section we provide necessary definitions and describe the basic con-
cepts of the class approach. Here we consider a problem of user profile build-
ing, as bringing to conformity events, provided by the operating system log
facilities, with notions used to build a user behavioral model. Thus, the system
may possibly have several streams of discrete events such as GUI events, system
call traces, network packets, and keystrokes. It needs to automatically build a
profile for every user in order to recognize him in the future, fitting current be-
havior into the behavioral model described in his profile. During this process,
the system should use as little as possible manual and ad-hoc elements. In other
words, our aim is not only to develop an approach for behavioral model de-
scription, but also to automate all processes used for creation and manipulation
of the user profiles, as much as possible.

In Chapter 4 we have described a possible structure of information ob-
tained from the operating system. This structure is used for abstracting informa-
tion included in audit log files to a more general - source or platform indepen-
dent form, giving it more meaning in a context of person-computer interaction.
How to store and process this information? Below we present a way to construct
user profiles using information obtained from different sources.

We gave definitions related to the structure of user information going from
specific to more general levels of information (operating system’s events - used
applications - user goals). In contrast to this, for a user profile description we
are going to move in a reverse direction. Hence, the structure of user profile def-
initions resembles an inheritance mechanism in object-oriented programming
languages. Thus, we go from general to more specific, where a more specific
description is formed by inheriting all the features of the ”parent” and adding
some additional ones.

In Figure 5.1 it is possible to see a structure that describes a part of a user
profile presented in this section.

73

� � � � �

� � 	 � � � � � � � � 	 � � �

� � 	 � � � � � � � � 	 � � �

� � � 	 � � � �

� � 	 � � � � � � � � 	 � � �

Figure 5.1 Structure of information stored in user profiles

As a general concept we define an action class which describes one of the possi-
ble kinds of actions. It provides a formal description of a single action without
providing any specific details. An action class contains descriptions of events
that start and end that action, and possible events between the start and the
end. Continuing our previous example, consider a hypothetic action class ”Web
browsing”. It may be defined by the Web browser activity interval. This inter-
val may include other events, such as multiple connection establishments, data
transfer, printing, and access to local objects. Those events are caused by child
processes of the Web browser, therefore we group all these events into a single
action, which is represented by the ”Web browsing” class.

Also, if we monitor network packets we may define the same action class
by a longer sequence of events. For example, an action class ”Web brows-
ing” may include events: a request for connection establishment between some
server and a user workstation port 80 (handshake protocol) followed by some
information exchange and closing connection.

This is a usage example of the information representation in Chapter 4 to
build a source independent behavioral model. The classes provide translations
from different information forms (network packets, GUI messages, etc.) to a
unique representation. In the example the GUI messages, taken from an operat-
ing system’s kernel, and network packets, taken from the LAN, lead to the same
conclusion that the user is browsing Web pages. As a matter of fact, a number
of all possible actions is limited by the operating system tools and additionally
installed programs, therefore, a number of action classes is finite and known
beforehand.

Each action class is composed of one or more action class instances. Each
action class instance describes an individual group of actions of the same action
class having similar temporal characteristics. These characteristics are the mean
and standard deviation of the time lengths of the included actions. We assume
that the lengths of the actions grouped into the same instance form a normal

74

distribution with these parameters. Therefore, the distances must be distributed
normally in order to be grouped into the same instance.

In Figure 5.2.a it is possible to see an example of an action class that con-
tains three instances N1, N2, and N3 (Figure 5.2.b will be discussed in Section
5.3). The figure shows how temporal lengths of the actions are distributed in-
side the action class. The distribution is shown by a histogram identifying the
amount of actions (number of cases) with the same temporal length at each time
point. In our example in Figure 5.2 it is possible to clearly identify three clus-
ters: N1, N2 , and N3 with different parameters of µ - mean and σ - standard
deviation.

Figure 5.2 Action class ”X”: a) cases distribution depending on their temporal lengths;
b) distribution of the coefficient of reliability changes inside this action class

Suppose that the example in Figure 5.2.a shows a single action class of a user -
”Web browsing”. Consider him using the Internet during a whole working day.
Assume the user starts every working day reading the news from the Internet
and it takes in average of 20 minutes. In the figure this regularity is represented
by a cluster N1 with parameters µ1 and σ1. After this he handles his paper
work till lunch. During lunch he likes to read funny stories from the Internet
(average time 50 minutes) - represented by N2 with parameters µ2 and σ2. In
the afternoon he works with clients and has to connect to some database on the
Internet (average time 120 minutes) - represented by N3 with µ3 and σ3. In this
case despite intersections it is possible to clearly identify three clusters. Each

75

of those represents one of the discussed cases. They are the instances of the
”Web browsing” action class. These instances represent the same action, but
they differ by their temporal parameters. The reason for this is that the user
has different patterns of the Internet usage. Sometimes he does it occasionally
(look for a word translation in an online dictionary) without any regularity and
sometimes he spends time there accomplishing his everyday tasks, which are
indissolubly synchronized with his everyday rhythm.

An instance is stable if cases, grouped in it, form a normal distribution with
the parameters µ and σ. The instances in the above example are described by
three normal distributions each of which has its own parameters µ and σ. Fi-
nally, the amount of actions included in the instance is described by a parameter
n. It is used for the calculation of usage frequencies of instances inside a single
action class.

In this section we presented primitives used to represent information about
user actions with their temporal parameters. These primitives will be used in
this and the following chapters to describes user events by forming actions, clas-
sifying them, and splitting them into instances of the same action class.

5.2 Relations between Action Classes

Looking at previous work we may summarize that traditionally, in anomaly
detection, user profiles have been built based on different characteristics, such as
consumed resources, command count, typing rate, command sequences, etc. In
these cases information analysis has been made using system log files, command
traces, and audit trails.

In most cases the classification has been performed based on the sequence
of events in time. However, the sequential data is not the only information that is
possible to get from a stream of discrete events. It also contains some hidden in-
formation that is usually neglected: time relations between events are not taken
into account at all or only very little attention is given to them. For example,
instance-based learning algorithms developed by Lane and Brodley (1997b and
1999) use keystroke sequences that do not contain any temporal information.
Systems that use rule-based techniques, such as MIDAS (Sebring et al., 1988),
NIDES (Javitz et al., 1993), and ASAX (Mounji, 1997), encode expert opin-
ions in a form of if − then rules, which keep only sequential information. A
system that uses a state-based approach (USTAT (Ilgun et al., 1995) - state tran-
sition analysis IDS, IDIOT based on Colored Petri Nets (Kumar, 1995)) make
their decisions based on tokens moving through states sequentially represent-
ing landmarks of attacks. The other systems (for example, NADIR (Hochberg
et al., 1993), Haystack (Smaha, 1988), DIDS (Snapp et al., 1992), and EMERALD
(Porras and Neumann, 1997)) do not directly employ temporal information in
building misuse/normal behavior models for later detection of anomalies or at-
tacks.

76

Sometimes time relations play a crucial role in attempting to classify events,
i.e. determining whether an event is a part of anomalous or normal behavior. To
be able to discover and later use relations between actions, it is necessary to de-
fine additional concepts. In the previous section we introduced notions related
to actions and their representation. Here we define the concepts related to the
temporal relationships between actions, their discovery and usage. The notions
provided here are similar to those in the previous section.

A Relation class is a notion that describes one of all possible relations be-
tween two actions: Actioni and Actionj . It is defined as one of the basic rela-
tional classes. The relation class describes one of the possible relations between
two actions without providing its temporal details. The number of possible re-
lation classes is the same as the number of basic relations - two.

A Relation instance describes some set of relations that have similar tempo-
ral characteristics and each of them belongs to the same relation class. In other
words, a relation instance describes some distribution of temporal parameters
of relations grouped by this instance.

A Relation is one of the basic relations (one of the two presented in Chapter
4) between any two actions Actioni and Actionj . It is characterized by a tem-
poral distance t between these actions. Thus, the relation type is a qualitative
parameter that describes what kind of relation it is, and the temporal distance is
a quantitative parameter that describes the temporal characteristics of the rela-
tion.

Consider the web browsing example in the previous section. Assume that
when the user works with clients (third instance N3 in the action class ”Web
browsing”) he has to answer by email to some of their requests. In this case it
is possible to note that the action ”Web browsing” includes numerous ”E-mail
checking” actions and these checks are connected to each other by a relation
class before. If, for example, the answer to a single user request takes 20 minutes
on average, then it is possible to note that ”E-mail checking” actions inside the
”Web browsing” action are connected by a relation instance of the class before
with a parameter µ = 20.

To represent relationships between actions we use a square matrix, N ×N -
relational matrix, where N is the number of the action classes. In every cell {i, j},
the matrix holds relational classes that are allowed between every action classes
i and j. Thus, cells i, j when i > j contain direct relations for Ai and Aj, and
cells i, j when j > i contain the reverse ones.

Continuing the above example, Table 5.1 shows the relational matrix for
the case described above. There are two instances present: ”Web browsing” and
”E-mail checking”. There is no relation discovered between the different ”Web
browsing” instances, thus the table reflects this by an empty cell (showed by
”-”). Then it is possible to see that there is a relationship during that connects
the instances ”E-mail checking” and ”Web browsing”. The ”E-mail checking” is
connected with another ”E-mail checking” by a relationship before. A cell that

77

contains ”o” represents a reverse relation to that already described in the cell
(2,1).

Table 5.1 Relational matrix for two instances

Web browsing E-mail checking

Web browsing - o
E-mail checking during(µ, σ) before(µ, σ)

Using the relational matrix we may check whether there is a certain relation
which exists between any of two classes and compare the parameters of the
current relation with the ones stored in the matrix.

5.3 Detecting Abnormal Behavior

In this section we are going to discuss how to use the action and relation classes
to discover abnormal behavior by monitoring deviations between the current
user behavior and a user behavior model stored in the profile as N action classes
and a relational matrix. Every action class of the model has one or more in-
stances that represent some user action characterized by the statistic parameters
of the corresponding time distribution - mean and standard deviation. All possi-
ble relationships between instances are described in the relational matrix, every
cell in which contains relation instances with their temporal parameters.

To build a behavioral model it is necessary to train a classifier, which cre-
ates a profile for each user during this process. It is performed by submitting ac-
tions issued by users to the classifier. To build a profile for a certain user the clas-
sifier takes each action issued by the user and puts it into an action class where
this action belongs to (the name of the action determines the correspondent ac-
tion class). Then it determines the relationships between the current action and
the previous actions and calculates the temporal distances between them. For
the next step the classifier updates the relational matrix by putting the obtained
relations into the corresponding cells in it.

After some time the classifier is ready to be used. Empty action classes
show that the user does not perform such actions at all. Empty relation classes
show that such relations are not present between certain pairs of actions. Classes
containing homogeneous data, in which it is not possible to determine any dis-
tribution, are not used for classifications. They show that there are no strong
patterns in usage of some programs in the case of action classes or there are no
relationships between pairs of action classes in the case of relation classes. The
rest is used to monitor the user behavior and detect anomalies. Figure 5.3 shows
the algorithm of the decision making of the classifier. Below we are going to
discuss the classification mechanism in Figure 5.3 step by step.

Deviations from the values stored in a user profile are considered as a
consequence of the abnormal behavior. To estimate the value of deviation we

78

� � � � � � �

�
 � � � � � � � �

� �
 � � � " $ � � � � � �
� �) � � � �

*

� � +

,

- � + � . + � �
 /

� 0 � � �
 � � � " $ 2
 + � � � � � � + �))*

5 7 8 9 � : ; < >

- � + � . + � �
 �
 @ B � 2 � +
+
 � C � E � " � E
 2
 + � � � � �

*

- � + � . + � �
 �
 @ B � 2 � +
+
 � C � E � " � E
 2
 + � � � � �

,

+
 � C � E 0 � � �
 2 ,)
)) � � �
� � �
 2 I � +

� �
 � � � " $ 2
 + � � � � �
� �) � � � �

� �
 � � � " $ 2
 + � � � � �
� �) � � � �

, *

- � + � . + � �
 / � �

,

� K L M O Q R
S

+−=
∆=∆

w

w

l

lik

t
k

w

t r
l

r
1

1

T
+−=
∆=∆

w

w

l

lik

T
k

w

T r
l

r
1

1

* ()
()T

thresh
T

t
thresh

t

rr

rr

∆>∆

∆>∆
U

U

V + � 2 @

*

� L � Q R � � L � Q R

, ,

� � �

Z B � � �
 B 2 � " � +

\

]

^

_

` a

b

c

d

\ f

\ \

\]

\ ^

\ _

\ `

\ `
\ a \ b

\ c\ d

] f

T
ir∆

t
ir∆ t

ir∆

Figure 5.3 Classification algorithm of the classifier that uses a relational matrix to de-
scribe a user behavioral model

use a coefficient of reliability: r = [0, 1]. It is assigned to every active user and
shows probability that the user is the one who he/she claims to be. During
classification the system monitors deviations between the expected or predicted
user behavior and the current one. According to these deviations it calculates
some penalty (negative) or encouragement (positive) value, which reduces or
increases the coefficient r by the value of ∆ri.

79

At the beginning of the classification process the coefficient of reliability is
assigned to be 0.5 since there is not yet any evidence, neither of distrust nor of
trust. Therefore, the coefficient of reliability has an ability to grow as well as to
diminish. If it crosses a certain threshold it means that there is a sequence of
actions where the parameters of each action are not in admissible intervals. It is
considered as a case of abnormal behavior and thus, an alarm should fire.

The coefficient change value ∆ri shows the amount of change of the coef-
ficient of reliability and it is calculated at each step of classification. It consists
of two parts: ∆rT

i - change is due to deviations between the current and the
expected value of the action’s temporal length, and ∆rt

i - change is due to de-
viations between the current and the expected values of the relation’s temporal
length.

∆ri = ∆rt
i + ∆rT

i (5.1)

The classification process is idle (1)1 until a new action comes. Each time the sys-
tem receives a new action (2) for classification it needs to determine the correct
action class and instance. Finding the correct class is relatively easy. Knowledge
of an action’s name points to a certain class. After this it is necessary to find a
correct instance inside the class.

Below we present our way to automatically determine the action class in-
stance, where the current action belongs (3), among several ones inside the class:

1. determine a normal distribution where a new action belongs: T ∈ [µ −
2σ, µ + 2σ];

2. if there is more than one interval found in step one, then find min |µ−T |
among them;

3. if there is more than one instance with the same temporal distances be-
tween them and the current action, choose the one with the smallest
standard deviation: min [σ].

In Gaussian distribution 95%, of all cases are lying in the interval [µ−2σ, µ+2σ].
During the first step we use this to determine where a new case belongs. If
there are some action class instances that are overlapping each other and the
new action is in the overlapping area, then we apply steps two and three to
introduce the additional restrictions to find the right instance for the new action.

After the classifier identifies the correct instance it has to check how well
the new action fits into this instance (4). In other words, it calculates the action
part (∆rT

i) of the coefficient of reliability change for the current action.
How do we use these temporal characteristics of action and relation in-

stances to detect abnormal behavior? Well, if we take one action class instance it
1 This identifies the state in the classification algorithm we currently discuss. It refers to the
number of the box in Figure 5.3.

80

is described by normal distribution parameters µ and σ. We have separated all
the area outlined by the curve presenting this distribution into three areas:

• Area limited by one σ, i.e. 68% of the whole area. In the case when a
new action is in this area we consider this as a strong match that sup-
ports this instance. Therefore, the coefficient of reliability should be ”en-
couraged”.

• Area between one and two σ, i.e. 27% of the whole area. When a new
action appears in this area it is a weak match. In other words, we have
proof that the new action belongs to this instance, but it does not support
it as much as in the previous case. Thus, the coefficient of reliability
should not be changed.

• Area beyond two σ. In this situation the penalty for the coefficient of
reliability should be applied.

Figure 5.2.b visualizes the idea. Below we present a formula for the calculations
of the coefficient of reliability changes:

∆rT
i =




νi × exp
((

−(x−µ)2

2σ2

)
− exp(−2)

)
, 0 < t ≤ µ − 2σ

0, µ − 2σ < t ≤ µ − σ
n
c
×

(
exp

(
−(x−µ)2

2σ2

)
− exp(−0.5)

)
, µ − σ < t < µ + σ

0, µ + σ ≤ t < µ + 2σ

νi ×
(
exp

(
−(x−µ)2

2σ2

)
− exp(−2)

)
, µ + 2σ ≤ t < ∞

(5.2)

where c is the coefficient that limits n and determines the system’s sensitivity
to deviations and, νi is the coefficient of security significance of the action (in
other words, how much danger of improper usage of this action may cause); it
is defined by the system administrator for each action.

The calculations of the ∆rT
i part for the coefficient of reliability change are

based on the following aspects:

• how big the difference is between the predicted and the current action
lengths;

• the security significance of the current action;

• how big the standard deviation of the current action class instance is.

After this the classifier checks whether the current action is the first action dur-
ing the current session (5). If it is, then the classifier returns to the idle mode (1)
and waits for another action from the same user. In the case it is not the first
action in this session the classifier checks the transition between the current and
the previous actions. It checks for the type of basic relation (6). If the relation

81

type is during the classifier calculates the temporal length of the relation (8) as it
shown in Figure 4.2 of Chapter 4. This calculation is followed by the identifica-
tion of the correct relation instance. It is done in the same way as for the action
class instance.

If the relation class is before, the classifier calculates the length of the relation
(10) (Figure 4.2). The obtained length is compared with a certain threshold (11).
This threshold is established to define an inter-session interval in case the user
does not log out after each session. The threshold shows that if there is a certain
amount of time passed the new action may be considered as a start of a new
session. In this case (14, 15) the classifier initializes its parameters and classifies
the action as the first in this session.

If the current action is considered within the same session then the classi-
fier looks for the correct relation instance (12) for this action. On the next step,
despite of the relation class identified, the classifier calculates the relational part
(∆rt

i) of the coefficient of reliability change (13). The same equation 5.2 is applied
to calculate ∆rt

i . These calculations are based on the following aspects:

• how big the difference is between the predicted and current transition
lengths (for ∆rt

i);

• the security significance of the current action;

• how big the standard deviation of the current relation transition is (for
∆rt

i).

In order to detect sudden changes of the user behavior we use a sliding window
to analyze the behavior inside it (15). The width of the window will be deter-
mined and discussed in Chapter 9. If there are not enough actions in a queue
to fill the window then the classifier goes to the idle mode (1). Otherwise, it
calculates the average values for the parameters ∆rt

i and ∆rT
i inside the sliding

window (16).
When the average values are calculated they are compared with estab-

lished thresholds (17). If one of the average values (∆rt and ∆rT) is bigger than
it should be then the system administrator is notified and has to investigate the
alarm (18). If both of the average values lie inside the defined safe interval then
the user profile has to be updated taking the new action into account (19).

Below we consider the update of the temporal-probabilistic characteristics
for an action class instance. In order to save computer resources a system does
not need to keep a history of events, it needs only to have two parameters that
describe the distribution inside this instance. Therefore, if a new action sup-
ports a current instance we update its temporal parameters. For every node i its
mean µi and standard deviation σi are calculated each time it is being used for
classification:

µi =
µi−1 × (n − 1) + T

n
(5.3)

82

σi =

√
σ2

i−1 × (n − 1) + (µi − T)2

n
(5.4)

where n is the number of cases in this action class instance and T is the temporal
length of the action being classified.

The same formulas may be applied to calculate the temporal parameters of
relation the instances. In this case T is substituted by t - the temporal length of
the transition being classified.

At the end of the classification process the coefficient of reliability of the
user r is summed with the ∆ri. If the coefficient of reliability r is lower than a
certain threshold, an alarm is fired. In Figure 5.2 it is possible to see an exam-
ple of some class ”X” and a graphical representation of the distribution of the
coefficient of reliability changes inside this class.

5.4 Summary

Generally the anomaly detection approaches classify the incoming events based
on the distance to the members of different classes or on the probability of falling
within known patterns. Usually the learning algorithms used for anomaly de-
tection are reduced to learning on spaces with nominal-valued attributes (deci-
sion trees, data mining, etc.), that requires an assumption to be made that the
attributes are independent. During the classification the search is performed
through these structures to examine each feature independently from all oth-
ers. As a result internal relationships between them are ignored and a complete
model of normal behavior can not be created. In our classification approach we
were able to circumvent this problem by transforming the data to a universal
temporal representation that explicitly encodes such relationships and allows
the use of them in the classification.

Another problem is the automatic handling of the concept drift. In anomaly
detection each classifier during its normal operations (after initialization) has to
decide whether to add an event into the profile or not. This decision is especially
critical in the presence of the concept drift when an unknown behavior may be
resulted by normal user behavior changes or an intruder. The techniques used
in machine learning (such as inclusion misclassified instances into the profile) to
handle these situations are not suitable for anomaly detection since the anomaly
classifier is not aware of misclassifications. In our classifier we introduced a
feedback that allows the updating of a profile each time the new instance is
classified as normal. It leads to an automatic update of the action and relation
instances. They may appear, disappear, merge, and split with time reflecting
normal changes in the user behavior and preserving a precise and up-to-date
behavioral model for each user.

The main assumption behind our relational matrix approach is that the
behavior of each user follows regularities that may be discovered and presented

83

using a limited number of action and relation classes. The profiles are created by
forming a vector of N action classes each of which contains several instances. In
other words, it contains several temporal patterns of some action. Every profile
also contains a matrix of relation classes (they are similar to action classes but
describe relations). This matrix allows us to check whether a relation is valid
between every pair of action classes. Using the described profiles a monitoring
system evaluates every user action according to its length and relations with the
previous and the next actions. During classifications a coefficient of reliability is
changed. Based on it, a decision is made whether the current behavior is normal
or anomalous.

The presented relational matrix approach has some advantages. It is rela-
tively simple and easy to visualize. It is quite fast and it does not require much
computational power since it does not require many calculations. The user pro-
file is represented by action and relation classes, which are described by the
same temporal parameters, and thus, it is possible to use the same formulas to
calculate them. At every time point every class contains several instances and
therefore, may be described by some curve (as in Figure 5.2a). To eliminate some
calculations it is possible not to describe every instance as a distribution of tem-
poral parameters, but as a distribution of a coefficient of reliability change value
(as in Figure 5.2b). It would not require calculations of this value at every step
and thus, increases the classification speed.

The presented in this chapter approach does not provide an in-depth anal-
ysis of user behavior2. This approach is aimed to catch short patterns - activ-
ities (two actions connected by a relation). It performs quite well (the perfor-
mance discussion is in Chapter 9) in different categories of users without losses
in precision in certain categories of ”casual” users, that use their accounts from
time to time, and their behavior does not contain deep hidden regularities that
may result in long patterns. Other anomaly detection approaches are not per-
forming well in monitoring this category of users. The anomaly detection ap-
proaches require a longer training period and a wider sliding window width
(Anderson et al., 1995), (Lane and Brodley, 1999), (Lee et al., 1999a), and (Lunt
et al., 1992). In most cases the anomaly detection approaches require thou-
sands of events/tokens to initialize a classifier and a sliding window in hun-
dreds events of width. It often happens that the length of the sliding window is
longer than the average session length of such a user, which results in the impos-
sibility to make even a single classification during a single session, which leads
to the impossibility to classify at all or an extremely long time-to-alarm. This ap-
proach only requires hundreds of such event/tokens for learning and the length
of the sliding window is normally tens of them (exact numbers and discussion
are provided in Chapter 9).

2 We are going to extend it in the next chapter in order to build a comprehensive model of user
behavior.

6 DETECTING ANOMALIES IN USER
BEHAVIOR USING
TEMPORAL-PROBABILISTIC TREES

It has been shown that human interaction with computer systems shows regu-
larities in almost everything they do (Davison and Hirsh, 1998). This assump-
tion was successfully used to build systems that when applied to sequences of
user actions learn over a period of time to an individual’s pattern of use (Lane
and Brodley, 1999). Moreover, the behavioral regularities of a certain user may
be closely linked with the users’ plans and goals (Albrecht et al., 1997). Much
work to date has resulted in ad-hoc approaches such as simply capturing user
preferences (usually only sequential) at a shallow level ignoring the more diffi-
cult problem of capturing the user intentions (Lee et al., 2000). Here we provide
one of the possible solutions to the problem. We develop an approach that cov-
ers many aspects of user behavior by discovering not only the sequential user
preferences, but also the temporal ones. The approach connects discovered be-
havioral patterns with the user’s intentions and goals by generalizing the infor-
mation about the user behavior (from events to activities). As a result a user
profile is represented by a set of user goals from one side and the actions usually
involved in achieving these goals from the other side.

In this work there is also the underlying assumption that every user per-
forms similar sequences of actions to achieve a certain goal and they are sup-
posed to have similar temporal characteristics of actions as well as relationships
between them. We call these sequences patterns. The main goal of user profiling
is to model the characteristic aspects of user behavior. A pattern characterizes a
kind of user activity that he performs to achieve his/her goal. Thus, the pattern
is a sequence of instances connected by transitions and the simplest pattern is a
single instance.

In this chapter we present another approach to detect anomalies in user
behavior. It may be considered as an extension of the approach described in the
previous chapter. The main idea of the approach is to obtain information about

85

normal user behavior, encode it in a set of patterns that represents common se-
quences in user behavior, and finally use these patterns to detect anomalies. The
set of patterns forms a general model of user behavior that is presented by a tree,
where the patterns form branches of this tree. Using sequential information ex-
tracted from multiple strings of events we are able to construct the probabilistic
network (presented by a tree). However, the sequential data is not the only in-
formation that is possible to get from a stream of discrete events. It also contains
some additional information in the form of relations between events, which of-
ten play a crucial role in the classification of events, i.e. determining whether an
event is part of anomalous or normal behavior. Therefore, our approach is also
aimed to extract and encode the temporal and sequential patterns and build the
tree based on them.

6.1 Temporal-Probabilistic Tree Definition

Recognition of user behavior is a problem of interpreting data which comes from
a dynamically changing environment; therefore it is a problem of intelligent data
analysis, where probabilistic graphical models have been recognized as one of
the key paradigms (Bellazzi et al., 1998). These models allow a compact de-
scription of complex stochastic relationships; thus, we use the probabilistic trees
to represent the user’s behavior and its changes. The temporal information will
be added to every node and edge of the probabilistic tree and thus, we are going
to call it a temporal-probabilistic tree.

In order to build a temporal-probabilistic tree, sets of actions with similar
temporal characteristics - instances should be formed. Then it is necessary to
find sequences, using created sets, that in each sequence the corresponded pairs
of adjacent instances will be connected by temporal relations that have similar
temporal characteristics.

In this section we define a temporal-probabilistic tree aimed to represent
peculiarities of user behavior. Our main goal is to be able to automatically dis-
cover and use sequential patterns of user behavior as well as temporal. We
assume that a user’s typical behavior corresponds to the individual temporal-
probabilistic tree S(G,E).

On the learning stage we suppose that the system is closed, in other words
it uses only ”good” examples for learning. Thus, on the initial stages all actions
in user behavior are considered as normal.

The temporal-probabilistic tree that describes user behavior is defined as
S(G,E) where G is a set of nodes {Gk

i } and E is a set of edges {Ek
i }. Every

node Gk
i ∈ {G} on level k represents a certain action instance IA

i , which is a
set of actions {O} with similar temporal-probabilistic characteristics (level k is
defined as a shortest distance from this node to the root).

