
Heikki Paajanen

Page replacement in operating system memory

management

Master’s Thesis
in Information Technology
October 23, 2007

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Author: Heikki Paajanen
Contact information: heikki.paajanen@iki.fi
Title: Page replacement in operating system memory management
Työn nimi: Sivunkorvaus käyttöjärjestelmän muistinhallinnassa
Project: Master’s Thesis in Information Technology
Page count: 109
Abstract: This masters thesis introduces algorithms for page replacement in mem-
ory management of general purpose multitasking operating systems using paged
virtual memory.
Suomenkielinen tiivistelmä: Tämä pro gradu tutkielma esittelee yleiskäyttöisen
käyttöjärjestelmän sivunkorvaus algoritmeja
Keywords: operating systems, memory management, page replacement, algorithms
Avainsanat: käyttöjärjestelmät, muistinhallinta, sivunkorvaus, algoritmit

Copyright c© 2007 Heikki Paajanen

All rights reserved.

Preface

I have long been interested in how operating systems work, but lack of free time has
kept me from studying them. After I got my courses done and it was time to figure
out a topic for my master’s thesis, I saw an opportunity. Operating systems are quite
large topic, so I needed to focus on some area. Memory management has especially
fascinated me and so I chose that. As I started studying memory management, I
realized that it is still too large as topic for master’s thesis and I further limited the
topic into page replacement algorithms. My interest in operating systems has only
grown after this experience and I hope I can continue working close to them in the
future.

I would like to thank Jarmo Ernvall for taking the effort to act as my instruc-
tor and for valuable comments, Erkki Häkkinen for valuable comments, and Matti
Katila for code review. Most of all, I would like to thank Kirsi Kiljala for valuable
comments and for motivating me to get my studies done.

i

Glossary

2Q Two Queue, a replacement algorithm
ARC Adaptive Replacement Cache, a replacement algo-

rithm
CAR CLOCK with Adaptive Replacement, a replace-

ment algorithm
CART CAR with Temporal filtering
Cold page A page that is considered unimportant by replace-

ment algorithm. See Hot page.
Copy-on-write Technique to defer copying until first write
Correlated access Two or more accesses to same page quickly
Demand paging Paging in pages as they are used
Evict Move a page from main memory to a secondary

memory
Hot page A page that is considered important be replacement

algorithm. See Cold page.
IRM Independent Reference Model
FIFO First-In, First-Out
Loop Sequential, repeated pass over a set of pages
Locality Tendency of referencing some pages more fre-

quently than others
Locality set A set of frequently accessed pages
LRU Least Recently Used, a replacement algorithm
LRUSM LRU Stack Model
NFU Not Frequently Used, a replacement algorithm
Non-stationary Process where probabilities depend on time
NRU Not Recently Used, a replacement algorithm
Major page fault A page fault on a page that is not present in main

memory

ii

MIN See OPT
Minor page fault A page fault on a page that is already in main mem-

ory
MMU Memory Management Unit
OPT Beladys optimal replacement algorithm
Page Fixed size memory block
Page fault Interrupt, when process accesses a page in a invalid

way. (e.g Page is mapped, but not present main
memory, or write on a read-only page)

Page frame A place in main memory, where a page can be in-
serted

Page table Virtual address to physical address mapping
Phase behaviour Program behaviour model focusing on handling

phases in program execution.
Phase-transition model Program behaviour model, where execution con-

sists of phases and transitions between them.
Physical address Address in physical memory
Prepaging Paging in pages before they are used
Reuse distance Number of distinct page accessed between current

access and previous access of a page
Scan Sequential one time pass over pages
Stack distance Position of the referred page in (LRU) stack just be-

fore next reference
Swap space secondary memory used in virtual memory sys-

tems
Trashing Extensive page faulting caused by process
Virtual address Address in virtual address space
Virtual address space Linear address space that is private to a process.

