

Copyright © , by University of Jyväskylä

 3

ABSTRACT

Zhang, Zheying
Model Component Reuse: Conceptual Foundations and Application in the
Metamodeling-Based Systems Analysis and Design Environment
Jyväskylä: University of Jyväskylä, 2004, 76 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 39)
ISBN 951-39-1919-6
Finnish Summary
Diss.

Component reuse is an emerging development paradigm that promises to ac-
celerate information systems development (ISD) and to reduce costs by assem-
bling systems from prefabricated components. Defining, designing, developing
and deploying reusable component, however, is a complex process, which sets
high requirements not only on methodical support for component structure and
functionality, but also on the supporting development environment. The cur-
rent component-based development approach and its supporting environment,
however, lack the mechanism and functionality to support component reuse at
every stage of the ISD process. The main objective of this thesis is to elaborate a
theory, and hence strategies, that can systematically support component reuse
in a metamodeling-based systems development environment – a metaCASE
environment - which offers a great deal of potential in terms of software pro-
ductivity and quality. The research reported here describes the characteristics of
a metaCASE environment, develops a conceptual framework for different types
of reuse of components on different granularities at different levels of ISD ab-
straction, builds the component model for a metaCASE environment, suggests
strategies for component reuse, and empirically studies the impact of compo-
nent deployment in systems analysis and design in MetaEdit+, an industry-
strength metaCASE environment. The research follows a constructive research
paradigm. A component-based reuse framework and a component model are
designed to answer the needs of support for reuse in a metaCASE environment,
which are further implemented and tested in MetaEdit+. In sum, component-
based reuse in a metaCASE environment is a new research area and still in its
infancy. The main contribution of this thesis is twofold: it offers conceptual
frameworks which comprehensively depict the component model and its sys-
tematic reuse processes in a metaCASE environment, and an experimental de-
sign for quantitatively investigating the impact of component reuse in systems
analysis and design.

Keywords: component reuse, component-based development, metaCASE envi-
ronments, component model, component interface, component context

 4

ACM Computing Review Categories

D.2.1 Software Engineering: Requirements/Specifications:

Languages, Methodologies, Tools
D.2.2 Software Engineering: Design Tools and Techniques:

Computer-aided software engineering (CASE)
D.2.10 Software Engineering: Design:

Methodologies
D.2.13 Software Engineering: Reusable Software:

Domain engineering, Reusable libraries, Reuse models

Author’s address Zheying Zhang
 Department of Computer Sciences
 FIN-33014 University of Tampere

Finland
 Email: Zheying.Zhang@cs.uta.fi

Supervisor Professor Kalle Lyytinen

Iris S. Wolstein Chair
Department of Information Systems
The Weatherhead School of Management
Case Western Reserve University
Cleveland, Ohio 44106-7235, USA
Email: kalle@po.cwru.edu

Reviewers Professor Sandeep Purao
 School of Information Sciences and Technology

The Pennsylvania State University
State College, PA 16802, USA

Professor Jukka Paakki

 Department of Computer Science
University of Helsinki
P.O.Box 26 (Teollisuuskatu 23), FIN-00014, Finland

Opponent Professor Pericles Loucopoulos
 Department of Computation

University of Manchester Institute of Science and Technol-
ogy
P.O. Box 88, Manchester, M60 1QD, United Kingdom

 5

ACKNOWLEDGEMENTS

This research was supported by COMAS Graduate School, the INFWEST.IT
program, the ITEA-funded Café project of the EU Eureka 2023 Programme, and
the Department of Computer Science and Information Systems at the University
of Jyväskylä. I extend my sincere gratitude and appreciation to the many people
and organizations who made this thesis possible.

First and foremost, I am deeply indebted to my esteemed supervisor, Prof.
Kalle Lyytinen, whose philosophical insights, continual support, and incompa-
rable patience guided me throughout my study. I thank him for the opportunity
to work in the MetaPHOR research group, and for his many constructive com-
ments on my work. He was always available when I needed his advice. I espe-
cially appreciate the motivating, enthusiastic, and critical atmosphere he
provided during the many discussions we had. It was my great pleasure to
conduct this research under his supervision.

I would like to record my gratitude to the external reviewers of my thesis:
Prof. Sandeep Purao from Pennsylvania State University, and Prof. Jukka Pa-
akki from the University of Helsinki, and all the unknown reviewers of the pa-
pers. Their constructive comments and suggestions have helped me to improve
my work.

My former colleagues from the MetaPHOR research group have sup-
ported me throughout my research work. The friendship of Janne Kaipala is
much appreciated and has led to many interesting and amiable discussions re-
lating to this research. I am also grateful to Matti Rossi, Steve Kelly, Juha-Pekka
Tolvanen, Minna Koskinen, Jouni Huotari, Risto Pohjonen, and Pentti Marttiin
who have all contributed with valuable comments and by creating favorable
conditions for research. In particular, Matti, Steve, and Juha-Pekka introduced
me into the exciting world of metamodelling, method engineering, and meta-
CASE. Special thanks go to the other members of the research group, Kalle
Korhonen, Matti Äijänen, and Mirja Pulkkinen, the students from the COMBO
project, and the many people who participated in the laboratory experiment, for
their support in the thesis work.

I have spent an unforgettable time in the Software Business Program. I
wish to extend my thanks to Prof. Jukka Heikkilä (Jups), Prof. Timo Käkölä, Dr.
Nazmun Nahar, Kai Vuolajärvi, Rauli Käppi, Anicet Yalaho, Jonna Kalermo,
and other staff members who brought me to a broader but wonderful research
area. I appreciate the fact that I have been able to work with you and thank you
for your close friendship, valuable help, and joyful collaboration. My thanks go
to Jups for helping with various aspects of the thesis finalization. I also own
special thanks to Timo, who introduced me to the Software Business Program,
and supported me in my research and teaching work.

I thank the lecturers, professors, and all my colleagues in the Department
of Computer Science and Information Systems, in particular Prof. Seppo
Puuronen, Dr. Samuli Pekkola, Dr. Eleni Berki, Dr. Marketta Niemelä, Prof. Jari

 6

Veijalainen, Prof. Heikki Saastamoinen, Jari Rahikainen, Eija Ihanainen, Tapio
Tammi, and other staff members and friends, for their valuable help, advice,
encouragement, and patience. I am also grateful to Michael Freeman for his
careful and patient proof-reading of my thesis.

I wish to extend special thanks to my parents, Chunfeng and Zhili, and to
my parents-in-law, Kewei and Qiyun, for their love and unwavering support
throughout my studies, and to my sister Lulu for providing me with various
non-thesis-related problems to distract me. Lots of thanks go to my uncle’s fam-
ily, Zhiqi, Aiping, Chi, and He, who encouraged me to come to Finland and
supplied me with endless wisdom and encouragement when I was confused
and hesitant on this journey.

At last, but certainly not least, I would like to thank my husband, Yu, for
his infinite wisdom, support, and encouragement. One of the best experiences
that we lived through during this period was the birth of our son Jieming, who
brought an additional and joyful dimension to our life mission.

Thank you, all.

Tampere
September 2004

 7

FIGURES

FIGURE 1 Metamodel of the background concepts ... 16
FIGURE 2 Background of the study.. 17
FIGURE 3 Metamodeling and modeling in a metaCASE environment 24
FIGURE 4 CBD: moving from domain idea to finished product 36
FIGURE 5 DSM: moving from domain idea to finished product......................... 40
FIGURE 6 Relationship between research questions and the research

 background.. 50
FIGURE 7 A multi-methodological approach to IS research 52
FIGURE 8 Contribution of each article... 55

TABLES

TABLE 1 Comparison between reuse techniques... 35
TABLE 2 Research questions and their treatment .. 55

 8

LIST OF INCLUDED ARTICLES

Zhang, Z. & Lyytinen, K. 2001. A Framework for Component Reuse in a
Metamodeling Based Software Development. Requirements Engineering
Journal 6 (2), 116 – 131.

Zhang, Z. 2000. Defining Components in a MetaCASE Environment. In B.
Wangler and L. Bergman (Eds.) Advanced Information Systems Engineering:
12th International Conference, CAiSE 2000, Stockholm, Sweden, June 2000,
LNCS 1789, Heidelberg: Springer-Verlag, 340 –354.

Zhang, Z. & Rossi, M. 2002. Component Modeling for Systems Analysis and
Design. ICSR7 2002 Workshop on Component-based Software Development
Processes, April 15-19, 2002, Austin, Texas, USA.

Zhang, Z. & Kaipala, J. 2004. Component Context Specification and
Representation in a MetaCASE Environment. To be submitted to Information
and Software Technology for possible publication.
An early version was published in M. Khosrow-Pour (Ed.) Information Technology and
Organizations: Trends, Issues, Challenges and Solutions, Proceedings of the 2003
Information Resources Management Association International Conference
(IRMA2003), Philadelphia, PA, USA, May 18-21, 2003, Hershey, PA: Idea Group
Publishing, 712 –715.

Zhang, Z. 2004. Component-based Reuse in Systems Analysis and Design: An
Exploratory Study. To be published in the Proceedings of the 11th European
Conference on Information Technology Evaluation, Royal Netherlands
Academy of Arts and Sciences, Amsterdam, 11-12 November 2004.

 9

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
FIGURES AND TABLES
LIST OF INCLUDED ARTICLES

1 INTRODUCTION…………………………………………………...………….11

1.1 Software Reuse Overview .. 11
1.2 Research Motivation.. 13
1.3 Conceptual Structure of the Study.. 15

2 BACKGROUND RESEARCH……………………………………………..….19
2.1 Information Systems Development and Information Systems

 Development Methodology ... 19
2.1.1 Information Systems Development ...19
2.1.2 Information Systems Development Method(ology)....................21

2.2 Tool support for information systems development........................... 22
2.2.1 CASE Tool..22
2.2.2 Method Engineering and Metamodeling......................................23
2.2.3 MetaCASE Tool and Environment ..25

3 SOFTWARE REUSE -- A SILVER BULLET?.. 26

3.1 Ad hoc Reuse vs. Systematic Reuse .. 27
3.2 Component-Based Reuse.. 29

3.2.1 Component-Based Development ...31
3.2.2 Component-Based Reuse Process and its Different Statuses32
3.2.3 Summary..33

3.3 Technical Support for Reuse .. 34
3.3.1 Component Infrastructure Technologies36
3.3.2 Domain Analysis and Engineering ..38
3.3.3 Domain-Specific Modeling..39
3.3.4 Summary..41

3.4 Current Tool Support.. 42
3.4.1 Tools Support for Reuse ..42
3.4.2 Summary..45

4 RESEARCH PROBLEM DEFINITION………………………...……………..47

4.1 Technical Problems in Enabling Reuse... 47
4.2 Research Problem Definition ... 49
4.3 Research Environment.. 50

5 RESEARCH METHODOLOGY…………………………………..…………..51
5.1 Choice and Description of Methodologies... 51

 10

5.2 Application of the Methodology in this Research………………….....52

6 SUMMARY OF THE ARTICLES……………………………………..………54
6.1 A Framework for Component Reuse in a Metamodeling-Based

 Software Development ... 57
6.2 Defining Components in a MetaCASE Environment........................... 58
6.3 Component Modeling for Systems Analysis and Design.................... 59
6.4 Component Context Specification and Representation in a

 MetaCASE Environment .. 60
6.5 Component-Based Reuse in Systems Analysis and Design: An

 Exploratory Study.. 61
6.6 About the Joint Articles .. 62

7 CONCLUSION………………………………………….………..…………….63

7.1 Contribution of the Thesis... 63
7.2 Limitations of this Study and Directions for Further Research 65

REFERENCES…………………………………………………………………………67

YHTEENVETO (FINNISH SUMMARY)………...…………………………………76

 11

1 INTRODUCTION

“We will see massive changes [in computer use] over the next few years,
causing the initial personal computer revolution to pale into comparative
insignificance.” As predicted by 22 leaders in software development from
academia, industry, and research laboratories 10 years ago (Gibbs 1994),
software, together with information technology, is being applied to broader
areas of application than ever before. These emerging areas of application are
causing information systems development (ISD) to become market-driven. The
practice of ISD is thereby being shaped by a varying set of demands originating
out of a turbulent business environment. Accordingly, new requirements, new
kinds of information systems (IS), and new information systems development
methodologies (ISDMs) are being created. In order to gain competitive
advantage, IS should be delivered in ways that respond to customers’ needs
and their timing. Although IS productivity has been steadily rising during the
past 30 years (Yourdon 1992), it has not kept up with a rising demand for
developing and managing more complex systems (Gibbs 1994), and
maintaining existing systems (Mili et al. 1995). How to effectively develop new
systems has become a perennial research topic in the IS community.

1.1 Software Reuse Overview

Software reuse (Krueger 1992), first introduced by McIlroy (1969) to solve the
software crisis, offers great potential in terms of information systems
productivity and quality. It has long been recognized that reuse can potentially
deliver tremendous benefits. Exploiting reuse opportunities enables significant
improvements in software productivity, quality and costs. Not only are there
vast benefits to be gained from reuse, but there are also tremendous
opportunities to increase reuse. Because IS typically are composed of similar
parts (McClure 2001), the majority of systems can be built by assembling
existing reusable components.

 12

The idea of reuse is simple, while its execution is not. Although it has been
proposed as a solution to the software crisis for decades, it has largely remained
on the shelf of promising ideas. Over the last ten years, software reuse
researchers and practitioners have learned that success with systematic reuse
requires careful attention to be paid to both technical and non-technical issues
(Griss 1995; Kim and Stohr 1998). These issues can be summarized from the
lessons and findings obtained from empirical studies (Bowen 1992; Frakes and
Isoda 1994; Lee and Litecky 1997; Jacobson et al. 1997; Rine and Sonneman 1998;
Morisio et al. 2002). They mainly fall into three categories: organizational
factors, technical factors, and human factors.

 Long-term, top-down organizational support is a prerequisite for

organization-wide systematic reuse (Zand and Samazadeh 1995; Jacobson et
al. 1997; Kim and Stohr 1998; Rine and Sonneman 1998; Morisio et al. 2002).
Instead of a stand-alone activity, a reuse “program” is a part of an
organization’s overall process improvement strategy, and it may require
years of investment before it pays off. It is thereby important to clarify the
motivation for reuse at the organization level. A clear top management
vision and a commitment to introduce and sustain reuse enable managers
and engineers to understand the rationale, expectations, and goals of reuse.
The clarification of commitment and reuse roles enables construction of the
technical support needed for reuse. Even without top management
commitment, individuals can spontaneously incorporate reuse into their
development activities on the basis of their skill, experience, knowledge, and
attitude toward reuse. This ad hoc form of reuse, however, is not likely to
lead to the overall benefits the organization seeks. To reap such benefits,
software reuse support groups, which consist of representatives from each
major project or application domain, can play an important coordinating
role in the implementation of reuse programs in organizations (Kim and
Stohr 1998).

 Technical support is the key factor for successful reuse of software compo-
nents. Without technique and tool support, a reuse project cannot be suc-
cessful, because the reuse activities are always carried out with certain
methods and tools (Kim and Stohr 1998). The technical factors concern reuse
success in both process and product aspects. In the process viewpoint, it is
important to adapt the systems development life cycle model to adequately
address reuse activities, as explained in IEEE Standard 1517 (McClure 2001),
unless software reuse is explicitly defined in the software life cycle proc-
esses, an organization will not be able to repeatedly exploit reuse opportuni-
ties in multiple software projects or software products. The adaptation cov-
ers both introducing reuse-specific processes (Kim and Stohr 1998; Morisio
et al. 2002), i.e. component search, selection, adaptation, and integration, and
modifying non-reuse process (Kim and Stohr 1998; Morisio et al. 2002), i.e.
seamless integration of reuse activities into the traditional systems devel-
opment process. In the product perspective, an explicit and uniform defini-

 13

tion of reusable components is essential to systematic reuse. The organiza-
tion has to establish compatible development environments, a well-designed
architecture, and the proper form of components (Frakes and Isoda 1994; Ja-
cobson et al. 1997; Kim and Stohr 1998;). With a uniform definition of com-
ponents and a well-designed architecture, reusable components can be de-
veloped in line with the underlying principles of reusability and the archi-
tecture. Correspondingly, component definition tools, repository, search
tools, and reuse metrics (Frakes and Terry 1996) are easy to implement for
defining, storing, retrieving, integrating, and managing reusable compo-
nents.

 Human awareness, attitude, and capability of reuse are essential social
factors for sustaining process change (Morisio et al. 2002). Engineers’ skill in
using software development techniques, experiences with the development
environments, knowledge about problem domains (Lee and Litecky 1997),
and attitudes toward reuse are important. They are considered by instituting
a reuse culture, providing training, adhering to standards, and securing
management commitment (Griss 1995). Training is a good way to promote
reuse. Both managers and engineers need training to create an awareness,
understanding and acceptance of reuse. Meanwhile, effective reuse requires
active engagement in changes in technology and management in terms of
component development and reuse. Incentives help the organizations to
institutionalize reuse technology (Card and Comer 1994; Frakes and Isoda
1994). In particular, introducing reuse incentives at the early stage of a reuse
program is necessary to encourage reuse practices.

These three aspects are indispensable and interdependent. No single aspect is
either the major impediment to effective reuse or the most critical success factor.
Reuse is a business issue that involves organizational change, technology
transition, and individuals’ subjective attitudes. In particular, organizational
commitment is the root, and the technical support and human factors are the
enablers. Without organizational support, neither developing a reuse mindset
nor a methodical support for reusable component development will be
worthwhile, and vice versa.

1.2 Research Motivation

Here, as throughout the thesis, we are concerned with the technical impetus to
systematic reuse.

Technical support is an important and indispensable factor in promoting
reuse practice. There has been a considerable amount of reuse research pub-
lished over the last two decades (Kim and Stohr 1998; Zand et al. 1999; Biddle et
al. 2003). Most of this research focuses on enabling technologies of software re-
use, like identifying, classifying, retrieving, understanding, integrating, and
maintaining reusable components. Consequently, a number of conceptual

 14

frameworks for research on technical enabling of software reuse have been pro-
posed in the literature. For example, Preito-Díaz and Freeman (1987) tackle the
component retrieval problem and propose a faceted classification scheme based
on reusability-related attributes and a selection mechanism as a partial solution
to the software reuse problem. In addition, many similar studies have at-
tempted to define reusable components and organize them into repositories,
e.g. Maarek et al. (1991), Maiden and Sutcliffe (1992), Castano and Antonellis
(1997), Zhang (2000a), Sugumaran and Storey (2003), etc. Moreover, Biggerstaff
and Richter (1989) discuss software reuse approaches from the stand points of
composition technologies and generation technologies, and emphasize the po-
tential value of the reuse of design. Furthermore, Freeman (1983) and Krueger
(1992) present diverse reuse approaches in terms of reusable artifacts and the
way of reuse. Reusable artifacts vary from the programming code to high-level
logic structure and design knowledge.

Diverse studies on the technical enabling of software reuse have been
conducted. Although the generic objective of these studies is to enable the
broad reuse of all types of information generated during the ISD process, most
of the research has concentrated only on reuse within the single form of
concrete reusable assets (Kim and Stohr 1998), and appears to be still at a
formative stage (Kim and Stohr 1998). Besides implementing diverse techniques
to support software reuse, research should seek both an approach and an
environment to help users understand unfamiliar reusable components and
decide whether to use them or not. Therefore, there is a need to combine the
most effective techniques into existing ISD practices, and develop an integrated
methodology that can be readily understood and adopted by a large
community of system developers.

