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ABSTRACT
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This thesis deals with solutions of cooperative games. We describe the properties of
the subcore and grand subcore. The main part of the work is dedicated to the time-
consistency problem of a multistage cooperative games solution. This problem is
closely connected with the imputation distribution procedure, which allocates the
common benefit among the players at every step of the game. The reduced game
property (or consistency) is also considered with respect to the modified Davis-
Maschler-reduced game, and the property of dynamic consistency is introduced
and investigated. We use a new approach to the time-consistency problem. The
problem of minimal reduction is stated and we apply the results to regularization of
the cooperative dynamic game in the case of no time-consistent imputations from
the core in the balanced multistage cooperative game with transferable utility.
At the end of the work a multistage cooperative model of the Kyoto Protocol
realization is constructed and corresponding imputation distribution procedures
are suggested for the game.

Keywords: dynamic games, cooperative games, core, subcore, time-consistency,
reduced games, minimal reduction problem, Kyoto protocol.



Author’s Address Maria Dementieva
Department of Mathematical
Information Technology
P.O. Box 35 (Agora)
FIN–40014 University of Jyväskylä
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Jyväskylä, October 2004
Maria Dementieva



BASIC TERMS AND ACRONYMS

Balanced cooperative game Page 17
Characteristic function v(·) Definition 1.11
Coalition acceptable for reduction Definition 4.7
Conditionally minimal coalition Definition 4.1
Consistent solution Definition 3.1
Convex cooperative game Definition 3.6
Cooperative differential game Page 22
Cooperative game with transferable utility Definition 1.11
Core C(·) Definitions 1.16 and 2.2
Davis−Maschler reduced game Page 40
Dynamically consistent solution Definition 3.11
Feasible payoff vector Definition 1.15
Grand subcore GSC(·) Definitions 2.4 and 2.20
Imputation Definitions 1.15 and 2.1
Imputation distribution procedure (IDP) Definitions 2.9 and 4.16
Minimal coalition Definition 4.11
Mixed strategy Nash equilibrium Page 15
Modified Davis−Maschler reduced game Page 40
Nash equilibrium Definition 1.3
Reduced game Page 39
S−feasible payoff vector Definition 1.15
Shapley value Sh(·) Page 18
Strategic game Definition 1.2
Strictly competitive (zero− sum) game Definition 1.7
Subcore SC(·) Definitions 2.3 and 2.19
Superadditive game Definition 1.12
Time− consistent grand subcore TCGSC(·) Definitions 2.5 and 2.21
Time− consistent solution Definition 2.7



CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 BASIC IN GAME THEORY . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Strategic games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Cooperative games . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Dynamic games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 The main results of the work . . . . . . . . . . . . . . . . . . . . 19

2 THE PROBLEM OF TIME-CONSISTENCY . . . . . . . . . . . . . . 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Dynamic cooperative games . . . . . . . . . . . . . . . . . . . . . 21
2.3 Time-consistent imputations in SC(N, v(t0)) . . . . . . . . . . . . 24
2.4 Construction of imputation distribution procedure in a multistage

game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 The second imputation distribution procedure for multistage game 32
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 CONSISTENCY OF THE SUBCORE . . . . . . . . . . . . . . . . . . 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Modified of the Reduced Game due to Davis and Maschler and

Consistency Property . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Dynamic Consistency . . . . . . . . . . . . . . . . . . . . . . . . 44

4 MINIMAL REDUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Formulation of minimal reduction problem . . . . . . . . . . . . . 47
4.3 Conditionally minimal coalition . . . . . . . . . . . . . . . . . . . 48
4.4 Acceptable coalitions . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Dynamic example . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 GAME-THEORETICAL MODELLING OF THE KYOTO PROTOCOL 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Kyoto Protocol model . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Imputation Distribution Procedures for Kyoto Protocol model . . 62

5.3.1 Example with a time-consistent solution . . . . . . . . . . . 62
5.3.2 Example without time-consistent solution . . . . . . . . . . 64

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



LIST OF FIGURES

Figure 1 Projection to the plane (x1, x2) (Example 2.16). . . . . . . . 27

Figure 2 Projection to the plane (x1, x3) (Example 2.16). . . . . . . . 28

Figure 3 Projection to the plate (x1, x2) (Example 2.17). . . . . . . . . 30

Figure 4 Projections to the plates (x1, x3) and (x2, x3) (Example 2.17). 31

Figure 5 Imputation distribution procedures for Example 2.25. . . . . 37

Figure 6 Imputation simplex for subgames at t = t0 and at t = t1. . . 55

Figure 7 Imputation simplex for subgame at t = t2, v(N, t2) = 40. . . 56

LIST OF TABLES

Table 1 Characteristic function for Example 2.15. . . . . . . . . . . . 26

Table 2 Characteristic function For Example 2.16. . . . . . . . . . . . 27

Table 3 Imputations from subcore and allocations α(tk−1, tk) (Exam-
ple 2.18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 4 The characteristic function v(S, t) for Example 2.25. . . . . . 36

Table 5 The characteristic function for Example 3.13. . . . . . . . . . 46

Table 6 Vectors ξ0(t) ∈ X0(N, v(t)) and ξ(t) ∈ SC(v, ξ0(t)) of the
initial game (N, v), t ∈ T, in Example 3.13. . . . . . . . . . . . . . . . 46

Table 7 MDM-reduced game and the sets X0({2, 3}, v1
ξ0(t)) in Exam-

ple 3.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 8 Multistage TU-game (N, v(·)) for Example 4.18. . . . . . . . 55

Table 9 Characteristic function of the multistage cooperative game. . 63

Table 10 Characteristic function of the multistage cooperative game. . 64



PREFACE

The main topic of the thesis is time-consistency of the subcore in multistage
cooperative games and the problem of regularization of time-inconsistent solutions.
To provide time-consistency and construct the corresponding imputation distribu-
tion procedures we use two different algorithms based on delays of total payoffs
and a new approach connected with a reduced game. Regularization algorithms
are implied to realization of the Kyoto Protocol flexibility mechanisms.

The work consists of the following five chapters. The first one basically con-
sists of the compiled materials and includes preliminary information on the game
theory and its applications [73, 75, 74, 53]. The second chapter is devoted to the
problem of time-consistency and contains the necessary and sufficient conditions
of the subcore imputations’ time-consistency and algorithms corresponding to the
classical approach to the regularization problem [128, 129]. The third chapter is
called “Consistency of the subcore” and encloses auxiliary results about modified
Davis and Maschler reduced game [130], which are used in the next chapter. In the
fourth chapter the problem of minimal reduction is formulated and applied to the
regularization of multistage cooperative games [27]. The last chapter envelops of
game-theoretical modelling of the Kyoto Protocol and applications of the previous
results to this model [28].



1 BASIC IN GAME THEORY

1.1 Introduction

Game theory is a set of mathematical tools for understand the nature of
conflict and its management. Since the birth of the game theory in 1928 [72] a
lot of monographs have been written in different directions of the theory (see e.g.
[13, 20, 22, 29, 39, 50, 54, 61, 66, 73, 79, 81, 85, 86, 95, 119]), and the results of
investigations are used in a number of fields (see [16, 25, 26, 28, 29, 34, 35, 42,
5, 6, 52, 53, 55, 59, 65, 68, 88, 112]) (e.g. macro- and microeconomics, policy,
environment, industry, energy, demography, psychology, etc.).

In fact, any dispute or a set at variance could be modelled as a system
< Players, players′ feasible Behaviours, players′ Utility function depending
on the behaviours >. Almost every model assumes that the players (or Decision
Makers (DMs)) are rational and they take into account information about other
DMs’ actions. That is, a player should make a decision. A decision problem is
the problem of choosing among a set of alternative behaviours to increase (an indi-
vidual or common) outcome. The outcome (or utility) is a function of all players’
choices and define the preferences of the player.

According to the possibility of players’ co-operation, to the available informa-
tion for every player, to the time or the number of repetitions, to a game represen-
tation there are several classifications of games.

Let us assume that there is a set of at least two players. The game begins
when one or more players make a choice among a number of specified alternatives
(strategies). In the case of the first player is a leader and he starts earlier than
others, the game is called hierarchical. The choice made by the players may or
may not become known to the other players. Game in which all the choices of
all players are known to everyone as soon as they are made is called a game with
perfect information. Otherwise it is a game with incomplete information or under
uncertainty. If the players can act together (and form coalitions) in order to get
larger outcome the game is called cooperative, and the problem is not to choose the



12

best strategies but to allocate the common payoff fairly. Most of real-life conflicts
are dynamic, i.e. the strategies and the utility functions are the functions of time.
If time is continuous then the game is called differential; if time is discrete then
the game is called multistage.

1.2 Strategic games

A strategic game, or a game in normal form, is a model of interactive decision
making in which every DM chooses his plan of action once, and these choices are
made simultaneously [73, 75]. The model consists of a finite set of players N and,
for each player i, a set Ai of actions (strategies), and a set of utility functions ui(·)
over A =

∏
i∈N Ai. The set A is called the set of outcomes and an element a ∈ A

is a situation.

Example 1.1 (Cross-road game). Let us consider two-person game with N =
{1, 2}, where 1 and 2 are drivers. The ways of the drivers intersect on a tantamount
cross-road. The sets of strategies are the same for every player: driver can prolong
his motion (Go) or let pass to another one (Wait). The values of utility functions
are the following

Go Wait
Go −1,−1 1, 1− ε
Wait 1− ε, 1 0, 0

(1.1)

In this table the first column contains the strategies of the first player, and the first
row contains the strategies of the second player. Let us assume that driver 1 chooses
“Go” and driver 2 chooses “Wait”, then (Go,Wait) is a situation and (1, 1 − ε)
is the corresponding utility vector. Variable ε is a measure of dissatisfaction of
waiting.

The requirement that the utility function of every player i be defined over A,
rather than Ai, is the feature that distinguishes a strategic game from a decision
problem: each player may care not only about his own action but also about the
actions taken by the other players. To summarize, the definition is the following.

Definition 1.2. A strategic game is a triple < N, {Ai}i∈N , {ui}i∈N >, where N is
a finite set of players, Ai is a nonempty set of actions, and ui is an utility function
of the player i ∈ N over A =

∏
i∈N Ai. If the strategy set Ai is finite for every

player i ∈ N then the game is called finite.

The high level of abstraction of this model allows it to be applied to a wide
variety of situations. A player may be an individual human being or any other
DM entity like a government, a board of directors, or even a flower or an animal.
The model places no restrictions on the set of actions available to a player, which
may contain just a few elements or be a huge set containing complicated plans that
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cover a variety of contingencies. However, the range of applications of the model
is limited by a preference relation (or utility function) associated to each player.

A common interpretation of a strategic game is that it is a model of an event
that occurs only once; each player knows the details of the game and the fact that
all the players are “rational”, and the players choose their strategy simultaneously
and independently. Another interpretation is that a player can form his expectation
of the other players’ behaviour on the basis of information about the way that the
game or a similar game was played in the past [74].

The most used solution concept in game theory is Nash equilibrium [71].

Definition 1.3. A Nash equilibrium of a game < N, {Ai}i∈N , {ui}i∈N > is a situ-
ation a∗ ∈ A such that for every player i ∈ N we have

ui(a
∗
N\{i}, a

∗
i ) ≥ ui(a

∗
N\{i}, ai) for all ai ∈ Ai. (1.2)

Thus for a∗ to be a Nash equilibrium it must be that no player i ∈ N can
profitably deviate off a∗i , given the actions of the other players a∗N\{i}.

The following classical games represent a variety of strategic cases. As before
In this table the first column contains the strategies of the first player, and the first
row contains the strategies of the second player.

Example 1.4 (The battle of the sexes). Woman and her husband wish to go
out together either to a concert of classical music or to a football match [75]. Their
main concern is to go out together but he prefers football and she prefers music.
Representing the individuals’ preferences by utility function as following

Music Football
Music 2, 1 0, 0
Football 0, 0 1, 2

(1.3)

It models a case when players wish to coordinate their behaviour but have
conflicting interests. The game has two Nash equilibria (Music, Music) and
(Football, Football).

Example 1.5 (The prisoner’s dilemma). Two suspects in a crime are put
into separate cells [53]. If they both confess, each will be sentenced to three years
in prison. If only one of them confesses, he will be freed and used as a witness
against the other, who will receive a sentence of four years. If neither of them
confesses, they will both be convicted of a minor offense and spend one year in
prison. Choosing a convenient payoff representation we have the following game

Don′t confess Confess
Don′t confess 1, 1 4, 0
Confess 0, 4 3, 3

(1.4)

This is a game in which there are gains from cooperation (the best outcome for the
players is that neither confesses) but each player has an temptation to be a “free
rider”. Whatever one player does, the other prefers Confess to Don′t confess so
that the game has a unique Nash equilibrium (Confess, Confess).
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Example 1.6 (Matching euros). Each of two players chooses either Head or
Tail [74]. If the choices differ, person 1 pays person 2 one euro; if they are the
same person 2 pays person 1 one euro. Each person cares only about the money
that he receives. A game that models this situation is the following

Head Tail
Head 1,−1 −1, 1
Tail −1, 1 1,−1

(1.5)

This game does not have a Nash equilibrium. Such a game in which the interests
of the players are diametrically opposed is called “strictly competitive”.

We can see that not every strategic game has a Nash equilibrium point. Only
in limited classes of games we can say something about the qualitative character
of the equilibria. One such class of games is strictly competitive games.

Definition 1.7. A strategic game < {1, 2}, A1, A2, u1, u2 > is strictly competitive
(or zero-sum) game if for any a ∈ A we have u1(a) = −u2(a).

We denote such games by < {1, 2}, A1, A2, u1 >.
We say that player i maxminimizes if he chooses a strategy that is best for

him on the assumption that whatever he does, player j will choose the action to
hurt him as much as possible.

Definition 1.8. Let < {1, 2}, A1, A2, u1 > be a strictly competitive strategic game.
The action x∗ ∈ A1 is a maxminimizer for player 1 if

min
y∈A2

u1(x
∗, y) ≥ min

y∈A2

u1(x, y) for all x ∈ A1.

Similarly, the action y∗ ∈ A2 is a maxminimizer for player 2 if

min
x∈A1

u2(x, y∗) ≥ min
x∈A1

u2(x, y) for all y ∈ A2.

The following result [74] gives the connection between the Nash equilibria of
a strictly competitive game and the set of pairs of mixminimizers.

Theorem 1.9. Let G =< {1, 2}, A1, A2, u1 > be a strictly competitive strategic
game.

(1) If (x∗, y∗) is a Nash equilibrium of G then x∗ is a maxminimizer for player 1
and y∗ is a maxminimizer for player 2.

(2) If (x∗, y∗) is a Nash equilibrium of G then

u1(x
∗, y∗) = max

x∈A1

min
y∈A2

u1(x, y) = min
y∈A2

max
x∈A1

u1(x, y),

and thus all Nash equilibria of G yields the same payoffs.
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(3) If

max
x∈A1

min
y∈A2

u1(x, y) = min
y∈A2

max
x∈A1

u1(x, y)

(and thus, in particular, if G has a Nash equilibrium), x∗ is a maxmini-
mizer for player 1 and y∗ is a maxminimizer for player 2, then (x∗, y∗) is
a Nash equilibrium of G.

Proof. See [74, p. 22]

The hypothesis that the game has a Nash equilibrium is essential in estab-
lishing the opposite inequality. For example, consider the game Matching euros, in
which maxx∈A1 miny∈A2 u1(x, y) = −1 < miny∈A2 maxx∈A1 u1(x, y) = 1.

