JYVASKYLA STUDIES IN COMPUTING 40

Marjo Haarala

Large-Scale Nonsmooth Optimization

Variable Metric Bundle Method
with Limited Memory

Esitetdadn Jyvaskyldn yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi Villa Rana -rakennuksen Paulaharju-salissa
marraskuun 13. pdivanad 2004 kello 14.

Academic dissertation to be publicly discussed, by permission of
the the Faculty of Information Technology of the University of Jyvaskyld,
in the Building Villa Rana, Paulaharju Hall, on November 13, 2004 at 14 o'clock.

o

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2004

Large-Scale Nonsmooth Optimization

Variable Metric Bundle Method
with Limited Memory

JYVASKYLA STUDIES IN COMPUTING 40

Marjo Haarala

Large-Scale Nonsmooth Optimization

Variable Metric Bundle Method
with Limited Memory

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2004

Editors
Tommi Kérkkdinen
Department of Mathematical Information Technology, University of Jyvaskyld

Pekka Olsbo, Marja-Leena Tynkkynen
Publishing Unit, University Library of Jyvéaskyla

URN:ISBN 9513919277
ISBN 951-39-1927-7 (PDF)

ISBN 951-39-1908-0 (nid.)
ISSN 1456-5390

Copyright © 2004, by University of Jyvaskyla

Jyvéskyld University Printing House, Jyvaskyla
and ER-Paino Ky, Lievestuore 2004

ABSTRACT

Haarala, Marjo

Large-Scale Nonsmooth Optimization: Variable Metric Bundle Method with
Limited Memory

Jyvaskyla: University of Jyvaskyla, 2004, 107 pages

(Jyvéaskylda Studies in Computing,

ISSN 1456-5390; 40)

ISBN 951-39-1927-7

Finnish summary

diss.

Many practical optimization problems involve nonsmooth (that is, not necessarily
differentiable) functions of hundreds or thousands of variables. In such problems,
the direct application of smooth gradient-based methods may lead to a failure due
to the nonsmooth nature of the problem. On the other hand, none of the current
general nonsmooth optimization methods is efficient in large-scale settings. The
motivation of this work is to develop efficient and reliable solvers for large-scale
nonsmooth optimization problems.

In this thesis, we introduce a new limited memory bundle method for nons-
mooth large-scale optimization. The new method is a hybrid of the variable metric
bundle method and the limited memory variable metric methods, where the former
has been developed for small- and medium-scale nonsmooth optimization and the
latter have been developed for large-scale smooth optimization. The new limited
memory bundle method aims at filling the gap that exists in the field of nonsmooth
optimization with large numbers of variables.

Besides describing the new limited memory bundle method in detail, we prove
its global convergence for locally Lipschitz continuous objective functions, which are
not supposed to be differentiable or convex. In addition, we give some modifications
to the basic method in order to improve the accuracy of the method without losing
much in its efficiency.

The efficiency and reliability of the new method and its modifications are
demonstrated with numerical experiments. The problems included in our exper-
iments contain both academic test problems and practical applications arising in
the field of nonsmooth large-scale optimization.

Keywords: Nonsmooth optimization, large-scale optimization, bundle methods,
variable metric methods, limited memory methods, nondifferentiable programming.

Author

Supervisors

Reviewers

Opponent

Marjo Haarala
Department of Mathematical Information Technology

University of Jyvaskyla
Finland

Doctor Marko M. Makela
Department, of Mathematical Information Technology

University of Jyvaskyla
Finland

Professor Kaisa Miettinen

Helsinki School of Economics
Finland

or
Department of Mathematical Information Technology

University of Jyvaskyla
Finland

Professor Manlio Gaudioso

Dipartimento di Elettronica Informatica e Sistemistica
Universita della Calabria
[talia

Doctor Ladislav LukSan

Department of Computational Methods
Institute of Computer Science

Academy of Sciences of the Czech Republic
Czech Republic

Professor Per Olov Lindberg
Department of Mathematics
Linkoping University
Sweden

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my supervisors Dr. Marko Makela and
Prof. Kaisa Miettinen for excellent guidance and continuous support throughout
my research. I am very grateful to Marko Makela for introducing me into this
field of nonsmooth optimization. I am also grateful to Dr. Ladislav Luksan and
Dr. Jan Vleek for giving a permission to use and modify their variable metric
bundle software to make the method suitable for large-scale optimization. I would
like to thank Prof. Manlio Gaudioso and Dr. Ladislav Luksan for reviewing the
manuscript and giving encouraging feedback. Dr. Ladislav Luksan deserves special
thanks for enlightening discussions concerning the limited memory bundle method.

I would like to express my appreciation to the Optimization Group at the
University of Jyvaskyla for their feedback and support. I also want to thank my
common-law husband Tommi Ronkainen for advice concerning the computational
implementations and Dr. Kirsi Majava for providing some practical applications
for testing purposes.

This work was financially supported by COMAS Graduate School of the Uni-
versity of Jyvéskyld, Academy of Finland grant #104641 (project of Kaisa Mietti-
nen), and Emil Aaltonen Foundation. The computational resources used in exper-
iments were provided by CSC, the Finnish IT Center for Science.

Finally, T am deeply indebted to my family and friends for their support,
especially to Tommi for his patience and understanding.

Jyvaskyla, 13 September, 2004
Marjo Haarala

LIST OF SYMBOLS

(k)
B(z,r)
(a,b)

[a, b]

[a,b), (a,b]

1S
conv S
P(S)

f()
Vf(z)

Of (x)/0x;
Ccm(R")

f(z; d)
fo(x; d)

0.f(x)

of (x)

0°' f (x)

£ cof(z)
{y

arg min f(x)

~

A—l

n-dimensional Euclidean space
set of natural numbers
scalars

(column) vectors
transposed vector

inner product of & and y
norm of = in R”, ||z|| = (x7x)2

1th component of vector x

sequence of vectors

open ball with radius r and central point x

open interval

closed interval

half-open intervals

set

intersection of sets S;, 1 =1,...,m

convex hull of set §

set of all subset in .S

objective function value at x

gradient of function f at @

partial derivative of function f with respect to x;
the space of functions f : R” — R with continuous
partial derivatives up to order m

directional derivative of function f at « in the
direction d

generalized directional derivative of function f at @
in the direction d

subdifferential of convex function f at x
subdifferential of function f at @

Goldstein e-subdifferential of function f at x
subgradient of function f at

a set in R™ where function f is not differentiable
point where function f attains its minimum value
&-linearization of function f

linearization of function f at @

matrices

element of matrix A in row i of column j

Hessian matrix H = V2 f(x)

(generalized) approximation of the Hessian matrix
(generalized) approximation of the inverse of the
Hessian matrix

identity matrix

transposed matrix

inverse of matrix A

tr(A)

diaglfy, ..., 0,]
Z,J,K

7]

x |0

o()

div(i, j)
mod(i, j)

trace of matrix A

diagonal matrix with diagonal elements 64, ...,60,
sets of indices

number of elements in set 7

r — 04

time complexity or space requirement of algorithm
integer division for positive integers ¢ and j
remainder after integer division

LIST OF FIGURES

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

O J O O = W N

Secant equation.
Results for smooth problems.
Results for nonsmooth problems with 50 variables.
Results for nonsmooth problems with 200 variables.
Results for nonsmooth problems with 1000 variables.
Results with different scaling of updates.
Results with different versions.

CPU times elapsed for the image restoration problems.

LIST OF TABLES

TABLE
TABLE
TABLE
TABLE

=~ W N =

Tested pieces of software.
Results for the image restoration problem (1).
Results for the image restoration problem (2).
Test problems. oo

86

82

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF SYMBOLS
LIST OF FIGURES

LIST OF TABLES

1

2

INTRODUCTION 11
THEORETICAL BACKGROUND 17
2.1 Notations and Definitions 17
2.2 Nonsmooth Analysis 21
2.3 Nonsmooth Optimization Theory 24
VARIABLE METRIC METHODS 28
3.1 Standard Variable Metric Methods 28
3.2 Limited Memory BFGS Method 31
3.3 Compact Representation of Limited Memory Matrices 34
BUNDLE METHODS 38
4.1 Standard Bundle Methods 39
4.2 Variable Metric Bundle Method 45
LIMITED MEMORY BUNDLE METHOD 51
5.1 Basic Method 52

5.1.1 Direction Finding L. 53

5.1.2 Line Search 53

5.1.3 Subgradient Aggregation 56

5.1.4 Stopping Criterion L. 57

5.1.5 Algorithm 58

5.1.6 Matrix Updating 60
5.2 Convergence Analysis L. 67
5.3 Adaptive Version 7
5.4 Simple Scaling of Updates 7
5.5 L-BFGS Bundle Method 78
NUMERICAL EXPERIMENTS 82
6.1 Software Tested and Testing Environment 82
6.2 Numerical Results 84

6.2.1 Smooth Test Problems 85

6.2.2 Nonsmooth Test Problems 86

6.2.3 Image Restoration Problems 91
CONCLUSIONS e 94

A LARGE-SCALE NONSMOOTH TEST PROBLEMS

YHTEENVETO (FINNISH SUMMARY)

1 INTRODUCTION

The classical theory of optimization presumes certain differentiability and strong
regularity assumptions (see, e.g., [16]). However, these assumptions are too de-
manding for many practical applications, since the functions involved are often
nonsmooth, that is, they are not necessarily differentiable. The source of the non-
smoothness may be the objective function itself, its possible interior function, or
both. For example, in economics, tax models typically consist of several different
pieces that have no continuous gradients at their intersections (see, e.g., [43]), in
steel industry, the phase changes of material typically contain various discontinu-
ities and irregularities in the original phenomena (see, e.g., [64]), and, in optimal
control problems, the nonsmoothness is usually caused by some extra technologi-
cal constraints (see, e.g., [63]). Moreover, there exist so-called stiff problems that
are analytically smooth but numerically nonsmooth. This means that the gradient
varies too rapidly and, thus, these problems behave like nonsmooth problems.

In addition to the nonsmoothness, many practical optimization problems in-
volve large numbers of variables (see, e.g., [31, 62, 63, 69]). The intention of this
work is to develop efficient and reliable solvers for large-scale nonsmooth optimiza-
tion problems. Let us, however, start by giving a general overview of the field
of research to point out the basic ideas and to motivate the need of solvers for
large-scale nonsmooth optimization problems.

Let us consider a nonlinear unconstrained optimization problem of the form

{ minimize f(x)

subject to x € R",

(1.1)

where the objective function f : R®™ — R is supposed to be locally Lipschitz
continuous at x for all * € R™. If f is continuously differentiable, then problem
(1.1) is said to be smooth. Otherwise, problem (1.1) is said to be nonsmooth.
Methods for solving problem (1.1) are usually iterative (see, e.g., [16, 28, 76]).
The basic idea of iterative minimization methods is, by starting from a given initial
point x; € R™, to generate a sequence (x;) C R™ that converges to a (local)
minimum point * of the objective function f. In other words, x; — x* whenever

12

k — oo. If f(xri1) < f(xyk) for all k, then an iterative method is called a descent
method. The next iteration point x;,; for a descent method is defined by the
formula @1 = xp +trdy, where dy is a descent direction for the objective function
(that is, there exists € > 0 such that f(x) +tdy) < f(x)) for all t € (0,¢]), and ¢
is the step size such that t; &~ arg mingo f(xy + tdy).

Most optimization algorithms are constructed for the smooth version of prob-
lem (1.1). For smooth objective functions, a descent direction may be generated by
exploiting the fact that the direction opposite to the gradient is locally the direction
of steepest descent. Then, the step size can be determined, for example, by using
some line search techniques, which usually employ some efficient univariate smooth
optimization method or some polynomial interpolation (see, e.g., [16]). Further-
more, for smooth objective functions, a necessary condition for local optimality is
that the gradient has to be zero at each local solution and by continuity it becomes
small whenever we approach an optimal point. This fact provides a useful stopping
criterion for smooth iterative methods.

In this thesis, we consider the nonsmooth version of problem (1.1). The direct
application of smooth gradient-based methods to nonsmooth problems may lead
to a failure in convergence, in optimality conditions, or in gradient approximation
(see, e.g., [43]). On the other hand, derivative free methods, for example, Powel’s
method (see, e.g., [16]) are quite unreliable and become inefficient when the size
of the problem increases. We can say that nonsmooth optimization deals with a
broader class of problems than smooth optimization in the sense that nonsmooth
optimization techniques can be successfully applied to smooth problems but not
vice versa.

In nonsmooth optimization, we may get into a situation, where the objec-
tive function fails to have a derivative for some values of the variables. Thus, we
have to use so-called generalized gradients (or subgradients) instead of gradients.
This allows us to generalize the effective smooth gradient-based methods for non-
smooth problems. The methods for solving nonsmooth optimization problems can
be divided into two main classes: subgradient methods (see, e.g., [76]) and bundle
methods (see, e.g., [20, 29, 33, 60, 63, 73]). All of these methods are based on
the assumptions that the objective function is locally Lipschitz continuous and the
value of the function and its arbitrary subgradient at each point are available.

The basic idea behind the subgradient methods (Kiev methods) is to general-
ize smooth methods by replacing the gradient with an arbitrary subgradient. Due
to this simple structure, they are widely used methods in nonsmooth optimization.
However, there exist some serious drawbacks in these methods. Firstly, a nonde-
scent search direction may occur, because the direction opposite to an arbitrary
subgradient is not necessarily a descent one (see, e.g., [43]). Thus, any standard
line search operation can not be applied for step size selection. Secondly, due to
the fact that the norm of an arbitrary subgradient does not necessarily become
small in the neighborhood of an optimal point, there exists no subgradient based
implementable stopping criterion. Moreover, the convergence speed of subgradient
methods is poor (not even linear) (see, e.g., [43]). An extensive overview of various
subgradient methods can be found in [76].

13

At the moment, bundle methods are regarded as the most effective and reli-
able methods for nonsmooth optimization (see, e.g., [63]). They are based on the
subdifferential theory developed by Rockafellar [70] and Clarke [11], where the clas-
sical differential theory is generalized for convex and locally Lipschitz continuous
functions, respectively. The basic idea of bundle methods is to approximate the
subdifferential (that is, the set of subgradients) of the objective function by gath-
ering subgradients from previous iterations into a bundle. In this way, we obtain
more information about the local behavior of the function than what an individual
arbitrary subgradient can yield.

The history of bundle methods was initiated with the e-steepest descent
method introduced by Lemaréchal [40]. The idea of this method is to combine
the cutting plane model [32] with the conjugate subgradient method [39]. The
main difficulty of the e-steepest descent method is the selection of the approxi-
mation tolerance that controls the radius of the ball, in which the cutting plane
model is supposed to be a good approximation to the objective function. To avoid
this difficulty, the idea of the generalized cutting plane method was defined by
Lemaréchal [41] and the method was further developed by Kiwiel [33]. The basic
idea of the generalized cutting plane method is to construct a convex piecewise
linear approximation to the objective function by using linearizations generated by
the subgradients. In [33], Kiwiel also introduced two strategies to bound the num-
ber of stored subgradients, namely the subgradient selection and the subgradient
aggregation. Since then, especially, the subgradient aggregation strategy has been
widely applied in various bundle methods.

In spite of the different backgrounds, both Lemaréchal’s e-steepest descent
method and Kiwiel’s generalized cutting plane method generate the search direc-
tion by solving quadratic direction finding problems being closely related. The
generalized cutting plane method avoids the difficulties of the e-steepest descent
method but, then, it has been found to be very sensitive to the scaling of the
objective function (that is, multiplication of f by a positive constant) [58].

The next improvement of bundle methods was the development of the proxi-
mal bundle method by Kiwiel [35] and the bundle trust region method by Schramm
and Zowe [73]. The proximal bundle method is based on the proximal point algo-
rithm of [71] and the work of [1], while the idea of the bundle trust region method
is to combine the bundle idea with the classical trust region method (see, e.g.,
[16]). There exist strong similarities between these methods and, in fact, they use
approximately the same algorithm that differs only in technical details.

Later, various different bundle methods have been proposed. Among them
are tilted bundle methods [36], where the cutting plane model is replaced by a so-
called tilted cutting plane model, level bundle methods [4, 44] which are based on
the minimization of the stabilizing quadratic term subject to some level set of the
linearization, and a DC piecewise affine model with bundling technique [18] that
uses the difference of two piecewise linear convex functions to construct a model
for a nonconvex objective function. In addition, there exist variable metric bundle
methods [3, 20, 54, 78] that exploit the second-order information of the objective
function in the form of an approximated Hessian matrix, and the bundle-Newton

14

method [53] that uses second-order information in order to construct a quadratic
model of the objective function. For a thorough overview of various bundle methods
we refer to [60].

In their present form, bundle methods are efficient for small- and medium-scale
problems. However, their computational demand expands in large-scale problems
with more than 500 variables [27]. This is explained by the fact that bundle meth-
ods need relatively large bundles to be capable of solving the problems effectively.
In other words, the size of the bundle has to be approximately the same as the
number of variables [33] and, thus, the quadratic direction finding problem be-
comes very time-consuming to solve.

In variable metric bundle methods introduced by Luksan and Vleek [54, 78],
the search direction is calculated by using the variable metric updates. Thus, the
quite complicated quadratic direction finding problem appearing in standard bun-
dle methods is not solved at all. Furthermore, the subgradient aggregation is done
by using only three subgradients and, thus, the size of the bundle is independent of
the dimension of the problem. However, variable metric bundle methods use dense
matrices to calculate the search direction and, thus, due to massive matrix oper-
ations, also these methods become inefficient when the dimension of the problem
increases.

We have not found any general bundle-based solver for large-scale nonsmooth
optimization problems in the literature. Thus, we can say that at the moment the
only possibility to optimize nonsmooth large-scale problems is to use some vari-
ant of subgradient methods. However, as mentioned before, the basic subgradient
methods suffer from some serious disadvantages and, on the other hand, the more
advanced variable metric based subgradient methods (see, e.g., [76]) using dense
matrices suffer from the same drawbacks as the variable metric bundle methods.
Lately, some subgradient methods based on mirror descent algorithms have been
proposed (see e.g., [2]). However, in these methods the objective function is re-
quired to be convex and Lipchitz continuous. This means that there is an evident
need of reliable and efficient solvers for general, possible nonconvex, nonsmooth
large-scale optimization problems.

In this thesis, we introduce a new limited memory bundle method for finding
the unconstrained local minimum of a nonsmooth and possible nonconvex objec-
tive function with large numbers of variables. The new method is a hybrid of
the variable metric bundle method [54, 78] and the limited memory variable met-
ric methods (see, e.g., [8, 65]), where the latter have been developed for smooth
large-scale optimization. The new method combines in a novel way the ideas of
the variable metric bundle method with the search direction calculation of the lim-
ited memory approach. Therefore, the time-consuming quadratic direction finding
problem appearing in the standard bundle methods does not need to be solved
and the number of stored subgradients does not depend on the dimension of the
problem. Furthermore, the method uses only few vectors to represent the variable
metric updates and, thus, it avoids storing and manipulating large matrices as is
the case in variable metric bundle method [54, 78]. These properties make the lim-
ited memory bundle method suitable for large-scale optimization. As a matter of

15

fact, the number of operations needed for the calculation of the search direction and
the aggregate values is only linearly dependent on the number of variables while,
for example, with the original variable metric bundle method, this dependence is
quadratic.

In addition to the basic limited memory bundle method, we give some modi-
fications of it based on the different scaling and skipping strategies of the limited
memory variable metric updates and the adaptability of the storage space required.
However, before introducing the new method, we present some essential results of
nonsmooth analysis and give a short description of some basic methods for (small-
scale) nonsmooth optimization. Moreover, for the convenience of the reader, we
give a description of the smooth limited memory variable metric methods.

In order to get some impression about how the different optimization methods
(including our new method and its different modifications) operate in practice,
we have tested some of them with large-scale minimization problems. Thus, in
addition to the descriptions of the methods, we are able to give some details of the
performance of the methods. The numerical results to be presented demonstrate
the usability and the reliability of the new limited memory bundle methods with
both convex and nonconvex large-scale nonsmooth minimization problems.

This thesis is organized as follows. In Chapter 2, we first recall some notations
and basic results of smooth analysis. Then we generalize the concepts of differential
calculus for convex and locally Lipschitz continuous functions, and present some
basic results. At the end of the chapter, we generalize the classical optimality
conditions to the nonsmooth case.

In Chapter 3, we give a short review of some smooth optimization methods.
First, we consider the standard variable metric methods for small- and medium-
scale problems. Then, we give the basic ideas of the limited memory BFGS method
based on [65]. At the end of Chapter 3, we discuss compact representations of
matrices generated by the limited memory variable metric updates [8], and show
how to use them efficiently in limited memory methods.

Chapter 4 is devoted to basic methods for (small-scale) nonsmooth optimiza-
tion. First, we give a survey of standard bundle methods, and then, we present
the basic ideas of the variable metric bundle method that is a hybrid of variable
metric and bundle methods.

The ideas of the variable metric bundle method and the limited memory vari-
able metric methods are then used in Chapter 5, where we construct the new
method for large-scale nonsmooth unconstrained optimization. In this chapter,
we first present the basic limited memory bundle algorithm and prove the global
convergence of the method for locally Lipschitz continuous functions that are not
supposed to be differentiable or convex. Then, we give some modifications to the
basic algorithm.

In Chapter 6, we analyze some numerical experiments concerning some of the
methods presented in Chapters 3, 4, and the different modifications of the new
method presented in Chapter 5. The problems solved contain both smooth and
nonsmooth academic test problems as well as some practical applications arising
in the field of nonsmooth large-scale optimization.

16

Finally, in Chapter 7, we conclude by giving a short summary of the per-
formance of the methods described. Furthermore, we give some ideas of further
development.

2 THEORETICAL BACKGROUND

In this chapter, we first collect some notations and basic results of smooth analysis.
Then we generalize the concepts of differential calculus for convex, not necessar-
ily differentiable functions [70]. We define subgradients and subdifferentials and
present some basic results. After that, we generalize the convex differential theory
to locally Lipschitz continuous functions [11] and define so-called e-subdifferentials
that approximate the ordinary subdifferentials. In the third part of this chapter, we
generalize the classical optimality conditions: We give the necessary conditions for
a locally Lipschitz continuous function to attain its minimum in an unconstrained
case. Moreover, we define some notions of linearizations for locally Lipschitz con-
tinuous functions and present their basic properties.

The proofs of this chapter are omitted since they can be found, for example,
in [63].

2.1 Notations and Definitions

All the vectors « are considered as column vectors and, correspondingly, all the
transposed vectors ! are considered as row vectors. We denote by 7y the usual
inner product and by [|«|| the norm in the n-dimensional real Euclidean space R™.
In other words,

=

xly = Z%Z/z and || = (CUTCU))
=1

where and y are in R" and z;,y; € R are the ¢th components of the vectors x
and y, respectively.

An open ball with center € R" and radius r > 0 is denoted by B(x;r), that
is,

B(x;r)={ycR"|[ly—=| <r}.

18

We denote by [x, y] the closed line-segment joining x and y, that is,
[,y ={zeR"|z=Xx+(1—-Ny for 0<A<1},

and by (x,y) the corresponding open line-segment.
A set S C R"™ is said to be convex if

A+ (1-NyeS

whenever & and y are in S and A € [0, 1]. Geometrically this means that the closed
line-segment [x,y] is entirely contained in S whenever its endpoints @ and y are
in S. If S; C R™ are convex sets for ¢« = 1,...,m, then their intersection N*,.5; is
also convex.

A linear combination Zle Aix; is called a conver combination of elements
Ti,...,x, € R"if each A\; > 0 and Zle)\i =1.

The intersection of all the convex sets containing a given subset S C R" is
called the conver hull of set S and it is denoted by conv S. For any S C R", conv S
consists of all the convex combinations of the elements of S, that is,

k k
conVS:{wER”|w:Z)\iwi, Z)‘izl’ x, €5, \>0}.

i=1 i=1

The convex hull of set S is the smallest convex set containing S, and .S is convex if
and only if S = conv S. Furthermore, the convex hull of a compact set is compact.
The power set of a given set S C R" is denoted by P(S) and it is the set of
all subsets of S.
A function f:R"™ — R is said to be convez if

[z +(1=Ny) <Af(z) +(1-N)[f(y) (2.1)

whenever and y are in R" and A € [0, 1]. If a strict inequality holds in (2.1) for
all z,y € R™ such that # y and A € (0, 1), the function f is said to be strictly
convew.

A function f:R"™ — R is Lipschitz continuous if

[f(®) = f(y)| < Lz -y

for all &,y € R", where L > 0 is a constant independent of & and y. A function
f:R™ — Ris locally Lipschitz continuous at @ € R™ with a constant L > 0 if there
exists a positive number ¢ such that

1f(y) = f(2)] < Llly — |

for all y, z € B(x;¢). A convex function f : R™ — R is locally Lipschitz continuous
at x for any € R™.
A function f:R"™ — R is positively homogeneous if

fOx) = Af(x)

19

for all A > 0 and subadditive if

flx+y) < flx)+ f(y)

for all @ and y in R”. A function is said to be sublinear if it is both positively
homogeneous and subadditive. A sublinear function is always convex.

A function f : R” — R is said to be upper semicontinuous at & € R" if for
every sequence (xy) converging to x the following holds

lim sup f(zr) < f(x)

k—o00

and lower semicontinuous if
f(®) < liminf f(ay).

A both upper and lower semicontinuous function is continuous.
A function f : R™ — R is said to be differentiable at & € R™ if there exists a
vector Vf(x) € R™ and a function € : R" — R such that for all d € R"

flx+d) = f(x) + Vf(z)'d+|d](d)

and e(d) — 0 whenever ||d| — 0. The vector V f(x) is called the gradient vector
of the function f at & and it has the following formula

Vi(x) = (3£;T>,...,a§if))T,

where the components df (x)/0x; for i = 1,...,n, are called partial derivatives of
the function f. If the function is differentiable and all the partial derivatives are
continuous, then the function is said to be continuously differentiable or smooth
(f € CI(R™)),

The limit

1. BT f(w_'_td)_f(w)
f(z;d) = lim "

(if it exists) is called the directional derivative of f at & € R™ in the direction d €
R™. As a function of d, the directional derivative f'(x; d) is positively homogeneous
and subadditive, in other words, it is sublinear. If a function f is differentiable at
x, then the directional derivative exists in every direction d € R™ and

f'(z;d) = Vf(z)"d.
If, in addition, f is convex, then for all y € R"

fly) = f(x) + V() (y — @)

20

A function f : R® — R is said to be twice differentiable at & € R™ if there
exists a vector V f(x) € R", a symmetric matrix V2f(z) € R™", and a function
€ :R"™ — R such that for all d € R"

1
fl@+d) = f(z) + V@) d+5d"V*f(z)d + |d]|*(d),
where e(d) — 0 whenever ||d|| — 0. The matrix V2f(x) is called the Hessian

matrixz of the function f at x and it is defined to consist of second partial derivatives
of f, that is,

9 f(x) *f(x)
8x% T 9x10Tn
V2 f(x) = : - :
9% f(x) % f()
Oxnldxr1 ox2

If the function is twice differentiable and all the second partial derivatives are
continuous, then the function is said to be twice continuously differentiable (f €
C2(R)).

