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ABSTRACT

Kujala, Janne V.

On computation in statistical models with a psychophysical application
Jyvéaskyld: University of Jyvaskyld, 2004, 40 p. (+included articles)
(Jyvéaskyla Studies in Computing

ISSN 1456-5390; 46)

ISBN 951-39-2040-2

Finnish summary

Diss.

We consider two approaches to computation in statistical models: explicit com-
putation within discretized models and approximate computation using Monte
Carlo simulation. We present new computational techniques on both of these
approaches and apply them to Bayesian adaptive estimation of psychometric
functions. The main result is a new estimation procedure for two-dimensional
psychometric functions. We motivate a color perception modeling problem and
apply the new estimation procedure to it. We shortly discuss the experimental
results.

Keywords: Cellular automata, Markov Chain Monte Carlo, Bayesian adaptive
estimation, Psychophysics
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1 INTRODUCTION

It is relatively easy to come up with statistical or physical models for many dif-
ferent problems. However, the use and evaluation of such models is often in-
tractable due to limited computational resources. The main theme of this thesis
is the optimization of computational models for practical implementation. We
consider discretized models where the problem space consists of discrete cells as
well as continuous models which need to be somehow approximated in order to
be implemented within a computer. While all the problems studied in this thesis
are quite different from each other, we will apply similar techniques in their solu-
tions; we will make use of the symmetries inherent in the definition of the models
and apply mathematical reformulations to reduce the computational complexity
of their implementation.

In our first problem, motivated by the unexpected behavior of the system
observed in [8], we study an (unrealistic) cellular automaton model of highway
traffic. The cellular automaton yields a simple discrete statistical model of the
flow of cars as a function of the density of the cars. However, computation of a
flow diagram through a simulated system is excruciatingly slow. In [A], through
several computational and mathematical reformulations, we are able to reach an
exact analytical expression of the flow diagram as well as explain the unexpected
qualitative features of the system.

The simplest way to implement a continuous model is perhaps by dis-
cretization of the problem space. Another approach is Markov Chain Monte
Carlo (MCMC) [2], which provides a general purpose tool for sampling a con-
tinuous distribution. While the mathematical formulation of the basic Metropolis
MCMC algorithm [22] is very general, an efficient implementation depends, to a
great extent, on the properties of the system. For this, there is no efficient general
procedure (cf. no free lunch theorems in optimization [32]). We consider popula-
tion based algorithms for speeding up MCMC, a framework on which many new
MCMC ideas build on. In this context, we present our independently developed
Genetic Operator MCMC algorithm [B], a new method based on an idea from
global optimization, and prove its convergence properties [B].

The main practical application of this thesis is Bayesian adaptive estimation
of psychometric functions [31], which relate stimulus intensity to observer perfor-
mance. We apply both the discretization and MCMC approach to this problem.
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Using similar computational optimizations as in the above examples we are able
to implement a new practical estimation procedure for two-dimensional psycho-
metric functions [C].

Finally, we consider the real-world problem that motivated the work in [C].
We introduce unique background textures, a user interface technique for visual-
izing document identity [D]. We present a qualitative model of visual perception
which provides guidelines for rendering distinguishable textures. To obtain jus-
tification for the ad hoc distributions of texture features, we attempt to quantify
certain aspects of color perception. We present a color discrimination experiment
and apply the new two-dimensional estimation procedure for collecting the data.
A Bayesian model of the data justifies certain assumptions of the color distribu-
tion of the textures.

Although the statistical models considered in this thesis are different on the
surface, they do exhibit similar regularities from an abstract algebraic perspec-
tive. For example, we shall see that after certain reformulations both the sta-
tistical model of [A] and the discretized model of [C] have similar convolution
structure. To exploit these regularities, however, we will use different tools in
different models depending on the specific properties of the system.



2 DISCRETE SYSTEMS

In this chapter, we consider some computational and mathematical techniques
for discrete models through an overview of [A]. We consider an idealized cellular
automaton model of highway traffic. This is an example of a simple discrete
system in which exact expressions of the desired statistics are possible, although
not simple to derive.

2.1 Number-conserving cellular automata

In this section, we consider one-dimensional number-conserving cellular automata,
which can be considered as models for one-lane traffic flow.

The road is represented as a string of discrete sites, each having a value of
one or zero, representing either a site occupied by a car or an empty site, respec-
tively. The state of the road evolves through discrete time according to certain
locally defined rules: the state of one site on the next time step depends only on
the states of the nearby sites on the current time step. Being a number-conserving
system, the total number of cars remains unchanged during the evolution of the
system. Therefore, it is always possible to tell which car went where on the next
time step, assuming that the cars do not overtake each other.

In number-conserving cellular automata, the interest is typically in the av-
erage flow ¢ of the cars as a function of the density p of the cars, forming what is
known as the fundamental diagram. For some rules, the average flow depends on
the initial configuration of the road in addition to its density. In that case, it is
usual to consider the initial state to be random with the states of the individual
sites being independently and identically distributed. Typically, the system then
evolves to a steady state in which the average flow is well-defined and so the
fundamental diagram can be defined as the expected average flow ¢ given the
density.

The traffic rules R, [8], that are the focus of [A], is one example of such
rules, see Fig. 1. It can be shown that the average flow of R,, ;. is always bounded
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Time Road state Flow (¢)

0 111000011010000 11/15
100011001100010 14/15
000100110001101 13/15
001001000110110 13/15
110010001011000 14/15
001100010100011 14/15

FIGURE 1: The generalized traffic rules R,, s [8]: each maximal block of at most
k cars moves right at most m steps, up to the beginning of the next block, at each
time step. An example evolution is shown for Rz, with cyclic boundary condi-
tions. The density of cars in this example is p = 6/15 = 0.4 and the average steady
state flow is ¢ = 13.5/15 = 0.9. The expected flow ¢ plotted in the fundamental
diagram is averaged over all (infinite) initial states with the density p.

