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ABSTRACT

Pechenizkiy, Mykola

Feature Extraction for Supervised Learning in Knowledge Discovery Systems
Jyvaskyla: University of Jyvaskyld, 2005, 86 p. (+ included articles)

(Jyvaskyld Studies in Computing,

ISSN 1456-5390; 56)

ISBN 951-39-2271-5

Finnish summary

Diss.

Knowledge discovery or data mining is the process of finding previously
unknown and potentially interesting patterns and relations in large databases.
The so-called “curse of dimensionality” pertinent to many learning algorithms,
denotes the drastic increase in computational complexity and classification
error with data having a great number of dimensions. Beside this problem,
some individual features, being irrelevant or indirectly relevant for the learning
concepts, form poor problem representation space. The purpose of this study is
to develop theoretical background and practical aspects of feature extraction
(FE) as means of (1) dimensionality reduction, and (2) representation space
improvement, for supervised learning (SL) in knowledge discovery systems.
The focus is on applying conventional Principal Component Analysis (PCA)
and two class-conditional approaches for two targets: (1) for a base level
classifier construction, and (2) for dynamic integration of the base level
classifiers. Theoretical bases are derived from classical studies in data mining,
machine learning and pattern recognition. The software prototype for the
experimental study is built within WEKA open-source machine-learning library
in Java. The different aspects of the experimental study on a number of
benchmark and real-world data sets include analyses of (1) importance of class
information use in the FE process; (2) (dis-)advantages of using either extracted
features or both original and extracted features for SL; (3) applying FE globally
to the whole data and locally within natural clusters; (4) the effect of sampling
reduction on FE for SL; and (5) the problems of FE techniques selection for SL
for a problem at consideration. The hypothesis and detailed results of the
many-sided experimental research process are reported in the corresponding
papers included in the thesis. The main contributions of the thesis can be
divided into contribution (1) to current theoretical knowledge and (2) to
development of practical suggestion on applying FE for SL.

Keywords: feature extraction, dimensionality reduction, principal component
analysis, data pre-processing, integration of data mining methods,
supervised learning, knowledge discovery in databases
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1 INTRODUCTION

Knowledge discovery in databases (KDD) or data mining (DM) is the process of
tinding previously unknown and potentially interesting patterns and relations
in large databases (Fayyad 1996). Numerous data mining methods have
recently been developed to extract knowledge from these large databases.
Selection of the most appropriate data mining method or a group of the most
appropriate methods is usually not straightforward.

During the past several years in a variety of application domains
researchers have tried to learn how to manage knowledge discovery process in
those specific domains. This has resulted in a large number of “vertical
solutions”. Data mining has evolved from less sophisticated first-generation
techniques to today's cutting-edge ones. Currently there is a growing need for
next-generation data mining systems to manage knowledge discovery
applications. These systems should be able to discover knowledge by
combining several available techniques, and provide a more automatic
environment, or an application envelope, surrounding a highly sophisticated
data mining engine (Fayyad & Uthurusamy 2002).

This thesis presents the study of data mining techniques integration and
application for different benchmark and real-world data sets, with the focus on
the study of feature extraction (FE) for supervised learning (SL). This
introductory chapter presents the motivation for the research and the main
research objectives, overviews the methods used in the study, and introduces
the organization of the thesis.
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1.1 Motivation

Classification is a typical data mining task where the value of some attribute for
a new instance is predicted based on the given collection of instances for which
all the attribute values are known (Aivazyan, 1989). The purpose of supervised
learning (SL) is to learn to classify (predict a value of some attribute for) a new
instance. In many applications, data, which is the subject of analysis and
processing in data mining, is multidimensional, and presented by a number of
features. The so-called “curse of dimensionality” (Bellman, 1961) pertinent to
many learning algorithms, denotes the drastic increase in computational
complexity and classification error with data having a great number of
dimensions (Aivazyan, 1989). Furthermore, nowadays the complexity of real-
world problems, increased by the presence of many irrelevant or indirectly
relevant features, challenge the existing learning algorithms. It is commonly
accepted that just by pushing a button someone should not expect useful results
to appear.

Hence, attempts are often made to reduce the dimensionality of the
feature space before SL is undertaken. Feature extraction (FE) is one of the
dimensionality reduction techniques that extracts a subset of new features from
the original feature set by means of some functional mapping, keeping as much
information in the data as possible (Liu, 1998).

FE is an effective data pre-processing step aimed to reduce the
dimensionality and to improve representation space of the problem at
consideration.

Although there has been some rigorous research going on both FE and SL
for many years in applied statistics, pattern recognition and related fields, to the
best of our knowledge, there is no comprehensive many-sided analysis of FE
and SL processes integration.

1.2 Objectives

In this thesis, the emphasis is on studying FE and SL integration. Both FE and
SL are seen as constituent parts of a DM strategy. Our basic assumption is that
each DM strategy is best suited for a certain problem. Therefore, our overall
(faraway) research goal is to contribute to knowledge in the problem of DM
strategy selection for a certain DM problem. And our particular focus is on
different combinations of FE techniques and SL techniques.

The main objective of this study is to develop theoretical background and
practical aspects of FE as means of (1) dimensionality reduction and (2)
representation space improvement for SL in knowledge discovery systems. The
focus is on applying conventional Principal Component Analysis (PCA) and
two class-conditional approaches for two targets: (1) for a base level classifier
construction, and (2) for dynamic integration of the base level classifiers. The
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different aspects of the study include analyses of (1) importance of class
information use in the FE process; (2) advantages of using either extracted
features or both original and extracted features for SL; (3) applying FE globally
to the whole set of training instances and locally within natural clusters; and (4)
the effect of sample reduction on FE for SL. Besides this, more general problem
of FE techniques selection for SL for a dataset at consideration is analysed.

Related work on FE for SL includes also research on constructive
induction (Michalski, 1997) and latent semantic indexing for text mining
applications (Deerwester ef al., 1990).

1.3 Methods and Results

We consider a knowledge discovery system as a special kind of adaptive
information system. We adapted the Information System Development (ISD)
framework for the context of DM systems development. Three basic groups of
IS research methods, including conceptual-theoretical, constructive, and
experimental approaches are used in this study. These approaches are tightly
connected and are applied in parallel. The theoretical background is exploited
during the constructive work and the constructions are used for
experimentation. The results of constructive and experimental work are used to
refine the theory.

Consequently, the main results (beside the developed software prototype
for experimental studies) come from the experimental study.

The results of our study show that:

— FE is an important step in DM/KDD process that can be beneficial for
SL and integration of classifiers in terms of classification accuracy and
in terms of time complexity of model learning and new instances
classification.

— FE can improve classification accuracy of a model produced by a
learner even for datasets having relatively small number of features.
And, therefore, FE can be considered as a dimensionality reduction
technique as well as a technique for construction of better
representation space for further supervised learning.

— Use of class information in FE process is crucial for many datasets.

— Combination of original features with extracted features can be
beneficial for SL on some datasets.

— Local FE and SL models can outperform corresponding global models
in classification accuracy using fewer of features for learning.

— Training sample reduction affects the performance of the SL with FE
rather differently; and when the proportion of training instances used
to build the FE and the learning model is relatively small it is
important to use an adequate sample reduction technique to select
more representative instances for the FE process.
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In our experimental study we use mainly benchmark data sets from UCI
repository (Blake & Merz, 1998). However, part of the experimental study was
done on data related to some real problems of medical diagnostics (the
classification of acute abdominal pain (Zorman et al., 2001) and problems of
antibiotic resistance (Pechenizkiy et al., 2005h)). Besides benchmark and real-
world data sets we conduct some studies on synthetically generated data sets
where desired data set characteristics are varied.

1.4 Thesis overview

The thesis consists of two parts. The first part presents the summary of the
collection of papers presented in the second part (the included papers are listed
before this introductory Chapter). The summary part of the thesis introduces
the background of the study, presents the research problem of the study,
describes basic research methods used, overviews the papers included in the
thesis and concludes with the main contribution of the thesis and suggestions
for further research directions.

The organization of the thesis summary part is as follows: in Chapter 2
research background is considered. First, in Section 2.1 knowledge discovery
and data mining concepts are discussed. A brief history of knowledge discovery
systems is presented. Then, basic introduction to the problem of classification
(Section 2.2), to dynamic integration of classifiers (Section 2.3), to
dimensionality reduction (Section 2.4), to FE for supervised learning (Section
2.5) that is the focus of this thesis, and to selection of representative instances
for FE (Section 2.6) is presented. In Chapter 3, the research problem of the thesis
is stated. Each aspect of the study is presented with a separate section. Chapter
4 introduces the research design of the thesis. First, research methods being
used and basic approaches for evaluating learned models that are used in
experiments are discussed. Then, experimental design is considered. Chapter 5
contains summaries of the articles included in the thesis. Each section is a
summary of the corresponding included article. In Chapter 6, contribution of
the thesis is summarized, and limitations of the research and future work are
discussed. The information about datasets used in the experimental studies is
given in Appendix A.



2 RESEARCH BACKGROUND

Knowledge discovery in databases (KDD) is a combination of data
warehousing, decision support, and data mining - an innovative new approach
to information management (Fayyad, 1996). KDD is an emerging area that
covers such areas as statistics, machine learning, databases, pattern recognition,
econometrics, and some other. In the following section we consider knowledge
discovery as a process and discuss the perspectives in KDD systems. In the
further section, basics of supervised learning are introduced and classifiers used
in the study are considered, and some background on ensemble classification
and dynamic integration of classifiers is presented. Then, we introduce the
problem known as “the curse of dimensionality”, before feature extraction
techniques for supervised learning are considered. We finish the chapter with a
review of training sample selection techniques (used in this study) aimed to
reduce the computational complexity of feature extraction and supervised
learning.

2.1 Knowledge discovery in databases

The present history of KDD systems development consists of three main
stages/ generations (Piatetsky-Shapiro, 2000). The year 1989 can be considered
as the first generation of KDD systems when few single-task data mining (DM)
tools such as C4.5 decision tree algorithm (Quinlan, 1993) existed. These tools
were difficult to use and required significant preparation. Most of such systems
were based on a loosely coupled architecture, where the database and the data
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mining subsystems are realised as separate independent parts. This type of
architecture demands continuous context switching between the data mining
engine and the database (Imielinski & Mannila, 1996).

The year 1995 can be associated with a formation of the second-generation
tool-suits (Piatetsky-Shapiro, 2000). KDD started to be seen as “the nontrivial
process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data” (Fayyad 1996, 22).

211 Knowledge discovery as a process

The process of KDD comprises several steps, which involve data selection, data
pre-processing, data transformation, application of machine learning (ML)
techniques (Mitchel, 1997), and interpretation and evaluation of patterns. These
basic steps of the KDD process from raw data to the extracted knowledge are
presented in Figure 1 (adapted from (Fayyad, 1996)).

(mtesprera!ua/ )
Evaiuation

Jual
CMachine Leaming)
Transformation A\
— T A\

Selection D
Patierns
@ TI-“-" - Transformed
Preprocessed Data
Data
Data Target Data
FIGURE 1 Basic steps of KDD process (adapted from (Fayyad 1996, 22)). Solid

arrows denote the processing steps of data towards discovered
knowledge, while dotted-line arrows show that each of these steps may
form a different iterative cycle and results of one step can be used for
any other step.

The process starts from target data selection that is often related to the
problem of building and maintaining useful data warehouses (Fayyad &
Uthurusamy, 2002) and is recognized as the most time-consuming in the KDD
process (Fayyad, 1996). The target data selection is excluded from our research
focus here. After selection, the target data is preprocessed in order to reduce the
level of noise, to preprocess the missing information, to reduce data, and to
remove obviously redundant features.

The data transformation step is aimed either to reduce the dimensionality
of the problem, extracting the most informative features, or to enlarge feature
space, constructing additional (potentially useful) features. The linear FE
techniques (a type of techniques that can be applied during the transformation
step) for subsequent classification, is, in fact, the main focus of this thesis.
During the next step, search for patterns - summary of a subset of the data,
statistical or predictive models of the data, and relationships among parts of the
data - i.e., application of machine-learning techniques takes place. In Fayyad
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(1996) this step is associated with data mining - the identification of interesting
structure in the data. In this thesis we prefer to denote the step associated with
the search for patterns as application of ML techniques. Data mining concept is
used when we consider the feature extraction/transformation processes,
application of ML techniques, and evaluation processes as a core process of
KDD. These processes are in the focus of this thesis, namely studying of FE and
classification processes, their integration and evaluation. When we refer here to
data mining strategy selection, we assume a selection of the most appropriate
FE technique (as one type of techniques for data transformation), classifier and
evaluator.

The Interpretation/evaluation step helps the user by providing tools for
visualization (Fayyad et al., 2001) of models built and patterns discovered and
for generation of reports with discovery results and discovery process log
analysis. The user has a possibility to interpret and evaluate extracted patterns
and models, to determine the patterns that can be considered as new
knowledge, and to draw conclusions. Still, it should be noted that while
evaluation is often mainly technically oriented, the interpretation of results
requires close collaboration with domain experts.

Good examples of the knowledge discovery systems that follow Fayyad’s
view on DM as the process are: SPSS Clementine (Clementine User Guide,
Version 5, 1998), SGI Mineset (Brunk et al., 1997), and IBM Intelligent Miner
(Tkach, 1998).

21.2  Critical issues and perspectives in KDD systems

Numerous KDD systems have recently been developed. At the beginning of
this millennium there exist about 200 tools that could perform several tasks
(such as clustering, classification, and visualization) for specialized applications
(“vertical solutions”) (Piatetsky-Shapiro, 2000). This growing trend towards
vertical solutions in DM (Fayyad & Uthurusamy, 2002) has been associated
with the third generation of DM systems.

The next-generation database mining systems are aimed to manage KDD
applications just the way SQL-based systems successfully manage business
applications. These systems should integrate the data mining and database
subsystems and automate (as far as needed) all the steps of the whole KDD
process. These systems should be able to discover knowledge by combining
several available KDD techniques. An essential part of the integrated KDD-
process is the subpart that enables situation-dependent selection of appropriate
KDD technique(s) at every step of a KDD process.

Because of the increasing number of such “vertical solutions” and the
possibility to accumulate knowledge from these solutions, there is a growing
potential for appearance of next-generation database mining systems to manage
KDD applications. While today’s algorithms tend to be fully automatic and
therefore fail to allow guidance from knowledgeable users at key stages in the
search for data regularities, the researchers and the developers, who are
involved in the creation of the next generation data mining tools, are motivated
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to provide a broader range of automated steps in the data mining process and
make this process more mixed-initiative. In this process human experts
collaborate more closely with the computer to form hypotheses and test them
against the data. Moreover, nowadays some initiatives to standardize definition
of data mining techniques and the process of knowledge discovery, to provide
API are gaining in strength (Grossman et al., 2002). Good examples are: the
Predictive Model Markup Language (PMML, 2004) that is an XML-based
language which provides a way for applications to define statistical and data
mining models and to share models between PMML compliant applications;
the SQL Multimedia and Applications Packages Standard (Melton & Eisenberg,
2001), which specifies SQL interface to data mining applications and services,
and provides an API for data mining applications to access data from
SQL/MM-compliant relational databases; the Java Specification Request-73
(JSR, 2004) that defines a pure Java API supporting the building of data mining
models and the creation, storage, and access to data and metadata; the
Microsoft-supported OLE DB for DM defining an API for data mining for
Microsoft-based applications (OLE DB, 2004); the CRoss-Industry Standard
Process for Data Mining (CRISP-DM, 2004) capturing the data mining process
from business problems to deployment of the knowledge gained during the
process.

2.2 Supervised learning and classifiers

A typical data mining task is to explain and predict the value of some attribute
of the data given a collection of fields of some tuples with known attribute
values (Chan & Stolfo, 1997). This task is often solved with inductive learning,
the process of building a model from training data. The resulting model is then
used to make predictions on previously unseen examples.