Traditional ISDMs do not explicitly support software reuse (Kim and
Stohr 1998). The recently developed methodologies, such as domain
engineering (Arango and Prieto-Diaz 1991), reverse engineering (Biggerstaff
1989; Müller et al. 2000), the object-oriented approach (Griss 1996), and
component-based approach make it easier to take an advantage of software
similarities and support reuse in the systems development process. However,
due to the immature stage of technical support of reuse, most methodologies
were not originally designed to support reuse. Existing methods such as OO
methods do not incorporate key learning from the reuse community (Zand et al.
1999).

Meanwhile, current tools provide weak methodical support for reuse. The
majority of computer aided software engineering (CASE) tools available only
assist in building graphical models (Sodhi and Sodhi 1998), generating code, or
reusing independent single resources in the implementation phase of the ISD
process (Kim and Stohr 1998). There is no solution that can offer powerful
mechanisms to model and organize different types of reusable components.
CASE tools should be extended to provide mechanisms to support reuse in
every phase of ISD.

Reuse is by no means an automatic by-product of following an ISDM. In-
stead of continuously constructing and illustrating new techniques and meth-

 15

odologies to support efficient and effective ISD, we need to study the existing
methods and tools known and used by software engineers, and try to institu-
tionalize the concept of reuse into the whole systems development life cycle. It
is distinct from the above-mentioned researches, our work aims at the im-
provement of systematic reuse by integrating existing component-based ap-
proaches into the systems development environment, more specifically, a
metamodelling-based systems development environment - a metaCASE envi-
ronment (Kelly 1997).

The aim of this thesis is to build up a systematic reuse framework in a
metaCASE environment. We study the generic concepts, process, and
techniques that can be used to incorporate the reuse concept into the existing
metaCASE environment. In particular, we take advantage of the metamodeling
feature of the metaCASE environment to specify the component model and
deploy it in the process of both method engineering and ISD. As this is an
empirical study, we incorporate the component model into the traditional OO
design methods to study the impact of the model on reuse practice during the
systems design process.

Work towards these goals improves the reuse support of the existing
metaCASE environment, which in turn improves systematic reuse practices in
the ISD process. It studies how reuse techniques are incorporated into the
existing systems development methods and their supporting environment. In
particular, the exploratory study of component-based reuse during the systems
design process is a unique laboratory experiment. It demonstrates how the
component-based approach can be integrated into the traditional OO design
methods, allows a higher level of reuse, and shifts the reuse effort to a point
much earlier in the systems development process. This saves design phase
effort in addition to the normal benefits of reuse practice. Meanwhile, the
laboratory experiment can be tailored and applied to other empirical studies in
similar research areas.

1.3 Conceptual Structure of the Study

As we are concerned with systematic reuse support in the systems development
environment, the main concepts involved in our study include systems, systems
development methodologies, and tools that support systematic reuse. The
essential concepts and their dependencies can be captured in the metamodel
shown in FIGURE 1.

 16

FIGURE 1 Metamodel of the background concepts

A system is a collection of components organized to fulfill defined purpose
(Sage 1995). It consists of two essential features: the basic elements that make up
the system, and tasks that the system must perform to fulfill the defined
purpose. The concept of the system exists everywhere from a small artificial
object with a specific function (e.g. pen, bike, etc.) to a large system with
complex functionality (e.g. a library management system, an airspace system,
etc.). Systems are developed by using a set of tools and by following a specific
methodology. In the context of ISD, systems mainly refer to software-intensive
information systems, which comprise hardware components, software
components, and operational processes to accomplish a set of functions.

A methodology is a way of carrying out systems development. Merriam-
Webster on-line dictionary (2004) defines it as “a body of methods, rules, and
postulates employed by a discipline: a particular procedure or set of
procedures”. Accordingly, a methodology consists of a set of predefined
processes. Each process encompasses many techniques and a notation to
produce diagrams, documents and other deliverables. Examples of information
systems development methodologies include structured systems analysis and
design, object-oriented (OO) analysis and design, rapid application
development, etc. They are embodied in a set of tools to support systems
development.

A tool represents a device that aids in accomplishing a task. It embodies a
(part of) methodology to support some aspects of the systems development
process. As a tool provides an automated way of accomplishing a systems
development task, it is sometimes regarded as one element of a methodology. A
set of tools that are integrated to support the ISD process is called a CASE
environment. Different CASE environments focus on different aspects of the
development process and thus differ greatly in their functionality. Some
provide toolsets which address the early stages of systems development, i.e.
strategy, planning and analysis; some address physical design, programming
and implementation stages (Avison and Fitzgerald 1995); others address
mechanisms to define different modeling techniques (Koskinen 2000); yet
others integrate the three into a single, fully integrated development and
support facility. MetaEdit+ is an example of the integrated development
environment (Kelly et al. 1996).

 SYSTEM METHODOLOGY
 Supports

TOOL

 Supports Describes &
implements

 17

The three nodes of the metamodel correspond roughly to the basic
concepts used in our study. Our ultimate goal is to find a way to develop a high
quality information system in a time-saving and economical manner. In order to
achieve this goal, we study the existing reuse techniques and the systems
development methodologies, and incorporate the promising reuse techniques
into the existing systems development tools.

The context of our study is depicted in the instantiation of the conceptual
model in FIGURE 2. There are two layers of instantiation. The inner layer shows
the instance of the metamodel in the field of ISD, its supporting methodologies
and tools, and the outer layer further demonstrates the same concepts in the
context of software reuse. As our study is based on a metamodelling-based
systems development environment, the instances of tool distinguish between
CASE tools and metaCASE tools. The CASE tool embodies a specific
methodology or technique that supports ISD. The metaCASE tool specifies the
systems development methodologies as different CASE tools which eventually
support the process of ISD. The advantage of CASE tools and metaCASE tools
for reuse is the existence of a repository of software-related artifacts that record
domain knowledge and are linked together through all the stages of the ISD
process (Karakostas 1989; Kim and Stohr 1998).

FIGURE 2 Background of the study

In the next section we will first look at the conceptual background within which
the research takes place, i.e. the concepts in the inner layer in FIGURE 2. Next,
in section 3 we examine the current situation of the methodology and the tools
that support reuse, and explain problems of current reuse practice, i.e. the con-
cepts in the outer layer in FIGURE 2. These motivate and provide our research
problems, discussed in section 4. In section 5 we describe the research environ-
ment in which our work was carried out and the methodology that was applied
in the research. Finally, a short summary of each enclosed paper is presented in

IS ISDM

MetaCASECASE

IS Application

e.g. Component-
based application

Reuse-supported
methodology

e.g. Component-based
methodology

Tools support
for reuse

e.g. Component
deployment support

Metamodel support
for reuse

e.g. Component meta-
model

 Describes &
 implements

 Describes &
 implements

 Supports

 Supports Is included in

 Specifies

 Specifies

 Supports

 Supports

 18

section 6, followed by a brief overall conclusion, a discussion of the limitations
of the study and directions for future research in section 7.

 19

2 BACKGROUND RESEARCH

In this section, we examine the inner layer of the research model (FIGURE 2) to
propose basic definitions of the domain of the study. The basic concepts include
ISD, ISDM, and tools support for ISD.

2.1 Information Systems Development and Information Systems
Development Methodology

In the 70s, the importance of information technology began to be noticed
(Galbraith 1977). As a major organizational problem-solver, information
technology increases an organization’s capacity to cope with external and
internal complexity and improve its performance. The field of IS is premised on
the centrality of information technology in everyday socio-economic life
(Orlikowski and Iacono 2001). Its development consists of a wide variety of
activities and processes which come together to create an information systems
designed for a specific purposes. Generally, there are two major concerns
within its community: the nature of ISD and the characteristics of methods to
support ISD (Lyytinen 1987).

2.1.1 Information Systems Development

This section will elaborate a set of basic terms about information systems
development (ISD) which we use throughout the thesis. By following the
concept of ISD presented by Welke (1983), Lyytinen (1987), and Hirschheim et
al. (1995), we describe the key features of ISD as a set of object system changes.
Following Welke (1983) and Lyytinen (1987), we define ISD as follows:

Information systems development (ISD) is a change process taken with respect to a
number of object systems in set of environments by a development group to achieve or
maintain some objectives held by some stakeholders.

 20

Seen in this light ISD is a multidimensional social change covering
organizational knowledge, knowledge representation, linguistics, epistemology,
technology, and so on (Lyytinen 1987; Hirschheim et al. 1991; Iivari et al. 1998).
It is the change process covering the real world, conceptualizations of the real
world, and descriptions of these conceptualizations, in order to represent target
systems in a complete and unambiguous way.

 Real world – changes that is about to influence social behaviors and other
arrangements.

 Conceptualizations of the real world – concepts that make sense of the
phenomena in question, like the ideas about material flows, information
flows, and their interactions.

 Descriptions of conceptualizations - descriptive languages such as a
workflow notation, or UML notations.

 Target systems – achievements of change processes.

ISD is a web of technological, social, psychological and cultural phenomena.
Here we focus on two essential concepts: object systems and the change
process.

Object systems identify a target of change (Hirschheim et al. 1995). It
consists of phenomena ‘perceived’ by the development group. In general, the
development group can identify object systems in three principal perception
schemes: structure, function and behavior (Iivari 1990). In the structure
perspective, the object system is perceived as a set of static objects relevant to
the real world in question, their relationships and attributes, etc. In the function
perspective, the object system is perceived as a set of activities related to the real
world, with input and output. In the behavior perspective, the object system is
perceived as a set of changes of state over time. The perception can be
represented in multiple ways: free-form text, semiformal notations such as
graphical description, and formal mathematical notations (Hirschheim et al.
1995). In general, we call representations of perception models. The chosen form
of a model depends primarily on the feature of the real world in question and
its required degree of accuracy and formality.

A change process is an event in which phenomena, i.e. objects and their rela-
tionships in object systems, come into being as a result of the development
groups’ deliberate action (Hirschheim et al. 1995). It can be regarded as a model-
ing process consisting of a set of systems development activities to derive the
representation of the object systems. The change process is enabled by combin-
ing techniques. A technique is a procedure, with a prescribed notation and rule,
to perform the change processes (Brinkkemper 1996). For example, the model-
ing of a data flow and interviewing are techniques conducted by the develop-
ment group. As mentioned above, object systems can be perceived from various
aspects during ISD. This leads to the creation of a number of techniques for de-
livering the representation of the object systems from different perspectives. By
using a certain technique, the development group perceives, defines and

 21

communicates certain aspects of the object systems (Tolvanen 1998). For
example, the perception of the static relationships of the objects can be
represented in a class diagram, the process to complete a task performed by the
object systems can be represented in a data flow diagram, and the behavior or
state changes of certain objects can be represented in a state transition diagram.

Similar to the diversity of representation at forms of an object system, we
use different terminologies to represent the concept of object systems and
change processes: model to represent an object system, and ISD methods or
techniques to represent the enablers of change processes. These terminologies
and their concepts are used throughout the thesis.

2.1.2 Information Systems Development Method(ology)

ISD is featured as a change process undertaken with respect to a set of object
systems. In order to enable and support the change process, techniques and
methods are indispensable.

A method consists of a set of combined techniques to perform an ISD
project. It states by whom, in what order, and in what way the combined
techniques are used (Smolander et al. 1990) to achieve objectives held by
stakeholders. There are different definitions of the concept of method. We
follow the definition given by Brinkkemper (1996) and define a method as an
approach to performing a systems development project.

A method is based on a specific way of thinking, consisting of directions and rules,
structured in a systematic way with corresponding development products.

A methodology is a scientific theory of the systems development action. Different
schools (see Olle et al. (1986), Brinkkemper (1990), Kumar and Welke (1992),
Harmsen and Brinkkemper (1993), and Harmsen et al. (1994)) differentiate
between concept of method and methodology differently. However, in this
thesis, we will not distinguish methodology from method, and quote a
definition of methodology that is similar to the definition of method. It is given
by following the definition in Lyytinen (1987) and Hirschheim et al. (1995).

Information systems development method(ology) (ISDM) is an organized
collection of concepts, beliefs, values, and normative principles (knowledge) supported
by material resources.

An ISDM is codified into a set of goal-oriented procedures that guide the work
and cooperation of the various stakeholders involved in the change process to
build the target systems. The systems development method generally denotes
communicable, formalizable, and enactable knowledge about ISD, i.e. how to
identify, specify, implement, and evaluate changes and accordingly organize
the systems development process through the definition of the physical world
(a way of thinking), the data model (a way of modeling), and the process model
(a way of working). Accordingly, it can be used to identify problematic situa-

 22

tions and object systems for change (Davis 1982), to generate and analyze the
correctness of change actions (Olle et al. 1982), to assess and evaluate the effec-
tiveness and efficiency of change actions (Kleijnen 1980), and to carry out and
implement changes (Jackson 1975; Keen and Scott-Morton 1978). In general, a
single method does not usually cover all aspects of systems development
(Solvberg and Kung 1993; Lyytinen and Zhang 2000). To better support ISD, an
organization normally has to reuse its knowledge of selected methods and tai-
lor them to its requirements by expanding, combining, and constraining.

There is a large and confusing variety of ISDMs in existence (Avison and
Fitzgerald 1995): some are similar and differentiated only for marketing
purposes, and some are developed in-house and internal to individual
organizations (Hardy et al. 1995; Russo and Wynekoop 1995). Examples of
widely used methods in systems analysis and design include structured
analysis and design methods (Yourdon 1989) and object-oriented methods, such
as the unified modeling language (UML 1995).

2.2 Tool Support for Information Systems Development

In this section we present and elaborate on concepts and tools related to ISD
tools.

2.2.1 CASE Tool

When an ISD method is supported by some instrument (a template, a
questionnaire, or a computer program) this is called a development tool
(Lyytinen et al. 1989). A development tool mainly supports a (part of) the
development process by providing a set of functionalities such as abstraction of
the object system into models, checking that models are consistent, converting
results from one form of model and representation to another, and providing
specifications for review (Olle et al. 1991). When a computer program is used as
the instrument to support for the functionalities, we regard the tool as a
computer aided systems/software engineering (CASE) tool.

Computer Aided Systems/Software Engineering (CASE) is a disciplined approach
to systems development in which computers are used to provide some automated
support in analyzing, designing, implementing and maintaining information systems.

CASE is a term that has been around for decades. In the early 1980s, CASE tools
referred to stand-alone tools to help automate program diagramming and
documentation. By the mid-1980s the capabilities of systems analysis and de-
sign diagramming tools had broadened to include automatic checks of designs.
During this time, the importance of having an information repository, diction-
ary, or encyclopedia as the center of a CASE tool became more widely appreci-
ated. Nowadays, a CASE tool can generally be applied to any system or collec-

 23

tion of tools that helps automate the systems design and development process.
Compilers, structured editors, source-code control systems, and modeling tools
are all, strictly speaking, CASE tools. In particular, many current CASE tools are
constructed to meet the needs of a specific application domain and support the
application development within a domain.

When CASE tools are integrated into an environment to cover several
development stages, including a model editor, document generator, code
generator and repository, we called it a CASE environment. It is commonly used
when coupled with a method that enables developers to abstract away from the
source code to a level where the architecture and design become more apparent
and easier to understand.

A CASE tool or environment automates time-consuming aspects of the
systems development process including drawing diagrams, cross-checking of
concepts across the system models, and generating system documents, code
structure, and database schemas. There are several hundreds of CASE tools or
CASE environments. Some well-known environments in industry are Rational
Rose (Quatrani 1997), Axiom CASE suit (STGCASE 2003), and MetaEdit+
(MetaCASE 1999).

However, the problem with CASE tools is that the view of the
development process has been hard-coded, and therefore cannot be changed or
customized to include knowledge that is based upon information engineers’
practical experience (Hofstede and Verhoef 1996; Kelly 1997). A CASE tool does
not help “re-invent” anything, and only supports a fixed method, which cannot
necessarily cater for the requirements of organizations in a rapidly changing
market. The organization faces a continuous need to integrate other techniques,
methods or tools (Hardy et al. 1995; Russo and Wynekoop 1995; Tolvanen 1998).
In order to facilitate better ISD requirements, other techniques and tools are
needed to support the flexible creation, modification, and reuse of ISDMs and
tools in specific application domains.

2.2.2 Method Engineering and Metamodeling

The ISDM should be constructed to meet a particular ISD needs. Although
ISDMs have proliferated in great numbers, a single method is hardly applied as
it is originally defined. The empirical studies of method uses (Russo et al. 1996;
Hardy et al. 1995) show that more than 80% of methods are always customized
for local needs. Situations at an organization, project or individual level often
cause changes in methods (Tolvanen 1998). CASE tools with hard-coded
methods cater poorly for the change requirements of their supporting methods.
There has been a tendency to construct methods on a project or organization
basis, which is called method engineering.

Method engineering is a discipline to design, construct, and adapt methods,
techniques, and tools for systems development (Kumar and Welke 1992; Brinkkemper
1996).

 24

Method engineering is based upon the assumption that organizations are
continually adapting and using ISD methods in their development endeavors.
There are different views on the method engineering process. In Harmsen and
Brinkkemper (1993), a method is viewed as a collection of method fragments
saved in the method base. A method fragment can encompass products,
processes, or tools. Method engineering is thus seen as a process of assembling
a method from its different fragments. But on the other hand, in Brinkkemper
(1990), a method can be abstracted as a conceptual model, called a metamodel.
Method engineering is a metamodeling process to specify and integrate a
method into a metamodel from the perspectives of concepts, properties, rules,
and generators. In this thesis, we take the metamodel viewpoint as the pillar of
method engineering.

Metamodels are conceptual models of methods. They conceptualize a
method by selecting a specific set of concepts and representation perspectives.
Generally, metamodels can be roughly divided into processes and product
models. For example, the metamodel of a class diagram is a meta-data model
for its static aspects, and a workflow can be meta-process modeled for its
dynamic aspects.

Metamodeling in general is the modeling of the languages we use to
model with (Brinkkemper 1990). In ISD it is the process of specifying a
metamodel using a metamodeling language. A metamodel is the model of a
method, namely a type of modeling language of ISD, which is further used in
the modeling process to construct models of application systems. The process of
metamodeling a method is similar to that of modeling a system (Kelly 1997),
except that the object systems are different: a set of methods with rules and
constraints versus an application system with requirements specification. The
relationship between modeling and metamodeling is illustrated in FIGURE 3.

FIGURE 3 Metamodeling and modeling in a metaCASE environment (after Brinkkemper
(1990))

In principle every ISD method can be used for some parts of metamodeling,
even soft systems methodology (Checkland and Scholes 1990). The only differ-
ence is that some methods are more suitable for metamodeling than others, and
there are some methods that have been developed specifically for metamodel-

Metamodelling

Model of a method,
metamodel

Modelling

Model of an object
system

An object system
to be modelled

Develops Perceives

Instantiates to Develops Perceives

Represents

CASE Tools
Systems/Software
Engineering

MetaCASE Tools
Method Engineering

Represents

 25

ing, like UML (UML 1995). Generally, metamodeling enables a method to be
implemented in a metaCASE tool.

2.2.3 MetaCASE Tool and Environment

In general, a CASE tool does not support the method engineering process.
Although some CASE tools nowadays exhibit some method engineering
functionality by allowing additions and minor cosmetic changes to their
existing method support (Kelly 1997), a real method engineering supported tool
allows a method to be completely built or changed. We regard such a type of
tool as a metaCASE tool. Combined with a repository, a metaCASE tool should
provide functionality to search and reuse existing conceptual definitions to
continuously define methods “on-the-wing”.

A metaCASE tool is a software tool that supports the design and generation of CASE
tools. It facilitates the design and specification of a method whose full and formal
definition is not readily available.