Rs2

Tl = W N =

by
¢ < min{mp, k(1 —p)} (1)

and that the bound is exact for m = 1 or k£ = 1, yielding a fundamental dia-
gram consisting of two linear pieces. However, when m, k£ > 1, the fundamental
diagram exhibits a new non-linear piece, atypical of simple number-conserving
rules, see Fig. 2.

To study this unexpected behavior of the system, we want to efficiently com-
pute the expected steady-state flow as a function of the density. However, an ex-
plicit brute-force computation requires going through all possible starting states
and simulating the system until the steady state is reached, which may take as
many as O(L?) computation steps for a cyclic starting configuration of length L.
In the following, we consider how to reach the same objective more efficiently.

2.2 Analytical solutions

In this section, we discuss the computational and mathematical reformulations
in [A] that finally yield an analytical solution of the fundamental diagram of the
traffic rules R, k.

We reformulate the traffic rules as a particle system, in which the initial con-
figuration is represented as a string of certain virtual particles, each comprising
of multiple sites of the road representation. Using the virtual particles, we can
represent the evolution of the system through certain reactions between these
particles, decoupling the linear time from the system and concentrating only on
the causal effects of the reactions. This representation allows us to evaluate an
initial configuration recursively, in a manner similar to a recursive parsing of a
mathematical expression with parentheses. Thus, using a stack-machine algo-
rithm, we can evaluate the initial state of length L in linear O(L) time, scanning
the virtual particle string once from left to right.

Of course, going through all the possible initial configurations is still in-
tractable for any reasonable length L. However, because we have a linear-
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FIGURE 2: Fundamental diagrams for the rules R, . For m = 1 or k = 1, the
fundamental diagram is completely determined by the linear bounds given by
Eq. (1). However, for m,k > 1, the fundamental diagram does not follow the
logical pattern (shown dotted in the figure) but is always cut off slightly below
flow of one, exhibiting a new, curved phase. In [A], we explain this unexpected
behavior and derive an exact analytical expression for the expected flow in the
intermediate phase.
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scanning algorithm, we can model the evolution of that algorithm statistically.
We can model the evolution of the stack machine as a homogeneous Markov
chain: the current state of the chain is the state of the stack of the algorithm and
the next state depends only on the current state and the upcoming random virtual
particle, each of which is independently and identically distributed. If we now
assume an infinite length L, the Markov chain will converge to a stationary dis-
tribution, which we can use to compute the expected average flow of the steady
state in the infinite road.

In order to compute the stationary distribution, we use certain regularities
in the distribution of the virtual particles and in the distribution of the stacks of
the algorithm during its evolution. By considering the distribution of the stack
only at certain points in time (after certain reactions), we note that the sub-stacks
of the stack in the stationary distribution are identically distributed. Therefore,
we are able to describe the stationary stack distribution by a distribution of stack
symbols.

We derive a convolution equation relating the probabilities of the different
stack symbols in the stationary distribution. Using generating functions [11] to re-
formulate the convolutions as multiplications of formal power series, we are able
to solve the system except for one variable. However, we make the unexpected
discovery that neither of the two branches of the generating function can yield
an everywhere admissible solution. Therefore, the correct solution must change
branches at some point. Using this requirement, we are able to fully solve the sys-
tem for any m, k, yielding a polynomial expression relating the expected average
flow and the density as well as the exact phase change points in the fundamen-
tal diagram. For example, the expected average flow ¢ for R, is given by the
polynomial equation

16A% +8A¢” — 36A4¢° + (14 27A)¢" — ¢° = 0,

where A = p?(1 — p)? and p is the density, and the phase transitions occur exactly
at

p=1/2+ (2\/5 - 5/2) /.

While the result itself has little practical significance, it is the first explic-
itly known non-linear fundamental diagram and has provided a starting point
for the study of critical behavior of number-conserving cellular automata near
non-linear phase boundaries [7]. Furthermore, the mathematical and statistical
methods used to reach it may be of use in the study of other number-conserving
cellular automata as well as other systems. We will use a similar convolution
formulation in the practical application of this thesis discussed in Section 4.



3 MARKOV CHAIN MONTE CARLO

In this chapter, we introduce the basic motivation behind Markov Chain Monte
Carlo, consider population based methods for speeding up MCMC, and discuss
the results of [B]. This is not a complete introduction; we will only consider mat-
ters relevant in the applications of this thesis. For general references, see [2, 10, 9].

3.1 Exploring Bayesian posterior distributions

Perhaps the most important application of Markov Chain Monte Carlo is the ex-
ploration of a Bayesian posterior distribution

p(y | O)p(0)
YOI = T 0oy @
o< p(y | 0)p(0) 3)

of the unknown parameters ¢ given the observed data y, where the prior distri-
bution p(#) incorporates any prior knowledge of the unknowns and the likelihood
p(y | 0) models the process that is assumed to have generated the data.