A matrix, for which horizontal and vertical dimensions are the same (that is,
an n X n matrix), is called a square matriz of order n.

A square matrix A € R™" is called symmetricif A = AT, thatis, (4);; = (A);
for all 4,5 € {1,...,n} and (A);; is the element of matrix A in row 4 of column j.
The matrix AT € R™ " is called the transpose of A.

A square matrix A € R™*" is called positive definite if

x Az >0
for all nonzero € R" and negative definite if
xl Az <0

for all nonzero * € R™. Correspondingly, a square matrix A € R"*" is called
positive semidefinite if

xTAx >0
for all x € R™ and negative semidefinite if
xTAx <0

for all x € R™. A matrix which is neither positive or negative semidefinite is called
indefinite.

If the matrix A € R™" is positive definite, then all the submatrices of the
matrix A obtained by deleting the corresponding rows and columns of the matrix
are positive definite and all the elements on the leading diagonal of the matrix are
positive (that is, (A); > 0 for all i € {1,...,n}). If the square matrices A and B
are positive definite, then so is A + B.

21

An inverse of matrix A € R™ " is a matrix A~' € R™*" such that
AAT T =ATTA =T,

where [is the identity matriz. A square matrix that has an inverse is called
inwvertible or nonsingular. Otherwise, it is called singular. A positive definite matrix
is always nonsingular and its inverse is positive definite.

A scalar X is called an eigenvalue of the matrix A € R™*" if

Ax = \x

for some nonzero vector x € R™. The vector @ is called an eigenvector associated to
the eigenvalue A. The eigenvalues of a symmetric matrix are real and a symmetric
matrix is positive definite if and only if all its eigenvalues are positive. A matrix
is said to be bounded if its eigenvalues lie in the compact interval that does not
contain zero.

The trace of matrix A € R"*" is denoted by tr(A) and it is the sum of the
diagonal elements of the matrix, that is,

i=1

The trace of a matrix equals to the sum of its eigenvalues. For square matrices A
and B, we have tr(A + B) = tr(A) + tr(B).

From now on, we use some special notations for special matrices: the Hessian
matrix of the objective function is denoted by H, the approximation of the Hessian
matrix is denoted by B, and the approximation of the inverse of the Hessian matrix
is denoted by D.

2.2 Nonsmooth Analysis

The theory of nonsmooth analysis is based on convex analysis. Thus, we start this
section by giving some definitions and results for convex (not necessarily differ-
entiable) functions. We define the subgradient and the subdifferential of a convex
function as they are defined in [70]. Then we generalize these results to nonconvex
locally Lipschitz continuous functions. The aim of this section is not to give any
detailed descriptions of nonsmooth analysis (for that we refer e.g., to [11, 63, 70])
but rather to collect some basic definitions and results needed in the following
chapters of this thesis.

DEFINITION 2.2.1. The subdifferential of a convex function f: R" — R at x € R"
is the set O.f(x) of vectors €& € R™ such that

Ocf(x) = {€€R"| f(y) > f(z) + € (y—x) forally eR" }.
Each vector & € 0.f(x) is called a subgradient of f at .

The subdifferential 0.f(x) is a nonempty, convex, and compact set such that
O.f(x) C B(0; L), where L > 0 is the Lipschitz constant of f at x.

22

THEOREM 2.2.2. Let f : R" — R be a convex function. Then the directional
derivative f'(x;d) exists in every direction d € R™ and it satisfies

Flord) — o 1@ D)

t>0 t

The next theorem shows the relationship between the subdifferential and the di-
rectional derivative. It turns out that knowing f'(x;d) is equivalent to knowing

Ocf ().

THEOREM 2.2.3. Let f: R"™ — R be a conver function. Then for all x € R
(i) f/(z;d) =max{&'d| &€ d.f(zx)} for alld € R", and
(ii) O.f(x) ={& € R" | f'(x,d) > &"d for all d € R" }.

Since for locally Lipschitz continuous functions there does not necessarily exist
any classical directional derivatives, we first define a generalized directional deriva-
tive [11]. Then we generalize the subdifferential for nonconvex locally Lipschitz
continuous functions.

DEFINITION 2.2.4. (Clarke). Let f : R™ — R be a locally Lipschitz continuous

function at x € R™. The generalized directional derivative of f at @ in the direction
d € R" is defined by

f°(x;d) = limsup fly +td) — f(y>

y—x t
t10

Note that this generalized directional derivate always exists for locally Lipschitz
continuous functions and, as a function of d, it is sublinear. Therefore, we can now
define the subdifferential for nonconvex locally Lipschitz continuous functions anal-
ogous to Theorem 2.2.3 (ii) with the directional derivate replaced by the generalized
directional derivative.

DEFINITION 2.2.5. (Clarke). Let f : R" — R be a locally Lipschitz continuous
function at a point & € R™. Then the subdifferential of f at @ is the set Of (x) of
vectors & € R™ such that

Of(x) ={&cR"| fo(x;d) > &"d for alld € R" }.
FEach vector & € Of (x) is called a subgradient of f at x.
The subdifferential has the following basic properties.

THEOREM 2.2.6. Let f : R® — R be a locally Lipschitz continuous function at
x € R" with a Lipschitz constant L. Then

(i) fo(x;d) =max{&'d | & € df(x)} for all d € R,

23

(ii) Of(x) is a nonempty, convex, and compact set such that df (x) C B(0; L),
and

(iii) the mapping Of : R™ — P(R™) is upper semicontinuous.

The subdifferential for locally Lipschitz continuous functions is a generaliza-
tion of the subdifferential for convex functions: If f : R” — R is a convex function,
then f'(x;d) = f°(x;d) for all d € R", and 0.f(x) = Jf(x). Furthermore, the
subdifferential for locally Lipschitz continuous functions is a generalization of the
classical derivative: If f : R®™ — R is both locally Lipschitz continuous and differen-
tiable at € R™, then V f(x) € df(x). If, in addition, f : R™ — R is continuously
differentiable at & € R™, then df(x) = {V f(x)}.

THEOREM 2.2.7. (Rademacher). Let S C R™ be an open set. A function f: S — R
that s locally Lipschitz continuous on S is differentiable almost everywhere on S.

By Rademacher’s Theorem we know that a locally Lipschitz continuous function is
differentiable almost everywhere and, thus, the gradient exists almost everywhere.
Now, the subdifferential can be reconstructed as a convex hull of all possible limits
of gradients at points (x;) converging to . The set of points in which a given
function f fails to be differentiable is denoted by 2.

THEOREM 2.2.8. Let f: R"™ — R be locally Lipschitz continuous at & € R"™. Then

Of(x) = conv { € € R" | there exists (x;) C R" \ Qf such that
x; — x and Vf(x;) — &}

In nonsmooth optimization, bundle methods are based on the theory of an
e-subdifferential, which is a modification of the ordinary subdifferential. Thus, we
now define the Goldstein e-subdifferential for nonconvex functions.

DEFINITION 2.2.9. Let a function f : R"™ — R be locally Lipschitz continuous at
x € R" and let € > 0. Then the Goldstein e-subdifferential of f is the set

% f(x) = conv{0f(y) | y € B(zx;¢) }.
Each element & € OF f(x) is called an e-subgradient of the function f at x.

The following theorem summarizes some basic properties of the Goldstein e-
subdifferential.

THEOREM 2.2.10. Let f : R™ — R be a locally Lipschitz continuous function at
x € R™ with a Lipschitz constant L. Then

(1) 05 f(x) = 0f (),
(ii) if &1 < &2, then OS f(x) C O f(x), and

(iii) ¢ f(x) is a nonempty, convex, and compact set such that ||€|| < L for
all &€ € OF f(x).

24

As a corollary to Theorem 2.2.8, we obtain the following result.

COROLLARY 2.2.11. Let f : R™ — R be a locally Lipschitz continuous function at
x € R". Then

9% f(x) = conv { € € R™ | there exists (y;) C R™\ Q; such that
Y~ y, VI(y) =& andy € B(x;e) }.

We conclude this section by observing that the Goldstein e-subdifferential con-
tains in a condensed form the subgradient information in the whole neighborhood
of x.

THEOREM 2.2.12. Let f : R™ — R be a locally Lipschitz continuous function at
x € R Ife >0, then

9f(y) € 9 f (x)
for ally € B(x;e).

2.3 Nonsmooth Optimization Theory

In this section, we present some results connecting the theories of nonsmooth anal-
ysis and optimization. We first define global and local minima of functions. After
that, we generalize the classical first order optimality conditions for unconstrained
nonsmooth optimization. Furthermore, we define linearizations for locally Lip-
schitz continuous functions by using subgradient information, and present their
basic properties. These linearizations are suitable for function approximation and
they will be used in nonsmooth optimization methods in Chapter 4. At the end of
this section, we define the notion of a descent direction and show how to find it for
a locally Lipschitz continuous function.

As already mentioned in the introduction, we consider a nonsmooth uncon-
strained optimization problem of the form

{ minimize f(x)

. (2.2)
subject to x € R",

where the objective function f : R"™ — R is locally Lipschitz continuous at x for
all z € R™.

DEFINITION 2.3.1. A point € R" is a global minimum of f if it satisfies

f(®) < fly) for ally € R™.

DEFINITION 2.3.2. A point x € R" is a local minimum of f if there exists € > 0
such that

flx) < f(y) forally € B(x;e).

25

The necessary conditions for a locally Lipschitz continuous function to attain
its local minimum in an unconstrained case are given in the next theorem. For
convex functions these conditions are also sufficient and the minimum is global.

THEOREM 2.3.3. Let f : R® — R be a locally Lipschitz continuous function at
x € R™. If f attains its local minimal value at x, then

(i) 0 € Of(x) and
(i) fo(x;d) >0 for all d € R".

THEOREM 2.3.4. If f : R" — R is a convex function, then the following conditions
are equivalent:

(i) Function f attains its global minimal value at x,
(i) 0 € 0.f(x), and
(iii) f'(x;d) >0 for all d € R™.
DEFINITION 2.3.5. A point x € R™ satisfying 0 € 0f(x) is called a stationary

point of f.

The optimality condition can be presented also with the aid of the Goldstein e-
subdifferential. The result follows directly from Theorems 2.2.10 and 2.3.3.

COROLLARY 2.3.6. Let f : R"™ — R be a locally Lipschitz continuous function at
x € R™. If f attains its local minimal value at x, then

0€df(x).

Next we define some notions of linearization for locally Lipschitz continuous
functions. With these linearizations we are able to construct a piecewise linear
local approximation to the unconstrained optimization problem (2.2).

DEFINITION 2.3.7. Let f : R™ — R be a locally Lipschitz continuous function at
x € R" and let § € Of (x) be an arbitrary subgradient. Then the {-linearization of
f at x is the function fe : R" — R defined by

fely)=f@)+ & (y— =)

for all y € R™, and the linearization of f at x is the function fw : R" — R such
that

~

foly) = max{ fe(y) | £ € 0f () } (2.3)
for all y € R™.

In the next two theorem, we collect some basic properties of the linearization fm

26

THEOREM 2.3.8. Let the function f : R®™ — R be locally Lipschitz continuous at
x € R™. Then the linearization f, is conver and

(i) fa(®) = f(=),
(ii) fe(y) = f(x) + f(z;y —) for ally € R", and
(iii) O.fa(2) = Of (2).
THEOREM 2.3.9. Let f: R"™ — R be a convex function. Then
(i) f(y) = max{ fo(y) | x € R"} for ally € R", and
(il) foly) < f(y) for ally € R

An essential part of iterative optimization methods is finding a direction such
that the objective function values decrease when moving in that direction. Next
we define a descent direction for an objective function and show how to find it for
a locally Lipschitz continuous function.

DEFINITION 2.3.10. The direction d € R™ s said to be a descent direction for
f:R" =R at @ € R, if there exists € > 0 such that for all t € (0,¢]

flx+td) < f(x).

THEOREM 2.3.11. Let f : R™ — R be a locally Lipschitz continuous function at
x € R"™. The direction d € R™ is a descent direction for f if any of the following
holds:

(i
(ii

(iii

°(x;d) < 0,
¢7d < 0 for all &€ € Of (x),

) f
) €
) €7d < 0 for all & € 9% f(x), o
) d

(iv is a descent direction for the linearization fm at x.

The following theorem tells how to find a descent direction for the linearization
function. By Theorem 2.3.11 this direction is a descent direction also for the original
function. This fact is utilized in bundle methods to be described in Chapter 4.

THEOREM 2.3.12. Let f : R™ — R be locally Lipschitz continuous at * € R™ and
let € € Of(x) exist such that € = argmin{ ||€]| | & € df(x)}. Let us consider
the problem

(2.4)

minimaize fw(m +d)+ % 1d||?
subject to d € R".

27

Then

(i) problem (2.4) has a unique solution d* € R™ such that d* = —&”,

(ii

)
) fo(m;dY) = —[|d"|)%,
(ill) fo(@+Ad") = fol@) = N|€7||* for all X € [0,1],
) 0
)

Z Of (@) if and only if d* # 0, and

(iv
(v) 0 € 0f(x) if and only if fo attains its global minimum at .

Finally, we say a few words about convergence. In iterative optimization
methods, we try to generate a sequence () that converges to a minimum point
x* of the objective function, that is, (xx) — «* whenever k — oco. If an iterative
method converges to a (local) minimum x* from any arbitrary starting point x;,
it is said to be globally convergent. If it converges to a (local) minimum in some
neighborhood of x*, it is said to be locally convergent. Note that the methods
described in this thesis are local methods, that is, they do not attempt to find the
global minimum of the objective function.

3 VARIABLE METRIC METHODS

In this chapter, we consider variable metric (or quasi-Newton) methods for uncon-
strained smooth optimization. These methods are well known and widely used for
solving smooth small- and medium-scale optimization problems. Moreover, their
modifications based either on partitioned, sparse, or limited memory updates are
very efficient in smooth large-scale settings. In this thesis, we concentrate on lim-
ited memory variable metric methods since the basic knowledge of these methods is
needed in Chapter 5, where we construct a new method for nonsmooth large-scale
optimization.

We start this chapter by giving a short review of standard variable metric
methods, and then, in Section 3.2, we give the basic ideas of the limited memory
BFGS method as they are given in [65]. At the end of this chapter (that is, in
Section 3.3), we present compact representations for matrices generated by the
limited memory variable metric updates [8]. We also show how to compute them
efficiently.

Throughout this chapter, we assume that the objective function f : R" — R
is a smooth function whose gradient V f(x) is available for all € R™.

3.1 Standard Variable Metric Methods

Variable metric methods are iterative methods based on the Newton’s method
(see, e.g., [16]). In these methods, the Hessian matrix of the objective function
is approximated by symmetric, positive definite matrices By (where k € N is the
iteration number). At each iteration, the current approximation By is updated to
a new approximation By satisfying the so-called secant or quasi-Newton equation

Bk+13k = Uy, (31)

where sy = 11 — @k, up = Vf(xri1) — Vf(xr), and @, and @, are the current
and the next iteration points, respectively. The idea of the secant equation (3.1)
is that the approximation of the Hessian matrix Bj, acts as closely as possible like

29

() (%)

Xk+1 Xk kal X Xk+1 Xk Xk—l X

(a) Newton’s Method (b) Quasi-Newton Method

FIGURE 1: Secant equation.

the true Hessian matrix of the objective function. In a one dimensional case, this
means that the tangent of the objective function f at the point xj is approximated
by a secant crossing the graph of f at two points x; and x;_; (see Figure 1).

Once we have the matrix By and the gradient V f(x)) available, the search
direction dj can be determined by solving a linear equation

Alternatively, instead of matrices By we can approximate matrices D) =~
V2 f(xx)"!. In this case, the search direction dj, can be computed directly by

dk = —Dka(:r;k),

where Dy, is a symmetric positive definite approximation of the inverse of the Hes-
sian matrix.
The next iteration point is defined by the formula

Ty = Ty + trdy

with ¢, &~ argmins¢ f(xx + tdy). The positive step size ¢, is chosen by some line
search procedure such that it satisfies the Wolfe conditions

and

where €7, € (0,1/2) and €g € (e, 1) are some fixed line search parameters. Con-
ditions (3.2) and (3.3) guarantee that the step size tj, which provides a significant

30

reduction in the value of f, always exists and that it can be determined in a finite
number of operations (see, e.g., [16]).

The approximation Dy of the inverse of the Hessian matrix is updated recur-
sively by the formula

sksg _ Dkukuka

Dy =D+
+1 k
ul sy, ul Dyuy
T T T
Mk ug, Diuy uy, Diuy,
S — Dkuk —— S — Dkuk (34)
TD T T ’
’U,k kUL 'U,k Sk ’U,k Sk

where 7, is a free parameter. Formula (3.4) defines a one-parameter class, the
so-called Broyden class, of variable metric updates (see, e.g., [49]).

There exist three classical values for parameter 7, that are in common use.
By setting 1, = 0, we get the Davidon-Fletcher-Powel (DFP) update

T T

SkSj, Dyuiug, Dy,
D =D, + — . 3.5
ko b uj sy, ul Dyuy, (3:5)

The original formula was first suggested as a part of a method by Davidon [13] and
later it was presented in the form (3.5) by Fletcher and Powell [17].

By setting 1, = 1, we get the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update

uka'u,k) spsk B Diugst + spul Dy, (3.6)

Dk+1_Dk+(1+ 7

uls,) ulsy ul sy,

The original formula was developed by Broyden [5], Fletcher [15], Goldfarb [22],
and Shanno [74], and since then, the BFGS method has been generally considered
to be the most effective of many variable metric methods (see, e.g., [16, 66]).

Finally, by setting n, = 1/(1—ul Dyuy /ul s;), we get the symmetric rank-one
(SR1) update

(Dkuk - Sk)(Dkuk - Sk)T

Dy1 =D —
k+1 k uT (Dyup — 1)

(3.7)

The original formula was first discovered by Davidon in his seminal paper of quasi-
Newton methods [13] and it was re-discovered by several authors in the late 1960s.

The interval given by 0 < 1, < 1 defines the so-called restricted Broyden class,
whose updates can be written as convex combinations of the DFP and the BFGS
updates. In [9], the global convergence for the restricted Broyden class excluding
the DFP method has been proved for convex objective functions with line search
satisfying the Wolfe conditions (3.2) and (3.3). Note that, the exact line search
(that is, t, = argmingg f(@xy + tdy)) is required for DFP method to converge
globally. Moreover, in [45], the global convergence of the BFGS method with
cautious updating and line search satisfying the Wolfe conditions has been proved
for nonconvex objective functions assuming that the function to be minimized has
Lipschitz continuous gradients.

31

The update formulae (3.5) and (3.6) have the advantage of the hereditary
positive definiteness. That is, if the matrix D; is positive definite and the cur-
vature condition u;‘fsk > 0 is valid, then also Dy, is positive definite. In fact,
the hereditary positive definiteness is common to all members of the Broyden class
with 7, > 0 (see, e.g., [16]). On the other hand, the SR1 update (3.7) does not,
in general, maintain the hereditary positive definiteness of updates and, further,
the denominator in (3.7) may become zero and the update formula is no longer
defined. Thus, in practical algorithms, this formula requires some safeguards to
avoid these difficulties. However, when compared to the other update formulae,
the SR1 update is simpler and may require less computation per iteration.

The details of updating matrices By and more information on variable met-
ric methods for smooth small- and medium-scale optimization can be found, for
example, in [16, 49, 66].

3.2 Limited Memory BFGS Method

Many practical optimization problems involve functions of hundreds or thousands
of variables. In these cases, the optimization algorithms that have been developed
for small-scale problems may become inefficient. For example, standard variable
metric methods are unsuitable for large-scale problems since they utilize dense ap-
proximations of the Hessian matrices and, thus, when the dimension of the problem
increases, both the storage space required and the number of operations needed
expand rapidly. Anyhow, for variable metric methods, there exist three basic ap-
proaches to deal with large-scale problems. The first idea consists of exploiting
the structure of partially separable functions. This approach was initiated in [23].
The second approach is to preserve the sparsity pattern of the Hessian matrix by
special updates. This approach was proposed in [77]. The third possibility is that
of limited memory updating, in which only a few vectors are used and stored to
represent the variable metric approximation of the Hessian matrix. This approach
was first introduced in [65].

In this thesis, we consider the limited memory variable metric methods. In
many cases, the limited memory approach is more useful than the other two pos-
sibilities, since it does not require any knowledge of the sparsity structure of the
Hessian matrix (i.e., sparse variable metric updates) and it ignores the structure
of the problem (needed in partitioned variable metric methods) (see, e.g., [67]).

The basic idea of limited memory methods is that the variable metric up-
date of the approximated Hessian matrix is not constructed explicitly. Instead,
the updates use information of the last few iterations to implicitly define the vari-
able metric approximation. In practice, this means that the approximation of the
Hessian matrix is not as accurate as that of standard variable metric methods
but both the storage space required and the number of operations needed are sig-
nificantly smaller. Various limited memory methods have been proposed in the
literature; some of them combine conjugate gradient and quasi-Newton steps (see,
e.g., [6]), and others are very closely related to standard variable metric methods
(see, e.g., [46, 65]).

32

The most commonly used limited memory method is the limited memory
BFGS method (L-BFGS) (see, e.g., [65]). This method is very similar to the
standard BFGS method. The only difference is the matrix update. Instead of
storing the matrix D) approximating the inverse of the Hessian matrix at the
iteration k, we store a certain number of so-called correction pairs (s;,w;), (i < k),
from previous iterations. Here, as before, s; = x;11 — «; and u; = Vf(x;01) —
V f(x;). When the storage space available is used up, the oldest correction pair is
deleted and a new one is inserted.

The stored correction pairs are used to define the matrix D, implicitly using
the following form of the BFGS update (see, e.g., [16])

T sksf
Dy =V DV + ——, (3.8)
U;. Sk
where
T
UuLS
Vi=1-—k.

Let us denote by m. the maximum number of stored correction pairs. This
number is supplied by the user and usually we have 3 < m, < 20 (see, e.g.,
21, 46]). In addition, let us denote by my = min{ k — 1, m. } the current number
of stored correction pairs. Then, suppose that we have stored my pairs (s;, u;),
where ¢ = k — my, ...,k — 1. Suppose also that we have defined the basic matriz
D,(go), which is usually a diagonal matrix of the form D,(CO) = I with the scaling
parameter ¥, > 0 (see, e.g., [67]). Now, the basic matrix D,(CO) is updated my
times by using the BFGS formula (3.8) with the vectors s; and w;. Thus, the

approximation Dj can be written as

SLOELE

z:kfmk i:kfmk
k-1 k-1 TssT k—1
I
-3 (1) 22 (THv) 6o
I

l=k—my \i=l+1 i=l+1

If the basic matrix D,go) is positive definite, then the matrix Dy, defined by (3.9) is
positive definite provided that we have u!s; > 0 for all i (see, e.g., [65]).

We shall now present an algorithm for the limited memory BFGS method [46].
It utilizes a direction finding algorithm to be described immediately after it.

ALGORITHM 3.1. (L-BFGS Method).

Data: Choose the final accuracy tolerance € > 0, the positive line search param-
eters e, € (0,1/2) and e € (er,1), and the maximum number of stored
correction pairs m. > 1.

33

Step 0: (Initialization.) Choose a starting point ; € R" and a symmetric, positive
definite matrix D%O) (e.g., D§°) = I). Compute f; = f(x;) and Vf} =
V f(x1). Set the iteration counter k = 1.

Step 1: (Stopping criterion.) If |V fi|| < e, then stop with xj, as the final solution.
Step 2: (Direction finding.) Compute
di, = —DiV [
by Algorithm 3.2.

Step 3: (Line search.) Determine the step size ¢, > 0 satisfying the Wolfe condi-
tions (3.2) and (3.3) (start with the step size t;, = 1). Set the corresponding
values

Tpt1 = T + trdy,
Jrr1 = f(il?k+1)7 and
V fir1 = Vf(warl)'

Step 4: (Update.) If k > m,, delete the oldest correction pair (Sx_m., Uk—m.)-
Compute and store s, = xp1 — 2, and up = V fry1 — V fi. Calculate the
basic matrix D,(fgl = U111 by using, for example,

ul sy,

Upy1 = — -
U, Uy

Set k =k + 1 and go to Step 1.

Note that in Step 2 the matrix Dj is not formed explicitly but the search direc-
tion dp = —D;V i is calculated recursively. We now give an efficient algorithm
by Nocedal [65] for finding the search direction using the limited memory BFGS
update.

ALGORITHM 3.2. (L-BFGS Direction Finding I).

Data: Let the current iteration be k£ and the number of stored correction pairs
my = min{k — 1,m.}. Suppose that we have the my correction pairs
(si,u;), (i = k—myg,...,k—1), an initial positive definite diagonal matrix
D,go), and the current gradient V f; available.

Step 0: Set y = V fy.

Step 1: (Backward recurrence.) For i = k — 1 to k — my, set

T
S Y

(store ;) and

34
Step 2: Set r = D,E:O)y.

Step 3: (Forward recurrence.) For i =k —my to k — 1 set

and

r=r+(0; —v)s;.
Step 4: (Search direction.) Set dy = —r.

Note that, if m;, = 0, Steps 1 and 3 are not executed and, thus, the search direction
at the first iteration is d; = —DgO)Vfl.

This representation of the BFGS update requires only O(nm..) storage space
(see, e.g., [8]). Assuming we have m, < n this is much less than the O(n?) storage
space required for the standard BFGS implementation. The search direction can
be computed implicitly using at most O(nm,) operations, which is much less than
the O(n?) operations that are needed if the whole matrix Dj, is stored. Therefore,
the limited memory BFGS method is suitable for solving large-scale optimization
problems, since it has been observed in practice that even small values of m, (that
is, m. € [3,7]) give satisfactory results (see, e.g., [21, 46]). Furthermore, the limited
memory BFGS method described above has been proved to be globally convergent
for convex objective functions [46].