In this setting, the metaCASE tool is a support tool for the method engineer. It is
therefore sometimes called Computer-Aided Method Engineering (CAME) tool
(Harmsen and Brinkkemper 1993).

Generally, we call the system a metaCASE environment when it supports
metamodeling within the same environment as modeling, and it produces the
metamodel and inputs it to the metaCASE tools. That is to say that a metaCASE
environment provides functionality for both method engineering and software
(system) engineering. Since most ISDMs mainly provide support for modeling
in systems analysis and design, we also call a metaCASE environment a
metamodeling-based systems analysis and design environment. It will be
discussed in the following chapters and is the central theme of this thesis.

A number of metaCASE tools and environments have been developed
during the last decade, e.g. commercial products such as MetaEdit+ (MetaCASE
Consulting), MethodMaker (Mark V), ToolBuilder (Sunderland/IPSYS/
Lincon); and research prototypes such as Meta View (Alberta) and metaGen
(Paris). A brief overview of these tools is provided by Kelly (1997).

 26

3 SOFTWARE REUSE – A SILVER BULLET?

Reuse in ISD starts from software salvage, which applies existing software and
design artifacts in order to deliver new applications, or to maintain the old
ones. Software reuse is the answer to the software crisis (Krueger 1992; Lee and
Litecky 1997; McClure 2001). It reduces the development cost by building new
systems from predefined artifacts rather than from scratch. Since the reusable
assets have been proven in the previous systems and are less prone to error,
quality and reliability are improved (Gibbs 1994).

Although the practice of reuse is regarded as a silver bullet to reduce cost
and improve quality in the ISD process, it does not happen by accident. Reuse is
not an automatic by-product of using new technologies. It is a long-term project
requiring real commitment and strategic thinking (Card and Comer 1994).
Reuse activities must be an inherent part of the life cycle process. Above all, the
reuse strategy for a project, an application domain and the enterprise must be
planned prior to development of the application if the benefits promised by
reuse are to be achieved in practice.

The reuse community has also realized that reuse is not only a technical
problem but it involves several other factors. ISD is a social process that
involves actors in various social roles interacting in a variety ways (Hirschheim
and Klein 1989; Hirschheim et al. 1991). The socio-technical nature of ISD
implies that a successful reuse program not only needs technology support, but
also changes in the managerial and cultural domains. Moreover, the success of
reuse is related to several other socio-technical factors as well. These are very
useful but do not themselves guarantee success. These factors are as follows.

 Type of software production - A product family shares common features

and offers natural condition for reuse (McClure 2001; Morisio et al. 2002).
 Maturity level – If an organization has a mature software development

method and process, it is easy to ensure that reuse is considered when
appropriate (Card and Comer 1994; Morisio et al. 2002).

 Ownership - An organization with its own processes can adapt an existing
product development process by integrating reuse–specific processes as

 27

needed, which makes it easier to provide technical support for reuse than in
the case of a project whose processes are owned elsewhere, e.g. when sub-
contracting is involved (Morisio et al. 2002).

 Standardization – Besides the uniform definition of component and its reuse
semantics on the organizational level, the spread of standardization policies
across organizations might positively affect the rate of reuse (Banker and
Kauffman 1991; Lee and Litecky 1997). The existence of standards will
increase the reusability of components across organizational boundaries.

Furthermore, there are some complex but important issues to take into account
when promoting reuse practice, such as legal questions (Frakes and Isoda 1994)
related to the rights and responsibilities of providers and consumers of reusable
components, and evaluation and cost-benefit analyses (Card and Comer 1994;
Frakes and Isoda 1994) that decide the feasibility of systematic reuse. These
issues are less of an impediment to reuse within an organization, but will
multiply as reusable components cross organizational boundaries and reuse
programs grow up.

Below we follow the outer layer of the research background model
(FIGURE 2) to present the different methodologies (techniques) and tools that
support reuse in systems development, and study ways of improving reuse
practices in the ISD process.

3.1 Ad hoc Reuse vs. Systematic Reuse

Ad hoc reuse applies when there is no defined process for performing reuse.
Reuse is an implicit byproduct of the ISD processes. That is to say an individual
or a small development group can practice reuse without any proper document,
process, and structured formal approach. With ad hoc reuse, the reusable parts
are scavenged from previously built systems and applications for use as
building blocks to construct new systems, applications, or enhancements
(McClure 2001).

Besides ad hoc reuse, some literatures identify another type of reuse
between ad hoc and systematic, called opportunistic reuse. Different from the
unplanned practice of reuse, opportunistic reuse depends on the engineer to
identify the needs and retrieve the needed reusable artifacts. However, there is
still no standard process in place for guidance.

In ad hoc and opportunistic reuse processes, reuse is an afterthought. The
reusable artifacts were probably not designed for reuse, which makes the ob-
tained reuse potentiality leading to marginal gain. Often, they must be force-
fitted into the target systems, which lead to compromise of the functional and
non-functional requirements specification. Because of the disappointing results
from ad hoc or opportunistic reuse experiences, the reuse community realized
that reuse requires a broader application in systems development process. The
processes must be applied at the organizational level for a family or related

 28

software systems and applications, rather than only at the project level for an
individual system or application (McClure 2001). In order to obtain more
substantial gains, a systematic approach to reuse is necessary.

Systematic reuse is the practice of reuse according to a well-defined repeatable process
(McClure 2001, 42).

In contrast to ad hoc and opportunistic reuse, the practice of systematic reuse
forms an integral and explicit part of the development process. It encompasses
a set of purposeful activities, like creation, management, support, and reuse of
assets. Its repeatable feature requires a shift from a casual reuse case to a
formalized organizational level of reuse, and a shift from crafting one system at
a time to the use of engineering principles for entire families of systems (Frakes
and Isoda 1994; Sodhi and Sodhi 1998).

Prior research (Gaffney and Durek 1989; Banker and Kauffman 1991; Basili
et al. 1996) has focused on studies of systematic reuse of previous written code.
As the concept of reuse is relaxed from referring to interchangeable source code
parts (McIlroy 1969) to a broader reuse of work products (Freeman 1983) and a
still broader concept of reusing artifacts associated with a software project
including knowledge (Basili and Rombach 1988), systematic reuse, therefore,
comes to involve more than just code. It involves organizing and encapsulating
experience and setting up the mechanisms and organizational structures to
support such a process. In particular, it becomes concerned with high-level life-
cycle artifacts, like requirements, domain knowledge, analysis patterns,
conceptual designs, architectural structures, and documentation (Biggerstaff
and Perlis 1989; Frakes and Fox 1995; Karlsson 1995; Purao et al. 2003). At the
organization level, systematic reuse makes it possible to identify which
software artifacts have the greatest reuse potential and to plan for their reuse in
up-and-coming development, maintenance, and enhancement projects. For
example, Purao et al. (2003) define a group of related, generic objects with
stereotypical attributes and behaviors as an analysis pattern, which can be
reused to support conceptual design in different application domains.

Systematic reuse is not therefore limited to code salvage at the system
implementation stage. Instead, it is interleaved at all phases of the development
(Jacobson et al. 1997). Indeed, the earlier the reuse activity starts, the more
benefits the organization may achieve. Reusable assets at the analysis and
design stage are at a higher level of abstraction than code and less
implementation-specific, and therefore more understandable and reusable.
Also, since the earlier stages of a project (e.g. requirements, analysis, and design
stages) are more expensive than coding (Boem 1987; Kotonya and Sommerville
1998), reusing earlier stage assets can potentially provide greater savings than
reusing code. Moreover, reuse at the design level can lead to reuse at the code
level. Information traceability tools help engineers to trace the desired
information between different development stages.

Meanwhile, systematic reuse is domain-oriented (Frakes and Isoda 1994;
Sodhi and Sodhi 1998). Within the same application domain, due to the com-

 29

mon features existing between different systems, there are many more oppor-
tunities to reuse existing software assets. Consequently, there is a better chance
of getting payback from the investment in designing and preparing for reusable
assets in terms of domain models within the systems family (McClure 2001).

A systematic reuse program is a long-term investment: because
application domains have to be analyzed and defined, reusable assets and their
interfaces have to be defined and stored, and the reuse process has to be
seamlessly integrated into the ISD process. A systematic reuse program
provides the foundation for coordinating reuse efforts within and across
software project teams. It raises the practice of reuse to the organizational level,
which enables the highest possible stage of reuse when building new
applications, thereby achieving the maximum possible reuse benefits (McClure
2001).

3.2 Component-Based Reuse

Software reuse is a process of building or assembling software applications and
systems from previously developed software artifacts designed for reuse
(McClure 2001). The key enabler of software reuse is the reusable asset. Without
reusable assets, a software reuse program cannot be initiated, carried out, and
completed successfully. Assets can be defined as requirements, design models,
code, testing cases, documentation, standards, and plans. Different types of
assets have different representational forms, and are used at different
development stages. Since reuse occurs across similar systems or in widely
different software systems, without any specification expressed in a commonly
understandable way, it is difficult for a user to grasp the contents and features
of every reusable asset. In order to facilitate systematic reuse, the reusable
assets should be wrapped in an explicit interface to present the abstract
conceptual information. We call an asset of this type component. Component is
expected to be the primary driver of the dramatic changes about to take place in
ISD (McClure 2001).

What constitutes a component? Many initial ideas in component-based
reuse come from structured methods with modular design techniques, reuse-
oriented approaches, and object-oriented analyses and designs, which support
modular design, encapsulation, inheritance hierarchies or separated
specification from an implementation. With the recent advent of component-
based reuse approaches to building applications, the term component has come
to mean many different things to different people.

From the software perspective the notion of a component has a wide
interpretation. Examples are pieces of programming logic stored in libraries,
executable code deployable on different target systems, and functional units
performing business tasks. Each of these has similar characteristics: it provides
a defined set of services and can be combined with other classes to build
applications.

 30

It is worth noting, however, that a broader interpretation of component-
based reuse technologies is also possible in which a component is not
necessarily synonymous with executable software. Different from the
component created in systems implementation, most components in systems
analysis and design are models constructed using modeling languages such as
UML. Similarly, a component may be wholly defined by a specification,
documentation, or models at varying levels of abstraction and of different sizes
from which code can be generated. For example, metamodels specifying a static
perspective supported by a method, e.g. a class diagram in the UML method,
can be regarded as a component at the metamodel level. Meanwhile,
requirements specifications, designs, architectural descriptions, test suites, and
so on are all components that are being reused.

Regardless of whether the narrower or broader interpretation of a
component is used, Szyperski’s (1998) definition emphasizes the importance of
the interface and context specification of a component as well as its
independent nature:

A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties (Szyperski 1998).

The definition highlights the most common perspectives on what constitutes a
component by focusing on three key words: interface, independent, and
context.

Interface is the most important feature of a component. The interface
encapsulates a component by offering an abstract description of the services
(operations or functions) that it provides to its consumers. The interfaces of
different types of components have different representation formats, but the
information expressed should relate to the services or functionality provided by
the component, and the semantic association with which the component
communicates with other components. A well-defined interface enables a
component to hide implementation details, to be fitted into software
architecture, and to be replaced easily. Component can communicate with other
components.

The independent feature can be thought of as inheriting characteristics
and benefits from the interface feature. Because of the interface description, a
component becomes an independent deliverable piece of functionality
providing access to its service through the interface (Brown and Short 1998).
Thus, the independent feature focuses on reuse and considers a component to
be an implementation encapsulation boundary, which can be reused as a unit.

Meanwhile, the context dependencies ensure that components are not
isolated independents. They represent different types of dependencies between
components, which provides contextual information to their consumers, and
better guides them to use them.

 31

3.2.1 Component-Based Development

Component-based development (CBD) is the latest embodiment of systematic
reuse (McClure 2001). It is an assembly approach to ISD in which software-
intensive systems are constructed by means of assembling components. Some of
these components may be harvested from existing systems, some may be
retrieved from third parties, and some may be developed anew for the project
at hand.

Component-based development (CBD) is a software-intensive systems development
paradigm where all aspects and phases of the development life cycle, including
requirements analysis, design, construction, testing, deployment, and the supporting
technical infrastructure are based on components.

The strategy underlying CBD is to use predefined components and architecture
to eliminate redesigning and rebuilding the same software structure again and
again. Here developers consider applications not to be monolithic. Rather they
view them as a set of separable, interacting sub-systems. Because of this
underlying strategy, not only does the CBD approach imply reuse, it demands
reuse to deliver significant gains in productivity, quality, and development
speed (McClure 2001). Reuse lies at the heart of the CBD approach.

The benefits of exploiting CBD derive directly from the benefits of reuse.
The CBD approach can provide very significant software productivity, quality,
and cost improvements (McClure 2001). With the support of component
technologies, developers can search for components from their previous project
repository or the commercial standard component repository to reuse them,
which is quicker than starting from scratching. The involvement of component
at the systems analysis and design stages especially shortens the design-to-
production life cycle. Productivity is improved by assembling existing
components. Since these components have been well tested in their previous
use and wrapped in “standard” interface, the system delivery time is reduced
by less testing and the quality is increased by using pre-tested components with
precise specifications.

CBD not only brings tremendous benefits, but also brings opportunities to
increase reuse practice in ISD projects. Analysis of software and systems
application has shown that there are many functions in common between
different applications (Tracz 1988). It indicates that the major part of an
application can be assembled from pre-defined components. The CBD approach
facilitates componentization of the commonalities and hides the complexity for
distribution purposes, which greatly promotes reuse in ISD.

In order to successfully apply the CBD approach, Kiely (1998) mentions
that three main elements are needed in the component-based system infrastruc-
ture: a uniform design notation, a repository, and a standard interface. A uni-
form design notation provides an accepted way of describing components’
functions and properties. For example, UML (1995) is a standard notation
widely used in the industry. A repository is needed as a means of cataloguing

 32

available components with descriptions for component retrieval. A standard
CBD interface generalizes components that can be accessed by any applications.

3.2.2 Component-Based Reuse Process and its Different Statuses

A reuse program mainly considers two kinds of process: the component
management process and the component reuse process. The reuse process is the
primary process carried out during the ISD process.

By following the activities of asset management process specified in IEEE
Standard 1517 (IEEE 1999), the activities of component management can be
divided into three parts. The first two parts include preparation activities, e.g.
part one is to create and review a component management plan, called process
implementation. Part two is to define a component storage and retrieval
mechanism. In detail, engineers define, implement, review, and maintain a
component storage and retrieval mechanism, as well as a component
classification scheme at this stage. The third part is to manage and control
components, which includes activities such as evaluation, storage, classification,
and retirement of components, as well as tracing reports and monitoring
component changes. The management process is a support process that
contributes to the success of a reuse project.

The component reuse process consists of a set of basic activities, such as
component definition, selection, adaptation, integration, and maintenance. They
are seamlessly integrated into the system development process. An example of
CBD environment and component reuse activities will be discussed in the next
section. In different ISD approaches, the integration of reuse activities might be
slightly different. However, the basic activities are not changed. Accordingly,
components in such a reuse process can have different statuses. We take the
terms in the essential CBD activities framework suggested by Brown and Short
(1998), and classify components into five groups: off-the-shelf, qualified,
adapted, assembled, and updated components, which correspond to the five
basic activities in the reuse process mentioned above: definition, selection,
adaptation, integration, and maintenance.

Off-the-shelf components are components identified as being of potential
interest. A process of investigation is required before selecting one as a reusable
component. This group of components may come from a variety of local and
remote sources, and also known as commercial off-the-shelf (COTS). In general,
off-the-shelf components are the input of the component selection process. They
are selected or involved at the requirements analysis stage. Because of
uncertainty about the status of their potential reuse, little may be known about
a component’s characteristics at the requirements stage. The information
available may be simply its name, its parameters, and some idea of its required
operating environment. Many of the required and available interactions with
other components may remain hidden.

Qualified components are candidate components selected from among the
off-the-shelf components. They are the output of the component selection proc-
ess. At this stage, possible sources of conflict and overlap among components

 33

have been identified through a system designer’s investigation. System design-
ers have studied the component interfaces and identified the facts that are im-
portant to effective component assembly and evolution.

Adapted components are components that have been amended to address
potential sources of conflict and services identified at the component selection
process. They are the output of component adaptation, and are ready to be
assembled in the new project. In general, the designers proceed on a trial-and-
error basis to investigate the usefulness of the component in the new context.

Assembled components are components that have been integrated via
some form of common infrastructure at the systems design or implementation
stage. Once the system has been implemented and tested, it will be taken into
use. Assembled status is thereby a relatively stable status; it will not change to
the next status until the system or its sub-system is updated.

Updated components are components that have been updated by newer
versions, or replaced by different components with similar behavior and
interfaces. Components holding this status are mainly at the system
maintenance stage. They are built when the previous ones cannot be easily
integrated into the new project through adaptation. In principle a change to one
component is easy to accomplish. However, changes may have extensive
unforeseen repercussions on many other components in the system. The
impacted components have to be identified by tracing different kinds of context
dependencies, and corresponding changes have to be done as well.

These five statuses of components are extracted from the basic activities in
the reuse process. Each status can be thought of as inheriting characteristics and
benefits from the previous one, and as closer to reuse than the previous.

3.2.3 Summary

CBD as a vision and an approach has become the software concept du jour. It
offers many exciting possibilities in terms of reducing application development
costs, providing greater software reuse, and facilitating the maintenance and
evolution of systems to meet new requirements. While it has not matured to the
point where users can assemble applications freely, they are reshaping the ways
groups design, build, deploy, maintain, and adapt enterprise applications. It is
one tool in the bag, rather than a holistic and multifaceted approach (Allen
2002). To achieve the expected vision requires a number of hurdles to be
overcome, such as deploying a “standard” interface specification language
which is not only suited to all types of component, but also expressive enough
to hide all properties that may lead to unanticipated interactions, searching for
components from different resources, evaluating components, and maintaining
component-based systems.

In current market, there have been a variety of CASE environments which
(partly) support CBD. One of the CASE environments widely used in industry
is Rational Rose (Quatrani 1997). A metaCASE environment that applies a com-
ponent concept to support both method engineering and system engineering is
difficult to find. MetaEdit+ is one example of an attempting to integrate the

 34

concept of the component into a pre-exiting environment (Zhang 1997; Zhang
2000a; Zhang 2000b; Zhang and Lyytinen 2001; Zhang 2004; Zhang and Kaipala
2004).

3.3 Technical Support for Reuse

Among numerous software technologies, reuse has gained attention from
academia, government, and industry over the last decade. Reuse has been
recognized as a powerful means of potentially overcoming the software crisis
(Tracz 1987; Basili 1989; Griss 1993). The number of technologies supporting
software reuse has increased greatly. Different technologies have been
proposed to achieve the goal of maximizing the reuse of basic components, of
architectural design and even of software designers’ experience in solving
problems in specific contexts.

There are two principle types of techniques considered essential for reuse:
techniques from the application developer viewpoint and techniques from the
reusable asset developer viewpoint. The former concerns developing with the
use of reusable assets (developing with reuse). These techniques mainly
provide solutions for reuse at different stages of the ISD. The latter concerns
developing reusable assets (developing for reuse). These techniques mainly
provide solutions to developing and managing reusable assets. In general, we
cannot strictly distinguish between these two types of techniques. A technique
supporting reuse may consist of both developing for reuse and developing with
reuse. For example, the product-line approach (SEI 2000) is a means of
developing with reuse. At the same time, it provides the framework for
building and managing a set of assets for reuse in a specific family of
applications at the domain analysis stage. Because reuse is a process to leverage
commonalities and variability between reusable assets, it is often domain-
specific (Neighbors 1989).