Since the expression of the posterior distribution is complex, it is difficult to
obtain analytical results for any but the most simple Bayesian models. Therefore,
Monte Carlo integration is used instead: under certain conditions, a posterior
expectation E(f(©)) can be approximated using a Monte Carlo sample {6;} of
realizations from the posterior:

B(©) =7 D160+ (). @

i=1

For most models, it is difficult to draw independent samples from the pos-
terior. Therefore, Markov Chain Monte Carlo is used: a Markov Chain, which
converges to the posterior distribution, is constructed. That is, while the chain
might only make short moves in the state space, its distribution over a long run
will converge to the target distribution. The approximation (4) is still valid for
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such a Markov Chain, only its convergence as a function of L is slower by a con-
stant factor depending on the autocorrelation of the chain.

The Metropolis MCMC method [22] constructs the chain as follows: given
the current state §, a proposed next state ¢’ is drawn from a proposal density
q(0, ') that is symmetric: ¢(0,60') = ¢(#',60). The new state is accepted with the

probability
6.0 — min p(ﬁ’ly)}
€.9) {1’ p@ly) ) ©

If the new state is not accepted, the old state remains. Moves to higher density are
always accepted, and the random rejections of moves to lower density guarantee
that the posterior is a stationary distribution. Under certain mild conditions, the
chain will converge to the posterior distribution from any initial state [30].

The speed of the convergence and the autocorrelation of the chain depend
on the proposal distribution ¢(#, ¢'). If it is too narrow, the chain will move slowly,
and if it is too wide, the chain will be stuck for long periods of time due to rejected
moves.

The Metropolis method is attractive, because it is very general and because
it only needs the unnormalized posterior density given by Eq. (3). However, it
may be difficult to choose a good proposal density, and complex posterior dis-
tributions can make the computation very slow. There are other basic MCMC
methods such as the Hastings[14] generalization of the Metropolis algorithm for
asymmetric proposal distributions and Gibbs sampling (see the general refer-
ences above), but they all have similar limitations. In this thesis, we consider
population based methods for speeding up MCMC and apply one such method
to a psychophysical Bayesian adaptive estimation problem.

3.2 Population-based methods for speeding up MCMC

In this section, we consider population based methods for speeding up MCMC
and present the results of [B] about applying genetic crossing-over without intro-
ducing bias.

Many ideas on speeding up MCMC are based on the power space formu-
lation: instead of having only one state 6, the chain has a population of multiple
parallel states § = (0y,...,0y) in the power space with the target distribution
consisting of independent copies of the posterior distribution. That way the al-
gorithm has more information available about the shape of the posterior distri-
bution. In this framework, the acceptance probability of the Metropolis method

becomes
a(0; ') = min {1, (i ly) } : (6)

the proposal distribution ¢(, #') can use the information in the population in any
way as long as it is symmetric.

The basic Metropolis algorithm can be very slow in multidimensional, mul-
timodal problems, because the chain has to random walk many times between
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FIGURE 3: Simulating a target distribution with approximately independent
components using Genetic Operator MCMC [B]: The underlying method for up-
dating each individual only needs to explore the modes of each component; the
crossing-over operators 7' can then generate all combinations of the modes of the
components. In this figure, 7' swaps the first components of the two randomly
chosen individuals.

the different modes in order to yield a representative sample. However, often the
modes of a posterior distribution are not arbitrarily distributed but there is some
structure. In [B], we propose the use of genetic crossing-over operators in the
population MCMC framework to speed up the mixing between the modes. The
idea is to allow the chain to jump between different modes of the posterior distri-
bution through recombination of the individuals. Given a crossing-over operator
(6;,6;) = T'(0:,65)
which is its own inverse:
(917 9]) = T(@;, 9;)7

the acceptance probability of the crossing over of two randomly chosen individ-

uals 7, j becomes
- . p(0; | y)p(8; | y)}
a(f,0) =min< 1, — J .
6:6) { p(0i | y)p(0; | y)

Updating each individual through normal Metropolis transitions and occasion-
ally applying a randomly chosen crossing-over operator 7' to the population may
allow the chain to discover disjoint modes faster, see Fig. 3.

In [B], we prove that this method converges to the target distribution and
at least preserves the rate of convergence of the underlying method for updating
each individual. We illustrate the speed-up using two examples with crossing-
over operators that randomly swap some variables between two individuals. We
show that the method speeds up the exploration of the state space in an ideal
system with independent components as well as in a system with only approxi-
mately independent components.

In the recent trend of applying concepts from evolutionary optimization al-
gorithms in MCMC context there have been many similar ideas [23, 18, 27, 29]
(our work in [B] was done independently). One interesting development is the
differential evolution sampler [27, 29], which updates each individual by moving

(7)
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it by the difference of two randomly chosen individuals multiplied by a constant.
That way, it may be able to automatically adapt the proposal distribution to the
shape of the target distribution.

Another approach gaining interest is the use of particle filter [6] algorithms
for systems where the data is learned sequentially. A particle filter MCMC algo-
rithm starts from a sample of the prior distribution and goes through a series of
target distributions by including the data points one by one to the posterior dis-
tribution. At each step, importance resampling is used to transform the sample to
the next target distribution and ordinary MCMC transitions are used to avoid de-
generacy. The incremental steps eliminate most of the burn-in required to reach
each target distribution and can thereby help simulating a complex target distri-
bution. Even if all data is available immediately, the sequential approach may
offer a speedup [4]. We will find a particle filter algorithm especially useful in
[C], where we apply it to Bayesian adaptive estimation. In that context, the data
points are learned one by one and each target distribution is needed to measure
the next data point.



4 BAYESIAN ADAPTIVE ESTIMATION

In this chapter, we give a definition of Bayesian adaptive estimation [19, 21] and
describe the main practical result of this thesis, a new procedure for estimating
two-dimensional psychometric functions [C]. This work is motivated by the psy-
chophysical application in Chapter 5.