Each action instance IA
i inside an action class A is represented as IA

i (A, n,
µ,σ), where parameters µ and σ define the time distribution of actions’ lengths

86

Ti and they are calculated over the corresponding set of actions {O}. In order to
know how often a certain node is used, n is stored for each node. It is the number
of transitions when the process of the user’s behavior classification have gone
through the node Gk

i . The probability that this node on level k will be chosen
next time is pk

i and it is calculated as:

pk
i = nk

i /
∑

∀Gk
i ∈{Gk}

nk
i (6.1)

A set of actions {O1, ..., On} of the same action class forms an action class
instance IA

i if it is possible to describe a distribution of the actions’ temporal
lengths {T1, ..., Tn} by the following parameters:

µ =
n∑

i=1

Ti

n
(6.2)

σ =

√√√√ n∑
i=1

(Ti − µ)2

n
(6.3)

This instance is valid and may be used for the classification if the following
conditions are met:

n ≥ nmin. (6.4)

σ ≤ σTmax, (6.5)

Here the parameter nmin defines a minimal amount of actions that may form
an instance of an action class - it has to be statistically large enough to mini-
mize possible mistakes. This variable affects the pattern extracting process, i.e.
regulates its sensitivity. The smaller the value nmin is the more instances (and
hence patterns) of user behavior the process may find. Therefore, it is possible
to automatically limit the size of the tree by changing nmin: if a number of the
patterns in the tree (nptrn) is too big, the process makes nmin bigger and after that
constructs the tree again - as a result a smaller tree with less patterns appears.
Similarly, if for any node Gk

i a usage frequency n becomes too small, it shows
that the tree contains branches that does not reflect user behavior any more. To
prune such branches automatically, the parameter nmin should be increased.

Variable σTmax limits a deviation between the action’s temporal length and
the parameters of the current instance that is allowed for this action to be in-
cluded in the instance of the action class. This variable is chosen experimentally:
it impacts the algorithm’s selectivity, meaning that the smaller the value σTmax is
the more precise description of user behavior the algorithm creates (patterns are
more detailed). Too big and too small values of σTmax lead to false negatives and
false positives correspondingly. Thus, by carefully choosing σTmax it is possible
to minimize the amount of false negatives and false positives.

87

A single edge Ek
i (Arel, n, µ, σ) represents a certain transition between two

connected nodes from consecutive levels. It connects a node Gk−1
i on the level k−

1 with Gk
j on the level k by a relation Arel. By analogy with the node definition

µ and σ are the parameters of the distribution for transition lengths. Since the
edge represents a relationship between the nodes Gk−1

i and Gk
j that it connects,

µ and σ describe this relationship. They are calculated using the time history of
ti, where ti is the time of transition between the two nodes: on levels k − 1 and
k.

Temporal parameters of each relation between two actions may be calcu-
lated in a similar way. As we have already mentioned that there are two time
points describing each action: where it begins (Tbeg) and ends (Tend). Let e repre-
sent a point in time, which corresponds to either a starting or a finishing point of
an action e ∈ {Tbeg, Tend}. Allow td(el, em) to represent the length of the temporal
interval between time point el of the action Ol and time point em of the action
Om; and action Ol is ”before” Om. Allow at the same time the actions Ol and
Om belong to instances Ij and Ij+1 correspondingly. They would form a pair, if
they were both within the same sequence; for example, if they both occur during
the same session or between two longtime breaks in user activity. Let k be the
number of such pairs of actions. Then for the transition between Ij and Ij+1, the
temporal-probabilistic parameters would be:

µ =
k−1∑
i=1

tdi(el, em)

k
(6.6)

σ = min
el,em∈{Tbeg,Tend}

√√√√k−1∑
i=1

(tdi(el, em) − µT)2

k
(6.7)

Similarly to the definition of the σTmax a σtmax is defined. It is an upper limit
for the deviation of the transition time length. The influence of this parameter
is similar to σTmax. It is necessary to note, that the temporal distance between
a pair of actions, that are connected by a stable relation, varies in significantly
smaller range than the action lengths. That is why the value of σTmax should be
bigger than σtmax.

If the value of σt ≤ σtmax and the amount of such action pairs n ≥ nmin

we can say that there is a stable relation between the two sets of actions. If such
a relation between two sets of actions is discovered, it means that these sets of
actions and the relation between them can be used to describe user behavior
and thus, it corresponds to the transition Ej+1 described by µ and σ between the
nodes that represent instances IA

j and IA
j+1.

After defining the temporal-probabilistic tree it is possible to see how the
tree describes the layers structure. If a single node Gk represents the action
and consists of its starting and a finishing events with the relation that connects
them, then the two nodes connected by the edge represent an activity.

88

Figure 6.1 demonstrates a simple example of an activity represented by
a temporal-probabilistic tree. As it is possible to see the activity includes two
actions and a relationship between them. Consider a case when the user comes
to his work place in the morning and after logging in he/she reads emails that
have come during his absence (for example 17.00-8.00). The number of mail
messages collected by the server determines the length of the mail session (see
upper curve in Figure 6.1). Assume that the number of messages arrived during
the night is close to some certain value then the mail session time length would
be in the interval [µ − σ; µ + σ] with 95% probability.

Figure 6.1 An example of activity

After downloading email messages, the user reads them. Some of them he/she
reads carefully, some he gives a brief look, others he looks only at ”subjects”
fields without actually opening them. Taking into account our assumption about
the number of emails we may say that the same dependency with the length of
this action applies here (see lowest curve in Figure 6.1).

How is it possible to describe relationships between these actions? The
user may read messages after finishing downloading the emails or he can do it
simultaneously: begin to read messages after first ones have been downloaded
and the mail client still receives messages from the server. The edge that con-
nects these actions contains distribution parameters of temporal distances be-
tween them (see Equation 4.9). In Figure 6.1 it is presented by the middle curve.
Thus, knowing the length of both actions and the temporal distance between
them, it is possible to define the relationship between the actions.

In Figure 6.2, an example of a simple pattern is shown. Actions that belong
to the class ”Edit file”, with similar temporal lengths are grouped into a corre-
sponding instance. Similarly, the actions of the class ”Send E-mail” with similar
lengths form another instance. These instances may have some kind of temporal
relationship between them. Thus, two instances with relationship between them
form a pattern.

As it is possible to see from the example above, each branch of the tree or
its part may represent a certain pattern of user behavior. Therefore, a pattern
can be described as Mi(G

′, E ′) ∈ M , where M is a set of user patterns, G′ ∈ {G}

89

Figure 6.2 An example of a simple pattern

and E ′ ∈ {E}. Hence, it is also possible to define and consider a temporal-
probabilistic tree as a set of nptrn patterns S(G,E) ≡ {M}.

In Figure 6.3 a visualized example of a user profile is shown1. It shows
how a model of behavior of a user may be described as a temporal-probabilistic
tree. It includes actions in L levels. The type of each action is defined by its
class {A} and for simplicity a unique number to every action class is assigned.
Big numbers identify action classes and the smaller ones define instances of the
classes.

Figure 6.3 A visualized example of user profile

1 It is not necessary in a real case that all branches are finished on the same level.

90

User activity begins with a certain root event (11) and the system has full trust
to him/her (it has not yet any reason to distrust). Then the user behavior fol-
lows some branch until the session has finished. The system making the profile
comparison with the current behavior decreases the user’s coefficient of relia-
bility by punishing it when deviations occur. At the end, the final coefficient of
reliability (ri) is calculated.

To finish this section we would like to point out, that it is possible that
several nodes may represent the same instance. In other words, a single instance
may be included into different patterns of user behavior. In the next section we
will show how to create a temporal-probabilistic tree using instances of action
classes and relation classes.

6.2 Training the Temporal-Probabilistic Tree

In this section we are going to focus on pattern extraction from a stream of ac-
tions. In other words, how to automatically discover repeating sequences of
user behavior and how to create a temporal-probabilistic tree using these se-
quences. It pursues two objectives: to maximize the user recognition probability
or distinction probability and to minimize the size of the tree. Figures 6.4 and
6.5 depict the process of the temporal-probabilistic tree initialization and in this
section we follow this process step by step in the description.

The temporal-probabilistic tree is implemented as a part of the anomaly
intrusion detection model presented in Chapter 3. The anomaly detector of the
intrusion detection system takes, as input, a stream of events (for example GUI
events) and stores them into the event log. Using a database where all valuable
actions (from a security point of view) are predefined, a data converter translates
the source stream to a stream of actions (or temporal intervals) 2 and stores them
in the action log. The reason that actions are needed to be predefined is to avoid
an infinite number of branches in the tree by minimizing the number of nodes,
it also allows updating or changing of the system definitions without rebuilding
all profiles (each tree will adapt itself to the new behavior automatically).

The predefined actions’ templates are initialized with some values - the
security significance of each action νA. These values provide information about
how important a certain action may be for the operating system security. The
more critical the action is, the higher value it has. For example, actions like su or
chmod in Unix would have the highest values.

Initially the tree has only one (root) node, which determines a certain user.
It is assumed that the anomaly system is closed on the stage of learning (i.e. it
uses only ”good” data as input). During the initialization of the classifier takes a
training set of actions from the action log and determines the action and relation
classes and instances. Whole algorithm may be separated into three parts each

2 This process is described in Chapter 3.

91

of which is a logical step in each iteration of learning: initialize the tree and
optimize it.

� � � � �

� � �

 � � �
� � � � � � �

�

� � � �
 � � �

! � � � � $

&
 �
� '
 � � � �

� $ � � � � �

*

+ ! � � , � . �
� $ � �

�

*

/
 � � � � � � . �
� � � � � � �

1 � ' �
 �
�
 � � �
 � � �

� � � � �
 �
 � � �
 � � �
� �
 � 6 ! � � � � $
 �

� � � � �
 ! � � � � $
 7 $ � � � �
 � � �

9

:

;

<

=

>

? @

A

Figure 6.4 Creating set of nodes in the temporal-probabilistic tree

6.2.1 Tree Initialization

Figure 6.4 shows the tree initialization phase. At this stage it is not necessary to
form complete patterns since they will be automatically extended and revised
during each iteration of the tree update. This part of the algorithm is aimed
at creating an initial set of nodes in the tree, thus the process is called - initial-
ization. The algorithm goes through the whole training set (in the action log)
creating action classes and defining instances inside these classes. When the
classifier (Figure 3.2) finishes analyzing the training set and the set of action in-
stances is obtained it creates a set of nodes for the tree correspondent to the set
of instances. Below we consider this process in detail.

92

At the beginning, the initialization of the classes is performed by the clas-
sifier (2). Each action from the training set (1) is taken and dispatched to the
corresponded action class (according to their names). At the same time relation
classes are initialized by putting the relations inside them. In other words, the
cases are separated according to their names.

When all actions in the training set are processed the definition of instances
is performed by the classifier (3). It takes each action and relation class and per-
forms cluster analysis inside it. After this number of cases in each cluster is com-
pared with nmin - minimal number of cases required to form a single instance.
For each cluster that has the number of cases greater then nmin the classifier
is able to form an instance. It takes all the cases inside each of such instances
and calculates the parameters of distribution. Later the cases inside of these in-
stances are disregarded and therefore, only the calculated parameters are kept
(to save space).

If the number of cases in the class is less or equal than nmin it means that the
classifier is not able to define an instance. In other words, there is not enough
cases to form a statistical distribution. The classifier keeps such sets of cases,
they might be completed (and therefore, transformed into the instances) later -
during normal classifier operations.

The instances definition process is performed similarly for the action and
relation classes. It is continual. A set of instances is updated when new actions
come (meaning that actions of this class and with these temporal parameters
have not appeared before) or when the value of deviation for some instance
overpasses the limit value σTmax.

It is necessary to note, that as was discussed in the previous chapter, pat-
terns are created automatically (this is one of the strengths of the approach).
They appear during statistical processing of the actions from the training set.
This automatic process is controlled by two variables - nmin and σTmax. The for-
mer one makes sure that a possible statistical error is on an acceptable level. The
latter one defines the precision of the pattern. For example, after defining in-
stances there are possibly two action instances: ”text editing” and ”printing”,
and there is a relation instance connecting them. This is considered as a pattern.
It may be extended by further observations. For such patterns, nmin ensures
that there are statistically enough cases to support this pattern. When σTmax is
smaller the discovered patterns are more precise (the description of the behav-
ioral model is more precise). However, for bigger values of σTmax it is easier to
discover the behavioral patterns and a size of the resulted tree is smaller (due to
smaller amount of instances).

After the patterns have been discovered, the classifier starts an iterative
process of nodes creation. On each iteration an instance is taken. Each newly
created instance IA

i is assigned to the new pattern Mi (4). At the same time the
usage frequency n of this pattern is assigned to an amount of actions, which
belongs to this instance. After that the system checks whether the tree already

93

has a branch beginning with the node Gk
i (6), which represents the instance IA

i

(for a branch the beginning node is the node on level 1). If it has, then this
new pattern is assigned (7) to be represented by this node (the node Gk

i becomes
a common node for several patterns). If not - a new node is created (8) that
represents the instance IA

i of the new pattern. This new node forms a new branch
of the tree that at the moment contains the only node and represents the only
pattern.

This operation is performed over the set of newly created instances. If there
is no more pattern left it means that the initial set of nodes is created. Thus, a set
of new patterns appears that contains only instances (simplest cases of patterns).
After this it is necessary to connect the nodes by edges (9).

6.2.2 Optimization

After the temporal-probabilistic tree is initialized it can not be used for user ver-
ification. The process of initialization provides only a starting point for assem-
bling the different patterns into a single entity representing a behavioral model.
Figure 6.5 depicts the basic steps of each iteration of the optimization process.

The tree initialization process establishes a basis for further behavioral
model building. After the initialization the temporal-probabilistic tree has a
number of quite short branches that represent initially discovered short patterns.
There also exists some redundancy in the tree.

The main goal of the optimization is to complete building the behavioral
model. The patterns (tree branches) are arranged in a way that later allows the
classifier to follow from one state of the tree to another. Also the redundancy
present in the tree is eliminated.

The optimization is performed by looking for concatenation possibilities
for each pattern in the pattern set. This allows connecting patterns (branches)
or their states (nodes) by edges. During the concatenation for each pattern Mi

an attempt is made to find another pattern to concatenate with - Mj , when the
sequence of user actions, represented with the Mj , is the most likely continuation
of the sequence of user actions represented by the pattern Mi. Here we consider
in detail how the system can automatically perform it.

Completion of this process ensures the optimal size of the tree and the cor-
rect connections between patterns. It also results in the appearance of longer
patterns (branches) since several shorter ones may be connected during the op-
timization. The longer branches reflect a more strict user behavior peculiarities,
and hence lead to a smaller amount of errors in user behavior evaluation.

The operation of concatenation is repeated until all patterns presented in
the tree have been tried to concatenate with each other. When it is not possible to
find a pattern to concatenate, the creation process of the temporal-probabilistic
tree is over. This tree is stored in the user profile database and it is used for online
user behavior classification.

94

� � � � � 	 � � � � � � � � � � � � 	 � �

� � � � � � � � 	 � � � " � � " � � � ') * +

� � � � � � � � � � � 	 � - � " � ') � +

� � � � � � � � � 	 � � � � 1 � � � � 	 � - �
' � " � � + " � � � � � � � � � 	 � � � � �

� � � � � � � � � - " � � " � � � � " �
	 - � � " � � ' < * +

� � � � � � � � � � " � 	 - � � " � � 	 � � �

� = > @ A C � D @ F

- 	 � - G � 	 � �
 µH , σH

� � � � � � � K L M

N O P Q
R S Q Q O T N

� U L * M V � K L M C � X * Z

σH C
σH X * Z

σH X * Z [\
σH

]

]

]

]

- 	 � - G � 	 � � �
∪

\ � U L * M V � K L M

- 	 � - G � 	 � �
∆

� ` \ � ` V �
∪

- 	 � - G � 	 � �
∆

� * \ � * V �
∪

∆
� ` C � X * Z

a 	 � � � � � � ` � � � G � � � - 	 � � � \ C
� ` e � � - � � 	 � � � g � ` 	 � � � ` e

� 	 h � - " � � " � � " � � � i � � 1 � �
j " � � 	 - � � " � � " � � `

� K M k k] \
∆

� `

∆
� * C � X * Z

) l ' � * +
� � 	 � � �

� ` m l � � � � � 	 � � 	 � � � � � 	 � 	 n
� � 	 � � � � " � � � � � � " � � o � 	 � - �

� * � � � G � � � - 	 � � � � � � "
� e *

j " � � 	 - � � " � � " � � *
� K M k k] \

∆
� *

s " � - 	 � � � 	 � � � ` ' " � � e ` + 	 � �
� ` m l ' " � � e ` m l + t - � � 	 � � � � 1 �

u

]

u

u

]

u

u

u

]

-

� " � 	 � � � � � � v � �
" � � � � � w 	 � � " �+

-

x

l y l l

l z

l {

l |

l }

l ~

l �

l �

l x

z y

z l

z z

z {

z |

z }

z ~

z �

z � z x

{ y

{ l

{ z { { { |

{ }

Figure 6.5 Optimizing the patterns

The optimization process is started by sorting all patterns by field n (usage fre-
quency). After this the classifier takes the pattern with the biggest n (9) and
looks for concatenation possibilities, then with smaller n and so on, until the
last pattern with smallest n is processed (10, 11). In other words, the classifier
starts processing the most supported (by cases) patterns and continues towards
the less supported. This leads to the creation of the more correct and precise
model since the most supported patterns establish the foundation of the model,
which is extended by less supported patterns providing additional details and
ensuring the completeness of the model.

95

For each pattern, the system looks for another one to concatenate. The
main goal is to find and establish relations (connect nodes by edges) between
patterns with the smallest σt to assure the precision of the behavioral model. For
the current pattern Mj it is performed by the following steps:

1. The last node Gi of the pattern Mj is selected (12) and the instance IA
i is

identified that is represented by the node Gi (13).

2. For each pattern the set Li of actions is created that contains only the
actions that belong at the same time to both: node Gi and to the pattern
Mj (15, 16).

3. Then for the node Gi a vector of edges is created. The jth element of
this vector corresponds to an edge, connecting the set of actions Li of
the node Gi with the set of actions Lj of the first node Gj of the pat-
tern Mj . For example, let the node Gi be the common node of the
patterns Mi,Mi+1,Mi+2, . . . , Mk (but it is the last node only of the pat-
tern Mi). Let the node Gj be the common first node of the patterns
Mj,Mj+1,Mj+2, . . . ,Ml. Then the edge that connects nodes Gi (pattern
Mi) and Gj (pattern Mj) is formed only by the pairs of actions that are
taken form the sets Li and Lj (17).

4. If the number of the obtained pairs is greater than nmin (18) it means that
the classifier is able to establish a relation and connect the nodes by an
edge. If the classifier is not able to connect the states, then it takes a next
pattern and goes to step 1 (14).

5. For each element of this vector parameters µ, σ, eprev, enext are calculated
(19, 20) using formulas 6.6-6.7.

6. To limit the interval inside which the analysis is performed the nfar is in-
troduced (21). It is a number of relations, the temporal lengths of which
is not included into an interval, formed by the majority of relations that
form a current distribution, i.e. for such relations the following condi-
tion holds:

∀|td(eprev, enext)| /∈ |µ ± ctrans × 3σ|. (6.8)

The constant ctrans affects the length of the interval inside which all re-
lations are grouped. It is introduced for flexibility purposes. It allows to
affect from outside patterns’ concatenation process during systems op-
erations. This constant is set experimentally and must be ctrans ≥ 1. The
limitation of the interval allows not to search for stable relationships be-
tween events that are situated far from each other (for example, in the
morning and in the evening).

7. If npair − nfar < nmin it means that it is not possible to establish a stable
relation and the next pattern is chosen.

96

8. If a stable relation can be established a standard deviation of this relation
σ is compared with the obtained before from the previously analyzed
patterns (22).

9. When the element with the smallest value of σ is found, the pattern Mj

is selected relatively to this element. After that, the system concatenates
two patterns Mi and Mj .

The search for concatenation possibilities for the current pattern on this iteration
is finished (14). Now, it is necessary to perform the concatenation itself.

Before concatenation the amount of actions that will form a new pattern is
calculated (24). Let n be the amount of relations forming an edge Ej between Gi

(pattern Mi) and Gj (pattern Mj). Then the usage frequency of the concatenated
pattern would be n∪ and it is calculated as:

n∪ = npair − nfar, (6.9)

These nfar relations between pairs of actions most likely do not belong to the
pattern produced by concatenation and therefore should be excluded. The pro-
cess of patterns concatenation depends on the following conditions:

- How big is the amount of actions of the pattern Mi that are not included
into the concatenated pattern (25):

∆ni = ni − n∪. (6.10)

- How big is the amount of actions of the pattern Mj that are not included
into the concatenated pattern (26):

∆nj = nj − n∪. (6.11)

- Whether the node Gj is common node for several patterns.

Below we consider all possible cases in details:

1. If for pattern Mi the following condition is met (27):

∆ni < nmin (6.12)

Then in the pattern Mi all the nodes are selected for concatenation. Know-
ing the nodes we know the instances represented by these nodes. For
each of these instances, the amount of ”free” actions is increased by ∆ni

(29).

2. If the condition 6.12 is not met then the pattern Mi is duplicated (29).
While duplicating a new pattern M ′

i is created. Both M ′
i and Mi patterns

97

are represented with the common set of nodes and edges (as the pattern
Mi had before duplicating).

3. If for the pattern Mj the condition is met (27):

∆nj < nmin (6.13)

then there are two possibilities:

• Node Gj is shared between the patterns (31). Then the pattern Mj is
detached in a separate branch (32). It means that for the pattern Mj

the own branch in the tree is created so that all nodes of this branch
would not be shared with any other pattern. Then for the pattern
Mj all the nodes are selected. Knowing the nodes, the instances
represented by these nodes, are found. For each of these instances
the amount of ”free” actions is increased by ∆nj .

• Node Gj is not shared between the patterns. Then for the pattern Mj

all the nodes are selected (33). Knowing the nodes, for each cor-
responding instance represented by these nodes, the amount of
”free” actions is increased by ∆nj .

4. If for the pattern Mj the condition 6.13 is not met, then it is duplicated
(34). While duplicating a new pattern M ′

j is created. For the pattern M
′
j

its own set of nodes and edges (i.e. own branch of the tree) is created.
The nodes and the edges of the new pattern M

′
j are identical to those of

the pattern Mj .

In a case, when it is necessary to duplicate Mi or Mj , then only a new pattern M
′
i

or M
′
j takes part in the concatenation.
Finally patterns M

′
i (Mi) and M

′
j (Mj) are concatenated (35). It means that a

set of l nodes of the pattern M
′
j (Mj) (with the edges connecting them) becomes

the l last nodes of the pattern M
′
i (Mi). After that each instance IA, for which

the amount of ”free” actions (nact) has been increased during the concatenation
process, are checked whether the condition is satisfied:

nact ≥ nmin. (6.14)

If it does, a new pattern Mi is created, representing this instance, as if it was a
newly created instance. It means, that the system checks whether the tree has
already the branch beginning with node Gi, which represents the instance IA. If
it does, then this new pattern is assigned to be represented by this node. If not
then a new node is created that represents the instance IA of the new pattern.
This new node forms a new branch of the tree that at the moment contains the
only node and represents the only pattern.

98

The operation of concatenation is repeated until all patterns presented in
the tree are tried to concatenate with each other. When it is impossible to find
a pattern to concatenate, then the creation process of the temporal-probabilistic
tree is over. This tree is stored in the user profile database and it is used for online
user behavior classification.

As can be noticed from this section the learning process (the optimization
in particular) is very time and resource consuming (compared to a relational
matrix approach described in Chapter 5). However, it is performed only once at
the initial stages of system operations - during the profiles creation. It is updated
automatically and thus, never required to rebuild the behavioral models later
due to a concept drift. Also the HIDSUR architecture was designed to ensure the
safety of the knowledge base and transmitted information assuring the correct
recovery form of different failures (such as LAN failure).

In this section the process of creation of a temporal-probabilistic behav-
ior tree, that represents a model of normal behavior of a user, was described.
The process of pattern concatenation produces a tree with longer branches. The
longer branches reflect more strictly user behavior peculiarities, and hence leads
to a smaller amount of errors in user behavior evaluation.

In the following section we describe how to detect abnormal behavior by
matching the current user actions against the user’s profile stored in a form of
the temporal-probabilistic tree.

6.3 Detecting Abnormal Behavior

While performing every day tasks a user repeats the same activities over similar
sets of data, while spending approximately the same amount of time. Revealing
sequential and temporal patterns of user behavior, it is possible to detect when
someone else is pretending to be him/her. As a measure that shows authenticity
of a user a coefficient of reliability is used.

6.3.1 Defining the ”When”

The process of online user behavior verification is presented in Figure 6.6. It is
similar to a classification process that involves the relational matrix approach.
Briefly describing the process, it is possible to say that the classifier goes from
state (node) to state of the temporal-probabilistic tree changing the coefficient
of reliability according to discovered deviations. Initially, it checks whether the
current user action belongs to the node that the classifier was expecting as a
next state - probabilistic fraction of the coefficient of reliability change. After
that action’s and relation’s (transition that led to the current state) lengths are
compared with their average values from the profile - temporal fraction of the
coefficient of reliability change. Based on the comparison results the classifier
decides to which direction and how much it is necessary to change the coefficient
of reliability.

99

� � � � � �
 �
 � � � � � � �
� � � � � � � � � � � � � �

� � �

 " � � � � % � � � � � '

() � � � � * � " � � � � � � *
� " � � � � + , � � , � � � " �

/

() � �
�

" � � " 1 � � � � � �

() � � � � * � " � � � � � � *
� � � � � � � � " � � , ,

/

3 4 5 � 7 8

9 � � " 1 � � � � � � ; = � � � �
� � � ' � ?

/

9 � � " 1 � � � � � � ; = � � � �
� � � ' � ?

�

� � � ' � ? D � � � � � � , � , , � � �
� � � � �
 � �

() � � � � * � " � � � � � � *
� � � � � � � � + , � � , � � � " �

() � � � � * � " � � � � � � *
� � � � � � � � + , � � , � � � " �

�

F � , � � � , � � � �
 �
 � � � � � � �

/

" � � " 1 � � � � � �

T
ir∆

� �

� � � � � �
 �
 � � � � � � �
1 =) � � �

�

� H I J L N O

P
+−=

∆=∆
w

w

l

lik

t
k

w

t r
l

r
1

1

Q
+−=
∆=∆

w

w

l

lik

T
k

w

T r
l

r
1

1

R
+−=
∆=∆

w

w

l

lik

s
k

w

s r
l

r
1

1

/ ()
()
()s

thresh
s

T
thresh

T

t
thresh

t

rr

rr

rr

∆>∆

∆>∆

∆>∆

S
SS

S

 � � � ;

/

� I � N O

�
�

" � � " 1 � � � � � �s
ir∆

� � � � � � � �
� D � T V W

X =) � � �

Y

Z

[

\

]

^

_ `

a

Y c

Y Y

Y Z

Y [

Y \ Y]

Y ^Y _

Y `

Y a

Z c

Z Y Z Z

Z [Z \

Z]

t
ir∆ t

ir∆

Figure 6.6 Classification algorithm implemented in the classifier that uses temporal-
probabilistic trees to describe a user behavioral model

100

As it is possible to see the coefficient of reliability change on each step of the
classification consists of three forming components - the number of features in-
volved in user behavior verification:

∆ri = ∆rs
i + ∆rT

i + ∆rt
i , (6.15)

where ∆rs
i is a probabilistic part showing how much it was expected (according

to the user behavioral model in the profile) that the user performs this action.
∆rT

i and ∆rt
i shows a difference between the action’s and the relation’s temporal

lengths and their average values at this state.
To avoid potential false alarms due to changes in user behavior it is neces-

sary to design the classifier in a way that it would not react as soon as it detects
a single abnormal action. There should be some sequence (but not very long)
of abnormal event present in the audit log to ”convince” the classifier to fire
an alarm. Thus, we make an assumption that in the case of normal behavior
changes the average value of the coefficients of reliability changes should aspire
to zero

∑
i ∆ri → 0. However, in case of repeated occurrences of observations

with low probabilities the values of estimative coefficients drop dramatically.
At the beginning of the pattern matching process an intrusion detection

system does not yet have any evidence of either trust or distrust, therefore it
assigns an average coefficient of reliability to a user (0.5). During the matching
process the system updates the coefficient of reliability according to deviations
found during the matching of the current behavior with the profile (Equation
6.15) according to the following rules:

• Each time a node is chosen in behavior classification its n is incremented
and the parameters are recalculated taking into account a new time Ti.

• Each time an edge is used its parameters n, µ and σ are recalculated by
the analogy with the node.