Needs to be translated into a physical address.
Virtual time Time that moves forward only when the program is

executing, i.e. execution time.
Working set (Informally) Smallest collection of pages, that are

needed in main memory for the program to execute
efficiently.

iii

Contents

Preface i

Glossary ii

List of Figures vii

1 Introduction 1

2 Overview of Memory Management 2
2.1 Paging . 3
2.2 Page fault handling . 5

3 Page replacement algorithm theory 6
3.1 A formal model for paging algorithm 6
3.2 The cost . 7
3.3 Program behaviour . 8

3.3.1 Working set . 8
3.3.2 Locality . 9
3.3.3 l-order non-stationary Markov process 9
3.3.4 Stochastic models . 10
3.3.5 Phase behaviour . 10
3.3.6 Phase-transition model . 10

3.4 Typical memory usage patterns . 11
3.4.1 Correlated access . 11
3.4.2 Scan . 11
3.4.3 Loop . 12

3.5 Page replacement policies: global and local 12
3.6 Goals . 12

4 Page replacement algorithms 14
4.1 Optimal replacement . 14
4.2 Random replacement . 14

iv

4.3 Not Recently Used (NRU) . 15
4.4 First-In, First-Out (FIFO) . 16
4.5 Least Recently Used (LRU) . 17
4.6 Second Change and CLOCK . 18
4.7 Not Frequently Used (NFU) . 20
4.8 Aging . 21
4.9 Two Queue (2Q) . 21
4.10 SEQ . 23
4.11 Adaptive Replacement Cache (ARC) 24
4.12 CLOCK with Adaptive Replacement (CAR) 27
4.13 CAR with Temporal filtering (CART) 28
4.14 Token-ordered LRU . 30
4.15 CLOCK-Pro . 31

5 Empirical analysis 35
5.1 Metrics . 35
5.2 Trace Data . 35
5.3 Generated traces . 36

5.3.1 Scan trace . 36
5.3.2 Loop trace . 42
5.3.3 Correlated accesses trace . 47

5.4 Real trace . 52

6 Conclusions 57

7 References 58

Appendices

A Utilities 60
A.1 utils.py . 60
A.2 memory_state.py . 63
A.3 test.py . 64

B Algorithms 69
B.1 opt.py . 69
B.2 fifo.py . 70

v

B.3 clock.py . 71
B.4 lru.py . 72
B.5 twoqueue.py . 73
B.6 arc.py . 74
B.7 car.py . 78
B.8 cart.py . 81
B.9 clockpro.py . 86

C Trace data scripts 95
C.1 generate.py . 95
C.2 scan.conf . 97
C.3 loop.conf . 98
C.4 correlated.conf . 98

vi

List of Figures

2.1 Kernel space mapping to processes address space in Linux on x86
architecture. 3

2.2 Process virtual memory layout . 4

4.1 In NRU, the page to be evicted is selected from lowest class that con-
tains pages. 15

4.2 FIFO . 16
4.3 Second change . 19
4.4 CLOCK in operation . 20
4.5 Operation of 2Q . 22
4.6 Sequence detection in SEQ . 23
4.7 SEQ: Selecting a page to evict . 24
4.8 ARC: Lists (i.e. the cache directory) . 25
4.9 CAR style clocks . 27
4.10 CART style clocks . 29
4.11 CLOCK-Pro style clock (The graphical style used in this thesis is adapted

from [9]) . 31
4.12 CLOCK-Pro page fault handling . 33

5.1 Page fault ratio on scan data: FIFO and CLOCK 38
5.2 Page fault ratio on scan data: LRU and 2Q 39
5.3 Page fault ratio on scan data: ARC and CAR 40
5.4 Page fault ratio on scan data: CART and CLOCK-Pro 41
5.5 Page fault ratio on loop data: FIFO and CLOCK 43
5.6 Page fault ratio on loop data: LRU and 2Q 44
5.7 Page fault ratio on loop data: ARC and CAR 45
5.8 Page fault ratio on loop data: CART and CLOCK-Pro 46
5.9 Page fault ratio on correlated data: FIFO and CLOCK 48
5.10 Page fault ratio on correlated data: LRU and 2Q 49
5.11 Page fault ratio on correlated data: ARC and CAR 50
5.12 Page fault ratio on correlated data: CART and CLOCK-Pro 51