Ezran et al. (1998) present and review the most relevant techniques in
building and reusing software. Among them, Object-oriented technology (OOT) is
regarded as an essential enabler for reuse (Judd et al. 1991). It provides methods
and mechanisms for structuring models and program code to correspond to the
objects found in the problem domain (Ezran et al. 1998). The designer identifies
the main concepts in the application domain, and their responsibilities and
relationships, and designs the application having in mind which objects can be
reused. The OOT facilitates the reuse of code and higher levels of software
artifacts to a limited degree. It is weak in describing the overall system structure
and cannot bring about extensive reuse in ISD.

In addition, there is a set of techniques which have emerged from the OO
world. They maximize the power of OOT in terms of reuse. The techniques are
design patterns, application frameworks, and CBD. A Design pattern is a tech-
nique for documenting design solutions by describing the application context,
the design problem, and a solution to the problem. The solution is customized

 35

and implemented to solve the problem in a particular context (Gamma et al.
1995). It is an attempt to overcome the limitations of pure code reuse by empha-
sizing the importance of design reuse. It constitutes a promising attempt to shift
the emphasis in software engineering away from component-based implemen-
tation towards component-based problem solving (Keller and Schauer 1998).
Application frameworks and the CBD approach provide a framework which em-
bodies a generic design, comprised of a set of cooperating classes/components
that can be adapted to a variety of specific problems within a given domain
(Cotter and Potel 1995). It combines code reuse with design reuse and offers
specific services that are commonly used by a family of similar applications.

Furthermore, the concept of software agents has been proposed as an
extension of the object model (Ezran et al. 1998). Compared with the object
model or the component, software agents are integrated systems and their
behavior is highly customizable, which enhance software reusability. In
particular, the development of agent-based application frameworks is a
promising approach to enhancing reuse.

Detailed descriptions and examples of reuse technologies are addressed in
(Ezran et al. 1998). A discussion and comparison of the above methods is
presented in Article 5. Therefore, we only provide a brief summary, as shown in
TABLE 1.

TABLE 1 Comparison between reuse techniques (Ezran et al. 1998, 134)

Technology Strength Weakness
OOT Enhances modularity and information

hiding.
Requires significant
modeling effort.

Design
patterns

Facilitate retrieval of design solutions,
provide guidelines for the development
process.

Implementation from
scratch.

Frameworks Domain-specific semi-complete
applications to be customized. Reuse of
object model plus architecture.

Requires high expertise
and deep understanding
of the framework design.

Components Domain-specific or technical.
Development of an external market.

Not customizable.

Software
agents

Highly customizable and adaptable,
allow easy reconfiguration of complex
systems.

Not yet mature and
consolidated technology.

These techniques contain dependency on OOT. They offer partial (sometimes
overlapping) views and solutions to better support for reuse in ISD. Among
various kinds of reuse techniques, component-based reuse is the focus of this
study. Below, we discuss several technologies that are closely related to the
form of component-based reuse. These techniques support systematic reuse on
the enterprise level.

 36

3.3.1 Component Infrastructure Technologies

Although the CBD approach emphasizes the concept of the component
throughout the development process, current CBD practices mainly concentrate
on the code world where most reuse occurs, and component infrastructure
development. The component infrastructure facilitates component reuse by
providing capabilities and middleware solutions for connecting independent
pieces of system functionality.

FIGURE 4 shows how developers move from an initial domain idea to a
finished product in the CBD paradigm. Reuse occurs at each stage of the
process, but the code stage provides most of the reuse facilities: the code
component repository and component infrastructure with pre-defined
component interfaces.

FIGURE 4 CBD: moving from domain idea to finished product

As in most ISD practices, developers first have to understand the problem
domain and map the domain solutions onto design models that are represented
in a specific ISDM notation, like the UML notation. Because the design models
represent the implementation in code, the model developers have to take into
account the component infrastructure defined in the project when mapping the
domain solutions onto the design models.

A component infrastructure is responsible for proper execution of the
design and implementation tasks on the project. A good infrastructure is a
critical factor in the success of reuse and CBD (McClure 2001). In the world of
component infrastructure technologies, there are currently different de facto
infrastructures for software component specification, interoperability, and
distributed computing. Currently, the three dominant infrastructure choices
are:

 Microsoft’s Component Object Model (COM)/Distributed Component

Object Model (DCOM) supports applications developed for Windows-based
platforms using ActiveX components and tools (MSDN 2004).

 Generate/Search
 Integrate,
 implement, test

Map to UML and
component infrastruc-
ture

Domain

idea

Design
model

Code

Component
repository
(code)

Finished
product

 37

 SunSoft’s JavaBeans specification defines a standard way to build Java ap-
plets, and takes advantage of the Java Virtual Machine (VM) to allow appli-
cations to be portable across any environments that support the Java VM
(Sun 2004).

 The Object Management Group’s (OMG’s) Object Management Architecture
(OMA), specifies a Common Object Request Broker Architecture (CORBA)
that uses an interface description language as the basis for brokering
connections among applications written in different languages running on
multiple distributed platforms (OMG 2002).

In addition, Microsoft’s .NET platform represents the next stage in the
evolution of COM. The .NET Platform essentially creates a component
infrastructure for web middleware, using the component (software
interchangeable part) as its basic building block and supplying these
components with streamlined system and application services that integrate
with the web (Hoagland 2003).

While these technologies are in many ways competitors, they share the
same underlying characteristics. In particular, they provide the infrastructure
required to manage and connect a disparate set of components operating on a
distributed, heterogeneous platform. In fact, such technologies support access
to remote services through both synchronous and asynchronous
communication - in the presence of network failures - and with the variable
network latency associated with internet- and intranet-based solutions. Large-
scale, robust distributed business applications have been constructed using each
of these infrastructure technologies in application domains as diverse as
banking, telecommunications, and desktop publishing (Ezran et al. 1998).

Although these technologies have been successfully and widely used in
industry, an obvious pitfall exists. The component infrastructures are based on
the code world, and take the implementation stage as a starting-point to
propagate reuse throughout the systems development life cycle, which may
hamper reuse practice. Because the programming code is too abstract to
understand, in order to better support code component reuse, other techniques
like reverse engineering (Hall 1992) are applied to convert the information
hidden in code to a higher level format, such as a design model. Thereby,
design models are involved in the reuse process. Reuse is a practice that should
be naturally and sequentially interleaved into the systems development
process. In a natural manner, it should start from the systems analysis and
design stage, instead of the code stage. In order to much more effectively
propagate the reuse practice, the reuse strategy thereby should take the stage
before the implementation stage as the starting-point to initiate and further
perform reuse. As Neighbors (1980) stated the key to reusable software is
captured in domain analysis in that it stresses the reusability of analysis and
design, not code.

 38

3.3.2 Domain Analysis and Engineering

Interest in domain analysis has increased significantly recently. It has been seen
as the last of the technical stumbling blocks to achieve effective reuse. The
definition of domain analysis formulated by Prieto-Diáz (Tracz 1991, 27)
describes its purpose as follows:

Domain analysis is a process by which information used in developing software
systems is identified, captured, and organized with the purpose of making it reusable
when creating new systems.

Domain analysis is conducted as an iterative process that consists of four logical
processes: identifying the domain, scoping the domain, analyzing the problem
space, and designing the solution space (Sodhi and Sodhi 1998). It forms a
systematic approach to the exploration of related systems to discover and
exploit commonality, similarity, and variability. Through domain analysis,
domain level requirements are analyzed, generic domain architecture is
specified, and a set of assets specifying the commonality of related systems are
identified and stored. Domain analysis is a part of the discipline of domain
engineering.

Domain engineering is a process creating an asset that can be managed and reused
(Sodhi and Sodhi 1998, 61).

Domain engineering is based on understanding the commonality and
variability of systems in a given application domain. It consists of analysis and
modeling of a domain, design of a generic architecture for a domain,
implementing and leveraging reusable components that fit the architecture, and
maintaining and evolving the domain and its components. Domain engineering
uses business objectives and domain knowledge to create and standardize the
architecture that the domain supports. It is notable that domain engineering is
not a part of any one project – it cuts across all projects within the application
domain, and forms a on-going effort to support multiple application
engineering projects. Its goals are to identify, derive, organize, abstract, and
represent the commonality and variability among assets within a particular
domain. This further facilitates the reusability of a family of products within an
organization’s domain knowledge. Therefore, domain engineering has become
the main trend of reuse in organizations.

Many companies and research institutes have moved away from develop-
ing software from scratch for each product and instead focused on the com-
monalities between the different products and capturing those in generic do-
main architectures and an associated set of reusable components. There are a
number of reports on experiences of domain engineering practice, as well as
studies on techniques and tools supporting domain engineering in an industry
context. Brownsword and Clements (1996) report the experience of a Swedish
naval defense contractor, CelsiusTech Systems AS, that has successfully

 39

adapted domain models in building large, complex, software-intensive systems.
Dikel et al. (1997) examine the success factors behind Nortel’s newly created
product-line architecture, an instance of domain models and architecture. Davis
and Hawley (1994) describe the reuse capability that Boeing has developed as
one of the prime contractors on the U.S. Advanced Research Projects Agency
(ARPA) Software Technology for Adaptable, Reliable Systems (STARS) pro-
gram. The underlying principle of the program is the separation of develop-
ment into two separate life-cycle views: domain engineering and application
engineering. During domain engineering, the Boeing/Navy STARS team devel-
oped a decision/question model over the application domain which supports
the management and utilization of domain–specific reusable objects during ap-
plication engineering. The research and case studies provide different solutions
to domain-specific reuse. No matter which approaches are used, our view is
that using the domain architecture model and associated components is an im-
portant way of identifying and managing commonality and variability in the
product family. Consequently, it facilitates the institution of reuse and the chain
reaction of reuse across different phases of development.

3.3.3 Domain-Specific Modeling

Domain-specific modeling (DSM) falls in line with the paradigm of domain
engineering. However, as distinct from the technologies discussed above, SDM
is based on the model world rather than the code world, leading to a direct
mapping onto organizations’ own domains in problem solving, design, and
product implementation. It mainly supports reuse at the domain model
construction stage. Domain is a problem space for a family of applications with
similar requirements, a set of related systems with commonality. Examples of
application domains include mobile phones, e-commerce platforms, point-of-
sale systems etc. Due to the close relationship between applications within the
same domain, the domain models can be reused many times within the family
of applications. The concept of domain-specific modeling can be defined by
adapting the description given by metaCASE Consulting (MetaCASE 2000, 4):

Domain-specific modeling (DSM) is the process to understand the customer’s
requirements within the domain world and represent the requirements and possible
solutions in the form of domain abstractions and semantics. It allows modelers to
perceive themselves as working directly with domain concepts.

FIGURE 5 shows how developers move from an initial domain idea to a
finished product in the DSM approach.

The domain model captures in detail the domain-specific knowledge of the
application in a form that leads to final implementation (Sodhi and Sodhi 1998).
It relates directly to the application domain, and contains information about the
domain abstractions and semantics. The domain model, therefore, is different
from design models generated in traditional ISD paradigms. The design model
is represented in a specific ISDM notation, like UML. The notation does not re-

 40

late directly to the application domain but to the implementation, i.e. it visual-
izes the code (MetaCASE 2000). Hence, the domain idea and solutions must be
mapped onto the design models representing the implementation in code, from
which in general a relatively small percentage of the finished code can auto-
matically be generated.

FIGURE 5 DSM: moving from domain idea to finished product

The difference between a domain model and a design model shows that, in the
DSM approach, a great volume of information needed in the ISD process has
been prescribed into the domain-specific modeling language. The information
includes the architecture required to manage and connect a disparate set of
domain models, syntax and semantics to construct a domain model and connect
it to others, mappings from the domain models to the final implementation, and
so on. Construction of the information belongs to the method engineering
discipline, and will be done by method engineers, which reduces the burden on
system developers. The domain-oriented method allows developers to
concentrate on the required functionality and shift the focus from code to
design. With the support of DSM, the developers can easily design systems
within the same application domain by reusing pre-existing models. It
improves product development speed significantly. Meanwhile, it is notable
that the information is developed only once, and can be reused later in different
projects.

The DSM approach has already been seen to work very effectively in a
range of situations, most notably in embedded systems and product families
(MetaCASE 2000). One example is the Nokia case study by MetaCASE Consult-
ing (MetaCASE 1999). Nokia uses a domain-specific method to develop mobile
phone software. A metaCASE tool (MetaEdit+ workbench) was used to model
the concepts and rules of the mobile phone domain, its graphical notations,
code generators and document generation templates. By using the domain-
specific modeling approach, the benefits found in the case study are many: the
domain-oriented method allowed developers to concentrate on the required
functionality and to shift the focus from code to designs, results from code gen-
eration were more than fulfilled expectations, and the training time and cost

Domain
idea
+
Domain-
specific
modeling
language

Domain model Code

Finished
product

Component
repository
(model)

Component
repository
(code)

Generate / Search for
component

Construct / Search for
domain model

Integrate,
implement, test

 41

was reduced significantly. The result was a tenfold gain in productivity for the
company (MetaCASE 1999).

3.3.4 Summary

There is a vital difference between an application’s domain and its code
(Jackson 1995). These are two different worlds, each with its own language,
experts, ways of thinking etc (MetaCASE 2000). The technologies supporting
reuse can therefore be divided into two groups according to their different
views of reuse. Many reuse technologies focus on the code world, and take code
reuse as a starting-point and the basis for reuse propagation, while recent
research directly relates reuse to codified knowledge, such as the analysis
pattern (Purao et al. 2003), the DSM approach (MetaCASE 2000), and the design
pattern (Coad et al. 1995; Gamma et al. 1995; Purao 1998). These technologies
attempt to exploit effective reuse in the form of codified generic knowledge or
the application’s domain world. They define groups of generic objects as
analysis patterns to be reused in different domains (Purao et al. 2003), or
package software engineering expertise with domain knowledge into domain
models upon which more complex and more flexible systems designs can be
built (Keller and Schauer 1998). These technologies take reuse of generic objects
and domain models as the basis for influencing the remaining stages of systems
development. They are distinguished from the concept of the traditional
software reuse paradigm. Since generic objects and domain models represent
high-level solutions to certain problems, they hide the detailed and complex
implementation, and are easy for designers to understand and reuse. However,
reuse of generic objects or design models requires that the environment
provides a perfect mapping from generic knowledge to domain-specific
knowledge or from the domain model components to the code components.
Only in this way can the development team benefit from codified knowledge
reuse during the systems development process.

Obviously, because of the overlap between different technologies, some
techniques cannot work efficiently without combining other techniques. For
example, a product-line approach (SEI 2000) follows the form of the domain
engineering and CBD approach, which consists of the construction of software
architecture for a specific domain and development of a complete set of
reusable assets within the same domain. In the same manner, the middleware
framework cannot support reuse if it is separated from the component
repository.

Regardless of the diversity in the reuse technologies, the foundation on
which reuse can be carried out is the collection of reusable assets. The manage-
ment and retrieval of reusable assets/components thereby has captured the at-
tention of the software reuse community (Prieto-Díaz and Freeman 1987;
Maarek et al. 1991; Frakes and Pole 1994). Especially in the component-based
reuse approach, libraries of components are necessary to achieve software reuse
(Henninger 1997). Meanwhile, in terms of tool support and integration, there
exists a fairly wide consensus that tools for reuse tasks should be integrated

 42

seamlessly into CASE (Fischer 1987; Maiden and Sutcliffe 1992; Mili et al. 1995).
Typical reuse functionalities like search should be available to developers, and
should not distract them from their normal workflow. Broadly speaking, a re-
use-oriented CASE environment should facilitate reuse activities at each stage
of ISD.

3.4 Current Tool Support

Many software development organizations believe that investing in software
reuse will improve their process productivity and product quality, and
therefore are in the process of planning or developing a software reuse
capability. Unfortunately, there is still little data available on the state-of-the-
practice of utilizing or managing software reuse. The critical problem in today’s
practice of software reuse is a failure to develop the details necessary to support
a valid software reuse infrastructure. Meanwhile, Morisio et al. (1999) report
that the commitment of management, the existence of training, and effort to
find a reuse approach that fits the context of the company are the keys to
success. Although the management structure of an organization often
determines the failure or success of reuse, such discussion is outside the scope
of this thesis. Next, we present an overview of current reuse-supported tools
and discuss the technical obstacles to reuse.

At present, there are many tools on the market claiming to support CBD
and thereby reuse. Most of these tools support enterprise modeling, code
generation, and round-trip engineering. The availability of these tools has led
many application developers to consider CBD and reuse in developing large
and distributed applications requiring robust operation. Below, based on the
survey report of the COMBO project1 we analyze some typical commercial
tools. Because the COMBO project report (Hänninen et al. 2000) was finished in
year 2000, the product information in the case of some tools has been updated
in this thesis.

3.4.1 Tools Support for Reuse

Tools are examined in alphabetical order: after each tool name we give the web
site for further information. Some tools are presented briefly due to inadequate
product information. Meanwhile, the descriptions are not intended to cover
each tool fully, but rather to illustrate various features that support reuse or
CBD. The tools provide concrete examples of the current pervasive commercial
or academic research in the field of reuse. After the tool descriptions, some
important features will be summarized in a table.

1 The Combo project was a part of a development project of the Department of Computer
 Science and Information Systems in the University of Jyväskylä in term 1999-2000. The
 purpose of this course was to study tools for component management. For further informa-
 tion, please visit: http://projekti.it.jyu.fi/combowww/english/

 43

MetaCASE Consulting: MetaEdit+ 3.0 (see: http://www.metacase.com)

MetaEdit+ is a metaCASE tool consisting of a method workbench for method
specification and construction, and a full function CASE tool providing dia-
gramming editors, browsers, generators, and multi-user support. MetaEdit+
has been successful as a (meta)CASE tool, with users numbering thousands
(Kelly 1997). However, the current commercial version does not support
component-based systematic reuse, although some ad hoc reuse can be done
through property sharing. Also, reuse is introduced as the ability to include a
design artifact from one graph in other graphs even in another graph from a
different method, providing that the type of the design artifact is legal in the
second method. This is made possible by the ability to reuse type-level
components when defining the metamodel of a graph (Kelly 1997). Meanwhile,
some facilities (like Info Tools) can be reused to support component
management once the concept of a component is defined in this environment.

The metaCASE feature puts MetaEdit+ in a good position for reuse. The
metaCASE functionality provides the flexibility needed to construct different
ISDMs according to organizations’ needs, which enables the domain-specific
modeling approach or the product-line approach possible to be implemented
and deployed within an organization that delivers a set of systems within the
same application domain.

Introducing a component concept into MetaEdit+ that can systematically
support reuse in a (meta)CASE environment is the goal of the next generation
of MetaEdit+, as well as the objective of this thesis.

MicroTOOL: ObjectiF 5.0 (see: http://www.microtool.de/e_index.htm)

ObjectiF is an UML-based ISD tool where the main focus is on developing .NET
applications. One promising feature offered by this tool is its round-trip
engineering with ObjectiF and Visual Studio. That is to say every code window
for a class in Visual Studio .NET gives engineers direct access to the
corresponding ObjectiF class diagram, and vice versa: the designer can jump
directly from an ObjectiF class diagram to Visual Studio .NET's code editor
(MicroTOOL 2002). Components are depicted as packages in ObjectiF. A
package contains a set of classes and their interfaces. A package diagram
consists of packages and the relationship between packages, which forms the
system architecture for system implementation and integration.