3.3 Compact Representation of Limited Memory Matrices

In this section, we consider the limited memory updating process using compact
representations of matrices. The recursive formula given in the previous section as
Algorithm 3.2 is very efficient for unconstrained optimization. However, if we wish
to use update formulae other than BFGS (as we do in Chapter 5) or if we need to
solve problems with constraints (which we probably want to do some other time),
there are many advantages of using compact representations of limited memory
matrices (see, e.g., [8]).

In this section, we show that both the limited memory BFGS and the lim-
ited memory SR1 updates can be presented in a compact matrix form. We also
describe some procedures for the calculation of the search direction when compact
representations of limited memory matrices are used.

As in the previous section, we keep (at most) m,. most recent correction pairs
(si,u;), i < k, in order to implicitly define the approximation of the inverse of the
Hessian matrix at each iteration. At every iteration this set of pairs is updated
by deleting the oldest correction pair and adding the new one. We assume that
the maximum number of stored correction pairs m. is constant, even though it is
possible to adapt all the formulae of this section to the case where m,. varies at
every iteration (see, e.g., [37]).

35

So far, we have dealt only with correction vectors s; and u; and avoided storing
any matrices. Now we define n x m;, dimensional correction matrices Sy and Uy by

Sy = [sk,mk sk,l} and (3.10)

Uk = [uk—mk N uk_l] s

where, as before, s = @1 — @y, up = Vf(xp1) — Vf(xy) and my, = min { k —
1,m, } is the current number of stored correction pairs. When the new iteration
point a1 is generated, the new correction matrices S, and Uy, are obtained
by deleting the oldest vectors sg_,,, and wg_p,, from Sy and Uy if my1 = my, (that
is, k > m.) and by adding the most recent vectors s; and u; to the matrices.

We assume that the basic matrix D,(CO) is given in the form D,(CO) = Ul for
some ¥, > 0, as is commonly done in practice (see, e.g., [21, 46]). If we assume
that ul's; > 0 for all i = 1,...,k — 1, then the limited memory BFGS update can
be expressed as

—IN\T T -1 —I\T T
Dy = 04 + [Sp 0UL] {(R’“ VO U U RS () } [%

—-R;! 0 ﬁkU,cT} (311

where Ry is an upper triangular matrix of order my given in the form

(Skemp—1+1)T (Wp—my—144), i<y
Ry)i; = b R 3.12
(B)i {O, otherwise ()

and where C}, is a diagonal matrix of order my such that
Cr = diag [${_,, Up—my, - - Sh_1Up—1]. (3.13)

The condition ul's; > 0 for i = 1,...,k — 1, ensures that Rj is nonsingular
and, thus, (3.11) is well defined [8]. This is consistent with the well-known result
that the BFGS update formula preserves positive definiteness if u?'s; > 0 for all i
(see, e.g., [16]).

Next we describe some procedures for the calculation of the search direction
di, = —DyV f(x)) when the compact representation of the limited memory BFGS
matrix is used. In addition to the two n X m, matrices Sy and Uy, the my x my
matrices Ry, Ul Uy, and Cj, are stored. Since in practice my, is clearly smaller than
n, the storage space required by these three auxiliary matrices is insignificant but
the savings in computational costs are considerable when compared to the standard
BFGS implementation.

At the kth iteration, we have to update the limited memory representation
of Di_1 to get Dy and calculate the search direction dy, = —D;V f(xx). To get
Dy, we delete the first column from Sj,_; and Uy_; if m; = my_; and add a new
column to the right of each of these matrices to get Sy and Uy, respectively. Then
we make the corresponding updates to Rj_1, UkT_lUk_l, and Cy_1 to get Ry, UkTUk,
and CY, respectively. These updates can be done in O(m}) operations by storing a
small amount of additional information, namely the my-vectors ST |V f(x;_;) and
Ul \Vf(x)_1) from the previous iteration.

36

The new triangular matrix Ry (see (3.12)) is formed of Ri_; by deleting the
first row and the first column if m; = my_; and by adding a new column to the
right and a new row to the bottom of the matrix. The new column is given by

Stue—1 = SE(Vf(xr) — V(xr-1))

and the new row has the value zero in its first m; — 1 components. The product
STuy_; can be computed efficiently since we already know mj; — 1 components of
SIV f(xg_1) from ST |V f(x_1). Thus, we only need to calculate s} |V f(xx_1)
and do the subtractions. The product s |V f(xy_;) can be calculated in O(m2)
operations by using the formulae given in [8]. The matrix U]'U}, can be updated
in a similar way. In this case, both the new column and the new row are given
by Ului_1. Finally, the matrix Cy (see (3.13)) is updated by deleting the first
element of Cy_; if my = my_; and by adding s} ,u;_; as the last element (note
that Cj is a diagonal matrix and, thus, stored as a vector).

Now we give an efficient algorithm by Byrd et al. [8] for updating the matrix
Dy by the limited memory BFGS formula and for computing the search direction

ALGORITHM 3.3. (L-BFGS Direction Finding II).

Data: Suppose that the number of current correction pairs is my_; and the max-
imum number of stored correction pairs is m.. Suppose that we have the
most recent vectors sx_1 and wug_; (from the previous iteration), the cur-
rent gradient Vf, = Vf(xy), the n x my_; matrices Sy_; and Uy_;, the
Mmg_1 X mg_1 matrices Ry_1, U,Z_lUk,l, and Cy_1, and the my_j-vectors
STV fr_1 and U] |V fr_; from the previous iteration available. In addi-
tion, suppose that the initial matrix D,E;O) = U, is available.

Step 0: (Initialization.) Set my = min { mg_; + 1, m. }.

Step 1: Obtain S, and Uy by updating Sy_; and Uj_;.

Step 2: Compute and store my-vectors SF'V fy and Ul'V fy.

Step 3: Compute my-vectors S{uy_1 and Ul ug_1 by using the fact

U1 =Vfi, = Vi1

Step 4: Update the my, x my matrices Ry, Ul Uy, and Cj.
Step 5: Compute vy, for example,

T
ﬁk‘ = —

T)
Up 1 Uk—1

Note that both u] ;8,1 and u] _,u;_1 have already been calculated.

37

Step 6: (Intermediate values.) Compute the vectors

p, =R 'SIVf, and
Py = (R (Cipy + 09Ul Urpy — ULV f).

Step 7: (Search direction.) Compute

di = V. Urp, — Sipy — 94V fi.

Note that in the first iteration (that is, k = 1) the search direction is not calculated
by the Algorithm 3.3 but it is directly defined as d; = —V f(x1).

The algorithm given above requires the same amount of work per iteration
as the recursion with two loops in Algorithm 3.2; thus, the two algorithms are
equally efficient for unconstrained problems. However, in constrained optimization
it is very common to have problems where the gradients of the constraints are
sparse. In these cases, compact representations of matrices are more useful than
the recursive formula, since Algorithm 3.2 does not take advantage of the sparsity
of the vectors involved. For further studies of constrained optimization with limited
memory variable metric methods we refer to [7, 8, 38].

So far, we have only given a representation to the limited memory BFGS
update. However, the limited memory DFP and SR1 updates can be expressed in
the compact matrix form as well (see, e.g., [8, 37, 49]). For example, the limited
memory SR1 update can be written as

D, =DY — (v, — 5)(UFDVU, — R, — RE + C) (DU, — 5,)7, (3.14)

where Sk, Uy, Ry, and Cj, are defined as in (3.10), (3.12), and (3.13).

Since the SR1 update does not in general preserve the positive definiteness
of the generated matrices, there is no reason to enforce the curvature condition
uls; > 0 for all 4, as with the BFGS update. Thus, we only assume that the
update is well defined, that is, w! (Du; — s;) # 0 for all i = 1,... k — 1. Here,
we do not give any algorithms for computing products involving limited memory
SR1 matrices, because the ideas are very similar to those described above with the
limited memory BFGS method.

Note that, if D,(go) is kept fixed for all k£ in (3.14), we achieve some savings
in storage and computational costs when compared to the limited memory BFGS
update (3.11). If, on the other hand, D,(CO) is a scalar multiple of the identity matrix
(that is, DI(CO) = ¥l) and the scaling parameter 9 is changed at each iteration,
then the storage space required and the updating costs of the limited memory SR1
and BFGS methods are equivalent [8].

4 BUNDLE METHODS

In this chapter, we get back to the situation where the objective function f : R" —
R is not supposed to be differentiable. The standard variable metric methods
presented in the previous chapter can be used to solve nonsmooth optimization
problems by replacing the gradient with an arbitrary subgradient (see, e.g., [42,
54, 57]). However, the global convergence of these methods has not been proved
when applied to nonsmooth problems, and some failures and inaccurate results can
occur in practical computations.

At the moment, various versions of bundle methods (see, e.g., [29, 33, 60,
63, 73]) are regarded as the most effective and reliable methods for nonsmooth
optimization. They are based on the assumptions that the objective function is
locally Lipchitz continuous and that at every point * € R", we can evaluate the
value of the objective function f(x) and an arbitrary subgradient £ € R™ from the
subdifferential 0f(x) (see Theorem 2.2.8).

The basic idea of bundle methods is to approximate the subdifferential of
the objective function by gathering subgradients from previous iterations into a
bundle. This subgradient information serves for the construction of a piecewise
linear local approximation to the objective function. A descent direction for this
approximation and, thus, also for the objective function (see Theorem 2.3.11) can
then be determined by solving a quadratic direction finding problem (see, e.g.,
[63]). The global convergence of bundle methods with a limited number of stored
subgradients can be guaranteed by using a subgradient aggregation strategy [33],
which accumulates information from previous iterations.

We begin this chapter by giving a survey of standard bundle methods. Then,
in Section 4.2, we present the variable metric bundle method developed by Luksan
and Vlcek [54, 78]. The idea of the variable metric bundle method is to use some
properties of bundle methods to improve the robustness and efficiency of variable
metric methods. Furthermore, the quite complicated quadratic direction finding
problem appearing in standard bundle methods can be avoided. In Chapter 5, we
use the ideas of the variable metric bundle method to construct a new method for
large-scale nonsmooth optimization.

39

4.1 Standard Bundle Methods

In this section, we describe a general bundle method that produces a sequence of
so-called basic points () € R™ that, in the convex case, converges to a global
minimum of an objective function f : R® — R (if it exists). In the nonconvex
case, since the optimality condition of Theorem 2.3.3 is not sufficient without some
convexity assumptions, the method is only guaranteed to find a stationary point
of the objective function.

We start this section by describing how to find a search direction d € R™ at
iteration k for a locally Lipschitz continuous objective function. We assume that,
in addition to the current iteration point &y, we have some auziliary pointsy; € R"
from previous iterations and subgradients §; € df(y;) for j € J, where the index
set Ji is a nonempty subset of {1,...,k}.

In (2.3) we have defined the linearization of the objective function f at .
However, for this representation we need to know the whole subdifferential df (),
which is normally unknown. Therefore, we have to approximate it somehow. By
using the auxiliary points y; € R" and the subgradients §; € df(y,) for j € J,
we can define a convex piecewise linear approximation of the original objective
function f by

ful@) = max{ f(y;) + €& (@ —y,) | j € T }. (4.1)
This approximation can be written in an equivalent form
fil@) = max{ f(zy) + & (x —) —af [j € Ti },
where

of = fla) = fly)) + &y, —w) forall j€ 7, 42

is a so-called linearization error. If the function f is convex, then the linearization
error is nonnegative, that is, a¥ > 0 for all j € J; and f(z) > fr(x) for all x € R"
(see, e.g., [63]).

For nonconvex functions the linearization error (4.2) can be negative. There-
fore, we use so-called subgradient locality measures ﬁf to generalize the linearization
errors for nonconvex functions. The subgradient locality measure is defined as

k __ k k\w
Bi = %%{ o], v(s7)” } >0, (4.3)

where v > 0 is a distance measure parameter and w > 1 is a locality measure
parameter supplied by the user, and 3? is a distance measure such that

k {ng - y]H + Zf;J‘l||wi+l —x;|| forj=1,... k-1,
J

—]
|z — vyl for j = k.

For convex objective functions the distance measure parameter v can be set to zero
and, thus, the subgradient locality measure and the linearization error coincide [63].

40

The linearization f; defined in (4.1) is not suitable as such for determining
a new approximation to the objective function in order to find its minimum: the
minimum of f; may not exist, since the function f is piecewise linear and, if it
exists, it can be too far from the minimum of the objective function. For this
reason, a stabilizing term 1/ 2d” Gd, which keeps the approximation local enough,
is added to function fk The symmetric, positive definite n X n matrix Gy, is
intended to accumulate information about the curvature of the objective function
f in a ball around the iteration point x (see, e.g., [60]).

Now, a search direction can be determined as

dj. = arg min { fel@y +d) + Ld"Gyd }. (4.4)

The minimization in problem (4.4) is equivalent (see, e.g., [60]) to the (smooth)
quadratic direction finding problem

{minimize %dTde + v (4.5)

subject to —ﬁf + dTéj <wv forall j €T,

where d € R" and v € R are the variables.
By duality this is equivalent to finding Lagrange multipliers)\;‘? for 7 € Tk
that solve the quadratic dual problem

JETk JETk JETk
subject to Y A\; =1 and
JE€ETk
Aj >0 forall j€J;.

) T
minimize 3 <Z)\j€j> Gy (Z Aj&j) + 2 N6

\

The solution (dj,vg) of problem (4.5) can be expressed in the form (see,
e.g., [60])

— Z AfG;lﬁ'j and
JE€ETk
v = —dj Grdi — Y MY

JETk

The direction finding problem (4.5) seems to be suitable for generating a
descent direction but, we still have to decide, how to choose the index set 7. As
mentioned at the beginning of this section, the index set [J, must be a nonempty
subset of {1,...,k}. Since, in practice, the choice J, = {1,...,k} would cause
serious difficulties with storage and computations after a large number of iterations,
the size of the index set Jj, have to be bounded. That is, we set |Jx| < mg, where
| Jk| is the number of the elements in the set J;. The set Jj is usually determined
such that, if the iteration number k& < mg, then the index set is chosen as

Te=1{1,.. k)

41

and, if k& > mg, then the index set is chosen as
T = Te-1 ULk} \ {k — mg}.

If we have J # {1,...,k}, then one possibility to guarantee the global con-
vergence of the bundle method is to use the subgradient aggregation strategy, which
accumulates information from previous iterations [33]. We define the so-called ag-
gregate values fX, ES, and s* as follows. Let x; € R" be a starting point supplied
by the user. Then we initialize the algorithm by setting

Yy = T,

f; = f(y1),

&, =& €0f(y,),
sl=1s1=0, and
J=A{1}.

At iteration k + 1, the new aggregate values f*T1, EI;H, and s**1 are defined by
the formulae

- <k
ot = fE 4 (g — m0) "€,
E’;H = é’];, and

satt =88 + |l@pis —],

ok
where the values f¥, £,, and 8% can be obtained after solving the Lagrange mul-
tipliers)\é? for j € Ji, and AF of the direction finding problem to be given below.
However, first we have to define the aggregate locality measure by

By = max {|f(2x) — fa], 7(sa)” }.

Now, by using these aggregate values, the search direction d; can be determined
by minimizing the quadratic direction finding problem (compare with (4.5))

minimize %dTG rd + v
subject to —ﬁf + dTﬁj <wv forall j €T, and (4.6)
_ﬁclf + dTﬁZ S v,

which by duality is equivalent to finding the Lagrange multipliers)\f for j € Ty,
and * that solve the problem

(T
minimize % < > NE+)\a€§> Gy! (> N+)\a£§>

JETk JETk
+ 20 MBS
JE€Tk (4.7)
subject to > Aj+ A\, =1,
€Tk

Aj >0 forall j€J and
A, > 0.

42

The solution (dy, vx) of problem (4.6) can now be expressed in the form (see,
e.g., [56])

d,=—G;'€ and
V. = _dekdk — B(I;,
where
€= Mg+ Mgt and
J€Tk
Br = AiBf+ b
J€ETk

In addition to the values é]; and Béf, the Lagrange multipliers)\9? > 0 for
J € Ji, and A¥ > 0 are used to define the aggregate values

ff: Z/\fff%—)\];f(f and
JETk
5 = Z /\;‘?s? + Arsk,

JETk

where ££ = f(y,) + €/ (@ — y;) for j € Ji.
The minimal value of the dual problem (4.7) is given by

we = E)TGE, + B = —ue — L(E)TCLE, > 0. (4.8)

The value wy, is used as a stopping parameter and the stopping criterion at iteration
k is given in the form

If wy < ¢ for a given € > 0, then stop.

When the direction vector dy has been determined, we have to calculate a new
iteration point xp, ;. To guarantee the global convergence of the bundle method it
is not possible to simply set @y 1 =) + di, but it is necessary to use some special
line search procedure that generates two points

Ty = T + tlzdk and

ka:wk—i—t%dk for k > 1

with y, = @, where t% € (0,1] and t§ € [0, %] are step sizes in such a way that
exactly one of the two possibilities, a serious step or a null step occurs. There exist
several different line search procedures suitable for bundle methods (see, e.g., [33]).
In this work, we describe one of them, since it is suitable also for the variable metric
bundle method to be described in the next section.

A necessary condition for a serious step to be taken is to have (compare

with (3.2))

th =18 >0 and f(Yin) < fzr) — epthwy, (4.9)

43

where e, € (0,1/2) is a fixed line search parameter and wy > 0 (see (4.8)) represents
the desirable amount of descent of f at x;. If condition (4.9) is satisfied, we set
Tp+1 = Yp,1 and a serious step is taken.

Otherwise, a null step is taken. In that case, the usage of special line search
procedure guarantees (see e.g., [33]) that we have (compare with (3.3))

th >tk =0 and — B+ di € > —erwr, (4.10)

where e € (¢,1) is a fixed line search parameter and &,,, € 0f(y;,,). In the
case of a null step, we set &)1 = x; but the piecewise linear approximation fkﬂ of
the objective function is improved, since we set Jy+1 = Jpy U{k+1} \ {k—m¢+1}.

In the case of a serious step, there occurs a significant decrease in the value
of the objective function. Therefore, there is no need to detect the possible discon-
tinuities in the gradient and we may set &, € 0f(@4+1). On the other hand, if a
null step occurs, then there exists a discontinuity in the gradient of the objective
function. In this case, the last requirement in (4.10) ensures that x; and y,_, lie on
the opposite sides of the discontinuity, and the new subgradient &, , € 0f(y;41)
will force a significant modification to the next direction finding problem.

In the convex case, the line search procedure can be replaced by a simple step
size selection and the resulting step size is either accepted (serious step) or not
(null step) (see, e.g., [60]).

The last open question is how to choose the stabilizing matrix G;. As men-
tioned before, all the matrices GGy, are supposed to be symmetric and positive defi-
nite. In addition, to ensure the global convergence of the bundle method, we have
to assume that all the matrices GGy are bounded. Moreover, if the kth step is a null
step, then we assume that

h'G. I ,h <h'G,'h (4.11)

for all h € R". These assumptions are relative strong, but they can be weakened
for different versions of bundle methods.

There exist several versions of bundle methods that mainly differ with the
choice of the matrix GG;. For example, in the most frequently used prozimal bundle
and bundle trust region methods (see, e.g., [35, 63, 73]), the matrix Gy, is diagonal
and of the form G, = ugl. The assumptions given above are satisfied if the weights
ur > 0 lie in a compact interval that does not contain zero and the condition
Ugy1 > Uy is valid in the null step. A detailed overview of various bundle methods
is given in [60].

Now we present a general algorithm for bundle methods. In addition to the
algorithm given below, the line search algorithm (to be given as Algorithm 4.3), is
also needed.

ALGORITHM 4.1. (Bundle Method).

Data: Choose the final accuracy tolerance € > 0, the positive line search param-
eters ez, € (0,1/2) and e € (e, 1), the distance measure parameter v > 0
(v = 0 if f is convex), the locality measure parameter w > 1 and the
maximum number of stored subgradients m¢ > 1.

44

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

(Initialization.) Choose a starting point &, € R™ and a symmetric, positive
definite matrix G (e.g., G; = I). Set y, = @1 and compute f; = f(y,)
and &, € 0f(y,). Set

5%:5(11207 fllzf;:fla Ei:é’l’
and J; = {1}. Set the iteration counter k = 1.

(Direction finding.) Determine multipliers)\f for j € Ji, and \F (\¥ #£ 0
only if J, # {1,...,k}), aggregate values és, 35 fk 5k the direction

a”’ a’ a’
vector dji, and the value vy by solving the quadratic direction finding

problem (4.6) (where the last constraint is used only if J # {1,...,k}).

(Stopping criterion.) Calculate wy by (4.8). If wy < e, then stop with xy
as the final solution.

(Line search.) Determine the step sizes t% € (0,1] and % € [0, %] by the
line search Algorithm 4.3. Set the corresponding values

@1 = o + thdy,

Y1 — Tk + t];zdka

Jre1 = f(Yps1), and

ki1 € O (Yisn)-

(Linearization updating.) Calculate the new linearization values

I = fF 4 (e —)"E; for j € T,

S =T (@ — mk)Tg;

o = fr + (@ep —) €
e =g,

3?“ = 3? + | Xps1 — xi|| for j € Ti,
sPHl = g8 4 |lxpey — x|, and

s’éii = 1Yps1 — @ral]-

(Matriz updating.) Determine the stabilizing matrix G, satisfying the
assumptions discussed above.

(Bundle updating.) If | Jj| < me, then set
Tir1 = Tp U{k+ 1}
If | Jx| = me, then set

Te1 =T U{k + 13\ {k+1—m}.
Set k =k + 1 and go to Step 1.

45

Under mild assumptions, it can be proved that the number of consecutive null steps
in Algorithm 4.1 is finite and that every accumulation point of the sequence (xy)
is a stationary point of the objective function (see, e.g., [33]).

Note that Algorithm 4.1 requires relatively large bundles (with m¢ ~ n) to
be computationally efficient (see, e.g., [33]). Thus, we need to solve the quadratic
direction finding problem (4.6) with a relatively large number of constraints, which

is a time-consuming task.
For further studies of bundle methods we refer to [29, 33, 56, 63].

4.2 Variable Metric Bundle Method

In this section, we present variable metric bundle method by Luksan and Vléek [54,
78]. The method presented is a hybrid of the variable metric methods described
in Section 3.1 and the bundle methods described in Section 4.1. The basic idea
of the variable metric bundle method is to use some properties of bundle methods
to improve the robustness and the efficiency of variable metric methods. The
differences when comparing the variable metric bundle method to the standard
variable metric methods are the usage of null steps together with the aggregation
of subgradients and the application of locality measures defined in (4.3). Using
null steps gives sufficient information about the nonsmooth objective function in
the cases the descent condition (4.9) is not satisfied. On the other hand, a simple
aggregation of subgradients and the application of locality measures guarantee the
convergence of the aggregate subgradients to zero and make it possible to evaluate
a termination criterion.

Similarly to the bundle method, the variable metric bundle method generates a
sequence of basic points (x;) € R that, in the convex case, converges to the global
minimum of an objective function f : R™ — R (if it exists). In the nonconvex case,
the method is only guaranteed to find a stationary point of the objective function.
In addition to the basic points, the algorithm generates a sequence of auxiliary
points (y;) € R". A new iteration point x;,, and a new auxiliary point y,, are
produced by using a line search procedure such that

L1 = Tk + tIde and
Ypi1 = T + thdy, for k > 1

with y, = @, where t% € (0,t,4], t% € [0,t%] are step sizes, tpar > 1 is the
upper bound for the step size, d = —Dkék is a search direction vector, ék is
an aggregate subgradient, and matrix Dy, is is formed by using the usual variable
metric updates (see Section 3.1) with gradients replaced with subgradients. The
role of matrix Dy, is to accumulate information about previous subgradients and it
represents an approximation of the inverse of the Hessian matrix if the objective
function is smooth.

A necessary condition for a serious step to be taken is similar to that of bundle
methods (see (4.9)), that is,

th =18 >0 and f(Yn) < fzr) — epthwy, (4.12)

46

where e, € (0,1/2) is a fixed line search parameter and wy > 0 represents the
desirable amount of descent of f at xy. If condition (4.12) is satisfied, we set
Tpi1 = Yp4 and a serious step is taken. A condition for a null step to be taken is
also similar to that of bundle methods (see (4.10)). Thus, a null step is taken, if

th>tp=0 and — B+ di &y > —epuwy, (4.13)

where e € (€1,1/2) is a fixed line search parameter, &, € 0f (Y1), and SBj4q is
a locality measure similar to bundle methods (see (4.3)), that is,

By = max { | f(x) — f(yk+1) + €£+1(yk+l — @)l ”YHka —xi|” } (4.14)

Here, as before, v > 0 is a distance measure parameter and w > 1 is a locality
measure parameter supplied by the user.

In the case of a null step, we set @)1 =) but information about the objective
function is increased because we store the auxiliary point y,_ ; and the auxiliary
subgradient &€,,, € 0f(yy11)-

As with the standard bundle methods, there is no need to use any two-point
line search procedure in the convex case. The procedure can be replaced by a simple
step size selection and the resulting step size is either accepted (serious step) or
not (null step) [54].

The aggregation procedure used with the variable metric bundle method uti-
lizes only three subgradients and two locality measures. We denote by m the lowest
index j satisfying «; = @ (that is, m is the index of the iteration after the latest
serious step). Suppose that we have the current subgradient &,, € 0f(xy), the
auxiliary subgradient &, ., € 0f(y,41), and the current aggregate subgradient £,
(note that é’ L = &) available. In addition, suppose that we have the current local-
ity measure 341 (see (4.14)) and the current aggregate locality measure (3, from
the previous iteration (note that 6 = 0). Now the quite complicated quadratic
direction finding problem (4.6) appearing in the standard bundle methods reduces
to the minimization of the function

P, A0, As) = (M€ + Aoyt + As€) T DM€y + Mgy + As€y) (4.15)
+ 2(A2Bkt1 + Asfk),
where we have \; > 0 for all i € {1,2,3}, and 3.2, \; = 1. The optimal values A%,
for i € {1,2,3}, can be calculated by using a simple formula [78].