If maxx∈A1 miny∈A2 u1(x, y) = miny∈A2 maxx∈A1 u1(x, y) then this equilibrium
payoff of player 1 is called value of the game.

Not every strategic game has an equilibrium point but if we study some kind
of a Nash equilibrium in the mixed extension of the strategic game we can guaranty
the existence of equilibrium in finite game [71, 74]. The notion of mixed strategy
Nash equilibrium is designed to model a “stable state” of a game in which the
players’ choices are not deterministic but are regulated by probability rules.

Let G =< N, {Ai}i∈N , {ui}i∈N > be a strategic game. Then the set ∆Ai of
probability distributions [106] over Ai is the set of mixed strategies of player i.
Thus the mixed extension of the game G is the strategic game < N, {∆Ai}i∈N ,
{Ui}i∈N >, where Ui assigns to each α ∈ ∏

j∈N ∆Aj the expected value under ui

of the lottery over A. A mixed strategy Nash equilibrium of a strategic game is a
Nash equilibrium of its mixed extension.

Theorem 1.10. Every finite strategic game has a mixed strategy Nash equilibrium.

Proof. The original proof was given by John Nash [71].

Detailed comments and interpretations of the mixed strategy Nash equilibrium
can be found, for example, in [4, 19, 22, 44, 74, 96, 97]. For the study of different
extensions of the notion of the equilibrium, see e.g. [3, 22, 64, 65, 66, 67, 71, 74,
109, 110]. Strategic games and their modifications have a number of applications
as a tool to analyse and control of the conflict situations, as well as evolution and
learning in games, strategic planning, etc. (see [16, 42, 49, 53, 59, 66, 73, 88, 103]).

1.3 Cooperative games

Let us imagine that the players in a strategy game made arrangement to play
together for the purpose of increasing of the total benefit [53, 73, 79]. In this
case the conflict is not in how to get the maximal individual payoff by choosing
strategies but to divide the whole gain fairly. And what is the fairness? This leads
us to consideration of cooperative games. Here we describe a simple version of a
coalitional game (coalition is a subset of player set) in which every group of players
is associated with a single number, interpreted as the payoff that is available to the
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group. There are no restriction on how to allocate this payoff among the members
of the coalition. The formal definition of such games is the following.

Definition 1.11. A cooperative game with transferable utility (or a game in the
form of characteristic function, TU-game) is a pair (N, v) where N is a finite set
of players and v is a characteristic function that associates with every nonempty
subset S ⊆ N (a coalition) a real number v(S) (the worth of S), v(∅) = 0.

In many situations the payoff that a coalition can achieve depends on the ac-
tions taken by the other players or coalitions. However, the interpretation of a coali-
tional game is that it models a situation in which the actions of the players who are
not part of S do not influence v(S). In the literature (see [73, 75]) other interpreta-
tions are given to a coalitional game; for example, v(S) is sometimes interpreted to
be the maximin value to S of the two-person game < S, N \S,AS, AN\S, uS, uN\S >
played between S and N \ S, i.e. maxxS∈AS

minyN\S∈AN\S
uS(xS, yN\S) = v(S).

Usually, some natural assumptions are made.

Definition 1.12. A cooperative game (N, v) is called superadditive if

v(S ∪ T ) ≥ v(S) + v(T ), for all S, T ⊂ N, S ∩ T = ∅.
A cooperative game (N, v) is called cohesive if

v(N) ≥
K∑

j=1

v(Sj) for any partition {S1, . . . , SK} of N :
K⋃

j=1

Sj = N,

K⋂
j=1

Sj = ∅.

In other words cooperative behaviour is profitable and the players have a
possibility to receive better benefit than without coalition N .

Example 1.13 (A three-player majority game). Suppose that three players
can obtain one unit of payoff together, any two of them can obtain a payoff α ∈ [0, 1]
independently of the actions of the third, and each player alone can obtain nothing,
independently of the actions of the remaining two players. We can model this
situation as the cooperative game (N, v) where N = {1, 2, 3}, v(N) = 1, v(S) = α
whenever |S| = 2, and v({i}) = 0 for all i ∈ N .

Example 1.14. 1 An expedition of n people has discovered treasure in the moun-
tains; each pair of them can carry out one piece. A cooperative game that models
such a situation is (N, v) with the following characteristic function

v(S) =

{ |S|/2 if |S| is even
(|S| − 1)/2 if |S| is odd.

Definition 1.15. A vector x = (x1, . . . , x|S|) is called S-feasible payoff vector if∑
i∈S xi = v(S). A vector x = (x1, . . . , x|N |) is called a feasible payoff vector (or

an imputation) if it is N-feasible.

1Example 1.14 is due to Shapley (inspired by the 1948 movie “The Treasure of the Sierra
Madre”) [74].
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A core is a classical solution concept in cooperative game theory. The idea
is analogous to a Nash equilibrium of strategic games: an outcome is stable if
no deviation is profitable. Originally the definition of the core was given in [40],
and published in [41]. Later versions and axiomatization definitions appeared in
[14, 70, 76, 77, 78, 105].

Definition 1.16. The core of the cooperative game (N, v) is a set C(N, v) of fea-
sible payoff vectors x for which there is no coalition S and S-feasible payoff vector
y that yi > xi for all i ∈ S.

The following theorem gives us a method of finding the core.

Theorem 1.17. The core of a game (N, v) is a set of feasible payoff vectors x
satisfying ∑

i∈S

xi ≥ v(S) for all S ⊂ N.

Proof. See [75].

The core of the game in Example 1.13 is the set of all nonnegative payoff
vectors (ξ1, ξ2, ξ3) for which

∑
i∈N ξi = 1 and

∑
i∈S ξi ≥ α for every two-player

coalition S. In the game in Example 1.14 the core consists of the unique payoff
vector (0, 5; . . . ; 0, 5) if |N | ≥ 4 is even; the core is empty set if |N | ≥ 3 is odd.

Another presentation of the core connected with balanced collection of weights
[14, 74, 105]. Let 2N be a set of all coalitions. For any S ⊆ N let RS be |S|-
dimensional Euclidian space in which the dimensions are indexed by the members
of S, and 1S ∈ RN be the characteristic vector of S given by

(1S)i =

{
1 if i ∈ S
0 otherwise.

A collection (λS)S∈2N of numbers in [0, 1] is called a balanced collection of weights
if for every player the sum of λS over all coalitions containing i is 1. A game (N, v)
is called balanced if ∑

S∈2N

λSv(S) ≤ v(N)

for every balanced collection of weights.
The following result is referred to as the Bondareva–Shapley [14, 105] theorem.

Theorem 1.18. A cooperative TU-game has a nonempty core if and only if it is
balanced.

Proof. See [74].

All imputations in the core are “good” because of their stability [75]. However,
in general, the core is a multivalued solution and it can be an empty set. There are
a number of one-point solutions like Shapley value [104], which is a feasible payoff
vector based on the “power” of each of the players as reflected in the additional
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payoff resulting from the joining of this player to the coalitions not including him
[102, 104]. Formally the Shapley value of a cooperative TU-game is the following

Shi(N, v) =
∑
S⊆N

γn(S) [v(S ∪ {i})− v(S)] ,

where

γn(S) =
|S|!(|N | − |S| − 1)!

|N |!
is the probability that a player i joins coalition S.

Example 1.19. Let us consider a three-person game [53] with the following charac-
teristic function: v({1}) = v({2}) = v({3}) = 0, v({1, 2}) = 0.1, v({1, 3}) = 0.2,
v({2, 3}) = 0.2, v({1, 2, 3}) = v(N) = 1. The core of this game is a convex span of
six points (see Theorem 1.17)

C(N, v) = Co{(1, 0, 0.9), (0, 1, 0.9), (0, 0.8, 0.2),

(0.2, 0.8, 0), (0.8, 0.2, 0), (0.8, 0, 0.2)}
and the Shapley value is

Sh(N, v) =

(
19

60
,
19

60
,
22

60

)
.

The application area of classical (static) and dynamic cooperative games is
quite wide, see [1, 15, 17, 21, 38, 51, 52, 61, 85, 112].

1.4 Dynamic games

Dynamic (differential or multistage) games model the conflict or cooperative
situations in which players choose their strategies over time (continuous or discrete).
As before, the payoffs to each player depend on the dynamic strategies by all the
players. The basic references for dynamic games are [12, 36, 46, 47, 54, 75, 108].

As well as in strategic, in dynamic games cooperation can be defined. It is
also possible to consider zero-sum, or non zero-sum games, non-coalitional dynamic
games, dynamic games with perfect information or under uncertainty, etc. Solution
concepts from strategic and cooperative games are adapted for dynamic games (see
[53, 75, 81, 82, 115]).

In the theory of dynamic games there is a problem of time-consistency (dy-
namic stability) of the solution corresponding to the optimality principles. Time-
consistency and regularization of the dynamic cooperative games2 to provide non-
negative payoffs to every player is the main topic of this work.

As an example of the differential game we can consider a pursuit game as
the most important from the point of view of both theory and applications (see

2For details of cooperation under dynamics see Chapter 2
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[33, 48, 49, 53, 54, 81, 92, 99, 108]). Player 1 is the pursuer and player 2 is the
evader. The game ends when the pursuer is sufficiently close to the evader, at
which point the pursuer is said to “capture” the evader, the “time to capture”
is the duration of the game. The goal of the pursuer is to minimize the time to
capture, and the evader has the opposite purpose to maximize the time to capture.
The evader “escapes” if the pursuer can not come sufficiently close to him, and
the time to capture is infinite in this case. This description of the pursuit game
is general enough to cover many instances of pursuit and evasion, including such
diverse situations as the pursuit of the runner in a football game, or the pursuit of
a missile by an anti-missile.

One can find other applications, for example, in [2, 7, 10, 29, 32, 56, 58, 101].

1.5 The main results of the work

The classical TU-cooperative game theory considers and treats many optimal-
ity concepts (the core, Shapley value, etc.). An important problem in a dynamic
cooperative theory is the time-consistency of a solution [80]. As in the theory of
non zero-sum differential games [10, 12, 29], the use of optimality principles from
the static theory in dynamic TU-games leads to contradictions arising from loss
of time-consistency. Time-consistency of the optimality principle means that any
segment of an optimal trajectory determines the optimal motion with respect to
relevant initial states of the process. This property holds for the overwhelming ma-
jority of classical optimal control problems and follows from the Bellman optimality
principle [11].

The absence of time-consistency in the optimality principle involves the pos-
sibility that the previous “optimal” decision are abandoned at some current mo-
ment of time, thereby making meaningless the problem of seeking an optimal con-
trol as such. This is why particular emphasis is placed on the construction of
time-consistent optimality principles. This problem has attracted much attention
[18, 23, 60, 84, 85, 86, 88, 107, 115].

The problem of time-consistency of a solution in a differential TU-cooperative
game was investigated for the first time in [80]. It is directly relevant to regu-
larization methods of cooperative games [80, 123, 124]. We suggest constructing
time-consistent optimality principles for multistage cooperative games on the basis
of “regularization” of optimality principles from the differential cooperative game
theory. The idea of regularization is based on constructing delays of the payoffs to
the players along optimal trajectory of the game.

In Chapter 2 we study time-consistency of the subcore selectors and propose
two imputation distribution procedures that provide non-negative payoffs at every
moment of the game. Both algorithms are based on delays of total payoff at a
current moment of the game to avoid debtors at the following steps. Theorem 2.10
and its reformulation Theorem 2.22 set necessary and sufficient conditions for the
time-consistency of an imputation from the subcore in a multistage cooperative
game. The results of this chapter were partially presented in [128, 129].
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Chapter 3 has an auxiliary character and the main results, connected with
the reduced game property (Theorem 3.10 and Theorem 3.12 [130]), are used in
the Chapter 4.

In Chapter 4 we formulate a new problem of minimal reduction, and apply it
to the regularization of dynamic TU-games. We apply a reduced game due to Davis
and Maschler [24] and a modified Davis-Maschler reduced game (see Chapter 3) to
get the appropriate IDPs. This approach we can use even in the case of no time-
consistent imputation in the core of a balanced game. The results of this chapter
were presented in [27].

In Chapter 5 we describe a cooperative model of relations of countries (or
groups of countries) under Kyoto Protocol. The realization of the Kyoto Pro-
tocol flexibility mechanisms is a basis of the multistage cooperative game with
transferable payoff. And we employ both classical approach (the algorithms from
Chapter 2) and minimal reduction from Chapter 4. The results of this chapter
were presented in [28].



2 THE PROBLEM OF TIME-CONSISTENCY

2.1 Introduction

In this chapter we treat time-consistency property of the subcore selectors.
Several imputation distribution procedures (IDP) can be proposed with regard to
the continuous dynamics of the process [118, 128]. Two of them are considered in
this work. They provide time-consistency of some imputations from the subcore
and non-negativity of the payoffs to the players at each moment of time along the
optimal trajectory of a balanced game. It is not always appropriate to use the
same IDP when we deal with a multistage TU-cooperative game. Using the proof
of the theorem, that formulates necessary and sufficient conditions for the time-
consistency of an imputation from the subcore in a multistage cooperative game,
we suggest two algorithms for IDP and introduce the notion of a time-consistent
grand subcore (TCGSC). The algorithms construct the procedures of nonnegative
payoffs to the players in balanced multistage TU-cooperative games.

2.2 Dynamic cooperative games

Consider the differential game Γ = 〈N, {Ui}i∈N , {Hi}i∈N〉 with the initial state
x0 and duration T − t0 [36, 118]. Here N is a finite set of players, a subset Ui of
compact set from Rl is the strategy set of player i ∈ N , Hi is an utility function of
player i. The motion equations are ẋ(t) = f(x, u1, . . . , un), where ui ∈ Ui denotes
the player i’s control, x(t) = (x1(t), . . . , x|N |(t)) is state variable, x(t0) = x0. The
payoff function of player i from current time t till the moment T is defined as

Ki(x(t), T − t, u1, . . . , un) =
T∫
t

Hi(x(τ))dτ, (2.1)

t ∈ [t0, T ], Hi > 0, i ∈ N,

where x(τ) is the trajectory realized when the |N |-tuple u is used and the initial
state is x(t).
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Players may cooperate in order to achieve a higher payoff. We suppose that be-
fore starting the game the players agree to use a combination of controls ũ1, . . . , ũ|N |
such that for every t ∈ [t0, T ] the corresponding trajectory x̃(t) maximizes the sum
of payoffs, that is,

max
n∑

i=1

Ki(x(t), T − t, u1, . . . , un)

=
n∑

i=1

Ki(x̃(t), T − t, ũ1, . . . , ũn). (2.2)

Let us denote this sum by v(N, t). The characteristic function v(S, t) (v : 2N×T →
R), S ⊂ N , of the game Γ could be introduced in different ways. In this work the
method of construction is less important than the properties of v.

The pair (N, v), where N is a finite set of players, v : 2N × [t0, T ] → R is a
characteristic function, is called cooperative differential game over t ∈ [t0, T ]. A
game (N, v(t)) is a subgame of (N, v), i.e. the differential cooperative game at
the period [t, T ]. In the case when instead of continuous time we study discrete
time {t0, . . . , tm = T} then the game (N, v) with characteristic function v : 2N ×
{t0, . . . , tm = T} → R is called multistage. Let us use the notation T to denote the
appropriate time set.

Now let us introduce some solution concepts from the static cooperative game
theory and consider them for a dynamic game (N, v), t ∈ T.