There is no specific emphasis on reuse in ObjectiF, but some functions
provide good support for reuse. For example, the round-trip engineering eases
the code understanding process, and thereby enhances reuse. The function of
the import/export of packages provides a means of reuse of packages across
different projects. However, the package management tool lacks specification,
especially for package retrieval, which is a basic support mechanism for further
package reuse.

 44

Computer Associates: AllFusion Component Modeler 5.0 (Formerly available
as: Paradigm Plus) (see: http://www3.ca.com/Solutions/Product.asp?ID=
1003)

AllFusion Component Modeler is an UML modeling tool for visualizing,
designing, and maintaining enterprise components for eBusiness. Through a
common XML solution, it provides round-trip engineering, which keeps
application design and implementation in sync through any number of code
changes and design iterations (CA 2002). It also provides full XML support for
model management. AllFusion Component Modeler also provides a flexible
mechanism for integrated use with other enterprise modeling tools and
enterprise integrated development environment.

AllFusion Component Modeler is a modeling tool rather than an
enterprise integrated development environment. With XML support, the tool
enables end-to-end integration with the AllFusion Modeling Suite and other
technologies. It should be noticed that the modeling tool only supports UML
notations, and there is no flexibility to revise the UML notations or construct a
brand-new ISDM.

IBM: Rational Rose 98 (see: http://www.rational.com/products/rose/
index.jsp)

Rational Rose provides solution to model-driven development with the UML. It
is one of the leading visual modeling tools for object-oriented analysis,
modeling, design, and construction through the application of UML notation.
Rose 98 provides support for CBD including: component building, assembly,
reuse, and component framework as well as a browser. Rose 98 expands the
UML notation to support a modeling interface component called lollipop.
Lollipops are an extension to the UML that represent COM components in
application models. Rose 98 has additional specific functions to enable and
simplify the assembling of components into complex applications or larger
components. These capabilities help maximize the reuse of component models
within the organization to build applications faster. Through its Frameworks
browser, it also provides a cross-project component browsing capability.

UML representation of components is weak, and the tool does not
specifically support the essential component modeling technique. As a result,
the component interface cannot be defined with ideal precision (Brown and
Barn 1998). Therefore, components in Rose 98 are limited to code, or executable
components. Through component reverse engineering, developers can
understand components represented by UML models. However, it would be
improved if Rose 98 were to allow reuse already at the requirements analysis
stage.

 45

Select Business Solutions: Select Component Manager (see:
http://www.selectbs. com/)

Select Component Manager is a part of Select Component Factory Version 4.4
released by Select Business Solutions. It is advertised as a highly scalable, active
repository for software component publication, management, search and reuse.
The tool is based on the code world in order to support CBD. It stores a wide
range of components, including COM, CORBA, EJB, and wrapped legacy
functions, and provides effective management of components, including
version control, component interdependency management, access control,
component files maintenance, and so on.

Select Component Factory is an integrated set of products for ISD. The
environment provides support for software design (Select Component
Architect), design review (Reviewer for Select Component Architect),
service/component management (Select Component Manager), and code
generation (Select Synchronizers). The software design tool provides support
for design in UML notations.

3.4.2 Summary

After examining the tools that support reuse in different development phases,
we can obtain some insights into the various ways in which current CASE tools
support reuse.

It is easy to see that reuse is not the core technology supported by most of
the tools, but each tool facilitates asset reuse in different ways. The most
promising function offered by most of the tools (e.g. MicroTOOL’s ObjectiF5.0,
Computer Associates’ AllFusion Component Modeler 5.0, and IBM’s Rational
Rose 98) is the support of round-trip engineering between the design models
and the code. Through reverse engineering, the code component can be
converted to a graphical diagram, which is more expressive and easy to
understand, and thereby promotes code reuse. In addition, ObjectiF5.0 provides
package import/export functions, which make it easy to reuse packages across
projects. Select Component Manager, AllFusion Component Modeler 5.0, and
MetaEdit+ provide solutions to component/model management, including
version control, dependency management, component search, and component
files maintenance, which are indispensable in the reuse process. Furthermore,
some other functions promote and support reuse practice as well, like the
design patterns provided by ObjectiF5.0, the support of system architecture
design in ObjectiF5.0, Select Component Factory, Rational Rose 98 etc. Different
tools provide support in their own ways. However, it is clear that no tools
provide systematic support for reuse during the whole ISD process. Comparing
the concept of a systematic reuse support environment with current reuse
support tools, we can see that most of them provide incomplete support for
reuse. Reuse is regarded as a side effect of different ISD technologies.

Meanwhile, we can easily see that the tools which (in)directly support re-
use practice mainly facilitate the reuse of code. Although most tools emphasize

 46

their model-driven development feature, they ignore the benefits of reuse at the
design stage. No tools expand reuse practices from the code level to a higher
level, e.g. the reuse of design models. Moreover, the DSM technique is not
commonly supported in current tools. No tools support the construction of do-
main-specific modeling language, except MetaEdit+, which provides the meta-
modelling feature. It is therefore difficult for them to support the reuse of do-
main models. Another factor is that current tools lack standards or uniform
specification of components created at the systems analysis and design stage.
XML can be regarded as a de facto interoperability model, which assures data
exchange between design models. It has been used as a solution in current
CASE tools; however, conversion support in CASE tools is not that widely suc-
cessful.

 47

4 RESEARCH PROBLEM DEFINITION

Having set out our conceptual framework for research, and examined the
current state of the field and its issues, we now collate these issues and specify
the research problem.

4.1 Technical Problems in Enabling Reuse

The main problem facing today’s reuse practice is that it lacks support for reuse
in the form of methodologies and supporting environments. No single
technique, such as the technique for building and maintaining component
libraries, is sufficient. As reuse is a common practice throughout the ISD
process, an integrated methodology can provide proper and continuous
guidelines and support for reuse practice in every phase of ISD. Meanwhile,
development environments that promote efficient reuse are rare (Basili et al.
1992; Rine and Nada 1998), a problem which can also be traced back to the
insufficient support of methodology. The problems can be specified in more
detail by reference to the following perspectives:

P1: Limited understanding of components
In general, the software industry limits the understanding of components in the
source code or executable code. As seen in the survey of commercial tools sup-
porting reuse, many of them only regard code as reusable assets, and ignore the
reusable assets generated in other phases of ISD. This narrow understanding of
components limits the scope of reuse. In theory, reusing assets generated at
stages earlier than the implementation stage has greater potential leverage be-
cause of their greater expressive power. This can further trigger code reuse at
the implementation stage. If we shift our focus from support tools to the state of
the practice of CBD, a recent Cutter Consortium survey (Allen 2002), which
gathered data on CBD from 118 companies from around the world, shows that,
for many organizations, CBD is very much a programmer-related activity, with

 48

70% reporting that programmers use GUI components. The survey also showed
that the practice of component reuse in systems analysis and design had in-
creased in at least half of the organizations polled. In order to incorporate com-
ponent reuse into systems analysis and design, some research (Coad et al. 1995;
Gamma et al. 1995; Fowler 1997) has been done regarding high-level component
definition and reuse. However, we need an integrated methodology and a sup-
porting environment which provides a means clearly to identify the various
components that describe requirements, architecture, analysis, design, test, and
implementation along the development chain. Clear identification underlies the
ability either to reuse them or to allow them to be candidates for replacement.

P2: Insufficient methodical support for systematic reuse
Current tools mainly provide ad hoc support for reuse practice. As summarized
in the last section, most tools provide support for the CBD approach, which in-
creases productivity and quality by reusing code component, while none take
reuse as their mission. The tools lack support for systematic reuse which would
help users understand the behavior of the asset, the context in which it was de-
veloped, and how it can be integrated into the application. The scope and bene-
fits of reuse are thereby greatly reduced. In order to expand the benefits of re-
use, an integrated methodology comprising both technical and non-technical
issues of reuse should be integrated into the ISD environment (Jacobson et al.
1997). In particular, the methodology and its supporting tools should support
the reuse process and reusable asset management, as specified in section 3.2.2.

P3: Inflexible support of modeling techniques in CASE tools
Although modeling techniques do not directly affect reuse practice, their lim-
ited application domains decrease the number and the type of reusable assets.
As can be seen in section 3.4, most CASE tools only provide “hard-coded”
modeling techniques, like UML. Although UML has become the industry-
standard language for specifying, visualizing, constructing, and documenting
the artifacts of software systems, many organizations still need domain-specific
techniques to describe the problem situation and the solutions to it. It is re-
ported that 88% of organizations adapt the method-in-house (Hardy et al. 1995;
Russo and Wynekoop 1995), and 38% of organizations have developed their
own method (Hardy et al. 1995). It is difficult for a “hard-coded” CASE tool to
provide a set of modeling techniques to cater for an organization’s needs, which
consequently limits the potential for reuse.

In sum, due to the insufficient methodical support for systematic reuse, the
software industry at present cannot provide an ideal environment for the facili-
tation of reuse processes throughout the ISD process. To make up these draw-
backs, one solution is to incorporate systematic reuse methodologies into sys-
tems development environments. The metaCASE environment is an appropri-
ate environment for initiating such research, because it not only facilitates sys-
tematic reuse, but also provides flexible support for the specification of diverse
ISDMs. Furthermore, due to its metamodeling capability, the metaCASE envi-

 49

ronment can be specified and tailored to systems development in a specific ap-
plication domain.

4.2 Research Problem Definition

Research into new methods and technologies continues unabated. Studies on
how existing methods and technologies support reuse, however, are far too few
(Zand et al. 1997). Existing methods such as OO patterns and CBD do not
incorporate key learning from the reuse community (Zand et al. 1999). Reuse
technology transfer seems to be very slow. Instead of endlessly building new
methods and technologies, we need to study the more promising methods and
processes that developers are using right now, work out ways of incorporating
reuse technologies into the support methods, and find a method of evaluating
the actual value of improvements.

Therefore, our research is aimed at developing a metaCASE environment
which would support systematic reuse at different stages of ISD. On the basis of
existing ISDMs and support tools, our goal is to incorporate reuse technology in
the systems analysis and design environment at the component level. To
achieve this goal we need a scientific approach to building and incorporating
components into the systems analysis and design environment, as well as a
scientific way of evaluating the approach. Our research tackles the main
problems confronting existing support techniques for systematic reuse, as
discussed in the previous sections. The research problem can thus be
decomposed into the following three questions.

Q1: What is a generic conceptual framework that supports systematic reuse in
a metaCASE environment?
Q2: What is a generic component model regardless of the semantics and the
syntax design of component?
Q3: How does the conceptual framework and the component model support
reuse in the ISD process, especially in the phases of systems analysis and
design?

The questions are raised in line with the essential concepts contained in the
model describing the research background. FIGURE 6 depicts the relationship
between the research questions and the concepts addressed in this thesis. Our
eventual objective is to develop IS in a time-saving, low cost, and high quality
manner, as shown in the upper part of the figure. Hence, the research questions
take into account the key issues regarding the technical support for systematic
reuse, as shown in the lower part of the figure. In turn, the technical support for
reuse will guide the ISD practice to achieve the eventual objective.

 50

FIGURE 6 Relationship between research questions and the research background

In particular, Q1 reflects the problem of insufficient methodical support for
systematic reuse. It inspires us to seek a possible direction to improve reuse
practice. Answers to this question form the theoretical foundation of the whole
research effort. Q2 is a follow-up question. It reflects the problem of our limited
understanding of components, and indicates the need for additional research.
Both questions focus on the methodology leading the research. Q3 is concerned
with the flexible tool support. It raises the empirical question of how a
component-based development methodology can be incorporated into a
metaCASE environment, and how it influences the practice of reuse-based
systems analysis and design.

4.3 Research Environment

This research has been carried out as part of the RAMSES research project
funded by Tekes, the National Technology Agency, MetaCASE Consulting, and
Nokia Mobile Phone (Korhonen et al. 2000). RAMSES is an acronym standing
for Reuse in Advanced Method Support Environments. It is a three-year project
that has been carried out in the Information Technology Research Institute at
the University of Jyväskylä. Its goal is to enhance and develop automation and
design support for component reuse in large-scale systems design
environments. The project studies component reuse tools in an industry
strength metaCASE environment called MetaEdit+. Current MetaEdit+
provides tools for environment management, model editing, a repository
browser, and a method workbench. Although some tools in MetaEdit+, like the
browser facility, support component reuse to some extent, systematic reuse
support is insufficient. In particular, the component definition is not clear on
either the type level or instance level, which hinders reuse. The weaknesses of
the current system thus form the context for our study.

METHODOLOGY
Q1 P2
Q2 P1

 Supports

TOOL
Q3 P3

 Describes &
 implements

Describes &
implements

 SYSTEM
Time-to-market
High quality
Low cost

 51

5 RESEARCH METHODOLOGY

Having identified the research problem and described the environment in
which the research takes place, we can now move to selecting a research
methodology that will direct and describe how we can address the research
problems. The underlying theoretical approach is the information systems
design theory (Walls et al. 1992).

5.1 Choice and Description of Methodologies

Different research methodologies are needed in the area of IS, including
laboratory and field experiments, case studies, phenomenology methods, action
research, and so on. The selection of a methodology depends on the nature of
the research work to be carried out. Our studies on systematic component reuse
in metamodeling-based systems analysis and design fall into the discipline of
method engineering and software engineering. The research work includes
constructive processes. We thereby consider systems development as one of our
research methods. As pointed out in Nunamaker et al. (1991), systems
development and other research methodologies are complementary. An
integrated multi-dimensional approach will generate fruitful research results.
The multi-methodological approach integrates four stages: observation, theory
building, systems development, and experimentation.

Observation includes empirical methodologies such as case studies, field
studies, and sample surveys that are unobtrusive research methods. It helps
researchers to formulate specific theories and hypotheses to be tested.

Theory building includes development of new ideas and concepts, and
construction of conceptual frameworks, new methods, or models. Theories can
suggest hypotheses, guide the design of experiments, and conduct systematic
observations.

Systems development is a constructive process consisting of stages like con-
cept design, constructing the architecture of the system, prototyping, product

 52

development, and technology transfer. Systems development is the hub of re-
search that interacts with other research methodologies to form an integrated
and dynamic research program.

Experimentation includes research strategies such as laboratory and field
experiments. Experimentation is the process engaged in to validate/confirm the
underlying theories. It leads to refining the theory or improving the system.

In our study, we reuse the multi-methodological approach suggested in
(Nunamaker et al. 1991) as a general guideline and tailor it to our research con-
text, as shown in FIGURE 7.

FIGURE 7 A multi-methodological approach to IS research (Nunamaker et al. 1991, 94)

5.2 Application of the Methodology in this Research

Observations were used at the beginning of our research work to obtain an
overview of the state of the art of the support given to reuse in a systems
development environment. By reviewing the literature, conducting interviews
with CASE tool users and project managers, and surveying the tools that
support reuse and CBD2, we collected general ideas about the current situation
of reuse support in the area of CASE and metaCASE tools. We also found
problems, and posited a set of research questions to direct our subsequent re-
search.

2 The interviews and survey were carried out by the COMBO student project.

Observation
Case studies

Survey studies
Field studies

Experimentation
Computer Simulations

Field experiments
Lab experiments

Systems Develop-
ment

Prototyping,
Product development
Technology transfer

Theory building
Conceptual frame-

works
Mathematic models

Methods

 53

Theory building is an important stage in our research design. It is neces-
sary to obtain insights, evaluate the impact of the research, and then proceed to
systems design. The development of a systems design theory that supports
CBD forms the main contribution of the thesis. On the basis of the knowledge
collected during the observation stage, we present a systematic reuse
architecture in the metaCASE environment. The systematic reuse architecture,
covering different stages in the ISD process, studies reuse possibilities and
types of reuse from both the metamodeling (method construction) and
modeling (systems development) aspects. The conceptual framework is
intended to serve as a standard for practising systematic reuse in a
metamodeling-based systems development environment. It identifies different
types of reuse practice in both the product and method development life cycle;
specifies a set of activities that enable implementation of the reuse practice;
defines the component model, especially the model for wrapping up the design
models as components; and proposes a hypertext-based component context
representation approach to promoting communication between engineers.

Development is concerned with the systematic use of scientific knowledge
directed toward the production of useful materials, devices, systems, or
methods, including the design and development of prototypes and processes
(Blake 1978). Systems development in our research can be thought of as a
“proof-of-concept” approach. At this stage, a prototype of component
deployment in systems analysis and design has been built over MetaEdit+ by
metamodeling the component model and its repository, as well as developing
tools facilitating component search and management. The prototype follows the
principles envisioned at the theory building stage. They demonstrate the
facilities for generating and managing components, and further support the
reuse process.

Experimentation is carried out at the final stage of our research effort. We
performed an initial study for a laboratory experiment designed to analyze the
influence of component deployment in the phases of systems analysis and
design. The experimentally tested hypotheses involved a number of
quantitative, objective, and unobtrusive measures of the efficiency and
effectiveness aspects of component deployment in systems analysis and design.
The results reveal several statistically significant differences between the
component-based systematic reuse approach and the normal object-oriented
analysis and design approach, and thus serve as a preliminary test for
validating and refining the conceptual frameworks for component-based reuse
in a metamodeling-based systems development environment.

 54

6 SUMMARY OF THE ARTICLES

In this section, I list the five articles that make up the body of the thesis, along
with brief descriptions of the problems addressed and the results of each. The
publication details and authors are listed for each article, and the division of
work among the co-authors is described.

It should be noted that the thesis is made up of five separate articles
published or submitted for publication. Some overlap is thus unavoidable. The
repeated elements mainly concern the description of the research environment,
e.g. the metaCASE environments and MetaEdit+.

Before presenting the details of each article, I briefly describe how the
research questions, research methodologies, and thesis articles are organically
integrated. TABLE 2 provides a brief summary of the research questions and
their treatment.

FIGURE 8 illustrates the contents and the main contributions of each
article. Together, the contributions can be seen as a systems development
project.

This thesis is in two parts. Part 1 is an introduction to the thesis. It is
regarded as the requirements stage in a systems development project. It studies
the history and the state-of-the-art in ISD, ISDM, the reuse techniques, and the
support tools on the basis of the literature review and survey (observation). It
analyzes the current needs for the support of systematic reuse in an ISD
environment, and reveals the limitations of current practice. The analysis
generates some ideas for building a conceptual framework for systematic
component reuse and provides our three research questions: a conceptual
framework supporting reuse, a generic component model, and the application
of the component model, on the basis of which the research methodologies are
proposed.

Part 2 consists of 5 articles. Articles 1 and 2 provide a generic conceptual
framework, which forms the design stage of a systems development project.

 55

TABLE 2 Research questions and their treatment

Research
question

Research
methodology

Article and Contribution

Q1: Conceptual
framework

Observation and
theory building

Article 1 – A generic framework
supporting systematic reuse in a
metaCASE environment)

Q2: Component
model

Observation and
theory building

Article 2 – A generic component model
in a metaCASE environment
Article 3 – An extension of the
component concept specification in the
component model
Article 4 – An extension from self-
contained component reuse to
components’ contextual and hyper-
textual representations

Q3: Application
of the
conceptual
framework and
the component
model

Prototyping and
experimentation

Article 3 – Examples of the extended
component concept specification
Article 4 – A prototype of the hypertext
model for component context
representation and reuse in a high-level
mobile phone design scenario
Article 5 – A laboratory experiment to
study component deployment in
systems analysis and design

Object

Stakeholder

Conceptual dependency Rationale

 DEPENDS ON IS RATIONALE OF

 IS RATIONALE OF

 IS RELATED TO

 MANA

FIGURE 8 Contribution of each article

Article 1
Conceptual framework
and process model
supporting compo-
nent-based reuse

Article 2
A generic component
model in a metaCASE
environment

Article 4
Component context
framework exemplified
in systems analysis
and design

Article 3
Component concept
specification exempli-
fied in systems analy-
sis and design

Article 5
Empirical study of
component deploy-
ment in the phases of
systems analysis and
design

 56

 Article 1, A Framework for Component Reuse in a Metamodeling-Based
Software Development (Zhang and Lyytinen 2001), is motivated by the
needs of reuse support in a metamodeling-based systems development
environment, as stated in the introduction to this thesis. This article thus
builds theories to systematically support reuse in the processes of
method specification and systems design by means of component
support (theory building).