• When the transition probability of the node diminishes to a certain limit
l (since probability calculations based on quantities of transitions this
means that this node is not used for classification for the new ones) the
system deletes this node, as it does not reflect the user’s behavior any
more. Changing the limit l we can vary the speed of tree renewal. The
higher the level l is, the faster the unused nodes will be deleted and new
nodes added instead and vice versa.

• There are two possibilities when a new node(s) should be added:

– When a new event sequence is detected and recognized as normal,
then the system adds new node(s) in order to cover the discovered
pattern.

101

– If a sophisticated pattern is encoded in the tree then it is possible
to split it into several simple patterns in order to increase detection
precision. Pattern splitting allows calculating coefficients of relia-
bility to be much more accurate, but at the same time it makes the
tree grow.

Consider the matching process in details. In our intrusion detection architec-
ture there is a classification module that takes an action stream as an input and
calculates a coefficient of reliability change for every action. At the beginning,
when the first action O1 comes into the classifier, it starts the matching process
by creating a new record (”state” variable) related to this action and its possible
continuation. This record includes:

- information about an instance IA
i where a current action (at the moment

- the first action) belongs to,

- the node Gk
i , that represents this instance,

- the set of possible states on the next level, that have edges connecting
them with Gk

i ,

- the starting and ending time of the action,

- the time tlim which is a temporal interval during which the next ac-
tion related to Oi is supposed to appear. The value tlim is calculated
as µt + 3σt, where µt and σt are the parameters of the longest transition
connecting Gk

i with any node on level k + 1 (that is; this edge has the
biggest value µt among all the edges coming out of Gk

i).

If a certain node on level one in the tree, that represents the instance IA
i , is not

present then this record cannot be created. In this case, the amount of ”free”
actions of the instance IA

i is incremented by ’1’.
The new matching process is launched (and correspondingly, its record is

also created (2)) if a new action comes for which its instance does not match any
anticipated actions of all matching processes. Similarly, when the new action
arrives and there are no matching processes active, then a new matching process
is initiated.

When a new action appears in a stream of actions (4) a classifier should
determine what instance this action belongs to (5). The action’s name determines
a correspondent action class. After this the action instance is identified. The
identification process is the same as for the relational matrix approach and it
was described in detail in the previous chapter, therefore we are not going to
concentrate on it here.

After the correct instance is found the classifier looks to what node of the
tree this action may correspond. In order to accomplish this task the system
searches among possible nodes on the next level, stored in a record of each

102

matching process. During the search for the next node a transition is defined
between the current node and the preceding one. If there are several nodes for
which the transition may be defined, then the node closest to µt is chosen. When
the next node is found, then the record of the matching process is updated. In
the case that there is no match found, the classifier looks for the possibility to
launch a new matching process.

At this stage of the action’s classification one of its features is identified
- correct position in the temporal-probabilistic tree (node). The classifier com-
pares the length of the action with the distribution described by parameters µ

and σ taken from the instance represented by the node found. As a result of the
comparison ∆rT

i (6) is calculated (the way how it is calculated and discussion
will be presented later in this chapter).

After the classifier determines the current node it has to evaluate a transi-
tion between this and the previous nodes. The edge connecting these states may
represent a relation. During online learning new edges may appear. Each edge
represents a relational instance. If a number of cases of this instance is not statis-
tically big enough it can not be used for quantitative classification (7). However,
the presence of such edges is enough for the classifier not to fire an alarm, there-
fore they are used for qualitative classifications showing possible transitions. In
case there is no a stable relationship between the compared nodes the classifica-
tion process goes to the next phase. If a relationship is found its relation class is
identified according to the relation’s name (8).

If the relation class is during (9) then the temporal length of the classified
relation is calculated (10) and the correct instance inside the relation class (11)
is identified (the same way as for actions). After this it is possible to compare
how well the current relation fits into the distribution that describes the found
relational instance. As a result of the comparison the ∆rt

i is obtained (17).
If the relation class is before (14) then there are some differences in the cal-

culations of the ∆rt
i . The temporal length is measured differently (see Chapter 4

for details). Also it is necessary to compare time passed from the last action with
inter-session interval (13). If a new session is started the classifier is not evaluat-
ing the time interval between the last action of the previous session (16) and the
first one of the current session. Also the classifier resets the ”state” variable (15).

During the search for the next node each matching process is constantly
checking the time elapsed after the current action Oi of this process. If this time
interval is longer than tlim then it is necessary to check if there is a pattern with
the last node Gi that contains the action Oi. For this pattern, a value of usage
frequency n is incremented by ’1’. It may probably happen that such a pattern
does not exist. In this case, all the nodes are selected that represent this pattern.
For instances from selected nodes the amount of ”free” actions is incremented
by ’1’. Regardless of the result of the search this matching process for the current
session is over.

103

When the action and the transition were evaluated the ”state” variable is
updated reflecting the new state of the classification process (18). The proba-
bilistic part of the coefficient of reliability change is calculated ∆rs

i (19). There
were a number of possible transitions (edges outgoing form the previous node)
that lead from the previous state to one of states on the current level. Each tran-
sition had a probability that it would be chosen. This possibility depends on
how many cases support it - nk

i . Therefore, it may be calculated using Equation
6.1.

In order to detect sudden changes of the user behavior we also use a sliding
window (with lw length) to analyze the behavior inside it (as for relational matrix
approach). If there are not enough actions in a queue to fill the window (20)
then the classifier goes to the idle mode (3). Otherwise, it calculates the average
values for the parameters ∆rt

i , ∆rs
i and ∆rT

i inside the sliding window (21).
When the average values are calculated they are compared with estab-

lished thresholds. If one of the the average values (∆rt, ∆rs and ∆rT) is big-
ger than it should be (22) then the system administrator is notified and has to
investigate the alarm (23).

If all of the average values lie inside the defined safe interval then the user
profile has to be updated taking into account the new action (24). For every node
Gi its mean and standard deviation are recalculated each time it is being used
for classification according to:

µTi
=

µTi−1
× (ni − 1) + Ti

ni

, (6.16)

σTi
=

√√√√σ2
Ti−1

× (ni − 1) + (µi − Ti)2

n2
i

. (6.17)

The mean and standard deviation of a transaction may be calculated by analogy:

µti =
µti−1

× (ni − 1) + ti
ni

, (6.18)

σti =

√√√√σ2
ti−1

× (ni − 1) + (µi − ti)2

n2
i

. (6.19)

where T is the time length of the action being classified; t is the temporal dis-
tance between the actions3.

6.3.2 Predicting the ”How Much”

In order to avoid false alarms, the system needs to distinguish between natural
behavior change and malicious training attempts. To accomplish this the coeffi-
cients of reliability are used. While classifying the user’s behavior, the process of

3 The issue of concept drift is discussed in the next chapter.

104

classification searches the tree. It goes from one action to another action on the
next level through some edge on the tree. During this process the coefficient of
reliability of the user decreases/increases according to the amount of deviations
between his actions and the expected or encoded ones.

The more the actual time differs from the expected time, the more punish-
ment the coefficient of reliability receives. There are two possibilities of quanti-
tative differentiation, therefore there are two cases of how the coefficient of re-
liability may be decreased: {T} -actions’ time lengths (decreasing occurs when
the classification process leaves certain node) and {t} - edges’ time lengths (de-
creasing occurs when the classification process went through an edge and enters
a node).

On each step of classification a coefficient of reliability r is updated accord-
ingly:

ri = ri−1 + cνA∆ri, (6.20)

where ri−1 is the value of the coefficient on the previous step; ∆ri is the coef-
ficient of reliability change on this step; c is the coefficient that determines a
system’s sensitivity to deviations (chosen by a system administrator); and νA is
the coefficient of security significance of this action class, defined by the system
administrator for each action class.

Calculations of the coefficient of reliability change are based on the follow-
ing assumptions:

- how big is the deviation between an average action length and a current
action length;

- how big is the deviation between an average transition length and a
current transition length;

- how big is the standard deviation of action instance that the predicted
action is included in;

- how big is the standard deviation of relation instance that the predicted
transition is included in; and

- the security significance of the current action class.

Thus, the value of coefficient of reliability change should depend on the temporal-
probabilistic characteristics of an instance and a transition that connects the pre-
vious node with the current one. Besides, for the normal user behavior, the
average value of this coefficient should aspire to be zero.

The coefficient of reliability change may be calculated as:

∆ri = ∆rT
i + ∆rt

i ,

∆rT
i = f(T) − f(µT + 0.67σT), (6.21)

∆rt
i = f(t) − f(µt + 0.67σt),

105

where f(x) =
√

2πσ2 × exp ((x − µ)2/(2σ2)) is the probability density function
of the instance time distribution. Dependence of ∆rT

i (∆rt
i) on time is shown in

Figure 6.7.

Figure 6.7 Coefficient of reliability change

Normal user behavior should lead to no average change. To satisfy this require-
ment a shifted probability density function is chosen. For normal user behavior,
the action (transition) times are within the interval [µ − 0.67σ, µ + 0.67σ] with
probability 0,5 (Borden, 2002). This interval splits horizontally the normal dis-
tribution into two equal parts. Therefore, probability density function is shifted
to the value of f(µ + 0.67σ), in other words the horizontal axis is shifted to this
position (Figure 6.7) and it separates the part where the coefficient of reliability
change is positive (above it) and negative (below it).

As can be seen from the formula 6.22 the values of ∆T
r and ∆t

r can be pos-
itive as well as negative. The more the action (transition) time differs from the
mean of its instance the smaller the value of the coefficient of reliability change
is. If the deviation of the current action (transition) time differs from the mean
more than 0.67σ, the user behavior is considered as abnormal rather than nor-
mal. Therefore, the coefficient of reliability is ”punished” by a negative value of
∆T

r (∆t
r) and the value of the coefficient of reliability ri is reduced. If the current

action (transition) time differs from the mean less than 0.67σ, the user behavior
is considered as normal. Therefore, the coefficient of reliability is ”encouraged”
by a positive value of ∆T

r (∆t
r) and thus, the value of the coefficient of reliability

ri is increased. At the end of the matching process the coefficient of reliability r

is analyzed and if it is lower than a certain threshold the alarm is fired.
There are two cases when it is impossible to calculate the coefficient of

reliability punishment by the method described above. These cases are:

- a new action cannot be assigned to any of the possible nodes as well as
to any of the first states in a pattern set; and

106

- after the appearance of the current action in a stream of actions, more
than Tlim time has passed; and there is no existing pattern that has Gk

i as
a final state.

It is obvious, that in these cases the temporal-probabilistic tree does not con-
tain such a relation. In these cases, the coefficient of reliability punishment is
calculated as:

∆ri = f(µT + 3σT) − f(µT + 0.67σT) (6.22)

As can be seen from above, in spite of the probability that this action may belong
to the interval [µT − 0.67σT , µT +0.67σT], the value of ∆ri is negative. Hence, the
coefficient of reliability is decreased showing that the current action does not
match the user profile.

The shortcoming of this function is its relatively large computational com-
plexity. To overcome this it is possible to approximate it by a linear function.
Such linear functions of change for the coefficient of reliability may be calcu-
lated as:

∆ri = ∆rT
i + ∆rt

i ,

∆rT
i = −(f(µT) − f(µT + 0.67σT))

|T − µT | − 0.67σ

0.67σT

, (6.23)

∆rt
i = −(f(µt) − f(µt + 0.67σt))

|T − µT | − 0.67σ

0.67σT

.

The first part of the formulas for ∆T
r (∆t

r) changes in time very slowly and there-
fore may be recalculated once per-hour or per-day. Thus, calculations of the
functions 6.23 is computationally easier, and therefore it makes the classification
process to perform faster.

Analyzing the dynamic of the coefficient of reliability changes, it is possible
to derive the answer to the question how much. Since the coefficient punishments
depend on the security priority of the action, therefore it gives a clue to a possible
damage degree. So far the detection system has detected an intrusion and it is
even possible to estimate a possible damage degree and separate the intrusion.
What can the intrusion detection system do in order to expose a real source of
abnormality?

If an abnormal event stream is detected it means that the events of the
stream do not belong to the person they are claimed to. In case of a masquer-
ader who performs an intrusion the system may attempt to automatically detect
the source of the intrusion. The intrusion detection system tries to match the
abnormal event stream against the other profiles of active users and analyzes
coefficients of reliability. If at the end it finds a coefficient that is higher than
the current one, then the system has suspicions that this insider abuses someone
else’s network account. In the case that the system has detected an intrusion, it

107

is reasonable to automatically encode the abnormal event stream to pattern for
its usage by a misuse intrusion detection system.

6.4 Summary

In this chapter we have proposed a new approach for anomaly detection. It is
based on the same theoretical background as a relational matrix approach and
aimed to be used for different user categories and under different circumstances.
However, a temporal-probabilistic tree may be converted into a relational matrix
at any time, therefore, having only a temporal-probabilistic tree it is possible to
employ both these approaches.

The temporal-probabilistic approach is aimed at discovering and usage of
user behavioral patterns. It stores them in a form of temporal-probabilistic trees,
which are adapted to catch temporal aspects of a users’ behavior. The main as-
sumption behind this approach is that the behavior of users follows regularities
that may be discovered and presented using the temporal-probabilistic trees for
the recognition of the user. The approach described here is used as main clas-
sification techniques in the HIDSUR and implemented in a classifier (see Figure
3.2), which is the most important part of the system since it has to track dynami-
cally a users behavior and differentiate normal behavior changes from abnormal
behavior.

In the next chapter we are going to consider different issues related to deal-
ing with behavioral changes. They may be caused by different reasons, such as
normal behavior change or attempts of abnormal learning, and should be prop-
erly addressed in order to avoid potential false alarms.

7 DEALING WITH ANOMALIES IN USER
BEHAVIOR

An anomaly in a system may be caused by three different reasons. One of the
possibilities is an intrusion. Another two are: concept drift and malicious at-
tempts to train the system’s profile(s). The first case was discussed in the pre-
vious chapter. Here we concentrate on the other two: what are they, how to
differentiate between them, and how to handle them.

If a user (process or network) behavior is to remain static there would not
be a concept drift problem. However, in computer systems everything is chang-
ing and with time changes occur more often (lifetime of software products is
constantly shrinking, networks are becoming faster, etc.). The larger the network
the more likely change is occurring somewhere on the network. If anomaly de-
tection is to remain accurate and complete it must be able to learn continuously,
and it is this learning process that is the Achilles heel of anomaly detection.

A small data set is incomplete and therefore, can not be used for learning.
A large data set will be inaccurate once change occurs. An anomaly intrusion
detection system that continues to learn based upon new data exposes itself to
learning that attacks are not anomalous.

This problem was researched before in the artificial intelligence area. There
are some ad-hoc methods suggested in a supervised learning for dynamic up-
date of a knowledge base (Mitchel, 1997). However, there is no efficient method
for unsupervised learning to handle the concept drift (Nilsson, 1998). The rea-
son for this is the difficulty in establishing a feedback to a classifier providing
the information about the correctness of provided classifications.

In the anomaly intrusion detection area many works have discussed this
problem, however, only suggestions to the possible solutions were provided, for
example, (Carpenter et al., 1992), (Lane and Brodley, 1999), (Lee et al., 2000),
and (Zhang et al., 2001). Sometimes, a question of how a system’s parame-
ters may affect such updates in a knowledge base is raised (Eskin, 2000), (Tan
and Maxion, 2002). However, there is no generic method suggested directly for

109

anomaly intrusion detection to handle the concept drift efficiently differentiat-
ing it from malicious learning attempts. Therefore, we feel that this issue has
to be addressed since it is the weakest point of the anomaly intrusion detection
preventing further development and widespread use of anomaly intrusion de-
tection systems (especially ones that use behavioral models).

A very important problem in information systems security is to prevent
undesirable or malicious learning of systems that use online learning to detect
the presence of an intruder masquerading as a valid user, or abusive actions of
a legitimate user. It not possible to create a universal approach to differenti-
ate the concept drift from the intellectual attack since systems that employ ma-
chine learning are unable to automatically establish a strict border between them
(Schlimmer, 1987). Therefore, to handle these situations it is usually required to
devise an ad-hoc element for the machine learning approach. It varies depend-
ing on the learning algorithm involved and the type of data processed since
for different algorithms and types of information the line dividing concept drift
from intellectual attacks must be established differently. It is mainly defined by
the way the information is processed and information context that can not be
translated and understood automatically by the learning system.

In this chapter we discuss the above identified problems of the anomaly in-
trusion detection. We start from discussing how we handle the concept drift and
continue to the detection of abnormal learning. On the implementation stage of
system development some methods are engaged to detect and, therefore, pre-
vent such undesirable learning. In the HIDSUR system there is a component
that is designed to detect such undesirable (malicious) learning - profile analyzer
(see Figure 3.2). A brief description of its functionality was provided in Chapter
3. In this chapter we discuss methods to detect attempts to train the system and
prevent the system from learning such undesirable actions.

Additionally, in this chapter we introduce profile evaluation criteria that
help to expose the already trained profiles (i.e. profiles that have been trained
in a way to represent a much more general model of behavior). Intellectual
attack detection methods and the profile evaluation criteria are based on the
trustworthiness technique described in this section.

7.1 Monitoring Natural Behavior Changes

User behavior during his interaction with a computer is not constant. He may
gradually change his behavior weekly or monthly due to many reasons. He/she
might learn new features of the software; he/she might begin to use other soft-
ware (or another version of the same software); the goals that the user tries to
achieve might be changing, etc. Therefore, the time that the user spends on per-
forming his/her tasks may also change. These gradual behavior changes are
referred to as concept drift. The tree should be periodically updated in order to
take into account the natural behavior changes; otherwise a rate of false alarms

110

would be dramatically increased. Therefore, the tree upgrade includes the ad-
dition of new patterns and, therefore, branches in the tree, and the deletion the
outdated patterns, that the user does not follow any more. To reach these goals
the constant recalculation of the following parameters is required:

• the value nact of the instances and the value n for the patterns;

• the mean µT and deviation σT of the action class instances; and

• the mean µt and deviation σt of the relation class instances.

Consider the cases when certain changes in the tree structure are needed:

1. The amount of ”free” actions nact of an instance becomes bigger than
nmin.

2. The usage frequency n of a pattern becomes less than nmin.

3. The deviation σT of an action class instance becomes bigger than the
threshold value σTmax .

4. The deviation σt of a relation class instance (current transition) becomes
bigger than the threshold value σtmax .

5. The probability of a node usage becomes smaller than the threshold
level pmin.

Each of these cases is processed separately. Below we consider every one of
them.

7.1.1 Learning User Normal Behavior Changes

One of the very important abilities is to learn online user behavior changes in
order to avoid false alarms. This kind of learning implies online addition of
new patterns and the removal of old ones that do not accurately describe user
behavior any more. To perform this, certain criterion should be established. By
criteria we imply the setting of certain limits for parameters nact (amount of ”free
actions”) of instances, n (usage frequency) of patterns and p (usage probability)
of nodes should be checked. The parameters nact of instances and n of patterns
are dynamically updated as follows.

During every classification step, a new action issued by a user is assumed,
firstly, to an action class and, secondly, to a certain instance of this class. Know-
ing the owner instance, the IDS finds a corresponding node for this action. If the
action does not match any node it means that the instance that includes this ac-
tion does not belong to the expected node, nor to any of the first nodes of other
patterns. In this case the value nact of the instance, which this action belongs to,
is increased by ”1”.

111

Outdated actions from the input stream are deleted on a daily (or weekly)
basis. For current data (day or week), all actions that occurred earlier than a
certain time point are considered as outdated and are not taken into account
any more. The usage frequency n of the patterns, that include such actions,
decreases, as well as the amount of ”free” actions. The value of lnode is chosen
experimentally and should be big enough so that the length of the history would
be long enough to be able to statistically find sequential and temporal patterns
in it.

If during classification the usage frequency n of a pattern Mi becomes less
than nmin, this pattern is considered as outdated. The nodes of the tree, that
represent this pattern, are deleted. For the instances of pattern nodes the value
nact of ”free” actions is incremented by n.

If during an update step the value nact of an instance appears bigger than
nmin, then a new pattern is created and represented by the newly created node.
After that, the system attempts to concatenate the new pattern with the older
ones as described in the previous section.

Each time the classification process has passed a node, the parameters µ

and σ, for the action instance of this node and for its incoming transition, are
recalculated. If for an instance IA σT > σTmax it means that the current instance
IA should be checked if it contains more than one instance. The check is per-
formed by an attempt to split the instance into two instances I ′ and I ′′ as shown
in Figure 7.1. A method used to search for instances is applied on the current
instance to determine the possibilities of splitting it.

Figure 7.1 Simple example of instance splitting

If it is not possible to split the instance IA
i it is considered as useless for classifi-

cation and the intrusion detection system does not use it any more.
In the case of deviation σt of the edge between Gk

i and the node Gk+1
i , be-

comes bigger than the threshold level σtmax (σt > σtmax), this edge should be
pruned.

If either of the conditions above is met, the tree is rebuilt. After conversion
a new tree appears in which for all instances the parameters σT and σt are lower
than their possible maximum values.

112

7.1.2 Dealing with Concept Drift

As was already mentioned, in real life user behavior is not constant during the
time he/she performs his/her activities. For example, when a user begins to
use a program, he/she may not know its options and abilities. He/she usually
makes many mistakes. After some time, with experience, the user’s mastery is
growing, the level of mistakes becomes lower, and program abilities are used
in a more optimal way. Thus, temporal characteristics are constantly changing.
Methods that do not consider such smooth behavior changes may produce many
false alarms. Below we suggest two ways to deal with these possible problems.

The first way is to limit the action lengths’ history based on which the
temporal-probabilistic characteristics of nodes and edges are calculated. The
user behavior may not be constant during long periods of time, due to many
reasons. Correspondingly, the model of normal behavior is also changing. Out-
dated temporal data, still being used for classification, would disfigure the re-
sult. Therefore, it is necessary to limit n for node and edge by some value - lnode

and ledge correspondingly. The value of lnode (ledge) depends on how fast the n is
growing. In other words how often a certain node (edge) is used for behavior
classification. The faster n is growing the bigger the value lnode (ledge) should be.
This should be taken into account in the calculation process. This can be done,
for example, as follows:

µTi
=


 i∑

j=i−lnode+1

Tj


 /lnode (7.1)

where i is ith hit of the node; lnode is the volume of time length pool; and Tj is the
time of action when this node was hit jth time.

σTi
=

√√√√√

 i∑

j=i−lnode+1

(µTi
− Tj)




2

/lnode (7.2)

Each time a node or edge is used for classification its temporal-probabilistic char-
acteristics may be recalculated as:

µTi
=

µTi−1
× lnode − Ti−lnode

+ Ti

lnode

(7.3)

σTi
=

√√√√σ2
Ti−1

× lnode − (µi−lnode
− Ti−lnode

)2 + (µi − Ti)2

lnode

(7.4)

It is necessary to note that to calculate the standard deviation, the system uses
the mean, that is being calculated, using the previous history of mean values.
Introducing the limit for the length of this history gives the system the opportu-
nity to estimate and control the usage of computer resources that are involved
in storing and processing this history for every node and edge.

113

By analogy with calculation of temporal parameters for action instances
contained by nodes (Equations 7.3 and 7.4), the parameters of relation instances
(in edges) are calculated:

µti =
µti−1

× ledge − ti−ledge
+ ti

ledge

(7.5)

σti =

√√√√(σ2
ti−1

× ledge − (µi−ledge
− ti−ledge

)2 + (µi − ti)2

ledge

(7.6)

The second possibility of how to manage normal behavior changes is to control
smooth changes of the mean, when calculating a change value for the coefficient
of reliability.

In Figure 7.2 it is possible to see a curve that outlines the dynamic of the
mean changes during the concept drift. Since in point three, for recalculation of
the mean instead of all the previous history only the information about lnode last
hits is used, the action length that is considered as normal would be different
from the mean calculated in this point.

Figure 7.2 Dynamic of mean change

To lower this error we suggest the use of a corrected mean. Coefficients wi =

(0, 1) allow to limit the mean correction for the actions with high coefficients of
security significance:

wi = 1 − νAi

νmax

(7.7)

114

When wi → 0 then µ′ = µ and correction is not performed. Then the mean is
calculated as:

µ′
Ti

= µTi
+ wi ×

[
µTi

− µT i−lnode
2

]
(7.8)

µ′
ti

= µti +

[
µti − µt i−ledge

2

]
= 2 × µt − µt i−ledge

2

(7.9)

By analogy, it is possible to monitor smooth changes of a standard deviation. In
this case the history of standard deviations used is limited by lnode (ledge). In this
case the corrected standard deviations are:

σ′
Ti

= σTi
+ wi ×

[
σTi

− σT i−lnode
2

]
(7.10)

σ′
ti

= σti +

[
σti − σt i−ledge

2

]
= 2 × σt − σt i−ledge

2

(7.11)

Therefore, calculating the coefficient of reliability change, previously corrected
mean and standard deviation are used. The usage of corrected means and stan-
dard deviations lets the system escape ”inertia” while recalculating the temporal
parameters of distributions and the coefficient of reliability change. Prediction
of values of the means and standard deviations provides this possibility. This
property of prediction makes the change of the coefficient of reliability to grow, if
user behavior change inverts its direction (for example, the average time length
of the action used to grow, but now it decreases). At the same time during a
certain time interval it is predicted the mean to grow, but it begins to diminish.
This brings the system’s attention to this point, strengthening its ability to detect
intrusions.

Finally, at the end of this section we would like to say a few words about
checking for information consistency. This question was discussed in Chapter
4 and here we show that the checking for information consistency is a part of
the internal structure of the tree. If there is an action X in progress (system
received a starting point and expects action’s ending point) it means that there
is a correspondent node in the tree on level k. There are a number of nodes
on level k+1 that are connected with the current node and one of them may be
chosen as the next node. If a transition to any of these nodes starts it means
that action X is finished. Every transition is supposed to happen at a certain
time. If this time has passed then this transition is not possible. If all times of
all possible transitions, between the node corresponding the action X and the
connected by them nodes at the level k+1, have passed it means that the system
has not received the action’s endpoint and, thus, there exists an inconsistency.

115

7.2 Detecting the Abnormal Learning

In this section we introduce the requirements and evaluation criteria for user
profiles in an anomaly detection system and techniques for their evaluation in
terms of these requirements. We base these techniques on the approach de-
scribed in Chapter 6.

The goal in the intrusion detection task is to identify malicious occurrences
while falsely flagging innocuous actions as rarely as possible. This task also
includes the detection of intelligent attacks. For these purposes we have devel-
oped a special component - profile analyzer. In Figure 7.3 we can see the part
of a hybrid intrusion detection system architecture where the profile analyzer is
incorporated.

� � � � �
 �
 �
 � � �
� � � � � � � �

� � � � � � � �

� !
 � � � # �
 � # � � � � & � � �
() *

() + -
() - /

)))

0 �
 �
� � � # 2 4 � �

5 � � �
8 � � & � # �

: 2 �
 � �
8 � � & � # �

8 � � & � # �
� � � # 2 4 � �

; = > ? A B

A C ; = > ? A B

Figure 7.3 Part of HIDSUR with embedded profile analyzer to aimed at the detection of
intelligent attacks

The main goal of the profile analyzer is to detect intellectual attacks, which are not
possible to detect in real-time. It works asynchronously from other components
of the intrusion detection system. When the system has spare CPU time (for
example, nighttime) it is activated and it analyzes every user profile observing
all changes in the profile over some period of time. This period should not be
too short since during a short period of time there can not be many changes in
the profiles. Therefore, frequent checks would be a waste of computer resources.
On the other hand, the interval between checks should not be too long, because
in this case time-to-detection would also be too long. Additionally, it would
be impossible to detect when the attack happened. Taking all said before into
account, it would be logical to set the length of this time interval to a length of
the training period of a used classifier. During this period of time there are some
natural changes in the user behavior as expected, but it is not too long (a detailed
discussion about the length of the learning period is presented in Chapter 9).