Definition 2.1. A vector ξ = (ξ1, . . . , ξn), whose components satisfy the conditions

1) ξi ≥ v({i}, t), i ∈ N, (2.3)

2)
∑
i∈N

ξi = v(N, t), (2.4)

is called an imputation in a game (N, v(t)), t ∈ T.

Definition 2.2. A subset C(N, v(t)), t ∈ T, of imputation set is called core of the
game (N, v(t)) if all its elements satisfy the inequalities

∑
i∈S

ξi ≥ v(S, t), S ⊂ N. (2.5)

Following [125] and [131], we introduce multiple selectors of the core.

Let us denote by X0(t) the set of solutions of the following linear programming
problem

min
∑
i∈N

ξi (2.6)

subject to
∑
i∈S

ξi ≥ v(S, t), for all S ⊂ N, S 6= N. (2.7)
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Definition 2.3. A set

SC(v(t), ξ0(t)) =
{
ξ(t) = (ξ1(t), . . . , ξ|N |(t)) | ξi(t) ≥ ξ0

i (t), i ∈ N,
∑
i∈N

ξi(t) = v(N, t)
}

=

{
ξ(t) = (ξ1(t), . . . , ξ|N |(t)) | ξ(t) = ξ0(t) + α

(
v(N, t)−

∑
i∈N

ξ0
i (t)

)
,

where α = (α1, . . . , α|N |) : αi ≥ 0, i ∈ N,
∑
i∈N

αi = 1;
∑
i∈N

ξ0
i (t) ≤ v(N, t)

}

is called a subcore of the dynamic cooperative game (N, v(t)), t ∈ T, with respect
to ξ0(t), ξ0(t) ∈ X0(t).

Definition 2.4. We call a set

GSC(N, v(t)) =
⋃

ξ0(t)∈X0(t)

SC(v(t), ξ0(t))

a grand subcore of the dynamic cooperative game (N, v(t)), t ∈ T.

Subcore and grand subcore are subsets of the core in the balanced TU-games
[125].

Let us now introduce a subset of a grand subcore, which we denote by TCGSC
(time-consistent grand subcore).

Definition 2.5. The solution set TCGSC(N, v(t)) of a game (N, v(t)), t ∈ T, is
the set of all imputations ξ(t) from GSC(N, v(t)), such that for any time t ≤ τ ≤ T
there exists a vector ξ0(τ) ∈ X0(τ) which satisfies the inequality ξi(t) ≥ ξ0

i (τ) for
all i ∈ N .

R. Villiger and A. Petrosjan proposed the concept of an undercore to choose
a time-consistent imputation from the core (see [118]).

Definition 2.6. The undercore of the game (N, v(t)) is defined by

UC(N, v(t), ξ0(·)) =
{

x | xi ≥ max
τ≥t

ξ0
i (τ), i ∈ N,

∑
i∈N

xi = v(N, t)
}

.

Here ξ0(·) = {ξ0(τ), t ≤ τ ≤ T}.

Definition 2.7. A solution concept φ(t) of the dynamic cooperative game (N, v(t)),
t ∈ T, is called time-consistent if for every ξ ∈ φ(t) and for all t ≤ t∗ ≤ T there
exists a vector α(t∗) ≥ 0 such that ξ − α(t∗) ∈ φ(t∗).

We assume that α(t) is a payoff vector to the players by the moment t. In this
work we consider nonnegative non-decreasing vector-valued functions α(t), which
satisfy a natural acceptance condition from the following definition.
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Definition 2.8. A vector α(t) with non-decreasing coordinates is called acceptable
in the game (N, v(t)) if its elements satisfy αi(t) ≥ 0 for all i ∈ N and

∑
i∈N αi(t) ≤

(v(N, t0)− v(N, t)).

Definition 2.9. Imputation distribution procedure (IDP) in dynamic cooperative
game (N, v), t ∈ T, is a sequence of payoffs to the players during the game.

2.3 Time-consistent imputations in SC(N, v(t0))

In this section we consider the cooperative differential game (N, v(t)) with
t ∈ [t0, T ]. We suppose v(N, t) is a decreasing function.

It is not difficult to show that the core of the differential cooperative game
(N, v(t)) is empty if and only if GSC(N, v(t)) is empty. Let us also note that
GSC(N, v(t)) ⊂ C(N, v(t)) [131].

Theorem 2.10. Assume that C(N, v(t)) 6= ∅ with any t ∈ [t0, T ]. An imputation
ξ(t0) ∈ GSC(N, v(t0)) is time-consistent at [t0, T ] if and only if for every t ∈ [t0, T ]
there exists a vector ξ0(t) ∈ X0(t) such that ξi(t0) ≥ ξ0

i (t) for all i ∈ N .

Proof. Let us remark again that the condition C(N, v(t)) 6= ∅ is equivalent to
GSC(N, v(t)) 6= ∅.

Necessity. Suppose that the vector ξ(t0) is a time-consistent imputation from
GSC(N, v(t0)). We show that there exists such a vector ξ0(t) ∈ X0(t) that ξi(t0) ≥
ξ0
i (t) for all i ∈ N .

By the time-consistency of ξ(t0) we have ξ(t0) − α(t) ∈ GSC(N, v(t)). It
implies that there exists ξ0(t) ∈ X0(t) which satisfies

ξ(t0)− α(t) ≥ ξ0(t). (2.8)

Taking into account the non-negativity of αi(t), we obtain the required inequality
ξi(t0) ≥ ξ0

i (t) for all i ∈ N .

Sufficiency. Suppose that for every t ∈ [t0, T ] there exists such a vector ξ0(t) ∈
X0(t) that ξi(t0) ≥ ξ0

i (t) for all i ∈ N . To prove the time-consistency we have to
construct an acceptable payoff vector α(t). Let us find α(t) in the form α(t) =
β(t)[v(N, t0)−v(N, t)]. Here β(t) is a vector which satisfies the following conditions:

(i) βi(t) ≥ 0 for all i ∈ N ,

(ii)
∑

i∈N βi(t) ≤ 1.

It is obvious that the vector β(t) = ξ(t0)−ξ0(t)

v(N,t0)−∑
i∈N ξ0

i (t)
satisfies (i) and (ii).

Indeed, non-negativity of βi(t) is evident for all i ∈ N and

∑
i∈N

βi(t) =

∑
i∈N ξi(t0)−

∑
i∈N ξ0

i (t)

v(N, t0)−
∑

i∈N ξ0
i (t)

=
v(N, t0)−

∑
i∈N ξ0

i (t)

v(N, t0)−
∑

i∈N ξ0
i (t)

= 1.
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Thus, we have found the payoff vector α(t) providing (2.10)

ξ(t0) − α(t) = ξ(t0) − ξ(t0)− ξ0(t)

v(N, t0)−
∑

i∈N ξ0
i (t)

(v(N, t0)− v(N, t)) ≥

ξ(t0)− (ξ(t0)− ξ0(t)) · 1 = ξ0(t).

It completes the proof.

Corollary 2.11. An imputation ξ(t0) is time-consistent in (N, v(t)) if and only if
it belongs to TCGSC(N, v(t)).

Corollary 2.12. In the balanced game (N, v(t)) a vector ξ(t0) ∈
GSC(N, v(t0)) is time-consistent if and only if for all t ∈ [t0, T ] there exists
ξ0(t) ∈ X0(t) such that ξ(t0) ∈ UC(N, v(t0), ξ

0(t)).

Remark 2.13. The proof of Theorem 2.10 is constructive. Actually, for a balanced
game (N, v(t)) we can configure the acceptable payoff vector

α(t∗) =
ξ(t0)− ξ0(t∗)

v(N, t0)−
∑

i∈N ξ0
i (t

∗)
· (v(N, t0)− v(N, t∗)) (2.9)

providing the time-consistency of ξ(t0) from GSC(N, v(t0)) for every intermediate
moment t∗ ∈ (t0, T ).

Remark 2.14. If ξ0
i (t

∗) = maxτ∈[t∗,T ] ξ
0
i (τ) for every moment t∗ ∈ [t0, T ] and for

all i ∈ N the payoff vector α(t∗) is analogous with another one, which was offered
by Villiger and Petrosjan in [118].

2.4 Construction of imputation distribution procedure in
a multistage game

In this section we consider multistage cooperative game (N, v(t)) with t ∈
{t0, t1, . . . , tm = T}. Assume that v(N, t) is a decreasing function and the con-
ditions of Theorem 2.10 are fulfilled. We make use of the IDP proposed in the
previous section.

Example 2.15. We describe the cooperative 3-person game (N, v), t ∈ {t0, . . . ,
t4 = T}. Player set N = {1, 2, 3}. The characteristic function v(S, t) is presented
in Table 2.15. We assume that v({i}, t) = 0 for all t and i ∈ N . We choose
α(T ) = ξ(t0) = (20, 40, 40) as a payoff vector, because it satisfies the conditions of
Theorem 2.10 and it is time-consistent. Then total payoff of the player 1 is 20,
total payoff of the player 2 is 40, and the player 3 receives also 40 by the end of
the game.

In this example the notion α(t∗) means acceptable vector from formula (2.9) by
the moment t∗. Note that for this example IDP from the previous section coincides
with the IDP from the paper [118] (see Remark 2.14).
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t v(N, t) v({1, 2}, t) v({2, 3}, t) v({1, 3}, t) X0(t)
t0 100 40 50 30 (10, 30, 20)
t1 80 40 40 30 (15, 25, 15)
t2 60 30 40 20 (5, 25, 15)
t3 40 20 20 10 (5, 15, 5)
t4 0 0 0 0 (0, 0, 0)

Table 1: Characteristic function for Example 2.15.

The 1st step. Here we allocate the benefit at the period [t0, t1]. By Theo-
rem 2.10, that players can get α(t0, t1) = α(t1)− α(t0) = α(t1)− (0, 0, 0). Thus

α(t0, t1) =
(20, 40, 40)− (15, 25, 15)

100− 55
· (100− 80) =

(20

9
,
60

9
,
100

9

)
,

i.e. at the moment t1 player 1 receives 20
9
, player 2 has 60

9
, and player 3 has 100

9
.

The 2nd step. Here we allocate the benefit at the period [t1, t2]. Consider the
vector α(t2). It provides the time-consistency of ξ(t0), so we can fix

α(t1, t2) = α(t2)− α(t0, t1) = α(t2)− α(t1) =

(120

11
,
120

11
,
200

11

)
−

(20

9
,
60

9
,
100

9

)
=

(860

99
,
420

99
,
700

99

)
.

Then at the moment t2 player 1 gets 860
99

, player 2 has 420
99

, and player 3 has 700
99

.
The 3rd step. Here we allocate the gains at ([t2, t3]. In the same way as before

we choose

α(t2, t3) = α(t3)− α(t2) = (12, 20, 28)−
(120

11
,
120

11
,
200

11

)
=

(12

11
,
100

11
,
108

11

)
.

Player 1 gets 12
11

and player 2 gets 100
11

, but player 3 have to give back 108
11

.
The 4th step. Here we allocate the gains at (t3, t4]. We can choose

α(t3, t4) = α(t4)− α(t3) = (20, 40, 40)− (12, 20, 28) = (8, 20, 12).

As a result we have the sequence of nonnegative payoffs for every step of the
game, total payoff vector is time-consistent, and in this multistage cooperative game
IDP proposed for differential games is applicable.

Example 2.16. Let us consider a three-person game (the characteristic function
can be seen in Table 2.16).

The 1st step. Here we allocate the benefit at [t0, t1]. Using formula (2.9), we
get

α(t0, t1) =

(
100

7
,
40

7
, 0

)
.

The 2nd step. Here we allocate the benefit at [t1, t2]. We can fix

α(t1, t2) = α(t2)− α(t1) =
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t v(N, t) v({1, 2}, t) v({2, 3}, t) v({1, 3}, t) X0(t)
t0 120 40 80 90 (25, 15, 65)
t1 100 20 70 80 (15, 5, 65)
t2 80 50 20 50 (40, 10, 10)
t3 40 20 10 20 (15, 5, 5)
t4 0 0 0 0 (0, 0, 0)

Table 2: Characteristic function For Example 2.16.
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Figure 1: Projection to the plane (x1, x2) (Example 2.16).

=

(
0,

10

3
,
110

3

)
−

(
100

7
,
40

7
, 0

)
=

(
−100

7
,−50

21
,
110

3

)
.

We can see that αi(t1, t2) < 0, i = 1, 2, i.e. the IDP from the continuous
dynamic (see [118]) can not work perfectly in multistage game. For the projections
of the result calculation see Figures 1 and 2. When we try to provide the time-
consistency we are loosing non-negativity of the payoffs to the players. Remark
that one of the ways to reach it is to state αi(t1, t2) = 0, i = 1, 2, and these players
remain the debtors for the next periods. The problem is avoidable if we detain
payoffs 100

7
and 50

21
from the previous periods for the players 1 and 2 respectively.

Formally it means the changes of the characteristic function of the grand coalition
v(N, t) at some moments. To know the value of the delay for any tk ∈ T let us use
the backward induction principle.

Algorithm 1

Let us consider now an algorithm for construction of IDP based on the back-
ward induction principle to provide non-negative payoffs at every step.

Denote again the acceptable vector by a moment t in the form (2.9) by α(t),
the payoffs at tk+1, k = 0, . . . , m− 1, by α(tk, tk+1), and the agreement imputation
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Figure 2: Projection to the plane (x1, x3) (Example 2.16).

by ξ(t0) ∈ X0(t0).
The 1st step. Find an imputation at the final moment tm = T . Players

receive α(T ) = ξ(t0) by the time T , and α(tm−1) is the acceptable payoff-vector
by the time tm−1. Note that ξi(t0) ≥ αi(tm−1) for all i ∈ N . Hence we can state
α(tm−1, T ) := ξ(t0)− α(tm−1). There is no debtor on this period.

The 2nd step. Find the allocation at the moment tm−1 with respect to the
1st step. We stated at the first step that players receive α(tm−1) by the time tm−1.
The vector α(tm−2) is the acceptable payoff-vector by the time tm−2. Denote the
set of potential debtors of this period by

M(tm−1) = {i ∈ N |αi(tm−1) < αi(tm−2)}.
Set

αi(tm−2, tm−1) := 0, for all i ∈ M(tm−1),

αi(tm−2, tm−1) := αi(tm−1)− αi(tm−2), for all i ∈ N \M(tm−1).

The 3rd step. Find the allocation at the moment tm−2 with respect to the 2nd
step. Here let us retain the differences αi(tm−1) − αi(tm−2), i ∈ M(tm−1). Let us
introduce new notion α̃(tm−2) in the following way

α̃i(tm−2) := αi(tm−2), for all i ∈ N \M(tm−1),

α̃i(tm−2) := αi(tm−2)− (αi(tm−2)− αi(tm−1)), for all i ∈ M(tm−1).
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Now the set of potential debtors of this period is

M(tm−2) = {i ∈ N |αi(tm−3) > α̃i(tm−2)}.
Set

αi(tm−3, tm−2) := 0, for all i ∈ M(tm−2),

αi(tm−3, tm−2) := α̃i(tm−2)− αi(tm−3), for all i ∈ N \M(tm−2).

The step number k. Find the allocation at the moment tm−k+1 with respect
to the step number k − 1. As above, we define

α̃i(tm−k+1) := αi(tm−k+1), for all i ∈ N \M(tm−k+2),

α̃i(tm−k+1) := α̃i(tm−k+2), for all i ∈ M(tm−k+2),

M(tm−k+1) = {i ∈ N |αi(tm−k) > α̃i(tm−k+1)},
and set

αi(tm−k, tm−k+1) := 0, for all i ∈ M(tm−k+1),

αi(tm−k, tm−k+1) := α̃i(tm−k+1)− αi(tm−k) for all i ∈ N \M(tm−k+1).