The new aggregate subgradient &, ; is defined as a convex combination of the
subgradients mentioned above:

Ek+1 = \E,, +)\gfkﬂ +)‘lgék

and the new aggregate locality measure 354, as a convex combination of the locality
measures:

Bkﬂ =)\szﬁkJrl +)\Igfﬁk

47

Note that the aggregate values are computed only if the last step was a null
step. Otherwise, we set ékﬂ =&, € 0f(py1) and Brs1 = 0.

As mentioned before, the matrices D;, are formed by using the usual variable
metric updates. After a null step, the symmetric rank-one (SR1) update (3.7) is
used, since this update formula gives us a possibility to preserve the boundedness
of the matrices generated as required for the proof of global convergence [54, 78§].
In addition, we use an aggregate subgradient &, ;. to calculate the search direction

dy, = —Dy&,.

Because the boundedness of the generated matrices is not required after a serious
step, the more efficient Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (3.6)
is used together with the original subgradient &, (note that after a serious step
€, = &, € Of(x},)). Thus, after a serious step, the search direction is defined as

We now present a variable metric bundle algorithm by Luksan and Vlcek
[54, 78]. The algorithm is suitable for minimizing both convex and nonconvex but
locally Lipchitz continuous objective functions, though, it can still be simplified a
little bit for convex functions.

ALGORITHM 4.2. (Variable Metric Bundle Method).

Data: Choose the final accuracy tolerance € > 0, the positive line search param-
eters ¢, € (0,1/2) and eg € (er,1/2), the distance measure parameter
v >0 (y =0if f is convex), and the locality measure parameter w > 1.
Select the lower and the upper bounds t¢,,;,, € (0,1) and t,,,, > 1 for
serious steps.

Step 0: (Initialization.) Choose a starting point ; € R™ and a symmetric, positive
definite matrix Dy (e.g., D; = I). Set y, = «; and f; = 0. Compute
fi= f(x1) and &, € Of(x1). Set the iteration counter k = 1.

Step 1: (Serious step initialization.) Set the aggregate subgradient é’k = &, and
the aggregate subgradient locality measure Gy = 0. Set an index for the
serious step m = k.

Step 2: (Stopping criterion.) Calculate

~T ~ ~
wy, = & Di&y + 20

If wy, < e, then stop with @, as the final solution.

Step 3: (Direction finding.) Compute

dy, = —Dy€,.

48

Step 4: (Line search.) Calculate the initial step size t¥ € [tmin, tmaz). Determine
the step sizes th € (0,t4] and t% € [0,t%] by the line search Algorithm 4.3.
Set the corresponding values

Ty = Ty, + thdy,
Ypi1 = i, + tpdy,
ferr = f(Try1), and
§r1 € 8f(yk+1)-

Set u = &, — &,,. If condition (4.12) is valid (i.e., we take a serious
step), then set Gy = 0 and go to Step 7. Otherwise (i.e., condition (4.13)
is valid), calculate the locality measure ;11 by (4.14).

Step 5: (Aggregation.) Determine multipliers \¥ > 0 for alli € {1, 2, 3}, Zle =
1 that minimize the function (4.15). Set

ék+1 = A&, + A5& . + A€, and
Brs1 = A5 Bri1 + A5 By
Step 6: (SR1 update.) Let vy = Dyuy — thdy. If éka < 0, then set

T
VU,
Dys1 = Dy —

ulvy
Otherwise, set Dy 1 = Dy. Set k =k + 1 and go to Step 2.
Step 7: (BFGS update.) If uldy, > 0, then set

D dpdt Dyurd!: + dyul' D
Dk+1:Dk+(t’z+u’“ ’“u’“) Wk KUKy + Gl Ui

ufdk ’U%dk u{dk

Otherwise, set Dy, 1 = Dy. Set k =k + 1 and go to Step 1.

The condition r

in Step 6 (or equivalently u}d; > t%ngk_ldk), which implies that ulv; > 0,
ensures the positive definiteness of the matrices Dy, obtained by the SR1 update
(see, e.g., [16]). Similarly, the condition

’U,gdk >0

in Step 7 ensures the positive definiteness of the matrices Dy, obtained by the
BFGS update (note that u! dj, > 0 holds whenever f is convex). Therefore, all the
matrices generated by Algorithm 4.2 are positive definite [78].

The initial step size t¥ € [tin, tmaz) (See Step 4 in Algorithm 4.2) is calculated
by using a bundle containing auxiliary points and corresponding function values

49

and subgradients [78]. The possibility of using step sizes greater than 1 is useful
here, because information about the objective function included in matrix Dy is
not sufficient for a proper step size determination in the nonsmooth case [78]. As
mentioned before, the aggregation procedure (see Step 5 in Algorithm 4.2) uses
only three subgradients and two locality measures to calculate the new aggregate
values. Thus, the minimum size of the bundle is only 2 and a larger bundle (if it
is employed) is used solely for the selection of the initial step size, which does not
require time-consuming operations [54, 78|.

Under mild assumptions, it can be proved that in Algorithm 4.2 every accu-
mulation point of the sequence (xy) is a stationary point of the objective func-
tion [54, 78].

Finally, we present a line search algorithm, which is used to determine the
step sizes t§ and t% in the variable metric bundle method for nonconvex locally
Lipschitz continuous functions [78]. The algorithm given below can also be used
with standard bundle methods described in Section 4.1 with two small changes:
the initial step size t¥ is fixed to 1, and for the line search parameter we have

ER € (€L, 1)
ALGORITHM 4.3. (Line Search).

Data: Suppose that we have the current iteration point a;, the current search
direction dy, and the positive line search parameters e, € (0,1/2), eg €
(€1,1/2), €4 € (0,ep —€y), and e € (e,ep — €4). Suppose also that
we have the initial step size t¥, an auxiliary lower bound for serious steps
tmin € (0, 1), the distance measure parameter v > 0 (v = 0 if f is convex),
the locality measure parameter w > 1, the desirable amount of descent wy,
and an interpolation parameter x € (0,1/2).

Step 0: (Initialization.) Set t4 =0 and t = ty = k.
Step 1: (New values.) Compute f(xy + tdy), & € Of (xy, + tdy), and

B = max { |f(xx) — fzr + tdi) + tdi €], v (| del)” }.
If f(xg +tdy) < f(xr) — ertwy, then set t4 = t. Otherwise set ty = t.

Step 2: (Serious step.) If
f(@r +tdy) < f(xy) — ertwy,

and either
t Z tmin or ﬁ > EAWE,

then set t¥, = t% =+t and stop.

Step 3: (Null step.) If
B+ di &> —epuy,

then set t% = ¢, t* =0 and stop.

50
Step 4: (Interpolation.) Choose
t € [tA + /i(tU — tA)7tU — /i(tU — tA)]

and go to Step 1.

It can be proved under some semi-smoothness assumptions (see, e.g., [78]) that the
Algorithm 4.3 terminates in a finite number of iterations, finding step sizes t§ and
th, satisfying the condition f(xj.1) < f(@x) — erthws, and, in the case of tf =0
(null step), also condition (4.13).

5 LIMITED MEMORY BUNDLE METHOD

None of the general nonsmooth methods presented in Chapter 4 is very efficient for
large-scale optimization. This assertion is supported, for example, by the numerical
tests concerning proximal bundle methods, variable metric bundle methods, and
the bundle-Newton method [53] presented in [27, 62]. Standard variable metric
methods and variable metric bundle method cannot be used for large-scale prob-
lems, since they utilize dense matrices, whereas standard bundle methods are not
applicable, because they need to solve a rather expensive quadratic direction find-
ing problem (4.6) at every iteration, which is a time-consuming procedure. We have
not found any general bundle-based solver for large-scale nonsmooth optimization
problems in the literature and, as mentioned in the introduction, the subgradient
methods (see, e.g., [76]) suffer from some serious disadvantages. Thus, there is an
evident need of reliable and efficient solvers for nonsmooth large-scale optimization
problems.

In addition to the nonsmoothness, the nonconvexity of the objective function
brings along many difficulties. First, a nonconvex objective function may have
many local minima. In this thesis, we attempt to find only one local minimum
of the objective function. However, the optimality condition for locally Lipschitz
continuous functions (see Theorem 2.3.3) is not sufficient without some convexity
assumptions and, thus, we can not guarantee even a local optimality of the solution
but only some candidates called stationary points of the objective function are to
be looked for. Second, in convex case, the piecewise linear approximation is an
underestimate for the objective function and the nonnegative linearization error
(see (4.2)) is used to measure the accuracy of this approximation. In the nonconvex
case, these properties are not valid anymore and the linearization error may have
tiny or even negative value although the piecewise linear approximation is not a
good model for the original problem. Furthermore, adding more cutting planes
(more subgradients to the bundle) might make the approximation even worse due
to nonconvexity.

The most common way to deal with the difficulties caused by nonconvexity is
to use subgradient locality measures (see (4.3)) instead of linearization errors (see,

52

e.g., [33, 53, 63, 73, 78]). In addition, some other changes, for example, in the line
search procedure have to be made in order to guarantee the global convergence of
the methods in nonconvex case (see, e.g., [33]). Lately, a different approach was
introduced in [18, 19], where the difference of two piecewise linear convex functions
is used to construct a model for a nonconvex objective function.

In this chapter, we introduce a new limited memory bundle algorithm for
solving large-scale nonsmooth and possible nonconvex unconstrained optimization
problems. The method to be described is a hybrid of the variable metric bundle
method [54, 78] (see Section 4.2) and the limited memory variable metric meth-
ods [8] (see Section 3.3), where the latter have been developed for smooth large-
scale optimization. The new method exploits the ideas of the variable metric bundle
method, namely the utilization of null steps, simple aggregation of subgradients,
and the subgradient locality measures, but the search direction is calculated using
a limited memory approach. Therefore, the time-consuming quadratic direction
finding problem (4.6) does not need to be solved and the number of stored subgra-
dients does not depend on the dimension of the problem. Furthermore, the method
uses only few vectors to represent the variable metric updates and, thus, it avoids
storing and manipulating large matrices as is the case in variable metric bundle
methods.

Besides using the idea of limited memory updating, there exist some other
possibilities to deal with the variable metric approximation of the Hessian matrix in
smooth large-scale settings as mentioned at the beginning of Section 3.2. However,
we chose this limited memory approach to be adopted for nonsmooth problems
because it does not need any information about the structure of the problem or its
approximated Hessian. Thus, the only assumptions are that the objective function
f is locally Lipschitz continuous and that we can evaluate the value of the objective
function f(x) and an arbitrary subgradient & € Jf(x) at every point & € R™. Note
that the objective function is not supposed to be differentiable or convex.

This chapter is organized as follows. In the following section, we introduce
the basic limited memory bundle algorithm together with a special line search
procedure and a limited memory matrix updating. Then, in Section 5.2, we prove
the global convergence of the method for locally Lipschitz continuous objective
functions. In Sections 5.3, 5.4, and 5.5, we give some modifications to the basic
limited memory bundle method and, when necessary, show how to prove their
global convergence.

5.1 Basic Method

In this section, we introduce a limited memory bundle algorithm that generates a
sequence of basic points () € R™ that, in the convex case, converges to a global
minimum of an objective function f : R® — R. In the nonconvex case, since
the optimality condition of Theorem 2.3.3 is not sufficient, the algorithm is only
guaranteed to find a stationary point of the objective function.

We now go through the algorithm step by step and describe both its theoretical

23

properties and some details of the implementation. In what follows, we use the
following notations already employed in earlier chapters: The current iteration
point at iteration k is denoted by «; and the current auxiliary point is denoted by
Y- The subgradient of the objective function is denoted by &, and an aggregate
subgradient is denoted by ék. Moreover, we denote by Dy the limited memory
variable metric update that, in smooth case, represents the approximation of the
inverse of the Hessian matrix. Note that we recall many formulae and procedures
given before to make this section more self-contained.

5.1.1 Direction Finding

We first describe how to find the search direction d; by using the limited memory
bundle method. The basic idea of finding the search direction is the same as with
the limited memory variable metric methods (see, e.g., [8]) and the updates Dy
are formed implicitly by using the compact representations of the limited mem-
ory variable metric matrices (see Section 3.3). However, due to the usage of null
steps, some modifications similar to the variable metric bundle method [54, 78] (see
Section 4.2) have to be made.

After a null step, the matrix Dy, is formed by using the limited memory SR1
update (3.14). This update formula gives us the possibility to preserve the bound-
edness and some other properties of generated matrices that are required in the
proof of global convergence (see Section 5.2). In addition, we use an aggregate
subgradient &, i to calculate the search direction

dy, = — D&, (5.1)

Because the boundedness of the generated matrices is not required after a serious
step, we then employ the more efficient limited memory BFGS update formula
(3.11) to compute the matrix Dy and the search direction dj is calculated by
using the original subgradient &, € Jf(xx). Thus, after a serious step, the search
direction is defined by

d, = —Dy&,. (5.2)

Note that the matrix Dy is not formed explicitly but the search direction dj is
calculated using the limited memory approach to be described in Subsection 5.1.6.

5.1.2 Line Search

Next, we consider how to calculate a new iteration point ®j;,.; when the search
direction d;, has been calculated. Similarly to the standard bundle methods and
the variable metric bundle method, we use a special line search procedure that
generates two points

L1 = Tk + t][f,dk and (53)
Ypi1 = T + t’f%dk, for k>1

54

with y, = @1, where t§, € (0,t], t§ € [0,t%] are step sizes, t§ € [tmin, tmaz) 18
the initial step size, and t,,;, € (0,1) and ¢,,,, > 1 are the lower and the upper
bounds for the initial step size t¥, respectively. Similarly to the original variable
metric bundle method, we have the possibility to use step sizes greater than 1 here,
since information about the objective function included in the matrix Dy, is not
sufficient for a proper step size determination in the nonsmooth case [78]. Again,
the initial step size t is selected by using a bundle containing auxiliary points and
the corresponding function values and subgradients. The procedure used is exactly
the same as in the original variable metric bundle method [78].
As before, a necessary condition for a serious step to be taken is to have

th=t; >0 and f(y,.1) < flzx) — fthwr, (5.4)

where ¥ € (0,1/2) is a line search parameter and wy > 0 (see (5.11)) represents
the desirable amount of descent of f at xj. If condition (5.4) is satisfied, we set
Tpy1 = Yp,1 and a serious step is taken.

On the other hand, a null step is taken, if

th>th =0 and — By + di &y > —ehwy, (5.5)

where ef, € (¢%,1/2) is a line search parameter, €, € 0f(y,.,), and Sgy; is the
subgradient locality measure similar to bundle methods and variable metric bundle
method, that is,

Br1 = max { | f(xr) — f(yk+1) + EZ+1(yk+1 — x|, 7||yk+1 — x|}, (5.6)

where v > 0 is a distance measure parameter and w > 1 is a locality measure
parameter supplied by the user. As before, the distance measure parameter v can
be set to zero when f is convex.

In the case of a null step, we set ;.1 = x; but information about the ob-
jective function is increased because we store the auxiliary point y, ; and the
corresponding auxiliary subgradient &, € 0f (Y1)

Next we present a line search algorithm, which is used to determine the step
sizes t¥ and t% in the limited memory bundle method. The line search procedure
used is quite similar to that in the original variable metric bundle method (see
Algorithm 4.3). However, in order to guarantee the global convergence of the
method, we use scaled line search parameters e5, % ¢k and ¥ instead of fixed
ones. Furthermore, in order to avoid many consecutive null steps, we have added
an additional interpolation step (at Step 3 in Algorithm 5.1). In other words, we
look for more suitable step sizes t§ and % by using an extra interpolation loop
if necessary. The role of this additional step is that if we have already taken a
null step at the previous iteration (that is, iy, = k —m > 1, where m is the
index of the iteration after the latest serious step), we rather try to find a step size
suitable for a serious step (that is, to make condition (5.4) valid) even if condition
(5.5) required for a null step was satisfied. This additional interpolation step has
no influence on the convergence properties but it has a significant effect on the
efficiency of the method. The choice of the interpolation procedure (see Step 5

95

in Algorithm 5.1) has no effect on the convergence properties, either. Similarly to
the original variable metric bundle method [78] we combine quadratic interpolation
with the bisection procedure (see, Step 5 in Algorithm 5.1).

ALGORITHM 5.1. (Modified Line Search).

Data:

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Suppose that we have the current iteration point @, the current search
direction dj, the current scaling parameter 6, € (0, 1], and the positive
initial line search parameters 7 € (0,1/2), ek € (¢1,1/2), £, € (0,ek —
el), and el € (e] €L, — €1)). Suppose also that we have the initial step size
than auxiliary lower bound for serious steps t,, € (0,1), the distance
measure parameter v > 0 (with v = 0 if f is convex), the locality measure
parameter w > 1, the desirable amount of descent wy, and the maximum
number of additional interpolations i,,,, available. In addition, suppose
that we have the number of consecutive null steps ,,,;; > O.

(Initialization.) Set t4 = 0, t = ty = t¥, and i; = 0. Calculate the scaled
line search parameters

k _p I k _pg I _k _p I kg oI
ep =Orer, €p =0ken, €4 = Orey, and e = Orep.

and the interpolation parameter

1

S R
" 2(1 — &k

(New values.) Compute f(xy, + t0pdy), & € Of (x) + t0rdy), and
B =max { |f(@x) — f(zp + t0rdi) + t0pdi €|, v (01| dy) }.
If f(xp + tOrdy) < f(xr) — ektwy, then set t4 = t. Otherwise, set ty = t.
(Serious step.) If
f@y + t0edy) < f(mp) — ety

and either
t > tmin or G > 5'j,wk,

then set th = th =t and stop.

(Test for additional interpolation.) If f(xy + tOrpdy) > f(xk), tnun > 0,
and i; < f4q, then set iy =47 + 1 and go to Step 5.

(Null step.) If
—0 + Opdi & > —cu,

then set t% = ¢, t* =0 and stop.

56

Step 5: (Interpolation.) If t4 = 0, then set

—L12.
t = max < Kty 2 Uk .
’ f(a:k) — f(a:k -+ t@kdk) — tUU)k

Otherwise, set ¢ = 1(t4 + ty). Go to Step 1.

It can be proved that Algorithm 5.1 terminates in a finite number of iterations
(the proof is similar to that given in [78]) if the objective function f satisfies
the following semi-smoothness assumptions: For any € R™ and d € R", and
sequences (€,) C R™ and (f;) C R, satisfying &, € 0f(x + ;d) and #; | 0, we have

lim sup éZTd > liminf (f(z +&:d) — f(z)) [t

i—00 =00

In addition, on the output of Algorithm 5.1 (see Steps 2 and 4), the step sizes tk
and t% satisfy the serious descent criterion

f(@ri) = flmr) < —eftiws (5.7)

and, in the case of t¥ = 0 (i.e., a null step), also condition (5.5).

5.1.3 Subgradient Aggregation

In principle, the aggregation procedure used with the limited memory bundle
method is the same as that with the original variable metric bundle method [54, 78]
(see Section 4.2). However, since the matrix Dy is not here formed explicitly, the
practical implementation of the aggregation procedure differs from that of the orig-
inal method.

As before, the aggregation procedure uses three subgradients and two locality
measures. We denote by m the lowest index j satisfying x; = x; (that is, m is
the index of the iteration after the latest serious step). Suppose that we have the
current subgradient §,, € 0f (), the auxiliary subgradient £, ., € df(y;,,), and
the current aggregate subgradient 3 x (note that él = £,) available. In addition,
suppose that we have the current locality measure fj1 (see (5.6)) and the current
aggregate locality measure), from the previous iteration (note that b = 0). We
minimize the function

©(A1, A2, Ag) = (M€, + Xy +)\3ék)TDk()\1£m + Ao&jpy +)‘3%k) (5.8)
+2(N2Bit1 + AaB),

where \; > 0 for all ¢ € {1, 2, 3}, Zf’zl i = 1, and the matrix Dy, is formed by the
limited memory BFGS update if & = m (that is, the first null step after any serious
step) and by the limited memory SR1 update, otherwise. The optimal values ¥ for

all © € {1,2,3} can be calculated by using simple formulae similar to those given
in [78].

27

The next aggregate subgradient & k41 18 defined as a convex combination of
the subgradients mentioned above as

ék—i—l = M¢,, + A§€k+1 +)‘gék (5.9)

and the next aggregate locality measure Bk+1 as a convex combination of the locality
measures as

Bk+1 = N8Byt +)\IgBk (5.10)

Note that the aggregate values are computed only if the last step was a null
step. Otherwise, we set £, = &1 € 0f (k+1) and fri1 = 0.

5.1.4 Stopping Criterion

For smooth functions, a necessary condition for a local minimum is that the gradient
has to be zero and by continuity it gets small when we are close to an optimal point.
This is no longer true when we replace the gradient by an arbitrary subgradient.
However, due to the subgradient aggregation, we have quite a useful approximation
to the gradient, namely the aggregate subgradient 3 x- Unfortunately, as a stopping
criterion, the direct test HE || < g, for some positive €, is too uncertain, if the current
piecewise linear approximation of the objective function (see (4.1)) is too rough.

Therefore, we use the term EZDkE = —Ezdk and the aggregate subgradient locality
measure Bk to improve the accuracy of the norm of the aggregate subgradient. The
aggregate subgradient locality measure 3, approximates the accuracy of the current
linearization: If the value of this locality measure is large, then the linearization is
rough. On the other hand, if the value is near zero, then the linearization is quite

~T ~
accurate and, thus, we can stop the algorithm if the term &, D&, is small enough.
Hence, the stopping parameter w;, at iteration k is defined by

~T ~

Similarly to bundle methods (see Section 4.1) the parameter wy, is also used during
the line search procedure (see (5.4)) to represent the desirable amount of descent
of the objective function f at xj.

This first part of our stopping criterion, that is, wy < ¢ is similar to that of the
original variable metric bundle method. However, in practice the limited memory
matrix Dy is not very accurate and computational experiments have shown that
some accidental terminations may occur (that is, the optimization may terminate
before the minimum point has actually been found). Thus, we add a second stop-
ping parameter g, which does not depend on the matrix Dj. The second stopping
parameter is similar to that in proximal bundle methods (see, e.g., [63]), that is,

1574 ~
Now, the complete stopping criterion is given by:

If wy < e and g < ¢, for a given € > 0, then stop.

o8

5.1.5 Algorithm

We are now ready to present the limited memory bundle method for nonsmooth
large-scale unconstrained optimization.

ALGORITHM 5.2. (Limited Memory Bundle Method).

Data:

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Choose the final accuracy tolerance € > 0, the positive initial line search
parameters £ € (0,1/2) and €k, € (¢£,1/2), the distance measure param-
eter v > 0 (with v = 0 if f is convex), and the locality measure parameter
w > 1. Select the lower and the upper bounds t,,;, € (0,1) and t,,4, > 1
for serious steps. Select a control parameter C' > 0 for the length of the di-
rection vector, a correction parameter o € (0,1/2), and a restart parameter

pe (0,1).

(Initialization.) Choose a starting point ; € R™. Set y; = x; and 3; = 0.
Compute f; = f(x1) and &, € df(x1). Set the correction indicator ic = 0
and the number of current correction pairs m; = 0. Set the iteration
counter k = 1.

(Serious step initialization.) Set the aggregate subgradient é’k = &, and
the aggregate subgradient locality measure B, = 0. Set the correction
indicator ¢y = 0 for consecutive null steps and an index for the serious
step m = k.

(Direction finding.) Compute
dy = —Dié;,

by a limited memory BFGS update if m = k (using Algorithm 5.3) and
by a limited memory SR1 update, otherwise (using Algorithm 5.4). Note
that dy = —&;.

(Correction.) If —ézdk < Q%zék or icny = 1, then set
di = dj, — o€, (5.13)

(i.e., Dy, = Dy + oI) and ic = 1. Otherwise, set ic = 0. If ic = 1 and
m < k, then set icy = 1.

(Restart.) If

~T ~
Epdi < —pll&xlllldell,

then go to Step 5. Otherwise, reset my, =0, ic =0, icy =0, G = 0, and
Br=0.If m #k, then set §, =€,,, &, =&,,, and m = k. Set dy, = —§;,.

(Stopping criterion.) Calculate wy, and ¢ by (5.11) and (5.12), respec-
tively. If wy < e and g < ¢, then stop with x; as the final solution.

29

Step 6: (Line search.) Set the scaling parameter for the length of the direction
vector and for line search

0, = min { 1,C/||dy]| }.

Calculate the initial step size t’} € [tmin, tmaz)- Determine the step sizes
th € (0,t¥] and 5 € [0,t%] by the line search Algorithm 5.1. Set the
corresponding values

Tii1 = Ty, + thOrdy,
Ypp1 = Tk + tROkds,
fes1 = f(xrs1), and
Eri1 €O (Yppr)-

Set uy = &4y — &, and s, = Yy, — T = th0dy. If condition (5.4) is
valid (i.e., we take a serious step), then set Gx11 = 0, k = k+ 1, and go
to Step 1. Otherwise (i.e., condition (5.5) is valid), calculate the locality
measure ;41 by (5.6).

Step 7: (Aggregation.) Determine multipliers \¥ > 0 for alli € {1, 2, 3}, Z?:1 A=
1 that minimize the function (5.8), where Dy, is calculated by the same
updating formula as in Step 2 and Dy, = Dy + oI, if ic = 1. Set

Epir = M€+ Np€pyy + A6, and
Bt = A5 Bkt + A5Ok.
Set k =k + 1 and go to Step 2.

In order to guarantee the global convergence of the method, the boundedness
of both the length of the direction vector (see Step 6 in Algorithm 5.2) and the
matrices B; = D; ! (see Step 3 in Algorithm 5.2) are required. The utilization of
correction (5.13) is equivalent to adding a positive definite matrix oI to the matrix
Dy. Note that in Steps 2 and 7, the matrices Dy are not formed explicitly but the
limited memory expressions (5.14) and (5.16) are used instead. Since the limited
memory representations of matrix Dy do not contain information of the correction
(5.13) that may have been added to the matrix in Step 3, the correction oI is added
to the matrix Dy, in Step 7 if ic = 1.

In the case the direction vector dj is almost orthogonal to the aggregate
subgradient é » (see Step 4 in Algorithm 5.2), we reset all the values. That is, we
restart the algorithm by using the current iteration point @, as a starting point.