116

Making tree traversal the profile analyzer calculates the coefficients of re-
liability for every node in the tree and then for the whole tree by putting mean
values of temporal parameters into formulas. The change of the coefficient of
reliability on each step has an inverse dependency on the value of the standard
deviation. It means that if there is a trend between standard deviations to grow,
the overall coefficient of reliability will decrease with time. It shows that there
is a problem with some particular profile and that may be the result of an in-
tellectual attack or incorrect choice of thresholds. Either case requires further
investigation and some action to perform. In case of the intellectual attack, the
analyzer reports to the investigation and report component, which reports fur-
ther to a system administrator.

In case of an incorrect choice of parameters the analyzer performs manip-
ulations on a tree in order to find the correct values of the parameters. It splits
general action patterns into several more detailed ones, etc. It also may vary the
parameters l, c and νA to manage the tree.

7.2.1 Profile Evaluation Criteria

In this section we propose criteria for user profile evaluation. Also we describe
algorithms for the detection of intellectual attacks. These algorithms are based
on continuous calculations and the monitoring of the profile parameters, i.e.
observing dynamics of parameters’ changes.

As it is possible to see in Figure 7.3, our HIDSUR architecture has a com-
ponent called profile analyzer. It is intended to analyze user profiles and main-
tain their integrity. The profile analyzer is activated after a certain time interval
and(or) when it detects the availability of spare CPU time. Then it checks all the
user profiles for satisfaction of the following criteria.

One of the profiles checking criteria is matching someone’s profile against
a stream of events created by another user or randomly generated. If the calcu-
lated coefficient of reliability begins to grow with time the system has a suspi-
cion that something goes wrong and it requires an additional and more detailed
check. Growth of the coefficient of reliability shows that the system tends to
accept a more general model of behavior for a certain user, instead of recogniz-
ing personal features of the user’s behavior and differentiating him from other
network performers.

There are two reasons that may affect the coefficient of reliability in that
way. The first one is that some of the coefficients l, c and νA (parameters of the
profile) have not been properly chosen. In this case the coefficient of reliability
will increase for every profile in the system. Therefore, the system administrator
should reconsider the constants and revise the profile of this user according to
the new ones.

The second reason is an undergoing intellectual attack. If the coefficient
of reliability only increases for a certain profile this may mean that this profile
is under attack. Thus, it requires further detailed investigation. In order not to

117

produce a false alarm the system employs several levels of analysis. If there is
suspicion of an intellectual attack the system has two choices. One of them is to
search the whole particular tree and separate the new branch(s) that provoke the
overall growth of the coefficient of reliability and then analyze the security sig-
nificance coefficients of each action νA for the separated branch. Based on this,
the profile analyzer is able to estimate the rate of usage of privileged commands
in the analyzed stream. If the rate is high this means that the user trains the
system to accept his malicious actions for future abuse. In case of a low rate, the
system may manipulate the security significance coefficients. Since these coeffi-
cients are included in the coefficient of reliability calculation, this manipulation
will allow the system to pay more attention to the usage of the analyzed actions
in the future.

There are other possible scenarios of meta-attack detection. For these pur-
poses the profile analyzer also controls tree growth, in order to detect sudden
tree augmentation, and determine reasons. There are two possible cases:

• Concept drift (Schlimmer, 1987). A user has begun to use new pro-
grams. In this case it is possible to differentiate by appearance of new
nodes with new types of events that have not been typical of this user
before. After this it is expected that the tree diminishes due to the re-
moval of actions and branches that do not reflect the user’s behavior
any more (when the user begins to use new versions or new programs
in most cases he/she stops using some program or performing some
tasks).

• The user has begun to use the applications he/she has been using before,
but in a new and unpeculiar way for this user. Therefore, it requires de-
tailed investigation (for example, the system may manipulate the coeffi-
cients of security significance as described above or, as described below,
analyze the standard deviation of time distributions).

In contrast to tree growth the intellectual attack may also be detected by moni-
toring the changes of the standard deviations of the tree. If the standard devi-
ations σt and(or) σT grow, it means that the system will classify, for this action,
more and more relations as normal relatively to any other action. Thus, the pro-
file analyzer, making the tree traversal, calculates the coefficient of reliability for
the whole tree according to:

R =
∑
{G}

1

νAi
× σ2

T

+
∑
{E}

1

σ2
t

(7.12)

It is possible to see from this formula, that the bigger the standard deviation is,
the less we trust the action or relation, if the user behavior tracing process goes
through this node or uses this relation. Also, it depends on action’s security

118

significance coefficient. Frequent and unrelated, to a certain very strict sequence
of actions, usage of privileged commands should flag a system’s suspicions.

A certain threshold is established for the tree. If after calculations the coef-
ficient of reliability is smaller than a predefined threshold value then the profile
analyzer applies pattern splitting on the tree. It searches for complicated patterns
with a wide deviation interval and splits it into several simple ones with narrow
σ. An example of such splitting can be seen in Figure 7.4.

�

�

�

�

�

�µ
��

µ�

µ

Figure 7.4 An example of splitting an action instance

In this section we have suggested methods for the intellectual attacks detection,
which is based on the usage of artificial intelligence features (such as online
learning) in the anomaly intrusion detection area. Our methods are based on
the algorithm for user behavior verification described in Chapter 6.

7.3 Summary

An anomaly intrusion detection system that employs static profiles has to re-
build them often due to their short life cycle. It leads to frequent interruptions
of the system’s functionality, additional manual labour, etc. At the same time
computer systems become faster and more powerful sending more and more
information over a network continuously increasing the network’s load. There-
fore, intrusion detection systems with static profiles cannot be efficiently used
in a modern network environment. On the other hand, a usage of the dynamic
profiles introduces additional problems that need to be solved.

This chapter discusses potential solutions to problems caused by the us-
age of dynamic profiles in anomaly intrusion detection. These problems may be
solved if a system may differentiate changes in a user’s behavior from malicious
attempts to train a system. We proposed solutions showing how to handle the
concept drift and detect abnormal learning. There is a part in the HIDSUR archi-
tecture that is devoted to detection of such an undesirable learning. The profile
evaluation criteria introduced here are aimed at exposing the already trained
profiles (i.e. profiles that have been trained in a way to represent a much more
general model of behavior). Intellectual attack detection methods and the pro-
file evaluation criteria are based on the trustworthiness technique described in
this chapter.

8 OVERVIEW OF THE IMPLEMENTATION
ARCHITECTURE

This chapter discusses an architecture of a prototype we built basing it on the
HIDSUR model described in Chapter 3. During the implementation of the pro-
totype we have encountered numerous problems that we have had to solve.
Below we identify some of them:

1. Every system has a unique configuration of software that makes it al-
most impossible to have a consistent test environment.

2. System behavior may depend on the software patches installed. Often
that software generates intrusion alerts simply because it is poorly de-
signed (e.g. writing logs into read-only storage).

3. There is no comprehensive definition of what a ”system load” is, there-
fore it is necessary to define it for our own case. Moreover, our under-
standing of what the ”system load” is may slightly differ from those
found in other works, and thus, it makes it difficult to compare perfor-
mance results obtained with other IDSs (Durst et al., 1999).

4. One of the important requirements of an intrusion detection system is
a minimum performance impact, but nowhere is defined what does
the ”performance” mean. We observed that in relevant research the
researchers sometimes take the CPU load or time-to-alarm as a main
performance measure (Lane and Brodley, 1999), (Wee, 1998). It even
happens in commercial intrusion detection systems (Weinberg, 2001).

If we consider the minimal performance impact as a requirement to an
intrusion detection system not to disturb the normal operation of the
system, it is not possible to provide a general definition of a normal op-
eration. Usually a security policy defines the requirements of acceptable
usage of the computer resources and establishes the correct procedures

120

for their usage, i.e. normal operation of the system. However, a policy
also defines security priorities, since different organizations have differ-
ent security concerns and priorities, which their policies must properly
reflect. These organizations would have different priorities, which in
turn imply different definitions of a system’s normal operation in these
organizations.

5. Different people have a different measure of effectiveness: some want
to know about new attacks launched against their systems, some want
to know about a pre-configured set of attacks, others just want to see no
attack warnings. Therefore, it is necessary to use different approaches
to establish thresholds for classification.

6. Time delays in reporting alerts are often very dependent on the partic-
ular system configuration: if there are checks for race conditions, it is
probably necessary to watch stat() family of system calls. If a user has
many applications that do a lot of stat calls (like top) then the system will
quickly fall behind processing the data.

These issues make it very difficult to evaluate an intrusion detection system
(Puketza et al., 1996). During our design we had to properly address them. We
defined the ”system load” and ”performance” for our case in a way that would
allow us to compare our results with the evaluation results of other intrusion de-
tection systems. The tests described below are aimed at showing the possibility
of usage and possible benefits (listed in Section 1.4) of discovering and employ-
ing temporal behavior regularities for user recognition. The prototype has been
developed to serve as proof of concept of the implementation of the model.

8.1 Architecture of the Prototype

In this section we describe our design choices during a prototype implementa-
tion. There were following design problems that had to be solved during the
implementation process:

1. The external representation of information that describes the dynamics
of user behavior (event→action→activity): how to exchange this infor-
mation between computers, and intrusion detection system components
or anomaly detector’s modules.

2. The representation of the behavior regularities (temporal-probabilistic
tree): what is the best way to store and process them in user profiles.

3. The interface to the user information source. In our implementation we
had to design a host agent in order to access user events on the operating
system level.

121

4. Events’ management: delivering the necessary events to a correspond-
ing classification process. On this stage it is necessary to ensure that the
classification processes obtain all necessary information without losses,
in order to perform online user behavior tracking.

5. Parameters’ selection: how to select the correct classification thresholds
to minimize the amount of possible misclassifications.

In the following sections we are going to discuss these issues. In addition to
dealing with those issues our implementation was designed taking into account
the following:

• The ability to manage autonomous user classification processes by au-
tomatically creating and destroying them.

• The ability to distribute tasks over a controlled network to improve the
overall performance.

• The ability to handle multiple event streams by the same classification
process.

• The ability to locally filter unnecessary information without sending it
over a network in order to minimize network resource usage.

Below we describe some important issues we were dealing with during the im-
plementation and testing stage.

8.1.1 Application Architecture

The software we have implemented to support the classification process con-
tains numerous classes, each providing a different functionality. Some part of it
had to be implemented on an operating system level, another on an application
level. Below we will concentrate on some important design details. Figure 8.1
depicts the main components of the implemented prototype.

As was discussed in Chapter 3 the architecture consists of three main com-
ponents, which interact with each other: detection server, control center, and
host agents.

The control center was implemented as a module on a system administra-
tor’s workstation. This module allows the control of all HIDSUR operations and
the collection of statistics for experiments. The control center of the prototype is
responsible for:

• starting and stopping host agents,

• polling host agents,

• enabling and disabling the detection server,

122

� � � �
� �
 � � � � � �

� � �
 �� � � � �

� �
 � � � �
� �
 � � �

� � � � � � � � �
� � � � � � � � � �

� � � "
 � �
 � �
$ & ' � �
 � �

) � � � � �
 �

* ,- ./
0 1 2. � � 3

* ,- ./
0 12.

� � � 5 6 5 � �

� � 8 5 � � � �

� � � � �

� � � �
 � �

9 � � � � � 6 5 � �

: � � � 5 <

= � � �

� � � � � � @
� � �

) � � � � � � � � � 5 �
 � � � � �

Figure 8.1 Prototype architecture

• synchronization of the host agents and the detection server,

• manipulation of the classification parameters (for experiments), and

• collection of statistics.

All these operations are performed by exchanging control signals between the
control center and the different modules of the HIDSUR. Additionally, to col-
lect the network statistics the control center passively observes network traffic
between HIDSUR components by setting a network card into a promiscuous
mode.

In our prototype we have used host agents compiled of several *nix type of
operating systems. They were implemented as loadable kernel modules. When
an operating system starts on a local workstation the host agent is loaded into
the workstation’s memory. Then it reports to the control center that it is loaded
and goes into standby mode waiting for activation and synchronization from
the control center. A detailed description of the algorithm and signals that the
host agent exchange with an operating system’s kernel may be found in Section
8.2.

There is a devoted server in our prototype assigned for anomaly detection.
All necessary definitions and methods implemented in the prototype were pro-
vided in Chapter 5 and 6. The algorithms employed in the classifier (for both
classification methods) can also be found there. The process of learning and
classification are described in the following sections.

As we have mentioned at the beginning of this chapter, this prototype was
implemented as a concept proof, therefore we are not going to consider the is-
sues here that are not directly related to the acquisition of the performance re-
sults of our methods.

123

8.1.2 Client-Server Information Exchange

The external representation of actions (problem 1) is designed as a straightfor-
ward representation syntax that directly reflects their structure and provides
user id, computer id, class name, and the start and end time of each action. These
specifications are stored in a file and maintained as encrypted strings. Events are
collected by a local agent, transformed into actions by a data converter, prepared
for sending and encrypted by a network interface.

In Figure 8.2 an information flow in the prototype is depicted. As can be
seen the information comes from different sources - workstations. A single user
may be logged into a single workstation, or several remotely/locally-logged
users may share it. All collected information is assembled into a single stream
of events and comes to a detection server through an encrypted data channel,
which protects sensitive information about user behavior from outside eaves-
dropping.

� � �

� � � 	 	 �

� � � �

� 	 � � � � � � �

�
 � � � � � � � � � � 	
" � � � � �

�
 � � � � � � � � � � 	
" � � � � �

" � � �
 �
� � � % ' %

�
 � � � � � � � � � � 	
" � � � � �

� � � *

+ � � � � � � � � �

, 	 � � � � 	 � � 	 � � � � � � � � �

, + . � � � / � �
� � � % ' %

� � � % 2 %

� � � *

� � �� � �

" � � �
 �

" � � �
 �
� � � % 2 %

Figure 8.2 Data flow inside the prototype during online classification

The IDS server instantiates an independent application server (classification pro-
cess) for every active user. Every process encapsulates the necessary information
about the normal behavior of a single particular user (it is taken from a user pro-
file). All information, received by the IDS server, is decrypted and dispatched to
different application servers, each of which tracks and analyzes the behavior of
a specified user as described in Chapter 6.

8.2 Host Agent

In this work we had to implement our own logging facility to collect the neces-
sary information about user behavior. Therefore, in this section we concentrate
on the operations of the host agent that was implemented for *nix type operat-
ing systems in our prototype. This is the only part of the HIDSUR architecture
that contains an operating system dependent code. This section gives the idea

124

of how the host agent may be implemented for other types of operating systems
(for example, Windows). The overall structure remains the same, only messages
and functions that the host agent uses to interact with the kernel are different.

A description of a host agent’s architecture and its interaction with *nix
kernel is provided here. The aim of this small program is to collect detailed
information about user behavior1.

8.2.1 Host Agent Operations

The host agent collects information about active system processes, GUI mes-
sages, and monitors the modifications of a file system. To minimize resource
consumption and to make it impossible to alter the host agent is implemented
as a Unix daemon process with suid bit set.

Figure 8.3 demonstrates the main algorithm of the host agent.

Figure 8.3 Main algorithm

When a workstation’s operating system is being started the initiator program is
executed for the workstation. This program creates an environment for down-
loading the host agent to this workstation. At the beginning the initiator deter-
mines the type of operating system and checks the system’s environment. After
1 See Chapter 3 for details.

125

this it establishes an encrypted connection with the detection server and uploads
the host agent’s code for the current type of operating system.

The host agent is initialized as a ”daemon” process without a control ter-
minal (it is controlled from a control center through the local area network). Ad-
ditionally, the priority of this process is set higher than the system’s background
and user processes. The details of the host agent initialization are depicted in
Figure 8.4.

� � � � �
 �

 �

� � � � � � � � � � � � ! � # � � � � �
' � � � �) � � � � � � ! � � - # � ' / � # �

� 0 � � 2 � - 3 # # � � / ! � # � - / � # 5 / �
� � /

6 7 8 9 7

6 ; < ; < ?

@ � 9 A C E

F G � H I C E

F J K L 9 C E

N � P I R L H 7 H S
T I H

� # � � / � U � 2 � � � �

6 V X Y

Z ' ' � � ! / � / 0 � U � 2 � � � �
� � � � # [� / � � � �) � 3 /

� � � / � � � �] � / � � � � � / 0 �
! � � [� �

^ 2 � � # � � � � � � 2 � � � � # � � � / � ! / � / 0 �
/ � # [� � � � � � ' 3 / _ � 3 / ' 3 / � � / 0 �
) � - ` 2 # � 3 � ! ' # � - � � �

� # � � / � � a � ' # � - � � � 2 # � 3 '
a � / 0 � 3 / - � � / # � � / � # [� � � �

� 0 � � ! ' # � - � � � � � � � / � � � �
� a � � # � � / 0 � � � a 2 # � 3 '

Figure 8.4 System daemon

At the beginning the host agent needs to filter all unnecessary signals. The filter
is set up by a SIGIGN signal2. After this the kernel permanently stops dispatch-

2 Signals and system calls used by the host agent are described in Appendix 2.

126

ing messages related to the terminal input/output of the background processes
to the host agent.

After this the host agent creates its own process group without a control
terminal (fork()) and sets itself as an owner of this process group (setid()). The
workstation’s resources that are not required for a further agent’s operations are
freed by close() command and the current directory is changed (chdir()) to a one
where log file should be located.

If the log file exists at the given location it is opened, if not - the host agent
creates an empty one. At the end of the initialization process the information
about the successful (or unsuccessful) start of the host agent is appended to the
log file.

After the initialization the host agent goes inactive - ”sleep” mode (Figure
8.3). At the beginning it is done to allow the rest of system processes to be
launched and activated (their amount and sequence of loading are determined
by a system’s configuration) and a user to log in.

The inactive or ”sleep” mode (Figure 8.5) is achieved by setting a timer
(setitimer()) into an infinite loop and waking up by an alarm() when a message
related to user activities comes from the kernel.

� � � �

� 	 �
 �
 � 	 � � �

� � � � � � �

� � � �

� � ! # % ' !) � +

, . ' 0 ! # % 2 4 ,

Figure 8.5 Inactive mode

If it is necessary to disable the host agent on this workstation the control center
initiates a kill(2) signal. When the host agent receives this signal it aborts its
operations and exits.

If the termination signal is not received the host agent performs its normal
duties: collects information about user behavior and puts it in the log file. From
the log file the information goes to the data converter, preprocessed (see Chapter
4) and transmitted over a network to the detection center.

127

8.2.2 Information Collection

Figure 8.6 provides a step by step description of the user data collection process.
These steps of the process are performed each time the kernel sends a message
to a host agent. Changes in the structure of the system processes are not possible
without a message exchange between kernel’s modules, therefore the host agent
is notified each time something happens in the process structure. However, the
host agent is not going to listen and process all kernel messages because it would
require additional CPU time. Thus, as we have mentioned in the previous sec-
tion the kernel is informed to only send to the host agent messages related to the
changes in the structure of processes.

� � � � � �
 � � � � � � � � � � � � � � � � � �

" $ � � � � � � " � � ' � � � � " � , ,

. � / / � �
 � � � 3 � 5 � � � , � � $ " � $ � �

� � � � � �
 � � ; � � < � � � � � � @ � $ �
3 � � � � �
 ; � � 5 � / � ' � � B � �

, � � 3 � � 5 @ B � E � � � � " � , , , �
 � � / ,

H @ � � � � � �
 � � � � � � � � � � � J L
� � � �

. � / / � �
 � � � 3 � 5 � � � , � � $ " � $ � �

" � � � � � � � �
 � � ; � � < � � � � � � @ � $ �
� � � � ; � / � 5 � , " � � � � � � ,

Q R S T

� � � � � �
 " $ � � � � � � � < �

Q R V X R

Figure 8.6 Gathering information about an active user process

The information collection process depicted in Figure 8.6 is performed each time
a change happened in the structure of the processes: start process, end process,
activate/suspend process, change priority of the process, etc. Initially the host
agent obtains a pointer curproc, which points to the current user active process.
The proc (Table 8.1) structure is a record of the system’s process table. A record
for a current running process is pointed by a system variable curproc.

128

Every process in a *nix operating system is described by two data struc-
tures - proc and user. They are described in header files of the system’s kernel
source <sys/proc.h> and <sys/user.h>.

Table 8.1 Structure of proc

Name Type Description

p stat char process state
p pri char current priority of the process
p flag unsigned int flags defining process’s auxiliary information
p uid unsigned short UID of the process
p suid unsigned short EUID of the process
p sid int session identifier

p pgrp short identifier of a process group
p pid short process identifier (PID)

p ppid short parent process identifier (PPID)
p sig sigset t signals waiting for delivery

p size unsigned int size of an address space in pages
p utime time t time of execution in a task mode
p stime time t time of execution in a kernel mode

p ldt caddr t pointer to a process’s LDT
*p region struct pregion list of CPU memory areas
p xstat short return code that is given to a parent process
p utbl() unsigned int array of pages records

Information about user processes is obtained from the Unix file system /proc
where each directory name represents a process number (PID). In Table 8.2 we
identify files of the /proc file system used for gathering information about user
behavior.

Table 8.2 /proc File system files used for obtaining user behavior statistics

File name Description

cmdline name of executable file with arguments
environ variables of the process’s environment
stat process execution statistic
statm statistics of the virtual address space
status important characteristics of the process

After this, the host agent analyses and stores the obtained information into its
own structures. When the initial information is obtained the host agent looks
for and analyses messages to the current process or issued by this process.

After getting all necessary information about the current process the infor-
mation about the current user is analyzed. There is the possibility that there are
multiple users logged into the same workstation. Therefore, the information de-
scribing the current user is obtained from the system structure - user, also called

129

u-area (Table 8.3), which contains auxiliary process information related to a cer-
tain user and it is needed by a system kernel only during the process execution.

Table 8.3 A user structure

Name Type Description

u comm[32] char executable file header
signal long int signal disposition
regs struct user regs struct hardware context

start code unsigned long beginning of the code segment
start stack unsigned long beginning of the stack segment

The last step, before the obtained information is appended to the log file, is the
forming and adding of a time stamp to it. It is not a trivial task. The worksta-
tions around the local area network may have time differences with the detection
server. Moreover, a malicious user may change workstation’s time in order to
fool the anomaly detection system. The system described in this work relies not
only on an events’ sequential information, but also on the temporal. That is the
reason why knowledge of the exact time when an event occurred is crucial for
the classifier. Otherwise, there would be inconsistencies in the user data and
the classifier would not be able to accurately classify the events producing an
overwhelming amount of errors.

In our implementation this problem is solved by synchronization with the
control center during the initialization of the host agent. When the host agent
creates a log file it obtains time from the control center. The log file creation time
is set to the absolute current time of the control center. After this the host agent
creates its own timer and all events that it puts into the log file have time stamps
relative to the absolute time of the log file’s creation. This mechanism of time
stamps ensures the correctness of time intervals between events even if a user
changes workstations time during his interactions with a workstation.

As it is possible to see from the description of the host agent we have im-
plemented an efficient mechanism that is able to provide all necessary detailed
enough information about user behavior.

8.3 Learning the Classifier

This section describes the implementation of the classifier in our prototype. It
shows the details of realization and defines the fields of the temporal-probabilistic
tree.

8.3.1 Data Model Used for our Approach

For each user his/her personal profile contains a temporal-probabilistic tree
S(G,E) that is described as a linked list of patterns and contains a coefficient
of reliability for a user whose behavior the tree represents:

130

S :< M0, nptrn, r >, (8.1)

where M0 is the first pattern of the pattern set - it defines the top level of the
tree. nptrn is the number of patterns that form this tree, and r is the coefficient
of reliability, which is used to monitor deviations of the current user’s behavior
from its usual (normal) behavior.

A single pattern Mi is described by a set of nodes:

Mi :< G0, Gend, l, n, Mi+1 >, (8.2)

where G0, Gend are the first and the last node of the pattern Mi; l is the length
of the pattern expressed by a number of nodes in it; n is the number of times
this pattern was used (number of cases that support this pattern); and Mi+1 is a
pointer to the next pattern in the pattern set.

Each node Gk
i represents a certain instance of an action class and it is de-

scribed as:
Gk

i :< IA, n,Gprev, E0 >, (8.3)

where IA is the instance of the action class represented by this node; n is the
number of cases this node contains (number of actions in the instance repre-
sented by this node); Gprev is the previous node on the level Gk−1

i connected to
the current node; and E0 is the first left transition, among the set of transitions,
that come out of Gk.

Each action or relation class instance IA is defined as follows:

IA :< A, Tmin, Tmax, nact, µ, σ >, (8.4)

where A identifies class where this instance belongs to; [Tmin, Tmax] is a temporal
interval, that is used to define, whether the action belongs to this instance or
not. Hence, if for some action the following holds: T ∈ [Tmin, Tmax], then it
means that this action belongs to the current instance IA. nact is the number of
”free” actions forming this instance that do not belong to any pattern yet; and
µ, σ are the parameters of temporal lengths’ distribution.

Finally, actions are included in a set that forms an instance if:

• they represent a user behavior item (action) with the same name, for
example, ”Edit file”, and

• they have similar temporal parameters T (it means that the dispersion
of temporal lengths T in this set satisfy a condition σT ≤ σTmax).

An edge Ek
i that connects nodes Gk−1 and Gk (or more strictly, the instances that

are represented by these nodes) are described in a form:

Ek
i :< µ, σ,Gnext, Arel, Ei+1 >, (8.5)

131

where µ, σ are the distribution parameters of the edge between Gk−1 and Gk;
Gnext points to the next node Gk; Arel is a name of relation that connects Gk−1

and Gk; and Ei+1 points to the next edge that comes out of the node Gk−1. As it
is possible to see, edges outgoing form each node are organized as a linked list.
Each node contains a pointer to such a list.

Each action in a stream has the format:

Oi :< IA, T,Mown >, (8.6)

where IA points to the instance this action is included in; T is the temporal length
of the action; and Mown is the pattern where this action belongs to. Each action
can be included only in a single pattern.

All classes Ai are described in actions class database, which is initially formed
by the administrator and contains the following records:

Ai :< name, νA, starting event, ending event, auxiliary events >, (8.7)

where name is the name of the class (for example, ”Send E-mail”); νA is the
security importance of that kind of action from the point of view of an operating
system policy; and starting event, ending event, and auxiliary events are the
structural descriptions of the action class. It defines an event that starts this
action, an event that finishes the action, and possible events between them. An
example of different descriptions of a single action was provided in Section 5.1.

8.3.2 Learning Process

Each user action from the stream comes to a detection server where it is con-
verted to an instance of an action class (see Chapter 6 for details)3. The action
class encapsulates all attributes common for some set of events. An instance
of the action class is used for specifying more specialized types of actions (in
our case they group the same kind of actions with the same kind of temporal
characteristics).

In order to use the system it has to be trained first. The training period con-
sists of two phases: training itself (approximately 80% of the training time) and
setting thresholds (20%). During the first phase the system has to create profiles
for all users. These profiles have to be detailed enough in order to allow the sys-
tem to perform a classification with acceptable accuracy. In other words, the first
phase has to be long enough to allow the system to learn a number of patterns in
user behavior (otherwise later it will make numerous classification errors). Also
this phase cannot be too long. It is difficult to submit only ”good” cases during
long periods of time, the longer the time interval, the higher the probability that
there will be ”bad” cases among a training set that may increase a false positives
rate. Additionally, the long training phase may cause some over-training: it is

3 In our prototype we have used ”k-means” clustering algorithm to separate instances.

132

possible that the system learns too many unnecessary behavioral details rather
than patterns, which will result in the growth of a false negative rate.

On the second phase, the system calculates individual thresholds for ev-
ery profile. It is done to increase the accuracy of the classification. For these
calculations the system submits positive and negative cases to a classifier and
defines the detection threshold according to the classification results. Positive
cases are taken from a stream of events of the same user (from the part that were
not present in the training set on the first phase). Below, in the next section, we
discuss what the most suitable lengths are for the learning phases.