Bayesian adaptive estimation is a procedure for Bayesian inference in which
the data gathered so far can be used to choose the variable to be observed next.
Assuming a prior distribution p(¢), and a likelihood

0) (8)

for the completed, independent, but not identical measurements, the goal is to
choose the parameters z,,;, of the next measurement so as to gain as much useful
information about the unknown © as possible. A theoretically good objective
function minimizes the expected entropy of the posterior distribution resulting
after learning the result of the next measurement Y, . [19, 21]. However, it is
often not used because of limited computational resources.

4.1 Psychophysics

Psychophysics studies the quantitative relationships between physical stimuli
and their psychological perception (see, e.g., [24, 16]). In this context, Bayesian
adaptive estimation [31] is used for estimating the parameters of a psychometric
function, a function relating the observer performance and stimulus intensity. In
a yes—no task, the result y, of a trial is either correct or incorrect and the psy-
chometric function gives the probability of a correct answer as a function of the
stimulus intensity z, see Fig. 4. The ¥ Bayesian adaptive estimation method [17]
uses the expected entropy of the posterior distribution as a criterion for choosing
the stimulus intensity of the next trial and estimates two parameters of the psy-
chometric function: the intensity threshold o and the slope 3; the guessing and
lapsing rates v, § are assumed to be known. Due to the required computational
resources, the ¥ method has not yet been applied to more complex models.
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FIGURE 4: The psychometric model: a psychometric function Wy(z) gives the
probability of a correct answer for a stimulus of intensity x. Experiments are
designed to estimate the parameters 6 = (o, 3, v, §) from the trial results.

4.2 The next dimension

In [C], we present two new implementations of the ¥ method enabling its use in
connection of more complex models. Instead of minimizing the expected entropy
of the posterior distribution, we use the equivalent criterion of maximizing the
mutual information between the unknowns © and the result of the next trial Y.
This reformulation reveals a convolution structure in the entropy expressions,
allowing for efficient computation using the Fast Fourier Transform, similar to
the use of generating functions in solving the convolution equations in [A].

The reformulation also enables an efficient Monte Carlo approximation of
the objective function, which only needs a sample of the current distribution
P | Yuy,---,Ys,) for optimizing the placement z,,; of the next trial. We ap-
ply a particle filter MCMC algorithm for efficiently computing the Monte Carlo
samples at each trial. However, as the target distribution changes at each trial,
the MCMC kernel needs to be tuned at each trial to maintain efficiency. In our
applications, we have found a method of scaling the coordinate axes at each trial
to be sufficient. In this context, adaptive MCMC [13] may also prove to be useful
[27, 29].

In [C], we present a model for two-dimensional psychometric functions, al-
lowing estimation of observer performance on a two-dimensional stimulus space,
e.g., for measuring the color discrimination threshold around a target color for
two-dimensional color differences. The model is based on parameterizing the
threshold contour around the target stimulus as an ellipse, see Fig. 5. We apply
the new V algorithms to this model, enabling real-time adaptive estimation. Sim-
ulations indicate that this new procedure, which we call the 2D-¥ method, can
be much more efficient than estimation based on one-dimensional procedures.
Figure 6 shows some experimental results obtained using the new procedure.

In the following, we will motivate a real-world color perception modeling
problem and apply the new procedure to it. The results will show that the proce-
dure works in practice and yields consistent results.
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FIGURE 5: The model for two-dimensional stimuli presented in [C]: An ellipse
(a,b,0) gives the threshold «, for the 1D-model at each angle ¢. This model is
appropriate for many multi-dimensional stimuli such as color differences. It can
be readily generalized to more dimensions by using ellipsoids.
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FIGURE 6: One subject’s results in three different experimental conditions. The
first row shows the adaptively placed trials and their results and the estimated
threshold ellipses for each condition. Each trial is plotted as two symmetrically
placed circles representing the stimuli to be compared; filled circles indicate suc-
cessful discrimination. The second row shows a representative sample of size 100
from the posterior distribution of the threshold ellipses given the trial results.



5 PSYCHOPHYSICAL APPLICATION

In this chapter, we consider a new user interface technique [D] which motivates
a color perception modeling problem. We will apply the new two-dimensional
Bayesian adaptive estimation procedure to this problem. We will shortly discuss
different models of the data and consider the practical application of the experi-
mental results.

5.1 Rendering recognizably unique textures

In this section, we discuss the use of unique background textures for visualizing
document identity as proposed in [D] and consider theoretical justification for
certain ad hoc choices in the design of the rendering algorithm.

When a user has to work with several similar documents in a hyperstruc-
ture where each document can be reached through several routes and when only
fragments of documents might be visible, it is easy to get lost or become disori-
ented (see Fig. 1 in [D]). In [D], we propose that texturing each document with a
unique background texture may help the user to instantly recognize each docu-
ment, even from a fragment. The user should be able to learn the textures of the
most often visited documents as per Zipf's law.

For the textures to be useful, they should be easily recognizable and dis-
tinguishable from each other. For a document to be recognizable in any context,
it is best to have no correlation between the document content and its texture.
Therefore, the textures are chosen randomly — but deterministically — using the
document identity as a seed.

Thus, making the textures recognizable becomes a problem of choosing a
good distribution of textures, a distribution that maximizes the entropy of the
textures as transformed by the human visual system. In [D], we present a sim-
ple qualitative model of visual perception, which yields guidelines for rendering
recognizably unique textures, see Fig. 7. As the model is difficult to quantify, the
actual rendering algorithm uses ad hoc distributions based on the general guide-
lines and trial and error.
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FIGURE 7: The qualitative model of visual perception used to create the render-
ing algorithm of [D]. (©2003 IEEE, reproduced with permission.