The last step. Find the allocation at the moment t1 with respect to the step
number m − 1. Here we have payoffs α(tm−1, T ), . . . , α(t1, t2) and the potential
debtor set M(t2). As above,

α̃i(t1) := αi(t1), for all i ∈ N \M(t2),

α̃i(t1) := α̃i(t2), for all i ∈ M(t2).

Since αi(t0) = 0 we have α̃i(t1) ≥ αi(t0) for all i ∈ N . At last we set
α(t0, t1) := α̃(t1).

As the result of the algorithm we have the payoff sequence
{α(tk, tk+1)}m−1

k=0 which guarantees the time-consistent ξ(t0).
Let us apply the algorithm to our example.

Example 2.17 (backward allocation construction). Now consider the game
(N, v) from Example 2.16. Let us calculate the payoff sequence by Algorithm 1.

The 1st step. As in the 1st step in the previous example

α(T ) = (20, 40, 40), α(t3) =
(36

5
,
60

5
,
84

5

)

we have

α(t3, T ) =
(64

5
,
140

5
,
116

5

)
.

The 2nd step. Since from formula (2.9)

α(t3) =
(36

5
,
60

5
,
84

5

)
, α(t2) =

(120

11
,
120

11
,
200

11

)
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we have

α(t2, t3) =
(
0,

12

11
, 0

)
, M(t3) = {1, 3}.

The 3rd step. Since

α̃1(t2) = α1(t3) =
36

5
, α̃2(t2) = α2(t2) =

120

11
,

α̃3(t2) = α3(t3) =
84

5
, α(t1) =

(20

9
,
60

9
,
100

9

)

we have

α(t1, t2) =
(224

45
,
420

99
,
256

45

)
, M(t2) = ∅.

The 4th step. Since

α̃(t1) = α(t1) =
(20

9
,
60

9
,
100

9

)
, α(t0) = (0, 0, 0)

we have

α(t0, t1) =
(20

9
,
60

9
,
100

9

)
.

We can see that the proposed algorithm constructs a time-consistent IDP with
non-negative payoffs to the players at each period (see Figures 3, 4(a), and 4(b)).
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Figure 3: Projection to the plate (x1, x2) (Example 2.17).

However, let us note that this algorithm constructs only one solution, which
depends on ξ(t0) and ξ0(tk), k = 1, . . . , m− 1. Meanwhile, there is a set of impu-
tation distribution procedures in general case. The following example illustrates
even more complicated benefit allocation in our game.
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(b) plate (x2, x3)

Figure 4: Projections to the plates (x1, x3) and (x2, x3) (Example 2.17).

Example 2.18. Let us consider again the game from the previous example. As an
acceptable vector α(tk) we will take the difference [ξ(t0)− ξ(tk)], k = 1, . . . , m− 1,
and we will fix vectors ξ(tk) such that the inequality ξ(tk−1) ≥ ξ(tk) holds. In
Table 2.18 the corresponding points from the subcore and allocations α(tk−1, tk) are
presented.

tk X0(tk) ξ(tk) α(tk−1, tk)
t0 (10,30,20) (20,40,40) —
t1 (15,25,15) (15,35,30) (5,5,10)
t2 (5,25,15) (12,29,19) (3,6,11)
t3 (5,15,5) (10,20,10) (2,9,9)
t4 (0,0,0) (0,0,0) (10,20,10)

Table 3: Imputations from subcore and allocations α(tk−1, tk) (Example 2.18).
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2.5 The second imputation distribution procedure for mul-
tistage game

As before (N, v) is a multistage cooperative game with t ∈ {t0, . . . , tm = T} =: T.
We assume that v(N, t) is a decreasing function with respect to t and that the
game is balanced.

We denote by Con(ξ0) a cone defined by the inequality ξ ≥ ξ0.
Let Y 0(t) be the union of the cones Con(ξ0)

Y 0(t) =
⋃

ξ0∈X0(t)

Con(ξ0).

Now let us redefine some solution concepts for the multistage cooperative
game (N, v) using Y 0(t) (see Definitions 2.3, 2.4, 2.5).

Definition 2.19. We call the set

SC(v(t), ξ0(t)) =
{
ξ ∈ Con(ξ0(t))|

∑
i∈N

ξi = v(N, t)
}

subcore of the game (N, v(t)) with respect to ξ0(t) from X0(t).

Definition 2.20. We call the set

GSC(N, v(t)) =
⋃

ξ0(t)∈X0(t)

SC(v(t), ξ0(t)) =
{
ξ ∈ Y 0(t)|

∑
i∈N

ξi = v(N, t)
}

grand subcore of the game (N, v(t)).

Definition 2.21. We call a set

TCGSC(N, v(tk)) =
{
ξ ∈

m⋂

r=k

Y 0(tr)|
∑
i∈N

ξi = v(N, tk)
}

time-consistent grand subcore of the game (N, v(tk)), tk ∈ T.

Let us reformulate the condition for time-consistency of an imputation from
the grand subcore (Theorem 2.10) and its proof. We assume again that α(t) is a
payoff vector by the moment t.

Theorem 2.22. In a balanced multistage game (N, v), t ∈ T, a vector ξ(t0) ∈
GSC(N, v(t0)) is time-consistent if and only if ξ(t0) ∈ Y 0(t) for all t ∈ T.

Proof. Note that the condition of balancedness of (N, v) is equivalent to the non-
emptiness of GSC(N, v(t)) for every t ∈ T.

Necessity. Suppose that a vector ξ(t0) is a time-consistent imputation from
GSC(N, v(t0)). We show that there exists such a vector ξ0(t) ∈ X0(t) that ξ(t0) ≥
ξ0(t).
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By the time-consistency of ξ(t0) we have ξ(t0) − α(t) ∈ GSC(N, v(t)). It
implies that there exists ξ0(t) ∈ X0(t) which satisfies

ξ(t0)− α(t) ≥ ξ0(t). (2.10)

Taking into account the non-negativity of αi(t), we obtain the required inequality
ξ(t0) ≥ ξ0(t) for all t ∈ T. That is ξ(t0) ∈ Y 0(t).

Sufficiency. Suppose that for every t ∈ [t0, T ] there exists such a vector
ξ0(t) ∈ X0(t) that ξ(t0) ≥ ξ0(t). To prove the time-consistency we have to construct
an acceptable payoff vector α(t). Let us find α(t) in the form α(t) = β(t)[v(N, t0)−
v(N, t)]. Here β(t) is a vector which satisfies the following conditions:

(i) β(t) ≥ 0,
(ii)

∑
i∈N βi(t) = 1.

The vector β(t) = ξ(t0)−ξ0(t)

v(N,t0)−∑
i∈N ξ0

i (t)
satisfies the conditions (i) and (ii). Indeed,

non-negativity of βi(t) is evident (numerator is non-negative and denominator is
positive) for all i ∈ N and

∑
i∈N

βi(t) =

∑
i∈N ξi(t0)−

∑
i∈N ξ0

i (t)

v(N, t0)−
∑

i∈N ξ0
i (t)

=
v(N, t0)−

∑
i∈N ξ0

i (t)

v(N, t0)−
∑

i∈N ξ0
i (t)

= 1.

Thus, we have found the payoff vector α(t) providing (2.10)

ξ(t0) − α(t) = ξ(t0) − ξ(t0)− ξ0(t)

v(N, t0)−
∑

i∈N ξ0
i (t)

(v(N, t0)− v(N, t)) ≥

ξ(t0)− (ξ(t0)− ξ0(t)) · 1 = ξ0(t).

This completes the proof.

Corollary 2.23. An imputation ξ(t0) ∈ GSC(N, v(t0)) is time-consis-
tent in a balanced multistage game (N, v) if and only if it belongs to
TCGSC(N, v(t0)) (or, equivalently, ξ(t0) ∈

⋂
k=0,...,m Y 0(tk)).

It can be shown that IDPs suggested for differential cooperative games can
lead to negative payoffs during the game (see Example 2.16). Informally, this means
that players have to give back a part of received benefit to provide time-consistency
of the optimality principle. However, the total payoffs that the players receive by
the end of the game correspond to the imputation that was chosen at the beginning.

Corollary 2.24. In the conditions of Theorem 2.22 the nonemptiness
of TCGSC(N, v(tk)), k = 0, . . . , m, and the decreasing of v(N, t) with respect to t
imply that there exists a sequence {ξ(tk)}k=0,...,m, such that ξ(t0) ≥ ξ(t1) ≥ · · · ≥
ξ(tm−1) ≥ 0. Here ξ(tk) ∈ TCGSC(N, v(tk)).

Proof. We have to show that for every vector ξ(tk) ∈ TCGSC(N, v(tk)) there exists
a vector ζ ∈ TCGSC(N, v(tk+1)), such that ζ ≤ ξ(tk).
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Indeed, by ξ(tk) ∈ TCGSC(N, v(tk)) we have

ξ(tk) ∈
m⋂

r=k

Y 0(tr).

Thus

ξ(tk) ∈
m⋂

r=k+1

Y 0(tr),

and there exists a non empty subset

M(tk+1) ⊂
m⋂

r=k+1

Y 0(tr),

such that a vector ζ∗ ∈ M(tk+1) satisfies ζ∗ ≤ ξ(tk).
Since TCGSC(N, v(tk + 1)) 6= ∅ and v(N, tk) > v(N, tk+1) we can choose

a vector ζ ∈ M(tk+1) with
∑

i∈N ζi = v(N, tk+1). Our reasoning holds for all
k = 0, . . . , m− 1. This completes the proof.

Now by Corollary 2.24 we have the following IDP insuring the non-negativity
of payoffs to every player i ∈ N . In the condition of Corollary 2.24 we choose a
vector ξ(tk) ∈ TCGSC(N, v(tk)) for every k = 1, . . . , m, such that ξ(tk) ≤ ξ(tk−1).
After that we set the payoff vectors at every moment tk ∈ T as

α(tk−1, tk) = ξ(tk−1)− ξ(tk), k = 1, . . . , m.

However, sometimes TCGSC(N, v(tk)) = ∅ at a moment tk ∈ T. In such a case
we can delay a part of difference v(N, tk−1)− v(N, tk) to insure time-consistency.

Let us consider now an algorithm based on the maximization of total payoffs
at every step. Assume that there is a time-consistent vector ξ(t0) ∈ GSC(N, v(t0))
in a multistage cooperative game (N, v), t ∈ T.

Algorithm 2

Let us introduce a new notation. Let α(tk) be a total payoff vector at a period
(tk, tm], α(tk−1, tk) a payoff vector at a moment tk, and ṽ(N, tk) a new guaranteed
payoff at a period [tk, tm].

We define an auxiliary set Z0(tk) as the solution set of the following mini-
mization problem

minimize
∑
i∈N

ωi, (2.11)

subject to ω ∈
m⋂

r=k

Y 0(tr). (2.12)

Remark that for all tk ∈ T there exists a solution of the problem (2.11), (2.12). It
is evident from construction of Y 0(tk).
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Initial step. We choose a vector ξ(t0) ∈ TCGSC(N, v(t0)). The players will
receive this imputation by the end of the game (the moment tm). We set

α(t0) := ξ(t0), ṽ(N, t0) := v(N, t0).

Step number k. At this step we find a non negative payoff vector to the
players at the moment tk with respect to the vector α(tk−1) and ṽ(N, tk−1) from
the previous step.

Consider a set Z0(tk). If for a vector ω ∈ Z0(tk) we have
∑

i∈N ωi ≤ v(N, tk),
then we set

α(tk) := ξ(tk), and ṽ(N, tk) := v(N, tk).

Here ξ(tk) ∈ TCGSC(N, v(tk)) and ξ(tk) ≤ ξ(tk−1).
Otherwise we set

α(tk) := ω, and ṽ(N, tk) :=
∑
i∈N

ωi.

Here ω is a vector from Z0(tk). Finally, we set

α(tk−1, tk) := α(tk−1)− α(tk).

Last step. By the definition of a multistage game we have

α(tm) := (0, 0), ṽ(N, tm) := 0, and α(tm−1, tm) = α(tm−1).

Note that the existence of the applicable α(tk+1) with respect to α(tk) is proved
analogously to Corollary 2.24. Indeed, it is sufficient to replace ξ(tk) by α(tk), ζ
by α(tk+1) and v(N, t) by ṽ(N, t) in the proof.

As the result of the algorithm we have the payoff sequence
{α(tk−1, tk)}m

k=1, which guarantees the time-consistency of ξ(t0).
Let us apply the algorithm to an example.

Example 2.25. Consider a multistage cooperative game (N, v) with N = {1, 2}
and m = 5. The values of the characteristic function are presented in Table 2.25.
In Figure 5 one can find the sets TCGSC(t) at t = t0, t1, t3, t4 (bold lines), stared
points are the sets X0.

Initial step. We choose a vector ξ(t0) = (12, 13) from the set
TCGSC(N, v(t0)) as a final payoff vector (see Figure 5, circumscribed point on
bold line TCGSC(t0)). We set

α(t0) := ξ(t0) = (12, 13), ṽ(N, t0) := v(N, t0) = 25.

1st step. Here we find the allocation vector α(t0, t1). The solution vector of
the problem (2.11), (2.12) at the moment t1 is (10, 12). Since 10 + 12 < 23 we set

α(t1) := (11.5; 11.5), and ṽ(N, t1) := v(N, t1) = 23.
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t v({1}, t) v({2}, t) v(N, t) X0(t)
t0 9 12 25 (9,12)
t1 10 10 23 (10,10)
t2 8 2 15 (8,2)
t3 5 8 14 (5,8)
t4 3 3 8 (3,3)
t5 0 0 0 (0, 0)

Table 4: The characteristic function v(S, t) for Example 2.25.

In Figure 5 α(t1) is circumscribed point on bold line TCGSC(t1).
Thus, we have

α(t0, t1) := α(t0)− α(t1) = (12, 13)− (11.5; 11.5) = (0.5; 1.5).

2nd step. Here we find the payoff vector α(t1, t2). The solution vector of
the problem (2.11), (2.12) at the moment t2 is (8, 8) (the set TCGSC(N, v(t2)) is
empty and we use the set Z0(t2) instead of this). Since 8 + 8 > 15 we set

α(t2) := (8, 8), and ṽ(N, t2) := 16.

Thus, we have

α(t1, t2) := α(t1)− α(t2) = (11.5; 11.5)− (8, 8) = (3.5; 3.5).

3rd step. Here we find the payoff vector α(t2, t3). The solution vector of the
problem (2.11), (2.12) at the moment t3 is (5, 8). Since 5 + 8 < 14 we set

α(t3) := (6, 8), and ṽ(N, t3) := v(N, t3) = 14.

Thus, we have

α(t2, t3) := α(t2)− α(t3) = (8, 8)− (6, 8) = (2, 0).

4th step. Here we find the payoff vector α(t3, t4). The solution vector of the
problem (2.11), (2.12) at the moment t4 is (3, 3). Since 3 + 3 < 8 we set

α(t4) := (5, 3), and ṽ(N, t4) := v(N, t4) = 8.

Thus, we have

α(t3, t4) := α(t3)− α(t4) = (6, 8)− (5, 3) = (1, 5).

Last step. Here we have

α(t4, t5) := α(t4) = (5, 3).