221 Supervised learning: the taxonomy of concepts

The task of placing an instance X into one of a finite set of possible categories c is
called classification (Aivazyan, 1989). Often an instance (also called an example or
a case) is defined by specifying the value of each feature. This is known as
feature-value (also called attribute-value) notation of a data that represents a
problem, and may be written as a row vector using the following notation:

X = [V(Xa), V(X2),---,V(Xa)], 1)

where v(x;) denotes the value of feature (attribute) x;, and d is the number of
features. Features, which take on a value from an unordered set of possible
values, are called categorical (also called nominal). Continuous features are used
whenever there is a linear ordering on the values, even if they are not truly
continuous. The features used to define an instance are paired, as a rule, with
an extra categorical feature that is called class attribute (also called output
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attribute). The range of all possible values of the features of instances is referred
to as the instance space (also called example space).

Typically, instances with a given classification value are used for
supervised learning (building classifiers), and are called training set (also called
learning set, or simply a dataset). The classifiers are usually applied to instances
with unknown (for a classifier) class value, and called test (also called unseen)
instances, which constitute a test set. The classification of test instance C(Xest) €
range(c) = {c1, ... , ¢}, where index c is the number of classes, is the process of
predicting the most probable c;. However, in the test set class values should be
present so that an evaluator of the classifier is able to check the correctness of
the prediction for each test instance.

A common measure of a classifier’s performance is error rate that is
calculated as the percentage of misclassified test instances (Merz, 1998), and
classification accuracy (also called generalization performance) that is the percentage
of correctly classified test instances. More generally, the accuracy of a classifier
is the probability of correctly classifying a randomly selected instance (Kohavi,
1995b). Classification accuracy measure is used in this thesis to evaluate the
performance of a data mining strategy (for example a coupled combination of a
FE technique and a classifier).

Classifiers may vary widely from simple rules to neural networks.
However, we are mainly interested here in the instance-based, Naive Bayes and
decision-tree learning techniques. These are briefly described in the following
sections. These learning techniques are used in experiments when application
of FE for supervised learning is analysed.

2.2.2 Instance-based classifier

An instance-based learning algorithm stores a series of training instances in its
memory and uses a distance metric to compare new instances to those stored.
Prediction on the new instance is based on the instance(s) closest to it (Aha et al.,
1991). The simplest and most well studied instance-based learning algorithm is
known as the “nearest neighbor” (NN) classifier.

The classifier stores all instances from the training set (this memorisation
is hard to refer to as a training/learning phase) and classifies an unseen
instance on the base of a similarity measure. The distance from the unseen
instance to all the training instances is calculated and the class label
corresponding to the closest training instance is assigned to the example. The
most elementary version of the algorithm is limited to continuous features with
the Euclidean distance metric. Categorical features are binarised and then
treated as numerical.

A more sophisticated version of the nearest neighbor classifier returns the
most frequent class among the k closest training examples (denoted kNN) (Aha
et al., 1991). A weighted average of the nearest neighbors can be used, for
example in weighted nearest neighbor (WNN) (Cost & Salzberg, 1993). Given a
specific instance that shall be classified, the weight of an example increases with
increasing similarity to the example to be classified. In this thesis we use the IBk
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instance-based learning algorithm from WEKA machine learning library in Java
(Witten & Frank, 2000), and the PEBLS instance-based learning algorithm (Cost
& Salzberg, 1993), and WNN classifier implemented within MLC++ - machine
learning library in C++ (Kohavi et al., 1996) for dynamic integration of classifier
(see Section 2.3).

A major problem of the simple approach of kNN is that the vector
distance will not necessarily be the best measure for finding intuitively similar
examples, especially if irrelevant attributes are present.

2.2.3 Naive-Bayes classifier

The Naive-Bayes (NB) classifier (John, 1997) uses Bayes rule to predict the class
of a previously unseen example, given a training set. Bayes” theorem defines
how to compute the probability of each class given the instance, assuming the
features are conditionally independent given the class. The chosen class is the
one that maximizes the conditional probability:
k
— ) TTPes 1)
(Xtest ) i1

2
P(Ci [ Xtest) = @)

where ¢; is the i-th class, Xest is a test example, and P(A | B) is the conditional
probability of A given B, P(xtst | ci) is broken down into the product P(x«|ci)...
P(xk | ci), where x; is the value of the j-th feature in the example Xest.

More sophisticated Bayesian classifiers were developed, for example by
John (1997), but only the Naive-Bayes classifier is used in the experiments in
this study.

The Naive-Bayes classifier relies on an assumption that is rarely valid in
practical learning problems, and therefore has traditionally not been the focus
of research. It has sometimes been used as the base against which more
sophisticated algorithms are compared. However, it has been recently shown
that, for classification problems where the predicted value is categorical, the
independence assumption is less restrictive than might be expected (Domingos
& Pazzani, 1996; Domingos & Pazzani, 1997; Friedman, 1997). Domingos and
Pazzani (1997) have presented a derivation of necessary and sufficient
conditions for the optimality of the simple Bayesian classifier showing that it
can be optimal even when the independence assumption is violated by a wide
margin. They showed that although the probability estimates that the Naive-
Bayes classifier produces can be inaccurate, the classifier often assigns
maximum probability to the correct class.

224 (C4.5 Decision Tree classifier

Decision tree learning is one of the most widely used inductive learning
methods (Breiman et al., 1984; Quinlan, 1996). A decision tree is represented as a
set of nodes and arcs. Each node usually contains a feature (an attribute) and
each arc leaving the node is labelled with a particular value (or range of values)
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for that feature. Together, a node and the arcs leaving it represent a decision
about the path an example follows when being classified by the tree.

A decision tree is usually induced using “divide and conquer” or
“recursive partitioning” approach to learning. Initially all the examples are in
one partition and each feature is evaluated for its ability to improve the
“purity” of the classes in the partitions it produces. The splitting process
continues recursively until all of the leaf nodes are of one class.

The requirement that all the data be correctly classified may result in an
overly complex decision tree. Extra nodes may be added in response to minor
variations in the data. The problem of being overly sensitive to minor
fluctuations in the training data is known as overfitting, and it is a general
problem for all learning algorithms. A common strategy for avoiding
overfitting in decision trees is to “prune” away those subtrees of the decision
tree, which improves generalization performance on a too small set of pruning
validation examples.

The decision tree learning algorithm used in this thesis is WEKA’s
implementation of the C4.5 decision tree learning algorithm (Quinlan, 1993),
which is the most widely used decision tree learning approach. C4.5 uses gain
ratio, a variant of mutual information, as the feature selection measure. C4.5
prunes by using the upper bound of a confidence interval on the resubstitution
error as the error estimate; since nodes with fewer instances have a wider
confidence interval, they are removed if the difference in error between them
and their parents is not significant (Quinlan, 1993).

2.3 Dynamic integration of classifiers

Recently the integration of classifiers (or ensemble of classifiers) has been under
active research in machine learning (Dietterich, 1997), and different ensemble
approaches have been considered (Chan & Stolfo, 1997). The integration of base
classifiers into ensemble has been shown to yield higher accuracy than the most
accurate base classifier alone in different real-world problems (Merz, 1998).

In general the process of ensemble of classifiers construction can be
considered in the following way (see Figure 2). A set of base classifiers is
formed during the learning phase. Each base classifier in the ensemble is
trained using training instances of the corresponding training subset. During
the integration phase an integration model of classifiers that allows combining
the results produced by a set of selected base classifiers is constructed. The
integration model produces the final classification of the ensemble.

Use of an ensemble of classifiers gives rise to two basic questions: (1) what
is the set of classifiers (often called base classifiers) that should be generated?;
and (2) how should the classifiers be integrated? (Merz, 1998). In this thesis we
will be interested in applying FE to improve the integration of classifiers.
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2.3.1 Generation of base classifiers

One way of generating a diverse set of classifiers is to use learning algorithms
with heterogeneous representations and search biases (Merz, 1998), such as
decision trees, neural networks, instance-based learning, etc.

Another approach is to use models with homogeneous representations
that differ in their method of search or in the data on which they are trained.
This approach includes several techniques for generating base models, such as
learning base models from different subsets of the training data. For example,
two well-known ensemble methods of this type are bagging and boosting
(Quinlan, 1996).

One particular way for building models with homogeneous
representations, which proved to be effective, is the use of different subsets of
features for each model. For example, in Oza and Tumer (1999) base classifiers
are built on different feature subsets, where each feature subset includes
features relevant for distinguishing one class label from the others (the number
of base classifiers is equal to the number of classes). Finding a set of feature
subsets for constructing an ensemble of accurate and diverse base models is
also known as ensemble feature selection (Opitz & Maclin, 1999).

Ho (1998) has shown that simple random selection of feature subsets may
be an effective technique for ensemble feature selection. This technique is called
the RSM and is derived from the theory of stochastic discrimination (Kleinberg,
2000). In the RSM, to construct each base classifier, one randomly selects a
subset of features. The RSM has much in common with bagging, but instead of
sampling instances, features are sampled (Skurichina & Duin, 2001).

In this thesis we use RSM in ensemble feature selection (see Article VII).
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2.3.2 Integration of base classifiers

The challenging problem of integration is to decide what the base classifiers
should be or how to combine the results produced by the base classifiers. Two
basic approaches have been suggested as a solution to the integration problem:
(1) a combination approach, where the base classifiers produce their classifications
and the final classification is composed using them (Merz, 1998); and (2) a
selection approach, where one of the base classifiers is selected and the final
classification is the result produced by it (Schaffer, 1993).

Techniques for combining or selecting classifiers can be divided into two
subsets: static and dynamic. A static model does not depend on local
information. The techniques belonging to the static selection approach propose
one “best” method for the whole data space. Usually, better results can be
achieved if the classifier integration is done dynamically taking into account the
characteristics of each new instance. The basic idea of dynamic integration is
that the information about a model’s errors in the instance space can be used for
learning just as the original instances were used for learning the model. Both
theoretical background and practical aspects of dynamic integration can be
found in Tsymbal (2002). Gama (1999) showed that the distribution of the error
rate over the instance space is not homogeneous for many types of classifiers.
Depending on the classifier, the error rate will be more concentrated on certain
regions of the instance space than in others.

2.3.3 Dynamic integration approaches used in the study

In this thesis, we will be interested in a dynamic integration approach that
estimates the local accuracy of the base classifiers by analyzing their accuracy
on nearby instances to the instance to be classified (Puuronen et al., 1999).
Instead of directly applying selection or combination as an integration method,
cross validation is used to collect information about the classification accuracies
of the base classifiers, and this information is then used to estimate the local
classification accuracies for each new instance. These estimates are based on the
weighted nearest neighbor classification (WNN) (Cost & Salzberg, 1993).

In the study we use three different approaches based on the local accuracy
estimates: Dynamic Selection (DS), Dynamic Voting (DV), and Dynamic Voting
with Selection (DVS) (Tsymbal et al., 2001). All these are based on the same local
accuracy estimates obtained using WNN. In DS a classifier with the least
predicted local classification error is selected. In DV, each base classifier
receives a weight that is proportional to the estimated local accuracy of the base
classifier, and the final classification is produced by combining the votes of each
classifier with their weights. In DVS, the base classifiers with the highest local
classification errors are discarded (the classifiers with errors that fall into the
upper half of the error interval of the base classifiers) and locally weighted
voting (DV) is applied to the remaining base classifiers.
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2.4 The curse of dimensionality and dimensionality reduction

In many applications, data, which is the subject of analysis and processing in
data mining, is multidimensional, and presented by a number of features. The
so-called “curse of dimensionality” (Bellman, 1961) pertinent to many learning
algorithms, denotes the drastic increase in computational complexity and
classification error with data having a large number of dimensions. In this
section we consider some interesting properties of high dimensional spaces
which motivate the reduction of space dimensionality that could probably be
performed without a significant loss of important information for classification.
Afterwards we give a brief general categorization of the dimensionality
reduction and FE techniques.

24.2  Inferences of geometrical, statistical, and asymptotical properties of
high dimensional spaces for supervised classification

In this section some unusual or unexpected hyperspace characteristics are
discussed in order to show that a higher dimensional space is quite different
from a lower dimensional one.

It was shown by Jimenez and Landgrebe (1995) that as dimensionality of a
hyperspace increases:

—  The volume of a hypercube concentrates in the corners.

—  The volume of a hypersphere and a hyperellipsoid concentrate in the outside

shell.

The above characteristics have two important implications for high dimensional
data. The first one is that high dimensional space is mostly empty, which
implies that multivariate data has usually an intristic lower dimensional
structure. As a consequence high dimensional data can be projected to a lower
dimensional subspace without loosing significant information, especially in
terms of separability among the different classes. The second inference is that
normally distributed data will have a tendency to concentrate in the tails,
corners, outside shells etc, but not in the “main space”. Support for this
tendency can be found in the statistical behaviour of normally and uniformly
distributed multivariate data at high dimension.

—  The required number of labelled samples for supervised classification increases

as a function of dimensionality.

It was proved by Fukunaga (1990) that the required number of training
samples depends linearly on the dimensionality for a linear classifier and is
related to the square of the dimensionality for a quadratic classifier. This fact is
very relevant, especially because there exist circumstances where second order
statistics are more appropriate than the first order statistics in discriminating
among classes in high dimensional data (Fukunaga, 1990). In terms of
nonparametric classifiers the situation is even more severe. It has been
estimated that as the number of dimensions increases, the sample size needs to
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increase exponentially in order to have an effective estimate of multivariate
densities (Jimenez & Landgrebe, 1995).

It seems, therefore, that original, high dimensional data should contain
more discriminative information (comparing to a lower dimensional projection
of original data). But at the same time the above characteristics tell us that it is
difficult with the current techniques, which are usually based on computations
at full dimensionality, to extract such information unless the amount of
available labelled data is substantial. The so-called Hughes phenomenon is a
concrete example of this - with a limited number of training samples there is a
penalty in classification accuracy as the number of features increases beyond
some point (Hughes, 1968).

— For most high dimensional data sets, low linear projections have the tendency to

be normal, or a combination of normal distributions, as the dimension increases.

This is a significant characteristic of high dimensional data that is quite

important to the analysis of such data. It has been proved by Hall and Li (1993)

that as the dimensionality tends to infinity, lower-dimensional linear

projections will approach a normality model. Normality in this case means a
normal distribution or a combination of normal distributions.

As a consequence of the introduced properties it is possible to reduce the
dimensionality without losing significant information and separability. As the
dimensionality increases the increased number of labelled samples is required
for supervised classification (where the computation is done at full
dimensionality). So, there is a challenge to reduce dimensionality while trying
to preserve the discriminative information. Therefore, there is an increasing
tendency towards new methods that, instead of doing the computation at full
dimensionality, use a lower dimensional subspace(s). This, beside
computational benefits, will make the assumption of normality better grounded
in reality, yielding a better estimation of parameters, and better classification
accuracy.

24.3 Dimensionality reduction techniques

In this section we follow the categorization of dimensionality reduction
techniques according to the book by Liu (1998).

There are many techniques to achieve dimensionality reduction for data,
including multidimensional heterogeneous data, presented by a large number
of features of different types. Usually these techniques are divided mainly into
dimensionality reduction for optimal data representation and dimensionality
reduction for classification, according to their aim. According to the adopted
strategy these techniques can also be divided into feature selection and feature
transformation (also called feature discovery). The variants of the last one are
FE and feature construction. The key difference between feature selection and
feature transformation is that during the first process only a subset of original
features is selected while the second approach is based on the generation of
completely new features. Concerning the distinction between transformation
techniques, feature construction implies discovering missing information about
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the relationships among features by inferring or creating additional features
while FE discovers new feature space through a functional mapping.

If a subset of irrelevant and/or redundant features can be recognized and
eliminated from the data then feature selection techniques may work well.
Unfortunately this is not always easy and sometimes not even possible. This
happens because of the fact that a feature subset may be useful in one part of
the instance space, and at the same time useless or even misleading in another
part of it. And, all methods that just assign weights to the individual features
have an essential drawback in that they are insensitive to interacting or
correlated features. That is why the transformation of the given representation
before weighting the features is often preferable.

In this thesis we are interested in the study of several data mining
strategies that apply feature extraction for supervised learning (i.e. for
subsequent classification). The next chapter gives a brief introduction to FE
techniques used throughout the study.