For example, although many features of the textures should be chosen in-
dependently of each other (e.g., colors and shapes) for maximum diversity, we
have realized that choosing the different colors to be used in one texture indepen-
dently is not good: each palette would appear just as a mixture of many colors.
We found out that it is better to choose similar colors for one texture with higher
probability.

We have conducted an initial experiment confirming the recognizability of
the textures as compared to plain solid colors. There are many areas in which the
computational model could be made more accurate or better justified. However,
in this thesis, we will only focus on quantifying certain aspects of color percep-
tion, which is relatively orthogonal to the rest of the model.

As the textures are rather complex, we will first simplify the setting as much
as possible to make the problem simpler and the results more generally applica-
ble. We will only consider checkerboard textures with two different colors. In this
context, the goal of rendering recognizably unique textures becomes a problem of
defining a distribution of color pairs such that any set of checkerboards colored
with such randomly chosen color pairs are maximally recognizable and distin-
guishable from each other.

The observations of [D] imply that the two colors should not be indepen-
dently distributed but close to each other in the color space with higher proba-
bility. In vision literature, a phenomenon called contrast crispening [33, Sec. 6.3]
is known, which means the increase of sensitivity to lightness differences when
the intensity of the surrounding color is close to the intensity of the target color.
A similar crispening effect has also been observed for certain chromatic changes
[28]. These effects could explain why the two colors should be close to each other
instead of being independently distributed: the increase in sensitivity for similar
colors allows for finer distinguishable variations.
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5.2 Color discrimination experiment

In this section, we attempt to provide experimental justification for the color se-
lection scheme used in [D] for the unique background textures. We have designed
an experiment that attempts to quantify the perceptual chromatic crispening ef-
fects in checkerboard textures with two constant lightness colors. The technical
details of the experiment and some initial results are described in [C]. In the fol-
lowing sections, we will focus on the implications of the results.

Stimuli The stimuli were 16x12 fullscreen checkerboards with two constant-
lightness colors, ¢; and c;. The second color was randomly perturbed by a small
color difference d, randomly changing the color to either ¢y + d or ¢, — d indepen-
dently at each square (see Fig. 11 in [C]). For simplicity, the color ¢, was always
gray, the origin of the two-dimensional color space.

The subject’s task was to decide if a checkerboard picture had two or three
different colors indicating whether the perturbation d was visible. The experi-
ment consisted of multiple trials with different perturbations d and different sur-
rounding colors c;.

The color space was based on the unknown RGB primaries of the monitor.
However, the gamma correction was calibrated so as to yield a linear color space.

Procedure The idea of the experiment was to determine the threshold of per-
ceiving the perturbation as a function of the surrounding color c¢; and the direc-
tion of the perturbation d. The two-dimensional Bayesian adaptive estimation
procedure [C] was used to adapt the perturbation d in order to find an estimate
of the elliptical non-discrimination area around the target color ¢, for each con-
dition. 16 different conditions with different surrounding colors were used, each
consisting of 25 trials.

Participants The experiment was conducted as a part of a practical course. Two
students and one naive subject participated in the experiment.

Results Figure 12 in [C] illustrates the basic finding of the experiment: the shape
of the non-discrimination area is pointed towards the surrounding color and it
becomes larger as the surrounding color is moved further away in the color space
from the target color. This means that the closer the two colors of a checkerboard
are to each other, the smaller the differences in the two colors that are visible,
supporting the ad hoc color selection scheme of [D].

Figure 8 shows the complete results of one subject. Figure 9 illustrates the
posterior threshold distributions as well as the estimated threshold ellipses for
the 16 conditions for each subject. These plots are based on MCMC samples from
the posterior similar to those used by the MCMC particle filter algorithm in [C],
but now we have varied all six parameters of the model, including the guessing
and lapsing rates. See Section 5.4 for details of the MCMC runs. The slope and
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FIGURE 8: One subject’s (subj. 3) results in the experiment. The trials of each
condition are plotted as circles at ¢; + 2d joined by a line segment, that is, each
condition is shifted into its own coordinate system centered on the conditioning
color and scaled for clarity. Non-filled circles indicate a “yes” response, meaning
that the perturbation was visible.
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FIGURE 9: The first three plots show representative samples of size 100 from the
posterior distributions of the threshold ellipses of all conditions for each subject.
The fourth plot shows the mean estimates in one plot with different line types
indicating different subjects. The coordinate systems are the same as in the pre-

vious figure.
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the guessing and lapsing rates are not shown in the plots as they are not well-
localized; we consider them as nuisance parameters [10] and, although they are
used in the simulation, we in effect always integrate them out. The results of the
different subjects seem similar; we will simply concatenate the data of all subjects
for modeling the average observer. In the following, we consider different models
of the measured data.

5.3 Sensory noise models of chromatic crispening

In this section, we consider different models of the experimental data. We attempt
to provide a short quantitative description of the observed phenomena.

We already have a local model for each condition used by the estimation
procedure. A naive global model would just assume each condition to be inde-
pendent of each other, yielding a 16-6 = 96 parameter model (Model 1). However,
that model does not generalize the data to unobserved conditions and does not
take into account the observed regularities, in particular, the observation that the
threshold ellipses seem to consistently point towards the surrounding color.

Before considering more involved models, we note that this observation is
actually not entirely true: a linear transformation does not in general map the
major axis of an ellipse to the major axis of the image ellipse, and therefore the
particular coordinate basis used in the experiment can only by chance yield ex-
actly pointed ellipses. The color coordinates are close to the “canonical” basis,
because the scales of the standard RGB coordinates are chosen to be perceptually
similar. Still, we do need to somehow include the effect of the coordinate basis
into the model.