 Article 2, Defining Components in a MetaCASE Environment (Zhang
2000a), follows the framework presented in the previous article,
overviews the current component structure, and builds a generic
component model for a metaCASE environment (theory building).

Articles 3 and 4 discuss the main elements in the component model: component
content and component context. Each article provides more detailed
specifications of the individual components on which the implementation of the
components for systems analysis and design is based. It forms the
implementation stage of a systems development project.

 Article 3, Component Modeling for Systems Analysis and Design (Zhang
and Rossi 2002), extends the conceptual framework from component
representation and usage. Specifically, it specifies the component concept
(interface) which can be deployed in the systems analysis and design
phases. It also implements a prototype in our research environment,
MetaEdit+ (prototyping), and shows the use of the component prototype
on the systems design level.

 Article 4, Component Context Specification and Representation in a
MetaCASE Environment (Zhang and Kaipala 2004), builds the
component context framework (theory building) and demonstrates its
implementation (prototyping). The article shows how the component
context prototype is unique and works differently in the systematic
support of reuse: it provides a brief overview and comparison of the
tools/techniques that facilitate component reuse with respect to
corporate knowledge, such as the design rationale and diverse
conceptual dependencies between components.

Article 5, Component-Based Reuse in Systems Analysis and Design: An Ex-
ploratory Study (Zhang 2004), wraps up the project by testing the implementa-
tions. It is an exploratory study of component deployment in systems design.
This article not only demonstrates how the concept of the component is applied
in systems analysis and design through its experimental design, but also partly3

3 We use the word “partly”, because the experiment is an exploratory study of compo-
 nent deployment in systems analysis and design rather than a study of the entire concep-
 tual frameworks of component-based reuse in the metamodeling based systems develop-
 ment environment.

 57

verifies the conceptual component model and the systematic reuse architecture
built in our previous research effort.

6.1 A Framework for Component Reuse in a Metamodeling-
Based Software Development

Zheying Zhang and Kalle Lyytinen

Published in Requirements Engineering Journal, 6 (2), 2001, 116 – 131.
An early version was published in S. Brinkkemper, E. Lindencrona, and A. Solvberg
(Eds.), Information Systems Engineering: State of the Art and Research Themes,
London: Springer-Verlag, 107-122.

Systematic reuse is generally recognized as a key technology to improve the
software process (Mili et al. 1995). However, current (meta)CASE tools are not
powerful enough to offer systematic support for reusable asset abstraction,
selection, adaptation, integration, and maintenance throughout the life cycle of
a project. It is an impediment to the accelerating time-to-market demands of
ISD. Moreover, even in the so-called reuse-supported environment, there is no
clear distinction between different types of reuse situation, the diverse types of
reusable information, and the corresponding support facilities. Therefore, we
collected the activities needed in both the method specification and systems
design process, and develop a holistic framework to systematically support the
reuse process in a metaCASE environment.

The aim of the article was to suggest a component-based reuse framework
that can address issues related to design artifact and method component reuse
in the life cycle of systems development. In particular, the article seeks to
demonstrate how reuse “ideas” can be implemented in an industry-strength
environment, MetaEdit+. Our strategy for meeting these goals is the following.
We first develop a general framework for metamodeling-based component
reuse. This framework considers reuse from the perspectives of a systems
development life cycle, modeling levels, reuse situation types, component
granularity, and reuse activities. The framework is then used to analyze support
functionality within a metaCASE environment, and to suggest how reuse
activities can be integrated into method engineering processes and associated
tasks of defining development processes and their technical facilitation.

The conceptual framework forms the theoretical precursor to studying
and implementing extensive component reuse on the basis of a metamodeling
concept. The framework differs from other suggested software reuse frame-
works in that it introduces reuse based on metamodeling and requires support
from a metaCASE environment. Meanwhile, it expands the reuse process by
shifting the focus from reuse of code to reuse of domain knowledge and con-
ceptual abstractions. Thus the framework not only focuses our attention on new

 58

technical challenges posed by the software reuse process, but also acknowl-
edges the organizational challenges implied by such an environment.

6.2 Defining Components in a MetaCASE Environment

Zheying Zhang

Published in B. Wangler and L. Bergman (Eds.) Advanced Information Systems
Engineering: 12th International Conference, CAiSE 2000, Stockholm, Sweden, June
2000, LNCS 1789, Heidelberg: Springer-Verlag, 340 –354.

The current practice of reuse is based on the code world. Although a
component can be considered as an artifact generated at any stage of the ISD
process, reuse of different types of component is rarely supported in
(meta)CASE tools. The study of components mainly focuses on the code level.
Because metaCASE environments can be used for both methodology
specifications and methodology supported systems design and implementation
activities, they manipulate diverse artifacts. These artifacts and their embedded
knowledge form good sources for reuse. It is feasible to introduce a generic
component model into a metaCASE environment.

In this article, I extend the component reuse framework by defining a
generic component model in the metaCASE environment. I first study the
features of design artifacts, and the possibility of packaging them into
components. After that, I define the component structure on the basis of three
perspectives: concept, content, and context. The underlying principle is to offer
a comprehensive description of the component concept, to extensively illustrate
diverse dependencies between components and other objects, and to avoid
information loss and repetition. Accordingly, a hierarchical facet-based schema
is defined to represent the component concept. Different types of link are
proposed to represent the conceptual relationship between components and the
environment, including reuse dependency, the usage context, and the
implementation context. A complete presentation of the component context can
be found in Article 4 (Section 6.5). On the basis of the component structure
definition, different artifacts, including the design artifacts in methodologies,
can be used as components after the necessary re-specialization.

Although the recent wide-spread emergence of the component concept
together with component-based reuse in systems development has meant that
the component has attracted increased attention in industry as well as
academia, component-based reuse in metaCASE environments is new. This is
the first attempt to explicitly define a generic component model for diverse
artifacts generated in a metaCASE environment during the systems
development process. The next step in our research is to seek and prove the
feasibility of the component model in the systems development process,
especially in the systems analysis and design phases.

 59

6.3 Component Modeling for Systems Analysis and Design

Zheying Zhang and Matti Rossi

The ICSR7 2002 Workshop on Component-based Software Development Processes,
April 15-19, 2002, Austin, Texas, USA.

When any manufacturing process evolves to the point where it can be based on
pre-built components and subassemblies, product quality, quantity, and speed
of delivery soar. This principle applies equally to ISD, allowing unprecedented
quality, speed of development, and highly effective change management.
However, a fundamental change of mindset toward components is necessary to
usher in the industrial era of ISD, although the component concept has attained
maturing in manufacturing industry. There is no industry consensus on the
definition of a component, aside from some agreement on the properties that a
component is expected to have (McClure 2001), which hampers the propagation
of component deployment. The component concept should be improved to
form an integrated part of an ISDM that supports reuse-oriented development
practices.

In the earlier article we sought to develop a generic component model for
different types of components in the metamodeling-based systems
development environment. In this article a set of detailed specifications are
added to the component concept (interface). It follows the reuse pattern on the
model level, as describe in the earlier conceptual framework in Article 1
(Section 6.1), and aims at a consistent and technology-independent component
concept to support component-based reuse in ISD. We elaborate on the
component concept (interface) specification to enhance the component model.
The objects are the interim artifacts generated at the stage of systems analysis
and design. We study how to provide effective and adequate information to
component users. We first examine the pitfalls of the current component
structure, and then expand the component concept by providing more practical
information for component use, including the extensible component facet
descriptor and interface elements.

It is distinct from other methodologies that support component-based de-
velopment. Our focus is on the methodical support of component deployment.
We thereby enhance the component concept specification for systems analysis
and design in the context of a metaCASE environment. Based on the support of
metamodeling techniques, the generic component model can be instantiated as
a methodology-specific component model by combining the generic model with
a specific ISDM, like SSAD (Yourdon 1989), UML (UML 1995), the in-house
method (Tolvanen 1998), or domain-specific methodologies (MetaCASE 2000).
The methodology-specific component model can thereafter be used to define
components out of the design artifacts specified in the same methodology. The
component prototype can be supported at repository and tool level within the
metaCASE tool. It improves the design artifact reuse within a specific organiza-

 60

tion and project. Since the component model is based on the original method-
ologies deployed in an organization, we believe that it is easy to adopt and de-
ploy. The methodical support feature of the component model further enhances
the possibilities of incorporating components and reuse practice into main-
stream ISD practice already during the early stages of ISD.

6.4 Component Context Specification and Representation in a
MetaCASE Environment

Zheying Zhang and Janne Kaipala

To be submitted to Information and Software Technology for possible publication.
An early version was published in M. Khosrow-Pour (Ed.) Information Technology and
Organizations: Trends, Issues, Challenges and Solutions, Proceedings of the 2003
Information Resources Management Association International Conference
(IRMA2003), Philadelphia, PA, USA, May 18-21, 2003, Hershey, PA: Idea Group
Publishing, 712 –715.

The lack of design information forms a significant barrier for system developers
to develop and reuse a component. In order to develop and reuse a component,
we need multiple forms of contextual knowledge, which includes the domain
description, the goals and strategies used to define the component, the
arguments supporting decisions, and various dependencies among components
being designed and implemented. This covers a very large volume of
information. Some can be intuitively acquired from the interface description,
but some is hidden behind the component definition and reuse process and
difficult to retrieve. In practice, especially when the number of components
goes up, it is excessively costly to collect and systemically manage all the
contextual knowledge without a comprehensive framework and tool support.

The article addresses these deficiencies in the ISD environment, especially
the CBD environment. It examines the current state of tool support for
component reuse and the collection and management of contextual knowledge.
The literature review reveals a rather narrow understanding of the concept of
reuse depending on the adopted approach. Many tools provide support for
reuse only on the code level, and lack support for a systematic process utilizing
contextual information. The article seeks to extend current theory and practice
with the development of the concept of the component context, describes the
hypertext data model and its supporting tools, and exemplifies the
representation of the component context by using the hypertext tools in
MetaEdit+. The example illustrates how hypertext techniques assist system
designers by creating conceptual dependencies, recording annotations, and
capturing debates in their design activities.

Research into the component context and its hypertext implementation is
unique in three ways.

 61

First, we increase understanding of the component context from the
perspectives of conceptual dependencies and rationales in the ISD process,
especially in systems analysis and design phases. This is the first attempt at a
study of how to enhance the reuse of design artifacts by reusing embodied
contextual knowledge.

Second, we integrate the implementation of context representation into a
metaCASE environment. The metaCASE environment provides flexible support
for method construction, including specification of the appropriate component
modeling concepts and notations in line with a specific methodology. To our
knowledge, no tools yet exist that provide both metamodeling facilities and the
hypertext tools for representing the component context.

Third, aside from those design artifacts which can be specified as reusable
components, we figured out a way to “reuse” the corporate design knowledge
embodied in any design artifacts or the design process through the presentation
of the component context. Obviously, it is not easy to physically reuse the
component context. It can only be reused to make inferences or draw
generalizations after users have understood the concept.

By building the component context framework, the component model
proposed in Article 2 (Section 6.2) is finally wrapped up. We exemplified the
use of the component concept and context in different articles, but still need the
empirical evidence to assess the efficiency and effectiveness of component
deployment in ISD, especially at the stage of systems analysis and design. The
empirical study is addressed in the following article.

6.5 Component-Based Reuse in Systems Analysis and Design: An
Exploratory Study

Zheying Zhang

To be published in the Proceedings of the 11th European Conference on IT
Evaluation, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 11-12
November 2004.

The component is the kernel of the component-based approach to ISD. Besides
providing implementation support, the component, theoretically, is the pillar of
systems analysis and design in terms of concepts, processes, and methods. In
order to expand the use of the concept of the component in the practice of ISD, a
component-based approach should provide consistent and technology-
independent component concepts and definitions, proper component modeling
concepts and notations, and mechanisms for systems analysis and design in a
component-oriented manner. Our preceding research had built the conceptual
theory to tackle the above issues, an empirical study, however, was still needed
to further verify and validate our preceding work.

 62

In this article, I describe an exploratory study for an empirical experiment,
which would compare the CBD approach in systems design with the traditional
object-oriented systems design approach. The study serves as a preliminary test
of the preceding research results, including the conceptual framework of
component-based reuse and the component model. Our hypothesis was that
component deployment in systems design would help to decrease design time
and increase design quality in terms of completeness and correctness. The
experiment tests the hypothesis by analyzing the empirical data quantitatively
and qualitatively.

From a pilot group of 13 users, I obtained results that support the
hypothesis: there exist statistically significant differences in design cost and
quality between the CBD approach and the normal object-oriented design
approach. The tentative results from this initial empirical study confirm the
usefulness of component deployment in the early stages of the ISD process.
Meanwhile, the evidence indicates that building the design architecture,
defining components, and reusing components at the analysis and design
stages are long-term strategies for systematic reuse in the ISD process,
especially suitable for systems within the same application domain. Such an
approach is much more beneficial to a large organization which delivers
systems in one or several system families than a small one producing project
level products for an individual system or application.

6.6 About the Joint Articles

My contribution in the joint articles (Article 1, 3 and 4) is as follows:
In the first article, A Framework for Component Reuse in a

Metamodeling-Based Software Development, the division of work was largely
even. I wrote the whole article as a draft. I was mainly responsible for building
the architecture and framework for component reuse in a metaCASE
environment (section 3 and 4), and describing the systems development process
as five patterns (section 5).

In the third article, Component modeling for Systems Analysis and
Design, I was responsible for introducing the component model (section 2),
presenting the improved component structure in a metaCASE environment
(section 3), illustrating the component interface elements and examples (section
5), and bringing together the article as a whole.

In the fourth article, Component Context Specification and Representation
in a MetaCASE Environment, the division of work was largely even
throughout. We collectively built the framework of the component context and
the scenario to exemplify the use of the component context, but I was
responsible for the conceptual dependency part in the framework building and
the scenario design.

 63

7 CONCLUSION

The contribution and limitations of this thesis are presented in this concluding
section.

7.1 Contribution of the Thesis

The main contribution of this thesis lies in the exploration of the possibilities for
developing the CBD approach in a metamodeling-based ISD environment. I
propose remedies for the deficiencies of current CBD practices, and conduct an
exploratory empirical study to partly verify and validate the proposed
solutions. In particular, I examine the possibilities and need for extensive
component reuse on the basis of metamodeling concepts and build a
framework that systematically guides the evolution of metamodeling-based
reuse. In order to better support reuse activities, I further identify current
deficiencies in the deployment of the component concept, clarify the concept of
the component by using an elaborate component model based on the concept of
metamodeling, and conduct a laboratory experiment to empirically study the
influence of component deployment at the analysis and design stages on the
whole ISD process. Each of these studies is addressed in one or more articles,
providing a deeper examination of the problems, directions for an overall
solution, components of specific solutions, and examples of their applicability.

It is distinct from other reuse frameworks (see Biggerstaff and Richter
(1989), Moore (1991), Krueger (1992), SRI (1995), and Liao et al. (1998)). Our
component reuse framework introduces component reuse based on the concept
of metamodeling and requires support from a metaCASE environment. Hence
the reuse process consists of both a methodology construction process and a
systems development process. Also, it is expanded by shifting the focus from
simple code reuse to the reuse of artifacts generated throughout the ISD proc-
ess. Reusable components are thus extended from the source code to any type
of artifact generated during different phases of the ISD process. At the same

 64

time, the framework classifies reusable components into varying granularity
levels according to the data types and semantics defined by the metaCASE en-
vironment. Such a classification presents reusable components in a comprehen-
sive manner and systematically supports component management. Further-
more, taking into account the character of reusable components and the context
for reuse, the framework distinguishes type of reuse in terms of conceptual re-
use, functional reuse, and instantiation reuse.

In addition, the component structure is defined by means of
metamodeling. It expands a 3C model (Tracz 1990) to present components in
three perspectives: concept (interface), content, and context. Our aim is to
enhance the support of the component concept and representation of the
component context in a metaCASE environment, so that user can easily
understand the services embedded in the component and its usage. The main
difference between our approach and most other approaches to components is
that the deployment of component is supported at repository and tool level
within the metaCASE tool. The component model is a generic model
independent of any ISDMs and their supporting environments. By combining it
with a specific ISDM by means of metamodeling, the component model is
added to the metaCASE environment. Thereafter, the metaCASE environment
facilitates component definition, storage, search, adaptation, integration, and
maintenance. The hypertext prototype in MetaEdit+ provides the means for
component context creation, representation, retrieval, and management. To our
knowledge, no such environment yet exists that systematically supports
component-based reuse. The deployment of the component model makes
MetaEdit+ the first environment to allow component-based reuse practice in a
metaCASE environment. Because this research was conducted by means of a
generic view of the metaCASE environment, its results can be easily expanded
and generalized to other metaCASE environments.

The applicability of the concept of component reuse in systems analysis
and design is demonstrated and analyzed through a CBD approach in the
laboratory experiment. The experimental evidence indicates that the CBD
approach at the stages of systems analysis and design shortens design time and
improves design quality. It forms a long-term strategy for systematic reuse in
ISD process, especially for systems within the same application domain.
Specifically, the metamodeling feature of the metaCASE environment facilitates
the specification of the design architecture, component definition, reuse, and
management-related activities, which are indispensable elements of the CBD
approach. Thus, the CBD approach, empowered by its supporting metaCASE
environment, systematically supports the reuse practice and improves design
efficiency and effectiveness.

The contributions of this study are thus twofold. First, the conceptual
framework built via the literature review, survey, and interview provides a ge-
neric blueprint of systematic reuse based on the concept of metamodeling. The
component model and its prototypes implemented in MetaEdit+ by means of
metamodeling support the systematic reuse process within the metaCASE envi-
ronment. Second, the empirical study carried out in a laboratory experiment

 65

validates our hypotheses of the applicability of the CBD approach, and further
demonstrates that great benefits with respect to cost and quality can be gained
by conducting the CBD approach in a metaCASE environment.

7.2 Limitations of this Study and Directions for Further Research

Due to the immature stage of the component-based reuse supported in the
metaCASE environment, there are weaknesses in current study. The study lacks
an extensive implementation of reuse tools that support systematic reuse in the
metaCASE environment. Hence, the outcome of the conceptual framework is
presented in part as a preliminary result of the empirical study in this thesis.
When the prototype is finally implemented in industry settings, follow-up
studies can be carried out in a set of field experiments, where professionals will
be recruited as the experimental participants. At that time, our conceptual
framework will be validated and strengthened, and then be of greater value at
the level of industrial practice.

Meanwhile, because the starting point of our study was support for
component reuse in the metamodeling-based development environment, our
focus was to specify a generic component interface by means of metamodeling.
The study lacks an overview of the current state of component interface
specifications (interface definition language) for the code component as well as
different techniques used in component interface specifications. Hence, there is
no comparison between the component metamodel and other component
interface definition techniques. This is a weakness of the study.

In view of the limitations of the thesis and our current research work, I
propose that future studies in component reuse in MetaEdit+ should deal with
four categories: further implementation and empirical studies on the
component engine, formalization of the component semantics, further research
on component-based reuse in the context of a specific domain, and
componentization in the method engineering process in the metaCASE
environment.