24.4  Feature extraction

Feature extraction (FE) is a process that extracts a subset of new features from
the original set by means of some functional mapping. There are several
interesting approaches for FE introduced in the literature. Among them are the
discriminant analysis, fractal encoding, use of wavelet transformation, use of
mutual information, and different types of neural networks (Diamantras &
Kung, 1996). The most common technique is still probably the principal
component analysis (PCA) and its different variations and extensions (Liu,
1998). We would like to point out that some practitioners from the Pattern
Recognition field use the term ‘feature extraction” to refer to the process of
extracting features from data (Duda et al., 2001).

Besides computational complexity reduction, dimensionality reduction by
FE helps also to solve the problem of overfitting, a tendency of a classifier to
assign importance to random variations in the data by declaring them
important patterns, i.e. the classifier is turned to the contingent, rather than just
the constitutive characteristics of the training data (Duda et al., 2001).

In general the FE process requires some domain knowledge and intuition
about the problem for the following reasons: different problem areas may
require different approaches and domain knowledge also allows restricting the
search space and thus helps to effectively find out relevant features (Fayyad,
1996).

However, it should be noticed that the transformed features are often not
meaningful in terms of the original domain. Thus, additional constraints on the
transformation process are required to guarantee comprehensibility if
examination of the transformed classifier is necessary. Sometimes, domain
knowledge helps to overcome the problem of interpretability too (Liu, 1998).

According to the availability of the supervised or unsupervised data, FE
methods can or cannot use class information. Certainly, this question is crucial
for the classification purposes.
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Also, one of the key issues in FE is the decision whether to proceed globally
over the entire instance space or locally in different parts of the instance space.
It can be seen that despite being globally high-dimensional and sparse, data
distributions in some domain areas are locally low-dimensional and dense, for
example in physical movement systems (Vijayakumar & Schaal, 1997).

2.5 Feature extraction for supervised learning

Generally, FE for supervised learning can be seen as a search process among all
possible transformations of the original feature set for the best one, which
preserves class separability as much as possible in the space with the lowest
possible dimensionality (Aladjem, 1994). In other words we are interested in
tinding a projection wr:

y =wW'x 3)

where y is a kx1 transformed data point (presented using k features), w is a
d xk transformation matrix, and x is a d x1 original data point (presented using
d features).

251 Principal component analysis

Principal Component Analysis (PCA) is a classical statistical method, which
extracts a lower dimensional space by analyzing the covariance structure of
multivariate statistical observations (Jolliffe, 1986).

The main idea behind PCA is to determine the features that explain as
much of the total variation in the data as possible with as few of these features
as possible. We are interested in PCA primarily as a widely used
dimensionality reduction technique, although PCA is also used for example for
the identification of the underlying variables, for visualization of
multidimensional data, identification of groups of objects or outliers and for
some other purposes (Jolliffe, 1986).

The computation of the PCA transformation matrix is based on the
eigenvalue decomposition of the covariance matrix S (and therefore it is
computationally rather expensive).

W« eig _ decomposition(s = Zn: (x; —m)(x; —m)" } (4)
i=1

where 7 is the number of instances, x; is the i-th instance, and m is the mean
vector of the input data.
Computation of the principal components can be presented with the
following algorithm:
1. Calculate the covariance matrix S from the input data.
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2. Compute the eigenvalues and eigenvectors of S and sort them
in a descending order with respect to the eigenvalues.

3. Form the actual transition matrix by taking the predefined
number of components (eigenvectors).

4. Finally, multiply the original feature space with the obtained
transition matrix, which yields a lower- dimensional
representation.

The necessary cumulative percentage of variance explained by the
principal axes is used commonly as a threshold, which defines the number of
components to be chosen.

In the case of high-dimensional data PCA is computationally expensive,
especially if only a few of the first components are needed. Also, when new
data points are observed and the PCA-based model is being updated, the
covariance matrix and its eigenvalues require complete recalculation. Therefore,
many algorithms for PCA, which extract only the desired number of principal
components and which can adapt to new data have been introduced and
examined (Weingessel & Hornik, 1998).

252 The random projection approach

In many application areas like market basket analysis, text mining, image
processing etc., dimensionality of data is so high that commonly used
dimensionality reduction techniques like PCA are almost inapplicable because
of extremely high computational time/cost.

Recent theoretical and experimental results on the use of random
projection (RP) as a dimensionality reduction technique have attracted the DM
community (Bingham & Mannila, 2001). In RP a lower-dimensional projection
is produced by means of transformation like in PCA but the transformation
matrix is generated randomly (although often with certain constrains).

The theory behind RP is based on the Johnson and Lindenstrauss Theorem
(see for example Dasgupta & Gupta, 2003) that says that any set of n points in a
d-dimensional Euclidean space can be embedded into a k-dimensional
Euclidean space - where k is logarithmic in n and independent of d - so that all
pairwise distances are maintained within an arbitrarily small factor (Achlioptas,
2001). The basic idea is that the transformation matrix has to be orthogonal in
order to protect data from significant distortions and try to preserve distances
between the data points. Generally, orthogonalization of the transformation
matrix is computationally expensive, however, Achlioptas (2001) showed a very
easy way of defining (and also implementing and computing) the
transformation matrix for RP. So, according to Achlioptas (2001) the
transformation matrix w can be computed simply either as:

+1 with probability 1/6
w; =+/3-1 0 with probability 2/3, or Wy =

{+1 with probability 1/2  (5)
—1 with probability 1/6

-1 with probability 1/2
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RP as a dimensionality reduction technique was experimentally analyzed on
image (noisy and noiseless) and text data (a newsgroup corpus) by Bingham
and Mannila (2001). Their results demonstrate that RP preserves the similarity
of data vectors rather well (even when data is projected onto relatively small
numbers of dimensions).

Fradkin and Madigan (2003) performed experiments on 5 different data
sets with RP and PCA for inductive supervised learning. Their results show that
although PCA predictively outperformed RP, RP is a rather useful approach
because of its computational advantages. The authors also indicated a trend in
their results, namely that the predictive performance of RP is improved with
increased dimensionality when combining with the right learning algorithm. It
was found that for those 5 data sets RP is suited better for nearest neighbour
methods, where preserving distance between data points is more important
than preserving the informativeness of individual features, in contrast to the
decision tree approaches where the importance of these factors is reversed.
However, further experimentation was encouraged.

Related work on RP includes use of RP as preprocessing of textual data,
for further LSI (Papadimitriou et al., 1998), for indexing of audio documents
with further LSI and use of SOM (Kurimo, 1999), for nearest-neighbor search in
a high dimensional Euclidean space (Kleinberg, 1997; Indyk & Motwani, 1998),
for learning high-dimensional Gaussian mixture models (Dasgupta 1999; 2000).

In general, the use of random methods (with regard to manipulations on
features space) has a strong and lengthy tradition in DM community mainly
because of practical success of random forests (Breiman, 2001), and the random
subspace method (RSM) (Ho, 1998).

2.5.3 Class-conditional feature extraction

Although PCA is still probably the most popular FE technique, it has a serious
drawback, i.e., giving high weights to features with higher variabilities,
irrespective of whether they are useful for classification or not. This may give
rise to a situation where the chosen principal component corresponds to an
attribute with the highest variability but has no discriminating power (Oza &
Tumer, 1999).

A usual approach to overcome the above problem is to use some class
separability criterion (Aladjem, 1994), for example the criteria defined in
Fisher’s linear discriminant analysis (Fisher, 1936) and based on the family of
functions of scatter matrices:

WTSBW (6)

J(w) =
W= e

where Sp in the parametric case is the between-class covariance matrix that
shows the scatter of the expected vectors around the mixture mean , and Sw is
the within-class covariance, that shows the scatter of samples around their
respective class expected vectors. Thus,
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c n; ) ) . . ¢ ) .
Sy = Zniz(x(jl) _m(l))(x(jl) _m(l))T , and Sg = Zni (m(l) _m)(m(l) _m)T , (7)
i=1 =L i=1

where ¢ is the number of classes, #; is the number of instances in a class i, x(j” is

the j-th instance of i-th class, m@ is the mean vector of the instances of i-th class,
and m is the mean vector of all the input data.

The total covariance matrix shows the scatter of all samples around the
mixture mean. It can be shown analytically that this matrix is equal to the sum
of the within-class and between-class covariance matrices (Fukunaga, 1990). In
this approach the objective is to maximize the distance between the means of
the classes while minimizing the variance within each class. A number of other
criteria were proposed by Fukunaga (1990).

The criterion (6) is optimized using the simultaneous diagonalization
algorithm (see for example Fukunaga, 1990). The basic steps of the algorithm
include eigenvalues decomposition of Sw; transformation of original space to
intermediate xiv (whitining); calculation of Sgin xw ; eigenvalues decomposition
of Sp and then transformation matrix w finally can be produced by a simple
multiplication:

Wg, <« eig_decomposition(Sy ), Xy =Ws, X;
Wg,_ <« eig _decomposition(Sg | Xy ) (8)

W= WSW WSB

The parametric approach considers one mean for each class and one total
mixture mean when computing the between class covariance matrix. Therefore,
there is a fundamental problem with the parametric nature of the covariance
matrices. The rank of Sp is at most the number of classes-1, and hence no more
than this number of new features can be obtained through the FE process.

The nonparametric method overcomes this problem by trying to increase
the number of degrees of freedom in the between-class covariance matrix,
measuring the between-class covariances on a local basis. The k-nearest
neighbor (kNN) technique is used for this purpose. In the nonparametric case
the between-class covariance matrix is calculated as the scatter of the samples
around the expected vectors of other classes” instances in the neighborhood:

C N; C . . ) .
Sg =2 M > Wi > () —-mD)(xP -m{)T 9)
i-l k2 L
j#

where m{)) is the mean vector of the nNN instances of the j-th class, which are
nearest neighbors to x{’. The coefficient wi is a special weighting coefficient,
which shows the importance of each summand in (9). The goal of this
coefficient is to assign more weight to those elements of the matrix which
involve instances lying near the class boundaries and are thus more important
for classification.
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Thus, a nonparametric approach is potentially more efficient than a
parametric one, because it constructs flexible bounds between classes.
However, the computational complexity of a nonparametric approach is higher.
For further details on these class-conditional approaches, please see
Pechenizkiy et al., (2004).

2,54  FE for supervised learning as an analogy to constructive induction

Constructive induction (CI) is a learning process that consists of two
intertwined phases, one of which is responsible for the construction of the
“best” representation space and the other one is concerned with generating
hypothesis in the found space (Michalski, 1997).

In Figure 3 we can see two two-class (“+” and “-”) problems - with a) high
quality and b) low quality representation spaces (RS). In a) points marked by
“+” are easily separated from the points marked by “~” using a straight line or a
rectangular border. But in b) “+” and “-” are highly intermixed that indicates
the inadequateness of the original RS. A traditional approach is to search for
complex boundaries to separate the classes, whereas constructive induction
approach is to search for a better representation space where the groups are
much better separated as is the situation in c).

Constructive induction systems view learning as a dual search process for
an appropriate representation in the space of representational spaces and for an
appropriate hypothesis in the specific representational space. Michalski
introduced constructive (expand the representation space by attribute
generation methods) and destructive (contract the representational space by
feature selection or feature abstraction) operators. Bloedorn et al. (1993) consider
meta-rules construction from meta-data to guide the selection of the operators.

\T + - o+ — _ + o+ o+ —
+ + - —
+ + H|l- - + + - + =
CI +
> + _ _
+ + - +
+ + o+ - + - -+ - - - -
a) High quality RS b) Low quality RS ¢) Improved RS due to CI
FIGURE 3 High vs. low quality representation spaces (RS) for concept learning

(Arciszewski et al., 1995, 9)
2.6 Selecting representative instances for FE

When a data set contains a huge number of instances, some sampling approach
is commonly applied to address the computational complexity of knowledge
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discovery processes. In this thesis we are interested in the study of sample
reduction effect on the considered FE techniques with regard to the
classification performance of a supervised learner.

We use four different strategies to select samples: (1) random sampling, (2)
stratified random sampling, (3) kd-tree based selective sampling, and (4)
stratified sampling with kd-tree based selection.

261 Random sampling

Random sampling and stratified random sampling are the most commonly
applied strategies as they are straightforward and extremely fast. In random
sampling the information about the distribution of the instances by classes is
disregarded. So, defining the percentage p of the total number of training set N
instances to take, we select S = 0.01*N*p sample for building FE model and
consequent supervised learning (Figure 4).

k

—
k
Random Sampling N - p I
N =S { —» FE+SL
100%
Sample
Data
FIGURE 4 Random sampling

Intuitively, stratified sampling, which randomly selects instances from each
chunk (group of instances) related to the corresponding class separately, might
be preferable if we have the supervised learning process in mind.

2.6.2  Stratified random sampling

Figure 5 presents the basic idea of stratified random sampling. Conceptually,
the first step (that certainly can be omitted algorithmically) is to divide data into
¢ (equal to number of classes) chunks. Then, random sampling is applied for
each data chunk.

However, the assumption that instances are not uniformly distributed and
some instances are more representative than others (Aha et al., 1991) motivates
to apply a selective sampling approach. Thus, the main idea of selective
sampling is to identify and select representative instances, so that fewer
instances are needed to achieve similar (or even better) performance. The
common approach to selective sampling is data partitioning (or data indexing)
that is aimed to find some structure in data and then to select instances from
each partition of the structure. Although there exist many data partitioning
techniques (see for example (Gaede & Gunther, 1998) for an overview), we
choose kd-tree for our study because of its simplicity, and wide use.
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FIGURE 5 Stratified random sampling

2.6.3  kd-Tree based sampling

A kd-tree is a generalization of the simple binary tree which uses k features
instead of a single feature to split instances in a multi-dimensional space (Gaede
& Gunther, 1998). The splitting is done recursively in each of the successor
nodes until the node contains no more than a predefined number of instances
(called bucket size) or cannot be split further. The order in which features are
chosen to split can result in different kd-trees. As the goal of partitioning for
selective sampling is to split instances into different (dissimilar) groups, a
splitting feature is chosen if the data variance is maximized along the
dimension associated with the splitting feature.

In Figure 6 the basic idea of selective sampling is presented graphically.
First, a kd-tree is constructed from data, then a defined percentage of instances
is selected from each leaf of the tree and added to the resulting sample to be
used for FE models construction and supervised learning.

k
/—/%
Root Kk
kd-tree building N-p —
N — =S { ——» FE+SL
100%
N, N, Sample
Data kd-tree n N.Fiar’lldom Sampling
i=1 I
FIGURE 6 kd-Tree based selective sampling

2.6.4  Stratified sampling with kd-tree based selection of instances

Potentially, the combination of these approaches, so that both class information
and information about data distribution are used, might be useful. This idea is
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presented in Figure 7. It can be seen from the figure that in this approach
instead of constructing one global tree, several local kd-trees for each data
chunk related to certain class are constructed.
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3 RESEARCH PROBLEM

The idea of learning from data is far from being new. However, perhaps due to
developments in the Information Technology, Database Management and the
huge increase of data volumes being accumulated in databases the interest in
DM has become very intense. Numerous DM algorithms have recently been
developed to extract knowledge from large databases. Nevertheless, nowadays
the complexity of real-world problems, high dimensionality of data being
analyzed and poor representation spaces due to presence of many irrelevant or
indirectly relevant features challenge learning algorithms. It is commonly
accepted that just by pushing a button someone should not expect useful results
to appear.

FE is an effective data pre-processing step aimed to reduce the
dimensionality and to improve representation space of the problem at
consideration. There exists a strong theoretical background on FE (techniques)
and supervised learning (SL) from applied statistics, pattern recognition and
related field. However, many issues related to the integration of FE and SL
processes have not been studied intensively perhaps due to the rare emphasis
on DM/KDD as an iterative (and interactive) process (remember Figure 1) and
due to the absence of relatively large collection of benchmark data sets to
conduct extensive experimental study.