We shall apply the concepts of general recognition theory [1, 15], a multi-
variate generalization of the classical signal detection theory [12]. These theories
consider noisy observations as random variables taking values in some psycho-
logical space where the observer is assumed to have established certain decision
boundaries. In this context, suppose that the discrimination of an n-dimensional
color difference is based on sensory data of the perturbation d € R" of the tar-
get color ¢; € R™ under background noise and the noise resulting from the color
contrast + = ¢; — co € R” of the surrounding color. Suppose N € R"*" is the
covariance matrix of Gaussian background noise and that the color contrast con-
tributes to the total noise with a factor © € R. Then, the covariance matrix of the
total noise is N + uxrz’, where z2” is (four times) the covariance matrix of the
color distribution of the texture. Using the one-dimensional Weibull psychomet-
ric function (cf. Fig. 4) for modeling the performance for a given signal-to-noise
ratio, we can define the probability of perceiving a perturbation d as

U(d)=1-6—(1—v—d8)exp(—r'?), )

where
r? = d'[N 4+ uzz’]'d (10)

is (the square of) the signal-to-noise ratio, see Fig. 10. This model (Model 2) is
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FIGURE 10: A general recognition theory interpretation of the model. a) Ob-
server’s sensory noise distribution resulting from the background noise plus the
noise from the color contrast x = ¢; — c;. b) Observer’s threshold surrounding
almost all of the total noise so as to yield a low probability of false positives. The
threshold is a closed contour instead of the more typical line as the direction of the
signal is not known beforehand. c) Signal d added to the noise. The shaded area
outside the threshold yields the probability of perceiving the signal. Assuming
Gaussian noise and a low false positive rate, the Weibull psychometric function
approximates well the perception probability as a function of the signal-to-noise
ratio [|d| /||
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consistent with the local ellipse model in the sense that for any condition z, this
model can match the local model for any parameters.

Suppose A € R™" decomposes the symmetric noise matrix as N = AAT.
Then, the signal-to-noise ratio can be rewritten as

r? = d'[N +uzz’]'d = (A7) [T+ u(A ) (A )T (A ).

That is, A represents a linear transformation from the canonical basis, in which
the background noise is represented by an identity matrix, to the coordinates
used in the experiment. For the two-dimensional experimental data, we parame-
terize the matrix A with log-size s, log-aspect c and angle ¢ exactly as in the local

model:
102 cosf —10"%sind
10¢2¢inf 1072 cosf |-

These three parameters are sufficient to parameterize any symmetric noise matrix
N = AAT, yielding a total of seven parameters for this model.

Figure 11 illustrates the posterior distributions for the parameters of the two
fitted models given the data. The results of the Model 1 are just the independently
titted results also shown in Fig. 9. Model 2 appears to capture the qualitative ef-
fects rather well. The deviations from the ellipse orientations predicted by this
model can be explained by chance. We have confirmed this by generating repli-
cated observed data using a simulated observer running the same experimental
procedure: similar deviations do result randomly. However, there is one appar-
ent shortcoming in this model: the threshold ellipses do not get thicker as the sur-
rounding color moves further away in the color space, as seems to consistently
happen in the independently fitted conditions.

Therefore, we add a crosstalk parameter ¢ € R modeling the uniform,
undirected increase of the noise as the surrounding color moves further away
(Model 3):

A=10°

r? =dT[(1 4+ t2" N"'2) N + uaz”]71d. (11)
This can again be written in a canonical basis as
12 =d'[(1+ 2T + uiz"] "V, (12)

where N = AAT,d = A~'d, and # = A~'z. The volume of the threshold ellipsoid
r? = 1 for condition z is

my/det][(1 + taT N—1z)N + uzaT] = 7w det(A) /(1 + t]|2]2)"1(1 + (u +t)||2]]2).
(13)
The last column in Fig. 11 shows the predictions of this model. It can be
seen that the uncertainty is now smaller for the innermost ellipses than without
the crosstalk factor; the model now seems to fit the data better. In the following,
we compare the goodness of fit and the complexity of these models.

5.4 Bayesian model selection

In this section, we compare the three models of the experimental data using mul-
tiple Bayesian model comparison criteria.
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FIGURE 11: Representative samples of size 100 from the posterior threshold dis-
tributions given by the three models. The last two models can predict the thresh-
old for unobserved conditions; the prediction for the gray surrounding color is
shown as an example.



31
The canonical criterion for model comparison is the posterior probability of

the models: (| Mp(M)
Py k)PUME
p(M = . 14
SR SN TOTRTATIEIA -
Assuming identical prior probabilities p(};) of the models, this amounts to com-
paring the model likelihoods

ply | My) = / Dy | 60, Mi)p(6y | M)d6. (15)

where 6, represents the unknowns of the model M. The ratio of two model
likelihoods is called a Bayes factor [10, 9]. The model likelihood automatically
quantifies the Occam’s razor in the sense that the more variables in an overspec-
ified model there are, the smaller the fraction of the volume of 6, that has a high
likelihood, yielding lower model likelihood [20]. In the following, we shall drop
the explicit model specification M), from the equations as the comparison criteria
can be evaluated independently for each model.

Although model likelihoods seem like the ideal tool for model comparison,
they are highly sensitive to the prior distributions of the models. As we use unin-
formative priors, the prior ranges of the variables are somewhat arbitrary, and so,
although the prior ranges have little effect on the predictions of the model, they
do greatly affect the model likelihood.