As was discussed in Chapter 6 there is a concept drift issue when dealing
with behavioral models: users’ behaviors tend to change with time, therefore
the effective lifetime of a static user profile is limited (false positives rate grows
with time). To deal with this issue we have developed our methods in a way
that they constantly update user profiles enabling new information to appear
and old to disappear for the profiles. To test the ability to successfully update
the user profiles we took all users’ history in our experiments. Some users’ data
was containing up to 400000 actions covering more than six months of user ac-
tivity. During this time the behavior has changed in one way or another. In our
experiments the system was trained during the learning phase (first few weeks
of the user data) and then tested on the rest covered by the user data interval
(sometimes more than six months), updating profiles when necessary. There-
fore, all our experiments were conducted on the dynamic profiles and results
described here represent the system’s performance in a real word environment.

During the intrusion detection system’s implementation we were faced
with the problem of the behavioral pattern representation for automatic pro-
cessing (problem 2 from Section 8.1). In Chapter 6 we assembled all behav-
ioral patterns of the same user into a temporal-probabilistic tree, which is very
demonstrative and easy to understand, but at the beginning it is necessary to
perform an initialization process. At this stage the system has a number of pat-
terns. Each pattern is represented by a set of nodes connected with each other
by edges. However, there are no connections yet between patterns (they are con-
nected later at the end of the learning process4). Therefore, at the beginning of
the learning process the system has to operate with the structures we call chains
(Figure 8.7).

Here we concentrate on chains to provide some insights and give some
examples of how the patterns are represented. Every state in the chain is con-
nected with another one by a basic relation (in our case a solid line represents
before relation, and the dotted line during relation). Each chain consists of two
parts: conditions of transaction and possible destination states. It is possible to
say that if the chain’s conditions are met then there are a number of destination
states and with a certain probability a user will choose one of those states. There

4 This is done at the optimization state. See Section 6.2.2 for details.

133

are two examples given below: Figure 8.7 demonstrates the internal representa-
tion method used in the prototype and Figure 8.8 shows one of the real patterns
taken from one of the user profiles.

� � � � � �

� ��

�

�

Figure 8.7 An example of a pattern

The conditions of the chain are expressed by several actions connected by re-
lations. In our example (Figure 8.7) we have two actions: class ”1”(instance
2) before class ”3” (instance 1). It is possible to increase the number of actions
and increase the patterns’ descriptive precision, but at the same time we may
increase the rate of false negatives, since the patterns will describe too many
details instead of the behavioral trends. We will explore this possibility in the
following chapter.

� � � � � �

	 �� �
 �

Figure 8.8 A real pattern example

The second part of every chain is a set of actions. These actions represent possi-
ble actions that a user may choose after performing those described in the condi-
tion part. In our example there are the following possibilities: 64% that the user

134

will perform an action from class ”4” (instance 1) after finishing the previous ac-
tion, 26% and 10% that the action from class ”4” (instance 2) and ”7” (instance 2)
respectively will start before the previous action is be finished. Temporal param-
eters that are stored with action and relation instances help to determinate how
much time should pass between the previous action’s end and the next action’s
start in the first case (for the relation is before). In the second case they show how
the previous and the next action overlap each other (for during).

Here in Figure 8.8 is a real pattern taken from one of the user profiles:
if the system observes mkdir - directory creation before cd - changing a current
directory, then it should expect (relation before): ls - directory listing request with
probability 12%, or vi - text editing - 39%, or cp - copy command - 49%.

Oversimplifying, it is possible to say that the chain’s structure is an if-then
rule, which contains an extensive sequential and temporal statistical informa-
tion. Also, these chains may be assembled in a tree, for example for manual
profile control.

8.4 Summary

In this chapter we discussed the main problems and our solutions during im-
plementation of the prototype. We also presented a possible architecture for an
anomaly detector employed for user behavior recognition. Host agents collect
all necessary information and transmit it over a secure channel to a detection
server, which determines whether there are masqueraders among normal users.
The detection server accomplishes this by classifying the incoming actions by
comparing them with a corresponding profile. It has an independent process in
its memory for each of all active users. Every incoming action is dispatched to a
corresponding classification process, which, in turn, performs the classification
itself.

In the next chapter we are going to provide a description of the testbed
used and discuss the obtained results comparing them with performance results
of other anomaly intrusion detection systems. We are also going to discuss the
obtained results with respect to the research objectives stated in Section 1.4.

9 EXPERIMENTAL SETTINGS AND OBTAINED
RESULTS

This chapter describes experimental settings and the results obtained during
experiments. The experiments were performed on a prototype described in the
previous chapter. The prototype and employed by it approaches are designed to
provide an efficient anomaly detection meeting the system considerations listed
in Section 8.1.

9.1 Experimental Settings

In this section we concentrate on the experimental settings and data collection.

9.1.1 Note on the Evaluation and Simulation Process

In this thesis we use examples of vulnerabilities, descriptions of operating envi-
ronments and commands derived from UNIX class of operating systems. Their
source code is available for widespread public scrutiny. Thus, details of security
vulnerabilities available from CERT advisories (1999) and Bugtraq electronic
mailing list (1999) provide a good example to demonstrate our ideas. We believe
that detection techniques and the principles of the detector described in this the-
sis, are largely applicable to other operating systems as well, even though the
details of sensors may differ.

The UNIX operating system is widely used and has been extensively stud-
ied in the security community. It has a highly configurable user environment
with a rich command language that permits a large range of possible behaviors.
To define an information source we had to choose between GUI events, network
packets, shell keystrokes, and system call traces.

Network packets do not tell much about a certain user. They may be ef-
fectively used for misuse signatures monitoring and are helpful in detecting in-
trusion attempts. However, they are not very useful in discovering the patterns
of user behavior. It is very difficult to link a network packet with a certain user

136

especially if several users share the same computer or DHCP is used and the IP
address of the same workstation is changing constantly.

Shell command input is not easy to use since it is very difficult to inter-
pret some strings because of alias usage. It does not catch all users’ actions (for
example, if something is done using a mouse).

GUI events provide all necessary information (and even more). It is very
easy to link a certain user with processes or objects. Thus, we considered them as
the most suitable information collection mechanism for user recognition. System
call traces may be used in the case that the user does not use GUI.

The experiments were carried out under the RedHat 7.1 operating sys-
tem. The programming techniques and language features we have used are
not unique for C++ and may be applied to other programming languages as
well. The choice of the language was dictated by the following reasons, not all
of which are unique to C++:

• The source code of the operating system under which our tests were run
is on C language. Therefore, it will be easier to recompile a system code
when we modify the kernel (for example implement sensors as a part of
it). We have used the egcs-c++-1.1.2 C++ compiler (GCC manual, 2000)
for our tests.

• Our familiarity with C++ and its development environment.

• The availability of a large collection of ready to use libraries. These li-
braries are already well optimized. Thus, we do not need to spend much
time writing and optimizing the code.

• Availability of support tools in the form of grammar recognizer genera-
tors like yacc++ and lex++ (Bird, 1988).

To implement the prototype based on methods and algorithms developed in this
work we have used C++ (Stroustrup, 1991) as a programming language. The
prototype consists of different modules and tools that together contain more
than 25000 lines of source code.

9.1.2 Data Collection

As was already mentioned in this thesis there is a problem with getting proper
data to test intrusion detectors. The available data usually contains unnecessary
features, it has no temporal info or it is not detailed enough. As a result, quite
often intrusion detection approaches are being developed for a certain kind of
data that is already available or the data is artificially generated to test the ap-
proaches’ viability. In the first case the development process results in an ad-hoc
intrusion detection system lacking flexibility and closely connected to the type
of data being processed. In the second, it is very difficult to generalize the results

137

because assumptions according to which the data was generated may not hold
in real life.

There is a third possibility - collection of one’s own data. This way allows
one to create flexible approaches for intrusion detection, because it is possible to
collect features of user or process behavior that are required by a classification
method without making compromises. However, it is often necessary to imple-
ment one’s own data collection mechanisms since already available ones may
not collect the required features or provide necessary details. It also takes a very
long time to collect a statistically sufficient amount of data.

In this work we decided to develop and implement a host-based data col-
lection mechanism in which host agents are responsible for the data collection.
The host agent software was implemented in the earliest stages of the prototype
implementation project. After this it was constantly used to collect information
about users behavior during the rest of the project.

The host agents collected the audit from different operating systems: Red-
Hat Linux 6.1, RedHat Linux 7.1, Debian GNU Linux 2.0, FreeBSD 4.1. Audit
logs of 16 different users were collected for the experiments.

The audit data contains the history of 16 (U1-U16) different authorized
users. The amount of data available varies among the users from 50000 to al-
most 400000 tokens, depending on their work activity rate and length of the
time interval during which their activities were monitored. The sequences of
the users actions were given as an input stream for the learning process and a
temporal-probabilistic tree was constructed for every user. Finally, we would
like to note that the nature of the collected information (all workstations were
inside a single local area network) did not allow us to employ mobility measures
described in Chapter 4 in the profiles.

9.1.3 Experiments

The experiments described in this section were performed on an AMD 1.4 GHz
workstation with 512MB of memory running RedHat Linux 7.1 under a light
load. When designing the experiments and evaluating the prototype we used
IDS evaluation techniques (such as described in (Durst et al., 1999) and (Puketza
et al., 1996)) to be able to compare results with other anomaly detection ap-
proaches.

Here in addition to the traditional accuracy characteristics we employ a
maximum time-to-alarm measurement. It determines how quickly an anomalous
situation can be detected. It should be short enough in order to detect hostile
activities quickly, but long enough so that normal work is interrupted by false
alarms as rare as possible. In this work we define the time-to-alarm as a maxi-
mum time interval during which an anomaly will be detected if it is present in
the current behavioral sequence.

For our experiments we collected output streams that were produced by
host agents for different users. Later those outputs were given as an input for

138

profile building techniques. Lacking the traces of intrusive behavior, we tested
the approaches’ viability on the task of differentiating between different valid
users. All anomalous situations were simulated by testing a profile of a valid
user against sequences of events issued by the other users. This testing approach
does not cover all possible misuse scenarios, but it gives the possibility to evalu-
ate the viability of our approaches. Being able to constantly authenticate a user
(according to his behavior) in real-time the system is able to detect impostors
and, therefore, perform the anomaly intrusion detection.

For the sake of experiments we implemented two modes of classification:
normal and batch mode. During a normal operation the system functions as
described in Chapter 6, i.e. waits for user real-time actions and classifies them.
Since we had already collected event sequences1 we had to implement addi-
tional functionality to the host agent - user simulation. In this mode each host
agent is resident in workstation’s memory and has a file with sequences of
events of some user. The host agent takes actions from a local file and sends
it to the detection server keeping the actions lengths and time intervals between
them the same as a user performed them.

On the experimental phase we had to run certain experiments tens of times
to debug the system, choose the correct parameters, and collect the necessary
statistics. Therefore, to save time we have implemented a batch mode. In this
mode the system does not need to wait when a new user action comes. All user
event sequences are submitted to the classifier at the same time. Since all the
events in these sequences are supplied with temporal information there is no
loss of sequential or temporal data.

The following results were obtained when our prototype of the intrusion
detection system was trained on the user logs. Both temporal-probabilistic tree
and relational matrix approaches were applied in order to compare them.

9.2 Performance

In this section we are going to motivate the choice of parameters and discuss the
obtained results.

9.2.1 Space Requirements

Here we consider the possible space requirements for user profile storage. Fig-
ure 9.1 shows the sizes of user profiles for the relational matrix approach. The
mean size of the profiles is 3413 Bytes. There are several factors involved in the
profile’s size: vector of classes and relational matrix. Their sizes depend on the
overall number of action and relation classes and average number of instances in
those classes, especially the number of classes affects the sizes of the vector and
the matrix. However, the latter grows much faster then the former. For our case
1 Event sequences used in this work were collected during different time intervals and in dif-
ferent places.

139

the size of vector varies between 420-944 Bytes and the size of matrix between
1132-5300 Bytes.

An average number of instances per each class is approximately the same
for all users - 2,5 and it shows that the size of the average profile depends mostly
on the number of classes used for profile creation and later for classification. In
other words the size depends on the number of actions/programs employed by
the user.

Figure 9.1 The size in Kb of each user profile (matrix approach)

Figure 9.2 depicts the space requirement for each profile that uses a temporal-
probabilistic tree for behavior representation.

Figure 9.2 The size in Kb of each user profile (temporal-probabilistic tree approach) for
different number of conditions

140

As can be seen the figure shows four different cases for every user. These cases
correspond to a different number of conditions in behavioral patterns. For our
experiments we have chosen two conditions for all users (later in this chapter we
discuss how the number of conditions affects the classification accuracy). The
mean size of the profile is 21832 Bytes and the size of the profile varies between
4176 Bytes and 34476 Bytes.

There are two factors that may significantly affect the average size of the
profile: the number of classes and the number of conditions for the patterns.
According to our observations (it can also be seen form Figure 9.2) the number of
classes does not affect the size of the profile as much as the number of encoded
conditions. Therefore, fixation of the conditions number (with two conditions
we can get more or less reasonable size of profile) gives us an ability to keep the
size of the profile in a certain range, and, thus, estimate the space required to
store profiles.

Finally, we would like to notice that space required to store a single profile
based on a temporal-probabilistic tree is approximately six times bigger than
necessary for a profile based on a relational matrix. Consider a case when our
prototype is monitoring 10 000 users. We can approximate that we will need to
reserve in order to store all profiles about 32.6Mb in the first case and 175.1Mb
in the second case.

9.2.2 Accuracy

There is a number of different parameters that may affect classification accuracy.
Here we try to carefully select those in a way that minimizes an overall error
rate. Each profile was tested against the corresponding test set for each user.
A test against a user’s own profile allows us to examine false negative (false
rejection, FR) alarm rates, while testing against other profiles allows us to deter-
mine false positive (false acceptance, FA) rates. Below we are going to discuss
our choice of parameters for the relational matrix and the temporal-probabilistic
tree approaches.

Sliding Window Length

Before choosing parameters of the classification we decided to give some consid-
erations to one of its most crucial attributes - the length of the sliding window.
There is a certain interval inside which it is possible to choose this length. It was
shown that the amount of events inside the window can not be smaller than six
(Tan and Maxion, 2002) to achieve the reasonable accuracy rate. From another
side this interval is limited by acceptable time-to-alarm length. If the longest
possible time-to-alarm is four hours and our system gets about 369 actions from
each user on average, then it is possible to see that the length of the window lies
in an interval of between six and 180, and it should be chosen from this interval
depending on the required acceptable accuracy of the classifier.

141

It was suggested that conditional entropy can be used to determine the
appropriate window size for probabilistic classifiers (Lee and Xiang, 2001). It
was shown that there is a correspondence between a fall off in entropy and the
appropriate window size of the classifier.

Assuming that each profile contains different amount of regularities we
decided to check whether conditional entropy affects our system. To perform
the necessary tests an audit log was taken that contains the history of five differ-
ent users. To make sure that these profiles differ only in terms of irregularities
(measured as conditional entropy) we identified five action classes that were
common among all of the users. Other classes were not taken into account. In
other words, we identified five actions that all of the users were performing and
built profiles basing them on usage only of these classes. During the classifi-
cation we did not observe significant differences in the classification accuracy
between profiles. They were lying in intervals of less than 10% of the average
detection accuracy. This suggests that although our classifier uses probabilistic
features the conditional entropy can not be used as a main method to determine
the appropriate window length.

Relational matrix

First of all, it is necessary to determine a sliding window length. This length
explicitly affects time-to-alarm rate: the longer the window the longer the time-
to-alarm interval. We observed that during an eight hour working day a system
receives on average 369 actions per user. The average time between actions is
about 78 seconds per user. This means that if we take the window length as 20
actions our system will have a minimum of 26 minutes time-to-alarm, which is,
in our opinion, quite suitable. Thus, since the system determines the length of
the window during the learning stage, we established the minimum length of 20
actions and the maximum of 60 (time-to-alarm lies in [26,78] minutes interval).
The length depends on user activity and the size of patterns in the user profile.
We would like to point out that in our experiment the system was choosing the
window length to minimize the overall error rate. However, in real life some
additional requirements, such as shorter time-to-alarm, may be applied during
this process.

In Figure 9.32 it is possible to see how the error rate changes over time
during training when different window lengths are chosen. It is possible to no-
tice that it takes about two weeks to train our system choosing the length of the
sliding window as 20. After this its error rate will not be higher than 17%.

Temporal-probabilistic tree

Firstly, it is necessary to determine a number of conditions in patterns in our
prototype.

2 Tables with accuracy results can be found in the Appendix 3.

142

Figure 9.3 Class approach: dependence of the overall error rate on the length of the
training period for different window lengths

Figure 9.4 Dependence of the overall error rate on the number of conditions for the
prototype

In Figure 9.4 it is possible to see that the two conditions are the best choice for
the prototype. When the number of conditions is one, the patterns encode too
general a model of behavior, therefore the false positive rate is high. With the
growth of the conditions’ amount the patterns will become more and more spe-
cific. They will describe small unnecessary details rather than trends in user
behavior. As a result we will encounter more false negative cases.

143

Figure 9.5 shows that the length of the sliding window, which was chosen
at the beginning of this section, is also quite suitable for a temporal-probabilistic
tree. The system is ready to use after approximately one or two weeks of train-
ing. After this its error rate will not be higher than 8%.

Figure 9.5 Temporal-probabilistic tree approach: dependence of the overall error rate
on the length of the training period for different window lengths

It is possible to see from Figures 9.3 and 9.5 that for long window lengths an
overall error rate may slightly grow during a training period. It may happen
because a sliding window is used not only for classification but also for learning.
Parameters of each profile are calculated over the window. It means that taking
a long window length the system over-generalizes parameters for each profile.
In other words, the system starts to accept a more general model of behavior
increasing the number of false positives.

There is a differential analysis that has been put as a foundation of user
behavior classification, in which the detection accuracy can not depend on the
number of profiles in the system (in contrast to absolute analysis). We train the
system giving it only ”good” examples, i.e. only event sequences of a single
user for which we are building a profile. Then during the classification each
classification process has a profile of a single user and only compares this user
actions with his/her profile. Therefore, growth of the number of profiles in the
system will increase a number of classification processes working in parallel,
but not the error rate. In our experiments there is a possibility of increasing
an error rate with the number of profiles growth because we have tested each
profile against all other profiles, which never happens in real life. Figure 9.6
demonstrates the dependence of the detection accuracy from the overall number
of profiles in the system.

144

Figure 9.6 Dependance of the accuracy on the number of profiles in the system

To assess the classification accuracy we have used Receiver Operating Charac-
teristic (ROC) curves (Swets, 1988). They visualize the trade-off between false
alarms and the detection rate with respect to chosen thresholds. In other words,
by choosing different classification thresholds it is possible to see how the de-
tection and false alarm rates are linked. Relaxing the classification requirements
(for example, by lowering thresholds) we can increase the detection rate, but
also the misclassification rate will be increased, i.e. the classifier will falsely
accept abnormal cases, and conversely the same can be said for the case if we
strengthen the classification requirements.

To apply the ROC curves approach we need to clearly define what consti-
tutes ”normal” and ”abnormal” behavior. In our case, we were taking a single
user profile each time and therefore, we were defining ”normal” behavior as the
behavior defined in the current profile and ”abnormal” as described in the rest
of the user profiles in the system.

Plotting the detection rate as a function of the false alarm rate for both of
our approaches we reached Figures 9.7 and 9.8.

The accuracy of the test depends on how well the classifier separates the
behavior being tested into ”normal” and ”abnormal”. Accuracy is measured by
the area under the ROC curve. An area of 1 represents a perfect test; an area of
0.5 represents a worthless test. If we classify the performances of our classifiers
in the same way we can notice that in Figure 9.7 this area is more than 0.80 and
in Figure 9.8 it covers more than 0.9 of all space. This estimation shows that the
classifiers have performed fairly well.

The accuracy results achieved during our experiments are quite promising,
however they should be treated carefully. Although the experiments showed
that the approaches developed in this work may be used for an online user ver-

145

Figure 9.7 ROC curve for the classifier based on the matrix approach

Figure 9.8 ROC curve for the classifier based on the temporal-probabilistic tree ap-
proach

ification, it is possible that for different user categories (not present in the used
test set) the parameters of the classifiers should be different to achieve the same
accuracy. Also, we could not test or simulate all possible variants and cases of
user behavior, therefore we were not able to build a complete model of user be-
havior for each profile. This applies to all anomaly-based classifiers. It is not
possible to construct a complete model of normal (misuse) behavior, however
the efficient use of strict anomaly detection does not necessarily require a com-
plete model to be constructed - a subset is also acceptable (Beetle, 2000).

9.2.3 Timing Results

In order to measure classification time we have created an audit file that con-
tains 14625 actions. We applied both approaches on this audit log eight times.
The resulting time consists of two intervals: classification time for actions inside
of a sliding window and the time necessary to update the coefficient of reliability

146

before moving the window. Obviously the former one depends on the window
length and it forms a variable overhead. The latter one is based on certain for-
mulas that require a constant amount of time per one calculation, thus it does
not depend on classification parameters and forms fixed overhead.

As it is possible to see from Table 9.1, for the window size (20) that we
choose our prototype has spent 32.23µs for classification of a single action.

Table 9.1 Timing results for the relation matrix approach

Window Fixed Variable Total Time per
length overhead, s overhead, s time, s action, µs

5 2.723 0.908 3.361 31.03
10 2.723 0.957 3.68 31.45
20 2.723 1.048 3.771 32.23
30 2.723 1.12 3.843 32.85
40 2.723 1.198 3.921 33.51
50 2.723 1.28 4.003 34.22

Table 9.2 Timing results for the temporal-probabilistic tree approach

Window Fixed Variable Total Time per
length overhead, s overhead, s time, s action, µs

5 6.097 0.908 3.361 59.87
10 6.097 0.957 3.68 60.29
20 6.097 1.048 3.771 61.06
30 6.097 1.12 3.843 61.68
40 6.097 1.198 3.921 62.35
50 6.097 1.28 4.003 63.05

In case of a temporal-probabilistic tree the classifier has spent 61.06µs to classify
a single action, which is twice as long as in the first case. Consider the extrapo-
lation of these results to estimate the performance in real settings. Consider that
there are 10 000 users in the system. If they are all active the system will get 461
540 actions per hour. In this situation a classifier that uses the relational matrix
approach will take 15s to classify all actions, and for temporal-probabilistic clas-
sifier it will be 28.2s. This is about ≈0.5% and ≈1% of the CPU’s hourly activity.

9.2.4 Analysis

In this section we analyze how a selection of different hardware could affect the
results described in this section. This gives the possibility to make comparisons
with other systems.

Faster system. If these experiments were run on a faster system then
the classification time will slightly decrease. However, according to our

147

observations, the CPU overhead due to the classification processes is in-
significant. If the detection server is devoted for a classification task (as
in our experiments) then it handles 10 000 users without any problems
and therefore, making the system faster does not change the overall per-
formance significantly.

Faster network connections. The amount of information sent over a local
network depends mainly on the number of active users. Our prototype
receives in average 40 bytes per one action. Therefore, for 10 000 users
the network traffic overhead will be 513 bytes per second, which is in-
significant amount for modern networks.

We can conclude that the major factor that affects the system’s performance most
significantly is the number of users that are active at the moment.

9.3 Profile Cross-Validation

So far the system has a case of intrusion, it predicted a possible damage degree.
Now it is possible to separate the intrusion. What can the intrusion detection
system do in order to expose a real source of abnormality? In this section we
investigate the possibilities to determine a source of the intrusion in case of a
masquerader.

The main objective of the intrusion detection system is to detect an intru-
sion, but knowing that an intrusion incident occurred, does not, however, reveal
the full story. A second issue of importance is a source and method of the intru-
sion. This information is needed for catching a person(s) who stands behind the
intrusion and guards the system against the same kind of hostile situations in
future, i.e. plug the holes through which the intruder has managed to break in.

Since most of the intrusions and abuses are carried out by insiders or other
well-informed users (Lane and Brodley, 1997b), it may therefore be helpful in
detecting the intrusion source to inspect the user profiles in the system. In the
case when an abnormal event stream is detected, it may mean that the events
of the stream do not belong to the person he is claimed to be, i.e. there is an
intruder in the system masquerading as a normal user. Thus, making the as-
sumption that the intruder is an insider, the system tries to match the abnormal
event stream against other users’ profiles and analyzes the acquired coefficients
of reliability. If at the end it finds a coefficient that is higher than the current coef-
ficient threshold then the system has suspicions that this legitimate user abuses
someone else’s network account and the system reports this to the system ad-
ministrator. In other words the system has a pattern of abnormal behavior and
it tries to find the same pattern in user profiles as part of normal behavior.

The audit data that was taken for the experiments contained history of
eight (U1-U8) different authorized users. We have also chosen one user (U0) as
a masquerader and took his normal behavior data. Then the history data of nine

148

users was given as an input stream for the learning process and a temporal-
probabilistic tree was constructed for every user. After finishing the learning
process, it is supposed that the user U0 begins to behave as an intruder mas-
querading as one of the users U1-U8. User U0 was logged in as user U1, U2,
..., U8 and was performing some activities peculiar to masqueraders: reading
email messages, copying files from ”victim’s” directory to own home directory,
installing ”backdoor”, etc.

After an intrusion was detected the intrusion detection system has been
matching an intrusive pattern against profiles of other users. The results are col-
lected in the Table 9.3. Rows represent the user who U0 pretends to be. Columns
- represent the probability that the found abnormal sequence belongs to a certain
user. ”x” shows an abnormal behavior case. In other words, we can see in the
table the probability that an abnormal sequence is issued by the user Uj when
the user U0 caused it masquerading as user Ui.

Table 9.3 The results of masquerader detection

U0 U1 U2 U3 U4 U5 U6 U7 U8

rU0 88.3 24.9 32.7 34.8 28.1 29.3 36.8 27.2 35.1
rU1 8.7 x 4.3 7.4 13.6 9.6 8.1 3 7.7
rU2 11.9 1.5 x 10.7 12.1 6.5 8.9 10.6 11.2
rU3 2.1 16.5 6.9 x 9.4 1.7 12.1 14.7 24
rU4 5.8 12.1 3.7 1.4 x 2.4 1.1 13.2 7
rU5 1.2 6.9 15.1 4.1 2.1 x 6.4 7.2 11.7
rU6 8.4 4.3 12.9 8.3 10.5 13.5 x 7.8 9.1
rU7 6 3.3 5.3 6.1 15.9 10.6 2.3 x 7.1
rU8 7.3 2.7 2.4 8.1 8.7 13.6 10.1 3.3 x

In the first column it is possible to see a case of normal behavior. A sequence of
events issued by the user U0 was taken and tested against every profile. We can
see that the system recognized user U0 with a rather high probability - 88.3%
compared to the other users. In the other columns the system has detected an
abnormal sequence due to a low final coefficient of reliability. Then the system
has tried to match this sequence against U1-U8 user profiles. It can be noticed
that the probabilities that the system recognizes the masquerader as any user,
except U0 (false detections) ≤16.5% and as a real masquerader (user U0) is be-
tween [24.9%, 36.8%] (emphasized with bold fonts).

In Figure 9.9 (a,b) it is possible to see visualized results of Table 9.3. It is
possible to notice from Figure 9.9.b that all results may be separated into three
categories/clusters. The first cluster is formed by a single point - it identifies
a point where coefficients of reliability are situated, of the users that behave
normally. The second cluster separates cases when, after detecting an intrusive
sequence, a source of intrusion was successfully detected. Finally, the last cluster

149

(at the bottom of the figure) shows the cases in which the intrusion source was
detected incorrectly.

After observing these clusters several questions arise. It is possible to see
in Figure 9.9 that the coefficient of reliability for a user U0 is quite high ≥ 0.883
when he is not masquerading. Relatively to this the same coefficient is lower
∈[0.249, 0.368] for the same user when the same user pretends to be someone
else. Why do we observe this deviation? Perhaps because the person when mas-
querading does not behave in the same way when he is using his own account.
Typically, the masquerader uses accounts as a base for continuing attacks on
other accounts/workstations, to increase the current privileges, or for informa-
tion stealing purposes. This set of actions very rarely corresponds to his normal
behavior, unless he uses his own account for breaking into another systems or
accounts and the system recognizes this set as a normal behavior. The second
point is that the command history for the user U0 is quite short relatively to the
other eight users since it was created artificially (i.e. it is imitation of normal
work), therefore it may not cover all the aspects of the user’s behavior.