The purpose of this study is to develop theoretical background and
practical aspects of FE as means of (1) dimensionality reduction, and (2)
representation space improvement for SL in knowledge discovery systems. The
focus is on applying conventional Principal Component Analysis (PCA) and
two class-conditional approaches considered in Section 2.5 for two targets: (1)
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for a base level classifier construction, and (2) for dynamic integration of the
base level classifiers.

The main dimensions of research issues related to FE for SL can be
recognized from Figure 8. Each instance of a dataset has associated class-value
and, originally, features” values x1 ... xx. By means of feature transformation
new features can be extracted (constructed) by some functional mapping. Thus
each instance will have additional values of features y;...y. if they are added to
the original ones. Intuitively, this might be useful when the number of original
features is too small. By means of feature selection process a number of original
(hopefully, redundant and irrelevant) features can be eliminated. In general,
different number of features can be selected from k and m for each data cluster
(partition). Besides construction and selection of the most relevant features, the
most representative instances for each class can be selected if the sample size is
relatively large.

The rest of this Chapter is organized so that each section corresponds to
one of the recognized research questions: “How important is it to use class
information in the FE process?” (Section 3.1); “Is FE a data- or hypothesis-driven
constructive induction?” (Section 3.2); “Is FE for dynamic integration of base-level
classifiers useful in a similar way as for a single base-level classifier?” (Section 3.3);
“Which features — original, extracted or both — are useful for SL?” (Section 3.4); “How
many extracted features are useful for SL?” (Section 3.5); “How to cope with the
presence of contextual features in data, and data heterogeneity?” (Section 3.6); “What
is the effect of sample reduction on the performance of FE for SL?” (Section 3.7);
“When is FE useful for SL?” (Section 3.8); “What is the effect of FE on interpretability
of results and transparency of SL?” (Section 3.9); “How to make a decision about the
selection of the appropriate DM strateqy (particularly, the selection of FE and SL
techniques) for a problem at consideration?” (Section 3.10).

]
Class- Original features Extracted features |
2 value x| . Xy I . v, |
- 97 1
= s |
2 3 class, :
£ 2 -
= class, |
< o [
= X !
Yot} 1
g8 |
£ B class, !
0 5 C .
< @ S
< % \| class,
8 N

Selecting the most relevant features

FIGURE 8 The feature-values representations of the instances
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3.1 How important is it to use class information in the FE
process?

Giving large weights to features with higher variabilities, irrespective of
whether they are useful for classification or not can be dangerous. This may
give rise to a situation where the chosen principal component corresponds to an
attribute with the highest variability but has no discriminating power as shown
in Figure 9 (Oza & Tumer, 1999).

Our goal is to study the performance of conventional PCA for SL and
compare it with class-conditional parametric and nonparametric approaches
presented in Section 2.5.

FIGURE 9 PCA for classification: a) effective work of PCA, b) the case where an
irrelevant principal component (PC(;)) was chosen from the classification
point of view (O denotes the origin of the initial feature space x1, x> and Or
- the origin of the transformed feature space PC1), PC2))

3.2 Is FE a data- or hypothesis-driven constructive induction?

Constructive induction methods are classified into three categories: data driven
(information from the training examples is used), hypothesis driven
(information from the analysis of the form of intermediate hypothesis is used)
and knowledge driven (domain knowledge provided by experts is used)
methods (Arciszewski et al., 1995).

We consider FE for SL as an analogy of constructive induction
(classification). Indeed, what we are trying to achieve by means of FE is the
most appropriate data representation for the subsequent SL.

One approach is to select and perform FE, keeping in mind the subsequent
classification, and then perform the selection of a classifier (Figure 10).
However, another approach - the selection of a combination of a FE technique
and a classifier may be sufficient. In this case FE and classification cannot be
separated into two different independent processes (Figure 11).
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Our goal is to address this intuitive reasoning and to study if FE
techniques have different effects on the performance of different widely used
classifier like Naive Bayes, C4.5 and kNN.

" Search for the FE Er: Search for the SL
Train > most approprlate > process »| formed —p most approprlate .| process
FE technique . SL technique
set train
set
N— N—
v
Test > FE | sL
set | model | model
Prediction
FIGURE 10 Independent searches for the most appropriate FE and SL techniques
— . /[ = /
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Train most appropriate | | process| formed _ | most appropriate | | process
set "| FE technique " " Tra;n "| SL technique i
se
— — \ 4
Test > FE | SL
set | model 7| model
Prediction
FIGURE 11 The joint search for a combination of the most appropriate FE and SL

techniques

3.3 Is FE for dynamic integration of base-level classifiers useful
in a similar way as for a single base-level classifier?

Recent research has shown the integration of multiple classifiers to be one of the
most important directions in machine learning and data mining (Dietterich,
1997). Generally, the whole space of original features is used to find the
neighborhood of a new instance for local accuracy estimates in dynamic
integration. We propose to use FE in order to cope with the curse of
dimensionality in the dynamic integration of base-level classifiers (Figure 12).
Our main hypothesis to test is that with data sets where FE improves
classification accuracy when employing a single classifier (such as kNN), it
would also improve classification accuracy when a dynamic integration
approach is employed. Conversely, with data sets where FE decreases (or has
no effect to) classification accuracy with the use of a single classifier, then FE
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will also decrease (or will have no effect to) classification accuracy when
employing a dynamic integration approach.
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FIGURE 12 Scheme of the FEDIC approach (see Article VII for the detailed

description)

3.4 Which features - original, extracted or both — are useful for SL?

FE is often seen as a dimensionality reduction technique. An alternative is to see
FE as a useful transformation that leads to representation space improvement,
for example due to elimination of correlated and uninformative features and
construction of uncorrelated and informative ones instead. However, when the
number of original features is relatively small, some new features produced by
means of FE process may give additional value for the set of original ones.
Popelinsky (2001) used some transformed features as additional ones for a
decision-tree learner, instance-based learner and Naive Bayes learner, and
found that adding principal components to the original dataset results in a
decrease in error rate for many datasets for all three learners, although a
decrease of error rate was significant only for the instance-based learner.
Another interesting result was that for a decision-tree the learner decrease of
error rate could be achieved without increasing complexity of the decision tree.
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Our goal is to study advantages of using either extracted features or both
original and extracted features for SL with regard to the FE approaches
considered in Section 2.5.

3.5 How many extracted features are useful for SL?

When transformation matrix w for (3) (Section 2.5) is found, someone is
interested in deciding how many extracted features to take and what is the best
subset of orthogonally transformed features for SL.

One common method is to introduce some threshold, for example variance
accounted by a component to be selected. This results in selecting principal
components which correspond to the largest eigenvalues. The problem with
this approach is that the magnitude of eigenvalue depends on data variance
only and has nothing to do with class information. Jollife (1986) presents several
real-life examples where principal components corresponding to the smallest
eigenvalues are correlated with the output attribute. So, principal components
important for classification may be excluded because they have small
eigenvalues. In Figure 9 another simple example of such a situation was shown.
Nevertheless, criteria for selecting the most useful transformed features are
often based on variance accounted by the features to be selected.

An alternative approach is to use a ranking procedure and select principal
components that have the highest correlations with the class attribute.
Although this makes intuitive sense, there is criticism of such an approach.
Almoy (1996) showed that this alternative approach worked slightly worse than
using components with the largest eigenvalues in the prediction context.

Our goal is to analyze the performance of different FE techniques when
different number of extracted features is selected for SL.

3.6 How to cope with the presence of contextual features in data,
and data heterogeneity?

For some datasets a feature subset may be useful in one part of the instance
space, and at the same time it may be useless or even misleading in another part
of it. Therefore, it may be difficult or even impossible for some problem
domains to remove irrelevant and/or redundant features from a data set and
leave only useful ones by means of global FS. However, if it is possible to find
local homogeneous regions of heterogeneous data, there are more chances to
successfully apply FS. For FE the decision whether to proceed globally over the
entire instance space or locally in different parts of the instance space is also one
of the key issues. It can be seen that despite being globally high-dimensional
and sparse, data distributions in some domain areas are locally low-
dimensional and dense, for example in physical movement systems.

One possible approach for local FS or local FE would be clustering
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(partitioning) of the whole dataset into smaller regions. Generally, different
clustering techniques can be used for this purpose, for example the k-means or
EM techniques (Duda et al., 2001). However, in this thesis our focus is on a
possibility to apply so-called natural clustering aimed to use contextual features
for splitting whole heterogeneous data into more homogeneous clusters. Often
such (possibly hierarchical) contextual features may be constructed by domain
experts. Usually, contextual (or environmental) features are assumed to be
features that are not useful for classification by themselves but are useful in
combination with other (context-sensitive) features (Turney, 1996).

Our goal is to analyse the performance of FE and SL when applied globally
to the whole data and locally within natural clusters on a data set which is
likely heterogeneous and contains contextual features.

3.7 What is the effect of sample reduction on the performance of
FE for SL?

When a data set contains a huge number of instances, some sampling strategy is
commonly applied before the FE or SL processes to reduce their computational
time and cost.

In this thesis we are interested to study the effect of sample reduction on
FE for SL. The goal is to study if it is important to take into account class
information (to apply some sort of stratification) and preserve variance in data
or select the most representative instances during the sampling process. The
intuitive hypothesis is that the type of sampling approach is not important
when the selected sample size is relatively large. However, it might be
important to take into account both class information and information about
data distribution when the sample size to be selected is small.

Another goal is to find out if sample reduction has different effect on
different FE approaches.

3.8 When is FE useful for SL?

An important issue is how to decide (for example analyzing the space of
original features or meta-data if available) whether a PCA-based FE approach is
appropriate for a certain problem or not. Since the main goal of PCA is to
extract new uncorrelated features, it is logical to introduce some correlation-
based criterion with a possibility to define a threshold value. One of such
criteria is the Kaiser-Meyer-Olkin (KMO) criterion that accounts for both total
and partial correlation:
2200

DADYLE o
] i

KMO =




46

where r; =r(x®, xV) is the element of the correlation matrix R and a;are the

elements of A (partial correlation matrix), and
—R.
aij.x(‘v“ Z—U, (12)
VRiiRjj

where 3, is a partial correlation coefficient for x® and x, when the effect

of all the other but i and j features denoted as x ¥ is fixed (controlled), and Ry
is an algebraic complement for r, in the determinant of the correlation matrix
R.

It can be seen that if two features share a common factor with other
features, their partial correlation a; will be small, indicating the unique

variance they share. And then, if a; are close to zero (the features are
measuring a common factor) KMO will be close to one, while if a; are close to

one (the variables are not measuring a common factor) KMO will be close to
zero.

Generally, it is recommended to apply PCA for a data set only if KMO is
greater than 0.5. Popelinsky (2001) recommended PCA for meta-learning tasks
if KMO is greater than 0.6.

Our goal is to analyze the appropriateness of criterion (10) for the decision-
making process on usefulness of FE for a problem under consideration.

3.9 Interpretability of the extracted features

Interpretability context in the DM applications commonly refers to the issue
whether a classifier is easy to understand. It is commonly accepted that rule-
based classifiers like a decision tree and associative rules are very easy to
interpret, and neural networks and other connectionist and “black-box”
classifiers have low interpretability. kNN is considered to have a very poor
interpretability because the unstructured collection of training instances is far
from readable, especially if there are many instances.

While interpretability concerns a typical classifier generated by a learning
algorithm, transparency (or comprehensibility) refers to whether the principle
of the method of constructing a classifier is easy to understand (that is a users’
subjective assessment). Therefore, for example, a kNN classifier is scarcely
interpretable, but the method itself is transparent because it appeals to the
intuition of humans who spontaneously reason from similar cases. Similarly,
interpretability of Naive Bayes can be estimated as not very high, but the
transparency of the method is good for example for physicians who find that
probabilistic explanations replicate their way of diagnosing, i.e., by summing
evidence for or against a disease (Kononenko, 1993).
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Our goal is to analyse the drawbacks and advantages (if any) of FE process
on the interpretability and transparency of different rule-based and instance-
based SL algorithms.

3.10 Putting all together: towards the framework of DM strategy
selection

The purpose of studying and developing some pieces of theory background or
practical aspects of FE for SL is certainly the rigor-related type of research.
However, in this thesis we address also the relevance issues. With this respect
our main distant (faraway) research goal is to contribute to knowledge in the
problem of data mining strategy selection for a certain data mining problem.
And our particular focus is on different combinations of considered PCA-based
FE techniques and SL techniques.

Our aim is to introduce the general framework of KDD system that would
incorporate DSS approach to provide help for the user in the selection of the
most appropriate data mining strategy for a data set under consideration and to
allow mixed-initiative management of automated KDD process (see Figure 13).

A key idea is to apply the meta-learning approach for automatic algorithm
selection (see for example Kalousis (2002) for an overview). There exist two
contexts of meta-learning. The first one is related to the so-called multi-classifier
systems that apply different ensemble techniques (Dietterich, 1997). Their
general idea is usually to select one classifier on the dynamic basis taking into
account the local performance (for example generalisation accuracy) in the
instance space (see Article VII). In the second, the multi-strategy learning
applies strategy selection approach which takes into account the classification
problem related characteristics (meta-data).
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FIGURE 13 DM strategy selection via meta-learning and taking benefit of CI

approach (see Article IX for the detailed description)



4 RESEARCH METHODS AND RESEARCH DESIGN

In this chapter research methods and research design of the thesis are
considered. First, we introduce our view on DM research in the scope of
Information Systems Development (ISD) perspective and consider three basic
research approaches used in the study. Then, we focus our discussion on basic
approaches for evaluating learned models and for evaluating DM techniques
that are used to construct these models.

4.1 DM research in the scope of ISD research methods

In Pechenizkiy et al. (2005a) we consider the DM research as a continuous
Information Systems Development (ISD) process. We refer to the traditional
framework presented by Ives et al. (1980) that is widely known and has been
used in the classification of Information Systems (IS) research literature.
Drawing an analogy to this framework we consider a DM system as a special
kind of adaptive information system that processes data and helps to make use
of it. Adaptation in this context is important because of the fact that the DM
system is often aimed to produce solutions to various real-world problems, and
not to a single problem. On the one hand, a DM system is equipped with a
number of techniques to be applied for a problem at hand. On the other, there
exist a number of different problems, and current research has shown that no
single technique can dominate some other technique over all possible data
mining problems (Wolpert & MacReady, 1996). Nevertheless, many empirical
studies report that a technique or a group of techniques can perform
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significantly better than any other technique on a certain DM problem or a
group of problems (Kiang, 2003). Therefore DM research can be seen as a
development process of a DM system aimed at efficient utilization of available
DM techniques for solving a current problem.

Focusing on the ISD process, we consider ISD framework of Nunamaker et
al. (1990-91) adapted to DM artefact development. We discuss three basic
groups of IS research methods. Namely, we consider theoretical, constructive
and experimental approaches with regard to Nunamaker’s framework in the
context of DM. We demonstrate how these approaches can be applied
iteratively and/or in parallel for the development of an artefact - a DM tool,
and contribute to theory creation and theory testing.

livari et al. (1999) relate development process to the constructive type of
research because of their philosophical belief that development always involves
creation of some new artefacts - conceptual (models, frameworks) or more
technical artefacts (software implementations). The research approach is
classified as constructive where scientific knowledge is used to produce either
useful systems or methods, including development of prototypes and
processes. livari et al. (1999) argue the importance of constructive research
especially for applied disciplines of IS and computer science such as DM.

Nunamaker et al. (1990-91, 94) consider system development as a central
part of a multi-methodological IS research cycle (Figure 14).

Theory Buildying
Conceptual framework,
Math. models and
methods

A

System
Development
Artefact construction,
Technology transfer

Experimentation
Computer simulation,
Field experiments,
Lab experiments

QObservation
Case studies,
Field studies

FIGURE 14 A multimethodological approach to the construction of an artefact for DM
(adapted from Nunamaker et al., 1990-91, 94)

Theory building involves discovery of new knowledge in the field of
study, however it is rarely contributing directly to practice. Nevertheless, the
built theory often (if not always) needs to be tested in the real world to show its
validity, recognize its limitations and make refinements according to
observations made during its application. Therefore, research methods are
subdivided into basic and applied research, as naturally both are common for
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any large project (Nunamaker et al., 1990-91). A proposed theory leads to the
development of a prototype system in order to illustrate the theoretical
framework, and to test it through experimentation and observation with
subsequent refinement of the theory and the prototype in an iterative manner.
Such a view presents DM research as a complete, comprehensive and dynamic
process. It allows multiple perspectives and flexible choices of methods to be
applied during different stages of the research process. Furthermore, following
this multimethodological approach a researcher can analyze how the results
achieved through different research approaches relate to each other and search
for contradictions in the results. It can be expected that such joint use of these
approaches will give a better understanding of the introduced research goal
and provide a more significant and sophisticated contribution to the knowledge
in the area.