The model likelihood (15) can be approximated by the harmonic mean of
the likelihood of a posterior sample {6} [9]:

L
~ . 16
P S S 0 (16

This approximation has the added benefit that extremely unlikely regions of the
priors will be disregarded for a practical MCMC sample size and therefore, as a
side effect of the approximation error, this estimate is slightly less sensitive to the
priors of the models.

Expectation of the deviance

D(0) = —2log(p(y | 0)),

of the unknown parameters ¢ of the model can be used as a measure of the misfit.
Deviance Information Criterion [26]

DIC = E(D(©)) + pp
adds a quantity called the effective number of variables
pp = E(D(©)) — D(E(O))

as an additional penalty of model complexity to the expected deviance. These
criteria can be directly computed using the MCMC posterior sample.

Table 1 shows the values of these model comparison criteria for the three
models. The uniform priors used for computing these results had the ranges:
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log,(-size [—4, 0], log,,-aspect [—2, 0], angle [0, 7], log,,- noise factor [—4, 0], log;,-
crosstalk [—10, 0], log;-slope [—0.1,0.9], guessing and lapsing rates [0, 0.1]. These
priors were the same for all models, except that Model 2 misses the cross talk
factor and Model 1 misses both noise factors and has 16 copies of the other 6
parameters. The Metropolis MCMC algorithm was used with a manually tuned
Gaussian proposal distribution for a run of length 220000 for each model and
each data set; skipping a burn-in of 20000 steps, every 200th state was saved for
a sample of size 1000 for computing the statistics of each run.

Model 3 seems best according to all criteria, except for the one exception
of the expected deviance for the concatenated data of all subjects. However, as
discussed in [26], an additional penalty of model complexity may be appropriate.
Still, there might be a better model with a complexity between that of Model 3
and Model 1, e.g., one with a hierarchical specification [10]. However, Model 3
seems adequate in capturing the main features of the data.

Subj. Model | E(D(®)) D(E(©)) pp DIC  p(y)  p(y)
1 1 3181 2617 564 3746 2E-83 SE-89
2 3215 3158 58 3273 4E74 7E72
3 288.0 2805 74 2954 5E-69 1E-64
2 1 3273 2696 577 3850 SE-86 4E-92
2 3371 3316 54 3425 3E-77 5E-75
3 317.8 3109 69 3248 8E-75 8E-72
3 1 300.6 2473 534 3540 5E-82 7E-86
2 3104 3044 59 3163 SE-72 3E-69
3 2974 290.2 72 3047 2E-70 8E-67
all 1 874.2 806.5 67.7 942.0 1E-225 2E-215
2 980.1 9736 65 986.6 3E-218 3E-215
3 917.7 910.0 7.7 9254 b5E-207 3E-201

TABLE 1: Comparison of the three models using expected deviance E(D(0)),
Deviance Information Criterion (DIC), the model likelihoods p(y), and the model
likelihoods computed using the harmonic mean estimate p(y).

5.5 Discussion

A perceptually uniform color space [5] means a color space in which a just percep-
tible difference is of similar magnitude in coordinates everywhere in the space.
Thus, a uniform distribution over this space maximizes the probability that two
randomly chosen colors are distinguishable. We can analogously define a per-
ceptually uniform density of color pairs as the inverse of the non-discrimination
volume around each color pair, the volume in which the color pairs are not dis-
tinguishable from the target pair (Fig. 12). This distribution approximately' max-

IThe distribution is only approximately optimal as it disregards boundary effects and changes
of the scale within the non-discrimination volumes. However, the smaller the non-discrimination
volumes, the smaller these effects.
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FIGURE 12: An illustration of a perceptually uniform distribution of (one-
dimensional) color pairs. Each ellipsoid represents the non-discrimination vol-
ume around a color pair. In the perceptually uniform distribution each non-
discrimination ellipsoid has approximately the same probability.

imizes the probability that any two randomly chosen pairs are distinguishable.

However, the experiment only measured the sensitivity to changes in one
color of the pair, and only at certain points in the space of color pairs. Further-
more, it is difficult to define what kind of distinguishability is desired (side-by-
side comparison, memory comparison, etc.) and so the discrimination criterion
of the experiment might not be the most ideal for the use of unique background
textures. Nevertheless, we expect a qualitatively similar crispening effect to be
observed in any discrimination task.

We will attempt to derive a perceptually uniform color space based on the
available observed data. To enable the generalization of the experimental data,
we assume that the non-discrimination volume V'(¢;, ¢;) around the color pair
(¢1,¢2) can be decomposed as

1
Vi, ) = 5141(01 — c2) Ay, (17)

where A, denotes the (measured) non-discrimination area for contrast changes
on the constant average color plane { (¢}, ) : ¢} + ¢4 = ¢1 + ¢2 } and A, denotes
the (unmeasured) non-discrimination area for changes in the average color on the
constant contrast plane { (¢}, c,) : ¢; — ¢, = ¢1 — ¢2 }. This decomposition assumes
that the axes of the non-discrimination ellipsoid lie on these planes so that its
volume can be accurately decomposed into the areas of the intersection ellipses.