� � � � � � � � � � � � �
 � � � �

 � � � � � � � � � � �

� � �

� � � �

� � � �

� � � �

!

"" "" "" """ "" " "" """ " """ """" " """""" " "" " "" "" """ " " """ "" ""

""
"" "

" " ""

"

� � �

� � � �

� � � �

� � � �

""""""""""
"""""
"""""""""""""
"""""""""
"""""""
"""""
"""

""
"""
""
""

"

$ % %

& '

Figure 9.9 Coefficients of reliability for all users: (a) each column displays a single pro-
file tested against all test sets; (b) all profiles tested against all test sets

From Table 9.3 we can see that when the system detects the abnormal behavior
the probability that this behavior belongs to the user U0 (i.e. true masquerader)
varies between 24.9-36.8% and the probability that the same pattern belongs to
any other user ≤16.5%. Thus, it seems that there is an obvious deviation between
these intervals and we can establish a threshold that splits these two sets and

150

recognizes new cases with a high probability (since these intervals are not too
close to each other).

We would like to summarize this section by our observation that when the
temporal-probabilistic tree grows the probability of exposing the real intruder
also grows. To recognize a certain user among the others the system needs to
catch a ”general” line of user behavior (i.e. observing deviation). While de-
tecting a source of intrusions the system needs to know, distinguishing details
(observing similarities), which are sometimes hidden rather deep, since when
masquerading the intruder does not follow his/her normal way of behavior.

According to experiments, the system, based on our approach is able to
correctly recognize a certain user in more than 87.3% cases3. In case of an insider
intrusion it is able to expose the real source in 24.9% to 36.8% of cases.

9.4 Comparison with Other Approaches

In this section we compare the performance of our approaches with other differ-
ent anomaly detectors. Due to reasons presented at the beginning of the previ-
ous chapter it is very difficult to make quantitative comparisons between clas-
sifiers, thus we try to provide some qualitative ones. The overview of the ap-
proaches can be found in Chapter 2.

Instance-based Learning (IBL)

The approach for the anomaly detection based on the instance-based learning
was developed by T. Lane and C. Brodley and published in (Lane and Brodley,
1997a), (Lane and Brodley, 1997b), (Lane and Brodley, 1999). Shell command
data from eight users over the course of more than two years was used to evalu-
ate this approach. Due to computational constraints a subset of 7000 tokens from
each user was employed, representing approximately three months of computer
usage.

For experiments static profiles were constructed by training the classifier
over approximately three weeks of user activity with a sliding window length
set to 100. During the experiments all false positives as well as false negatives
were identified. The classifier’s detection accuracy lies in 0.7-1 interval. In our
experiments we were able to keep the detection accuracy in 0.83-1 for a classi-
fier based on the relational matrix and 0.92-1 for the temporal-probabilistic tree
detector.

Time-to-alarm rate was measured in tokens, where each token represents
a single user action. Most of alarms were made during an interval between one
and 100 actions. In our case the time-to-alarm was defined using the window
length as 20 actions. There is an explanation for this. If we define a token as a

3 As can be seen from the Section 9.1.3, after some improvements we were able to increase the
detection rate to the minimal of 92%.

151

feature involved in the classification process and take a sequence of ten actions
for classification then the IBL method uses only ten tokens, i.e. makes the clas-
sification basing it on the sequential information (actions themselves). In turn,
our methods would use 40 tokens: actions themselves, their temporal lengths,
relations between actions, and the relations’ temporal lengths. That is why our
methods reacted faster.

Neural Networks Approach

Here we refer to a report on experiments where neural networks were used for
statistical anomaly intrusion detection (Zhang et al., 2001). The used testbed
had eleven sources (workstations) and one detection server. After this a clas-
sifier was built to detect anomalies in the network traffic. For a simulation sce-
nario 10000 records of network traffic were collected. They were separated: 6000
records were used for training and 4000 for testing. Each type of neural networks
was trained for 100 epochs. The misclassification rate was measured as the per-
centage of inputs that were misclassified: false positives and false negatives.

Five types of neural networks were tested: perceptron, backpropagation,
perceptron-backpropagation, fuzzy ARTMAP, and radial-basis function. The
studies showed that backpropagation and perceptron-backpropagation networks
have similar performance and both networks perform better than the other three
types. The results for these networks: mean squared root errors <0.2 and mis-
classification rates <0.09.

NIDES based Frequentist Detector

This and the following two anomaly detectors were implemented and described
in Ali (2000). As a main objective of this work three classifiers for anomaly de-
tection (frequentist-, data mining-, and generic programming-based) were im-
plemented and evaluated. To test these three approaches eleven test data sets
with an alphabet size of six were artificially generated with a different amount
of noise. Then 160 anomalies were injected into each of these sets.

The frequentist detector is a statistical anomaly classifier, which takes fre-
quencies of various components in the training data as a measure of normalcy
of the data. For this approach the hit rate varied between 0.8 and 1 depending
on the level of noise in the training data. However, the false alarm rate was
sometimes quite high - up to 0.4.

A Data-mining based Detector

The detector was based on RIPPER (Lee et al., 1999a) which is a rule learn-
ing program. System call traces and tcpdump data was used to evaluate the ap-
proach. In this experiment the detector had a negligible rate of false alarms
(almost 0.00001), however, the hit rate of the detector was surprisingly low - up

152

to 0.25. That shows that the detector cannot probably be used alone in an IDS
(Ali, 2000).

Significantly better results were achieved in another implementation of the
data mining-based classifier (Lee et al., 1999b). The experiments were con-
ducted using DARPA data prepared and used by MIT Lincoln Labs. This data
is an extensively gathered audit data with different kinds of attacks simulated
in a military network environment. The data was collected using tcpdump and
covers seven weeks of network traffic.

The intrusion detection models were produced off-line. The RIPPER was
used to build rules. Results of the experiments were summarized in ROC curves.
A classifier with the best set of features was able to detect about 65% (highest
value) of anomalies in traffic. At the same time the amount of false positives was
approximately 2% and false negatives 33% respectively. Since the experiments
were conducted off-line there was no time-to-alarm estimation provided.

A Generic Programming (GP) based Detector

This is a classifier built using supervised learning (Ali, 2000). All experiments
were performed with a population size of 50, the number of generations was 20
and the maximum depth of the GP tree was 45. Pattern size was varied from
three to twelve during the tests. The author claims that the best results were
achieved for pattern sizes nine and twelve. The hit rate was in the 0.5-1 interval
and the false alarm rate between 0-0.55 for the best case.

Predictive Pattern Generation

The probabilistic user models were constructed as a result of learning the classi-
fier that uses the predictive pattern generation (Lee et al., 2000). These models
were used to analyze and predict user behavior. Details of the algorithm with
its advantages and disadvantages were described in Chapter 2.

The data collection was performed for four different real users. The length
of the time interval covering the activities of each user is different: four, six,
five, and 25 weeks. The Unix shell commands and system responses were gath-
ered. During the experiments the prediction accuracy of an ideal model varied
between 45% and 98% depending on the user profile currently used.

State-based Approach

This study used an n-gram based classifier (Michael and Ghosh, 2000). On the
learning stage the classifier recorded n-gram of audit events that occured in the
training data. Later during the detection these n-grams were compared with
incoming data. New n-grams were considered as evidence of an intrusion.

The experiments were conducted on user data covering eleven weeks of
work. Unfortunately, the details of the used data were not provided in the pa-

153

per. The results of the classifier are presented as an ROC curve. The n-gram
based classifier could detect up to approximately 93% of attack keeping the false
positives at quite low level - 1.5%. However, during additional experiments it
was discovered that this approach is sensitive to the data in a training set. The
rate of false positive errors varied between 1.5%-34% depending on the context
of data and its amount in the training set.

Chi-square statistic

The classifier (Ye and Chen, 2001) used to build statistical models of normal be-
havior is based on chi-square statistic. In the implementation a profile of normal
events in an information systems was built. Two sources of data were used to
capture normal events: network traffic and audit logs. Network traffic data rep-
resented packets traveling over communication links (LAN) between machines.
Audit data was taken from audit logs of the host machines (Unix-based). There
were 248 types of events considered in the study - the number of Basic Security
Module (BSM) allows. The first part of the audit - 1613 events was used to build
a model of normal behavior and the second - 1405 was used to test the classifier.
Also the intrusive data (1225 events) was involved on the testing stage.

For all intrusion sessions the detection rate was between 35% and 86%. It is
necessary to note that all intrusive activities were detected at a very early stage:
71% by the first event and 29% by the second. This shows that the classifier has
a short time-to-alarm. However, the estimations of the time-to-alarm interval
length are not present in this work.

To summarize this section we would like to note that it is very difficult to
find experimental performance results of different anomaly detectors. In publi-
cations only accuracy results are provided, and if there is some extra information
- it is given in relative values, which are very difficult to compare with the ab-
solute values obtained from our experiments. Moreover, we have not seen any
actual profile size, neither classification time analysis for the anomaly detector.
Therefore, we cannot provide any comparison of them.

From the comparisons we were able to make, it is possible to see that our
classifiers perform sometimes slightly, sometimes significantly better, support-
ing our initial claim that this work improves the aspects of the current anomaly
intrusion systems. Additionally, in contrast to our work, non of the described
above classifiers used dynamic profiles to represent behavioral models. There-
fore, the provided accuracy results are valid during a short period of time after
the learning period is complete.

9.5 Evaluation of Results

In this section we summarize the developed in this thesis approaches and com-
pare them with the related approaches presented and discussed in Chapter 2.
By doing this we are trying to show how we managed to overcome the stated

154

above disadvantages, i.e. to assess how well the objectives of this work are met.
Section 2.5 discusses the different approaches in terms of how easy they are to
program and manage, their source independence, completeness of the model,
and their ability to use dynamic profiles. We attempt to classify our approach in
the same terms. Table 9.4 presents a summary of characteristics for the relational
matrix and temporal-probabilistic tree approaches.

Table 9.4 A summary of characteristics of intrusion detection approaches developed in
this thesis

Intrusion Easy Easy Online Complete- Source
detection to to model ness of the indepen-
approach program manage update model dence

Relational Matrix + + + + +
Temporal-

Probabilistic Tree + + + + +

We consider in details and justify our classification.

• Easy to program. In both our approaches the only thing necessary to de-
fine manually is an action database that contains descriptions of action
classes. This is done only once for each kind of information source (op-
erating system). After this the system automatically collects statistics
and builds behavioral models.

• Easy to manage. There are a few parameters described in Chapters 5
and 6 that allow a system administrator to manage the profiles. It is
not necessary to perform any manual actions in order to manipulate the
profiles. Everything is done by changing a correspondent variable that
allows changing accuracy, size, speed of update, etc.

• Online model update. The results of the experiments presented here were
obtained used dynamic profiles. Thus, we conclude that the approaches
are able to update profiles to reflect normal changes in user behavior.

• Completeness of the model. Although we argued that it is not possible to
build a really complete model of normal (intrusive) behavior due to the
impossibility to take into account all possible cases of user behavior and
its variations, the models used in our experiments showed that they can
be used for anomaly intrusion detection. Also, during the prototype
implementation and experiments we did not encounter any situations
where we could not represent some scenarios. Therefore, we put ”+”
here.

• Source independence. The approaches were developed to be portable and
they are able to use different sources of information. To create the pro-
files used for experiments four different operating systems were used

155

as sources of information about user behavior. Although all of them
are Unix-based, they have some differences in representing information
inside the kernel and details that accompany some of the messages.

In the previous section there is a comparison between the results obtained dur-
ing evaluation of our prototype with results of the implementations of differ-
ent approaches. The presented summary of results was made to compare ap-
proaches, not implementations. Comparison of Tables 9.4 and 2.2 supports our
initial claim that this work improves some of characteristics and overcomes
some disadvantages of intrusion detection approaches.

9.6 Summary

In this chapter we described the experiments, outlined the main results of the
prototype testing, and compared the obtained results with performance of other
anomaly detectors. Two algorithms were employed for classification. As can be
concluded from the results these approaches have different characteristics and
should be used under different circumstances. The approach based on a rela-
tional matrix is less computationally expensive, but does not provide such good
results as the approach based on the temporal-probabilistic tree. According to its
characteristics, it may be efficiently used when there is a large number of users
logged in at the same time or for users who log in occasionally. If an average
session length is short it makes it very difficult to find patterns inside a session
which does not contain many actions. Thus, the relation matrix approach is effi-
cient for these cases since it has been developed for short patterns.

10 CONCLUSIONS AND FUTURE WORK

In this chapter the conclusions to this work are presented outlining the main
scientific contribution and showing the limitations of the presented work. Ad-
ditionally, possible future research directions are outlined.

10.1 Conclusions

We hope that this thesis has advanced current knowledge on intrusion detection
by providing insights into representation and recognition issues of user behav-
ior. Here we are going to highlight the main contribution of this thesis.

At the beginning of this work we have introduced a hybrid architecture
for intrusion detection. The architecture employs two approaches: the anomaly
and misuse intrusion detection, trying to benefit from their advantages through
their cooperation. It also employs the network agents (Zamboni et al., 1998)
and is able to distribute detection tasks over the network. The anomaly detector
exposes anomalies by profiling user behavior. The misuse detector provides fast
recognition of malicious actions that have been exposed in the past.

A new information representation method that translates basic audit trail
log events into a more general and, therefore a more understandable and source-
independent form was developed in this thesis. The method is based on the
assumption that the user’s behavior includes regularities, which can be detected
and coded as a number of patterns. The information derived from these patterns
could be used to detect the abnormal behavior and to train the system.

Two new anomaly intrusion detection approaches were suggested. They
dynamically model the patterns of user behavior; they are independent of the
system, type of input, and the specific intrusions to be monitored. These ap-
proaches are based on the new information representation method. They use
temporal-probabilistic trees to represent and monitor a users’ behavior. In par-
ticular they are able to automatically find the normal behavior patterns from the
audit data, encode and match them against the current event streams in order

157

to observe deviations from normal behavior; then analyze and decide whether
it is an intrusion or normal behavior changes. The concept of temporal pattern
learning for their further usage is a central part of this thesis and it is one of the
main contributions of the thesis.

The developed anomaly detection approach translates the main decision
problem into three scenarios: what is happening - this is the problem of identi-
fication of different aspects of a user’s behavior; when? - in order to answer to
this question we try to observe the temporal aspects of a user’s behavior (when
the activity is happening and how long) by analyzing and tracing it in its tem-
poral context using temporal algebra (Hirsch, 1996) to describe relationships
between temporal intervals or actions; and how much? - would help us to deter-
mine the possible danger. The mechanism of trustworthiness is based on pattern
deviation punishments and is controlled by coefficients of reliability, which are
assigned to every activity. Therefore, the answer to these three questions gives
us the possibility to capture more behavior aspects, which leads to additional
flexibility in managing information stored in profiles.

Since our anomaly detection approaches are based on machine learning
techniques there is a theoretical possibility that their profiles can be maliciously
trained. In order to solve this problem the system must be able to differentiate
abnormal learning attempts from a concept drift. We have considered this issue
in the thesis and devised methods to efficiently handle the concept drift and
detect the undesirable learning attempts (intellectual attacks).

Based on the HIDSUR architecture and employing the developed anomaly
detection methods a prototype was built. Using this prototype different exper-
iments were conducted. They provided results and gave us the opportunity to
discuss performance of different parts of the prototype and compare it to other
systems.

The main goals of our work have been to adequately represent and effi-
ciently recognize users (or distinguish among them) rather than attempt to rep-
resent and detect every conceivable intrusion scenario. We have been successful
in achieving these goals. According to our experiments we could represent typ-
ical user behavior and recognize it correctly no less than in 92% of cases using
the temporal-probabilistic tree approach, and in 83% using the relational matrix
approach.

In our experiments all unrecognized (false negative) cases could be divided
into two categories: sequence issued by a legitimate user and the system recog-
nizes it as being issued by another user (type 1) or the system reports it as not
belonging to any known user (type 2). We had none of the type 1 errors; all false
rejections in our work can be classified as type 2. This means that our methods
sometimes fail to handle fast user behavior changes. In our future work we are
going to concentrate on this problem.

Based on the prototype that we implemented for our approaches, we de-
rived the performance results that show that the approach presented in this the-

158

sis to discover, and represent behavioral patterns, and later use them for intru-
sion detection is practical. Anomaly intrusion detection systems have not been
widely used mainly because of their space requirements and performance im-
pact. In this work we have shown that it is possible to efficiently use an anomaly
intrusion detection system based on pattern matching. Extrapolation of our ex-
perimental results show that the overhead of monitoring 10 000 users should be
under 1% of the system CPU performance.

In this thesis we also have suggested a new way of organizing an intrusion
detection system based on anomaly detection keeping false alarms at a relatively
low level, having a high detection probability, performing with the same speed
as misuse intrusion detection systems, and being able to recognize unknown
attacks.

The HIDSUR architecture consists of two detectors: anomaly and misuse.
The anomaly detector exposes anomalies basing it on the user behavioral model
stored in a profile. The misuse detector was introduced into HIDSUR because
it has a significantly shorter time-to-alarm interval. To avoid as much as pos-
sible human supervision than is necessary for all misuse detection systems, we
have presented an idea of how to use the anomaly detector as a pattern supplier
for the misuse detector. It has shown that it is possible to automatically create
and use intrusion patterns. However, this part of the thesis requires additional
research efforts in order to develop the method acceptable for widespread use.

Finally, we believe that this thesis provided new approaches to intrusion
detection and hope that it will spawn further work in this direction.

10.2 Directions for Future Work

Our work presented in this thesis can be continued further in the following di-
rections.

Prototype Optimization

It is necessary to investigate a possibility to optimize the prototype. It was im-
plemented to prove the ”viability” of the methods and models described in this
thesis, therefore we may achieve better performance and accuracy results after
optimizing it. By optimization we mean making the functions inline where pos-
sible to minimize function calls, embedding a classifier code into the kernel to
avoid unnecessary disk swapping, eliminate code duplications, etc.

Implement Other Features

In this work we built a prototype as a concept proof. Using the prototype we
have performed different tests to determine how our main approaches (temporal-
probabilistic tree and relational matrix) perform in real conditions. However, to
test other ideas described in this thesis we built a custom environment for each

159

experiment. Therefore, it would be beneficial to implement those parts in the
prototype and test them in a real environment.

In most cases of successful intrusions the investigation reveals some facts.
Such as, it is not enough for an intruder to know the operating systems and have
excellent programming skills, he should also have some luck, i.e. ”be in the right
place at the right time”.

According to a vulnerability analysis (Krsul, 1998) there are many factors
that promote successful intrusions, such as: software bugs, failures, administra-
tor and user mistakes or negligence. The ordinary user may stand behind these
factors which are possibly caused by his actions. Therefore, a legitimate person
using an operating system is able to create breaches in the system, which may
be successfully used by intruders.

The user can do these actions for a purpose - in this case the system ad-
ministrator has to suppress this with the help of an intrusion detection system.
What if the user does not have any idea about what he/she is doing in the sense
of making the system vulnerable? Most users have a very weak conception of
computer security. Any ordinary and every day program that is used does not
posses a security risk, but may accidentally be misconfigured by someone and
later used by a malicious user to get additional privileges. It would be practical
for the system to detect these cases, also since it would be possible not only to
detect an intrusion, but also to prevent it before it happens.

In user recognition we rely on previous ”good” actions, but what if the
user systematically runs different hackers’ programs (for example, for password
cracking, denial-of-service attacks, etc.) and the system on the learning stage has
accepted and encoded these actions as a part of normal behavior? To solve this
problem the system should consider for classification of new actions, not only
the user’s previous behavior, but also how the system responded to the previous
behavior (system call activity, input-output operations, etc.). In other words it
is necessary to combine the user-oriented view (take into account actions per-
formed by a user) with system-oriented (system’s response to user’s actions),
since the user can cause potential damage without knowing it. For these pur-
poses we have introduced system profile into the architecture of our system at
Figure 7.3, which has to be developed further.

Distributed Classification

As it is possible to see from the performance results in Chapter 9 that the perfor-
mance overhead for the classification is very low. Therefore, it may be reason-
able to completely distribute the classification task without devoting a separate
server for it. Each host agent will track a local user(s) behavior and at the same
time compare it with profile(s) (also locally) only sending alarms to a system ad-
ministrator. This kind of system will not require a separate server and also the
amount of sensitive information sent over the network will be minimized.

160

Fuzzy Sets Approach for Instances Separation

After testing the presented in this work approaches for user behavior classifi-
cation we obtained quite promising results. However, one possible reason for
this is that the user classes did not have many instances inside or/and these
instances were situated far from each other, which made it easy for the system
to separate instances inside each class. There is a potential risk that in some
user groups the instances will be situated close to each other, which, in turn,
may lead to a misclassification rate growth, since if two or more distributions
overlap each other it is difficult to automatically establish fixed cut-off points
for a decision. Also a fixed cut-off point technique does not correctly handle
cases in overlapped areas. Thus, for future work we propose to use a fuzzy sets
approach to separate instances inside each class. Each class will have its own
thresholds on each classification step. This will make the classification process
more flexible and precise and in a way guarantee that the system will perform
equally well on different user groups.

Kernel Matching

It might be possible to embed a highly optimized custom sensor and classifier
inside the kernel on a local workstation. This means that system call invoca-
tions no longer need to write audit data to disk. Instead, required information
is collected in the kernel, at the point of call, and goes directly to the intrusion
detection system. This results in an intrusion detector and classifier that can
be truly real-time, because it removes the latency between the occurrence of an
event and its notification to the detector. This latency may occur because of dif-
ferent reasons such as disk cache, system failures, sending it over the network,
etc.

The implementation procedure of the detector is also important. It may be
possible to implement learning, matching, etc. procedures as a shared library.
Every profile may be constructed as a separate program that controls itself. In
this case the program will call required procedures from a shared library. This
will give us the following advantages:

• the possibility to process distributed data and thus, minimize the time
of information flow between sensors and detector,

• protection of intrusion detection system’s procedures from unautho-
rized modifications by storing them on read-only storage,

• the possibility to manipulate active profiles (programs) from the com-
mon control center,

• allow the program migration over the network (for example if the server
is busy, it may send some programs to another server in order to avoid
degradation of intrusion detection performance).

161

Additional Protection

Chapter 3 describes an architecture of our intrusion detection system. As can
be seen in Figures 3.2 and 3.3 that there are different components which our
intrusion detection system consist of. Those components are distributed over
a network and, thus, they need to exchange information between each other.
Therefore, some additional work has to be done to ensure their immunity to
denial of service attacks and physical modifications on local workstations or in
a network.

User Interface

It would be beneficial to provide a GUI interface tool that is able to visualize a
chosen temporal-probabilistic tree and transactions happening in it. This would
assist users in understanding and controlling the processes that control a user
profile.

Enhance Reporting Capabilities

Since our prototype was built to test our ideas, we did not explicitly consider
advanced reporting capabilities as a distinguished requirement of the prototype.
However, a carefully designed reporting module is an important part of an in-
trusion detection system. It should not create many messages, but every issued
message has to contain enough information for a system administrator.

Multiple User Identity Handling

A user may log in on the same network from different hosts and using different
identities. It would be useful if our system can attribute multiple user session
activities to the same user. As the user opens a new session from some host his
identity should be tracked and attributed to the unique identity (for example,
network user identity NID (Ko et al., 1993)). Also, temporal patterns of user
behavior may depend on the workstation’s hardware. For example, if a user
logs in from a different workstation, which is faster (or slower) than the one
he/she normally uses, then the temporal lengths of his/her actions and relations
between them may change simply because the software, he/she uses, performs
differently on this particular hardware. As a result a system may produce false
alarms. Therefore, it is necessary to investigate the possibility of taking this into
account in order to avoid such cases.

Investigate Privacy Issues

In this work we did not pay much attention to privacy issues. We collected
detailed user information to build user profiles. For our experiments we have
impersonalized all obtained information by removing user names from it. How-

162

ever, if we consider such a system working in real life we can see that it is pos-
sible for a system administrator to trace back all user activities, being able to see
when and what each particular user was doing. Thus, it would be beneficial to
devise a method to protect a users’ privacy. It is necessary to tokenize or encode
user behavior information in a way that it would be impossible to trace back
the users’ activities, but still possible to discover and use behavioral patterns for
online user verification.

Investigate Applicability of our Approaches to Other Problems

Described in this work the temporal-probabilistic tree represents a model of user
behavior, thus, it probably can be used for solving other problems than intrusion
detection. For example, in mobile networks there is an important task to antic-
ipate what service a user will request during the next connection of his mobile
terminal to a server. It is possible to create a profile for every user during a learn-
ing period where sequential and temporal patterns of his behavior are stored.
The sequential patterns allow the prediction of certain probability to what kind
of service the user may request next. Using the temporal patterns it is possible to
calculate a time interval during which this service is most likely to be requested,
and as a result a server may prepare and upload the service or information to a
mobile terminal during the next connection making it unnecessary to establish a
new connection when the user actually requests the service or information. This
technique minimizes the number of sessions between a mobile terminal and a
server, or/and shorten the length of each connection.

163

YHTEENVETO (FINNISH SUMMARY)

Yhteiskuntamme on tullut yhä riippuvaisemmaksi tiedon nopeasta saan-
nista ja käsittelystä, joita tuetaan aikaisempaa suurempien tietomäärien tie-
tokoneavusteisella tallennettamisella ja käsittelyllä. Maailmanlaajuinen verkos-
toituminen mahdollistaa aikaisempaa nopeamman laajojen ja monipuolisten
tietojen saannin lähes mistä tahansa maailmassa. Tietokonelaitteiden ja
-verkkojen hintojen nopea lasku ja yleistyminen ovat samalla myös lisänneet
tietojen luvattoman käytön ja muuntelun riskejä.

Kaikesta kehityksestä huolimatta tietokonejärjestelmät eivät ole täysin
suojattuja useista syistä johtuen. Näitä ovat esimerkiksi laitteiden ja ohjelmis-
tojen toimintavirheet, ohjelmistoihin alunperin sisältyvät puutteet ja ohjel-
mointivirheet sekä tietokonejärjestelmien käytössä ja ylläpidossa tapahtuvat
virheet. Koska täydellisen tietoturvan saavuttaminen ei ole vielä näköpiirissä on
edelleenkin välttämätöntä etsiä keinoja tietomurtojen paljastamiseksi. Sen vuok-
si tarvitaan keinoja tunkeutujan ja tunkeutumisen tunnistamiseksi ja todistus-
aineiston keräämiseksi myös mahdollista oikeudellista jatkokäsittelyä varten.

Työn aihealueena olevat tunkeutumisen tunnistamisjärjestelmät on ke-
hitetty palvelemaan nimenomaan tätä tarkoitusta ja niiden voidaan katsoa ylei-
sesti kuuluvan tietokonejärjestelmän suojaustoimenpiteiden viimeiseen puolus-
tuslinjaan. Nämä tunnistamisjärjestelmät ovat käyttökelpoisia sekä onnistunei-
den tietomurtojen tunnistamisessa että tietomurtoyritysten tietojen kokoamises-
sa uusien vastatoimenpiteiden suunnittelua varten. Täten tunkeutumisen tun-
nistamisjärjestelmät ovat käyttökelpoisia silloinkin kun käytössä on vahvoja,
korkean turvallisuustason tarjoamia suojamekanismeja.

Tunkeutumisen tunnistamisjärjestelmät voidaan jakaa kahteen
päätyyppiin: väärinkäytön tunnistamiseen, jossa tunnistaminen perustuu
siihen, että tunkeutuminen noudattaa ennalta tarkasti tunnettua menettely-
tapaa, sekä käyttötavan tunnistamiseen, jossa tunnistaminen perustuu käyttäjän
tavanomaisesta poikkeavaan tapaan käyttää tietokonejärjestelmää. Väitöskirjan
alussa esitetään tunkeutumisen tunnistamisjärjestelmän hajautettu arkkitehtuu-
ri, joka yhdistää molempien päätyyppien piirteitä pyrkien hyödyntämään nii-
den kummankin vahvuuksia. Arkkitehtuurin osalta työ keskitty käyttötapaan
perustuvaan tunnistamisosuuteen. Väärinkäyttöön perustuvaa tunnistamista
käsitellään vain esittäen kuinka käyttötapaan perustuvalla tunnistamisella
voitaisiin tuottaa sen tarvitsemia tarkasti tunnettuja tunkeutumistapoja.