The proposed algorithm constructs the following IDP with the nonnegative
payoffs to the players at each period: at the moment t1 player 1 gets payoff 0.5,
player 2 gets 1.5; at the moment t2 both player 1 and player 2 get 3.5; at the
moment t3 player 1 gets 2, player 2 gets zero; at the moment t4 player 1 gets 1,
player 2 gets 5; and at the moment t5 player 1 gets 5, player 2 gets 3. The result
of this IDP is time-consistent imputation (12,13) (see Figure 5).
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Figure 5: Imputation distribution procedures for Example 2.25.
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2.6 Conclusion

In this chapter we considered the subcore and the grand subcore as optimality
principles in multistage cooperative games. We used one of the classical approaches
to the problem of time-consistency of solutions and constructed two algorithms
based on delays of total payoffs to provide nonnegative payoffs at every step of
the game. We use the backward induction to calculate the payoffs in the first
algorithm, and in the second we created auxiliary sets that, if necessary, specifies
the minimal delays in payoffs to make the debtors set empty during all the game.



3 CONSISTENCY OF THE SUBCORE

3.1 Introduction

One of the main properties of the solutions, corresponding to the optimality
principles in cooperative games, is consistency, or reduced game property. The first
definition of a reduced game was introduced by Davis and Maschler [24]. It states
that if some coalition of players leaves the original game, the remaining players
form the player set of a reduced game. The characteristic function of the reduced
game is constructed by a rule, which depends on the payoffs of the removed players.
The solution is consistent if every player has the same benefit in the reduced game
as in the original game. In [30, 31, 45, 63, 70, 77, 98, 111] various reduced games
and characterizations of optimality principles in TU-games are suggested. Here we
consider a modification of the well known reduced game by Davis and Maschler
[24] and formulate the condition the subcore to be consistent with respect to the
MDM-reduction [127] in classical cooperative theory. We also introduce a notion
of dynamic consistency for multistage TU-games and prove that time-consistent
imputation from the subcore is dynamically consistent with respect to the MDM-
reduction. We use the results of this chapter to provide time-consistency in a new
way (Chapter 4).

3.2 Modified of the Reduced Game due to Davis and
Maschler and Consistency Property

In this section we consider the reduced game property regarding the subcore.
Let (N, v) be a classical cooperative TU-game; here N is the finite set of players,
v : 2N → R is a characteristic function with v(∅) = 0. Let us denote by n the
number of players in the set N .

Given a cooperative game (N, v), a player j ∈ N , any optimality principle
φ, and any payoff vector ξ ∈ φ(N, v), there are various ways to define a reduced
game (N \ {j}, vj

ξ) with respect to ξ. The characteristic function vj
ξ(S) of coalition
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S ⊂ N \ {j} represents the total benefit that the players of S may achieve by
mutual cooperation. The removed player j is paid according to the vector ξ.

Let us denote by ξS the restriction of the vector ξ ∈ IRN to a set S ⊂ N .

Definition 3.1. We call a solution φ to be consistent with respect to the reduced
game (N\{j}, vj

ξ), if for all ξ ∈ φ(N, v) the condition ξN\{j} ∈ φ(N \ {j}, vj
ξ) is

fulfilled.

The original reduced game due to Davis and Maschler (DM-reduced game)
[24] for a given player j ∈ N , and a payoff vector ξ is the following

vj
ξ(S) =





0, if S = ∅,
v(N)− ξj, if S = N \ {j},
max{v(S ∪ {j})− ξj, v(S)}, otherwise.

It can be shown that the subcore appears to be inconsistent with respect to the
DM-reduced game [127]. In this work we deal with the modified Davis-Maschler
reduced game (MDM-reduced game). For a given player j ∈ N , ξ0 ∈ X0(N, v)
and a payoff vector ξ the characteristic function of the MDM-reduced game is the
following

vj
ξ0(·) = vj

ξ0(S, ξj) =





0, if S = ∅,
v(N)− ξj, if S = N\{j},
max{v(S ∪ {j})− ξ0

j , v(S)}, otherwise.

Now we consider the case where one player drops off from the grand coalition
N of the original game. Let us formulate the linear programming problem (2.6),
(2.7) for the MDM-reduced game

min
∑

i∈N\{j}
xi, (3.1)

∑
i∈S

xi ≥ vj
ξ0(S, ξj), S ⊂ N\{j}, S 6= N\{j}, (3.2)

and find a condition for a subcore to be a consistent solution with respect to the
MDM-reduced game. To prove this we formulate two lemmas.

Lemma 3.2. If (N, v) is a balanced TU-game and

∑

i∈N\{j}
η0

i ≥ v(N \ {j}), η0 ∈ X0(N \ {j}, vj
ξ0(·)), (3.3)

then ξ0
N\{j} ∈ X0(N\{j}, vj

ξ0(·)).

Proof. We assume (N, v) to be a cooperative TU-game and (N\{j}, vj
ξ0(·)) to be

the MDM-reduction of (N, v), ξ ∈ SC(v, ξ0).
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Let us suppose that the vector η0 = ξ0
N\{j} is not a solution of the problem

(3.1), (3.2). It means that either η0 does not satisfy the inequality system (3.2),
or does not minimize the sum (3.1). Since for all proper coalitions S ⊂ N \ {j}
it is true that

∑
i∈S ξ0

i ≥ v(S) and
∑

i∈S ξ0
i ≥ v(S ∪ j) − ξ0

j then
∑

i∈S ξ0
i ≥

max{v(S), v(S ∪ j)− ξ0
j }. Hence,

∑
i∈S

η0
i ≥ max{v(S), v(S ∪ j)− ξ0

j }.

Thus it holds that the vector η0 is the acceptable in the linear programming problem
(3.1), (3.2). Consequently, it is sufficient to show that it minimizes the sum (3.1).
If it is not the case, there exists a vector η0, which satisfies the system (3.2) and
minimizes the sum (3.1), and

∑

i∈N\{j}
η0

i <
∑

i∈N\{j}
η0

i .

Let us consider a vector, which is created from η0 and ξ0
j by

ξ
0

= (η0
1, . . . , η

0
j−1, ξ

0
j , η

0
j+1, η

0
n). It is acceptable with respect to the problem

(2.6), (2.7), because for every proper coalition S ⊂ N\{j}
∑
i∈S

η0
i ≥ max{v(S), v(S ∪ j)}

and 


{
v(S) ≥ v(S ∪ j)− ξ0

j∑
i∈S ξ

0

i ≥ v(S){
v(S) < v(S ∪ j)− ξ0

j∑
i∈S ξ

0

i ≥ v(S ∪ j)− ξ0
j

Taking into account the condition (3.3), we can write

∑
i∈T

ξ
0

i ≥ v(T ), for all T ⊂ N.

However, it is clear that
∑

i∈N ξ
0

i <
∑

i∈N ξ0
i . This contradicts the original as-

sumption ξ0 ∈ X0(N, v). Hence, for every vector ξ0 ∈ X0(N, v) there exists such a
vector η0 ∈ X0(N \ {j}, vj

ξ0(·)) that η0 = ξ0
N\{j}. This completes the proof.

Lemma 3.3. If the original game (N, v) is balanced and (3.3) is fulfilled, then
MDM-reduced game (N\{j}, vj

ξ0(·)) is also balanced.

Proof. Since the game (N, v) is balanced, every vector ξ0 ∈ X0(N, v) satisfies∑
i∈N ξ0

i ≤ v(N). To prove the lemma it is sufficient to show that
∑

i∈N\{j} ξ0
i ≤

v(N)− ξj (see Lemma 3.2). Let us present ξj in the following form

ξj = ξ0
j + αj(v(N)−

∑
i∈N

ξ0
i ), αj ∈ [0, 1].
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If αj = 1 then the proposition of the lemma is true. If αj 6= 1 we have

∑

i∈N\{j}
ξ0
i ≤ v(N)− ξ0

j − αj(v(N)−
∑
i∈N

ξ0
i )

⇔
∑

i∈N\{j}
ξ0
i ≤ v(N)(1− αj)− ξ0

j + αj ·
∑
i∈N

ξ0
i

⇔
∑
i∈N

ξ0
i − αj ·

∑
i∈N

ξ0
i ≤ v(N)(1− αj) ⇔

∑
i∈N

ξ0
i ≤ v(N).

This completes the proof.

Finally we can formulate the following theorem.

Theorem 3.4. The set SC(v, ξ0) is consistent with respect to the MDM-reduced
game (N \ {j}, vj

ξ0(·)) if (3.3) is fulfilled.

Proof. Let (N, v) be the original game, ξ0 ∈ X0(N, v), ξ ∈ SC(v, ξ0),
(N\{j}, vj

ξ0(·)) be the MDM-reduction. To prove the theorem we have to show

that for all fixed ξ0 and ξ it is true that ξN\{j} ∈ SC(N\{j}, vj
ξ0(·)). By Lemma 3.3

the MDM-reduced game is balanced. Consequently the subcore of (N\{j}, vj
ξ0(·))

is not an empty set. By Lemma 3.2 we have η0 = ξ0
N\{j} ∈ X0(N\{j}, vj

ξ0(·)),
therefore there exists such a vector η ∈ SC(vj

ξ0 , η
0), that ηi = ξi for all i ∈ N\{j}.

This completes the proof.

Let us note also the superadditivity of the DM- and MDM-reduced games
under the condition of the convex initial game (N, v).

Definition 3.5. The game (N, v) is called superadditive if for all S, T ⊂ N and
S ∩ T = ∅ the following condition is true

v(S) + v(T ) ≤ v(S ∪ T ).

Definition 3.6. The game (N, v) is called convex if for all S, T ⊂ N the following
condition is true

v(S) + v(T ) ≤ v(S ∪ T )− v(S ∩ T ).

Lemma 3.7. The DM- and MDM-reduced games are superadditive if the initial
game is convex.

Proof. It is sufficient to prove the lemma at least for one of the reduced games.
Let us show it for convex initial game (N, v) and DM-reduced game (N \ {i}, vi

ξ),
where ξ is an imputation of the initial game.

Let us consider the sum

vi
ξ(S) + vi

ξ(T ) = max(v(S), v(S ∪ {i})− ξi) + max(v(T ), v(T ∪ {i})− ξi)

with S, T ⊂ N \ {i}, S ∩ T = ∅. There are three variants:
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1. if v(S) > v(S ∪ {i})− ξi and v(T ) > v(T ∪ {i})− ξi then we can write

vi
ξ(S) + vi

ξ(T ) = v(S) + v(T ) ≤ v(S ∪ T )

≤ max(v(S ∪ T ), v(S ∪ T ∪ {i})− ξi) = vi
ξ(S ∪ T );

2. if v(S) > v(S ∪ {i})− ξi and v(T ) ≤ v(T ∪ {i})− ξi then

vi
ξ(S) + vi

ξ(T ) = v(S) + v(T ∪ {i})− ξiv(S ∪ T ∪ {i})− ξi

≤ max(v(S ∪ T ), v(S ∪ T ∪ {i})− ξi) = vi
ξ(S ∪ T );

3. if v(S) ≤ v(S ∪ {i})− ξi and v(T ) ≤ v(T ∪ {i})− ξi we have

vi
ξ(S) + vi

ξ(T ) = v(S ∪ {i})− ξi + v(T ∪ {i})− ξi

≤ v(S ∪ T ∪ {i})− 2ξi − v({i}) ≤ v(S ∪ T ∪ {i})− ξi

≤ max(v(S ∪ T ), v(S ∪ T ∪ {i})− ξi) = vi
ξ(S ∪ T ).

At the first and the second cases we use only superadditivity of the initial game
to estimate the sum vi

ξ(S) + vi
ξ(T ), but at the third case we use the convexity of

(N, v) and non-negativity of v({i}) and ξi. This completes the proof.

MDM-reduction (N \R, vR
ξ0)

Now let us introduce the MDM-reduction for a more general variant of the
reduction, when a coalition R is removed from the initial game (N, v). In this
section we show that the characteristic function of the final game (N \R, vR

ξ0) does
not depend on the order of removing i ∈ R and it is equal to

vR
ξ0(S) =





0, S = ∅,
v(N)−∑

j∈R xj, S = N \R,

maxK⊂R

{
v(S ∪K)−∑

j∈K ξ0
j

}
, S ⊂ N \R.

(3.4)

Here x is an imputation of the initial game, and ξ0 ∈ X0(N, v).
To prove this fact let us use the mathematical induction.
The induction base. Let us consider the MDM-reduced game (N \ {i}, vi

ξ0)

and find the MDM-reduced game

(
N \ {i, j},

(
vi

ξ0

)j

ξ0

)
:

(
vi

ξ0

)j

ξ0 (∅) = 0 = vi,j
ξ0 (∅),

(
vi

ξ0

)j

ξ0 (N \ {i, j}) = vi
ξ0(N \ {i})− xj = v(N)− xi − xj

= vi,j
ξ0 (N \ {i, j}),

(
vi

ξ0

)j

ξ0 (S) = max
{
vi

ξ0(S ∪ j)− ξ0
j ; v

i
ξ0(S)

}

= max
{
v(S ∪ {i, j})− ξ0

i − ξ0
j ; v(S ∪ j)− ξ0

j ; v(S ∪ i)− ξ0
i ; v(S)

}

= vi,j
ξ0 (S), S ⊂ N \ {i, j}.
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That means that in this case the order of the player removing i and j is not
significant.

The inductive assumption. Let us assume that the players i ∈ R \ {j} are
removed from the initial game (N, v) one after another and the finishing MDM-

reduced game is equal to v
R\{j}
ξ0 . It is left to show that if the player j removes from

the game we get the form (3.4). Indeed, the characteristic function of the new
game is the following

(
v

R\{j}
ξ0

)j

ξ0
(∅) = 0 = vR

ξ0(∅),
(
v

R\{j}
ξ0

)j

ξ0
(N \R) = v(N)−

∑
i∈R

xi = vR
ξ0(N \R),

(
v

R\{j}
ξ0

)j

ξ0
(S) = max

{
v

R\{j}
ξ0 (S ∪ j)− ξ0

j ; v
R\{j}
ξ0 (S)

}

= max
K⊂R

{
v(S ∪K)−

∑
i∈K

ξ0
i

}
, S ⊂ N \R.

Consequently, the identity (3.4) holds and the characteristic function of the result-
ing reduced game does not depend on the order of player removal.

The same method can be used to prove that the MDM-reduction(
N \ {R ∪ T}, uT

ξ0

)
of the MDM-reduction (N \R, u), where u = vR

ξ0 , is the MDM-

reduction
(
N \ {R ∪ T}, vR∪T

ξ0

)
.

We can rewrite Lemmas 3.2 and 3.3, and Theorem 3.4 in the following way.

Lemma 3.8. If (N, v) is a balanced TU-game and

∑

i∈N\R
η0

i ≥ v(N \R), η0 ∈ X0(N \R, vR
ξ0(·)), (3.5)

then ξ0
N\R⊂X0(N\R, vR

ξ0(·)).

Lemma 3.9. If the original game (N, v) is balanced and (3.5) is fulfilled, then
MDM-reduced game (N\R, vR

ξ0(·)) is also balanced.

Theorem 3.10. The set SC(v, ξ0) is consistent with respect to the MDM-reduced
game (N \R, vR

ξ0(·)) if (3.5) is fulfilled.

3.3 Dynamic Consistency

In this section we introduce a dynamic consistency property and show that
the time-consistent imputation from the grand subcore is dynamically consistent
with respect to the MDM-reduced game. Assume that φ(N, v) is an optimality
principle for a multistage cooperative game and ξ(t) ∈ φ(N, v(t)), t ∈ T. Now
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we denote a reduced subgame for the period T∗ = {t∗, . . . , T} with player j ∈ N
removed, t ∈ T∗, by (N \ {j}, vj

ξ0(S, ξj, t)).