As mentioned before, the initial step size t’} € [tmin, tmaz) (see Step 6 in Algo-
rithm 5.2) is calculated exactly in the same way as in the original variable metric
bundle method for nonconvex objective functions [78]. Since the aggregation proce-
dure (see Subsection 5.1.3) uses only three subgradients and two locality measures
to calculate the new aggregate values, the minimum size of the bundle is two and
a larger bundle (if it is employed) is used only for the selection of the initial step
size.

60

5.1.6 Matrix Updating

Finally, we need to consider how to update the matrix Dj and, at the same time,
how to find the search direction dj. Note that until this point, the procedures de-
scribed are rather similar to those of the original variable metric bundle method [78§]
(see Section 4.2).

We use compact representations of limited memory matrices (see Section 3.3),
since in addition to the BFGS updating formula, we need the SR1 updating formula
and, for SR1 updates, there exists no recursive updating formula analogous to
that given in Algorithm 3.2. Moreover, the compact representations of limited
memory matrices facilitates the possibility to generalize the method for constrained
optimization.

Let us recall that the basic idea of the limited memory matrix updating is that
instead of storing the matrices Dy, we use information of the last few iterations
to implicitly define the variable metric update. This is done by storing a certain
number of correction pairs (s;,u;), (¢ < k), obtained in Step 6 of Algorithm 5.2.
When the storage space available is used up, the oldest correction vectors are
deleted to make room for new ones. All the subsequent iterations are of this form:
one correction pair is deleted and a new one is inserted.

As in Section 3.2 we denote by m, the maximum number of stored correction
pairs supplied by the user (3 < m.) and by my = min{k — 1,m.} the current
number of stored correction pairs. We assume that the maximum number of stored
correction pairs m, is constant, although it is possible to adapt all the formulae of
this subsection to the case where m,. varies at every iteration (see, e.g., [37]).

Corresponding to Section 3.3, the n X m; dimensional correction matrices Sy

and Uy are defined by

Sk = [Sk,mk Sk,d and

Uk = [uk—mk c. ’u,k_1:| .

These matrices are used to implicitly define the variable metric update at each iter-
ation. When a new auxiliary point y,_, is generated, the new correction matrices
Si+1 and Uyy; are obtained by deleting the oldest vectors sj_,,, and uj_,,, from
Sk and Uy if my1 = my, (that is, K > m,.) and by adding the most recent vectors
s, and wuy to the matrices; thus, except for the first few iterations, we always have
the m, most recent correction pairs (s;, u;) available.
Asin (3.11), we define the limited memory BFGS update by the formula
—I\T T -1 —INT T
Dy, =01 + [Se 9:Uy] {(Rk) (Ck_—i_RiklUk U B; <R6€) } bf{}g} . (5.14)

Where, as before, Ry is an upper triangular matrix of order my, given by the form

(Ry)i = {(Sk—mk—1+i)T(uk—mk—1+j), if i < j
iy

0, otherwise,

61

C} is a diagonal matrix of order my such that
Cr, = diag [S)_, Wkomy, - - - Sp_1 Wp—1),
and the scaling parameter 9, > 0 is given by

T
Vg = Wi—15k-1 (5.15)

7 .
Uy Uk—1

In addition, we define the limited memory SR1 update similarly to (3.14). In
other words,

Dy = U d — (90U — Sp) (UL U, — Ry, — RE 4+ Cp) " (90U — Sp)*, (5.16)

where instead of (5.15), which might make the update formulae undefined, we use
the value ¥y = 1 for every k.

The limited memory BFGS and SR1 matrices are updated corresponding to
what was discussed in Section 3.3. Thus, in addition to the two n X m; matrices Sy
and Uy, we store the m, x m, matrices R, U,CTUk7 and C). As mentioned earlier,
in practice my, is clearly smaller than n and, therefore, the storage space required
by these three auxiliary matrices is insignificant but the savings in computational
costs are considerable.

At the kth iteration, we have to update the limited memory representation
of Dj_1 to get Dy. Thus, we delete a column from S, 1 and Uy_; if my = my_1
and add a new column to each of these matrices. Then we make the corresponding
updates to Ry_1, U,f_lUk,l, and Cj_1. The new triangular matrix Ry, is formed of
Ry_1 by deleting the first row and the first column if m; = m;_; and by adding
a new column to the right and a new row to the bottom of the matrix. The new
column is given by STu;_; and the new row has the value zero in its first my — 1
components. For matrix Ul Uy both the new column and the new row are given
by U, kT uyp_1. As far as C}, is concerned, we delete the first element of C_; and add
s;‘g_luk,l as the last element (note that C, is stored as a vector).

We first give an efficient algorithm for updating the limited memory BFGS
matrix Dy, and for computing the search direction dj, = —Dy§,. This algorithm is
used whenever the previous step was a serious step. Note that, after a serious step,
the aggregate subgradient &, = £, € df (zr) and the correction vectors obtained
at the previous iteration in Step 6 of Algorithm 5.2 can be equally expressed as
Sk—1 =X — Tp—1 and w1 = &, — &;,_,- Therefore, the calculations used are very
similar to those given in Section 3.3. In fact, all the calculations in Section 3.3 can
be done by replacing the gradient V f(x) by an arbitrary subgradient & € Jf(x).
This means that updating Ry_;, Ul ,Ux_1, and Cj_; is possible within O(m?)
operations by storing a small amount of additional information, namely the m;_1-
vectors S &, ; and Ul &, from the previous iteration. Then the products
STy = SE(€,—€,_1) and Uluy_y = Ul (&, — &,._,) can be computed efficiently,
since we already know mj, — 1 components of SF¢, | and Ul¢,_, from ST &,
and S} &, _;, respectively. We only need to calculate s? ,€,_; and ul £, _; and
carry out the subtractions.

62

ALGORITHM 5.3. (BFGS Updating and Direction Finding).

Data: Suppose that the number of current correction pairs is my_; and the max-
imum number of stored correction pairs is m.. Suppose that we have the
most recent correction vectors s;_1 and uy_; (from the previous iteration),
the current subgradient &, € O0f(xy), the previous subgradient &, _; €
Of (x—_1), the n x mg_; matrices Sy_1 and Uy_1, the my_; X my_, matri-
ces Ry_1, UL Ux_1, and Cy_1, the my_i-vectors Si_,&,_, and UL &, _,
and the previous scaling parameter 1;_, available.

Step 1: (Positive definiteness.) If
ugflsk—l > 07

then set my = min { my_; + 1, m. } and update the matrices; that is, go to
Step 2. Otherwise, skip the updates (see the note below), set my = my_;
and), = ¥;_;, compute SF€, and U], and go to Step 7.

Step 2: Obtain S, and Uy by updating Si_; and Uj_;.

Step 3: Compute and store my-vectors S €, and UlE,.

Step 4: Compute my-vectors SkTuk_l and UkT'u,k_l by using the fact
up1 =&, — &1

Step 5: Update the m; X m, matrices Ry, UkTUk7 and C}.

Step 6: If u] | up_1 > 0, compute

T
T .
Uy Up—q

Otherwise, set 1, = 1.0.

Step 7: (Intermediate values.) Solve the vectors p; € R and p, € R"* from the
linear equations

Rkpl = Sl?Ek)
Ripy = Cypy + DU Uppy — 90U €.

Step 8: (Search direction.) Compute

dy, = 0 Urpy — Skpy — Ui§y,-

The condition (see Algorithm 5.3, Step 1)

uls; >0 foralli=1,....k—1, (5.17)

63

assures the positive definiteness of the matrices obtained by the limited memory
BFGS update (see, e.g., [8]). Skipping the updates (for example, if condition (5.17)
is not satisfied) means that we simple set Sy = Sp_1, Uy = Ur_1, Ry = Ry_1,
UgUk = Ulzﬂ_lkal, and Ck = Ckfl.

In Step 6 of Algorithm 5.3 we have already calculated both ul ;s;_; and
ul ,uy_; (during the calculation of condition (5.17) and as a last component of
vector Ul'uy_1) and, thus, we only need to do one division to obtain scaling pa-
rameter 9.

Note that even if the matrices Ry, Ug Uk, and C) can be updated within
O(m3) operations by the limited memory BFGS update, the calculation of the
search direction still requires O(nmy) operations.

If the previous step was a null step, then ék # &, and, thus, there is no
reason to utilize the difference uy_1 = &, — €, with &, € 9f(y,,) and §,, € Of (xy)
in the calculations of S{wuj_; and Ul'wu,_; (compare Step 4 in Algorithm 5.3).
Furthermore, in order to guarantee the global convergence of the method, the
sequence (wy) has to be nonincreasing in consecutive null steps (that is, wy, < wg_1).
Thus, the condition (compare with condition (4.11))

&, Di&, < &, Dy 1§, (5.18)

has to be satisfied each time there occurs more than one consecutive null step. In
practice, these two facts mean that there are some more calculations required in
the case of null steps than in the case of serious steps. However, also in this case
the search direction can be calculated by using O(nmy) operations.

We now give an efficient algorithm for updating the limited memory SR1
matrix Dy and for computing the search direction d; = —Dkék. Together with
Step 3 of Algorithm 5.2, this procedure guarantees that condition (5.18) is valid
even when the correction pf is added to the new matrix Dy (see Lemma 5.2.8).
This algorithm is used whenever the previous step was a null step.

ALGORITHM 5.4. (SR1 Updating and Direction Finding).

Data: Suppose that the number of current correction pairs is my_; and the max-
imum number of stored correction pairs is m.. Suppose that we have the
most recent vectors s,_; and uy_; (from the previous iteration), the cur-
rent aggregate subgradient ék, the previous aggregate subgradient %k_l,
the previous search direction dj_1, the n x my_; matrices S,_; and Uy_1,
the my_q X my_; matrices Rj_1, UkalUk_l, and C}_1, and the previous
scaling parameter 1;_; available. In addition, suppose that we have the
number of consecutive null steps i, =k —m > 1.

Step 1: (Initial vectors and initialization.) Compute my_q-vectors Skalék and
UL €. Set 9 = 1.0 and i,, = 0.

Step 2: (Positive definiteness.) If

T ~T
_dk_luk—l - fk_13k—1 <0,

64

Step 3:

Step 4:
Step 5:
Step 6:
Step 7:

Step 8:

Step 9:

then set my, = min{my_; + 1,m.} and calculate s?_ &, and ul_,§,.
Otherwise, skip the updates, set ST&, = S¥_ &, Ul&, = UL (&, my =
my_1, and go to Step 8.

(Update conditions.) If either

inull =]-7 or

mre < Me,

then update the matrices, that is, go to Step 4. Otherwise, solve the
system of linear equations

(1 UL Uy — Rj_1—RY_| + Cro_)p = 051 UL &, — ST €&,
to obtain p € R™+-1. Calculate the vector z € R" as
z = ﬁkflék — (Vh—1Ug—1 — Sk1)P,
and the scalar
o=,z
Set 1y, = 1.
Obtain Sy and Uy by updating Sy and Uj_;.
Compute mg-vectors SkTuk_l and UkT'u,k_l.
Update my x m; matrices Ry, U,:;FUk, and Cy,.

Construct my-vectors ST, and UT€, using ST ,&,, UL &, sT_,&,, and

T
uy_ &

(Intermediate value.) Solve p € R™* satisfying the system of linear equa-
tions

(UL Uy — Ry — Ri + Cr)p = 0 UL €, — SLE,.
(Search direction.) Compute

dy, = —03.€,, + (0.U, — Si)p.

Step 10: (Update conditions II.) If i,, = 1, then calculate

b = ékdku

and in case of
b+a <0,

(i.e., condition (5.18) is not valid) set my = my_1, Sy = Sk_1, Ux = Ug_1,
Ry, = Ry, UkTUk = UkT_lUkA’ Cr = Ci_1, and

dk = —Z.

65
LEMMA 5.1.1. The condition (see Algorithm 5.4, Step 2)

—dTu; — & s <0 foralli=1,... k-1, (5.19)

assures the positive definiteness of the matrices obtained by the limited memory
SR1 update.

PROOF. Let us denote B; = Di_1 for all ¢« = 1,...,k. We now prove that each
matrix By, k > 1 is positive definite when condition (5.19) is valid. Note that if
By, is positive definite, then also its inverse D, is positive definite.

By applying the Sherman-Morrison-Woodbury formula (see, e.g., [16]) to
(5.16) we obtain

By, = By + (U, — B1Si)(Li, + Li + Cy — S B1Sk) " (U — B1Sk)?, (5.20)

where matrices Sy, Uy, and Cj are defined as before, B; = D' = I is a positive
definite initial matrix, and

(Lk)“ — (Sk—mk—1+i)T(uk—mk—1+j) ifi>7
? 0 otherwise.

We denote
Qv = [@h-my - 1] =Uc— BiSk
and
Ny = Ly + Lt + Cy, — SFBSy.

Let us assume that Bjy_; is positive definite for some £ > 1 and that condi-
tion (5.19) is valid for i = 1,...,k—1. We prove that also the matrix By, is positive
definite. To simplify the notation, we, from now on, omit the index (k — 1) and
replace the index k by “+7”. Thus, equation (5.20) can be rewritten in the form

By =B+ Q.N{'Q}
(u— B's) (u— B's)"

Y
* s (u— B's) ’

(5.21)

where B’ = B; + Q'N'7'Q'", N’ is formed by deleting the first row and the first
column from N if k > m.+ 1, and @’ is formed by deleting the first column from
Q. If k<m,+ 1, then N =N and Q' = Q.

It can be easily seen from (5.21) that the new matrix B, is positive definite if
B’ is positive definite and the denominator s (u — B’s) is greater than zero (note
that the matrix A = z27 is positive semidefinite for all nonzero z € R™).

Next we prove that B’ is positive definite. The current matrix B is positive
definite by assumption and, due to condition (5.19), also QN'Q*, N~ and N
are positive definite. The positive definiteness of NV implies the positive definiteness

66

of N’ as a submatrix of matrix N. Now, since N’ is positive definite also N'™*,
Q'N''Q", and, thus, B' = By + Q'N''Q'" are positive definite.

Using condition (5.19) and the fact that we have s; = th0;d;, th > 0, 6; €
(0,1, and d; = —D;€, for all i = 1,..., k — 1, we obtain

for all i = 1,...,k — 1. The last inequality in formula (5.22) follows from the fact
that for i < m.+1 the positive definite matrix B; is equal to B; and for i > m.+1
it can be given in the form

B; = B+ Q:N;'Q;
A [s%a. ¢"s ' [4”
- foe ol (6]
_ / 1/0 —q"SIN;" /o q’
~birle @l [—Nglsﬁq_/(s N7+ NS gt SN 8] | QT

= B+ (q_—Q'N;"'S!"q)(q_ — Q;N'Si"q_)" /8.

Here the subscript “—” denotes the index i — m; — 1, the matrix S is formed by
deleting the first column from S;, and the denominator

§=s"q_ —q"SIN'S/"q_

is greater than zero, since the matrix N[l is positive definite (that is, the upper
left term 1/4 has to be greater than zero).
From (5.22) and by using again the fact that s; = t%60;d; we obtain

s!(u; — Bjs;) > 0

for all i = 1,...,k — 1. Thus, the denominator in formula (5.21) is greater than
zero and the new matrix B, and its inverse D, are positive definite. U

In order to use both Algorithms 5.3 and 5.4 with the same stored information,
some modifications have to be made. First, during the limited memory SR1 update,
we have to update the my-vectors SF¢,, and UF'E,, (that is, S{_ &, _; and UL &,
to the next limited memory BFGS update). Furthermore, since we use the same
correction matrices S and U, in both of the BFGS and the SR1 updates, both
the positive definiteness conditions (5.17) and (5.19) have to be valid in each case
before we update the matrices. Nevertheless, it can be seen from (5.22) provided
by the positive definiteness of B; that condition (5.19) implies (5.17) and, thus,
we only have to check the validity of (5.19). However, numerical experiments have
shown that the simple skipping of the BFGS update (see Algorithm 5.3, Step 1)
if condition (5.19) required for the SR1 update is not satisfied, makes the method
inefficient. Therefore, in the case of the BFGS update, the new search direction
d. is calculated conventionally by using the most recent correction vectors sj_;
and wuy_; whenever the required positive definiteness condition (5.17) is valid but

67

the matrices are not updated, that is, the correction vectors are not stored, unless
both the conditions (5.17) and (5.19) are satisfied. In practice, this means that
the correction matrices S, and U, may actually include some indices smaller than
k — m; due to skipping of updates and that, in the case of the BFGS update, the
number of the current correction pairs used may be my, = m. + 1.

The new limited memory bundle method uses the limited memory approach
to calculate the search direction and it requires only three subgradients and two
locality measures to calculate the new aggregate values; thus, it avoids solving the
time-consuming quadratic direction finding problem (4.6) appearing in standard
bundle methods and the size of the bundle is independent of the dimension of the
problem. Furthermore, both the search direction d; and the aggregate values 3 kil
and Bkﬂ can be computed implicitly using at most O(nm,) operations. When
m, < n, this is much less than O(n?) operations needed in the original variable
metric bundle method, which stores and manipulates the whole matrix Dj. These
properties make the limited memory bundle method suitable for large-scale prob-
lems. This assertion is supported by numerical tests presented in [26, 27] and to
be given in Chapter 6.

5.2 Convergence Analysis

In this section, we prove the global convergence of Algorithm 5.2. In addition to
assuming that the objective function f : R™ — R is locally Lipschitz continuous,
the level set {x € R™ | f(x) < f(a1) } is supposed to be bounded. Furthermore,
we assume that each execution of the line search procedure is finite. Since the
optimality condition of Theorem 2.3.3 is not sufficient without some convexity
assumptions, and the objective function f is not supposed to be convex, we can
only prove that Algorithm 5.2 either terminates at a stationary point or generates
an infinite sequence (xy) for which accumulation points are stationary for f. In
order to do this, we assume that the final accuracy tolerance ¢ is equal to zero.
We start the convergence analysis by giving three technical results (in Lemmas
5.2.1, 5.2.2, and 5.2.3). After that, we prove (in Theorem 5.2.4) that having the
values wy, = 0 and ¢, = 0 implies that the corresponding point x; is a stationary
point for the objective function. For an infinite sequence (xy), we first show (in
Lemma 5.2.5) that the conditions (¢x) — 0 and (wy) — 0 are equivalent due to
correction (5.13) and, thus, we can restrict our consideration to the stopping pa-
rameter wy. Then we show (in Lemma 5.2.6) that if ())rex — @ and (wi)rexc — 0
for some subset IC C {1,2, ...}, then the accumulation point & is a stationary point
of the objective function. This assertion requires the uniformly positive definite-
ness of Dy, which also is guaranteed by correction (5.13). Furthermore, using the
technical Lemma 5.2.7 and the fact that the sequence (wy) is nonincreasing in
the consecutive null steps due to additional testing procedure during the limited
memory SR1 update (see Lemma 5.2.8), we prove that the indefinite sequence of
consecutive null steps with x;, = x,, implies 0 € df(x,,) (in Lemma 5.2.9). Fi-
nally, in Theorem 5.2.10 we combine all the results obtained and show that every

68

accumulation point of (xy) is stationary for the objective function.

The convergence analysis of the limited memory bundle method is very sim-
ilar to that of the original variable metric bundle method for nonconvex objective
functions [78]. In fact, Lemmas 5.2.2, 5.2.3, and 5.2.7 and their proofs are ex-
actly the same as those given in [78] (note that the proof of Lemma 5.2.7 can be
found from [54]) and also Lemmas 5.2.1, 5.2.6, 5.2.9, and Theorems 5.2.4, and
5.2.10 are very similar to the corresponding ones in the original variable metric
bundle method. However, we give those results (with their proofs) here to make
the convergence analysis of the limited memory bundle method self-contained.

There are two main differences between the convergence analysis of the orig-
inal variable metric bundle method and the limited memory bundle method. The
first one is that in the limited memory bundle method, we have two different stop-
ping parameters wy and g (see Step 5 in Algorithm 5.2) instead of only one [78].
However, Lemma 5.2.5 shows that (gx) — 0 implies (wy) — 0 and vice versa and,
thus, it is enough to examine only the stopping parameter wy, which is similar to
that of the original variable metric bundle method. Furthermore, in the limited
memory bundle method we are not able to guarantee that the sequence (wy) is
nonincreasing in the consecutive null steps without an additional testing procedure
during the limited memory SR1 update (see Algorithm 5.4). Lemma 5.2.8 shows
that together with Step 3 of Algorithm 5.2, the procedure used in Algorithm 5.4
guarantees that condition (5.18) (that is, észék < ész—lék) is valid even when
the correction ol is added to the new matrix Dy.

For the convenience of the reader, we from now on give also the page references
of the equations and algorithms used.

LEMMA 5.2.1. At the kth iteration of Algorithm 5.2 [p. 58], we have
wp = & Dy + 20 w226, wi > ol& 7
Qk = %HEkHQ + i @ > i, Qe = lHékH27
and
Br1 > VY — gl
Furthermore, if condition (5.19) [p. 65] is valid for k =k + 1, then
ui (Dyuy, — s) > 0. (5.23)

PROOF. We point out first that (3, > 0 for all k by (5.6) [p. 54], (5.10) [p. 57], and
Step 1 in Algorithm 5.2. The relations

~T ~ ~ ~ ~
wy, = &), D&, + 20%, wy > 20, wy > o||€LII%,

1z ; Lz
Qe = §||Ek||2 + G, a > B, U = 5”51“”2

69

follow immediately from (5.1) [p. 53], (5.2) [p. 53], (5.11) [p. 57], (5.12) [p. 57],
and (5.13) [p. 58], and from the fact that &, = &, in the case of a serious step (see
Step 1 in Algorithm 5.2). Note that if correction (5.13) [p. 58] is used, we have
Dy = Dy + ol and, thus, these results are valid also in this case.

By (5.6) [p. 54] and since we have @)1 = @ for null steps, and since we, on
the other hand, have §;41 = 0, and ||y}, — Ti41|| = 0 for serious steps, we always
have

Brs1 2> Y Yp1 — Trga ||

for some 7 > 0 and w > 1.
Now, we prove that condition (5.19) [p. 65] implies (5.23). If condition (5 19)
1s valid for k replaced with k41, then &, # 0 (otherwise, we would have —dJ uy —

5 . St = 0). Using the positiveness of u} sy (provided by the positive definiteness of
Dy, in (5.22) [p. 66]), Cauchy’s inequality, and the fact that we have s;, = t%0,dy,
th, >0, and) € (0,1], we obtain

T
(uf s1)* = (th0c&), Diug)’
~T ~
< (t]fg@k)zék Dip€yuf Dy
= thoru) Dyug(—sL €))
< t%@kuszudeuk = ukaukufsk.
Therefore, we have ul s, < ui Dyuy. O

LEMMA 5.2.2. Suppose that Algorithm 5.2 [p. 58] is not terminated before the kth
iteration. Then, there exist numbers \¥3 >0 for j =1,...,k and &, > 0 such that

K
(&, %) = Z)\k] o lly; — xl]), Z)\k’j =1, and px=noy.
=1

PROOF. Let m be an index of the iteration after the latest serious step defined at
Step 1 of Algorithm 5.2 (that is, ; = @, for all j = m,... k). First we prove
that there exist numbers A7 > 0 for j = m, ..., k, such that

k
(€4, B) = Z N, 8), Y A =1 (5.24)

We prove this via induction. Suppose that & = m. Then we set A™™ = 1, since
€ = ¢, and B = 0 at Step 1 of Algorithm 5.2 and we have set 3, = 0 at Step 6
at the previous iteration (47 = 0 due to initialization). Thus, the base case is valid.
Now, suppose that k& > m, let i € {m,... k — 1}, and assume that (5.24) is valid
for k replaced with i. We define

AL — \E L \ENB
XL =

70

where \! > 0 for all [€ {1,2,3} are obtained at Step 7 of Algorithm 5.2.

Now, we have \it1J >0 for all j =m,...,i+ 1, and
i+1 i
DN = X+ (Am +) W) + =1,
j=m j=m+1

since Z;:m A% = 1 due to assumption and 37 | A = 1 (see Algorithm 5.2, Step 7).
Using relations (5.9) [p. 57], (5.10) [p. 57], and the result given above, we
obtain

(éi—f—la Bi+1) =)‘Zl (Ema O) +)‘;(SH—D BiJrl) + Z)‘é)‘id(E]’a ﬁ])
i+1

= Z)‘i+17j<€j7 Bj)a

j=m

due to 3, = 0 and, thus, condition (5.24) is valid for i + 1.
Now, we define

Nl =0 forj=1,...,m—1, and

k
i = Ny, —a).
j=1

Since x; = xy for j = m, ..., k, we obtain
k
s § k,j
Ok = A Hyj_ija
j=m

and, thus, by (5.24), Lemma 5.2.1, and the convexity of the function g — v¢“ on
R, for v > 0 and w > 1 we have

k w
vy =1 (Z Ny, — ij>

j=m

k
< NIyl —]|
j=m

IN

)\k’jﬁj

m

<.
Il

I
o

k-

71

LEMMA 5.2.3. Let & € R™ be giwen and suppose that there exist vectors g, £, Y,
and numbers \; > 0 fori=1,...,1, [> 1, such that

= Z Ni(& g — 2])),

(Z), i=1,...,1 and (5.25)

o~

H

§ <
I
2=
Then g € 0f(@).

PROOF. Let Z={i|1<i<I, \; >0}. By (5.25) we have

Y, =< and
£ €of(@)
for all © € Z. Thus, we have also
g - j\iém
(1A
X >0, forieZ, and
j\i = 17
i€l
and g € df(x) by the convexity of df(&) (see Theorem 2.2.6, p. 22). O

THEOREM 5.2.4. If Algorithm 5.2 [p. 58] terminates at the kth iteration, then the
point x, s stationary for f.

Proor. If Algomthm 5.2 terminates at Step 5, then the fact € = 0 implies that
= 0 and g, = 0. Thus, €k =0and By = 5, = 0 by Lemma 5.2.1 and
Lemma 5.2.2.
Now, by Lemma 5.2.2 and by using Lemma 5.2.3 with

T = Ty, l:ka g:ék7
& =2¢, Y=Y, A= A& for i <k,
we obtain 0 = ék € 0f(xy) and, thus, x; is stationary for f. O

From now on, we suppose that Algorithm 5.2 does not terminate, that is,
wg > 0 and ¢, > 0 for all k.

LEMMA 5.2.5. Let the stopping parameters wy, and qp of Algorithm 5.2 [p. 58] be
defined by (5.11) [p. 57] and (5.12) [p. 57], respectively. Then

(qe) — 0 if and only if (wy) — 0.