Väitöskirjassa esitetään käyttäjien käyttötapojen eksplisiittisen esityk-
sen muodostamista ja siihen pohjautuvaa tunnistamista tunkeutumisen tun-
nistamisongelman ratkaisuksi. Tällöin keskeiseksi ongelmaksi muodostuvat dy-
naamisen toimintaympäristön tapahtumien säännönmukaisuuksien tulkinta ja
niiden vertaaminen käyttötapakuvauksiin. Väitöskirjatyössä ei pyritä kaikkien
mahdollisten tunkeutumisskenaarioiden esittämiseen ja paljastamiseen vaan

164

työn keskeiseksi tavoitteeksi on rajattu käyttötapaan perustuva käyttäjän
tehokas tunnistaminen ja sen kannalta riittävän käyttötapaesityksen muo-
dostaminen.

Työssä käyttäjän ja tietokonejärjestelmän välisen vuorovaikutuksen katso-
taan ylimmällä tasolla koostuvan toimista, joita käyttäjä suorittaa saavuttaak-
seen tavoitteensa. Nämä toimet koostuvat käyttäjän peräkkäin suorittamista
toimenpiteistä. Kukin toimenpide edelleen aiheuttaa käyttöjärjestelmätasolla sar-
jan tapahtumia. Väitöskirjassa kehitetty tunkeutumisen tunnistamisjärjestelmä
perustuu sille oletukselle, että käyttäjät noudattavat toimissaan heille kullekin
luonteenomaisia peräkkäisiä toiminpiteitä, joiden ominaispiirteiden perusteella
tunkeutuja voidaan havaita käyttäjäjoukosta.

Työssä on kehitetty käyttötapa tiedon esittämiseksi kolmetasoinen ratkaisu
vastaten käyttäjän ja tietokonejärjestelmän vuorovaikutuksen jäsentämistä
toimiin, toimenpiteisiin ja tapahtumiin. Alimmalla tasolla tapahtumat rekis-
teröidään lokitiedostossa käytetyllä yksityiskohtaisella tarkkuudella. Tapahtu-
mien pohjalta johdetaan paikka- ja laiteriippumattomat keskimmäisen tason
käyttäjän toimenpidekuvaukset, jotka vastaavat sitä ”mitä käyttäjä tekee”.
Toimenpidekuvausten pohjalta johdetaan ylimmän abtraktiotason ohjelmisto-
riippumaton kuvaus siitä ”mihin tavoitteisiin käyttäjä pyrkii”. Ylimmän tason
ohjaamana kootaan sitten yhteen tietoa käyttäjän käyttötavasta, ts. vastaamaan
kysymykseen ”miten toimien käyttäjä normaalisti saavuttaa tavoitteensa”.

Väitöskirjatyössä esitetty tunkeutumisen tunnistamisjärjestelmä perus-
tuu käyttäjän käyttötavan esittämiseen todennäköisyyksiä hyödyntävänä
verkkokuvauksena järjestelmä-, syöte- ja tunkeutumistapariippumattomasti.
Loogiselle verkkokuvaukselle esitetään kaksi toteutustapaa: taulukkoesitys
sekä aika- ja todennäköisyysarvoja sisältävä puuesitys. Tunnistamisvarmuutta
arvioidaan käyttäen luotettavuuskertoimia, joiden arvoja havaittujen tapahtu-
mien ja tallennettujen käyttötapojen erojen perusteella lisätään tai vähennetään.

Työssä kehitetty tunkeutumisen tunnistamistapa perustuu koneoppimisen
tekniikoihin ja niinpä on olemassa teoreettinen mahdollisuus sille, että
käyttötapaprofiileja yritetään harkitusti opettaa hyväksymään tunkeutumisen
sisältävä käyttötapa normaaliksi käyttötavaksi (niin kutsuttu älykäs hyökkäys).
Työssä on tarkasteltu paitsi menetelmiä normaalien käyttötapamuutosten
tekemiseksi myös niiden erottamiseksi harkitusta käyttötapamuutoksesta, joka
mahdollisesti tähtää myöhemmin tapahtuvaan tunkeutumiseen.

Väitöskirjatyön osana on toteutettu esitettyyn arkkitehtuuriin ja kehitet-
tyyn käyttötapapohjaiseen tunnistamiseen perustuva järjestelmäprototyyppi,
joka on toteutettu tarkoitusta varten pystytetyssä testi ympäristössä. Toteutuk-
sessa käytettiin Linux RedHat7.1 käyttöjärjestelmää ja prototyyppi rakennet-
tiin C++ kieltä käyttäen jolloin prototyyppiohjelmiston kooksi muodostui hie-
man yli 25 000 ohjelmariviä. Prototyypillä suoritetuissa kokeiluissa havaittiin
käytetyllä aineistolla saavutettavan vähintäänkin 92% onnistuminen käyttäjän
käyttötavan tunnistamisessa silloin kun käytettiin aika- ja todennäköisyysarvoja

165

sisältävää puuesitystä ja 83% onnistuminen silloin kun käytettiin relaatiope-
rusteista taulukkoesitystä.

Käyttötapaan perustuvia tunkeutumisen tunnistamisjärjestelmiä ei ole ylei-
sesti kovin laajasti käytetty johtuen niiden tilavaatimuksista ja alentavasta vaiku-
tuksesta tietokonejärjestelmän suoritustehoon. Väitöskirjatyössä sovelletun lä-
hestymistavan kokeilujen pohjalta ekstrapoloitu 10 000 käyttäjän käyttötavan
seuranta näyttäisi vaativan vain alle 1% tietokonejärjestelmän keskusyksikön
suorituskyvystä ja näinollen näyttäisi olevan myös käytännössä mahdollista to-
teuttaa käyttötapaan perustuva tunkeutujan tunnistamisjärjestelmä. Saavutet-
tujen positiivisten tulosten valossa näyttäisikin olevan mielekästä jatkaa pon-
nisteluja käyttötapaan perustuvan lähestymistavan kehittämiseksi osaksi tieto-
turvajärjestelmiä.

166

Bibliography

Acid, S. and de Campos, L. 1996, Benedict: An algorithm for learning proba-
bilistic belief networks, in 4th Conference of Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems, Granada, Spain, pp. 979–
984.

Aha, D., Kibler, D. and Albert, M. 1991, Instance-based learning algorithms, Ma-
chine Learning 6(1), 37–66.

Albrecht, D., Zukerman, I., Nicholson, A. and Bud, A. 1997, Towards a Bayesian
model for keyhole plan recognition in large domains, in A. Jameson,
C. Paris and C. Tasso (eds), in 6th International Conference on User Modeling,
Springer, New York, USA, pp. 365–376.

Ali, S. 2000, Adventures in anomaly detection, in 3rd International Workshop on
Recent Advances in Intrusion Detection, Lecture Notes in Computer Science,
Springer Verlag, Toulouse, France.

Allen, J. 1983, Maintaining knowledge about temporal intervals, Communications
of the ACM 26(11), 832–843.

Allen, J., Christie, A., Fithen, W., McHugh, J., Pickel, J. and Stoner, E. 1999, State
of the practice of intrusion detection technologies, Technical report CMU/SEI-
99-TR-028, Carnegie Mellon Software Engineering Institute.

Allen, J. and Ferguson, G. 1994, Actions and events in interval temporal logic, Tech-
nical Report TR521, Computer Science Department, Rochester.

Anderson, D., Lunt, T., Javitz, H., Tamaru, A. and Valdes, A. 1995, Safeguard final
report: Detecting unusual program behavior using the NIDES statistical com-
ponent, Technical report, Computer Science Laboratory, SRI International,
Menlo Park, California, USA.

Anderson, J. 1980, Computer security threat monitoring and surveillance, Technical
Report 79F296400, James P. Anderson Co., Fort Washington, Pennsylvania.

Avizienis, A., Laprie, J.-C. and Randell, B. 2001, Fundamental concepts of depend-
ability, Technical report 01145, LAAS: Laboratory Analysis and Architecture
Systems, France.

Baur, A. and Weiss, W. 1988, Audit trail analysis tool for system with high de-
mands regarding security and access control, Technical Report ZFE F2 SOF 42,
Siemens Nixdorf Software, Germany.

Beetle, S. 2000, A strict anomaly detection model for IDS, Phrack Magazine, Avail-
able from http://www.phrack.com/show.php?p=56&a=11, 10(56).

Bellazzi, R., Magni, P. and De Nicolao, G. 1998, Bayesian function learning using
MCMC methods, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 20(12), 1319–1331.

Bird, R. 1988, The Professional Programmers Guide to UNIX, Pitman Publishing,
London.

Borden, V. 2002, Course of Statistics, Available from
http://www.imir.iupui.edu/psyb305/week4.htm, [Read 3.05.2002].

167

Bugtraq electronic mailing list 1999, Available at: http://www.securityfocus.com,
[Read 12.02.1999].

Carpenter, G., Grossberg, S., Markuzon, N., Reynolds, J. and Rosen, D. 1992,
Fuzzy ARTMAP: A neural network architecture for incremental supervised
learning of analog multidimensional maps, IEEE Transactions on Neural Net-
works (3), 698–713.

CERT advisories 1999, Available by ftp from ftp://cert.sei.cmu.edu, [Read
12.02.1999].

Charniak, E. 1991, Bayesian networks without tears, AI Magazine 12(4), 50–63.
Cheeseman, P., Hanson, R. and Stutz, J. 1991, Bayesian classification with cor-

relation and inheritance, in M. Kaufmann (ed.), in 12th International Joint
Conference on Artificial Intelligence, Vol. 2, Sydney, Australia, pp. 692–698.

Cheeseman and Stutz, J. 1995, Bayesian Classification (AutoClass): Theory and Re-
sults, AAAI Press, Menlo Park, California, USA, pp. 152–180.

Chen, K. 1988, An Inductive Engine for the Acquisition of Temporal Knowledge, Phd
thesis, University of Illinois, USA.

CNN.com/SCI-TECH 2002, FBI warns companies
about Russian hacker attacks, Available from
http://www.cnn.ru/2001/TECH/internet/03/08/hacker.attacks/index.html, [Read
7.05.2002].

computerheadline.com 2002, Gain competitive advantage by plac-
ing security high up the corporate agenda, Available from
http://www.computerheadline.com/BusinessMatters/February2002/
computerassoc.asp, [Read 7.05.2002].

Crosbie, M., Dole, B., Ellis, T., Krsul, I. and Spafford, E. 1996, IDIOT-user’s guide,
Technical Report TR-96-050, COAST Laboratory, Purdue University, USA.

Crosbie, M. and Spafford, G. 1995, Active defense of a computer system using au-
tonomous agents, Technical Report TR-95-008, COAST Laboratory, Purdue
University, USA.

Davison, B. and Hirsh, H. 1998, Predicting sequences of user actions, in Proceed-
ings of AAAI-98/ICML-98 Workshop, published as Technical Report WS-98-07,
AAAI Press, Madison, WI, pp. 5–12.

Debar, H., Becker, M. and Siboni, D. 1992, A neural network component for an
intrusion detection system, in IEEE Symposium of Research in Computer Se-
curity and Privacy, IEEE Computer Society Press, Oakland, California, USA,
pp. 240–250.

Denning, D. 1982, Cryptography and Data Security, Addison-Wesley, Mas-
sachusetts, USA.

Denning, D. 1987, An intrusion detection model, IEEE Transactions on Software
Engineering 13(2), 222–232.

Durst, R., Champion, T., Witten, B., Miller, E. and Spagnuolo, L. 1999, Testing
and evaluating computer intrusion detection systems, Communications of
the ACM 42(7), 53–61.

168

Eckmann, S., Vigna, G. and Kemmerer, R. 2001, Statl: An attack language for
state-based intrusion detection, Journal of Computer Security .

Eskin 2000, Anomaly detection over noisy data using learned probability distri-
butions, in 17th International Conf. on Machine Learning, Morgan Kaufmann,
San Francisco, CA, pp. 255–262.

Focardi, R. and Gorrieri, R. (eds) 2000, Foundations of security analysis and design,
Lecture Notes in Computer Science 2171, Springer, Berlin, Germany.

Fox, K., Henning, R., Reed, J. and Simonian, R. 1990, A neural network approach
towards intrusion detection, in The 13th National Computer Security Confer-
ence, National Institute of Standards and Technology, National Computer
Security Center, Washington D.C., USA, pp. 125–134.

Garfinkel, S. and Spafford, G. 1991, Practical Unix Security, O’Reilly and Asso-
ciates, Sebastopol, California, USA.

Garvey, T. and Lunt, T. 1991, Model-based intrusion detection, in 14th National
Computer Security Conference, National Institute of Standards and Technol-
ogy, National Computer Security Center, Washington D.C., USA, pp. 372–
385.

GCC manual 2000, Available from http://gcc.gnu.org/, [Read 12.02.1999].
Gent, C. and Sheppard, C. 1992, Predicting time series by a fully connected neu-

ral network trained by back propagation, Computing and Control Engineering
Journal (May issue), pp. 109–112.

Giarratano, J. 1992, Clips version 5.1 user’s guide, User guide, NASA, Information
Systems Directorate, Software Technology Branch.

Heady, R., Luger, G., Maccabe, A. and Servilla, M. 1990, The architecture of a net-
work level intrusion detection system, Technical Report CS90-20, Department
of Computer Science, University of New Mexico, Albuquerque, NM 87131,
USA.

Heberlein, L., Levitt, K. and Mukherjee, B. 1991, A method to detect intrusive
activity in a networked environment, in The 14th National Computer Secu-
rity Conference, National Institute of Standards and Technology, National
Computer Security Center, Washington D.C., USA, pp. 362–371.

Heberlein, T. and Bishop, M. 1998, Attack Class: Address Spoofing, Addison-
Wesley Pub Co.

Hirsch, R. 1996, Relation algebra of intervals, Artificial Intelligence 83(2), 267–295.
Hochberg, J., Jackson, K., Sttallins, C., McClary, J., DuBois, D. and Ford, J. 1993,

NADIR: an automated system for detecting network intrusion and misuse,
Computer & Security 12(3), 235–248.

Holsheimer, H. and Siebes, A. 1994, Data mining: the search for knowledge in
databases., Technical Report CS-R9406, CWI: Department of Algorithms and
Architecture.

Ilgun, K., Kemmerer, R. and Porras, P. 1995, State transition analysis: A rule-
based intrusion detection approach, IEEE Transactions on Software Engineer-
ing 21(3), 181–199.

169

ISO 1991, International organization of standardization: Information technol-
ogy: Open systems interconnection: Security frameworks for open sys-
tems, (ISO/IEC DIS 10181).

Javitz, H., Valdes, A., Lunt, T., Tamaru, A., Tyson, M. and Loerance, J. 1993, Next
generation intrusion detection expert system (NIDES), Technical Report A016-
Rationales, Computer Science Laboratory, SRI International, Menlo Park,
California, USA.

Jensen, C., Dyreson, C., Böhlen, M., Clifford, J., Elmasri, R., Gadia, S., Grandi,
F., Hayes, P., Jajodia, S., Käfer, W., Kline, N., Lorentzos, N., Mitsopoulis,
Y., Montanari, A., Nonen, D., Peressi, E., Pernici, B., Roddick, J., Sarada,
N., Scalas, R., Segev, A., Snodgrass, R., Soo, M., Tansel, A., Tiberio, P.
and Wiederhold, G. 1998, The consensus glossary of temporal database
concepts - february 1998 version, Temporal Databases - Research and Practice
1399, 367–405.

Kautz, H. and Ladkin, P. 1991, Integrating metric and qualitative temporal rea-
soning, in 9th National Conference of Artificial Intelligence, American Associ-
ation for Artificial Intelligence, Anaheim, CA, USA, pp. 241–246.

Ko, C., Frincke, D., Goan, T., Herberlain, L., Mukherjee, B. and Wee, C. 1993,
Analysis of an algorithm for distributed recognition and accountability,
in 1st ACM Conference on Computer Communication Security, ACM , USA,
pp. 154–164.

Kondratoff, Y. and Michalski, R. 1990, Machine Learning, Vol. 3, Morgan Kauf-
mann, San Mateo, CA, USA, pp. 611–638.

Krishnan, P. 1995, Online Prediction Algorithms for Databases and Operating Sys-
tems, Phd thesis, Brown University.

Krsul, I. 1998, Software Vulnerability Analysis, Phd thesis, Purdue University.
Kumar, S. 1995, Classification and Detection of Computer Intrusions, Phd thesis, Pur-

due University.
Kumar, S. and Spafford, E. 1994, A pattern matching model for misuse intrusion

detection, in 17th National Computer Security Conference, National Institute
of Standards and Technology, National Computer Security Center, Wash-
ington D.C., USA, pp. 11–21.

Kumar, S. and Spafford, E. 1995, A software architecture to support misuse intru-
sion detection, Technical Report CSDTR -95-009, Department of Computer
Sciences, Purdue University.

Lane, T. and Brodley, C. 1997a, An application of machine learning to anomaly
detection, in 20th Annual National Information Systems Security Conference,
Vol. 1, National Computer Security Center, Baltimore, Maryland, USA,
pp. 366–380.

Lane, T. and Brodley, C. 1997b, Detecting the abnormal: Machine learning in com-
puter security, Technical Report ECE-97-1, Department of Electrical and
Computer Engineering, Purdue University.

Lane, T. and Brodley, C. 1999, Temporal sequence learning and data reduction

170

for anomaly detection, ACM Transactions on Information and System Security
2(3), 295–331.

Lee, J., Mccartney, R. and Santos, E. 2000, Learning Pre-
dictive Patterns of User Resource Usage, Available from
http://citeseer.nj.nec.com/article/lee00learning.html, [Read 02.06.2002].

Lee, W., Stolfo, S. and Mok, K. 1998, Mining audit data to build intrusion de-
tection models, in ACM SIGKDD 4th International Conference on Knowledge
Discovery and Data Mining, ACM, New York, NY, USA, pp. 66–72.

Lee, W., Stolfo, S. and Mok, K. 1999a, A data mining framework for building
intrusion detection models, in IEEE Symposium on Security and Privacy, IEEE
Computer Society Press, Oakland, CA, USA, pp. 120–132.

Lee, W., Stolfo, S. and Mok, K. 1999b, Mining in a data-flow environment: Ex-
perience in network intrusion detection, in 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, San Diego, CA,
USA, pp. 114–124.

Lee, W. and Xiang, D. 2001, Information-theoretic measures for anomaly de-
tection, in 2001 IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, Oakland, California, USA, pp. 130–143.

Liepins, G. and Vaccaro, H. 1989, in anomaly detection: Purpose and framework,
12th National Computer Security Conference, pp. 495–504.

Lindqvist, U. 1999, On the Fundamentals of Analysis and detection of computer
Misuse, Phd thesis, Department of Computer Engineering, University of
Göteborg, Sweden.

Longley, D. and Shain, M. 1987, Data and Computer Security: Dictionary of Stan-
dards, Concepts and Terms, Stockton Press, New York.

Lowe, G. 1996, some new attacks upon security protocols, in 9th computer Se-
curity foundations workshop, IEEE Computer Press, Kenmare, County Kerry,
Ireland, pp. 139–146.

Lunt, T. 1993, Detecting intruders in computer systems, in 6th Conference on Au-
diting and Computer Technology, Canada.

Lunt, T., Jagannathan, R., Lee, R., Whitehurst, A. and Listgarten, S. 1989, Knowl-
edge based intrusion detection, in Annual AI Systems in Government Confer-
ence, Washington, DC, USA, pp. 102–107.

Lunt, T., Tamaru, A., Gilham, F., Jagannathan, R., Neumann, P., Javitz, H.,
Valdes, A. and Garvey, T. 1992, A real-time intrusion detection expert system
(IDES) - final technical report, Technical report, Computer Science Labora-
tory, SRI International, Menlo Park, California, USA.

Melissa Virus 1999, Description available from: http://www.melissavirus.com,
[Read 12.03.2002].

Mell, P. 1999, Computer Attacks: What They Are and How to Defend
Against Them, Available from csrc.nist.gov/staff/mell/compattack.pdf, [Read
7.05.2002].

Michael, C. and Ghosh, A. 2000, Two state-based approaches to program-based

171

anomaly detection, in Annual Computer Security Applications Conference,
New Orleans, Louisiana, USA.

Mitchel, T. 1997, Machine Learning, WCB.McGraw-Hill, USA.
Mounji, A. 1997, Languages and Tools for Rule-Based Distributed Intrusion Detection,

Phd thesis, Namur, Belgium.
Nilsson, N. 1998, Artificial Intelligence: A New Synthesis, Morgan Kaufmann Pub-

lishers, Inc., San Francisco, California, USA.
Porras, P. and Neumann, P. 1997, EMERALD: event monitoring enabling re-

sponses to autonomous live disturbances, in 20th National Information
Systems Security Conference, National Institute of Standards and Tech-
nology/National Computer security Center, Baltimore, Maryland, USA,
pp. 353–365.

Powell, D., Adelsbasch, A., Cachin, C., Creese, S., Dacier, M., Deswarte, Y., Mc-
Cutcheon, T., Neves, N., Pfitzmann, B., Randell, B., Stroud, R., Verissimo,
P. and Waidner, M. 2001, MAFTIA (Malicious- and Accidental- Fault Tol-
erance for Internet Applications), in International conference on dependable
systems and networks, IEEE Computer Press, Göteborg, Sweden, pp. 32–35.

Power, R. 1998, Current and Future Danger: A CSI Primer on Computer Crime and
Information Warfare, Computer Security Institute, San Francisco, California,
USA.

Power, R. 2002, 2002 SCI/FBI computer crime and security survey, Computer
Security Issues & Trends 8(1).

Puketza, N., Zhang, K., Chung, M., Mukherjee, B. and Olsson, R. 1996, A
methodology for testing intrusion detection systems, IEEE Transactions on
Software Engineering 22(10), 719–729.

Russel, D. and Gangemi, G. 1991, Computer Security Basics, O’Reilly&Associates
Inc., Sebastopol, California, USA.

Schlimmer, J. 1987, Concept acquisition through representational adjustment, Phd
thesis, University of California, Irvine.

Sebring, M., Shellhouse, E., Hanna, M. and Whitehurst, A. 1988, Expert systems
in intrusion detection: a case study, in 11th National Computer Security Con-
ference, Baltimore, Maryland, USA, pp. 74–81.

Seleznyov, A. 2000a, A hybrid model for intrusion detection, in S. Quing and
J. Eloff (eds), in 16th IFIP World Computer Congress, Kluwer, Beijing, China,
pp. 164–167.

Seleznyov, A. 2000b, Temporal-probabilistic networks in intrusion detection:
Detecting abnormal learning, in S. Quing and J. Eloff (eds), in 16th IFIP
World Computer Congress, Kluwer, Beijing, China, pp. 168–171.

Seleznyov, A. 2000c, Using temporal-probabilistic network approach for auto-
matic pattern generation for misuse detection, in Y. Karsligil, G. Yavuz,
E. Karsligil, T. Inan, B. Diri, E. Ergün and S. Albayrak (eds), in The 15th
International Symposium on Computer and Information Sciences, Academy Yay-
incilik (Ankara), Istanbul, Turkey, pp. 366–373.

172

Seleznyov, A. 2001, A methodology to detect anomalies in user behavior bas-
ing on its temporal regularities, in M. Dupuy and P. Paradinas (eds), in
IFIP/SEC2001: 16th International Conference on Information Security, Kluwer
(USA), Paris, France, pp. 327–338.

Seleznyov, A. and Mazhelis, O. 2002, Learning temporal patterns for anomaly
intrusion detection, in ACM SAC 2002: 17th ACM Symposium on Applied
Computing, ACM, Madrid, Spain, pp. 209–213.

Seleznyov, A., Mazhelis, O. and Puuronen, S. 2000, Detecting abnormal be-
havior using temporal-probabilistic networks, in Y. Karsligil, G. Yavuz,
E. Karsligil, T. Inan, B. Diri, E. Ergün and S. Albayrak (eds), in The 15th
International Symposium on Computer and Information Sciences, Academy Yay-
incilik (Ankara), Istanbul, Turkey, pp. 495–503.

Seleznyov, A., Mazhelis, O. and Puuronen, S. 2001, Learning temporal regu-
larities of user behavior for anomaly detection, in V. Gorodetski, V. Sko-
rmin and L. Popyack (eds), in International Workshop on Mathematical Meth-
ods, Models and Architectures for Computer Networks Security, LNCS 2052,
Springer, St.Petersburg, Russia, pp. 143–152.

Seleznyov, A., Mazhelis, O. and Puuronen, S. 2002, An anomaly intrusion detec-
tion system based on online user recognition, in S. Furnell, and P. Dowland
(eds), in CD-ROM Proceedings of the 3rd International Network Conference, Ply-
mouth, UK.

Seleznyov, A. and Puuronen, S. 1999, Anomaly intrusion detection systems:
Handling temporal relations between events, in 2nd International Workshop
on Recent Advances in Intrusion Detection, Purdue, Lafayette, Indiana, USA.

Seleznyov, A. and Puuronen, S. 2000, HIDSUR: A hybrid intrusion detection
system based on real-time user recognition, in A. Tjoa, R. Wagner and Al-
Zobaidie (eds), in 11th International Workshop on Database and Expert Systems
Applications, IEEE Computer Society Press, Greenwich-London, England,
pp. 41–45.

Seleznyov, A., Terziyan, V. and Puuronen, S. 2000, Temporal-probabilistic net-
work approach for anomaly intrusion detection, in 12th Annual Computer
Security Incident Handling Conference, Chicago, USA.

Sendmail Mail Program 2000, Description and new version available from
http://www.sendmail.org, [Read 17.04.2000].

Shieh, S. and Gligor, V. 1991, A pattern-oriented intrusion-detection model
and its applications, IEEE Transactions on Data and Knowledge Engineering
9(4), 661–668.

Smaha, S. 1988, Haystack: An intrusion detection system, in 14th Aerospace Com-
puter Security Applications Conference, Tracor Applied Science Inc., Austin,
Texas, USA, pp. 37–44.

Smaha, S. 1992, Questions about CMAD, in Workshop on Future Directions in Com-
puter Misuse and Anomaly Detection, Davis, CA, USA, pp. 17–21.

Smaha, S. 1993, Tools for misuse detection, in Annual Information Security Confer-

173

ence, Information System Security Association, Crystal City, VA, USA.
Snapp, S. and Smaha, S. 1992, in signature analysis model definition and formal-

ism, 4th Workshop on Computer Security Incident Handling, Denver, Colorado,
USA.

Snapp, S., Smaha, S., Teal, D. and Grance, T. 1992, The DIDS (distributed intru-
sion detection system prototype), in USENIX Conference, USENIX Associa-
tion, San Antonio, Texas, USA, pp. 227–233.

Sobirey, M. 2002, Michael Sobirey’s Intrusion Detection Systems Page , Avail-
able at: http://www-rnks.informatik.tu-cottbus.de/∼sobirey/ids.html, [Read
20.01.2002].

Song, D., Wagner, D. and Tian, X. 2001, Timing analysis of keystrokes and tim-
ing attacks on SSH, in 10th USENIX Security Symposium, Washington, D.C.,
USA.

Spafford, E. 1989, Crisis and aftermath, Communications of the ACM 32(6), 678–
687.

Spitzner, L. 2000, To build a honeynet, in 12th Annual FIRST Conference, Denver,
Colorado, USA.

Stroustrup, B. 1991, The C++ Programming Language, Addison-Wesley.
Sundaram, A. 1998, An Introduction to Intrusion Detection, ACM Cross-

roads, Available from http://www.acm.org/crossroads/xrds2-4/intrus.html,
[Read 1.05.2002].

Swets, J. 1988, Measuring the accuracy of diagnostic systems, Science
240(4857), 1285–1293.