vii

5.13 Page fault ratio on test.py: FIFO and CLOCK 53
5.14 Page fault ratio on test.py: LRU and 2Q 54
5.15 Page fault ratio on test.py: ARC and CAR 55
5.16 Page fault ratio on test.py: CART and CLOCK-Pro 56

viii

1 Introduction

Main memory is an important and a very limited resource in a computer. Although
common amount of main memory has increased in the past decades, so has its de-
mand 1. As processor and main memory get faster more rapidly than secondary
memories, the impact of swapping increases. The everyday improving hardware
has also underlined some bottlenecks in real life applications, and created a need
for further research.

In this thesis we will first introduce general concepts of virtual memory and
paging, followed by proposed formal models for page replacement algorithms and
program behaviour. The theory part ends with presenting well known basic page
replacement algorithms, as well as some more advanced ones, and describing their
characteristics.

In the empirical part of this thesis, we will present implementation of nine al-
gorithms and compare their performance on generated virtual memory traces. Per-
formance comparison is done by using page fault rate charts and other page fault
metrics. The page fault rate chart shows the distribution of page faults.

In the real world examples Unix class of operating systems, mainly Linux, will
be used as a reference. The theory is not, however, tied to Unix, and many other
operating systems implement memory management by using the same techniques.

It should also be noted, that page replacement problem is not specific for op-
erating system memory management, but is present also in various systems using
caches, such as databases and web proxies. This thesis, however, limits its scope to
the context of virtual memory management in general purpose operating systems.
Some algorithms are designed for databases and later adapted for virtual memory.
These are included because they contain important ideas and provide a better view
of the evolution of replacement algorithms.

1Parkinson’s Law states that ”work expands so as to fill the time available for its completion” [15].
This can be adapted to computer memory usage as ”programs and their data expand to fill the mem-
ory available to hold them”.

1

2 Overview of Memory Management

Almost all modern general purpose operating systems use virtual memory to solve
the overlay problem. In virtual memory the combined size of program code, data
and stack may exceed the amount of main memory available in the system. This is
made possible by using secondary memory, in addition to main memory. The op-
erating system tries to keep the part of the memory in active use in main memory
and the rest in secondary memory. When memory located in secondary memory
is needed, it can be retrieved back to main memory [16]. The process of storing
data from main memory to secondary memory is called swapping out, and retriev-
ing data back to main memory is called swapping in. These will be referred as
swapping except when distinction between the two is necessary. The part of the
secondary memory, that is reserved for virtual memory, is called swap space, and is
often implemented as a swap partition or a swap file.

There are two granularities in which swapping is commonly done in multitask-
ing operating systems. The simplest one is to swap out a whole program when
memory is needed. This simple method can be used as a load balancing tech-
nique [11]. The other granularity is to swap out small fixed size memory areas,
pages. Paging will be introduced in more detail in chapter 2.1.

In Unix type of operating systems, virtual memory is usually divided in to two
segments, the kernel segment and the process segment. The kernel segment contains
all memory visible directly only to kernel itself. The kernel segment is always kept
in main memory for various reasons, including performance and security. In Linux,
on x86 architecture, the kernel segment starts at physical address 0x01000000. The
first 16 MB is reserved for DMA as some devices are not able to address any higher.