4.2 Research methods used in the study

Three basic research approaches are used in this thesis: the conceptual-theoretical
approach, the constructive approach, and the experimental approach. These
approaches are tightly connected and are applied in parallel. The theoretical
background is exploited during the constructive work and the constructions are
used for experimentation. The results of the constructive and experimental
work are used to refine the theory. Accordingly, several research methods are
applied.

In the conceptual-theoretical approach, conceptual basics and formalisms
of the integration of multiple DM methods in knowledge discovery systems,
and especially dynamic integration, are reviewed and discussed. During the
constructive part of the research, software that implements the developed
theory and allows conduct the experimental study and evaluation is developed.
In the experimental part of the research, widely available benchmark databases
(artificial and real-world ones) are used to evaluate characteristics of the
developed integration approach in order to obtain deeper understanding about
its behaviour in different subject domains.

The constructive approach, from the DM research point of view, can be
seen as means that helps to manipulate and coordinate integrative work of
different DM methods, and to carry out the experimental approach. It is
obvious that in order to construct a good artefact we need some background
knowledge about artefacts” components (that are basic DM techniques) and
their appropriateness for certain data set characteristics. Thus, it is natural that
theory-creating research has to be performed, during which the basics of the
relevant DM techniques should be elaborated. For these purposes literature
survey and review was done. This helped us to understand the background of
the problem and to analyse the previous findings in the area.

During the development process of our constructive research we used
MLC++ (the machine learning library in C++) (Kohavi et al., 1996) and WEKA
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machine-learning environment in Java (Witten & Frank, 2000). This allowed us
to use tested and validated tools as a core/backbone for a new tool. We chose
component-based development as it allows each component to be designed,
implemented, tested and refined independently. The control over the
individual components is easier to organize and the experiments can be more
easily performed on the separate components also.

Evaluation process is an essential part of constructive research. Naturally,
experimental approach was used to evaluate the prototype. The experimental
approach was beneficial for theory testing and theory construction.

Experimental study can be done in the ‘field” or in the ‘laboratory’. In the
first case different approaches are tested on so-called real-world datasets with
real users. In the second case systematically controlled experiments can be
organized. Controlled experiments sometimes might produce more beneficial
results for theory creating, since unlike real world datasets, synthetically
generated data allow testing exactly the desired number of characteristics while
keeping all the others unchanged.

In the next two sections, the experimental approach and experiment
design are considered in more detail.

4.3 Experimental approach

Evaluation process is an essential part of constructive research. By the
evaluation of a DM artefact we understand first of all (1) the evaluation of
learned models and meta-level models and (2) testing the hypothesis about
superiority of one studied technique or a combination of techniques over
another one. Some other important issues related to the use of DM artefact are
discussed in Pechenizkiy et al. (2005a). However, the experimental approach
benefits not only the artefact evaluation and theory testing that has been used
for artefact construction but also it can contribute to knowledge producing new
pieces of theory for selection and/or combination of DM techniques for a given
dataset. Meta-learning approaches are one good example of such attempts to
contribute to new pieces of theory induction.

4.3.1 Estimating the accuracy of the model learnt

For the purposes of algorithm comparison and selection, as well as for
parameter setting, methods of estimating the performance of a set of learned
models are needed. The goal of the model selection task is to estimate the
generalization performance of a collection of learning algorithms and to select
the algorithm with the lowest error estimate (Kohavi, 1995a).

When testing and validating a model, data miners use several techniques.
They include sampling, validation, cross-validation, stratification, Monte Carlo
methods, division of dataset into training, validating and testing sets etc. The
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two most essential elements of any experimental design are randomization and
experimental control of adjustable variables and restrictions of known factors.

One way to estimate the accuracy is to use the resubstitution estimate, in
which the model is tested on the same data it was built on (Kohavi, 1995b).
Although the resubstitution estimate is a highly optimistic estimate of accuracy
it was noted that for large enough samples, and for some algorithms there is no
need to look further than the resubstitution estimator (Kohavi, 1995b).

However, the common approach is to use a sample of the available
previously classified instances for a training set and the remaining instance -
for a test set. Then the training set is used to learn the model, and the test set is
used to test it. The major nonparametric statistical methods that follow this
methodology are cross-validation, random sampling (Monte Carlo cross-
validation), and bootstrapping (Merz, 1998).

In cross-validation (Schaffer, 1993) the examples are randomly split into v
mutually exclusive partitions (folds) of approximately equal size. A sample is
formed by setting aside one of the v folds as the test set, and the remaining folds
make up the training set. This creates v possible samples. As each learned
model is formed using one of the v training sets, its generalization performance
is estimated on the corresponding test partition. Stratified cross-validation,
where the folds are stratified so that they contain approximately the same
proportions of classes as the original dataset, can give better estimation
(Kohavi, 1995a). Usually, multiple runs of cross-validation are used for
stabilization of the estimations (Kohavi, 1995b).

Random sampling or Monte Carlo cross-validation (Kohavi, 1995a) is a
special case of v-fold cross-validation where a percentage of training examples
(typically 2/3) is randomly placed in the training set, and the remaining
examples are placed in the test set. After learning takes place on the training set,
generalization performance is estimated on the test set. This whole process is
repeated for many training/test splits (usually 30) and the algorithm with the
best average generalization performance is selected. Random sampling is used
in most experiments throughout this dissertation to evaluate the methods
developed and to compare them with the existing ones.

Bootstrapping (Kohavi, 1995a) is the process of sampling with replacement
from the available examples to form the training and test partitions. Kohavi
(1995a) showed that on average, cross-validation methods are better than
bootstrapping, and could be recommended for accuracy estimation and model
selection.

The evaluation of an DM technique can be either based on filter paradigm,
when evaluation process is independent from a learning algorithm and the
most appropriate approach is chosen from available ones according to certain
data characteristics before the algorithm starts, or based on wrapper paradigm
(Kohavi & John, 1998) that assumes the interaction between the approach
selection process and performance of the integrative model. In this thesis the
wrapper approach is used in the experimental studies.
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4.3.2 Tests of hypotheses

From the theory evaluation as well as from the artefact evaluation point of
view, the general principle of evaluation - the new derivation or construct must
be better that its best challenger - is applicable for DM as well. “Goodness’
criterion of a built theory or an artefact is multidimensional and sometimes is
difficult to define because of mutual dependence between the compromising
estimates. However, it is fairly easy to construct a criterion based on such
estimates as accuracy (including sensitivity and specificity, and various costs
matrices) of a built model and its performance (time and memory resources).
On the other hand - it is more difficult or even impossible to include into a
criterion such important aspects as interpretability of the artefact’s output
because estimates of that kind usually are subjective and can be evaluated only
by the end-users.

When a new DM technique is compared with some existing technique
(competitor) the cross-validation methods are commonly used to estimate their
generalization performance. As a rule, it is necessary to determine how
significant the observed differences are. The resampled Student’s t-test (also
known as the resampled paired t-test) is one commonly used tool that has many
potential drawbacks (Dietterich, 1998).

For the resampled paired t-test, a series of trials (usually 30) is conducted.
In each trial, the available sample is randomly divided into a training set and a
test set (for example, two thirds and one third of the data correspondingly).
Learning algorithms A and B are both trained on the training set and the
resulting classifiers are tested on the test set. Let p{ (respectively p{’) be the
observed proportion of test examples misclassified by algorithm A (respectively
B) during trial i. If we assume that the 30 differences p® = p{ - pQ were drawn
independently from a normal distribution, then we can apply the Student’s ¢
test, by computing the statistic

p-n (12)
\/an(p“’ N

n-1

t=

where p :%-z:zl p®, and n is the number of trials. Under the null hypothesis,

this statistic has a t distribution with n-1 degrees of freedom. For example for 30
trials, the null hypothesis can be rejected if |t| > 159 0,975 = 2.04523.

Usually, neither independence of algorithms (p{ and p{’) nor
independence of each evaluation from the others (because of overlapping of the
training sets in the trials) is guaranteed. Recent studies (Dietterich, 1998;
Salzberg, 1999) have shown that the resampled t-test and other commonly used
significance tests have an unacceptably high probability of detecting a
difference in generalization performance when no difference exists (Type 1
error). This is primarily due to the nature of the sampling process in the
experimental design and the number of examples available.
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The McNemar’s test, and the test for the difference of two proportions are
claimed to have acceptable Type 1 error (Dietterich, 1998). Nevertheless, in
Tsymbal (2002), the same results were obtained with all the tests, sometimes
with different levels of significance. However, although no single procedure for
comparing learning methods based on limited data satisfies all the constraints,
each of them provides the approximate confidence intervals that can be used in
interpreting experimental comparisons of learning techniques (Mitchel, 1997).

4.4 Experimental design

In this section, the most common experimental settings used throughout this
study are described. More detailed experimental settings can be found in the
corresponding section of the related article included in the thesis.

To compare the developed algorithms and the existing ones, for each data
set, 30 or 70 test runs were made. In each test run a data set was first split into
the training set, the validation set, and the test set by stratified random
sampling. Each time 70 percent of the instances were included in the training
set. The other 30 percent were used for the test set. When the validation set is
used (for example in the iterative refinement of the ensemble) 60 percent of the
instances were included in the training set, and the other 40 percent were
divided into the validation and test sets of approximately equal size. The test
set was used for the final estimation of the ensemble accuracy.

When needed, the values of continuous features are discretized dividing
the interval of the values of the feature into intervals with equal length. The
whole experimental environment was implemented first within the MLC++
framework. The results described in Article I, Article VII and Article VIII were
achieved using that experimental environment. For our further studies we
implemented the experimental environment within WEKA machine-learning
environment in Java (WEKA 3, 2004).

The datasets used in the experiments were taken from the University of
California at Irvine Machine Learning Repository (Blake & Merz., 1998), except
for the Acute Abdominal Pain (AAP) datasets provided by Laboratory for System
Design, Faculty of Electrical Engineering and Computer Science, University of
Maribor, Slovenia and Theoretical Surgery Unit, Dept. of General and Trauma
Surgery, Heinrich-Heine University Diisseldorf, Germany (Zorman et al., 2001),
and microbiology datasets Antibioticograms provided by N. N. Burdenko
Institute of Neurosurgery, Russian Academy of Medical Sciences, Moscow,
Russia. The short summary and the description of all the datasets used
throughout the different experiments can be found in Appendix A.

In the experiments, four FE techniques considered in Section 2.5:
conventional PCA, random projections, the parametric and nonparametric
class-conditional FE techniques; three supervised learning techniques
considered in Section 2.2: Naive Bayes, k Nearest Neighbour, and C4.5 Decision
Tree; three integration techniques considered in Section 2.3: dynamic selection,
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dynamic voting, dynamic voting with selection; and four sampling techniques
considered in Section 2.6: random, stratified random, and kd-tree based selective
sampling (with and without stratification) were used. In the evaluation of
different DM strategies composed by the above mentioned techniques we were
interested in their generalization accuracy, number of features required to
construct a model, and the time taken to construct and test a model.



5 RESEARCH RESULTS: SUMMARY OF THE
INCLUDED ARTICLES

This chapter presents a brief discussion of each article included in the thesis and
discusses the main findings of each corresponding article. Generally, each
included article addresses the research problem(s) presented in the
corresponding section(s) of Chapter 3.

5.1 “Eigenvector-based feature extraction for classification”

Reference: Tsymbal, A., Puuronen, S., Pechenizkiy, M., Baumgarten, M. &
Patterson D. 2002. Eigenvector-based Feature Extraction for Classification. In:
S.M. Haller, G. Simmons (Eds.), Proceedings 15th International FLAIRS
Conference on Artificial Intelligence, FL, USA: AAAI Press, 354-358.

PCA-based FE techniques are widely used for classification problems, though
they generally do not take into account the class information and are based
solely on inputs. Although this approach can be of great help in unsupervised
learning, there is no guarantee that the new axes are consistent with the
discriminatory features in a classification problem.

This paper shows the importance of the use of class information in FE for
SL and inappropriateness of conventional PCA to FE for SL. We considered two
class-conditional eigenvector-based approaches for FE described in Subsection
2.5.3. We compared the two approaches with each other, with conventional
PCA, and with plain nearest neighbor classification without FE.
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First, a series of experiments were conducted to select the best « and k
coefficients for the nonparametric approach. The parameter « was selected
from the set of 9 values: «e{1/20,1/10,1/5,1/3,1,3,510,20}, and the number of
nearest neighbors n from the set of 8 wvalues: k=2'-1i=1..8,
k ef{L,3,7,1531,63127,255}. The parameters were selected on the wrapper-like
basis, optimizing the classification accuracy. For some data sets, for example
LED and LED17, selection of the best parameters did not give almost any
improvement in comparison with the ones considered by Fukunaga (1990) « =1
and k=3, and the classification accuracy varied within the range of one percent.
It is necessary to note that the selection of the «and n parameters changed the
ranking of the three feature extraction approaches from the accuracy point of
view only on two data sets, thus demonstrating that the nonparametric
approach is robust with regard to the built-in parameters. However, for some
data sets the selection of the parameters had a significant positive effect on the
classification accuracy. For example, on the MONK-2 data set, accuracy is 0.796
when « =1 and k=3, but it reaches 0.974 when « =20 and k=63.

The nonparametric approach had the best accuracy on average. Also, the
nonparametric approach performed much better on the categorical data,
improving the accuracy of the other approaches for this selection of the data
sets. However, further research is necessary to check this finding. The
parametric approach was quite unstable, and not robust to different data sets’
characteristics. Conventional PCA was the worst FE technique on average.
Classification without FE was clearly the worst. This shows the so-called “curse
of dimensionality” and necessity of FE.

Thus, the experimental results supported our expectations. Still, it is
necessary to note that each feature extraction technique was significantly worse
than all the other techniques at least on one data set (for example, the Heart
data set for the nonparametric approach), and it is a question for further
research to define the dependencies between the characteristics of a data set and
the type and parameters of the feature extraction approach best suited for it.

5.2 “PCA-based Feature Transformations for Classification:
Issues in Medical Diagnostics”

Reference: Pechinizkiy, M., Tsymbal, A. & Puuronen, S. 2004. PCA-based
Feature Transformations for Classification: Issues in Medical Diagnostics, In: R.

Long et al. (Eds.), Proceedings of 17th IEEE Symposium on Computer-Based
Medical Systems CBMS'2004, Bethesda, MD: IEEE CS Press, 535-540.

Current electronic data repositories, especially in medical domains, contain
enormous amounts of data including also currently unknown and potentially
interesting patterns and relations that can be uncovered using knowledge
discovery and DM methods. Inductive learning systems were successfully
applied in a number of medical domains, for example in the localization of a
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primary tumor, prognostics of recurrence of breast cancer, diagnosis of thyroid
diseases, and rheumatology.

However, researchers and practitioners realize that the effective use of
these inductive learning systems requires data preprocessing before applying a
learning algorithm. This is especially important for multidimensional
heterogeneous data, consisting of a large number of features of different types.
If a subset of irrelevant and/or redundant features can be recognized and
eliminated from the data then feature selection techniques may work well.
Unfortunately this is not always easy and sometimes not even possible. This is
because a feature subset may be useful in one part of the instance space, and at
the same time be useless or even misleading in another part of it. That is why
the transformation of the given representation before weighting the features is
often preferable.

FE is often seen as a dimensionality reduction technique. An alternative is
to see FE as a useful transformation that leads to representation space
improvement due to elimination of correlated and uninformative features and
construction of uncorrelated and informative ones. However, when the number
of original features is relatively small, some new features produced by means of
FE process may give additional value for the set of original ones.