From the viewpoint of implementation, besides the definition, search, and
hypertext-based component context definition and navigation tools, we will
continue focusing on the exiting tools and seeking the necessary functionalities
that better support component reuse and management. The reuse tools should
include a complete component repository for management, and search and
retrieval. It would also be instructive to carry out a laboratory or field
experiment for the use of a reuse support function integrated within MetaEdit+.
This would provide valuable information to validate the usefulness of reuse
tools.

From the viewpoint of formalization, there are several approaches to
component formalization. The possible mathematical domains are logic theory,
set theory, and category theory (Hofstede and Proper 1997). Z notations (Spivey
1992), for example, can be used to express the semantics of component struc-

 66

ture. Z is the underlying formal notation because of its maturity as a formal
specification notation and its well-known underlying mathematical concepts,
such as set theory and predicate logic. Through the formalization approach, we
could study the semantic foundations of component structure and reuse sup-
port more closely, and establish a sound basis for sophisticated automated sup-
port for reuse processes. In particular, the approach would make rigorous
analysis of semantic properties captured by the component model possible.

From the viewpoint of metamodeling, we have not conducted enough
research on the deployment of the component concept in the metamodeling
process. This is challenging because the practice of method engineering is not in
as flourishing a state as the practice of software (systems) engineering. If there
is no big demand for reuse in the metamodeling process, study of component-
based reuse on the metamodeling level will lack justification support. However,
it is an interesting topic and provides us a possible avenue for our future
research.

One interesting path to follow up is to apply the metamodeling-based
component reuse approach in a specific application domain. The results of our
empirical study indicate that the metamodeling-based component reuse
approach applied within a specific application domain is more beneficial than
one that delivers different products in different application domains. Within the
same application domain, the metaCASE environment does well in domain-
specific modeling (MetaCASE 2000). By combining the CBD approach with a
domain-specific modeling language, organizations can map the component
model onto the domain-specific conceptual specifications and guidelines of the
product life cycle that is being developed or acquired to establish its ability to
support systematic reuse practice. We believe this to be one of the very few
areas where significant contributions can be expected in addressing the
productivity and quality problems of ISD.

 67

REFERENCES

Allen, P. 2002. CBD Survey: The State of the Practice, Cutter Consortium. URL:

http://www.cutter.com/research/2002/edge020305.html. Access date:
May 20, 2003.

Arango, G. & Prieto-Diaz, R. 1991. Domain Analysis Concepts and Research
Directions. Domain Analysis and Software Systems Modeling, Los
Alamitos, CA: IEEE Computer Society Press.

Avison, D. E. & Fitzgerald, G. 1995. Information Systems Development:
Methodologies, Techniques and Tools, Berkshire: McGraw-Hill
International (UK) Limited.

Banker, R. D. & Kauffman, R. J. 1991. Reuse and Productivity in Integrated
Computer-Aided Software Engineering: An Empirical Study. MIS
Quarterly 15(3), 375 - 401.

Basili, V. R. 1989. Software Development: A Paradigm for the Future. In
Proceedings of the Thirteenth Annual International Computer Science and
Applications Conference, Los Alamitos, Calif.: IEEE Computer Society
Press, 471 - 485.

Basili, V. R., Briand, L. C. & Melo, W. L. 1996. How Reuse Influences
Productivity in Object-Oriented Systems. Communications of the ACM
39(10), 104 - 116.

Basili, V. R., Caldiera, G. & Cantone, G. 1992. A Reference Architecture for the
Component Factory. ACM Transactions on Software Engineering and
Methodology 1(1), 53 - 80.

Basili, V. R. & Rombach, H. D. 1988. Towards a Comprehensive Framework for
Reuse: A Reuse-Enabling Software Evolution Environment, Tech. Report
CS-TR-2158 (UMIACS-TR-88.92), Department of Computer Science,
University of Maryland.

Biddle, R., Martin, A. & Noble, J. 2003. No Name: Just Notes on Software
Reuse. In Proceedings of the 18th ACM SIGPLAN conference on object-
oriented programming, systems, languages, and applications, New York:
ACM Press, 240 - 260.

Biggerstaff, T. J. 1989. Design Recovery for Maintenance and Reuse. Computer
22(7), 36 - 49.

Biggerstaff, T. J. & Perlis, A. J. (Eds.) 1989. Introduction. In T. J. Biggerstaff and
A. J. Perlis (Eds.) Software Reusability Volume 1: Concepts and Models,
New York: ACM Press, XV - XXV.

Biggerstaff, T. J. & Richter, C. 1989. Reusability Framework, Assessment, and
Directions. In T. J. Biggerstaff and A. J. Perlis (Eds.) Software Reusability
Volume 1: Concepts and Models, New York: ACM Press, 1 - 17.

Blake, S. P. 1978. Managing for Responsive Research and Development, San
Francisco: W. H. Freeman and Company.

Boem, B. 1987. Industrial Software Metrics Top 10 List. IEEE Software 4(5), 84-
85.

 68

Bowen, G. M. 1992. An Organized, Devoted, Project-Wide Reuse Effort. ACM
Ada letters 12(1), 43 - 52.

Brinkkemper, J. 1990. Formalisation of Information Systems Modelling.
University of Nijmegen. Thesis Publisher, Amsterdam. Ph.D. thesis.

Brinkkemper, S. 1996. Method Engineering: Engineering of Information Systems
Development Methods and Tools. Information & Software Technology
38(6), 275 - 280.

Brown, A. W. & Barn, B. 1998. Fundamentals of Component-Based
Development. The Fifth International Conference on Software Reuse
Tutorial, URL: http://people.cs.vt.edu/~edwards/icsr5/tut-brown-barn.
html. Access date: January 20, 2002.

Brown, A. W. & Short, K. 1998. On Components and Objects: The Foundations
of Component-Based Software Development, Sterling Software. URL:
http://www.cbdedge.com/cbdweb/relatedtopics/sast97-foot.htm.
Access date: May 24, 2001.

Brownsword, L. & Clements, P. 1996. Case Study in Successful Product Line
Development, Software Engineering Institute. URL: http://www.sei.cmu.
edu/publications/documents/96.reports/96.tr.016.html. Access date:
March 4, 2002.

CA 2002. Managing EBusiness Development: AllFusion™ Component Modeler,
Computer Associates. URL: http://www3.ca.com/Files/BrochuresAnd
Descriptions/af_comp_modeler.pdf. Access date: June 10, 2003.

Card, D. & Comer, E. 1994. Why do so Many Reuse Programs Fail? IEEE
Software 11(5), 114 - 115.

Castano, S. & Antonellis, V. D. 1997. Engineering a Library of Reusable
Conceptual Components. Information and Software Technology 39(2), 65 -
76.

Checkland, P. & Scholes, J. 1990. Soft Systems Methodology in Action,
Chichester: Wiley.

Coad, P., North, D. & Mayfield, M. 1995. Object Models: Strategies, Patterns, &
Applications, NJ: Prentice Hall.

Cotter, S. & Potel, M. 1995. Inside Talligent Technology, Reading, MA.:
Addison-Wesley.

Davis, G. B. 1982. Strategies for Information Requirements Determination. IBM
Systems Journal 21(1), 4 - 30.

Davis, M. J. & Hawley, H. G. 1994. Reuse of Software Process and Product
Through Knowledge-based Adaptation. In W. B. Frakes (Ed.) Proceedings
of the Third Conference on Software Reusability, Seattle, Washington,
USA, IEEE Computer Society Press, 44 - 52.

Dikel, D., Kane, D., Ornburn, S., Loftus, W. & Wilson, J. 1997. Applying
Software Product-Line Architecture. IEEE Computer 30(8), 49 - 55.

Ezran, M., Morisio, M. & Tully, C. 2000. Practical Software Reuse: The Essential
Guide, ESSI Surprise Project book. Paris: Freelife Publ.

Fischer, G. 1987. Cognitive View of Reuse and Design. IEEE Software 4(4), 60 -
72.

 69

Fowler, M. 1997. Analysis Patterns: Reusable Object Models, Menlo Park, Calif. :
Addison-Wesley.

Frakes, W. B. & Christopher, J. F. 1996. Quality Improvement Using a Software
Reuse Failure Model. IEEE Transactions on Software Engineering 22(4),
274 - 279.

Frakes, W. B. & Fox, C. J. 1995. Sixteen Questions about Software Reuse.
Communication of ACM 38(6), 75 - 87.

Frakes, W. B. & Isoda, A. 1994. Success Factors of Systematic Reuse. IEEE
Software 11(5), 14 - 19.

Frakes, W. B. & Pole, T. 1994. An Empirical Study of Representation Methods
for Reusable Software Components. IEEE Transactions on Software
Engineering 20(8), 617 - 630.

Frakes, W. B. & Terry C. 1996. Software Reuse: Metrics and Models. ACM
Computing Surveys 28(2), 415 - 435.

Freeman, P. 1983. Reusable Software Engineering: Concepts and Research
Directions. In ITT Proceedings of the Workshop on Reusability in
Programming, ITT Programming, Stratford, CT, 129 - 137.

Gaffney, J. E. J. & Durek T. A. 1989. Software Reuse - Key to Enhanced
Productivity: Some Quantitative Models. Information and Software
Technology 31(5), 258 - 267.

Galbraith, J. 1977. Organization Design, Reading, Mass.: Addison-Wesley.
Gamma, E., Helm, R., Johnson, R. & Vlissides, J. M. 1995. Design Patterns:

Elements of Reusable Object-Oriented Software, Reading, MA.: Addison-
Wesley Publishing Company.

Gibbs, W. W. 1994. Software's Chronic Crisis. Scientific American 271(3), 86 - 95.
Griss, M. L. 1993. Software Reuse: From Library to Factory. IBM Systems

Journal 32(4), 548 - 566.
Griss, M. L. 1995. Software Reuse: Objects and Frameworks are not Enough.

Object Magazine, February, 77 - 87.
Griss, M. L. 1996. Systematic Object-Oriented Reuse - A Tale of Two Cultures.

ACM SIGSOFT Software Engineering Notes 21(1), 50 - 52.
Hall, P. A. V. 1992. Software Reuse, Reverse Engineering and Reengineering. In

P. A. V. Hall (Ed.) Software Reuse and Reverse Engineering in Practice.
London: Chapman & Hall, 3 - 31.

Hardy, C. J., Thompson, J. B. & Edwards, H. M. 1995. The Use, Limitations, and
Customization of Structured Systems Development Methods in the United
Kingdom. Information and Software Technology 37(9), 467 - 477.

Harmsen, A. F. & Brinkkemper, S. 1993. Computer Aided Method Engineering
Based on Existing MetaCASE Technology. In S. Brinkkemper and A. F.
Harmsen (Eds.), Proceedings of 4th European Workshop on the Next
Generation of CASE Tools (NGCT `93), Sorbonne, Paris, France,
Memorandum Informatica, Holland: University of Twente.

Harmsen, A. F., Brinkkemper, S. & Han, O. 1994. Situational Method Engineer-
ing for Information System Project Approaches. In A. A. Verrijn-Stuart
and T. W. Olle (Eds.) Methods and Associated Tools for the Information

 70

Systems Life Cycle (A-55). Amsterdam: North-Holland Publishers, 169 -
194.

Henninger, S. 1997. An Evolutionary Approach to Constructing Effective
Software Reuse Repository. ACM Transactions on Software Engineering
and Methodology 6(2), 111 - 140.

Hirschheim, R. & Klein, H. 1989. Four Paradigms of Information Systems
Development. Communications of the ACM 32(10), 1199 - 1216.

Hirschheim, R., Klein, H. & Lyytinen, K. 1995. Information Systems
Development and Data Modeling, Conceptual and Philosophical
Foundations, Cambridge: Cambridge University Press.

Hirschheim, R., Klein, H. & Newman, M. 1991. Information Systems
Development as Social Action. Omega 19(6), 587 - 608.

Hoagland, J. 2003. NET Platform as Component Infrastructure, Components
Online. URL: http://www.components-online.com/NETPlatform/.
Access date: May 20, 2003.

Hofstede, A. H. M. & Proper, H. A. 1997. How to Formalize it? Formalization
Principles for Information Systems Development Methods. Brisbane,
Faculty of Information Technology, Queensland University of Technology.

Hofstede, A. H. M. & Verhoef, T. F. 1996. Meta-CASE: Is the Game Worth the
Candle. Information System Journal 6(1), 41 - 68.

Hänninen, S. K., Jansson, M., Manninen, A., Raunio, A. & Äijänen, M. 2000.
COMBO Project: Final report. Department of Computer Science and
Information Systems, University of Jyväskylä.

IEEE 1999. IEEE Std. 1517, Standard for Information Technology - Software Life
Cycle Processes - Reuse Processes, Piscataway, NJ: IEEE.

Iivari, J. 1990. Hierarchical Spiral Model for Information System and Software
Development Part 1: Theoretical Background. Information and Software
Technology 32(6), 386 - 399.

Iivari, J., Hirschheim, R. & Klein, H. 1998. A Paradigmatic Analysis Contrasting
Information Systems Development Approaches and Methodologies.
Information Systems Research 9(2), 164 - 193.

Jackson, M. 1975. Principals of Program Design, London: Academic Press.
Jackson, M. A. 1995. Software Requirement & Specifications - A Lexicon of

Practice, Principles and Prejudices, New York: Addison Wesley
Professional.

Jacobson, I., Griss, M. & Jonsson, P. 1997. Software Reuse: Architecture Process
and Organization for Business Success, New York: Addison-Wesley.

Judd, C. M., Smith, E. R. & Kidder, L. H. 1991. Research Methods in Social
Relations, 6th ed., Fort Worth, TX: Harcourt Brace Jovanovich.

Karlsson, E. 1995. Software Reuse: A Holistic Approach. Hoboken, NJ: John
Wiley & Sons.

Karakostas, V. 1989. Requirements for CASE Tools in Early Software Reuse.
ACM SIGSOFT Software Engineering Notes 14(2), 39 - 41.

Keen, P. G. W. & Scott-Morton, M. S. 1978. Decision Support Systems: An
Organizational Perspective, Reading, MA.: Adison-Wesley.

 71

Keller, R. K. & Schauer, R. 1998. Design Components: Towards Software Com-
position at the Design Level. Proceedings of the 1998 International Confer-
ence on Software Engineering, Los Alamitos, Calif.: IEEE Computer
Society, 302 - 311.

Kelly, S. 1997. Towards a Comprehensive MetaCASE and CAME Environment:
Conceptual, Architectural, Functional and Usability Advances in
MetaEdit+. Department of Computer Science and Information Systems,
University of Jyväskylä. Ph.D Thesis.

Kelly, S., Lyytinen, K. & Rossi, M. 1996. MetaEdit+: A Fully Configurable Multi-
User and Multi-Tool CASE and CAME Environment. In P.
Constantopoulos, J. Mylopoulos and Y. Vassiliou (Eds.) Advanced
Information Systems Engineering, LNCS 1080, Berlin: Springer-Verlag, 1 -
21.

Kiely, D. 1998. Are Components the Future of Software. IEEE Computer 31(2),
10 - 11.

Kim, Y. & Stohr, E. A. 1998. Software Reuse: Survey and Research Directions.
Journal of Management Information Systems 14(4), 113 - 149.

Kleijnen, J. P. C. 1980. Computers and Profits - Qualifying Financial Benefits of
Information Systems, Englewood Cliffs, N. J: Prentice-Hall.

Korhonen, K., Lyytinen, K., Tolvanen, J.-P. & Kaipala, J. 2000. What is RAMSES
All About? Department of Computer Science and Information Systems,
University of Jyväskylä.

Koskinen, M. 2000. Process Metamodelling: Conceptual Foundations and
Application. Department of Computer Science and Information Systems.
Jyväskylä, University of Jyväskylä. Ph.D. thesis.

Kotonya, G. & Sommerville, I. 1998. Requirements Engineering: Processes and
Techniques, Chichester: John Wiley & Sons.

Krueger, C. W. 1992. Software Reuse. ACM Computing Surveys 24(2), 131 - 183.
Kumar, K. & Welke, R. J. 1992. Methodology Engineering: A Proposal for

Situation-Specific Methodology Construction. In W. W. Cotterman and J.
A. Senn (Eds.) Challenges and Strategies for Research in Systems
Development. Washington: John Wiley & Sons Ltd., 257 - 269.

Lee, N. Y. & Litecky, C. R. 1997. An Empirical Study of Software Reuse with
Special Attention to Ada. IEEE Transactions on Software Engineering
23(9), 537 - 549.

Liao, H., Chen, M. & Wang, F. 1998. A Domain-Independent Software Reuse
Framework Based on a Hierarchical Thesaurus. Software Practice and
Experience 28(8), 799 - 818.

Lyytinen, K. 1987. A Taxonomic Perspective of Information Systems
Development: Theoretical Constructs and Recommendations. In R. J.
Boland and R. A. Hirschheim (Eds.) Critical Issues in Information Systems
Research. Chichester: John Wiley & Sons Ltd., 3 - 41.

Lyytinen, K., Smolander, K. & Tahvanainen, V.-P. 1989. Modelling CASE
Environments in Systems Development. In Proceedings of the First
International Conference on Advanced Information System Engineering,
Kista, Sweden.

 72

Lyytinen, K. & Zhang, Z. 2000. A Framework for Component Reuse in a
MetaCASE Based Software Development. In S. Brinkkemper, E.
Lindencrona and A. Solvberg (Eds.) Information Systems Engineering:
State of the Art and Research Themes, London: Springer, 107 - 122.

Maarek, Y. S., Berry, D. M. & Kaiser, G. E. 1991. An Information Retrieval
Approach for Automatically Constructing Software Libraries. IEEE
Transactions on Software Engineering 17(8), 800 - 813.

Maiden, N. A. & Sutcliffe, A. G. 1992. Exploiting Reusable Specification
Through Analogy. Communications of the ACM 35(4), 55 - 64.

McClure, C. 2001. Software Reuse: A Standards-Based Guide, Los Alamitos,
Calif.: IEEE Computer Society.

McIlroy, D. 1969. Mass Produced Software Component. Software Engineering
Concepts and Techniques: 1968 NATO Conference on Software
Engineering, New York: Petrocelli/Charter.

Merriam-Webster on-line Dictionary. 2004. Merriam-Webster Incorporated.
URL: http://webster.com/. Access date: May 19, 2004.

MetaCASE 1999. MetaEdit+ Revolutionized the Way NOKIA Develops Mobile
Phone Software, MetaCASE Consulting. URL: http://www.metacase.com
/papers/MetaEdit_in_Nokia.pdf. Access Date: September 18, 2003.

MetaCASE 2000. Domain-Specific Modelling: 10 Times Faster than UML,
MetaCASE Consulting. URL: http://www.metacase.com/papers
/Domain-specific_modeling_10X_faster_than_UML.pdf. Access date:
September 18, 2003.

MicroTOOL 2002. Get to know ObjectiF, microTOOL GmbH. URL:
http://download.microtool.de/mT/pdf/objectiF/01/quicktour.pdf.
Access date: August 10, 2003.

Mili, H., Mili, F. & Mili, A. 1995. Reusing Software: Issues and Research
Directions. IEEE Transactions on Software Engineering 21(6), 528 - 561.

Moore, J. M. 1991. Domain Analysis: Framework for Reuse. In R. Prieto-Díaz
and G. Arango (Eds.) Domain Analysis and Software Systems Modeling,
Los Alamitos, Calif.: IEEE Computer Society Press, 179 - 203.