Definition 3.11. We call a solution φ(N, v) dynamically consistent with respect
to reduced game (N\{j}, vj

ξ), if for all x(t) ∈ φ(N, v(t)) at every moment t ∈ T∗

we have (x(t))N\{j} ∈ φ(N\{j}, vj
ξ).

Now let us redefine the MDM-reduction for the original multistage cooper-
ative game (N, v), t ∈ [t0, T ]. For a given player j ∈ N removed at time t∗,
the payoff vector ξ(t), and ξ0(t) ∈ X0(N, v(t)), the characteristic function of the
MDM-reduced game for every t ∈ T∗ is the following

vj
ξ0(·) = vj

ξ0(S, ξj, t)

=





0, if S = ∅,
v(N, t)− ξj(t), if S = N\{j},
max{v(S ∪ {j}, t)− ξ0

j (t), v(S, t)}, otherwise.

The following theorem is useful for finding dynamically consistent imputations
from the subcore.

Theorem 3.12. In a balanced multistage cooperative game (N, v),
t ∈ T, an imputation ξ(t) ∈ TCGSC(N, v(t0)) ∩ SC(v, ξ0(t0)) is dynami-
cally consistent with respect to the MDM-reduced game (N \ {j}, vj

ξ0(·)), t ∈ T∗, if
the condition

∑

i∈N\{j}
η0

i (t) ≥ v(N \ {j}, t), η0(t) ∈ X0(N \ {j}, vj
ξ0(·)), (3.6)

is fulfilled.

The proof of this theorem is analogous to the proof of Theorem 3.4.

Example 3.13. Let us construct the MDM-reduced game of the multistage coop-
erative game (N, v) with v({i}) = 0 for all i ∈ N (the characteristic function of
the initial game one can find in Table 3.13). In Table 3.13 the points from the
set X0(N, v(t)) are presented in the column ξ0(t), the column ξ(t) contains the
time-consistent solution from the subcore SC(v, ξ0(t)).

We assume that at the moment t∗ = t2 the player number 1 leaves the game
(N, v), t ∈ T. Table 3.13 includes the MDM-reduced game ({2, 3}, v1

ξ0), t ∈ T∗,
and the subcore of this game.

One can see that ξ0
{2,3}(t) belongs to the set X0({2, 3}, v1

ξ0(t)) as t ∈ T∗, and

ξ{2,3}(t) belongs to the subcore SC(v1
ξ0 , ξ0

{2,3}(t)), t ∈ T∗. In other words, in the

initial multistage cooperative game (N, v), t ∈ T, the imputation ξ(t0) in Table 3.13
is dynamically consistent with respect to the MDM-reduced game ({2, 3}, v1

ξ0(t)),
t ∈ T∗.
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t v(N, t) v({1, 2}, t) v({2, 3}, t) v({1, 3}, t)
t0 100 60 60 80
t1 80 40 50 60
t2 70 35 40 30
t3 50 25 12 12
t4 25 10 7 11
t5 0 0 0 0

Table 5: The characteristic function for Example 3.13.

t ξ0(t) ξ(t)
t0 (40, 20, 40) (40,20,40)
t1 (25, 15, 35) (26,5;17;36,5)
t2 (12,5;22,5;17,5) (18,26,26)
t3 (12, 13, 0) (15,15,20)
t4 (7, 3, 4) (8,8,9)
t5 (0, 0, 0) (0,0,0)

Table 6: Vectors ξ0(t) ∈ X0(N, v(t)) and ξ(t) ∈ SC(v, ξ0(t)) of the initial game
(N, v), t ∈ T, in Example 3.13.

t v1
ξ0({2, 3}, t) v1

ξ0({2}, t) v1
ξ0({3}, t) X0({2, 3}, v1

ξ0(t))

t2 52 22,5 17,5 (22,5;17,5)
t3 35 13 0 (13,0)
t4 17 3 4 (3,4)

Table 7: MDM-reduced game and the sets X0({2, 3}, v1
ξ0(t)) in Example 3.13.



4 MINIMAL REDUCTION

4.1 Introduction

In this chapter we formulate the problem of minimal reduction, and apply it
to the regularization of dynamic TU-games.

Up to now we used the classical approach to the regularization of games to
provide time-consistency of a solution based on delays of total payoffs to the players
(see Chapter 2). Here we employ a reduced game due to Davis and Maschler [24]
and a modified Davis-Maschler reduced game (see Chapter 3) to get time-consistent
imputations from the core and construct the corresponding IDPs.

The chapter is organized as follows. In Section 4.2 we formulate the minimal
reduction problem. In Section 4.3 this problem is considered under the restric-
tion of a feasible removing coalition. Conditionally minimal coalitions are defined
with respect to the core and DM-reduction [24] and with respect to the subcore and
MDM-reduction [127]. Section 4.4 is devoted to minimal reduction in a general case
(when the removing coalition is chosen from the whole player set). Example 4.18
in Section 4.5 illustrates the application of minimal reduction to a multistage co-
operative game.

4.2 Formulation of minimal reduction problem

Let us consider the following problem of minimal reduction of a balanced
TU-game. Let (N, v) be a cooperative game with non-empty core, vector ξ =
(ξ1, . . . , ξn) be an imputation, which does not belong to the core. What is the
minimal coalition K ⊂ N such that ξN\K ∈ C(N \K, vK

ξ )?

This problem has a solution. Indeed, a set N \ {i}, for all i ∈ N , could be
taken as removing coalition K. Then the characteristic function of DM-reduced
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game is

v
N\{i}
ξ ({i}) = v(N)−

∑

j∈N\{i}
ξj = ξi.

That is ξi belongs to the core C({i}, vN\{i}
ξ ). Since ξ is an imputation and the set

of coalitions is finite, there exists at least one minimal size coalition.
We call this problem a problem of minimal reduction with respect to the

imputation ξ 6∈ C(N, v) and DM-reduced game.
Let us denote by {Tr}m

r=1 the set of coalitions Tr, r = 1, . . . , m, for which the
following inequalities hold

∑
i∈Tr

ξi < v(Tr), r = 1, . . . , m (4.1)

∑
i∈S

ξi ≥ v(S), ∀S ⊂ N, S 6= Tr, r = 1, . . . , m. (4.2)

In this chapter we discuss two approaches to the minimal reduction. On one hand,
it is natural to find a feasible (for reduction) coalition K as a subset of U =

⋃m
r=1 Tr.

The notion of a conditional minimal coalition is introduced (see Chapter 4). On
the other hand, in a general case (K ⊂ N) the number of players in a minimal
coalition could be less than in a conditionally minimal coalition (Chapter 5).

Analogously, we can formulate and consider the problem of minimal reduction
with respect to an imputation ξ 6∈ GSC(N, v) and MDM-reduced game.

4.3 Conditionally minimal coalition

Definition 4.1. Coalition K is called conditionally minimal coalition with respect
to an imputation ξ /∈ φ(N, v) (φ is an optimality principle), coalition U , and re-
duction game (N \K, vK

ξ ) if

1. K ⊆ U ⊂ N ;

2. ξN\K ∈ φ(N \K, vK
ξ );

3. there is no such K ′ ⊂ K, that ξN\K′ ∈ φ(N \K ′, vK′
ξ ).

Here U is a collection of players, which could depend on the optimality prin-
ciple. In this paper we consider the following coalitions U(C, ξ) =

⋃m
r=1 Tr for the

core and U(GSC, ξ, ξ0) = {i ∈ N : ξi < ξ0
i } for the grand subcore3.

The following example illustrates how to choose a conditionally minimal coali-
tion with respect to ξ 6∈ C(N, v), U(C, ξ) and DM-reduced game in a cooperative
game (N, v).

3In the case of a study of conditionally minimal coalition with respect to the grand subcore a
set U(GSC, ξ, ξ0) depends on the vector ξ0, then by “good enough” choice of ξ0 ∈ X0(N, v) we
can decrease a conditionally minimal coalition.
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Example 4.2. Let us consider a three person TU-game with v({i}) = 0 for all
i ∈ N , and 0 ≤ v({i, j}) ≤ v(N), i, j ∈ N . Assume that for ξ = (ξ1, ξ2, ξ3) the
following conditions hold

ξ1 + ξ2 ≥ v({1, 2});
ξ1 + ξ3 ≥ v({1, 3});
ξ2 + ξ3 < v({2, 3}).

That is the vector ξ does not belong to the core C(N, v) because of the coalition
{2, 3} (U(C, ξ) = {2, 3}).

Let us construct DM-reduced game vK
ξ (·), K = {2, 3}. It is clear that

vK
ξ ({1}) = ξ1. Hence, the removal of {2, 3} leads to imputation from the set

C({1}, v{2,3}
ξ (·)).

If we set K ′ := {2}, then the characteristic function of the reduced game is as
follows

v
{2}
ξ ({1}) = max{0, v{1, 2} − ξ2};

v
{2}
ξ ({3}) = max{0, v{2, 3} − ξ2} = v{2, 3} − ξ2;

v
{2}
ξ ({1, 3}) = v(N)− ξ2.

Vector ξ is an imputation, therefore ξ1 ≥ 0. Moreover, from the inequality
ξ1 + ξ2 ≥ v({1, 2}) we have ξ1 ≥ v({1, 2}) − ξ2. Then ξ1 ≥ v

{2}
ξ ({1}). How-

ever, the condition ξ3 ≥ v
{2}
ξ ({3}) does not apply in view of ξ2 + ξ3 < v({2, 3}).

The situation is similar, if K ′ := {3}.
Consequently, we obtained that the coalition {2, 3} is conditionally minimal

with respect to ξ 6∈ C(N, v), U(C, ξ) and DM-reduced game.

Assume that there is such a coalition T in the set {Tr}m
r=1, that Tr ⊆ T

for all r = 1, . . . , m. In that case T is the conditionally minimal with respect to
ξ 6∈ C(N, v), U(C, ξ) and DM-reduced game.

Theorem 4.3. Coalition K(ξ) = T is conditionally minimal with respect to
ξ /∈ C(N, v), U(C, ξ) and DM-reduced game.

Proof. We should show that

1.K ⊆ U(C, ξ),

2.ξN\K(ξ) ∈ C(N \K(ξ), v
K(ξ)
ξ ),

3. there is no such K ′ ⊂ K(ξ) that ξN\K′ ∈ C(N \K ′, vK′
ξ ).

Since U(C, ξ) =
⋃m

r=1 Tr and Tr ⊆ T for r = 1, . . . , m we have T = U(C, ξ)
(and K(ξ) = U(C, ξ)). By the definition of the reduced game due to Davis and
Maschler, we have

v
K(ξ)
ξ (N \K(ξ)) = v(N)−

∑

i∈K(ξ)

ξi =
∑

i∈N\K(ξ)

ξi.
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Moreover, for any S $ N \K(ξ), S 6= ∅, and R ⊆ K(ξ) the coalition S ∪ R is not
subset of T , hence ∑

i∈S∪R

ξi ≥ v(S ∪R),

consequently ∑
i∈S

ξi ≥ v
K(ξ)
ξ .

That is ξN\K(ξ) ∈ C(N \K(ξ), v
K(ξ)
ξ ).

Let us suppose that there exists a coalition K ′ ⊂ K(ξ) and
ξN\K′ ∈ C(N \ K ′, vK′

ξ ). That is for any coalition S ⊂ N \ K ′, S 6= N \ K ′,
S 6= ∅ the inequality

∑
i∈S

ξi ≥ vK′
ξ (S) = max

R⊆K′

{
v(S ∪R)−

∑
i∈R

ξi

}

applies. Consequently, for S = K(ξ) \K ′ and R = K ′ we can write

∑

i∈K(ξ)\K′
ξi ≥ v ((K(ξ) \K ′) ∪K ′)−

∑

i∈K′
ξi.

It is equivalent to ∑

i∈K(ξ)

ξi ≥ v(K(ξ)).

This condition contradicts the original assumption.

The condition ξ 6∈ C(N, v) implies that ξ 6∈ GSC(N, v). The following ex-
ample shows that a conditional minimal coalition with respect to ξ 6∈ C(N, v),
U(GSC, ξ, ξ0) and MDM-reduced game can be less than a conditional minimal
coalition with respect to ξ 6∈ C(N, v), U(C, ξ) and DM-reduced game.

Example 4.4. Let us fix a vector ξ0 = (ξ0
1 , ξ

0
2 , ξ

0
3) from the solution set X0(N, v) of

linear programming problem (2.6), (2.7) for the game in Example 4.2. We assume
that ξ1 ≥ ξ0

1 , ξ2 < ξ0
2 , ξ3 ≥ ξ0

3 , then U(GSC, ξ, ξ0) = {2}. MDM-reduced game

({1}, v{2,3}
ξ0 ) with respect to ξ and ξ0 coincides with DM-reduced game ({1}, v{2,3}

ξ ).
If we take K := {2} then

v
{2}
ξ0 ({1}) = max{0, v{1, 2} − ξ0

2};
v
{2}
ξ0 ({3}) = max{0, v{2, 3} − ξ0

2}.

Since ξ0
1 + ξ0

2 ≥ v{1, 2} and ξ1 ≥ ξ0
1 ≥ 0, then ξ1 ≥ v

{2}
ξ0 ({1}). Analogically, from

ξ0
2 + ξ0

3 ≥ v{2, 3} and ξ2 ≥ ξ0
2 ≥ 0 we have ξ3 ≥ v

{2}
ξ0 ({3}). Thus the vector (ξ1, ξ3)

belongs to the core of MDM-reduced game ({1, 3}, v{2}ξ0 ).
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For a vector ξ0 ∈ X0(N, v) and an imputation ξ 6∈ GSC(N, v) let us denote
by K(ξ0, ξ) such a proper coalition of N , that

ξ0
i > ξi, i ∈ K(ξ0, ξ), (4.3)

ξ0
i ≤ ξi, i ∈ N \K(ξ0, ξ). (4.4)

Theorem 4.5. Assume that (N, v) is balanced, ξ0 ∈ X0(N, v), ξ 6∈ GSC(N, v),
and conditions (3.3), (4.3) and (4.4) hold. Vector ξN\K belongs to the set
SC(vK

ξ0(·), ξ0
N\K) if K = K(ξ0, ξ).

Proof. Directly from Lemma 3.2 we have ξ0
N\K ∈ X0(N \ K, vK

ξ0(·)). Hence to

show that the reduced game (N \K, vK
ξ0(·)) is balanced we should prove that the

inequality ∑

i∈N\K
ξ0
i ≤ vK

ξ0(N \K, ξK)

takes place. As the original game is balanced we obtain that

∑
i∈N

ξ0
i ≤ v(N).

It is equivalent to ∑

i∈N\K
ξ0
i ≤ v(N)−

∑
i∈K

ξ0
i .

Taking into account the limitation ξ0
i > ξi for all i ∈ K, we can write

∑

i∈N\K
ξ0
i ≤ v(N)−

∑
i∈K

ξi,

that is ∑

i∈N\K
ξ0
i ≤ vK

ξ0(N \K, ξK).

Consequently, the set C(N \K, vK
ξ0(·)) is not empty.

Since ξ0
N\K ∈ X0(N \K, vK

ξ0(·)) and for all i ∈ N \K the condition ξ0
i ≤ ξi is

fulfilled, the inclusion ξN\K ∈ SC(vK
ξ0(·), ξ0

N\K) holds by Definition ??.

In this case coalition K is conditionally minimal with respect to the grand
subcore and MDM-reduction of the original game.