In this paper we studied advantages of using either extracted features or
both original and extracted features for SL.

We elaborated a test bench with a collection of medical data sets taken
from the UCI machine learning repository and on three data sets of cases of
acute abdominal pain to conduct experiments with the considered FE
techniques (Section 2.5) and the kNN-classifier. We evaluated four
combinations of kNN with the considered PCA-based FE techniques
(conventional PCA, ranked PCA, parametric eigenvalue-based approach, and
nonparametric eigenvalue-based approach). Then we evaluated the results of
these four combinations against the best wrapper procedure. After that we
compared the same combinations to find out whether the replacement of the
initial features by the extracted ones is better than their superposition.

Our experimental results showed that for Diabetes and Thyroid data sets
none of the feature transformation techniques can improve the work of a plain
3NN classifier. For Heart and Cancer data sets 3NN achieves the highest
accuracy results when the new features extracted by the parametric approach
are used instead of the original ones. And for Liver data set the best results are
achieved when the feature extracted by the parametric approach is used
together with the original ones. KMO criterion (Section 3.8) being successfully
used in factor analysis is not useful when deciding whether FE will improve the
representation space for SL. Although for every data set KMO was higher than
0.5, the principal components, when used instead of the original features,
resulted in lower accuracy of 3NN classifier, and when used together with the
original features, never improved the classification accuracy.

We also discussed some interpretability issues of the new extracted
features. We argued that, although when applied for rule-like approaches
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(association rules), the interpretation of rules with respect to the initial
(original) features may be difficult or even impossible, for case-based
approaches (nearest neighbor) the comparison by analogy may be easier.
Additionally we discussed whether the transformation formulas of principal
components may provide useful information for interpretability of results; and
whether the interpretability can be improved with the help of a new feature
space rotation and back-transformation (where such operations are appropriate
and applicable).

5.3 “On Combining Principal Components with Fisher’s Linear
Discriminants for Supervised Learning”

Reference: Pechenizkiy, M., Tsymbal, A. & Puuronen, S. 2005. On Combining
Principal Components with Fisher’s Linear Discriminants for Supervised
Learning. (submitted to) Special Issue of Foundations of Computing and
Decision Sciences “Data Mining and Knowledge Discovery” (as extended
version of Pechenizkiy et al., 2005e).

In this paper, principal component analysis (PCA), parametric feature
extraction (FE) based on Fisher’s linear discriminant analysis (LDA), and their
combination as means of dimensionality reduction are analyzed with respect to
the performance of classifier. Three commonly used classifiers are taken for
analysis: kNN, Naive Bayes and C4.5 decision tree. Recently, it has been argued
that it is extremely important to use class information in FE for supervised
learning (SL). However, LDA-based FE, although using class information, has a
serious shortcoming due to its parametric nature. Namely, the number of
extracted components cannot be more that the number of classes minus one.
Besides, as it can be concluded from its name, LDA works mostly for linearly
separable classes only.

In this paper we study whether it is possible to overcome these
shortcomings by adding the most significant principal components to the set of
features extracted with LDA. In experiments on 21 benchmark datasets from
UCI repository these two approaches (PCA and LDA) are compared with each
other, and with their combination for each classifier.

Our results show that such a combination approach has certain potential,
especially when applied for C4.5 decision tree learning. However, from the
practical point of view the combination approach cannot be recommended for
Naive Bayes since its behavior is very unstable on different datasets.
Presumably, additional feature selection would be useful for Naive Bayes and
kNN from the combined set of features, which is implicitly done with C4.5.
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5.4 “The Impact of the Feature Extraction on the Performance of a
Classifier: kNN, Naive Bayes and C4.5”

Reference: Pechenizkiy, M. 2005. The Impact of the Feature Extraction on the
Performance of a Classifier: kNN, Naive Bayes and C4.5. In: B.Kegl &
G.Lapalme (Eds.): Proceedings of 18th CSCSI Conference on Artificial
Intelligence AI'05, LNAI 3501, Heidelberg: Springer-Verlag, 268-279.

In this paper we analyzed FE from two different perspectives. The first one is
related to the “curse of dimensionality” problem and the necessity of
dimensionality reduction (see Section 2.4). The second perspective comes from
the assumption that in many data sets to be processed some individual features,
being irrelevant or indirectly relevant for the purpose of analysis, form poor
problem representation space. Corresponding ideas of constructive induction
that assume the improvement of problem representation before application of
any learning technique are presented (see Section 2.6).

FE accounts for both of the perspectives, and therefore, FE, when applied
either on data sets with high dimensionality or on data sets including indirectly
relevant features, can improve the performance of a classifier.

One main hypothesis is that different FE techniques might have different
effects for different classifiers.

We conducted the experiments with four different types of FE techniques:
PCA, Random Projection, and two class-conditional approaches to FE, and with
three SL algorithms: the nearest neighbour classification, Naive Bayes, and C4.5
decision tree learning, analyzing the impact of FE techniques on the
classification performance on 20 UCI datasets.

In this paper, the experimental results show that for many data sets FE
does increase classification accuracy. Still, we could see from the results that
there is no best FE technique among the considered ones, and it is hard to say
which one is the best for a certain classifier and/or for a certain problem,
however according to the experimental results some major trends can be
recognized.

Class-conditional approaches (and especially nonparametric approach)
were often the best ones. This indicated the importance of taking into account
class information and not relying only on the distribution of variance in the
data. At the same time it is important to notice that the parametric FE was very
often the worst, and for 3NN and C4.5 the parametric FE was the worst more
often than RP. Such results highlight the very unstable behavior of parametric
FE. One possibility to improve the parametric FE would be to combine it with
PCA or a feature selection approach in a way that a few principal components
or the components most useful for classification features are added to those
extracted by the parametric approach. We experimentally evaluated this idea
later in Article III; the results showed that parametric FE produces more stable
results when its extracted features are combined with few principal components
for SL.
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Although it is logical to assume that RP should have more success in
applications where the distances between the original data points are
meaningful and/or for such learning algorithms that use distances between the
data points, our results show that this is not necessarily true. However, data
sets in our experiments have 48 features at most and RP is usually applied for
problems with much higher dimensionality.

The main conclusion of the paper is that FE techniques are powerful tools
that can significantly increase the classification accuracy producing better
representation spaces or resolving the problem of “the curse of dimensionality”.
However, when applied blindly, FE may have no effect for the further
classification or can even deteriorate the classification accuracy.

5.5 “Local Dimensionality Reduction within Natural Clusters for
Medical Data Analysis”

Reference: Pechenizkiy, M., Tsymbal, A., Puuronen, S. 2005. Supervised
Learning and Local Dimensionality Reduction within Natural Clusters:
Biomedical Data Analysis, (submitted to) IEEE Transactions on Information
Technology in Biomedicine, Special Post-conference Issue "Mining Biomedical
Data" (as extended version of Pechenizkiy et al., 2005c)

Inductive learning systems have been successfully applied in a number of
medical domains. Nevertheless, the effective use of these systems requires data
preprocessing before applying a learning algorithm. It is especially important
for multidimensional heterogeneous data, presented by a large number of
features of different types. Dimensionality reduction is one commonly applied
approach. The goal of this paper was to study the impact of “natural” clustering
on dimensionality reduction for classification. We compared several DM
strategies that apply dimensionality reduction by means of FE or feature
selection for subsequent SL with the selected part of real clinical database trying
to construct data models that would help in the prediction of antibiotic
resistance and in understanding its development.

Each instance of the data used in our analysis represents one sensitivity test
and contains the features related to pathogen that is isolated during the microbe
identification analysis, antibiotic that is used in the sensitivity test and the result
of the sensitivity test (sensitive, resistant, or intermediate). The information
about sensitivity analysis is connected with a patient, his/her demographical
data (sex, age) and hospitalization in the Institute (main department, whether the
test was taken while patient was in ICU (Intensive Care Unit), days spent in the
hospital before, etc.). We introduced grouping features for pathogens and
antibiotics so that 17 pathogens and 39 antibiotics were combined into 6 and 15
groups respectively. Thus, each instance had 28 features that included
information corresponding to a single sensitivity test augmented with data
concerning the type of the antibiotic used and the isolated pathogen, and
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clinical features of the patient and his/her demographics, and the microbiology
test result as the class attribute. The data is relatively high dimensional and
heterogeneous; heterogeneity is presented by a number of contextual
(environmental) features. In this study we applied natural clustering aimed to
use contextual features for splitting a real clinical dataset into more
homogeneous clusters in order to construct local data models that would help
in better prediction of antibiotic resistance. Semantically, the sensitivity concept
is related first of all to the pathogen and antibiotic concepts. For our study binary
features that describe the pathogen grouping were selected as prior
environmental features, and they were used for hierarchical natural clustering
(the hierarchy was introduced by the grouping of the features). So, the whole
dataset was divided into two nearly equal natural clusters: gram+ and gram-.
Then, the gram+ cluster divided into the staphylococcus and enterococcus clusters,
and gram- cluster divided into the enterobacteria and nonfermentes clusters.

We analyzed experimentally whether local dimensionality reduction
within “natural” clusters is better than global search for a better feature space
for classification in terms of performance.

In our experimental study we applied k-nearest neighbor classification
(kNN) to build antibiotic sensitivity prediction models. We applied three
different wrapper-based sequential FS techniques and three PCA-based FE
techniques globally and locally and analyzed their impact on the performance
of kNN classifier.

The results of our experiments showed that natural clustering is very
effective and efficient approach to cope with complex heterogeneous datasets,
and that the proper selection of a local FE technique can lead to significant
increase of predictive accuracy in comparison with the global kNN with or
without FE. The amount of features extracted or selected locally is always
smaller than that in the global space, which shows the usefulness of natural
clustering in coping with data heterogeneity.

5.6 “The Impact of Sample Reduction on PCA-based Feature
Extraction for Naive Bayes Classification”

Reference: Pechenizkiy, M., Puuronen, S. & Tsymbal, A. 2006. The Impact of
Sample Reduction on PCA-based Feature Extraction for Supervised Learning.
(to appear) In: Proceedings of the 21st ACM Symposium on Applied
Computing (SAC'06, Data Mining Track), ACM Press.

When a data set contains a huge number of instances, some sampling approach
is applied to address the computational complexity of FE and classification
processes. The focus of this paper is within the study of sample reduction effect
on FE techniques with regard to the classification performance.

The main goal of this paper is to show the impact of sample reduction on
the process of FE for classification. In our study we analyzed the conventional
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Principal Component Analysis (PCA) and two eigenvector-based approaches
that take into account class information (Section 2.5). The experiments were
conducted on ten UCI data sets, using four different strategies to select samples:
(1) random sampling, (2) stratified random sampling, (3) kd-tree based selective
sampling, and (4) stratified sampling with kd-tree based selection.

The experimental results of our study showed that the type of sampling
approach is not important when the selected sample size is relatively large.
However, it is important to take into account both class information and
information about data distribution when the sample size to be selected is
small.

The kd-tree based sampling has very similar effect to stratified random
sampling, although different in nature.

Comparing the results related to the four sampling strategies we can
conclude that no matter which one of the four sampling strategies is used, if
sample size p is small, p ~ 10%, then SL without FE yields the most accurate
results; if sample size p = 20%, then nonparametric class-conditional FE (NPAR)
outperforms other methods; and if sample size p = 30%, NPAR outperforms
other methods even if they use 100% of the sample. The best p for NPAR
depends on sampling method: for random and stratified p = 70%, for kd-tree p =
80%, and for stratified + kd-tree p = 60%. PCA is the worst technique when
applied on a small sample size, especially when stratification or kd-tree
indexing is used.

Generally, all sampling strategies have similar effect on final classification
accuracy of NB for p > 30%. The significant difference in accuracy is within 10%
< p < 30%. The intuitive explanation for this is that when taking a very large
proportion of the sample, it does not matter which strategy is used since most
of the selected instances are likely to be the same ones (maybe chosen in
different orders). However, the smaller the portion of the sample, the more
important it is how the instances are selected.

5.7 “Feature extraction for dynamic integration of classifiers”

Reference: Pechenizkiy, M., Tsymbal, A., Puuronen, S. & Patterson, D. 2005.
Feature Extraction for Dynamic Integration of Classifiers, (submitted to)

Fundamenta Informaticae, IOS Press (as extended version of Tsymbal et al.,
2003).

Recent research has shown the integration of multiple classifiers to be one of the
most important directions in machine learning and DM. It was shown that, for
an ensemble to be successful, it should consist of accurate and diverse base
classifiers. However, it is also important that the integration procedure in the
ensemble should properly utilize the ensemble diversity. In this paper, we
present an algorithm for the dynamic integration of classifiers in the space of
extracted features (FEDIC). It is based on the technique of dynamic integration,
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in which local accuracy estimates are calculated for each base classifier of an
ensemble, in the neighbourhood of a new instance to be processed. Generally,
the whole space of original features is used to find the neighbourhood of a new
instance for local accuracy estimates in dynamic integration. We propose to use
FE in order to cope with the curse of dimensionality in the dynamic integration
of classifiers. We consider classical principal component analysis and two
eigenvector-based supervised FE methods that take into account class
information and their application to the dynamic selection, dynamic voting and
dynamic voting with selection integration techniques (DS, DV and DVS).
Experimental results show that, on some data sets, the use of FEDIC leads to
significantly higher ensemble accuracies than the use of plain dynamic
integration in the space of original features. As a rule, FEDIC outperforms plain
dynamic integration on data sets, on which both dynamic integration works
well (it outperforms static integration), and considered FE techniques are able
to successfully extract relevant features.

Our main hypothesis was that with data sets, where FE improves
classification accuracy when employing a single classifier (such as kNN), it
would also improve classification accuracy when a dynamic integration
approach is employed. Conversely, with data sets, where FE decreases (or has
no effect on) classification accuracy with the use of a single classifier, FE will
also decrease (or will have no effect on) classification accuracy when employing
a dynamic integration approach.

The results supported our hypothesis and showed that the proposed
FEDIC algorithm outperforms the dynamic schemes on plain features only on
those data sets in which FE for classification with a single classifier provides
better results than classification on plain features. When we analyzed this
dependency further, we came to a conclusion that FE influenced the accuracy of
dynamic integration in most cases in the same manner as FE influenced the
accuracy of base classifiers.

We conducted further experimental analyses on those data sets on which
FEDIC was found to produce significantly more accurate results than DIC. For
each data set we compared the behavior of conventional PCA versus class-
conditional approaches with respect to DS, DV and DVS, and vice versa, the
behavior of integration strategies with respect to FE techniques.

A number of meta-features that are used to search for the nearest neighbor
were compared with respect to the cases with and without FE. We then
analyzed how FE techniques improve the neighborhood of each data set on
average and found strong correlation between these results with the
generalized accuracy results.
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5.8 “Feature extraction for classification in knowledge discovery
systems”

Reference: Pechenizkiy, M., Puuronen, S. & Tsymbal, A. 2003. Feature
extraction for classification in knowledge discovery systems, In: V.Palade,
R.J.Howlett, L.CJain (Eds.), Proceedings of 7t International Conference
on Knowledge-Based Intelligent Informationand Engineering Systems
KES'2003, Lecture Notes in Artificial Intelligence, Vol.2773, Heidelberg:
Springer-Verlag, 526-532.

During the last years DM has evolved from less sophisticated first-generation
techniques to today's cutting-edge ones. Currently there is a growing need for
next-generation DM systems to manage knowledge discovery applications.
These systems should be able to discover knowledge by combining several
available techniques, and provide a more automatic environment, or an
application envelope, to surround this highly sophisticated DM engine.

In this paper we considered a decision support system (DSS) approach
that is based on the methodology used in expert systems. The approach is
aimed to combine FE techniques with different classification tasks. The main
goal of such system is to automate as much as possible the selection of the most
suitable FE approach for a certain classification task on a given data set
according to a set of criteria.