Additionally, the decomposition assumes that the color space is uniform
with respect to translations, allowing us to generalize the results measured for
(¢1,0) to all of the space of color pairs. This can be justified by the adaptive effects
of the eye: even though the target color ¢, was always gray in the experiment,
it did not appear gray: chromatic adaptation shifted its appearance towards the
opposite color of the surrounding color. Thus, we can assume that the observed
phenomena do not depend on the target color being gray.
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Finally, to justify A, being a constant, we need to make one more assump-
tion in addition to the uniformity: we assume that the discrimination of a change
in the average color of a texture does not depend on the color contrast of the
texture. That is, we do not expect high contrast to mask out otherwise visible
changes in the average color. While this assumption is perhaps only approxi-
mately true, it may be appropriate for the application because the viewing con-
ditions of a texture can cause a shift in the apparent color of the texture, masking
out any small differences in the sensitivity to changes in the average color.

The decomposition equation (17) allows us to compute the relative volumes
of all non-discrimination ellipsoids based only on the measured sensitivity to con-
trast changes. Estimating the parameters of Model 3 from the concatenated data
of all subjects and substituting them into the non-discrimination area formula
(13), we obtain the perceptually uniform distribution of color pairs (¢, c2) given
by the density

1 1
C1,C) X X , 18
pler e2) o e VA 1+ 0.017(1)d + 0.000018(3)d" (18)

where d = ||[A7!(c; — ¢)|| and the inverse of the matrix
4 [0.0090(9) —0.0087(9) 19)

~ 1 0.005(1)  0.0070(6)

maps the coordinates to the canonical basis?; the numbers in parentheses indicate
the standard error of the last decimal of the numerical value. In the canonical
basis, a color difference of one unit approximately corresponds to a just noticeable
difference, assuming that there is no noise from the surrounding colors. Thus, the
canonical basis is a linear approximation to a perceptually uniform color space.

Note that the assumptions made for generalizing the results do disregard
several possible phenomena such as:

e The effects of color categories (blue, green, etc.) within which the thresholds
may be enlarged due to the subject remembering only the color category
and not the fine changes within the category (cf. [25]).

e A possible decrease of sensitivity for colors ¢; and c; very close to each other
due to the small color contrast preventing visual segregation of the squares
in the checkerboard (cf. [3]).

e Nonlinearities in the perceptual color space (cf. non-linear uniform color
spaces in [5]).

Nevertheless, the assumptions seem justified for a first approximation of a per-
ceptually uniform space of color pairs, considering that the finer details could
possibly differ between different observers or between different discrimination
criteria.

We do not consider the validation of the results any further, as it is beyond
the computational focus of this thesis.

2The canonical basis is actually not uniquely determined by the data: for any orthogonal ma-
trix R, RTR = I, the matrix AR in place of A yields a rotated version of the canonical basis, but
the same perceptually uniform density p(ci, c2).



6 CONCLUSIONS

We have considered computational and mathematical tools for computation in
discrete and continuous statistical models. We have found mathematical refor-
mulations useful in reducing the computational complexity of many models. We
have exploited symmetries in the models, such as the geometric properties of the
symbol distributions in [A], the assumed near decomposability of the distribu-
tion in [B], and the linear transformation invariance of the model in [C]. Often
regularities manifest themselves as convolutions, which we have computed ef-
ficiently as multiplications by the use of generating functions in [A] and by the
use of Fast Fourier Transforms in [C]. We have used a Markov Chain as a model-
ing tool in [A] as well as considered the general toolbox of Markov Chain Monte
Carlo methods in [B] and [C].

The main practical result is a Bayesian adaptive estimation procedure for
two-dimensional psychometric functions [C], which has been made possible by
the recent increases in the available computational power and the algorithmic
improvements motivated by [A] and [B].

We have considered the real-world problem of efficiently rendering recog-
nizably unique textures [D]. We have applied the new psychophysical procedure
[C] to quantifying certain chromatic crispening effects salient in the perception of
these textures. The experimental data provides justification for the ad hoc choices
in the design of the rendering algorithm. Finally, we have built a simple Bayesian
model of the data and shown how it can be used to define a perceptually uniform
space of color pairs.

Author’s contribution Here, I report on my role in the work done in coopera-
tion with my supervisor Dr. Tuomas Lukka.

In [A], the symbolic stack machine model and the series of mathematical
reformulations yielding the final result were mostly due to me. Dr. Lukka moti-
vated the problem and demonstrated the fundamental properties of the system.

The idea of applying genetic operators in MCMC as well as the first version
of the manuscript [B] came from Dr. Lukka. I formalized the idea mathematically,
proved the convergence results, implemented the examples, and related it with
the relevant literature.
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In [C], I formulated the model for two-dimensional psychometric functions,
came up with the reformulation of the objective function, discovered the FFT
algorithm, implemented the experiment, and did the proofs in the appendix.
Dr. Lukka came up with the particle filter MCMC algorithm.

The use of unique background textures in [D] was Dr. Lukka’s idea. We
worked together on the implementation, during which the idea was consider-
ably reshaped and the often counterintuitive principles were discovered. I im-
plemented and conducted the recognizability experiment.

The ongoing work on quantifying color perception was done together with
Dr. Lukka and with input from Prof. Pertti Saariluoma.
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YHTEENVETO (FINNISH SUMMARY)

Tarkastelemme kahta ldhestymistapaa laskentaan tilastollisissa malleissa: tds-
mallistd laskentaa diskretisoiduilla malleilla ja likimdardistd laskentaa Monte
Carlo -simuloinnilla. Esitimme uusia laskennallisia tekniikoita molempiin ldhes-
tymistapoihin ja sovellamme niitd psykometristen funktioiden bayesldiseen mu-
kautuvaan mittaamiseen. Pddtulos on uusi mittausmenetelméd kaksiulotteisille
psykometrisille funktioille. Johdattelemme varinddn mallintamisongelman ja so-
vellamme uutta mittausmenetelmaa sithen. Pohdimme koetuloksia lyhyesti.
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