Tan, K. and Maxion, R. 2002, ”Why 6?” Defining the operational limits of STIDE,
in 2002 IEEE Symposium on Security and Privacy, IEEE Computer Society
Press, Oakland, California, USA, pp. 188–200.

Teng, H., Chen, K. and Lu, S. 1990, Security audit trail analysis using inductively
generated predictive rules, in 6th IEEE Conference of Artificial Intelligence Ap-
plications, IEEE Computer Society Press, Piscataway, NJ, USA, pp. 24–29.

U.S.C. 2002, US Code Collection, Available from
http://www4.law.cornell.edu/uscode/18/, [Read 20.05.2002].

Wee, C. 1998, Network delay as a IDS response, Available from se-
clab.cs.ucdavis.edu/response/reports/, [Read 10.06.2002].

Weinberg, N. 2001, Enterasys’ IDS Dragon offers best performance for net-
work based intrusion detection, Network World Newsletter, available from
www.ps.avnet.com/au/hallmark/bulletins/Bulletin 13.pdf, [Read 10.06.2002].

Ye, N. and Chen, Q. 2001, An anomaly detection technique based on a chi-square
statistic for detecting intrusions into information systems, Quality and Reli-
ability Engineering International (17), 105–112.

Ylönen, T., Kivinen, T., Saarinen, M., Rinne, T. and Lehtinen, T. 2002, SSH Proto-
col Architecture, Available from http://www.globecom.net/ietf/draft/draft-ietf-
secsh-architecture-07.html, [Read 7.05.2002].

Zamboni, D., Balasubramaniyan, J., Garsia-Fernandez, J., Isacoff, D. and Spaf-

174

ford, E. 1998, An architecture for intrusion detection using autonomous agents,
CERIAS Technical Report TR9805, COAST Laboratory, Purdue University.

Zhang, Z., Li, J., Manikopoulos, C., Jorgenson, J. and Ucles, J. 2001, Neural net-
works in statistical intrusion detection, in CD-ROM Proceedings of the 5th
World Multi-Conference on Circuits, Systems, Communications and Computers,
Electrical and Computer Engineering International Reference Book, WSES
Press, Crete Island, Greece.

Appendix 1 Pattern Generation for Misuse Detection

In Section 2.4 we described the major limitations of existing intrusion detection
approaches. Comparing two models: anomaly and misuse detection we can no-
tice that anomaly detection systems try to detect the complement of ”bad” be-
havior, whereas misuse detection systems try to recognize already known types
of ”bad” behavior (Sundaram, 1998). Nowadays anomaly detection systems
use online learning techniques, which include several data analyzing levels to
reduce the false alarm rate. Sometimes because of computational complexity
the data is being analyzed during the night (or whenever the intrusion detec-
tion system has spare CPU time). Therefore, this multi-level data analysis often
results in a significant delay between time of intrusion and its detection. Thus,
it is reasonable to use misuse techniques together with anomaly detection, since
the misuse intrusion detection system is able to perform real-time detection.

In a HIDSUR architecture we presented both misuse and anomaly detec-
tion models, that are used in a way to support each other. Once an intrusive
sequence of events is detected by the anomaly detector, it is being analyzed
and encoded as a pattern for misuse detection. If this kind of ”bad” behavior
is present again in an input sequence of events the misuse detector detects it in
real-time and the intrusion detection system is able to separate the intrusion and
prevent possible future damage.

After the system is able to distinguish abnormal behavior sequences from
natural behavior changes (concept drift), we can then store abnormal patterns
for future real-time recognition of the same kind of ”bad” behavior. The ab-
normal sequence of events is analyzed by an ”automatic pattern generator”.
All events are separated into groups according to relationships between them.
Then events inside every group are analyzed and a coefficient of security signif-
icance is assumed for every group (it depends on the coefficient of every specific
event in the group). All groups are separated by a threshold. Only groups (key
groups), that have the coefficient of a security significance higher than a certain
value, are taken into account. Finally, the events that are being contained by
defined key groups are encoded into a pattern for the misuse detector.

1.1 System Architecture

In this section we describe the pattern generation process. We begin with a part
of the architecture of the intrusion detection system’s description, where the pat-
tern generation is involved. We only describe those components that directly
take part in the described process. After this we provide definitions of notions
that are necessary for pattern generation description, and describe the architec-
ture of the pattern generation component with the involved algorithm.

176

The automatic pattern generator is implemented as a part of our hybrid
model (Chapter 3). It is implemented as a connector between anomaly and mis-
use detectors. In Figure 1.1 it is possible to see part of our model that involves
the automatic pattern generator. Since the system needs to wait for consistency
checking and to have several levels of information analysis it may take a sig-
nificant amount of time before the actual detection of an intrusion. Therefore, a
misuse detector part is intended to make a real-time detection.

� � � � � 	 � � � 	 � � �

� � � � � � � � 	

� � � � � � � � � � � � � 	 � � � %
& (� � 	 	 � � � �

, � 	 �
& � � � / 0 � �

& 2 	 � � �
3 � � � � � � 5 � � �

3 � � � � � �

7 � � 9 � �

& � � � 	3 � � � � � �
& � � � / 0 � �

3 � 	 	 � � �
; � 	 2 = � � �

� � 9 � � � � � 	

& (� 9 � 	 � 2
3 � 	 	 � � �

? � � � � � 	 � �
3 � 	 	 � � �

, � 	 � A � � �

B D F G H I J L N O N Q O R F D

S R U V U N L N O N Q O R F D

Figure 1.1 Part of HIDSUR with pattern generator

The abnormal activity detection is based on online learning to catch and encode
and then update variations of users’ behavior in the knowledge base. It takes as
input a stream of events. The stream may include different kinds of events such
as shell command input, GUI events, network packet traffic, system call traces,
etc. This information is stored in the event log until it is needed for processing.

The action profile contains simple relationships between events, temporal
algebra formulas, which events must satisfy to be generalized into actions. In
other words a set of actions is defined here by defining events and necessary
relationships between them. Also security significance coefficients are defined
in the action profile for every possible action. These coefficients may be ma-
nipulated by the system when it detects an intellectual attack. If the coefficient
of reliability only increases for a certain profile this means that this profile may
be under attack. If the user has begun to use applications that are typical of
him/her, but in a new and not peculiar to this user’s way there is an intellectual
attack suspicion and it needs to be rigorously investigated: firstly, by ”inves-
tigation and report component” and, secondly, if necessary, by the system ad-
ministrator. The system may manipulate the coefficients of security significance

177

and monitor future use of commands with higher coefficients of security signif-
icance. Thus, after a learning stage, the system maintains these coefficients for
every user and for every event.

1.2 Pattern Generation Process

When the intrusion detection system detects an abnormal sequence, the main
goal is to separate the key events for encoding them into a pattern. Key event is
an event that may represent an important landmark of a certain attack. In other
words a short enough sequence of related key events may describe a certain
attack and be used for its recognition. A key group of events is a group where key
events have strong relationships between each other (manipulations on the same
file, etc.). Therefore, the main problem of pattern generation is an automatic
separation of key events from an incoming sequence of events.

To demonstrate the pattern generation process we use an example of a pen-
etration scenario (see Figure 1.2). Using a simple user session example (Figure
4.1) we injected a penetration scenario (the scenario has been described in Sec-
tion 2.2.2) in it.

� � � �

� � � �

� �
 �
 � � �
 � � �

� � � � � � � � � " � � � � � � � � � " � � � � � � � � � "

& ' " (� * (� , � (&

� , � (/ � � � 0 1 , 2 � , � (/ � � � 3 1 , 2

� �
 �
 � � �
 � � �

� � � � � � � � � " � � � � � � � � � " � � � � � � � � � "

& ' " (� * (� , � (&

� , � (/ � � � 0 1 , 2 � , � (/ � � � 3 1 , 2

2 8 9 ; 2 < � , ; (' 2 < ;

2 8 9 ; 2 < � , ; (' 2 < ;

� � � � ;

� � � � ;

Figure 1.2 An example of a session with root attack

At the end of this scenario the attacker obtains a copy of the interactive shell
interpreter /bin/sh, which is owned by root, setuid enabled, and executable by
everyone by exploiting a security vulnerability that existed in the UNIX 4.2BSD
mail program (CERT advisories, 1999). The first command creates a shell copy
under the root’s mailbox and the second command sets the setuid bit of the
created copy. The third step is not vital to the successful completion of the pen-
etration; the attacker only needs a bogus file to send to root as a mail file. In the
last step, the attacker sends the bogus mail file to root, and the result is that the

178

mail program changes the ownership of the root’s mailbox to root without re-
setting its setuid bit. An exploit command sequence, where it may be identified
has three key steps (Figure 1.3):
>cp /bin/sh /usr/spool/mail/root
>chmod 4755 /usr/spool/mail/root
>touch X
>mail root <X

� � � � � 	

 � � � � � � � � � � � � � � � � ! � # � � � � % �

& (* � � � � � � / 1 2 � 4 � � � � 5 � � � � � % �

6 7 6 8 6 9

Figure 1.3 Landmarks of attack for gaining root privileges

In order to distinguish the key events the intrusion detection system analyzes
coefficients of security significance of events in the input stream. In Figure 1.4
an architecture of pattern generator is shown.

�ν

� � � � � 	 �
� � � � � � 	

� �

� � � �� �

� � � � � " $ & '

� (� *� *
 " &

� ,

�ν

ν

Figure 1.4 Architecture of the automatic pattern generator

To catch the hidden regularities of an attacker’s behavior in an incoming stream
the intrusion detection system has to define key events among all of them. It
is done by analyzing the relationships between them and separating them into
groups according to discovered relations. In other words, first, the system needs
to create a second and then a third layer of information (event→action→activity)
as described in Chapter 4. By scanning the input sequence of events the pattern
generator creates a new information layer (action) and substitutes the original
event layer in the queue by the highest - activity. On the third (activity) layer, as
can be seen in Figure 1.2, the information that describes the attacker’s behavior
is separated into groups. As can be seen in Figure 1.2 the misuse events are
spread among normal ones and on the third layer they are grouped in a separate
group. This is a key group that contains key events (it is not necessary that all
key events will be concentrated in a single group).

How can the intrusion detection system recognize key groups? A secu-
rity significance coefficient is assigned to every action and taken from the action

179

profile (first box in Figure 1.4). The system uses these coefficients to calculate
the coefficient of security significance for every group. In our experiments we
took an average events’ coefficient as a group coefficient. If deviations between
the highest and lowest coefficients of security significance inside one group is
higher than 20%, the system needs to repeat the relation search and the splitting
inside of one group. This will assure the system that the events with very high
coefficients of security significance will not disappear among the huge amount
of non-important information that do not have any relation to the intrusive ac-
tivity. In other words the system splits one group into several ones. In Figure 1.4
in the second box we can see the result of groups with their average coefficient
of reliability calculated in every group.

As can be seen in the second box in Figure 1.4 all groups are separated
by a threshold ν into two sets: key groups (above line) and other (below). The
threshold should be defined experimentally. If it is set too high, patterns will be
very general (consist of few states) and produce false alarms. If the threshold set
is too low, the pattern will include not only key events that define an attack, but
also personal features of the person’s behavior who carried it out. It means that
the system will detect this attack if it is performed by the same user and may
overlook the same attack issued by another person.

The pattern matching component implements one of the pattern matching
algorithms (for example, in our case it is Colored Petri Nets (Kumar, 1995)). It
takes the events from key groups and defines states and transitions by encoding
the commands into pattern and relations that grouped the events in this key
group.

This approach is used for the detection of intelligent attacks. This attack
forces the system to train misuse activities and not to classify them as abnormal
in the future. The intrusion detection system checks the coefficients of reliability
(assigned after classification) of key events and in the case these coefficients have
high values, it means that a certain profile was already trained to accept misuse
activities and the system reports it to the system administrator, which takes care
of it.

For our experiments we chose to examine UNIX command data. This data
contains the history of eight (U0-U7) different authorized users. Then it was
given as an input stream for the learning process and a temporal-probabilistic
tree was constructed for every user. After finishing the learning process we be-
gin to inject events that represent different attacks. The threshold ν was varied
under human supervision to create most representative patterns. Then after the
attack detection and pattern creation (pattern creation process was not super-
vised by human) the attacks were repeated many times to get a statistic. Our
pilot experiments showed that approximately 85% of repeated attacks were de-
tected in real-time by automatically created patterns.

Our experiments also showed that in an automatically created pattern, fea-
tures of personal behavior are still present. This means that the system detects

180

the same attack performed by the same person who created the pattern, with a
higher probability than if it is performed by someone else. Therefore, we pro-
pose this direction as an area for future work.

1.3 Summary

Here we have shown a possibility for automatic pattern generation for intrusion
detection. This approach uses probabilistic networks in the form of trees, which
are adapted to catch temporal aspects of a users’ behavior. It gives the possibility
to establish cooperation between anomaly and misuse detection components in
a way that the former one provides patterns for the latter one.

The main shortcoming is that the value of the ν constant is very difficult to
select. Also only the basic kinds of attacks were tested, i.e. modern and compli-
cated attacks have not been tested (such as attacks that are spread over several
sessions). Thus, the material presented in here serves as a demonstration of an
idea with some preliminary results. It shows the possibility to develop and use
such approaches. Therefore, further research efforts, numerous tests and evalu-
ations with real implementation are needed to verify the practical aspects of the
approach.

Appendix 2 Signals Used by Host Agent

Table 2.1 Types of signals used by host agent

Signal Description

SIGABRT Issued if a process executes a system call abort(2).
SIGALRM Issued when a timer, set previously by alarm(2) and settimer(2),

expires.
SIGBUS Hardware error.
SIGCHLD Sent to a parent process when its child execution is finished.
SIGEGV Access to a restricted memory address or a process does not have

enough access rights.
SIGPRE Error interrupt (division by zero, etc.).
SIGHUP Sent to a group owner that has a control terminal in case if kernel

detects that the terminal is disconnected.
SIGILL Issued by the kernel if a process has performed an incorrect

operation.
SIGINT Sent to all processes when < Ctrl > + < C > was pressed.
SIGKILL Process termination signal.
SIGPIPE Sent during an attempt of writing to pipe or socket to a recipient,

which execution was already terminated.
SIGPOLL Issued when an event arrives for a device being examined.
SIGPWR Danger of power lost.
SIGQUIT Sent to all processes when < Ctrl > + < \ > was pressed.
SIGSTOP Sent to all processes of a current group if a < Ctrl > + < Z >

was pressed.
SIGSYS Incorrect system call.
SIGTERM Warning of process termination.
SIGTTIN Issued by kernel if a background process is trying to read from

a control terminal.
SIGTTOU Issued by kernel if a background process is trying to write to a

a control terminal.
SIGUSR1 and 2 Application defined signals.

182

Table 2.2 System calls for file system operations

Name Description

open(2) Opens a file for reading or/and writing.
create(2) Creates a file.
close(2) Closes a file descriptor associated with a previously opened file.
dup(2) Duplicates a file descriptor.

dup2(2) Duplicates a file descriptor allowing to specify its value.
lseek(2) Sets a file pointer.
read(2) Reads from file.
write(2) Writes to a file.
pipe(2) Creates a pipe.
fcntl(2) Provides an interface for manipulation of an opened file.

Appendix 3 Prototype’s Detection Accuracy Test Results

Table 3.1 Relational matrix approach: dependence of the detection accuracy change on
the training time and sliding window size

Window Training time, weeks
size 1 2 3 4 5 6

5 0.6255 0.4575 0.3351 0.3033 0.2995 0.2976
10 0.3137 0.2078 0.1731 0.1734 0.1651 0.1654
20 0.184 0.1691 0.1386 0.1148 0.1429 0.1449
30 0.1611 0.099 0.0884 0.1156 0.1127 0.1125
40 0.1433 0.0139 0.0984 0.0947 0.1151 0.077
50 0.1412 0.124 0.0802 0.0891 0.0663 0.06

100 0.0768 0.0195 0.0206 0.0197 0.0001 0.0169
200 0.0248 0.0121 0.0021 0.0109 0.0083 0.009

Table 3.2 Temporal-probabilistic tree approach: dependence of the detection accuracy
on the sliding window size and length of the training period

Window Training time, weeks
size 1 2 3 4 5 6

5 0.1899 0.1853 0.1837 0.1717 0.1359 0.1203
10 0.1227 0.1169 0.086 0.0915 0.0793 0.0506
20 0.0701 0.0494 0.0405 0.0343 0.0373 0.0217
30 0.1611 0.099 0.0884 0.1156 0.1127 0.1125
40 0.0434 0.0376 0.0268 0.0204 0.0202 0.0183
50 0.1213 0.1254 0.0167 0.0153 0.0093 0.068

100 0.0637 0.0295 0.0176 0.0187 0.001 0.0169
200 0.0344 0.0323 0.011 0.145 0.0001 0.0023

Appendix 4 Terminology

This appendix provides an explanation of several terms used throughout the
thesis. Some of them are widely accepted among security professionals, others
are used in a specific manner in this dissertation1.

Action
A stream of actions represents an interval or action layer, where the events with
their relations (i.e. actions) are described. The action is considered as a temporal
interval.

Action Class
Describes the action. It provides a formal description of an action without pro-
viding any specific details. Action class contains descriptions of events that start
and end that action and possible events between them.

Action Class Instance
It is an instance that describes a certain group of actions that belong to the same
action class and have similar temporal characteristics. By similar temporal char-
acteristics we imply temporal distances (time lengths) that characterize actions.
These distances must be distributed normally in order to be grouped into the
same instance.

Activity
The most complicated level is the activity layer, which is represented by a stream
of actions (temporal intervals) and relationships between them, because the ac-
tions are extended in time, different actions may overlap in time and interact. A
single occurrence on this level is called an activity.

Audit record
An audit record is an entry of an audit trail. It is also referred to in this disserta-
tion as an event.

Audit trail/Event stream
An audit trail is defined in Longley and Shain (1987) as a chronological record of
system activities that is sufficient to enable the reconstruction, review and exam-
ination of the sequence of environments and activities surrounding or leading
to each event in the path of a transaction from its inception to output of final
results. The term event stream is used in the dissertation in the same sense as an
audit trail.

Event2

In this dissertation an event refers to a single record in an audit trail. The number
1 In this dissertation we attempt to use all definitions and terms in accordance with (Jensen
et al., 1998), (Allen and Ferguson, 1994), and (Longley and Shain, 1987).
2 Event, action and activity terms are used in a special manner in this dissertation.

185

of distinct event types is finite and known as a priori. An event is described by a
single instant relative to a particular user. We add to this description, the name
of the event with an integer index that defines the number of the event relative
to the user and also a place from which the user caused this event. Also, the last
field is reserved for the event’s particular information, which differs according
to the type of event: it may be the name of the user, the name of the computer,
an error code, etc. In other words, it is auxiliary information.

Exploitation
Exploitation is a set of actions that result in a violation of the security policy of a
computer system (Krsul, 1998). Intruders exploit system vulnerabilities or flaws
to gain unauthorized access to the system.

Flaw
A flaw is defined in Longley and Shain (1987) as an error of commission, omis-
sion or oversight in a system that allows protection mechanisms to be bypassed.

Relation/Relationship
It is a relationship between any two actions/events. It is characterized by a
temporal distance between these actions/events. Thus, the name is a qualitative
parameter that describes what kind of relation it is, and the temporal distance is
a quantitative parameter describing temporal characteristic of the relation.

Relation Class
It is a notion that describes one of all possible relationships between any two
actions: Actioni and Actionj . It is defined as one of Allen’s interval temporal
relations (Allen, 1983).

Relation Class Instance
Relation class instance describes some set of relations that have similar tempo-
ral characteristics and each of them belongs to the same relation class. In other
words, a relation instance has a Name and describes some distribution of tempo-
ral parameters of relations grouped by this instance.

Relational Matrix
To represent allowed relationships between actions a square matrix N × N -
relational matrix - is used. In a cell {i, j}, the matrix holds relational classes that
are allowed between the two classes i and j. Thus, cells i, j when j > i contain
direct relations for Ai and Aj, and cells i, j when j < i contain the reverse ones.
Using the relational matrix we may check whether there is a certain relation
between any of the two classes and if it fits into a certain relation instance.

Security policy
A security policy defines the requirements of acceptable usage of the computer
recourses and establishes correct procedures for their usage.

186

Temporal-Probabilistic Tree
It is a representation method to represent a typical model of user behavior. It
contains the probabilistic information as well as temporal.

Vulnerability
Vulnerability is defined in Longley and Shain (1987) as a weakness in automated
system security procedures, administrative controls, internal controls etc. that
could be exploited by a threat to gain unauthorized access to information or to
disrupt critical processing.

J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

1 ROPPONEN, JANNE, Software risk management -
foundations, principles and empirical
findings. 273 p. Yhteenveto 1 p. 1999.

2 KUZMIN, DMITRI, Numerical simulation of
reactive bubbly flows. 110 p. Yhteenveto 1 p.
1999.

3 KARSTEN, HELENA, Weaving tapestry:
collaborative information technology and
organisational change. 266 p. Yhteenveto
3 p. 2000.

4 KOSKINEN, JUSSI, Automated transient
hypertext support for software maintenance.
98 p. (250 p.) Yhteenveto 1 p. 2000.

5 RISTANIEMI, TAPANI, Synchronization and blind
signal processing in CDMA systems. -
Synkronointi ja sokea signaalinkäsittely
CDMA järjestelmässä. 112 p. Yhteenveto 1 p.
2000.

6 LAITINEN, MIKA, Mathematical modelling of
conductive-radiative heat transfer. 20 p.
(108 p.) Yhteenveto 1 p. 2000.

7 KOSKINEN, MINNA, Process metamodelling.
Conceptual foundations and application.
213 p. Yhteenveto 1 p. 2000.

8 SMOLIANSKI, ANTON, Numerical modeling of
two-fluid interfacial flows. 109 p. Yhteenveto
1 p. 2001.

9 NAHAR, NAZMUN, Information technology
supported technology transfer process. A
multi-site case study of high-tech enterprises.
377 p. Yhteenveto 3 p. 2001.

10 FOMIN, VLADISLAV V., The process of standard
making. The case of cellular mobile
telephony. - Standardin kehittämisen pro-
sessi. Tapaustutkimus solukkoverkkoon
perustuvasta matkapuhelintekniikasta.
107 p. (208 p.) Yhteenveto 1 p. 2001.

11 PÄIVÄRINTA, TERO, A genre-based approach
to developing electronic document
management in the organization. 190 p.
Yhteenveto 1 p. 2001.

12 HÄKKINEN, ERKKI, Design, implementation and
evaluation of neural data analysis
environment. 229 p. Yhteenveto 1 p. 2001.

13 HIRVONEN, KULLERVO, Towards Better
Employment Using Adaptive Control of
Labour Costs of an Enterprise. 118 p.
Yhteenveto 4 p. 2001.

14 MAJAVA, KIRSI, Optimization-based techniques
for image restoration. 27 p. (142 p.)
Yhteenveto 1 p. 2001.

15 SAARINEN, KARI, Near infra-red measurement
based control system for thermo-mechanical
refiners. 84 p. (186 p.) Yhteenveto 1 p. 2001.

16 FORSELL, MARKO, Improving Component
Reuse in Software Development. 169 p.
Yhteenveto 1 p. 2002.

17 VIRTANEN, PAULI, Neuro-fuzzy expert systems
in financial and control engineering.
245 p. Yhteenveto 1 p. 2002.

18 KOVALAINEN, MIKKO, Computer mediated
organizational memory for process control.
Moving CSCW research from an idea to a
product. 57 p. (146 p.) Yhteenveto 4 p. 2002.

19 HÄMÄLÄINEN, TIMO, Broadband network
quality of service and pricing. 140 p.
Yhteenveto 1 p. 2002.

20 MARTIKAINEN, JANNE, Efficient solvers for
discretized elliptic vector-valued problems.
25 p. (109 p.) Yhteenveto 1 p. 2002.

21 MURSU, ANJA, Information systems
development in developing countries. Risk
management and sustainability analysis in
Nigerian software companies. 296 p. Yhteen-
veto 3 p. 2002.

22 SELEZNYOV, ALEXANDR, An anomaly intrusion
detection system based on intelligent user
recognition. 186 p. Yhteenveto 3 p. 2002.

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTENTS
	List of Figures
	List of Tables
	1 INTRODUCTION
	1.1 Research Area
	1.1.1 Computer Security
	1.1.2 Security Problems
	1.1.3 Intellectual Attacks

	1.2 Intrusion Detection
	1.3 Requirements to Intrusion Detection Systems
	1.4 Research Objectives
	1.5 Structure of the Thesis and Paper Summary
	1.6 Summary

	2 RELATED WORK IN INTRUSION DETECTION
	2.1 Introduction
	2.2 Misuse Detection
	2.2.1 Expert Systems in Intrusion Detection
	2.2.2 State Transition Analysis
	2.2.3 Keystroke Monitoring
	2.2.4 Model-Based Intrusion Detection

	2.3 Anomaly Detection
	2.3.1 Statistical Approaches
	2.3.2 A Generic Model of Intrusion Detection
	2.3.3 Data Mining
	2.3.4 Probabilistic Networks
	2.3.5 Predictive Pattern Generation
	2.3.6 Neural Networks
	2.3.7 Instance-Based Learning

	2.4 Limitations of the Existing Approaches
	2.5 Summary of Reviewed Intrusion Detection Methods

	3 ARCHITECTURE FOR AN INTRUSION DETECTION SYSTEM
	3.1 System Architecture
	3.1.1 Auditing Facility
	3.1.2 Anomaly Detector
	3.1.3 Misuse Detector
	3.1.4 Control and Report

	3.2 Networked Architecture Components and their Interactions
	3.3 Summary

	4 TEMPORAL RELATION BETWEEN EVENTS
	4.1 Basic Concepts
	4.2 Consistency of Relations
	4.3 Coef.cient of Reliability and Concept Drift
	4.4 Incorporation of Layer Structure into Pro.ling Component
	4.5 Summary

	5 USING RELATIONAL MATRIX TO DETECT ANOMALIES
	5.1 User Pro.le
	5.2 Relations between Action Classes
	5.3 Detecting Abnormal Behavior
	5.4 Summary

	6 DETECTING ANOMALIES IN USER BEHAVIOR USING TEMPORAL-PROBABILISTIC TREES
	6.1 Temporal-Probabilistic Tree De.nition
	6.2 Training the Temporal-Probabilistic Tree
	6.2.1 Tree Initialization
	6.2.2 Optimization

	6.3 Detecting Abnormal Behavior
	6.3.1 De.ning the ”When”

	7 DEALING WITH ANOMALIES IN USER BEHAVIOR
	7.1 Monitoring Natural Behavior Changes
	7.1.1 Learning User Normal Behavior Changes
	7.1.2 Dealing with Concept Drift

	7.2 Detecting the Abnormal Learning
	7.3 Summary

	8 OVERVIEW OF THE IMPLEMENTATION ARCHITECTURE
	8.1 Architecture of the Prototype
	8.1.2 Client-Server Information Exchange

	8.2 Host Agent
	8.2.1 Host Agent Operations
	8.2.2 Information Collection

	8.3 Learning the Classi.er
	8.3.1 Data Model Used for our Approach
	8.3.2 Learning Process

	8.4 Summary

	9 EXPERIMENTAL SETTINGS AND OBTAINED RESULTS
	9.1 Experimental Settings
	9.1.1 Note on the Evaluation and Simulation Process
	9.1.2 Data Collection
	9.1.3 Experiments

	9.2 Performance
	9.2.1 Space Requirements
	9.2.2 Accuracy
	9.2.3 Timing Results

	9.3 Pro.le Cross-Validation
	9.4 Comparison with Other Approaches
	9.5 Evaluation of Results

	10 CONCLUSIONS AND FUTURE WORK
	10.1 Conclusions
	10.2 Directions for Future Work

	YHTEENVETO (FINNISH SUMMARY)
	Bibliography
	Appendix 1 Pattern Generation for Misuse Detection
	Appendix 2 Signals Used by Host Agent
	Appendix 3 Prototype’s Detection Accuracy Test Results
	Appendix 4 Terminology