4.4 Acceptable coalitions

The goal of this section is to determine the collection of all such coalitions K,
that ξN\K ∈ C(N \K, vK

ξ ) for an imputation ξ 6∈ C(N, v). The following example
demonstrates that in a general case when we choose the removed coalition from
the set of all players it can be less than a conditionally minimal coalition.
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Example 4.6. Let us return again to the TU-game which was described in Ex-
ample 4.2 and consider player 1 as a removing coalition (K := {1}). DM-reduced
game is as follows

v
{1}
ξ ({2, 3}) = v(N)− ξ1,

v
{1}
ξ ({2}) = max{0, v({1, 2})− ξ1},

v
{1}
ξ ({3}) = max{0, v({1, 3})− ξ1}.

Vector (ξ2, ξ3) belongs to the core of the reduced game ({2, 3}, v{1}ξ ) if and only if
the inequalities

ξ2 ≥ v
{1}
ξ ({2}),

ξ3 ≥ v
{1}
ξ ({3})

hold. Since ξ is an imputation, then ξ2 ≥ 0 and ξ3 ≥ 0. That is, it remains to
check the conditions

ξ2 ≥ v({1, 2})− ξ1,

ξ3 ≥ v({1, 3})− ξ1.

It is equivalent to

ξ1 + ξ2 ≥ v({1, 2}),
ξ1 + ξ3 ≥ v({1, 3}).

Hence, (ξ2, ξ3) ∈ C({2, 3}, v{1}ξ ).

Let us again fix a balanced TU-game (N, v) and an imputation ξ 6∈ C(N, v).

Definition 4.7. Coalition K is called acceptable for reduction with respect to
ξ 6∈ C(N, v) and DM-reduced game (N \K, vK

ξ ), if ξN\K ∈ C(N \K, vK
ξ ).

Theorem 4.8. Coalition K ⊂ N (|K| < |N | − 1) is acceptable for reduction with
respect to ξ 6∈ C(N, v) and DM-reduced game if and only if for all Tr, r = 1, . . . , m
there does not exist a couple of subcoalitions R ⊆ K and S ⊂ N \ K such that
S ∪R = Tr, S 6= ∅, R 6= ∅.

Proof. Assume that K is a coalition of N , |K| < |N | − 1. Davis-Maschler reduced
game (N \K, vK

ξ ) is the following

vK
ξ (N \K) = v(N)−

∑
i∈K

ξi, (4.5)

vK
ξ (S) = max

R⊆K

{
v(S ∪R)−

∑
i∈R

ξi

}
, ∀S ⊂ N \K, S 6= N \K. (4.6)
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By Definition 4.7 coalition K is acceptable for reduction if and only if
ξN\K ∈ C(N \ K, vK

ξ ), i.e. ξN\K is an imputation of corresponding DM-reduced
game and

∑
i∈S ξi ≥ vK

ξ (S) for all S ⊂ N \ K, S 6= N \ K. It is equal to the
requirement

∑
i∈S

ξi ≥ max
R⊆K

{
v(S ∪R)−

∑
i∈R

ξi

}
, ∀S ⊂ N \K, S 6= N \K

⇐ :
∑
i∈S

ξi ≥ v(S ∪R)−
∑
i∈R

ξi, ∀S ⊂ N \K, S 6= N \K, ∀R ⊆ K

⇐ :
∑

i∈S∪R

ξi ≥ v(S ∪R), ∀S ⊂ N \K, S 6= N \K, ∀R ⊆ K. (4.7)

To satisfy the condition (4.7) it is necessary and sufficient that S ∪ R 6= Tr for
r = 1, . . . , m, and for any proper subcoalition S ⊂ N \ K, and for any R ⊆ K
(S 6= ∅, R 6= ∅). In other words, the inequality

∑
i∈S∪R ξi ≥ v(S∪R) is tantamount

to
∑

i∈Tr
ξi ≥ v(Tr), which contradicts (4.1).

Corollary 4.9. If m = 1 then there are only two coalitions K1 = T1 and K2 =
N \ T1 which are acceptable for reduction.

Proof. Let us assume that coalition K ⊂ N is acceptable for reduction. We denote
the intersection K ∩ T1 by R and K ∩ (N \ T1) by S. Then S ∪ R 6= T1 if and
only if either S = T1 or R = T1. Otherwise K is not acceptable for reduction by
Theorem 4.8.

Corollary 4.10. If m = 2, T1 ∩ T2 = ∅ and T1 ∪ T2 = N then there are only two
coalitions K1 = T1 and K2 = T2 which are acceptable for reduction.

The proof is similar to the previous one.

Definition 4.11. Coalition K∗ ∈ {K} is called minimal with respect to ξ 6∈ C(N, v)
and DM-reduced game (N \K, vK

ξ ), if |K∗| = min{K} |K|. Here {K} is the set of
all acceptable coalitions.

Let us denote by min|·|{A} the minimal size coalition of a collection A =
{S1, . . . , Sk}, where Sj ⊂ N , j = 1, . . . , k. Corollaries 4.9 and 4.10 imply that
under their assumptions the minimal coalition with respect to the core and DM-
reduced game is Kmin = min|·|{K1, K2}.

Corollary 4.12. If
⋂m

r=1 Tr 6= ∅ then K = N \⋂m
r=1 Tr is acceptable for reduction.

Proof. Suppose that K = N \ ⋂m
r=1 Tr. There is no proper coalition

S ⊂ N \ K such that S ∪ R = Tr (for any R ⊆ K). Hence K is an acceptable
coalition by Theorem 4.8.

Corollary 4.13. If
⋃m

r=1 Tr 6= N then K =
⋃m

r=1 Tr is acceptable for reduction.
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Proof. Suppose that K =
⋃m

r=1 Tr. Since N \K does not contain any player i ∈ Tr

for r = 1, . . . , m there is no such S ⊂ N \K that S ∪ R = Tr for any R ⊆ K and
r = 1, . . . , m. Consequently, K is acceptable for reduction.

Corollary 4.14. If T1 ⊂ T2 ⊂ · · · ⊂ Tm then the minimal coalition is
Kmin = min|·|{Tm, N \ T1}.

Proof. It immediately follows from Corollary 4.12 and 4.13 that K1 = N \ T1

and K2 = Tm are acceptable coalitions. Another acceptable coalitions could be
presented in the forms N \ T , T ⊂ T1, or T , Tm ⊂ T . However this coalition
consists of more players than K1 and K2 correspondingly. This implies that the
statement of the corollary is true.

The following corollary is essentially proved in Chapter 3.

Corollary 4.15. The coalition Ki = N \ {i} is acceptable for reduction for all
i ∈ N .

4.5 Dynamic example

Here we again deal with a multistage TU-game. Let us remind that we call
a pair (N, v(·)) a multistage cooperative game. Here T = {tr}l

r=0 is a division of
time period t0 < t1 < · · · < tl, N is a finite set of players and v : 2N × T 7→ R
is a characteristic function of the game, v(∅, t) = 0 for all t ∈ T, v(S, tl) = 0 for
all S ⊂ N . By (N, v(t∗)) we means the subgame at a moment t∗ ∈ T. We assume
that v(N, t) is the decreasing function with respect to t.

In [89] the time-consistency was introduced for an optimality principle φ,
which is given at every moment t ∈ T. Let us reformulate Definition 2.7 in the
following way.

Definition 4.16. Suppose that ξ = (ξ1, . . . , ξn) ∈φ(t0). Any matrix α = {αik},
i = 1, . . . , n, k = 0, . . . , l, such that

ξi =
l∑

k=0

αik, αik ≥ 0,

is called the imputation distribution procedure (IDP).

In other words, an element αik of IDP α is a payoff to the player i at the
moment tk, and a column number k is equal to the payoff vector at the moment tk.

We denote αk = (α1k, . . . , αnk) and α(tk) =
∑k

r=0 αr. That is, a vector αk

consists of summary payoffs to every player by the moment tk, and the value α(tk)
is total payoff to all players.
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Definition 4.17. An optimality principle φ(t0) is called time-consistent if for every
ξ ∈ φ(t0) there exists IDP α, such that

ξ − α(tk) ∈ φ(tk), k = 0, . . . , l.

The following example demonstrates the use of a conditionally minimal coali-
tion and a minimal coalition to provide time-consistency of given imputation.

Example 4.18. Let us consider the balanced multistage TU-game (N, v(·)),
N = {1, 2, 3} (the characteristic function of the game see in Table 4.18). We
assume that v({i}, t) = 0 for t ∈ T.

t v({1, 2, 3}, t) v({1, 2}, t) v({2, 3}, t) v({1, 3}, t)
t0 80 34 68 58
t1 60 30 50 40
t2 40 35 18 19
t3 0 0 0 0

Table 8: Multistage TU-game (N, v(·)) for Example 4.18.

At the moment t = t0 the core, the set X0(·) and the grand subcore coincide
and consist of one vector ξ(t0) (see Figure 6a)

C(N, v(t0)) = GSC(N, v(t0)) = X0(v(·), t0) = {(12, 22, 46)}.
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Figure 6: Imputation simplex for subgames at t = t0 and at t = t1.

Let us also compute the core, X0(·) and the grand subcore at t = t1 and t = t2
(see Figure 6b and 7). At the moment t1 the core and grand subcore coincide with
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a vector ξ(t1) (Figure 6b)

C(N, v(t1)) = GSC(N, v(t1)) = X0(v(·), t1) = {(10, 20, 30)}

The core at the moment t2 is a convex hull of vectors (14, 21, 5), (22, 13, 5),
(22, 18, 0) and (19, 21, 0) (see Figure 7, bold line)

C(N, v(t2)) = Co{(14, 21, 5); (22, 13, 5); (22, 18, 0); (19, 21, 0)}.

0
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η 

Figure 7: Imputation simplex for subgame at t = t2, v(N, t2) = 40.

The set X0(v(·), t2) is the unique solution ξ0

X0(v(·), t2) = {ξ0} = {(18, 17, 1)}.

Grand subcore coincides with subcore SC(v(t2), ξ
0) (see Figure 7, “dash-dot” line)

GSC(N, v(t2)) = Co{(22, 17, 1); (18, 21, 1); (18, 17, 5)}.

The imputation in C(N, v(t0)) is not time-consistent (i.e. there is no
such IDP that can move players from the point (12, 22, 46) into the set
C(N, v(t2))) because time-consistency is violated at t2. However, we can fix the
following IDP (note, that it only provides non-negative payoffs during every step of
the game):

α =




0 2 0 10
0 2 2 18
0 16 18 12


 .
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The corresponding trajectory of the payoffs is

(12, 22, 46) → (10, 20, 30) → (10, 18, 12) → (0, 0, 0).

We denote an intermediate vector (10, 18, 12)4 by η. Then U(C(N, v(t2)), η) =
{1, 2} and U(GSC(t2), η) = {1}.

A conditional minimal coalition K(ξ0, η) with respect to the subcore and MDM-

reduction is {1}. MDM-reduced subgame ({2, 3} , v
{1}
ξ0 (·)) at t = t2 is the following

v
{1}
ξ0 ({2, 3}, t2) = 30,

v
{1}
ξ0 ({2}, t2) = 17,

v
{1}
ξ0 ({3}, t2) = 1.

The solution set of linear programming problem (2.6), (2.7) for this subgame is

X0(v
{1}
ξ0 (·), t2) = {(17, 1)}.

A conditional minimal coalition with respect to the core and DM-reduced
game is K(η) = {1, 2}. The characteristic function of DM-reduced game

({3}, v{1,2}
η (·)) is

v{1,2}
η ({3}, t2) = 12.

Minimal coalition K with respect to the core and DM-reduction is {3}. Cor-

responding DM-reduced subgame ({1, 2}, v{3}η (·)) is

v{3}η ({1, 2}, t2) = 28,

v{3}η ({1}, t2) = 7,

v{3}η ({2}, t2) = 6.

Then the solution set of linear programming problem (2.6), (2.7) for the game

({1, 2}, v{3}η (·)) is

X0(v{3}η (·), t2) = {(7, 6)} ,

and

η{1,2} = (10, 18) ∈ GSC({1, 2}, v{3}η (t2)) ⊂ C({1, 2}, v{3}η (t2)).

This example shows the possibility of the minimal reduction use to guarantee
time-consistency of a chosen solution. The number of the removed players depends
on the fixed optimality principle and reduced game rule as well as on the set U(·).

4Let us underscore that here we could take any vector η satisfying the assumptions η ≤
(10, 20, 30) and η1 + η2 + η3 = 40 and consider an appropriate IDP.
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4.6 Conclusion

The minimal reduction problem was considered in two ways. On the one
hand, to regularize the original game it is natural to remove a coalition from the
collection of the disturber players, and seeing this the notion of conditionally min-
imal coalition was introduced and investigated in Chapter 4. On the other hand,
the minimal coalition in a general case could be less (in terms of number of play-
ers) than the conditionally minimal coalition, that is why the acceptable coalitions
were discussed. Example 4.18 illustrated the method of the practical use of a min-
imal reduction to provide time-consistency of the imputation from the core of a
multistage cooperative TU-game.



5 GAME-THEORETICAL MODELLING OF

THE KYOTO PROTOCOL

5.1 Introduction

In this part we construct the time-consistent solutions in cooperative games
of three country groups realizing the flexibility mechanisms of Kyoto Protocol5.

Without a doubt, climate change is the first among the global environmental
threats to civilization at the beginning of the XXI Century. The importance of
this problem is demonstrated by the adaptation costs the global community pays
to protect itself from a growing number of natural disasters. The United Nations
Framework Convention on Climate Change was signed at the World Summit on
the Environment and Development in Rio de Janeiro in 1992, and the Kyoto Pro-
tocol to the Convention was adopted in 1997. The Kyoto Protocol proposes six
innovative “mechanisms:” joint implementation, clean development, emission trad-
ing, joint fulfilment, banking and sinks. The mechanisms aim to reduce the costs
of curbing emissions by allowing Parties6 to pursue opportunities to cut emissions
more cheaply abroad than at home. The cost of curbing emissions varies consider-
ably from region as a result of differences in, for example, energy sources, energy
efficiency and waste management. It makes economic sense to cut emissions where
it is cheapest to do so, given that the impact on the atmosphere is the same.

The Kyoto protocol defines six flexibility mechanisms and three of them have
the following sense: “joint implementation” provides for Annex B Parties (mostly
highly developed industry countries) to implement projects that reduce emission,
or remove carbon from the air, in other Annex B Parties, in return for emission re-
duction units (ERUs); the “clean development” mechanism provides for Annex B
Parties to implement projects that reduce emissions in non-Annex B Parties, in
return for certified emission reductions (CERs), and assist the host Parties in

5For more details see e.g. http://unfccc.int/resource/docs/convkp/kpeng.pdf
6Party is a term of Kyoto Protocol and means a country, or group of countries, that has ratified

the Kyoto Protocol.
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achieving sustainable development and contributing to the ultimate objective of
the Convention; “emission trading” provides for Annex B Parties to acquire units
from other Annex B Parties. The emission reduction units and certified emission
reductions generated by the flexibility mechanisms can be used by Annex B Parties
to help meet their emission targets.

That flexibility mechanisms are the base of the cooperation because joint
implementation, clean development, and emission trading comprehend that Parties
work together and receive common “benefit” (emission reduction), which should
be allocated fairly. It is natural to use the dynamic cooperative theory to model
the Kyoto Protocol realization [28]. For other models connected with the flexibility
mechanisms of the Kyoto Protocol see [9, 37, 87, 90, 91].