72

PROOF. The condition (g;) — 0 implies (€,) — 0 and () — 0 by Lemma 5.2.1
and, thus, we have (wy) — 0.

On the other hand, by Lemma 5.2.1 we have wy, > 26, > 0 and wy, > Q[\ékHQ
for some correction parameter ¢ € (0,1/2). Therefore, (wy) — 0 implies (Br) — 0
and (£,) — 0 and, thus, also (g;) — 0. O

In view of Lemma 5.2.5 we can, from now on, restrict our consideration to the
stopping parameter wy.

LEMMA 5.2.6. Suppose that the level set {x € R™ | f(x) < f(x1)} is bounded.
Then, the sequences (y,) and (&) are also bounded. If, in addition, there exist
a point & € R™ and an infinite set K C {1,2,...} such that (xg)kex — T and
(wg)kex — 0, then 0 € Of (Z).

PROOF. The sequence (xj) is bounded by assumption and the monotonicity of
the sequence (f;) obtained due to the serious descent criterion (5.7) [p. 56]. Since
Tpi1 = Yy for serious steps and ||y, — Tiq1]] < tmaeC for null steps (by
(5.3) [p- 53] and due to the fact that we use the scaled direction vector 0;d with
0, = min{ 1,C/||dx| } and predefined C' > 0 in the line search) the sequence (y,)
is also bounded. By the local boundedness and the upper semicontinuity of 0f (see
Theorem 2.2.6, p. 22), we obtain the boundedness of the sequence (&;).
Let

Z=A1,...,n+2}.

Using the fact that &, € df(y,) for all k¥ > 1, Lemma 5.2.2, and Carathéodory’s
theorem (see, e.g., [28], p. 98), we deduce that there exist vectors y*, €8 and
numbers ** > 0 and &3, for i € Z and k > 1, such that

(&, %) = ZA’“ 3 —x])),
€T
Eh e of (yhh), and (5.26)
oA =1,
€L

with

(y*, &) e {(y;,&) | =1,....k}.

From the boundedness of (y,), we obtain the existence of points y; (i € Z), and an
infinite set Koy C K satisfying (y*)rex, — ¥y for i € Z. The boundedness of (£},)
and (A\®7) gives us the existence of vectors &; € 0f(y}), numbers A} for i € Z, and
an infinite set K0y C Ky satisfying (€")pex, — & and (N¥)pex, — A fori € 7.

It can be seen from (5.26) that

Al >0 forieZ, and Z)\le.

1€l

73
From the fact (wg)kex — 0, Lemma 5.2.1, and Lemma 5.2.2, we obtain

(&) rex — 0, (Br)kex — 0, and (G) ke — 0.

By letting k& € K approach infinity in (5.26), and by using Lemma 5.2.3 with

we obtain 0 € Of (). O

LEMMA 5.2.7. Suppose that there exist vectors p and g together with numbers
w>0,a>0,6>0, M>0, and c € (0,1/2) such that

w=|pl*+2a, B+plg<cw, and max{|p|, gl vVa} <M.
Let @ : [0,1] — R be such that

Q) =lAg+ (1 =Npl*+2(M\6+ (1= Na) and
b= (1—2c)/4M.

Then
min {Q(\) | A € [0,1]} < w — w?V?.
PROOF. See the proof of Lemma 3.5 in [54]. O

LEMMA 5.2.8. Suppose that the level set {x € R™ | f(x) < f(x1) } is bounded, the
number of serious steps is finite, and the last serious step occurred at the iteration
m — 1. Then there exists a number k* > m, such that

~T ~ ~T ~
£k+1Dk+1£k+l < £k+1Dk£k+l and (5.27)

3
tr(Dy) < in (5.28)
for all k > k*.

PROOF. Suppose first that icny = 0 for all & > m, that is, the correction ol (see
Algorithm 5.2, Step 3, p. 58) is not added to any matrix Dy with k& > m. If the
limited memory SR1 update is not used, we have Dy, = Dy, and condition (5.27)
is valid with equalities. Otherwise, if m; < m,., the limited memory SR1 update is
equal to the standard SR1 update (see (3.7), p. 30) and we have

(Dkuk - Sk)(Dkuk - Sk)T

Dy1 =Dy —
k+1 k uf(Dkuk — 52

where for the denominator we have u{(Dkuk — 8) > 0 by Lemma 5.2.1 and the
numerator is positive (semi)definite matrix. Thus, condition (5.27) is valid in the

74

case my < me. Finally, if my = m,., we update the matrix only if éZ_H(Dk-H —
Di)€,.1 < 0 (see Algorithm 5.4, Steps 3 and 10, p. 63). Since icy = 0 for all
k > m, the correction oI is not added to the new matrix Dy, and, thus, condition
(5.27) is valid also in this case. Furthermore, in each case we have

3 1 1
tr(Dy) — g = tr(Dy) — tr(]) — 5" = tr(Dy, — 1) — n < 0

for k > m, since the matrix Dy — I is negative (semi)definite. Therefore, if icy =0
for all £ > m, conditions (5.27) and (5.28) are valid if we set k* = m.

If icy = 0 does not hold for all £ > m, then the correction ol, with o €
(0,1/2), is added to all the matrices Dy with k > k (see Algorithm 5.2, Step 3).
Here k denotes the index k > m of the iteration when icy = 1 occurred for the first
time. The limited memory matrices S, U, Ri, and C} do not contain information
of the correction ol that may have been added to the matrix D; at the previous
iteration. Let us now denote by Dy, the matrix formed with the limited memory
matrices and by Dj, the corrected matrix, that is, Dy = Dy + ol for all k > k (since
we suppose icy = 1).

Now, all the results given above are valid for ﬁk and ﬁk+1. Since for all k > k,
we have Dy = Dy + ol and we set Dy = Dk+1 + ol, condition (5.27) is valid for
all k > k* = k. Now, in each case we have

3 ~ 1
tr(Dy) — 5N = tr(Dy + ol) — tr(I) — 3"

R 1
=tr(Dy — I) + tr(ol) — 37"

A 1 1
<tr(Dk—I)—|—§n—§n

<0

for k > k, since the matrix D, — I is negative (semi)definite and o € (0,1/2).
Therefore, conditions (5.27) and (5.28) are valid for all £ > k* with

k* = max {k,m},

where k =1 if icn = 0. O
LEMMA 5.2.9. Suppose that the level set {x € R™ | f(x) < f(x1) } is bounded, the

number of serious steps is finite, and the last serious step occurred at the iteration
m — 1. Then, the point x,, is stationary for f.

Proor. From (5.8) [p. 56|, (5.9) [p. 57], (5.10) [p. 57|, Lemma 5.2.1, and

75

Lemma 5.2.8 we obtain

~T ~ ~
Wi1 = &1 Div1841 + 20641
~T ~ ~
< &1 Dik€iin + 20k
= oA}, 05, X) (5.29)
< (0,0,1)
~T ~ ~
= Ek Dkfk + 26k

for k > k* with k* defined in Lemma 5.2.8.
Let us, for a while, denote Dy, = W' Wj. Thus, function ¢ (see (5.8), p. 56)
can be given in the form

N, NS AE) = ([IMWRE,, + NTWi€py + MWL + 20N Brsr + ASBR).

From (5.29) we obtain the boundedness of the sequences (wy), (Wi€}), and (5y).
Furthermore, Lemma 5.2.8 assures the boundedness of (Dy) and (W}) and, by
Lemma 5.2.6, we obtain the boundedness of (y,), (§;), and (W&, ;). Let us
denote

M = sup {||[Wi&p i I, IWk&ill, \/Be | £ > £}, and
b= (1-2ek)/4M,
and let us first assume that w; > 6 > 0 for all £ > k*. From the fact that
3
min {o(A1, Ao, Ag) [A 20,0 =1,2,3, > "\ =1}

i=1

< min {(0, A, (1-) | A€ [0,1]}
and (5.29) we obtain
win < min { AWy, + (1= NWEDI® +2(0Ghs + (1= M) | A€ [0, 1]},

Since wy, = éngEk—FQBk by Lemma 5.2.1, dj, = —Dkék (see Algorithm 5.2, Step 2,
p. 58), and

T
_Bk—i—l + ekdk €k+1 > _5];#%

by (5.5) [p. 54] and due to the fact that we use a scaled direction vector 6xdy in
the line search (see Algorithm 5.2, Step 6), we have

O Brt1 — ekd;{ﬁk-ﬁ-l < Brg1 — ﬁkdf&m < ehwy, = Opehwy.
Now, we can use Lemma 5.2.7 with

D= Wkélm g = Wk€k+17 W = Wk,

2 I
a = [, B = Brt1, c=c¢€p

76

to obtain
Wrr1 < Wy — (wkb)Q < W — ((Sb)z

for £ > k* and, thus, for a sufficiently large index k, we have a contradiction with
the assumption w; > . Therefore, due to monotonicity of wy, for k > k*, we obtain
wr — 0, & — @y, and by Lemma 5.2.6 we have 0 € 0f(x,,). d

THEOREM 5.2.10. Suppose that the level set {x € R™ | f(x) < f(x1) } is bounded.
Then, every accumulation point of the sequence (xy) is stationary for f.

PROOF. Let & be a accumulation point of (xy), and let £ C {1,2,...} be an
infinite set such that (xy)rex — . In view of Lemma 5.2.9, we can restrict our
consideration to the case where the number of serious steps (with t¥ > 0) is infinite.
We denote

K'={k|t >0, there exists i € K, i < k such that &; = ; }.

Obviously, K’ is infinite and (xg)rexr — @®. The continuity of f implies that
(fe)kexr — f(x) and, thus, fr | f(&) by the monotonicity of the sequence (f)
obtained due to the serious descent criterion (5.7) [p. 56]. Using the fact that
th >0 for all K > 1 and condition (5.7), we obtain

0<ebthw, < fr— frra—0 fork>1. (5.30)

If the set K1 = {k € K' | t& > t,4, } is infinite, then (wy,)zex, — 0 and (zp)rex, —
& by (5.30) and, thus, by Lemma 5.2.6 we have 0 € 0f(Z).

If the set K, is finite, then the set o = {k € K’ | Bry1 > fwy } has to be
infinite (see Algorithm 5.1, Step 2, p. 55). To the contrary, let us assume that

wg > 6 >0, for all k € Ks.
From (5.30), we have (¢¥)recx, — 0 and Step 6 in Algorithm 5.2 [p. 58] implies
ki1 — aill = 10l dil] < 11O

for all £ > 1. Thus, we have (||@r+1 — @] ke, — 0. By (5.6) [p. 54], (5.30), and
the boundedness of (§;,) by Lemma 5.2.6, and since y,; = @x11 for serious steps,
we obtain (g+1)kex, — 0, which is in contradiction to

e’j‘é < &ﬁwk < Bra1, ke K.

Therefore, there exists an infinite set K3 C Ky such that (wg)kerc; — 0, (k) rercs —
Z,and 0 € Of(&) by Lemma 5.2.6. O

Note that, if we choose ¢ > 0, Algorithm 5.2 terminates in a finite number
of steps, since (wg) — 0 and (gx) — 0 in the case the number of serious steps is
finite (see the proof of Lemma 5.2.9), and either (wy)rex, — 0 and (gx)kex, — 0 or
(wi)ker; — 0 and (gx)kexs — 0 in the case the number of serious steps is infinite
(see the proof of Theorem 5.2.10).

7

5.3 Adaptive Version

In this section, we describe an adaptive modification of the limited memory bundle
method. The idea of this adaptive version is that the maximum number of stored
correction pairs may change during the computation. This means that we can start
the optimization with a small number of stored correction pairs and then, when
we are closer to the optimal point, the number of stored correction pairs may be
increased until some upper limit is achieved. The aim of this adaptability is to
improve the accuracy of the basic method without loosing much from efficiency,
that is, without increasing computational costs too much.

The procedures used in the adaptive version are almost the same as in the
basic version. In fact, we only have to change Step 5 of Algorithm 5.2. Let us
denote by m, the upper limit for the mazimum number of stored correction pairs
supplied by user (3 < m,) and by m, the current maximum number of stored
correction pairs (3 < m. < m,). Now, Step 5 of Algorithm 5.2 is given in the form

Step 57: (Stopping criterion.) Calculate wy and g by (5.11) and (5.12), respec-
tively. If wy < ¢ and ¢qr < e, then stop with x; as the final solution.
Otherwise, if w, < 10%¢ and m. < m,, set m, = m. + 1.

The scaling factor 10® above has been chosen experimentally. Note that with
m. = m,, this adaptive version reduces to the basic version.

The convergence analysis of the adaptive limited memory bundle method is
the same as that given in Section 5.2 with m, replaced by m,,.

5.4 Simple Scaling of Updates

In the basic version we always use the scaling parameter ¢, calculated by (5.15)
if the previous step was a serious step, and the value ¥, = 1, otherwise. In this
section, we describe some other possibilities to scale the limited memory variable
metric updates. As with the basic version, we concentrate on the simple scaling

strategies, where the scaling matrix D,go) is supposed to be a scalar multiple of

the identity matrix (that is, D,(CO) = Ul). The scaling strategies described in this
section are similar to those developed for standard variable metric updates (see,
e.g., [52, 68, 75]).
We use two different scaling parameters 9 with the limited memory BFGS
update (5.14). The first is that defined by the formula (5.15), that is,
Ui Sk
Oy = L
U1 Uk—1
and the second, which has been derived from the heuristic scaling parameter for
the standard BFGS update (see, e.g., [48]), is given by
Si_15k-1

Y = ————". 5.31
; ufflsk_l ()

78

Note that formulae (5.15) and (5.31) are unsuitable for scaling the limited memory
SR1 update (5.16), since they might make the update formula undefined.

We have also studied some different scaling parameters for the limited memory
SR1 update. However, our numerical experiments have shown that the scaling of
the SR1 update in the limited memory bundle method either has no significant
effect on the results or, in the worst case, makes the method numerically unstable.
Thus, similarly to the basic version, we use the value ¥, = 1 for every k if the
limited memory SR1 update is used.

The scaling parameters (5.15) and (5.31) are combined with the value 95 = 1
using some scaling strategy. The following simple scaling strategies have been used
with the limited memory bundle method:

e No scaling (NS). We set 9y = 1 at every iteration.

e Preliminary scaling (PS) [75]. The scaling parameter 9y is calculated by
(5.15) or (5.31) after the number of current correction pairs my, is reset to
zero. Otherwise, we set ¥, = 1. More precisely, if m;, = 0, we set v, = I
or ¥y = I', if the scaling parameter) does not lie in the interval [[';,T",]
for given 0 < I'; < I',. The number of stored correction pairs is reset to
zero at the first iteration (that is, we scale at iteration two) and in the case
the direction vector d;, is almost orthogonal to the aggregate subgradient
£, (see Algorithm 5.2, Step 4).

e Scaling at every iteration (AS). The scaling parameter 9y is calculated by
(5.15) or (5.31) at every iteration. Similarly to (PS), we set ¥y = I'; or
¥, = T'y if my, = 0 and the scaling parameter 19, does not lie in the interval

[Fla Fu]

e Interval scaling (IS) [52]. The scaling parameter ¥y is calculated by (5.15)
or (5.31) at every iteration. If my = 0, we proceed as in (PS) or (AS).
In any other iteration (that is, an iteration with my # 0), if the scaling
parameter ¥y does not lie in the interval [J;,1,], we set ¥, = 1. Here,
0 <Y, <, and ¥, > 2 are the given lower and upper bounds for the
scaling parameter .

The values I'; and ', in (PS), (AS), and (IS) serve as a safeguard. Similarly to [52],
we have used the values I'y = 0.01 and I', = 100. In interval scaling (IS), the values
Y, = 0.6 and 9, = 6.0 for the scaling parameter (5.15) and 9J; = 0.5 and ¥,, = 5.0
for the scaling parameter (5.31) have been chosen experimentally.

The simple scaling of updates has no influence on the global convergence of the
limited memory bundle method (especially, since we do not scale the SR1 update).

5.5 L-BFGS Bundle Method

In practice, the limited memory SR1 update is quite frequently skipped due to con-
dition (5.19) required for the positive definiteness of the update and the additional

79

testing procedure, which is used to guarantee that condition (5.18) is valid in the
consecutive null steps. Therefore, we have developed a version where SR1 update
is not used at all. In this version, we use the limited memory BFGS update (given
in Algorithm 5.3) after a serious step if the positive definite condition (5.17) is valid
and the update is simply skipped (that is, Dy = Dy_1) both if condition (5.17) is
not satisfied and after each null step.

The procedures used in the L-BFGS bundle method are very similar to the
basic Algorithm 5.2. The only differences are in Steps 2 and 7, where the limited
memory matrix Dy, is used. Moreover, we use the interval scaling strategy (IS) (see
Section 5.4) in the calculation of the scaling parameter 9y, since here this approach
has been found to be more advantageous than scaling at every iteration.

Now, the L-BFGS bundle method can be obtained from Algorithm 5.2 by
replacing Steps 2 and 7 with the following.

Step 2°: (Direction finding.) If m = k compute
dp = —Di§,

by the limited memory BFGS update (using Algorithm 5.3). Otherwise,
skip the updates and calculate the search direction dy = —Dj_1§; using
Algorithm 5.5. Note that dy = &;.

Step 7’: (Aggregation.) Determine multipliers \¥ > 0 for alli € {1,2,3}, 330 \F =
1 that minimize the function (5.8), where Dy = Dy, + oI, if ic = 1. Set

Epi1 = A€, + 56 + k€, and
Brr1 = A5 Bri1 + Ny

Set £k =k + 1 and go to Step 2.

Since we use the limited memory approach, we have to recalculate the matrix
D, = Dy_; also when the update is skipped. However, in that case, we do not
store the new correction pairs but the same correction matrices are used as in the
previous iteration. Moreover, after any null step, the search direction d; has to
be calculated using the aggregate subgradient & i, that is, dy = —D€ p- Thus, we
can not simply utilize Algorithm 5.3 and skip the updates but we have to use a
special procedure to calculate the search direction. We now give an algorithm for
calculation of the matrix Dy and for direction finding using the limited memory
BFGS update. This algorithm is used with the L-BFGS bundle method if the
previous step was a null step.

ALGORITHM 5.5. (BFGS Skipping and Direction Finding).

Data: Suppose that the number of current correction pairs is my_;. Suppose that
we have the current aggregate subgradient & i the m X my_; matrices Sy_1
and U,_q, the my_; X my_; matrices Ry_1, UkalUk_l, and C_1, and the
previous scaling parameter ;_; available.

80

Step 1: (Skipping the updates.) Set Sy = Sp_1, Uy = Up_1, Ry = Ry_1, UFUy =
Ul Uy—1, Cp = Cy_1, O, = g1, and my = my_;.

Step 2: Compute my-vectors S{ €, and ULE,.

Step 3: (Intermediate values.) Solve the vectors p; € R™ and p, € R™ from the
linear equations

Rkpl = S}féka
R£p2 = Cyp, + ﬁkUkTUkpl — ﬁkUkak-

Step 4: (Search direction.) Compute

dy, = 0Upp, — Skps — Uiy

The convergence analysis of the L-BFGS bundle method is very similar to
that of the basic version of the method (see Section 5.2). In fact, all the results in
Lemmas and Theorems 5.2.1 — 5.2.7 are valid also for the L-BFGS bundle method
expect that, for the L-BFGS bundle method, we do not have property (5.23) given
in Lemma 5.2.1. With the basic version this property is used to guarantee that
condition (5.18) is valid in the case of consecutive null steps (see Lemma 5.2.8).
However, we next prove that condition (5.18) is valid with the L-BFGS bundle
method due to skipping of updates and, thus, property (5.23) is not required.

LEMMA 5.5.1. Suppose that the level set {x € R™ | f(x) < f(x1) } is bounded, the
number of serious steps is finite, and the last serious step occurred at the iteration
m — 1. Then there exists a number k* > m, such that

NT ~ NT ~
€k+1Dk+1€k+1 = €k+1Dk€k+1 and (5~32)

for all k > k*.

PROOF. Suppose first that icny = 0 for all & > m, that is, the correction ol (see
Algorithm 5.2, Step 3) is not added to any matrix Dy with & > m. Now, due to
skipping of updates we have Dy, = Dy and, obviously, conditions (5.32) and (5.33)
are valid if we set k* = m.

If equality icny = 0 does not hold for all £ > m, then the correction of, with
0 € (0,1/2), is added to all the matrices Dy with k > k (see Algorithm 5.2, Step 3).
Here k denotes the index k& > m of the iteration when icy = 1 occurred for the
first time. Now, for all k > k we have Dy, = D; = D;_, + ol. Therefore, conditions
(5.32) and (5.33) are valid for all k > k* with

k* = max {k,m},

where k =1 if icy = 0. O

81

Now, if we replace Lemma 5.2.8 by Lemma 5.5.1, we see that the sequence
(wy) is nonincreasing in the consecutive null steps and all the remaining results
(that is, Lemma 5.2.9 and Theorem 5.2.10) of Section 5.2 are valid also for the
L-BFGS bundle method. Therefore, similarly to the basic version, the L-BFGS
bundle method either terminates at a stationary point of the objective function f
or generates an infinite sequence (xy) for which accumulation points are stationary
for f. Moreover, if we choose € > 0, the L-BFGS bundle method terminates in a
finite number of steps.

6 NUMERICAL EXPERIMENTS

In order to get some information of how the different versions of the limited memory
bundle method work in practice we compare them to the proximal bundle method
and to the limited memory BFGS method. A more extensive numerical analysis
concerning the performance of the limited memory bundle method (the basic ver-
sion) and some other existing bundle methods can be found in [27]. In this chapter,
we first introduce the software tested and the testing environment. Then, we give
the results of the numerical experiments and draw some conclusions.

6.1 Software Tested and Testing Environment

The experiments were performed in a SGI Origin 2000/128 supercomputer (MIPS
R12000, 600 Mflop/s/processor). The algorithms were implemented in Fortran77
with double-precision arithmetic. The solvers used in our experiments are presented
in Table 1 with abbreviated names and references.

TABLE 1: Tested pieces of software.

Software Author(s) Method Reference
PBNCGC Mikeld Proximal bundle [61, 63]
L-BFGS Nocedal = Limited memory BFGS [46, 65]
LMBM Haarala Limited memory bundle

LBB Haarala L-BFGS bundle

ALMBM Haarala Adaptive limited memory bundle

Prozimal bundle method. The tested proximal bundle algorithm PBNCGC (ver-
sion 2.0) is from the software package NSOLIB (NonSmooth Optimization LIBrary,
see [59]). The solver utilizes the subgradient aggregation strategy of [33] and the
quadratic direction finding problem (4.6) is solved by the PLQDF1 subroutine, which
is a realization of the dual range space quadratic programming method for minmax

83

approximation with linear constraints [47]. For a detailed description of the solver
see [61, 63].

Limited memory BFGS Method. L-BFGS is a limited memory quasi-Newton
algorithm for smooth large-scale unconstrained optimization. The solver has been
developed at the Optimization Technology Center as a joint venture of the Argonne
National Laboratory and the Northwestern University. The basic ideas of the
smooth limited memory BFGS method are given in Section 3.2 and for a detailed
description of the solver we refer to [46, 65].

Limited Memory Bundle Methods. The limited memory bundle algorithm
LMBM, the L-BFGS bundle algorithm LBB, and the adaptive limited memory bundle
algorithm ALMBM are our new solvers for nonsmooth large-scale unconstrained opti-
mization. The methods are described in detail in Chapter 5. The implementations
of the solvers are our own expect the selection of the initial step size, where we
have used the original pieces by Luksan and Vlcek [51].

In this chapter we first compare the limited memory bundle method LMBM to
the proximal bundle method PBNCGC and to the limited memory BFGS method
L-BFGS. We use the solver PBNCGC as a benchmark since the proximal bundle
method is the most frequently used bundle method in nonsmooth optimization
(see, e.g., [63]). On the other hand, PBNCGC has not been developed for large-
scale optimization and, therefore, we compare the new method also to the smooth
large-scale optimization solver L-BFGS. Thus, the solvers were first tested with 22
smooth minimization problems given in [55]. However, we removed three prob-
lems (problems 1, 2, and 10 in [55]) where the solvers converged to different local
minima.

Next the solvers LMBM and PBNCGC were tested with 10 academic nonsmooth
minimization problems described in [27] (for details of the problems, see Ap-
pendix A). We tried to solve these nonsmooth problems also with the smooth
solver L-BFGS but it failed in almost all the cases.

Then, we compared the different scaling strategies of the basic version LMBM
(see Section 5.4) and the different versions LMBM, ALMBM, and LBB (see Sections 5.1,
5.3, and 5.5) by using 20 academic nonsmooth minimization problems (for details
of the problems, see Appendix A).

Finally, we tested the different versions of the limited memory bundle method
and the proximal bundle solver PBNCGC with two practical nonsmooth image
restoration problems [30, 31].

In the test results to be reported, we say that the optimization terminated
successfully if

e the problem was solved with the desired accuracy. That is, w; < e, where
wy, is defined by (4.8) for PBNCGC, by (5.11) for LMBM and its modifications
(note that also gy < ¢, see (5.12)), and wy, = ||V f(xy)||/ max{1, ||xx|} for
L-BFGS.

In addition, for LMBM, ALMBM, and LBB we say that the optimization terminated
successfully if

84

o |fir1— fr] <1.0-107®% in 10 subsequent iterations and the result obtained
was less than two significant digits greater than the desired accuracy of
the solution.

In proportion, we accepted the result for PBNCGC if

o |wyy1—wy| < 1.0-107 in 10 subsequent iterations and the result obtained
was less than two significant digits greater than the desired accuracy of
the solution.

For L-BFGS we accepted all the results, since in all (smooth) cases they were ob-
tained with the desired accuracy (even if the solver claimed that it failed).

In addition to the stopping criteria already mentioned, we terminated the
experiments if the CPU time elapsed exceeded half an hour. Also in these cases,
the results were accepted if they were less than two significant digits greater than
the desired accuracy of the solution.

Otherwise, we say that the optimization failed.