Virtual memory provides processes a virtual address space. Programs use vir-
tual addresses to refer to their own virtual address space. When virtual address
space is used, each program sees a flat continuous memory dedicated for it alone.
All memory, however, is not available for a running program. The kernel usually
maps its own address to constant area of each program’s address space. In Linux the
kernels space is normally mapped at the end of the processes address space. As an
example, on x86 architecture the last 1 GB of the 4 GB address space is reserved for

2

Figure 2.1: Kernel space mapping to processes address space in Linux on x86 archi-
tecture.

the kernel (See figure 2.1). This leaves 3 GB for the user process [8]. Virtual address
space simplifies compilers and applications as the memory used by the operating
system, and other running programs, are not directly visible to a running program.

2.1 Paging

The operating system divides virtual address space into units called pages. Main
memory is also divided to fixed size units called page frames [16]. Each used page
can be either in secondary memory or in a page frame in main memory. Naturally
neither of these memories is needed for the pages, in the virtual address spaces of
processes, that are not used.

A paging algorithm is needed to manage paging. A paging algorithm consists
of three algorithms: placement algorithm, fetch algorithm and replacement algo-
rithm. The placement algorithm is used to decide on which free page frame a page
is placed. The fetch algorithm decides on which page or pages are to be put in
main memory. Finally, the page replacement algorithm decides on which page is
swapped out. Further, paging algorithms can be demand paging or prepaging. A
demand paging algorithm places a page to main memory only when it is needed,
while a prepaging algorithm attempts to guess which pages are needed next by plac-
ing them to main memory before they are needed. In general cases, it is very difficult
to make accurate guesses of page usage and demand paging is generally accepted
as a better choice. It can also be proved, that for certain constraints, optimal paging
algorithm is a demand paging algorithm. Exact constraints and proof is given in [1].

A virtual address must be translated to corresponding physical address before
the memory can be used. As this address translation is done with every memory ref-

3

Figure 2.2: Process virtual memory layout

erence, it is important that it is very fast. Usually special hardware, called Memory
Management Unit (MMU), is used to make this translation. MMU uses virtual-
to-physical address mapping information, located in operating systems page table,
to make the translation. Each process has its own virtual address space and there-
fore page tables are per process. If the given virtual address is not mapped to main
memory, the MMU traps the operating system. This trap, called page fault, gives the
operating system an opportunity to bring the desired page from secondary memory
to main memory, and update to page table accordingly [16]. Chapter 2.2 will explain
page fault handling in more detail.

Because each process has its own virtual address space (See Figure 2.2), the oper-
ating system must keep track of all pages used by processes, location of each page,
and some per page information. When a page in main memory is referenced or
written to, it is marked accordingly. If all page frames are in use when a page fault
occurs, the operating system moves, or evicts, some page to secondary memory to
make room for the referenced page. As pointed earlier, the operating system must
also update the page table, as the MMU knows nothing about the pages that are not
in the main memory [16].

A page can be anonymous or file backed. Anonymous pages are used by pro-
gram code as a work area, namely heap, stack and global variables. File backed
pages are, as the name indicates, data read from a file in secondary memory. File
backed pages are not meant to be modified during execution (e.g. program text).
When operating system decides to evict a file backed page, it is not necessary to

4

spend time writing it to secondary memory. The page already has a valid copy of
the data available, if it is needed again later. The page frame used can just be marked
as free, and used for another page. In case the operating system decides to evict an
anonymous page, it will have to check a few things. If the page has never been in
secondary memory, or it has been modified while in main memory, it will have to
be written to secondary memory before the page frame can be reused [16]. Such
modified page is called dirty.