Although there is a huge number of FE methods (that apply linear or
nonlinear processing, and are applied globally or locally), currently, as far as we
know, there is no FE technique that would be the best for all data sets in the
classification task. Thus the adaptive selection of the most suitable FE technique
for a given data set is a real challenge. Unfortunately, there does not exist
canonical knowledge, a perfect mathematical model, or any relevant tool to
select the best extraction technique. Instead, a volume of accumulated empirical
findings, some trends, and some dependencies have been discovered.

In order to help to manage the DM process, recommending the best-suited
FE method and a classifier for a given data set, we proposed to take benefit of
experimental approach for relevant knowledge discovery. Discovered during
the experimental research, pieces of knowledge in the form of association rules
may save a great amount of time when selecting or at least initialising methods’
parameters in a proper way, and moreover when selecting/recommending the
most appropriate combination(s) of FE and classification methods.

Thus, potentially, it might be possible to reach a performance close to the
wrapper type approach, when actually using the filter paradigm, because of the
selection of methods and their parameters according to a certain set of criteria
in advance.

During the pilot studies we did not find a simple correlation-based
criterion to separate the situations where a FE technique would be beneficial for
the classification. Nevertheless, we found out that there exists a trend between
the correlation ratio in a data set and the threshold level used in every FE



66

method to address the amount of variation in the data set explained by the
selected extracted features. This finding helps in the selection of the initial
threshold value as a starting point in the search for the optimal threshold value.
However, further research and experiments are required to verify these
tindings.

59 “Data mining strategy selection via empirical and
constructive induction”

Reference: Pechenizkiy, M. 2005 Data mining strategy selection via empirical
and constructive induction. In: M.H. Hamza (Ed.) Proceedings of the IASTED
International Conference on Databases and Applications DBA’05, Calgary:
ACTA Press, 59-64.

Recently, several meta-learning approaches have been applied for automatic
technique selection by several researchers but with little success. The goal of
this paper was (1) to critically analyze such approaches, (2) to consider their
main limitations, (3) to discuss why they were unsuccessful and (4) to suggest
the ways for their improvement. We introduce a general framework for DM
strategy selection via empirical and constructive induction, which is central to
our analysis.

Our aim in proposing this framework was to contribute to knowledge in
the problem of DM strategy selection for a certain DM problem at hand. We
proposed a DSS approach in the framework to recommend a DM strategy
rather than a classifier or any other ML algorithm. And the important difference
here is that constituting a DM strategy the system searches for the most
appropriate ML algorithm with respect to the most suitable data representation
(for this algorithm). We believe that a deeper analysis of a limited set of DM
techniques (particularly, FE techniques and classifiers) of both the theoretical
and experimental levels is a more beneficial approach than application of the
meta-learning approach only to the whole range of machine learning techniques
at once. Combining theoretical and (semiautomatic) experimental approaches
requires the integration of knowledge produced by a human-expert and the
meta-learning approach.

In the framework we considered the constructive induction approach that
may include the FE, the feature construction and the feature selection processes
as means of relevant representation space construction.

We considered pairwise comparison of classifiers of the meta-level as more
beneficial than regression and ranking approaches with respect to contribution
to knowledge, since the pairwise comparison gives more insight to the
understanding of advantages and weaknesses of available algorithms, and
produces more specific characterizations.

With respect to meta-model construction we recommended the meta-rules
extraction and learning by analogy rather than inducing a meta-decision tree.
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The argumentation is straightforward. A decision tree is a form of procedural
knowledge. Since it has been constructed it is not easy to update it according to
changing decision-making conditions. So, if a feature related to a high-level
node in the tree is unmeasured (for example due to time-/cost-consuming
processing), the decision tree can produce nothing but probabilistic reasoning.
Decision rules, on the contrary, are a form of declarative knowledge. From a set
of decision rules it is possible to construct many different, but logically
equivalent, or nearly equivalent, decision trees. Thus the decision rules are a
more stable approach to meta-learning rather than the decision trees.

We considered the possibility to conduct experiments on synthetically
generated datasets that allows generating, testing and validating hypothesis on
DM strategy selection with respect to a dataset at hand under controlled
settings when some data characteristics are varied while the others are fixed.
Beside this, experiments on synthetic datasets allow producing additional
instances for the meta-dataset.

5.10 About the joint articles

The present introductory part and Article IV (Pechenizkiy, 2005b) and Article
IX (Pechenizkiy, 2005a) have been written solely by the author.

The author of this thesis is the principal author of Article II (Pechenizkiy et
al., 2004), Article III (Pechenizkiy et al., 2005d), Article V (Pechenizkiy et al.,
2005e), Article VI (Pechenizkiy et al., 2006), Article VII (Pechenizkiy et al.,
2005¢), and Article VIII (Pechenizkiy et al., 2003). Article I (Tsymbal et al., 2002)
has been written in close collaboration by the authors. All the articles included
have been refereed by at least two international reviewers and published. All
the articles except Article II are full-paper refereed and the Article II is extended
abstract refereed. Article 1, Article IV, Article VIII, and Article IX, and earlier
versions of Article III and Article V have been presented by the author
personally at the corresponding conferences.

The developed software prototype within WEKA machine learning library
in Java for the experimental studies, and some of the contents of experimental
sections in the included articles also represent the independent work done by
the author. Analysis of background and review of related work in the included
joint papers (for example Section 3 in Article VII) were also done mainly by the
author.
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FE is an important step in DM/KDD process that can be beneficial for SL in
terms of classification accuracy and time complexity (see for example Article I)
of model learning and new instances classification.

FE can be considered as a dimensionality reduction technique as well as a
technique for construction of better representation space for further supervised
learning. FE can improve classification accuracy of a model produced by a
learner even for datasets having relatively small number of features.

In this chapter we briefly summarize the main contributions of the thesis
with regard to rigor and relevance of accomplished research study, discuss its
limitations and overview the directions for future work and finally present the
challenges of further research.

6.1 Contributions of the thesis

This thesis contributes to the problem of DM methods integration in the KDD
process. All contributions of the thesis are summarized with respect to the
stated research question (RQ) in Chapter 3:

RQ 1: How important is it to use class information in the FE process?
(Section 3.1)

RQ 2: Is FE a data- or hypothesis-driven constructive induction?
(Section 3.2)

RQ 3: Is FE for dynamic integration of base-level classifiers useful in a

similar way as for a single base-level classifier? (Section 3.3)



RQ 4:

RQ 5:
RQ 6:

RQ 7:
RQ 8:

RQ 9:
RQ 10:
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Which features - original, extracted or both - are useful for SL?
(Section 3.4)

How many extracted features are useful for SL? (Section 3.5)
How to cope with the presence of contextual features in data,
and data heterogeneity? (Section 3.6)

What is the effect of sample reduction on the performance of FE
for SL? (Section 3.7)

When is FE useful for SL? (Section 3.8)

Interpretability of the extracted features. (Section 3.9)

How to make a decision about the selection of the appropriate
DM strategy (particularly, the selection of FE and SL techniques)
for a problem at consideration?

The list of the main contributions of the thesis is also divided into two parts.
First, the contributions related to the more theory-based results, and then, the
contributions related to the use of FE for SL in a knowledge discovery system
(KDS) are considered. We denote contribution related to research question RQi
as CRQi. We provide also the reference at every point to the corresponding
article included in the collection in the thesis.

6.1.1. Contributions to the theory

The results of our experimental studies showed that:

CRQ 1:

CRQ 2:

CRQ 3:

CRQ 4:

Use of class information in FE process is crucial for many
datasets. Consequently, class-conditional FE can result in better
classification accuracy of a learning model whereas solely
variance-based FE has no effect on or deteriorates the accuracy.
(Articles I and IV)

Ranking of different FE techniques in line with the
corresponding accuracy results of a SL technique can vary a lot
for different datasets. And different FE techniques behave also
in a different way when integrated with different SL techniques.
Thus, FE process should correspond both to dataset
characteristics and the type of SL that follows FE process.
(Article IV)

FE can improve dynamic integration of classifiers for those
datasets where FE improves accuracy of an instance-based (such
as Nearest Neighbour) classifier. (Article VII)

Combination of original features with extracted features can be
beneficial for SL on some datasets especially when tree-based
inducers like C4.5 are used for classification. (Article II).
Similarly, combining linear discriminants with few principal
components may result in better -classification accuracy
(compared with the use of either of these approaches) when C4.5
is used. However this combination is not beneficial for Naive
Bayes classifier and it results in very unstable behaviour on
different datasets. (Article III)
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6.1.2. Contributions to the practice (use) of FE for SL in a KDS

First, it might be valuable to remind that in many experimental studies

accomplished during the work on this thesis besides artificial and benchmark

datasets, we used real world datasets from medical and microbiology domain

areas in order to (1) validate our findings also with dirty real datasets and (2)

contribute to the domain area, primarily, to improve the classification accuracy.
The results of our experimental studies showed that:

CRQ 5:

CRQ 6:

CRQ 7:

CRQ 8:

The appropriate threshold values used in FE process to account
the variance explained by (selected) extracted features varies a
lot from one dataset to other. (Article I and VIII)

Natural clustering is a very efficient approach in DM that allows
building local FE and SL models, which outperform
corresponding global models in classification accuracy using
less number of features for learning (due to utilizing some
background knowledge). (Article V)

Training sample reduction affects the performance of SL with FE
rather differently. In general, nonparametric FE results in similar
or better accuracy results of a classifier with smaller number of
training instances than parametric FE. Our results showed that
when the proportion of training instances used to build the FE
and the learning model is relatively small it is important to use
an adequate sample reduction technique to select more
representative instances for the FE process. (Article VI)

Our preliminary experimental study show that, in general, it is
hard to predict ahead when (and for which type of dataset) FE
might be useful to apply with regard to SL, and which extracted
features and how many of them should be used in supervised
learning. (Article VIII)

We presented our vision of interpretability of results and transparency of
learning process with regard to FE as transformation of original space.

CRQ 9:

Our analysis shows that depending on the kind of data, the
meaning of the original features and the problem at
consideration and the supervised learning technique, FE can be
both beneficial and harmful with these respects. (Article II)

The results and conclusions from the experimental studies and further
conceptual-analytic research resulted in:
CRQ 10: the construction of a general framework for the selection of the

most appropriate DM strategy according to the knowledge
about behaviour (use) of DM techniques and their combinations
(that can constitute a DM strategy) on different kinds of
datasets. (Article IX)
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6.2 Limitations and future work

This section is aimed to highlight some known limitations of the study and to
name the main aspects of future work.

6.2.1. Limitations

In the thesis we considered a limited set of FE and SL techniques; and a limited
set of data characteristics and method’s parameters has been analysed.

FE techniques like PCA transformation are crippled by their reliance on
second-order statistics. Though uncorrelated the principal components can be
statistically highly dependent (Hyvdirinen et al., 2001). Independent component
analysis (ICA) that can be seen as an extension to PCA (but use some form of
higher-order statistics, which means information not contained in a covariance
matrix) accounts for this problem.

If the data components have non-linear dependencies, linear feature
transformation will require a larger dimensional representation than would be
found by a non-linear technique. There exists a number of non-linear
implementations of PCA, (see for example Oja, 1997). These and many other
existing FE techniques have not been considered in this thesis; however the
same research design can be applied to these groups of techniques.

Most of the study is based on experimental type of research supported by
constructive and theoretic approaches. We believe that stronger connections to
theoretical background of FE and SL techniques could help to make more
significant contribution to the field.

6.2.2. Future work

We see several directions for further research. From the experimental setting
side - data sets with significantly higher number of features could be analysed.
With this respect further analysis of random projections as means of FE as a
pre-processing step for FE may bring interesting findings. Significantly more
experiments should be performed on the synthetically generated data sets with
predefined characteristics.

While in this thesis mainly accuracy of the approaches was analysed, in
the further studies it would be interesting to estimate the algorithmic
complexity of different schemes more precisely. Another important and
interesting work is to study further the effect of FE on transparency of SL
process and interpretability of SL outcomes.

6.3 Further challenges

In this section we take the risk to guess the further main interests and
challenges with respect to the topic of the thesis. Our strong belief is that the
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relevance of DM research should be taken more seriously so that rigor and
relevance of research are well-balanced.

From a practical point of view it is important to provide useful tools for
DM practitioners. Therefore, the most challenging goals of further research in
the area are likely to be related to construction of decision support system for
DM strategy recommendation. The application of the meta-learning approach
for the discovery of pieces of knowledge about behaviour of different DM
strategies on different types of data (Pechenizkiy, 2005b) perhaps would be the
tirst step in addressing this challenge. However, knowledge management issues
including knowledge representation, organization, storage, and continuous
distribution, integration (from multiple types of sources: DM experts and
practitioners, results from laboratory experiments on synthetic datasets and
from field experiments on real-world problems) and refinement processes will
naturally appear. Besides this, research and business communities, or similar
KDSs themselves can organize different so-called trusted networks, where
participants are motivated to share their knowledge. We tried to highlight these
challenges in Pechenizkiy et al. (2005b).
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APPENDIX A. DATASETS USED IN THE EXPERIMENTS

The majority of the datasets used in the experiments were taken from the
University of California at Irvine Machine Learning Repository (Blake & Merz,
1998). The Acute Abdominal Pain (AAP) datasets were provided by Laboratory
for System Design, Faculty of Electrical Engineering and Computer Science,
University of Maribor, Slovenia and Theoretical Surgery Unit, Dept. of General
and Trauma Surgery, Heinrich-Heine University Disseldorf, Germany
(Zorman et al., 2001). The Antibiotic Resistance dataset was collected in the
Hospital of N.N. Burdenko Institute of Neurosurgery, Moscow, Russia. The
main characteristics of the datasets used in experiments throughout the thesis
are presented in Table 1.

The table includes the name of the dataset, the number of instances
included in the dataset, the number of different classes of instances, and the
numbers of different kinds of features included in the instances.

The Acute Abdominal Pain (AAP) datasets represent the same problem of
separating acute appendicitis (class “appendicitis”), which is a special problem
of acute abdominal pain, from other diseases that cause acute abdominal pain
(class “other diagnoses”). The early and accurate diagnosis of acute appendicitis
is still a difficult and challenging problem in everyday clinical routine. AAPI,
AAPII and AAPIII are three large data sets with cases of acute abdominal pain
(AAP): (1) Small-AAP I; (2) Medium-AAP II; and (3) Large-AAP III, with the
numbers of instances respectively 1254, 2286, and 4020 (Zorman et al., 2001).
These data sets represent the same problem of separating acute appendicitis
from other diseases that cause acute abdominal pain. The data for AAP I has
been collected from 6 surgical departments in Germany, for AAP II - from 14
centers in Germany, and for AAP III - from 16 centers in Central and Eastern
Europe. Each data set includes 18 features from history-taking and clinical
examination (Zorman et al., 2001). These features are standardized by the World
Organization of Gastroenterology (OMGE).

The Antibiotic Resistance dataset was collected in the Hospital of N.N.
Burdenko Institute of Neurosurgery, Moscow, Russia, using the analyzer Vitek-
60 (developed by bioMeérieux, www.biomerieux.com) over the years 1997-2003 and
the information systems Microbiologist (developed by the Medical Informatics
Lab of the institute) and Microbe (developed by the Russian company
MedProject-3). Each instance of the data used in analysis represents one
sensitivity test and contains the following features: pathogen that is isolated
during the bacterium identification analysis, antibiotic that is used in the
sensitivity test and the result of the sensitivity test itself (sensitive S, resistant R
or intermediate I), obtained from Vitek according to the guidelines of the
National Committee for Clinical Laboratory Standards (NCCLS). Information
about sensitivity analysis is connected with patient, his or her demographical
data (sex, age) and hospitalization in the Institute (main department, days spent
in ICU, days spent in the hospital before test, etc.) Each bacterium in a
sensitivity test in the database is isolated from a single specimen that may be
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blood, liquor, urine, etc. In this study we focus on the analysis of meningitis
cases only, and the specimen is liquor. For this purposes we picked up 4430
instances of sensitivity tests related to the meningitis cases of the period
January 2002 - August 2004. We introduced 5 grouping binary features for
pathogens and 15 binary features for antibiotics. These binary features
represent hierarchical grouping of pathogens and antibiotics into 5 and 15
categories respectively. Thus, each instance in the dataset had 34 features that
included information corresponding to a single sensitivity test augmented with
the data concerning the used antibiotic, the isolated pathogen, the sensitivity
test result and clinical features of the patient and his/her demographics.