The test results are analyzed using the performance profiles introduced in [14].
As performance measures, we use computation times and numbers of function
evaluations. In the following graphs ps(7) denotes the logarithmic performance
profile

no. of problems where log,(r,) <7

po(7) = total no. of problems

with 7 > 0, where r, s is the performance ratio between the time (or the number
of function evaluations) to solve problem p by solver s over the lowest time (or the
number of function evaluations) required by any of the solvers. The ratio r, s is set
to infinity (or some sufficiently large number) if solver s fails to solve problem p.
There are two important facts to be kept in mind to have a good interpreta-
tion of the performance profiles. The value of ps(7) at 7 = 0 gives the percentage
of test problems for which the corresponding solver s is the best and the value of
ps(T) at the rightmost abscissa is the percentage of test problems that the corre-
sponding solver s can solve (this does not depend on the measured performance).
Finally, the relative efficiency and reliability of each solver can be directly seen
from the performance profiles: the higher is the particular curve the better is the
corresponding solver. For more information of performance profiles, see [14].

6.2 Numerical Results

In this section, we analyze the results obtained in the numerical experiments. First,
in Subsection 6.2.1, we compare the limited memory bundle solver LMBM to the
proximal bundle solver PBNCGC and to the limited memory BFGS solver L-BFGS
using some smooth test problems. After that, in Subsection 6.2.2, we first compare
LMBM to PBNCGC and then, we bring into comparison the different scaling strategies
and the different versions of the basic method by using some academic nonsmooth
minimization problems. Finally, in Subsection 6.2.3, we analyze the performance
of the new solvers when applied to nonsmooth practical applications.

85

6.2.1 Smooth Test Problems

The solvers PBNCGC, L-BFGS, and the basic version of the limited memory bundle
solver LMBM were first tested with 19 smooth problems with 1000 variables and, in
case of the limited memory solvers L-BFGS and LMBM, also with 10 000 variables
(for details of the problems, see [55]).

We tested the bundle solvers PBNCGC and LMBM with a relatively small size of
the bundle, that is, m¢ = 10. For the limited memory solvers L-BFGS and LMBM,
the maximum number of stored correction pairs (m.) was set to 7 and for LMBM the
maximum number of additional interpolations used at each iteration was set to 200
(default value). As a stopping parameter, we used ¢ = 107° in all the cases. For
the bundle solvers PBNCGC and LMBM the value of the distance measure parameter
v (see (4.3) and (5.6)), which depends on the convexity of the objective function,
was chosen experimentally individual to the each problem. That is, we minimized
all the problems with four different values of the distance measure parameter and
selected the best results to be reported (we first checked the accuracy of the result
and then the computation time elapsed). The tested values of the distance measure
parameter were v = 0.0, 0.25, 0.5, and 0.9. Correspondingly, for L-BFGS we chose
the line search parameter ¢, (see (3.2)). The tested values for e;, were 1074, 1073,
1072, and 107!, Otherwise, the default parameters of the solvers were used.

The results of the smooth experiments are summarized in Figure 2 where
we compare the computation times of the solvers. In Figure 2(a) we give the
performance profile for each of the solvers with 1000 variables and in Figure 2(b)
for the limited memory solvers LMBM and L-BFGS with 10 000 variables.

1 T : : : : 1 : : : : : :
oAsl 1 0.8 g
0.6} 1 0.6

= =

v(l) v(/)

Q (o}

04 0.4
0.2f 1 0.2f
— LMBM
L-BFGS — LMBM
— PBNCGC L-BFGS
0 n ; o
0 1 2 3 4 5 6 0 0.5 1 15 2 25 3
T T
(a) n = 1000 (b) n. =10 000

FI1GURE 2: Results for smooth problems.

To sum up, the new limited memory bundle solver LMBM was usually the most
efficient method tested. To be more precise, it was the most efficient on 63%
of the problems with n = 1000 and on 53% of the problems with n = 10 000

86

(see Figure 2). Moreover, the new solver LMBM was almost twice as fast as the
limited memory BFGS solver L-BFGS, which has been developed for smooth large-
scale minimization. Nevertheless, the limited memory BFGS solver L-BFGS was
very efficient with these large-scale smooth problems as well. However, it usually
needed more iterations and function evaluations and, thus, also computation time
than LMBM. The proximal bundle solver PBNCGC was computationally inefficient with
these large-scale problems (see Figure 2(a)).

6.2.2 Nonsmooth Test Problems

The solvers LMBM and PBNCGC were tested with 10 nonsmooth academic minimiza-
tion problems described in [27] (for details of the problems, see the first 10 problems
in Appendix A). Half of these problems were convex and the other half were non-
convex. The numbers of variables used were 50, 200, and 1000, and the solvers were
tested with relatively small sizes of the bundles, that is, m¢ = 10 and m¢ = 100.
In what follows, we denote these different modifications by LMBM(10), LMBM(100),
PBNCGC(10), and PBNCGC(100). Otherwise, the parameter values were chosen sim-
ilarly to the smooth problems.

The results of the nonsmooth experiments are summarized in Figures 3 — 5. In
these figures, we give the performance profiles of the solvers with different numbers
of variables. In Figures (a) we compare the computation times of the solvers and
in Figures (b) the numbers of function evaluations required.

1 T I | T T | T T T T 1
0.8 | 0.8

0.2 — LMBM(10) 1 02 — LMBM(10)
— LMBM(100) —— LMBM(100)
— PBNCGC(10) — PBNCGC(10)
— PBNCGC(100) — PBNCGC(100)
00 2 4 6 8 10 12 14 16 OO 2 4 6 8 10 12
T T
(a) CPU time (b) Function evaluations

FI1GURE 3: Results for nonsmooth problems with 50 variables.

In Figures (a) we see that LMBM with the small size of the bundle was usually
the most efficient solver with all the tested numbers of variables, although, the
differences in the average computation times were not substantial in the small-
scale cases (with n = 50).

With larger problems LMBM(10) was the most efficient solver on 70% of the
problems with n = 200, and on 50% of the problems with n = 1000 (see Figures 4(a)
and 5(a)). Notice that with 1000 variables all the tested solvers failed to solve 10%
of the problems (see Figure 5(a)).

87

0.8

b 0.6
e
Q-U)
1 0.4
0.2 — LMBM(10) E 0.2 — LMBM(10)
—— LMBM(100) —— LMBM(100)
—— PBNCGC(10) —— PBNCGC(10)
—— PBNCGC(100) —— PBNCGC(100)
% 6 8 10 12 14 16 % 2 2 6 8 0 12
T T
(a) CPU time (b) Function evaluations
FIGURE 4: Results for nonsmooth problems with 200 variables.
1 T T T T T T 1 T T T T T T
0.8F b 0.8r J-l
0.6 b 0.6
e e
O.m Q.m
0.4 — 0.4
0.2 —— LMBM(10) g 0.2 —— LMBM(10)
—— LMBM(100) —— LMBM(100)
— PBNCGC(10) — PBNCGC(10)
— PBNCGC(100) —— PBNCGC(100)
O0 é é 1‘0 1‘2 1‘4 1‘6 OO é 4‘1 é é lb £2
T T

(a) CPU time

(b) Function evaluations

FIGURE 5: Results for nonsmooth problems with 1000 variables.

88

Besides being the most efficient solver tested on the generality of the problems,
LMBM(10) also solved the rest of the problems really fast while, with the proxi-
mal bundle solver PBNCGC (with both sizes of bundles), there was a great variation
in the computation times of different problems, especially, in problems with 1000
variables. Also LMBM(100) was very efficient with these large-scale problems, al-
though, it usually needed slightly more computation time than LMBM(10) and, thus,
with 1000 variables it was never the most efficient solver tested (see Figure 5(a)).
Note, however, that LMBM(100) was usually faster than the proximal bundle solver
PBNCGC but, since this happened in the same problems as with the solver LMBM(10)
and the solver LMBM(10) was faster than LMBM(100), this can not be seen directly
in Figure 5(a).

In most cases, the solver PBNCGC(100) used the smallest numbers of iterations
and function evaluations (see Figures (b)). However, as with the computation
times, there was a great variation in the number of function evaluations required
for different problems and, indeed, on the average, the solver LMBM(100) required
the least function evaluations per problem (with n = 1000, the average number of
function evaluations used with LMBM(100) was 3243 while, with PBNCGC(100), it
was 5288). With the solver PBNCGC the required number of function evaluations
was significantly smaller when the size of the bundle was larger. This was usually
true also for the solver LMBM but with LMBM the difference was not so substantial.
With LMBM the decrease in the number of function evaluations is due to the fact
that the selection of the initial step size is more accurate when a larger bundle
is used. On the other hand, each individual iteration was more costly when the
size of the bundle was increased. In practice, this means that for problems with
expensive objective function and subgradient evaluations, it is better to use larger
bundles and, thus, fewer iterations and function evaluations.

We conclude from these experiments that the limited memory bundle method
was very efficient for large-scale nonsmooth optimization. For problems with 1000
variables, LMBM was on the average about 40 times faster than the proximal bundle
solver PBNCGC. Moreover, LMBM found the (local) minimum in quite a reliable way
for both convex and nonconvex optimization problems (see Figures 3 — 5).

Different scaling of updates. Next, we compared the different scaling strate-
gies and parameters of the limited memory variable metric updates. In order to do
this, we combined the basic limited memory bundle solver LMBM with the different
scaling strategies (see Section 5.4). The parameter values of the solver LMBM were
chosen similarly to those used with the smooth problems. That is, the size of the
bundle (mg) was set to 10, the maximum number of stored correction pairs (m.)
was set to 7, the distance measure parameter v was chosen experimentally between
four values, the stopping parameter € was equal to 107, and, otherwise, the default
parameters of the solver were used. The experiment to be described was done by
using a set of 20 nonsmooth academic minimization problems with 1000 variables
(for details of the problems, see Appendix A).

We have used the scaling strategies described in Section 5.4 and the two
different scaling parameters ¥ defined in (5.15) and (5.31). In what follows, we

89

use the abbreviations (NS) for no scaling, (PS) for preliminary scaling, (AS) for
scaling at every iteration, and (IS) for interval scaling. In addition, we denote
by “1” the scaling parameter defined in (5.15) and by “2” the scaling parameter
defined in (5.31). Note that with this notation, the basic limited memory bundle
solver is to be denoted by LMBM(AS1).

The results of the experiments are summarized in Figure 6. In this figure, we
give the performance profiles of the solver LMBM with the different scaling strategies.
In Figure 6(a) we compare the computation times and in Figure 6(b) the numbers
of function evaluations required.

— LMBM(NS)
LMBM(PS1)
LMBM(PS2)

— LMBM(AS1)

— LMBM(AS2) — LMBM(AS2)

— LMBM(IS1) — LMBM(IS1)
LMBM(IS2) LMBM(1S2)

— LMBM(NS)
LMBM(PS1)
LMBM(PS2)

— LMBM(AS1)

(a) CPU time (b) Function evaluations

FI1GURE 6: Results with different scaling of updates.

Scaling at every iteration with the scaling parameter (5.15) (that is, LMBM(AS1))
was clearly the most efficient scaling strategy tested (on 60% of problems, see Fig-
ure 6(a)). Unfortunately, it was also the most unreliably, and the solver failed to
solve three of the problems when this scaling strategy was used. Note, however,
that all these failures can be prevented by a suitable choice of the parameters.

Scaling at every iteration with the scaling parameter (5.31) (that is,
LMBM(AS2)) was the second best choice of the different scaling strategies when com-
paring the computation times (see Figure 6(a)). Moreover, the solver LMBM(AS2)
failed to solve only one problem in the test set. However, the average computation
time elapsed with the scaling strategy (AS2) was about five times longer than that
with the scaling strategy (AS1).

All the other scaling strategies tested behaved quite similarly when compared
to each other. With the (NS) strategy the solver failed to solve one problem but
in all the other cases, the solver succeeded to solve all the problems in the test set.
Unfortunately, the average computation times elapsed with these scaling strategies
increased approximately sixfold to that used with (AS1). Note, however, that if
we ignore the problem (12) (see Appendix A), which was the most time-consuming
of the problems tested with all the scaling strategies but (AS1), the computation
times elapsed with the different scaling strategies (NS), (PS1), (PS2), (AS2), (IS1),

90

and (IS2) are all only about twice as long as the computation time elapsed with
the scaling strategy (AS1).

Naturally, the differences between the computation times elapsed with the
different scaling strategies correspond to the differences between the numbers of
function evaluations required (see Figure 6).

We conclude from these experiments that the different scaling of the limited
memory variable metric updates may, in some cases, lead to more accurate results
but it does not, in general, improve the behavior of the method. Moreover, the
same kind of improvement on the accuracy properties may be obtained with a
careful choice of the parameters. On the other hand, the internal parameters used
in these experiments have been originally chosen for the basic version of the solver
(that is, LMBM(AS1)). Thus, the efficiency of the solver with the different scaling
strategies might increase if we chose these parameters individually for each scaling
strategies.

Different versions. Finally, we compared the different versions of the limited
memory bundle method. As before, the experiment was done by using a set of 20
nonsmooth minimization problems with 1000 variables (for details of the problems,
see Appendix A).

Let us first recall that LMBM is the basic limited memory bundle method, LBB is
the limited memory BFGS bundle method and ALMBM is the adaptive version of the
limited memory bundle method. With the adaptive version ALMBM, we have used
the initial maximum number of stored correction pairs (m.) equal to 7 (the same
as that with the basic version LMBM) and the upper limit for the maximum number
of stored correction pairs (m,) equal to 50. Otherwise, the parameter values for
the solvers were chosen similarly to those used with different scaling of updates.

The results of the experiments are summarized in Figure 7, where we, as
before, first compare the computation times of the solvers (in Figure 7(a)) and
then the numbers of function evaluations required (in Figure 7(b)).

0.8r q 0.8F ll
0.6 q 0.6

04 0.4
0.2 1 0.2
— LMBM — LMBM
LBB LBB
ALMBM ALMBM
0 n 0 L L L L T
0 1 2 3 4 5 0 1 2 3 4 5 6
T T
(a) CPU time (b) Function evaluations

FIGURE 7: Results with different versions.

91

Again the basic version LMBM was usually the most efficient one (that is, on 55% of
the problems) but also the most unreliable of the solvers tested (see Figure 7(a)).
The adaptive version ALMBM succeed to solve two of the three problems where the
basic version failed but, then, it lost slightly on the efficiency. The L-BFGS bundle
solver LBB succeeded to solve all the problems. However, with LBB, there was quite
a big variation in the computation times of different problems and, on the average,
LBB was the most time-consuming of the different versions.

Similarly to the different scaling strategies tested, the differences between the
computation times of the versions LMBM, LBB, and ALMBM correspond to the dif-
ferences between the required number of function evaluations (see Figure 7). For
example, the L-BFGS bundle solver LBB usually needed about twice as much func-
tion evaluations than the basic version LMBM and, thus, it also needed approximately
twice the time to solve the problems. With the solver LBB this increased number
of function evaluations is probably caused by the update skipping after every null
step. This means that the advantage of the most recent correction pairs is not taken
into account in the best possible way and, thus, the search direction obtained may
not be as good as that with the basic version.

Based on this part of the experiments we can conclude that the different
versions of the limited memory variable metric method are quite comparable to
each other. The usage of the adaptive version ALMBM or the L-BFGS bundle version
LBB may increase the computation time needed when compared to the basic version
LMBM but, on the other hand, it may also lead to more accurate results.

6.2.3 Image Restoration Problems

Finally, we tested the different versions of the limited memory bundle method
and the proximal bundle solver PBNCGC with two convex image restoration prob-
lems [30, 31], which are typical nonsmooth large-scale optimization problems aris-
ing in optimal control applications. In what follows, we denote by (1) the problem
described in [31] and by (2) the problem described in [30]. Both of the problems
are so-called noise reduction problems. That is, it is assumed that the observed
images are degraded by a random noise. The noise reduction problems are formu-
lated as minimization problems consisting of a least squares fit and a nonsmooth
bounded variational type regularization term (for more details of the formulations,

see [30, 31]).
The solvers were tested with relatively small sizes of the bundles, that is,
me = 10 for the different versions of the limited memory bundle method and

me = 100 for the proximal bundle solver PBNCGC (since the experiments in the
previous subsection have shown that a larger bundle works better with PBNCGC).
The stopping parameter ¢ = 10™* was used with all the solvers and the value of
the distance measure parameter vy was set to zero (since the objective functions are
convex). Otherwise, the default parameters of the solvers were used.

In Figure 8, we give the computation times elapsed for the problems with
different number of variables. Furthermore, we give some more specified results for
the problems with 100, 300, and 1000 variables in Tables 2 and 3, where Ni and Nf
denote the numbers of iterations and function evaluations used, respectively, and

92

f denotes the value of the objective function at termination. In addition to the
results obtained in our experiment, we give (in Table 2) the reported final values of
the objective function for problem (1) obtained with the special active set method
(ACS) [31]. The active set method has not been applied for problem (2) in [30] and,
thus, in Table 3, we only give the results obtained in our experiment.

100 100 ‘ ‘ ‘
— PBNCGC — PBNCGC
— LMBM — LMBM
LBB LBB
ALMBM ALMBM
80 1 8ol
o o
[0} Q
&2 &2
e} k]
D 60l D 60l
%] 1%}
o o
< <
[[]
[} [0}
£ 40t £ 40
> >
o a
O (@]
20 20
e . 7/

0 200 400 600 800 1000 0 200 400 600 800 1000
Number of variables Number of variables

(a) Problem (1) (b) Problem (2)

F1GURE 8: CPU times elapsed for the image restoration problems.

TABLE 2: Results for the image restoration problem (1).

Solver/n 100 300 1000

Ni/Nf f Ni/Nf f Ni/Nf f
ACS - 0.7981 - 2.7586 - 9.8950
PBNCGC 186/187 0.7976 1342/1343 2.7581 15421/15422 9.7617
LMBM 442/669 0.7979 1707/1919 2.7666 6343/6373 9.8152
LBB 863/3714 0.7981 1819/6492 2.7682 6848/18721 9.9196

ALMBM 736/4953 0.7976 2601/5762 2.7602 11812/13326 9.7694

TABLE 3: Results for the image restoration problem (2).

Solver/n 100 300 1000

Ni/Nf f Ni/Nf f Ni/Nf f
PBNCGC 249/250 0.5973 1430/1431 2.2517 16172/16173 7.9571
LMBM 764/1062 0.5974 1476/1597 2.2603 10028/10073 7.9958
LBB 639/2833 0.5976 1713/6205 2.2635 4692/12305 8.0823

ALMBM 772/4721 0.5972 4814/10531 2.2536 10981/12388 7.9771

93

Based on the numerical results, we can conclude the superiority of the limited
memory bundle solver LMBM and its different versions LBB and ALMBM when com-
paring the computation times (see Figure 8), because in all the cases, they used
significantly less CPU time than the proximal bundle solver PBNCGC. With large
number of variables, they also usually needed less iterations and function evalua-
tions than PBNCGC (see Tables 2 and 3). However, the accuracies of the new solvers
were somewhat disappointing: The minima of the objective function found with
these solvers were usually a little bit greater than those obtained with the proximal
bundle solver PBNCGC (especially, in case of LBB, see Tables 2 and 3). Neverthe-
less, in most cases, the results obtained for problem (1) with LMBM and ALMBM were
smaller than those obtained with the active-set method ACS used in [31] (see Ta-
ble 2), and both visually and with respect to the reconstruction error [30, 31] all
the results of LMBM, ALMBM, and LBB were comparable to the results of the proximal
bundle method PBNCGC (for both the problems). In fact, in all large-scale cases the
reconstruction errors obtained with the different versions of the limited memory
bundle method were smaller than those obtained with the proximal bundle method
PBNCGC.

Note that the behavior of the methods with this image restoration problem
differs from the academic problems. Now, the L-BFGS bundle solver LBB was
the most unreliable of the different versions while, with the academic problems it
succeeded to solve all the problems with the desired accuracy. Furthermore, with
1000 variables, the adaptive version ALMBM used about four times more computation
time than the basic version LMBM while, before, this difference was only 1.6. On
the other hand, with 1000 variables even this adaptive version ALMBM, which was
the most time-consuming but also the most reliable of the different versions, was
about 50 times faster than the proximal bundle solver PBNCGC (see Figure 8).

7 CONCLUSIONS

In this thesis, we have considered the optimization of nonsmooth but locally Lip-
schitz continuous objective functions with a special emphasis on large-scale prob-
lems. The existing bundle methods are reliable and efficient methods for small- and
medium-scale problems. However, in large-scale cases their computation demand
expands. On the other hand, the subgradient methods suffer from some serious
disadvantages and, thus, they are not necessarily the best choices for large-scale
optimization. Furthermore, we have not been able to find any general solver for
nonsmooth large-scale problems in the literature. Thus, there is an evident need
for a reliable and efficient solver for nonsmooth large-scale optimization problems.

In this thesis, we have introduced a new limited memory bundle method for
nonsmooth large-scale optimization. We have tested the performance of the new
method with different minimization problems. The numerical experiments confirm
that the new method is efficient and reliable for both smooth and nonsmooth
optimization problems.

We have proved the global convergence of the method for locally Lipschitz
continuous objective functions, which are not necessarily differentiable or convex.
In addition, we have introduced some different modifications to the basic algorithm
and proved their global convergence when necessary.

Our numerical experiments showed that the limited memory bundle method,
as well as its different modifications, can successfully solve both convex and noncon-
vex minimization problems (locally). With large numbers of variables they usually
used significantly less CPU time than the other solvers tested: With the smooth
problems, the new limited memory bundle solver LMBM was almost twice as fast as
the limited memory BFGS solver L-BFGS, which has been developed for smooth
large-scale minimization. In addition, with 1000 variables, LMBM was on the aver-
age about 40 times faster than the proximal bundle solver PBNCGC. For nonsmooth
problems these differences were even more perceptible. For example, for the image
restoration problems, the basic limited memory bundle solver LMBM was about 80
times faster than PBNCGC already with 300 variables.

With smooth problems and with academic nonsmooth problems, the accuracy

95

of the new solvers was comparable to that of the other solvers tested. However,
with the nonsmooth image restoration problems, the minima found with the limited
memory bundle solvers could be slightly greater than those of the proximal bundle
solver and with a large number of variables some inaccurate results occurred. Nev-
ertheless, in most cases, the results obtained with the basic version LMBM and with
the adaptive version ALMBM were smaller than those obtained with the active-set
method, which has been developed for this kind of problems. Moreover, visually all
the results of the different versions of the limited memory bundle method were as
good as the results of the proximal bundle method PBNCGC and, when comparing
the computation times, the new limited memory bundle solvers were considerably
more efficient.

In summary, we have introduced a new limited memory bundle method for
large-scale nonsmooth unconstrained optimization. This method fills the gap,
which exists in the field of nonsmooth optimization with large numbers of vari-
ables. Although the new method has already proven useful, there is some further
work required before the idea is complete. Possible areas of future development
include the following: more practical nonsmooth numerical experiments, imple-
mentation with better accuracy properties and more extensive search for internal
parameters, constraint handling, and parallelization.

A LARGE-SCALE NONSMOOTH TEST PROBLEMS

Many practical optimization applications involve nonsmooth functions of many
variables. However, there exist only few large-scale academic test problems for the
nonsmooth case and there is no established practice for testing solvers for large-
scale nonsmooth optimization. For this reason, we now introduce the nonsmooth
test problems used in our numerical experiments.

We first present 10 nonsmooth minimization problems introduced in [27]. The
problems have been constructed either by chaining and extending small existing
nonsmooth problems or by “nonsmoothing” large smooth problems (that is, for
example, by replacing the term x? by |z;]). All these problems can be formulated
with any number of variables. We first give the formulation of the objective function
f and the starting point &, = (:cgl), e ,xg))T for each problem. Then, we collect
some details of the problems as well as the references to the original problems in
Table 4.

After that, we present 10 nonsmooth minimization problems from the collec-
tion TEST29 of the software package UFO (Universal Functional Optimization) [50].
Also these problems can be formulated with any number of variables. We do not
give any details of these problems but only the formulation of the objective function
f, the starting point &; = (xgl), . ,x%l))T, and the original number of the problem
in the collection TEST29.

In what follows, we denote by div(i, j) the integer division for positive integers
i and j, that is, the maximum integer not greater than i/j, and by mod(i, j) the
remainder after integer division, that is, mod(s, j) = j(i/j — div(i, j)).

1. Generalization of MAXQ

f(:z:) = MaXj<i<n .I'?

xl(-l):i, fori=1,...,n/2 and

dV=—i fori=n/2+1,... ,n

(2

2. Generalization of MXHILB

f(x) = maxi<i<n Z}Ll i+§£1

xgl) =1.0, foralli=1,...,n.
3. Chained LQ

flx) = 22:11 max { —T; — Tiy1, —Ti — Tip1 + (27 + x?ﬂ -1) }

2V =05, foralli=1,...,n.

. Chained CB3 1

flx) = 22211 max {xf + a2, (2 —)% + (2 — xi4q)?, 2070 }

2 =20, foralli=1,...,n

1

. Chained CB3 11

fl) =max { 300 () +22,) 205 (2= 2:)? + (2 — 2i41)?)
ZZL 11 2€—mz+xz+1 }

7 =20, foralli=1,...,n

(2

. Number of Active Faces

f(m) = MaXj<i<n { g (_ Z?:l xz) 79(1‘1) }7
where g(y) = In(|y| + 1).
xil) =10, foralli=1,...,n

. Nonsmooth generalization of Brown function 2
n—1 x2 1 x24+1
F) = S0 (el + i),

(1) = 1.0, when mod(%,2) =0 and
Z(-l) = —1.0, when mod(,2) =1, (i =1,...,n).

. Chained Mifflin 2

fla) =300 (o +2 (22 + 22, — 1) + 1.75 |22 + 22, — 1]).

xil) =—1.0, foralli=1,...,n

. Chained Crescent 1

f@) =max {370 (27 + (21 — 1) +x@+1 -1),
Z?:ll (=7 = (i1 = 1" + @i + 1) }.

(1) = 2.0, when mod(i,2) =0 and

gD = —1.5, when mod(i,2) =1, (i =1,...,n).

98

10. Chained Crescent 11

flx) = Z?:_f max {xf + (i1 — 1)2 +xip — 1,
—]j? — ($i+1 — 1)2 + Tit1 -+ 1}

M =20, when mod(7,2) = 0 and

i =

g;gl) = —1.5, when mod(#,2) =1, (i =1,...,n).

The details of the problems 1 — 10 are given in Table 4, where p denotes the
problem number, f(x*) is the minimum value of the objective function, and the
symbols “—" (nonconvex) and “+” (convex) denote the convexity of the problems.
In addition, the references to the original problems in each case are given in Table 4.

TABLE 4: Test problems.