Morisio, M., Ezran, M. & Tully, C. 1999. Introducing Reuse in Companies: A
Survey of European Experiences. In Proceedings of the fifth symposium
on Software reusability, New York: ACM Press, 3 - 9.

Morisio, M., Ezran, M. & Tully, C. 2002. Success and Failure Factors in Software
Reuse. IEEE Transactions on Software Engineering 28(4), 340 - 357.

MSDN 2004. Component Object Model, Microsoft Corporation. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnanchor/html/componentobjectmodelanchor.asp. Access date: May 16,
2004.

Müller, H. A., Jahnke, J. H., Smith, D. B., Storey, M.-A., Tilley, S. R. & Wong, K.
2000. Reverse Engineering: A Roadmap. In A. Finkelstein (Ed.) The Future
of Software Engineering, New York: ACM Press, 47 - 60.

Neighbors, J. M. 1980. Software Construction Using Components. Irvine,
Department of Information and Computer Sciences, University of
California.

 73

Neighbors, J. N. 1989. Draco: A Method for Engineering Reusable Software
Systems. In T. J. Biggerstaff and A. J. Perlis (Eds.) Software Reusability I --
Concepts and Models. New York: Addison Wesley, 295 - 319.

Nunamaker, J. F., Chen, M. & Purdin, T. D. M. 1991. Systems Development in
Information Systems Research. Journal of Management Information
Systems 7(3), 89 - 106.

Olle, T. W., Hagelstein, J., MacDonald, I. G., Rolland, C., Sol, H. G., Van Assche,
F. J. M. & Verrjin-Stuart, A. A. 1991. Information System Methodologies -
A Framework for Understanding. Boston, MA: Addison-Wesley.

Olle, T. W., Sol, H. G. & Verrjin-Stuart, A. A. (Eds.) 1982. Information Systems
Design Methodologies: A Comparative Review, Amsterdam: North-
Holland.

Olle, T. W., Sol, H. G. & Verrjin-Stuart, A. A. (Eds.) 1986. Proceedings of the IFIP
WG8.1 Working Conference on Comparative Review of Information
Systems Design Methodologies. Amsterdam: North-Holland.

OMG 2002. CORBA Components 3.0 - Component Model chapter, Object
Management Group, Inc. URL: http://www.omg.org/cgi-bin/doc?
formal/02-06-69. Access date: May 16, 2004.

Orlikowski, W. J. & Iacono, C. S. 2001. Research Commentary: Desperately
Seeking the "IT" in IT Research - A Call to Theorizing the IT Artifact.
Information Systems Research 12(2), 121 - 134.

Prieto-Díaz, R. & Freeman, P. 1987. Classifying Software for Reusability. IEEE
Software 4(1), 6 - 16.

Purao, S. 1998. APSARA: A Tool to Automate System Design via Intelligent
Pattern Retrieval and Synthesis. DataBase for Advances in Information
Systems 29(4), 45 - 57.

Purao, S., Storey, V. C. & Han, T. 2003. Improving Analysis Pattern Reuse in
Conceptual Design: Augmenting Automated Processes with Supervised
Learning. Information Systems Research 14(3), 269 - 290.

Quatrani, T. 1997. Visual Modeling with Rational Rose and UML, Reading
Mass.: Addison Wesley Professional.

Rine, D. C. & Nada, N. 1998. Software Reuse Manufacturing Reference Model:
Development and Validation, George Mason University. URL:
http://www.gmu.edu/depts/survey/. Access date: December 5, 2003.

Rine, D. C. & Sonneman, R. M. 1998. Investments in Reusable Software: A Study
of Software Reuse Investment Success Factors. Journal of Systems and
Software 41(1): 17 - 32.

Russo, N. L., Hightower, R. & Pearson, J. M. 1996. The Failure of Methodologies
to Meet the Needs of Current Development Environments. In Proceedings
of the British Computer Society’s Annual Conference on Information
System Methodologies, 387 - 393.

Russo, N. L. & Wynekoop, J. L. 1995. The Use and Adaptation of Systems
development Methodologies. In M. Khosrowpour (Ed.) Managing
Information & Communications in a Changing Global Environment,
Proceedings of the Information Resources Management Association
International Conference, Hershey, PA: Idea Group Publishing, 162.

 74

Sage, A. P. 1995. Systems Management for Information Technology and
Software Engineering, New York: John Wiley & Sons.

SEI 2000. A Framework for Software Product Line Practice - Version 3, The
Software Engineering Institute (SEI). URL: http://www.sei.cmu.edu/plp
/frame_report/productLPAs.htm. Access date: August 4, 2003.

Smolander, K., Tahvanainen, V.-P. & Lyytinen, K. 1990. How to Combine Tools
and Methods in Practice: A Field Study. In A. S. B. Steinholz and L.
Bergman (Eds.) Proceedings of the 2nd Nordic Conference on Advanced
Information Systems Engineering, Berlin: Springer-Verlag, 195 - 214.

Sodhi, J. & Sodhi, P. 1998. Software Reuse: Domain Analysis and Design
Processes, New York: McGraw-Hill.

Solvberg, A. & Kung, D. C. 1993. Information Systems Engineering, Berlin:
Springer-Verlag.

Spivey, J. M. 1992. The Z Notation: A Reference Manual, N. J.: Prentice Hall,
Engelwood Cliffs.

SRI 1995. DOD Software Reuse Initiative Technology Roadmap (V2.2), Software
Reuse Initiative, Department of Defense. URL: http://dii-
sw.ncr.disa.mil/ReuseIC/pol-hist/Roadmap/Cover.html. Access date:
May 5, 1999.

STGCASE 2003. Axiom Case Tools, STG, Inc. URL: http://www.stgcase.com/
casetools/ index.html. Access date: September 13, 2003.

Sugumaran, V. & Storey, V. C. 2003. A Semantic-Based Approach to
Component Retrieval. ACM SIGMIS Database 34(3), 8 - 24.

Sun 2004. Enterprise JavaBeans Technology, Sun Microsystems, Inc. URL:
http://java.sun.com/products/ejb/. Access date: May 16, 2004.

Szyperski, C. 1998. Component Software: Beyond Object-Oriented
Programming, New York: ACM Press.

Tolvanen, J.-P. 1998. Incremental Method Engineering with Modeling Tools:
Theoretical principles and Empirical Evidence. Department of Computer
Science and Information Systems. Jyväskylä, University of Jyväskylä.
Ph.D. Thesis.

Tracz, W. 1987. Software reuse: Motivators and Inhibitors. In proceedings of
COMPCON 87, Thirty-Second IEEE Computer Society International
Conference, 358 -363.

Tracz, W. (Ed.) 1988. Software Reuse: Emerging Technology, New York: IEEE
Press.

Tracz, W. 1990. Implementation Working Group Summary. In Reuse in Practice
Workshop Summary.

Tracz, W. 1991. Domain Analysis Working Group Report: First International
Workshop on Software Reusability. ACM SIGSOFT Software Engineering
Notes 17(3), 27 - 34.

UML 1995. UML Modeling Language, Standard Software Notation: Resource
Center URL: http://www.rational.com/uml/, Rational Software
Corporation. Access date: January 10, 1998.

 75

Walls, J. G., Widmeyer, G. R. & EI Sawy, O. A. 1992. Building an Information
System Design Theory for Vigilant EIS. Information Systems Research
3(1), 36 - 59.

Welke, R. J. 1983. IS/DSS DBMS Support for Information Systems
Development. In C. W. Holsapple and A. B. Whinston (Eds.) Data Base
Management: Theory and Applications, 195 - 250.

Yourdon, E. 1989. Modern Structured Analysis, Englewood Cliffs, N. J.:
Prentice-Hall.

Yourdon, E. 1992. Decline & Fall of the American Programmer, Englewood
Cliffs, N. J.: Prentice-Hall.

Zand, M., Arango, G., Davis, M., Johnson, R., Poulin, J. S. & Watson, A. 1997.
Reuse Research and Development: Is It on the Right Track. In Proceedings
of Symposium on Software Reusability (SSR97), New York: ACM Press,
212 - 216.

Zand, M., Basili, V., Baxter, I., Griss, M., Karlsson, E.-A. & Perry, D. 1999. Reuse
R&D: Gap between Theory and Practice. In Proceedings of the 1999
symposium on software reusability, New York: ACM Press, 172 - 177.

Zand, M. K. & Samazadeh, M. H. 1995. Software Reuse: Current Status and
Trends. Journal of Systems and Software 30(3), 167 - 170.

Zhang, Z. 1997. Methodology Engineering Based Component Reuse in a
MetaCASE Environment. Department of Mathematics, University of
Jyväskylä. Master Thesis.

Zhang, Z. 2000a. Defining Components in a MetaCASE Environment. In B.
Wangler and L. Bergman (Eds.) Advanced Information Systems
Engineering: 12th International Conference, CAiSE 2000, LNCS 1789,
Heidelberg: Springer-Verlag, 340 –354.

Zhang, Z. 2000b. Enhancing Component Reuse Using Search Techniques. In L.
Svensson, U. Snis, C. Sørensen, H. Fägerlind, T. Lindroth, M. Magnusson
and C. Östlund (Eds.) Proceedings of the 23rd Information System
Research Seminar in Scandinavia, Laboratorium for Interaction
Technology, University of Trollhättan Uddevalla, 523 - 535.

Zhang, Z. 2004. Component-Based Reuse in Systems Analysis and Design: An
Exploratory Study. Manuscript.

Zhang, Z. & Kaipala, J. 2004. Component Context Specification and
Representation in a MetaCASE Environment. An early version was
published in M. Khosrow-Pour (Ed.) Information Technology and
Organizations: Trends, Issues, Challenges and Solutions, Proceedings of
the 2003 Information Resources Management Association International
Conference (IRMA2003), Hershey, PA: Idea Group Publishing, 712 – 715.

Zhang, Z. & Lyytinen, K. 2001. A Framework for Component Reuse in a
Metamodelling based Software Development. Requirements Engineering
Journal 6(2), 116 - 131.

Zhang, Z. & Rossi, M. 2002. Component Modelling for Systems Analysis and
Design. The 7th International Conference on Software Reuse Workshop on
Component-based Software Development Processes, Austin, Texas, USA.

 76

YHTEENVETO (FINNISH SUMMARY)

Informaatioteknologian soveltaminen uusille sovellusalueille on aiheuttanut
sen että tietojärjestelmien kehittäminen on muuttumassa yhä markkinave-
toisemmaksi. Koska turbulentti liiketoimintaympäristö tuottaa jatkuvasti uusia
vaatimuksia ja piirteitä kehitettäville järjestelmille, tulee järjestelmistä hyvin
suuria ja vaikeasti muokattavia. Lisäksi kehitettyjen sovellusten ylläpito on vai-
keaa, koska järjestelmät koostuvat useista toisistaan riippuvista piirteistä, mikä
vaikeuttaa uusien toiminnallisuuksien lisäämistä olemassaoleviin järjestelmiin.
Jotta näitä monimutkaisia järjestelmiä voitaisiin kehittää nopeasti, ohjelmisto-
suunnittelun -tutkimusyhteisö pyrkii kehittämään olemassa olevien järjestelmi-
en ja komponenttien uudelleenkäyttöä. Koska tietojärjestelmiä kehitetään
yleensä samanlaisista osista, voidaan huomattava osa järjestelmistä rakentaa jo
olemassaolevista komponenteista.

Komponenttien uudelleenkäyttö -paradigma pyrkii nopeuttamaan järjes-
telmien kehitystä ja alentamaan kehittämiskustannuksia, koska järjestelmä koo-
taan olemassa olevista komponenteista. Uudelleenkäytettävien komponenttien
määrittely, suunnittelu, kehittäminen ja sijoittaminen muodostaa monimutkai-
sen prosessin joka vaatii tuekseen menetelmän komponenttien määrit-
telemiseksi, sekä myös kehittämisympäristön, jossa komponentteja kehitetään ja
uudelleenkäytetään. Nykyinen uudelleenkäytön tutkimus on keskittynyt toteu-
tusvaiheen so. ohjelmakoodin uudelleenkäyttöön, ja uudelleenkäytön tuki ai-
empiin järjestelmänkehitysvaiheisiin on jäänyt pääosin huomiotta.

Tämän tutkimuksen tavoitteena on edelleenkehittää komponenttien uu-
delleenkäytön teoriaa sekä strategioita jotka tukevat komponenttien uudelleen-
käyttöä metamallintamista tukevassa MetaEdit+ metaCASE-ympäristössä
(CASE, tietokoneavusteinen systeemityö). Koska metaCASE-ympäristössä on
tehokkaat mekanismit evoluution hallintaan, mallintamiseen, organisointiin se-
kä komponenttien uudelleenkäyttöön, voidaan olettaa että ne toimivat myös
tulevaisuudessa. Tässä tutkimuksessa on kuvattu metaCASE-ympäristön eri-
tyispiirteet, kehitetty käsitekehys joka huomioi uudelleenkäyttöprosessin,
komponenttien rakeisuusasteen, ja abstraktiotason. Tämän jälkeen tutkimuk-
sessa esitetään komponenttimalli joka muodostuu komponentin liitännästä, si-
sällöstä ja kontekstista, sekä esitetään mahdollisia strategioita komponenttien
uudelleenkäyttöön. Tutkimuksen empiirisessä osassa tutkitaan laboratorio-
olosuhteissa uudelleenkäytön vaikuttavuutta järjestelmän analyysi- ja suunnite-
luvaiheissa käyttäen MetaEdit+ ympäristöä. Tutkimusote on konstruktiivinen
sisältäen havainnointia, teorian kehittämistä, järjestelmäkehitystä ja kokeiden
suorittamista.

Komponenttiperustainen uudelleenkäyttö metaCASE-ympäristöissä on
suhteellisen uusi ja kehittyvä tutkimusalue. Tämän tutkimuksen pääkontribuu-
tio on kaksijakoinen: on kehitetty käsitteistö, joka auttaa kuvaamaan ja käyttä-
mään komponentteja, sekä toisaalta on kokeellisesti tutkittu analyysi- ja suunni-
telutason komponenttien uudelleenkäytön vaikuttavuutta.

	ABSTRACT
	ACKNOWLEDGEMENTS
	FIGURES
	TABLES
	LIST OF INCLUDED ARTICLES
	CONTENTS
	1 INTRODUCTION
	1.1 Software Reuse Overview
	1.2 Research Motivation
	1.3 Conceptual Structure of the Study

	2 BACKGROUND RESEARCH
	2.1 Information Systems Development and Information Systems Development Methodology
	2.2 Tool Support for Information Systems Development

	3 SOFTWARE REUSE – A SILVER BULLET?
	3.1 Ad hoc Reuse vs. Systematic Reuse
	3.2 Component-Based Reuse
	3.3 Technical Support for Reuse
	3.4 Current Tool Support

	4 RESEARCH PROBLEM DEFINITION
	4.1 Technical Problems in Enabling Reuse
	4.2 Research Problem Definition
	4.3 Research Environment

	5 RESEARCH METHODOLOGY
	5.1 Choice and Description of Methodologies
	5.2 Application of the Methodology in this Research

	6 SUMMARY OF THE ARTICLES
	6.1 A Framework for Component Reuse in a Metamodeling-Based Software Development
	6.2 Defining Components in a MetaCASE Environment
	6.3 Component Modeling for Systems Analysis and Design
	6.4 Component Context Specification and Representation in a MetaCASE Environment
	6.5 Component-Based Reuse in Systems Analysis and Design: An Exploratory Study
	6.6 About the Joint Articles

	7 CONCLUSION
	7.1 Contribution of the Thesis
	7.2 Limitations of this Study and Directions for Further Research

	REFERENCES
	YHTEENVETO (FINNISH SUMMARY)

	vaitos_tdk: Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
	vaitos_paikka: julkisesti tarkastettavaksi Agora-rakennuksessa (Ag Aud. 3)
	vaitos_aika: lokakuun 8. päivänä 2004 kello 14.30
	vaitos_tdk_en: Academic dissertation to be publicly discussed, by permission of
	vaitos_paikka_en: the the Faculty of Information Technology of the University of Jyväskylä,
	vaitos_aika_en: in the Building Agora, Ag Aud. 3, on October 8, 2004 at 2.30 pm.
	hTekija: Zheying Zhang
	hNimeke: Model Component Reuse
	hNimeke2:
	hNimeke3:
	hAlanimeke: Conceptual Foundations and Application in the
	hAlanimeke2: Metamodeling-Based Systems Analysis
	hAlanimeke3: and Design Environment
	hEng: 1
	hpp: 8
	hkk: 10
	hvvvv: 2004
	hKello: 14
	hPaikka: Agora-rakennuksessa (Ag Aud. 3)
	hPaikka_en: in the Building Agora, Ag Aud. 3
	hSarja: JYVÄSKYLÄ STUDIES IN COMPUTING
	hnro: 39
	hKuva: Off
	hKuvaselite: Cover picture:
	hPagemakeup: Off
	hPagemakeupselite:
	hPainetun_isbn: 951-39-1819-X
	hIssn: 1456-5390
	hVerkkovaitos: 1
	hVerkkoisbn: 951-39-1919-6
	hEditor1a: Seppo Puuronen
	hEditor1b: Department of Computer Science and Information Systems, University of Jyväskylä
	hEditor2a:
	hEditor2b:
	hEditor3a:
	hEditor3b:
	hErkansi: 1
	hTiedekunta: [2]
	vaitos_nimeke: Model Component Reuse
	vaitos_nimeke2:
	vaitos_nimeke3:
	vaitos_alanimeke: Conceptual Foundations and Application in the
	vaitos_alanimeke2: Metamodeling-Based Systems Analysis
	vaitos_alanimeke3: and Design Environment
	vaitos_sarja: JYVÄSKYLÄ STUDIES IN COMPUTING 39
	vaitos_tekija: Zheying Zhang
	vaitos_soihtu2: JYVÄSKYLÄ 2004
	vaitos_soihtu1a: UNIVERSITY OF
	vaitos_soihtu1b: JYVÄSKYLÄ
	vaitos_edit: Editors
	vaitos_edit1a: Seppo Puuronen
	vaitos_edit1b: Department of Computer Science and Information Systems, University of Jyväskylä
	vaitos_edit2a:
	vaitos_edit2b:
	vaitos_edit3a:
	vaitos_edit3b:
	vaitos_editpekka1: Pekka Olsbo, Marja-Leena Tynkkynen
	vaitos_editpekka2: Publishing Unit, University Library of Jyväskylä
	vaitos_verkkourn: URN:ISBN 9513919196
	vaitos_verkkoisbn: ISBN 951-39-1919-6 (PDF)
	vaitos_isbn: ISBN 951-39-1819-X (nid.)
	vaitos_issn: ISSN 1456-5390
	vaitos_copyvv: 2004
	paino: Jyväskylä University Printing House, Jyväskylä
	vaitos_erkansi: and ER-Paino Ky, Lievestuore 2004
	vaitos_printvv: 11
	vaitos_kuvaselite:
	vaitos_pagemakeupselite:
	editorial_board:
	1: Jyväskylä Studies in Humanities
	2: Editorial Board
	4: Toivo Nygård, Department of History and Ethnology, University of Jyväskylä
	3: Editor in Chief Heikki Hanka, Department of Art and Culture Studies, University on Jyväskylä
	5: Ahti Jäntti, Department of Languages, University of Jyväskylä
	6: Matti Vainio, Department of Music, University of Jyväskylä
	7: Minna-Riitta Luukka, Centre of Aplied Language Studies, University of Jyväskylä
	8: Raimo Salokangas, Department of Communication, University of Jyväskylä

	vaitos_pdf_issn: ISSN 1459-4331