TABLE 1 Basic characteristics of the datasets

Features
Dataset Instances | Classes
Categorical Numerical| Total Total*
[Acute Abdominal Pain I 1251 2 17 1 18 89
Acute Abdominal Pain II 2279 2 17 1 18 89
[Acute Abdominal Pain III 4020 2 17 1 18 89
Antibiotic Resistance 4430 3 28 6 34 47
Balance 625 3 0 4 4 3
Breast Cancer Ljubljana 286 2 9 0 9 38
Car Evaluation 1728 4 6 0 6 21
Pima Indians Diabetes 768 2 0 8 8 8
Glass Recognition 214 6 0 9 9 9
[Heart Disease 270 2 8 5 5 13
[onosphere 351 2 0 34 34 33
[ris Plants 150 3 0 4 4 4
Kr-vs-kp 3196 2 36 0 36 38
LED 300 10 7 0 7 7
LED17 300 10 24 0 24 24
Liver Disorders 345 2 0 6 6 6
Lymphography 148 4 15 3 18 36
MONK-1 432 2 6 0 0 15
MONK-2 432 2 6 0 0 15
MONK-3 432 2 6 0 0 15
Soybean 47 4 0 35 35 35
Thyroid 215 3 0 5 5 5
Tic-Tac-Toe Endgame 958 2 9 0 9 27
Vehicle 846 4 0 18 18 18
Voting 435 2 16 0 16 17
700 101 7 16 0 16 17

* when categorical features are binarized.

The Balance dataset was generated to model psychological experimental results.
Each example is classified as having the balance scale tip to the right, tip to the
left, or be balanced. The attributes are the left weight, the left distance, the right
weight, and the right distance. The correct way to find the class is the greater of
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(left-distance * left-weight) and (right-distance * right-weight). If they are equal,
it is balanced.

In the Breast Cancer Ljubljana dataset the task is to determine whether
breast cancer will or will not recur. The data were originally obtained from the
University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia.

The Car Evaluation dataset was derived from a simple hierarchical
decision model that evaluates cars according to a concept structure. The Car
Evaluation dataset contains examples with the structural information removed,
i.e., directly relates a car to the six input attributes: buying, maint, doors,
persons, lug boot, and safety. The four classes are “unacceptable”,
“acceptable”, “good”, and “very good”.

The task for the Pima Indians Diabetes dataset is to determine whether the
patient shows signs of diabetes according to World Health Organization
criteria. There are eight continuous features: number of times pregnant, plasma
glucose concentration, diastolic blood pressure, triceps skin fold thickness, 2-
hour serum insulin, body mass index, diabetes pedigree function, and age.

The DNA dataset is drawn from the field of molecular biology. Splice
junctions are points on a DNA sequence at which “superfluous” DNA is
removed during protein creation. The task is to recognize exon/intron
boundaries, referred to as El sites; intron/exon boundaries, referred to as IE
sites; or neither. The features provide a window of 60 nucleotides. The
classification is the middle point of the window, thus providing 30 nucleotides
at each side of the junction.

In the Glass Recognition dataset the task is to identify which one of the six
types of glass is present from the chemical elements in a sample.

The task for the Heart Disease dataset is to distinguish the presence or
absence of heart disease in patients. The features include: age, sex, chest pain
type, resting blood pressure, fasting blood sugar, max heart rate, efc.

The Ionosphere dataset includes radar data that was collected by a system
in Goose Bay, Labrador. This system consists of a phased array of 16 high-
frequency antennas with a total transmitted power on the order of 6.4 kilowatts.
The targets were free electrons in the ionosphere. "Good" radar returns are
those showing evidence of some type of structure in the ionosphere. "Bad"
returns are those that do not; their signals pass through the ionosphere.
Received signals were processed using an autocorrelation function whose
arguments are the time of a pulse and the pulse number. There were 17 pulse
numbers for the Goose Bay system. Instances in this dataset are described by 2
attributes per pulse number, corresponding to the complex values returned by
the function resulting from the complex electromagnetic signal.

The Iris Plants dataset created by R.A. Fisher is perhaps the best known
database in the machine learning literature. The task is to classify iris plants into
one of three iris plants varieties: Iris Setosa, Iris Versicolour, and Iris Virginica.
This is an exceedingly simple domain and very low error rates have been
reached already long ago.
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The Kr-vs-kp dataset represents one classical type of chess end-game -
King with Rook versus King with Pawn on a7 and usually abbreviated as
KRKPA?. The pawn on a7 means it is one square away from becoming a queen.
It is the King with Rook's side (white) to move. White is deemed to be unable to
win if the Black pawn can safely advance.

The LED dataset contains data about the LED display problem, where the
goal is to learn to recognize decimal digits having information about whether
the seven corresponding LED segments are on or off. The LED 17 dataset
represents an extension of the LED display problem, with an additional 17
irrelevant attributes being added to the instance space. These attributes are
randomly assigned the values of 0 or 1.

The Liver Disorders dataset was created by BUPA Medical Research Ltd,
and the task is to predict liver disorders that might arise from excessive alcohol
consumption.

The Lymphography dataset was obtained from the University Medical
Centre, Institute of Oncology, Ljubljana, Yugoslavia. There are 15 categorical
and 3 numerical attributes, and the classes being predicted are: “normal find”,
“metastases”, “malign lymph”, and “fibrosis”.

The MONK’s problems are a collection of three artificial binary
classification problems over the same six-attribute discrete domain (al,...,a6).
All MONK’s datasets contain 432 instances without missing values,
representing the full truth tables in the space of the attributes. The “true”
concepts MONK-1, MONK-2, and MONK-3 underlying each MONK’s problem
are given by: (al=a2)or(a5=1) for MONK-1, exactly two of {al=1, a2=1, a3=1,
a4=1, a5=1, a6=1} for MONK-2, and (a5=3 and a4=1)or(a5<>4 and a2<>3) for
MONK-3. MONK-3 has 5% additional noise (misclassifications) in the training
set. The MONK’s problems were the basis of the first international comparison
of learning algorithms (Thrun et al., 1991).

The Soybean dataset includes data about the soybean disease diagnosis.
This is a small subset of the original Soybean-large database. There are 35
numerical attributes, and 4 classes, representing soybean diseases.

In the Thyroid dataset, five laboratory tests are used to try to predict
whether a patient's thyroid is in the class “euthyroidism”, “hypothyroidism” or
“hyperthyroidism”. The diagnosis (the class label) is based on a complete
medical record, including anamnesis, scan etc.

The Tic-Tac-Toe Endgame dataset encodes the complete set of possible
board configurations at the end of tic-tac-toe games, where “x” is assumed to
have played first. The target concept is “win for x” (i.e., true when “x” has one
of 8 possible ways to create a ”“three-in-a-row”). The dataset contains 958
instances without missing values, each with 9 attributes, corresponding to tic-
tac-toe squares and taking on 1 of 3 possible values: ”x”, “0”, and “empty”.

In the Vehicle dataset, the goal is to classify a given silhouette as one of
four types of vehicles (“Opel”, “Saab”, “Bus”, and “Van”), using a set of 18
numerical features extracted from the silhouette. The vehicle may be viewed
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from one of many different angles. This dataset comes from the Turing
Institute, Glasgow, Scotland.

The Voting dataset includes votes for each of the U.S. House of
Representatives Congressmen on the 16 key votes identified by the
Congressional Quarterly Almanac in 1984. The goal is build a classification
model to predict the voting congressman to be either a democrat or a
republican.

Zoo is a simple dataset created by Richard S. Forsyth with instances
containing 17 Boolean valued-attributes, and representing 7 types of animals.

A survey of widely used learning algorithms (decision trees, neural
networks, and rule-based classifiers) on twenty-nine datasets from the UCI
machine learning repository is given in Eklund (1999). This survey connects the
properties of datasets examined with the selection of learning algorithms. In
(Salzberg, 1999) the use of the datasets from the UCI repository was strongly
criticized, because in his opinion it is difficult to produce major new results
using well-studied and widely shared data. Hence, a new “significant” finding
may occur to be “a statistical accident”. However, we would prefer to interpret
this message as a caution to be careful when stating final conclusions if research
has been conducted only on such benchmarks.
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YHTEENVETO (FINNISH SUMMARY)

Tiedon louhinnalla pyritddn paljastamaan tietokannasta tietomassaan sisaltyvid
sddannonmukaisuuksia joiden olemassaolosta ei vield olla tietoisia. Mikali tieto-
kantaan sisdltyvit tiedot ovat kovin moniulotteisia sisédltden lukuisia piirteitd,
heikkenee monien koneoppimisen menetelmien suoriutumiskyky ratkaisevasti.
[Imictd nimitetddan “moniulotteisuuden kiroukseksi” ("curse of dimensionali-
ty”) sen johtaessa usein sekd laskennallisen kompleksisuuden ettd luokitusvir-
heiden kasvuun. Toisaalta tietokantaan mahdollisesti sisdltyvit epérelevantit
tai vain epdsuorasti relevantit piirteet tarjoavat heikon esitysavaruuden tieto-
kannan késiterakenteen kuvaamiseen.

Tutkimuksen tavoitteena on kehittdd tietoainesta kuvaavien piirteiden
muodostamisen teoreettista taustaa ja kdytdnnon toteutusta. Talld piirteiden
muodostamisella pyritddn joko ulotteisuuden pienentdmiseen tai esitysava-
ruuden parantamiseen (tai molempiin) ohjatun koneoppimisen tarpeita varten.
Tyossd sovelletaan perinteistd padkompponenttianalyysid ja kahta luokkiin liit-
tyvdd tietoa hyodyntdvdd analyysimenetelmdd. Tarkastelu ulotetaan sekd pe-
rustason luokittelijan muodostamiseen ettd luokittelijakokoelmaan siihen sisal-
tyvien luokittelijoiden integroinnin nakokulmasta. Tarkastelun teoreettisen pe-
rustan muodostavat tiedon louhinnan, koneoppimisen ja hahmontunnistuksen
tutkimusalueet. Tutkimuksen yhteydessa kokeellista osuutta varten laadittu oh-
jelmisto on rakennettu Javalla toteutetulle avoimen koodin koneoppimisohjel-
mistoalustalle (WEKA).

Tyo koostuu erillisistd artikkeleista ja niihin tukeutuvasta yhteenvedosta,
jossa tutkimuksen tulokset kootaan asetettujen tutkimusongelmien (TOi) alle.
Tutkimusongelmista viisi ensimmadistd on enemman teoriapainotteista ja viisi
seuraavaa enemmadn kdytdntopainotteisia. Tdssd suomenkielisessd yhteenve-
dossa esitetddn sekd tutkimusongelma ettd tyon tulos ongelma ongelmalta
(tekstissd tietokanta tarkoittaa saman piirrerakenteen omaavaa tapausten jouk-
koa):

TOL1: Kuinka tdrkedd on luokkainformaation kdytto piirteiden muodosta-
misprosessissa? Tutkimuksessa todettiin luokkainformaation olevan ratkaise-
van tdrkedd useiden tietokantojen tapauksessa. Luokkiin liittyvdd tietoa hyo-
dyntédvien piirteiden muodostamisprosessin todettiin voivan johtaa tarkempaan
luokittelijaan niille tietokannoille, joille puhtaasti varianssiin perustuva piirtei-
den muodostamisprosessi ei vaikuta luokittelijan tarkkuuteen tai heikentds sita.

TO2: Onko piirteiden muodostaminen tieto- vai hypoteesivetoista kon-
struktiivista induktiota? Tutkimuksessa todettiin, ettd piirteiden muodosta-
misprosessin tulisi sopia niin tietokantaan kuin ohjatun koneoppimisen mene-
telmddnkin, koska piirteiden muodostamisprosessien keskindinen paremmuus-
jdrjestys vaihteli paljon molempien suhteen.

TO3: Onko piirteiden muodostaminen hyoddyllistd luokittelijakokoelman
dynaamisen integroinnin yhteydessd niin kuin se on yksittdisten luokittelijoi-
den tapauksessa? Todettiin, ettd piirteiden muodostaminen voi johtaa tarkkuu-
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den parantumiseen dynaamisen integroinnin yhteydessd niille tietokannoille,
joille piirteiden muodostaminen johtaa tarkkuuden parantumiseen yksittdisen
tapauspohjaisen luokittelijan yhteydessa.

TO4: Ovatko alkuperdiset piirteet, muodostetut piirteet vai kummatkin
kayttokelpoisia ohjatun koneoppimisen yhteydessd? Alkuperdisten ja muodos-
tettujen piirteiden kombinaatio voi olla hyviksi ohjatun koneoppimisen yhtey-
dessd joillekin tietokannoille. Erityisesti kadyttokelpoisuus todettiin paatospuu-
tyyppisten luokittelijoiden, kuten C4.5 kadyton yhteydessd. Muutaman paa-
komponentin yhdistdmisen lineaaristen erottimien tueksi todettiin voivan joh-
taa parempaan luokitustarkkuuteen C4.5-tyyppisen luokittelijan yhteydessa.
Samalla kuitenkin todettiin ettei yhdistdminen kannata Bayes-tyyppisen luo-
kittelijan yhteydessd koska se johtaa tdssd yhteydessa luokittelijan epéstabiiliin
kayttaytymiseen.

TO5: Kuinka moni muodostettu piirre on kédyttokelpoinen koneoppimisen
yhteydessd? Piirteiden muodostamisprosessin yhteydessd kdytettdvat kynnys-
arvot piirteiden selittdméan varianssin osalta vaihtelivat paljon tietokannasta toi-
seen.

TO6: Kuinka selviytya silloin kun tietoon sisdltyy kontekstia kuvaavia piir-
teitd ja ongelma-avaruuden heterogeenisuutta? Luonteva ryvdastely osoittautui
hyvin tehokkaaksi ldhestymistavaksi laadittaessa paikallisia ratkaisuja piirtei-
den muodostamissa ja ohjatussa koneoppimisessa.

TO7: Miten otoksen pienentdminen vaikuttaa piirteiden muodostamiseen
ohjattua koneoppimista varten? Yleensd epdparametrinen piirteiden muodos-
taminen johtaa samaan tai parempaan tarkkuuteen pienemmalld oppimis-
tapausten lukumadaralld kuin parametrinen piirteiden muodostaminen. Tulok-
set osoittivat, ettd silloin kun piirteiden muodostamiseen ja luokittelijan raken-
tamiseen kdytettdvien oppimistapausten osuus on suhteellisen pieni on tarkedd
kayttdd sopivaa otoksen pienentdmistekniikkaa, jotta edustavimmat tapaukset
tulevat valituiksi piirteiden muodostamisprosessiin.

TO8: Milloin piirteiden muodostaminen ohjattua koneoppimista varten on
kaytannollista? Alustavien tulosten perusteella ndyttdisi olevan vaikea ennustaa
milloin piirteiden muodostaminen voi olla kdyttokelpoista ohjatun koneoppi-
misen yhteydessd. Edelleen on vaikea ennustaa mitkd muodostetuista piirteista
ja kuinka monta niist4 tulisi ottaa kayttoon ohjatun koneoppimisen yhteydessa.

TO9: Miten tulkita muodostettuja piirteitd? Tutkimuksen perusteella nayt-
tdisi siltd, ettd kdsiteltdvastd tietokannasta, alkuperdisten piirteiden merkityk-
sestd ja tarkasteltavasta ongelmasta sekd ohjatun koneoppimisen tekniikasta
riippuen piirteiden muodostaminen voi olla tulkinnan kannalta hyodyllistad tai
haitallista.

TO10: Miten valita piirteiden muodostamistekniikan ja ohjatun koneoppi-
mistekniikan yhdistelmd kasilld olevaan ongelmaan? Ty0ssd esitetddn yleinen
viitekehys sopivimman tiedon louhintastrategian valitsemiseksi kerdamalla tie-
donlouhintatekniikoiden ja niiden kombinaatioiden kayttokokemuksia eri-
laisten tietokantojen parissa.
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