P f(x") Convex Original problem and reference
1 0.0 + MAXQ, n = 20, see [72]

2 0.0 + MXHILB, n = 50, see [34]

3 —(n—1)2Y2 + LQ, n = 2, see [79]

4 2(n—1) + CB3, n = 2, see [10]

5 2(n—1) + CB3, n =2, see [10]

6 0.0 — See [24]

7 0.0 - Generalization of Brown function, see [12]
8 varies* - Mifflin 2, n = 2, see [25]

9 0.0 — Crescent, n = 2, see [33]

10 0.0 - Crescent, n = 2, see [33]

* o f(x*) = —34.795 for n = 50, f(x«*) ~ —140.86 for n = 200, and f(«*) ~ —706.55 for n = 1000.

Next, we present 10 nonsmooth minimization problems from the collection
TEST29 of the software package UFQ (Universal Functional Optimization) [50].

11. Problem 2 in TEST29
f(il?) = maxlgign |fL’Z|

xgl) =i/n, fori=1,...,n/2 and

M = —i/n, fori=n/2+1,...,n.

(2

12.

13.

14.

15.

99

Problem 5 in TEST29

f(x) = Z?:l

PR
j=1 i1

:L‘Z(-l) =1.0, foralli=1,...,n.
Problem 6 in TEST29
f(x) = maxj<i<, [(3 — 22;)x; + 1 — — Tiy1),
where xog =z, = 0.
xil) =—1.0, foralli=1,...,n
Problem 11 in TEST29
fl@) =330 | ful)],

where

frl®) =z + i1 (1 + zi41) T — 14) — 29, when mod(k, 2) = 0,
fr(®) =2; + 2341((5 — xi41)Ti41 — 2) — 13, when mod(k,2) =1,

and i = (k+1)/2.

xil):0.5, fori=1,...,n—1, and

e = 2.0,
Problem 13 in TEST29

2(n—2) ; j/hl
f(x) = k;(:nl Z+ZhllHJ 1|§;Z\|34/rj|’

where ¢ = 2div(k +3,4) — 2, [= mod(k — 1,4) + 1, and
vy =—14.4, yo = —6.8, y3 = —4.2, and y, = —3.2.

ZL‘E) =08, when mod(i,4) =0,

:cgl) = —0.8, when mod(:,4) =1,

xgl) = 1.2, when mod(7,4) = 2, and

xil) = —1.2, when mod(#,4) =3, (i=1,...,n)

100

16. Problem 17 in TEST29
f(x) = maxj<ij<n |5 — (j + 1)(1 — cosx;) — sinz; — 222;3“ oS Ty,
where j = div(i — 1,5).
xgl) =1/n, foralli=1,... n.

17. Problem 19 in TEST29
f(®) = maxi<icn((3 — 224)w; — 231 — 23341 + 1)?,
where xog = z,,1 = 0.
a:l(-l) =—1.0, foralli=1,...,n.

18. Problem 20 in TEST29
f(x) = maxi<i<, [(0.52; — 3)z; — 1+ 21 + 22444],
where xog = z,,1 = 0.
xil) =—1.0, foralli=1,...,n.

19. Problem 22 in TEST29

f(x) = maxi<i<n [22; + m&l + n+r1 + 1% — iy — w41,

where xog = z,,1 = 0.

2V = L (5 - 1), foralli=1,...,n

20. Problem 24 in TEST29

f(x) = maxi<;<y, [22; + ﬁ sinh(10x;) — x;—1 — @41,

where o =0 and z,,1 = 1.

xil) =10, foralli=1,...,n.

YHTEENVETO (FINNISH SUMMARY)

Tutkimuksen tavoitteena on kehittaa tehokkaita ja luotettavia numeerisia mene-
telmid suurten epésileiden (ei vélttamatta differentioituvien) optimointitehtévien
ratkaisemiseksi. Tallaisia optimointitehtavia esiintyy monissa kaytannon sovelluk-
sissa. Esimerkkeina mainittakoon optimaalisen muodon ongelmat, taloustieteen
veromallit, kemian prosessiteollisuus, teriksen jatkuvavalu seka kuvankasittely.
Epasileiden tehtavien ratkaiseminen perinteisilla gradienttipohjaisilla menetelmilla
(ns. sileilld menetelmilld) ei yleensd onnistu, vaan niiden ratkaisemiseksi tarvi-
taan epasileita optimointimenetelmia. Nykyiset epasilean optimoinnin menetelmat
eiviat kuitenkaan ole tehokkaita, jos muuttujien méaéarda on suuri (yli 500), kuten
kaytannon sovelluksissa usein on. Nain ollen tarve luotettaville ja tehokkaille su-
urten epasileiden optimointitehtavien ratkaisijoille on ilmeinen.

Epasilean optimoinnin menetelméat jaetaan perusajatustensa mukaan kahteen
luokkaan: aligradienttimenetelmiin (subgradient methods) ja kimppumenetelmiin
(bundle methods). Téassa tyossd rajoitutaan tarkastelemaan kimppumenetelmia,
koska naita pidetaan taman hetken tehokkaimpina ja luotettavimpina epasilean
optimoinnin menetelmina.

Tutkimuksessa kehitetdén uusi ns. rajoitetun muistin kimppumenetelma (lim-
ited memory bundle method) suurten epésileiden optimointitehtavien ratkaisemi-
seksi. Uusi menetelma yhdistaa hyvat ominaisuudet muuttuvan metriikan kimppu-
menetelmasta ja rajoitetun muistin muuttuvan metriikan menetelmasta, joista en-
siksi mainittu on kehitetty pienten epasileiden tehtavien ratkaisemiseen ja viimeksi
mainittu on kehitetty suurten sileiden tehtavien ratkaisemiseen. Uusi menetelma
toimii erittain tehokkaasti, kun muuttujien maara on suuri ja monipuoliset numee-
riset testit kertovat menetelman kayttokelpoisuudesta ja hyodyllisyydesta. Kysees-
sd on uraauurtava tyo, silla kirjallisuudesta ei toistaiseksi 16ydy tehokasta mene-
telmaa, joka soveltuisi suurten epasileiden optimointitehtivien ratkaisemiseen.

Rajoitetun muistin kimppumenetelman globaali konvergenssi todistetaan lo-
kaalisti Lipschitz-jatkuville objektifunktioille. Objektifunktion ei siis tarvitse olla
differentioituva eiké konveksi. Lisdksi tyossi esitetdan joitakin muunnelmia uud-
esta rajoitetun muistin kimppumenetelméasta. Naiden muunnelmien tarkoituksena
on parantaa perusmenetelman tarkkuutta ilman, ettd menetelman tehokkuus mer-
kittavasti heikkenee. Kehitettyjen menetelmien tehokkuutta testataan ja havain-
nollistetaan numeeristen esimerkkien avulla.

Avainsanat: Epasiled optimointi, suuret tehtavit, kimppumenetelmat, muut-
tuvan metriikan menetelmat, rajoitetun muistin muuttuvan metriikan menetelmat.

102

REFERENCES

1]

2]

[10]

[11]

[12]

AUSLENDER, A. Numerical methods for nondifferentiable convex optimiza-
tion. Mathematical Programming Study 30 (1987), 102-126.

BECk, A., AND TEBOULLE, M. Mirror descent and nonlinear projected

subgradient methods for convex optimization. Operetions Research Letters
31, 3 (2003), 167-175.

BonNANS, J. F., GILBERT, J. C., LEMARECHAL, C., AND SAGASTIZABAL,
C. A family of variable metric proximal methods. Mathematical Programming

68 (1995), 15-47.

BRANNLUND, U., KiwikL, K. C., AND LINDBERG, P. O. A descent proxi-

mal level bundle method for convex nondifferentiable optimization. Operations
Research Letters 17 (1995).

BroYDEN, C. G. The convergence of a class of double-rank minimization
algorithms, Part I — General considerations, Part II — The new algorithm.
Journal of the Institute of Mathematics and Its Applications 6 (1970), 76-90,
222-231.

BuckLEy, A. G., AND LENIR, A. QN-like variable storage conjugate gra-
dients. Mathematical Programming 27 (1983), 155-175.

ByrD, R. H., Lu, P., NOCEDAL, J., AND ZHU, C. A limited memory
algorithm for bound constrained optimization. SIAM Journal on Scientific
Computing 16, 5 (1995), 1190-1208.

ByrD, R. H., NOCEDAL, J., AND SCHNABEL, R. B. Representations of
quasi-Newton matrices and their use in limited memory methods. Mathemat-

ical Programming 63 (1994), 129-156.

ByYrD, R. H., NOCEDAL, J., AND YUAN, Y. Global convergence of a class
of quasi-Newton methods on convex problems. SIAM Journal on Numerical

Analysis 24, 3 (1987), 1171-1189.

CHARALAMBOUS, C., AND CONN, A. R. An efficient method to solve the
minimax problem directly. SIAM Journal on Numerical Analysis 15 (1978),
162-187.

CLARKE, F. H. Optimization and Nonsmooth Analysis. Wiley-Interscience,
New York, 1983.

ConN, A. R., GouLD, N. I. M., AND TOINT, P. L. Testing a class of meth-
ods for solving minimization problems with simple bounds on the variables.
Mathematics of Computation 50, 182 (1988), 399-430.

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

103

Davipon, W. C. Variable metric method for minimization. Technical Report
ANL-5990 (Rev.), Argonne National Laboratory, Research and Development,
1959.

DoLAN, E. D., AND MORE, J. J. Benchmarking optimization software with
performance profiles. Mathematical Programming 91 (2002), 201-213,

FLETCHER, R. A new approach to variable metric algorithms. Computer
Journal 13 (1970), 317-322.

FLETCHER, R. Practical Methods of Optimization, second ed. John Wiley
and Sons, Chichester, 1987.

FLETCHER, R., AND PoweLL, M. J. D. A rapidly convergent descent
method for minimization. Computer Journal 6 (1963), 163-168.

FupuLi, A., GAUDIOSO, M., AND GIALLOMBARDO, G. A DC piecewise

affine model and a bundling technique in nonconvex nonsmooth minimization.
Optimization Methods and Software 19, 1 (2004), 89-102.

FupuLi, A., GAUDIOSO, M., AND GIALLOMBARDO, G. Minimizing non-
convex nonsmooth functions via cutting planes and proximity control. SIAM
Journal on Optimization 14, 3 (2004), 743-756.

GAUDIOSO, M., AND MoONACO, M. F. Variants to the cutting plane approach
for convex nondifferentiable optimization. Optimization 25 (1992), 65-75.

GILBERT, J.-C., AND LEMARECHAL, C. Some numerical experiments with
variable-storage quasi-Newton algorithms. Mathematical Programming 45

(1989), 407-435.

GOLDFARB, D. A family of variable metric methods derived by variational
means. Mathematics of Computation 24 (1970), 23-26.

GRIEWANK, A., AND TOINT, P. L. Partitioned variable metric updates for
large structured optimization problems. Numerische Mathematik 39 (1982),
119-137.

GROTHEY, A. Decomposition Methods for Nonlinear Nonconvex Optimization
Problems. PhD thesis, University of Edinburgh, 2001.

GupTA, N. A Higher than First Order Algorithm for Nonsmooth Constrained
Optimization. PhD thesis, Washington State University, 1985.

HAARALA, M., MIETTINEN, K., AND MAKELA, M. M. Globally conver-
gent limited memory bundle method for large-scale nonsmooth optimization.
Submitted.

HAARALA, M., MIETTINEN, K., AND MAKELA, M. M. New limited memory

bundle method for large-scale nonsmooth optimization. Optimization Methods
and Software 19, 6 (2004), 673-692.

104

[28]

[29]

[30]

[38]

[39]

[40]

[41]

HIRIART-URRUTY, J.-B., AND LEMARECHAL, C. Conver Analysis and Min-
imization Algorithms I. Springer-Verlag, Berlin, 1993.

HIRIART-URRUTY, J.-B., AND LEMARECHAL, C. Convezr Analysis and Min-
imization Algorithms II. Springer-Verlag, Berlin, 1993.

KARKKAINEN, T., Majava, K., AND MAKELA, M. M. Comparison of
formulations and solution methods for image restoration problems. Reports of
the Department of Mathematical Information Technology, Series B. Scientific
Computing, B 14/2000 University of Jyvéskyla, Jyvéskyla, 2000.

KARKKAINEN, T., Majava, K., AND MAKELA, M. M. Comparison of

formulations and solution methods for image restoration problems. Inverse
Problems 17, 6 (2001), 1977-1995.

KELLEY, J. E. The cutting plane method for solving convex programs. Jour-
nal of the SIAM 8 (1960), 703-712.

KmwieL, K. C. Methods of Descent for Nondifferentiable Optimization. Lec-
ture Notes in Mathematics 1133. Springer-Verlag, Berlin, 1985.

KimwieL, K. C. An ellipsoid trust region bundle method for nonsmooth convex
optimization. SIAM Journal on Control and Optimization 27 (1989), 737-757.

KiwieL, K. C. Proximity control in bundle methods for convex nondifferen-
tiable minimization. Mathematical Programming 46 (1990), 105-122.

Kiwier, K. C. Approximations in decomposition of large-scale convex pro-
grams via a nondifferentiable optimization method. In Proceedings of the 11th
Triennial IFAC World Congress, Tallin, Estonia, 1990 (1991), U. Jaaksoo
and V. I. Utkin, Eds., vol. 1, Pergamon Press, Oxford, England, pp. 161-166.

KorLpa, T. G., O’LEARY, D. P., AND NAZARETH, L. BFGS with update
skipping and varying memory. SIAM Journal on Optimization 8, 4 (1998),
1060-1083.

LALEE, M., NOCEDAL, J., AND ToDD, P. On the implementation of an

algorithm for large-scale equality constrained optimization. SIAM Journal on
Optimization 8, 3 (1998), 682-706.

LEMARECHAL, C. An extension of Davidon methods to nondifferentiable
problems. In Nondifferentiable Optimization, Mathematical Programming

Study 3, M. L. Balinski and P. Wolfe, Eds. 1975, pp. 95-109.

LEMARECHAL, C. Combining Kelley’s and conjugate gradient methods. In
Abstracts of IX International Symposium on Mathematical Programming (Bu-
dapest, Hungary, 1976).

LEMARECHAL, C. Nonsmooth optimization and descent methods. Technical
Report 78/4, ITASA, Laxemburg, Austria, 1978.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[51]

[52]

[53]

[54]

105

LEMARECHAL, C. Numerical experiments in nonsmooth optimization. In Pro-
ceedings of the IIASA workshop on Progress in Nondifferentiable Optimization
(Laxemburg, Austria, 1982), E. A. Nurminski, Ed., pp. 61-84.

LEMARECHAL, C. Nondifferentiable optimization. In Optimization, G. L.
Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, Eds. North-Holland,
Amsterdam, 1989, pp. 529-572.

LEMARECHAL, C., NEMIROVSKII, A., AND NESTEROV, Y. New variants of
bundle methods. Mathematical Programming 69 (1995), 111-147.

L1, D.-H., aAND FuKUsHIMA, M. On the global convergence of the BFGS
method for nonconvex unconstrained optimization problems. SIAM Journal
on Optimization 11, 4 (2001), 1054-1064.

Liu, D. C.; AND NOCEDAL, J. On the limited memory BFGS method for
large scale optimization. Mathematical Programming 45 (1989), 503-528.

LUkSAN, L. Dual method for solving a special problem of quadratic program-
ming as a subproblem at linearly constrained nonlinear minmax approxima-
tion. Kybernetika 20 (1984), 445-457.

LukSAN, L. Computational experience with known variable metric updates.
Technical Report 534, Institute of Computer Science, Academy of Sciences of
the Czech Republic, Prague, 1992.

LUKSAN, L., AND SPEDICATO, E. Variable metric methods for unconstrained
optimization and nonlinear least squares. Journal of Computational and Ap-

plied Mathematics 124 (2000), 61-95.

LUKSAN, L., TOMA, M., SiSka, M., VLCEK, J., AND RAMESOVA, N.
UFO 2002. Interactive system for universal functional optimization. Technical
Report 883, Institute of Computer Science, Academy of Sciences of the Czech
Republic, Prague, 2002.

LukSAN, L., aND VLCEK, J. PVAR — Variable metric methods for un-
constrained and linearly constrained nonsmooth optimization. Available in
web page <URL: http://www.uivt.cas.cz/~1luksan/subroutines.html>.
(2nd August, 2004).

LukSan, L., AND VLCEK, J. Simple scaling for variable metric updates.
Technical Report 611, Institute of Computer Science, Academy of Sciences of
the Czech Republic, Prague, 1995.

LUKSAN, L., AND VLCEK, J. A bundle-Newton method for nonsmooth un-
constrained minimization. Mathematical Programming 83 (1998), 373-391.

LUKSAN, L., AND VLCEK, J. Globally convergent variable metric method
for convex nonsmooth unconstrained minimization. Journal of Optimization

Theory and Applications 102 (1999), 593-613.

106

[55]

[57]

[58]

[59]

[60]

[61]

[65]

[66]

LUKSAN, L., AND VLCEK, J. Sparse and partially separable test problems for
unconstrained and equality constrained optimization. Technical Report 767,

Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, 1999.

LUKSAN, L., AND VLCEK, J. Introduction to nonsmooth analysis. Theory
and algorithms. Technical Report DMSIA 1/2000, University of Bergamo,
2000.

LUkSAN, L., AND VLCEK, J. Variable metric methods for nonsmooth opti-
mization. Technical Report 837, Institute of Computer Science, Academy of
Sciences of the Czech Republic, Prague, 2001.

MAKELA, M. M. Methods and algorithms for nonsmooth optimization. Re-
ports on Applied Mathematics and Computing 2, Department of Mathematics,
University of Jyvaskyla, 1989.

MAKELA, M. M. Issues of implementing a Fortran subroutine package
NSOLIB for nonsmooth optimization. Technical Report 5/1993, Department
of Mathematics, Laboratory of Scientific Computing, University of Jyvaskyla,
1993.

MAKELA, M. M. Survey of bundle methods for nonsmooth optimization.
Optimization Methods and Software 17, 1 (2002), 1-29.

MAKELA, M. M. Multiobjective proximal bundle method for nonconvex non-
smooth optimization: Fortran subroutine MPBNGC 2.0. Reports of the De-
partment of Mathematical Information Technology, Series B. Scientific Com-
puting, B 13/2003 University of Jyviskyla, Jyvéaskyla, 2003.

MAKELA, M. M., MIETTINEN, M., LUKSAN, L., AND VLCEK, J. Compar-
ing nonsmooth nonconvex bundle methods in solving hemivariational inequal-
ities. Journal of Global Optimization 14 (1999), 117-135.

MAKELA, M. M., AND NEITTAANMAKI, P. Nonsmooth Optimization: Anal-
ysis and Algorithms with Applications to Optimal Control. World Scientific
Publishing Co., Singapore, 1992.

MIETTINEN, K., MAKELA, M. M., AND MANNIKKO, T'. Optimal control of
continuous casting by nondifferentiable multiobjective optimization. Compu-
tational Optimization and Applications 11 (1998), 177-194.

NocCEDAL, J. Updating quasi-Newton matrices with limited storage. Mathe-
matics of Computation 35, 151 (1980), 773-782.

NoOCEDAL, J. Theory of algorithms for unconstrained optimization. Acta
Numerica 1 (1992), 199-242.

[67]

[74]

[75]

[76]

[77]

[78]

[79]

107

NOCEDAL, J. Large scale unconstrained optimization. In The State of the Art
in Numerical Analysis, A. Watson and 1. Duff, Eds. Oxford University Press,
1997, pp. 311-338.

NOCEDAL, J., AND YUAN, Y. Analysis of a self-scaling quasi-Newton
method. Mathematical Programming 61 (1993), 19-37.

OVERTON, M. L. Large-scale optimization of eigenvalues. STAM Journal on
Optimization 2 (1992), 88-120.

ROCKAFELLAR, R. T. Conver Analysis. Princeton University Press, Prince-
ton, New Jersey, 1970.

ROCKAFELLAR, R. T. Monotone operators and the proximal point algorithm.
SIAM Journal on Optimal Control and Optimization 14 (1976), 877-898.

SCHRAMM, H. Fine Kombination von Bundle- und Trust-Region- Verfahren
zur Losung nichtdifferenzierbarer Optimierungsprobleme. PhD thesis,
Bayreuther Mathematische Schriften, No. 30, Universitat Bayreuth, 1989.

SCHRAMM, H., AND ZOWE, J. A version of the bundle idea for minimizing a
nonsmooth function: Conceptual idea, convergence analysis, numerical results.

SIAM Journal on Optimization 2 (1992), 121-152.

SHANNO, D. F. Conditioning of quasi-Newton methods for function mini-
mization. Mathematics of Computation 24 (1970), 647-657.

SHANNO, D. F., AND PHUA, K. J. Matrix conditioning and nonlinear opti-
mization. Mathematical Programming 14 (1978), 144-160.

SHOR, N. Z. Minimization Methods for Non-Differentiable Functions.
Springer-Verlag, Berlin, 1985.

ToinT, P. L. On sparse and symmetric matrix updating subject to a linear
equation. Mathematics of Computation 31, 140 (1977), 954-961.

VLCEK, J., AND LUKSAN, L. Globally convergent variable metric method
for nonconvex nondifferentiable unconstrained minimization. Journal of Op-
timization Theory and Applications 111, 2 (2001), 407-430.

WOMERSLEY, R. S. Numerical Methods for Structured Problems in Nons-
mooth Optimization. PhD thesis, Department of Mathematics, University of
Dundee, 1981.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF SYMBOLS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	1 INTRODUCTION
	2 THEORETICAL BACKGROUND
	2.1 Notations and De
	2.2 Nonsmooth Analysis
	2.3 Nonsmooth Optimization Theory

	3 VARIABLE METRIC METHODS
	3.1 Standard Variable Metric Methods
	3.2 Limited Memory BFGS Method
	3.3 Compact Representation of Limited Memory Matrices

	4 BUNDLE METHODS
	4.1 Standard Bundle Methods
	4.2 Variable Metric Bundle Method

	5 LIMITED MEMORY BUNDLE METHOD
	5.1 Basic Method
	5.2 Convergence Analysis
	5.3 Adaptive Version
	5.4 Simple Scaling of Updates
	5.5 L-BFGS Bundle Method

	6 NUMERICAL EXPERIMENTS
	6.1 Software Tested and Testing Environment
	6.2 Numerical Results

	7 CONCLUSIONS
	A LARGE-SCALE NONSMOOTH TEST PROBLEMS
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES

	vaitos_tdk: Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
	vaitos_paikka: julkisesti tarkastettavaksi Villa Rana -rakennuksen Paulaharju-salissa
	vaitos_aika: marraskuun 13. päivänä 2004 kello 14.
	vaitos_tdk_en: Academic dissertation to be publicly discussed, by permission of
	vaitos_paikka_en: the the Faculty of Information Technology of the University of Jyväskylä,
	vaitos_aika_en: in the Building Villa Rana, Paulaharju Hall, on November 13, 2004 at 14 o'clock.
	hTekija: Marjo Haarala
	hNimeke: Large-Scale Nonsmooth Optimization
	hNimeke2:
	hNimeke3:
	hAlanimeke: Variable Metric Bundle Method
	hAlanimeke2: with Limited Memory
	hAlanimeke3:
	hEng: 1
	hpp: 13
	hkk: 11
	hvvvv: 2004
	hKello: 14
	hPaikka: Villa Rana -rakennuksen Paulaharju-salissa
	hPaikka_en: in the Building Villa Rana, Paulaharju Hall
	hSarja: JYVÄSKYLÄ STUDIES IN COMPUTING
	hnro: 40
	hKuva: Off
	hKuvaselite: Cover picture:
	hPagemakeup: Off
	hPagemakeupselite:
	hPainetun_isbn: 951-39-1908-0
	hIssn: 1456-5390
	hVerkkovaitos: 1
	hVerkkoisbn: 951-39-1927-7
	hEditor1a: Tommi Kärkkäinen
	hEditor1b: Department of Mathematical Information Technology, University of Jyväskylä
	hEditor2a:
	hEditor2b:
	hEditor3a:
	hEditor3b:
	hErkansi: 1
	hTiedekunta: [2]
	vaitos_nimeke: Large-Scale Nonsmooth Optimization
	vaitos_nimeke2:
	vaitos_nimeke3:
	vaitos_alanimeke: Variable Metric Bundle Method
	vaitos_alanimeke2: with Limited Memory
	vaitos_alanimeke3:
	vaitos_sarja: JYVÄSKYLÄ STUDIES IN COMPUTING 40
	vaitos_tekija: Marjo Haarala
	vaitos_soihtu2: JYVÄSKYLÄ 2004
	vaitos_soihtu1a: UNIVERSITY OF
	vaitos_soihtu1b: JYVÄSKYLÄ
	vaitos_edit: Editors
	vaitos_edit1a: Tommi Kärkkäinen
	vaitos_edit1b: Department of Mathematical Information Technology, University of Jyväskylä
	vaitos_edit2a:
	vaitos_edit2b:
	vaitos_edit3a:
	vaitos_edit3b:
	vaitos_editpekka1: Pekka Olsbo, Marja-Leena Tynkkynen
	vaitos_editpekka2: Publishing Unit, University Library of Jyväskylä
	vaitos_verkkourn: URN:ISBN 9513919277
	vaitos_verkkoisbn: ISBN 951-39-1927-7 (PDF)
	vaitos_isbn: ISBN 951-39-1908-0 (nid.)
	vaitos_issn: ISSN 1456-5390
	vaitos_copyvv: 2004
	paino: Jyväskylä University Printing House, Jyväskylä
	vaitos_erkansi: and ER-Paino Ky, Lievestuore 2004
	vaitos_printvv: 11
	vaitos_kuvaselite:
	vaitos_pagemakeupselite:
	editorial_board:
	1: Jyväskylä Studies in Humanities
	2: Editorial Board
	4: Toivo Nygård, Department of History and Ethnology, University of Jyväskylä
	3: Editor in Chief Heikki Hanka, Department of Art and Culture Studies, University on Jyväskylä
	5: Ahti Jäntti, Department of Languages, University of Jyväskylä
	6: Matti Vainio, Department of Music, University of Jyväskylä
	7: Minna-Riitta Luukka, Centre of Aplied Language Studies, University of Jyväskylä
	8: Raimo Salokangas, Department of Communication, University of Jyväskylä

	vaitos_pdf_issn: ISSN 1459-4331
	Text1: 951-39-1927-7