5.2 Kyoto Protocol model

In this section we describe a cooperative model of relations of countries (or
groups of countries) under Kyoto Protocol. The players pursue two mail goals:
to achieve the required amount of emission reduction units and to decrease the
reduction costs. The participants of the corresponding projects can get significant
income from realization of the flexibility mechanisms. To define the cooperative
model we should set a method of calculation the characteristic function v of the
game. We assume that v(S), where S is a coalition of players, is the difference
between the sum of the personal costs of players, when they act individually, and
total cost of coalition S under co-operation. Here player is Party in Kyoto Protocol.
In the model we use the following notations

Ki — emission quota of player i;

ce
i — price of emission unit for player i;

cq
i — price of emission unit on account of a pollution quota of player i;

∆Ei — required emission reduction of player i;

∆Li — ecological sinks7 of player i;

∆Ki — a fraction of pollution quota that player i wants to use.

Let us consider a game with two players. The individual cost of player i is

H0
i = ce

i (∆Ei −∆Li −∆Ki). (5.1)

Under co-operation a more developed country (player 1) can invest money into the
emission reduction in the territory of another country (player 2). That is, ce

1 > ce
2

7“Sinks” (Land use, land use change and forestry carbon units) The Protocol allows indus-
trialized countries to meet part of their emissions targets through activities that absorb CO2

so-called carbon ’sinks.’ As with so many other details in the Protocol, the rules and modalities
have yet to be worked out. http://europa.eu.int/comm/environment/press/bio00172.htm
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and cq
1 > cq

2. Let us assume that the reduction costs are

H1 = ce
2 · δ1(∆E1 −∆L1 −∆K1) + cq

2 · δ2(∆E1 −∆L1 −∆K1)

+ ce
1(1− δ1 − δ2)(∆E1 −∆L1 −∆K1); (5.2)

H2 = ce
2(∆E2 −∆L2 −∆K2 + δ2(∆E1 −∆L1 −∆K1))

− ce
2 · δ1(∆E1 −∆L1 −∆K1)− cq

2 · δ2(∆E1 −∆L1 −∆K1). (5.3)

Here δ1 and δ2 are parameters. It is possible to specify that parameters in different
ways by some appropriate limits, for example by Q1 (the limit of emission unites
that the player 1 wants to buy from the player 2 at the price cq

2 on account of
quota K2), Q2 (the limit of emission unites that the player 2 wants to sell to the
player 1 on account of quota K2), and M1 (financial limit of the player 1) in the
following way

min{Q1, Q2} = δ2(∆E1 −∆L1 −∆K1) := Q,

M1 ≥ ce
2δ1(∆E1 −∆L1 −∆K1).

From (5.1)–(5.3) we have the value of characteristic function for the coalition of
two players

v({1, 2}) = H0
1 + H0

2 −H1 −H2

= (∆E1 −∆L1 −∆K1)(δ1c
e
1 + δ2c

e
1 − δ2c

q
2)

= (∆E1 −∆L1 −∆K1)(δ1c
e
1 + δ2(c

e
1 − cq

2)). (5.4)

In the case of three players’ joint action we calculate

v({1, 2, 3}) = H0
1 + H0

2 + H0
3 −H1 −H2 −H3. (5.5)

We assume that ce
1 > ce

2 > ce
3 and cq

1 > cq
2 > cq

3. Then the player 1’s cost under
cooperation is

H1 = cq
3 · δ2(13)(∆E1 −∆L1 −∆K1) + ce

3δ1(13)(∆E1 −∆L1 −∆K1)

+ cq
2 · δ2(12)(∆E1 −∆L1 −∆K1) + ce

3 · δ1(12)(∆E1 −∆L1 −∆K1)

+ ce
1(1− δ2(13)− δ1(13)− δ2(12)− δ1(12))(∆E1 −∆L1 −∆K1). (5.6)

The first line of (5.6) is the cost due to the realization of the flexibility mechanisms
between the players 1 and 3, the second line is the cost due to the realization of
the flexibility mechanisms between the players 1 and 2, and the third is the cost
of emission reduction in the territory of player 1. Using the limits Q1(13), Q3(13),
Q1(12), Q2(12), Q2(23), Q3(23), M1 and M2 defined as before (see p. 61) and the
following notations

min{Q1(13), Q3(13)} = δ2(13)(∆E1 −∆L1 −∆K1) := Q(13),

min{Q1(12), Q2(12)} = δ2(12)(∆E1 −∆L1 −∆K1) := Q(12),

min{Q2(23), Q3(23)} = δ2(23)(∆E2 −∆L2 −∆K2 + Q(12)) := Q(23),
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M1 ≥ ce
3δ1(13)(∆E1 −∆L1 −∆K1) + ce

3 · δ1(12)(∆E1 −∆L1 −∆K1),

M2 ≥ ce
3 · δ1(23)(∆E2 −∆L2 −∆K2 + Q(12)),

let us write down the costs of the players 2 and 3 under cooperation

H2 = cq
3 · δ2(23)(∆E2 −∆L2 −∆K2 + Q(12))

+ ce
3 · δ1(23)(∆E2 −∆L2 −∆K2 + Q(12))

+ ce
2(1− δ2(23)− δ1(23))(∆E1 −∆L1 −∆K1 + Q(12))

− cq
2 ·Q(12)− ce

2 · δ1(12)(∆E2 −∆L2 −∆K2), (5.7)

H3 = ce
3(∆E3 −∆L3 −∆K3 + Q(13) + Q(23))

− cq
3 ·Q(13)− ce

3 · δ1(13)(∆E1 −∆L1 −∆K1)

− cq
3 ·Q(23)− ce

3 · δ1(23)(∆E2 −∆L2 −∆K2 + Q(12)). (5.8)

Consequently from (5.5)–(5.8) and (5.1) we calculate the value v({1, 2, 3}).
By analogy to the previous formulas we can define the characteristic function

for any number of players. The values v({i}) = 0 for every player i conclude the
construction of the characteristic function.

5.3 Imputation Distribution Procedures for Kyoto Proto-
col model

In this section we consider two multistage cooperative games corresponding
to the model of realization of flexibility mechanisms. The characteristic function
v(S, t) is the guaranteed economy in million dollars due to the co-operation (joint
implementation, clean development and emission trading) during 5 years. The
data for calculations were taken from [43] and [120]. Here S is a coalition of Parties
(groups of Parties) in co-operation on a period [t, T ]. Characteristic function values
depend on a set of parameters: limitations of the emission reduction investment,
emission quota, etc. Depending on the parameters we have the different variants of
the game. In the following examples we have three players: 1 is European Union
(EU), 2 is the new members of EU (EU-A), and 3 is Russian Federation.

5.3.1 Example with a time-consistent solution

Let us consider 3-person multistage cooperative game (the characteristic func-
tion is in Table 5.3.1).

The sets X0(t), t ∈ T, are the following

X0(t0) = {ξ0(t0) = (54050, 14100, 25850)},

X0(t1) = {ξ0(t1) = (35250, 11750, 23500)},
X0(t2) = {ξ0(t2) = (20000, 10000, 17000)},
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t v({1, 2, 3}, t) v({2, 3}, t) v({1, 3}, t) v({1, 2}, t)
t0 94000 39950 79900 68150
t1 70500 35250 58750 47000
t2 47000 27000 37000 30000
t3 38000 17000 31000 28000
t4 22500 10480 17250 14730
t5 0 0 0 0

Table 9: Characteristic function of the multistage cooperative game.

X0(t3) = {ξ0(t3) = (21000, 7000, 10000)},
X0(t4) = {ξ0(t4) = (10750, 3980, 6500)},

X0(t5) = {ξ0(t5) = (0, 0, 0)}.
At the moments tk, k = 0, 1, 2, 3, 5, the grand subcore is equal to the set

X0(tk)
GSC(N, v(t)) = X0(t)

and the unique imputation ξ(t0) = ξ0(t0) is time-consistent (see Theorems 2.10 and
2.22).

Let us now apply the algorithm to construct IDP for this game.
Initial step. We set

α(t0) = ξ(t0) = (54050, 14100, 25850).

Step 1. We set

α(t1) = ξ(t1) = (35250, 11750, 23500)

and
α(t0, t1) = (18800, 2350, 2350).

Step 2. The solution of the problem (2.11), (2.12) is the vector ω =
(21000, 1000, 17000). The sum of ω’s components are greater than v(N, t2), hence
we set

α(t2) = ω, ṽ(N, t2) = 48000,

α(t1, t2) = (14250, 1750, 6500).

Step 3. At this step ω = ξ0(t3), hence we can set

α(t3) = ξ(t3) = (21000, 7000, 10000)

and the payoff vector is
α(t2, t3) = (0, 3000, 7000).

Step 4. We should find α(t4) ∈ GSC(N, v(t4)) such that α(t4) ≤ α(t3). Let
us choose

α(t4) = ξ0(t4) + (400, 470, 400) = (11150, 4450, 6900),
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t v({1, 2, 3}, t) v({2, 3}, t) v({1, 3}, t) v({1, 2}, t)
t0 94000 39950 79900 68150
t1 70500 35250 58750 47000
t2 47000 41125 21150 22325
t3 33950 15680 30520 20300
t4 18800 6800 15680 10620
t5 0 0 0 0

Table 10: Characteristic function of the multistage cooperative game.

then
α(t3, t4) = (9850, 2550, 3100).

The last step. Here α(t5) = (0, 0, 0) and

α(t4, t5) = α(t4) = (11150, 4450, 6900).

Consequently, the corresponding payoff trajectory is




54050
14100
25850


 →




35250
11750
23500


 →




21000
10000
17000




→



21000
7000
10000


 →




11150
4450
6900


 →




0
0
0


 ,

and the imputation distribution procedure α is

α =




0 18800 14250 0 9850 11150
0 2350 1750 3000 2550 4450
0 2350 6500 7000 3100 6900


 .

This IDP provides the time-consistent imputation ξ(t0) by non-negative payoffs to
every player at every step of the game.

5.3.2 Example without time-consistent solution

In this part we use a reduced game to construct the imputation distribution
procedure in the multistage cooperative game presented in Table 5.3.2.

The sets X0(t), t ∈ T, are the following

X0(t0) = {ξ0(t0) = (54050, 14100, 25850)},

X0(t1) = {ξ0(t1) = (35250, 11750, 23500)},
X0(t2) = {ξ0(t2) = (1175, 21150, 19975)},
X0(t3) = {ξ0(t3) = (17570, 2730, 12950)},
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X0(t4) = {ξ0(t4) = (9710, 910, 5890)},
X0(t5) = {ξ0(t5) = (0, 0, 0)}.

The unique solution ξ(t0) ∈ GSC(N, v(t0)) is not time-consistent because
there is no vector ξ0(t) ∈ X0(t) such that ξi(t0) ≥ ξ0

i (t) for all i ∈ N and t ∈ T
(see Theorem 2.10). The property of time-consistency is violated at the moment
t = t2. Let us choose the vector θ = (18000, 9000, 20000) instead of ξ(t2) ∈
GSC(N, v(t2)). The vector θ does not belong to the grand subcore of the subgame
(N, v(t2)) due to the player 2; we call him a “disturbing” player. Let us create

the MDM-reduced game ({1, 3}, v{2}ξ0 ), t ∈ {t2, t3, t4, t5}. To do this we fix the
vectors ξ(t3) = (17770, 3030, 13150) and ξ(t4) = (10510, 1600, 6690). Then the
characteristic function of the reduced game is the following

v
{2}
ξ0 ({1, 3}, θ, t2) = v(N, t2)− θ2 = 38000,

v
{2}
ξ0 ({1}, θ, t2) = v({1, 2}, t2)− ξ0

2(t2) = 1175,

v
{2}
ξ0 ({3}, θ, t2) = v({2, 3}, t2)− ξ0

2(t2) = 19875;

v
{2}
ξ0 ({1, 3}, ξ(t3)) = v(N, t3)− ξ2(t3) = 30920,

v
{2}
ξ0 ({1}, ξ(t3)) = v({1, 2}, t3)− ξ0

2(t3) = 17570,

v
{2}
ξ0 ({3}, ξ(t3)) = v({2, 3}, t3)− ξ0

2(t3) = 12950;

v
{2}
ξ0 ({1, 3}, ξ(t4)) = v(N, t4)− ξ2(t4) = 17200,

v
{2}
ξ0 ({1}, ξ(t4)) = v({1, 2}, t4)− ξ0

2(t4) = 9710,

v
{2}
ξ0 ({3}, ξ(t4)) = v({2, 3}, t4)− ξ0

2(t4) = 5890.

In the MDM-reduced multistage game the players 1 and 3 realize the solution
from the grand subcore of this game. The corresponding payoff trajectory can be,
for example, the following


54050
14100
25850


 →




35250
11750
23500


 →




18000
9000
20000




→



17770
9000
13150


 →




10510
9000
6900


 →




0
0
0


 ,

and the imputation distribution procedure α is

α =




0 18800 17250 230 7260 10510
0 2350 2750 0 0 9000
0 2350 3500 6850 6250 6200


 .

Decision maker should fix the moment when the player 2 can get the payoff of 9000.
For example, it can be the moment t = t5. This method combines both classical
methods of regularization — regularization of the optimality principle and delays
of total payoffs. It constructs an IDP in the time-inconsistent case.
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5.4 Conclusion

In this chapter we considered two different approaches to the problem of time-
consistency in the real-life multistage cooperative game. The first method let us to
construct the imputation distribution procedure providing a time-consistent solu-
tion from the grand subcore of the game. The second method works if there is no
time-consistent imputations in a balanced game and it helps to regularize the game
and the optimality principle. We applied both methods to the problem connected
with Kyoto Protocol realization.



6 CONCLUSION

In this work multistage cooperative games with transferable utility are inves-
tigated. We consider the core [40, 41] and the grand subcore [131] as optimality
principles. One of the main problems in the theory of dynamic games is the problem
of time-consistency of solutions corresponding to the optimality principle.

Chapters 1 and 3 have an auxiliary character. The first one consists of the ba-
sic knowledge in game theory to make the work all-sufficient. This mostly contains
materials from [53, 73, 74, 75] and references connected with application fields of
game theory.

Chapter 3 is based on the paper [130]. There we study the consistency prop-
erty of the grand subcore with respect to the modification [127] of the reduced
game due to Davis and Maschler [24] and then we introduce a dynamical analogue
of the consistency property for multistage cooperative games.

Chapters 2 and 4 are devoted to the problem of time-consistency of the grand
subcore selectors. In Chapter 2, which is based on [128, 129, 130], we describe two
algorithms for allocation of a common benefit from cooperation of players in such
a way that the resulting payoff vector to be time-consistent and payoffs at every
step of the game to be nonnegative. The indicated properties are provided through
the delays of total payoffs in intermediate moments in order to the players do not
become debtors during the game.

In Chapter 4, based on [27], we suggest a new approach to construction of
imputation distribution procedure in multistage cooperative games related to the
results of Chapter 3. In particular, we formulate a problem of minimal reduction
(Section 4.2), propose two variants of solving of this problem (conditionally minimal
coalition and acceptable coalitions for reduction). Here the results of Chapter 3
are in use.

In Chapter 5 we discuss a real-life cooperative game, which models Ky-
oto Protocol realization [28]. In this part of the work we apply the results of
[27, 128, 129, 130]. Flexibility mechanisms of Kyoto protocol are the basis of
multistage cooperative model. In our example there are three players: European
Union, Russian Federation and the new members of European Union. As a benefit
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we consider the values of pollution reduction obtained due to collaboration of play-
ers under “joint implementation”, “emission trading”, and “clean development”
[120].
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