2.2 Page fault handling

As described earlier, a page fault typically occurs when a process references to a
page that is not marked ’present’ in main memory. Page faults can be classified in to
major page faults and minor page faults. In a minor page fault, the referenced page
is in main memory, but not yet marked ’present’, which means that there is no disk
IO required to handle to fault. Page faults are also caused by 1) reference to address
0, 2) reference to an unmapped page, 3) user process referencing the kernel area
(remember that kernel areas are mapped to process address space!), 4) attempts to
write to an read-only page and 5) attempts to execute code from non-execute page.
The page fault in case 1 is also called an invalid page fault. Page faults in cases 2–5
are called protection faults and are, together with the actual mappings, used to im-
plement memory access rights. While access rights are per page properties, they are
usually maintained in larger memory areas, segments. Read-only pages are useful
in implementing copy-on-write. Automatically growing stack is also implemented
by using page faults in Linux. When a process tries to access an address right next to
the current stack limit, the Linux kernel allocates a new page and maps it for stack
usage.

5

3 Page replacement algorithm theory

Page replacement algorithms have been studied and some formal models are pro-
posed to be used as basis of theoretical analysis. The following conventions are
used.

Set of pages of a n-page program is defined as

N = {p1, ..., pn}

and
M = {p f1, ..., p fm}

is a set of page frames of main memory with space for m pages. Function f : N → M
gives current page map and can be defined as

f (pi) =

{
p f j, if page pi is in page frame p f j,
undefined, otherwise.

If f (pi) is undefined, a page fault must occur, if the page pi is referenced. S is used to
present the current state of main memory. For every page x ∈ S, f (x) is defined and
for all other pages y /∈ S, f (y) is undefined. Finally, Mm = {S|S ⊆ N and |S| ≤ m}
is defined as a set of possible memory states in main memory with m-page frames.

Programs memory usage can be described as a reference string ω = r1r2...rT,
where rt = x means that program referenced page x at time t.

3.1 A formal model for paging algorithm

Aho, Denning and Ullman presented a formal model for page replacement algo-
rithms in [1]. This formulation allows mathematical analysis of properties of an
algorithm.

A page replacement algorithm A can be formally defined as

A = (Q, q0, g),

where Q is a set of algorithm specific control states, q0 ∈ Q is the initial control state
and g : Mm ×Q× N → Mm ×Q is the allocation map.

6

From this formulation we can see, that page a replacement algorithm can be
thought as a state machine with n ∈ N as input, Mm×Q as state and g as transition
function. It is required, that x ∈ S′when g(S, q, x) = (S′, q′). A pair (S, q) ∈ Mm×Q
is called a configuration.

A page replacement algorithm A produces a sequence of configurations

{(St, qt)}T
t=0,

where
(St, qt) = g(St−1, qt−1, rt),

1 ≤ t ≤ T. Examples of algorithms presented using this formal model are given
when actual algorithms are described later.

The model uses one reference as the unit of time, which is not ideal as it models
only the virtual time of the program (i.e. time when the program is actually exe-
cuting) . Some algorithms, which are presented later, use the elapsed real-time in
the decision making. To include a situation, where no process is running, we need
to model time passing without any references. This can be done by using a special
empty reference, ∅. Effectively, an empty reference means that the processor is in
idle for that time.

3.2 The cost

The theoretical cost of a demand replacement algorithm can be measured as a sum
of pages swapped out and swapped back in. For demand paging, the transition
function g, as defined previously, can be presented as follows:

g(S, q, x) =


(S, q′) if page x ∈ S,
(S ∪ {x}, q′) if x /∈ S, |S| < m,
(S ∪ {x} \ {y}, q′) ifx /∈ S, |S| = m, y ∈ S.

(3.2.1)

While there are free page frames, demand algorithms fill them before considering
replacement of existing pages. Page replacement is always completed one page at a
time.

The cost of processing reference string ω = r1r2...rT, using a page replacement
algorithm A, can be calculated as a sum of pages swapped out and swapped in.
This means the pages x and y in the third case of equation (3.2.1). The page y can be
ignored in analysis as the number of pages removed is normally some fixed fraction

7

of pages x in the long run [1]. The cost of a demand page replacement algorithm,
for theoretical purposes, is the number of page faults it generates, when processing
a given reference string.

3.3 Program behaviour

For useful formal analysis of a page replacement algorithm, a formal model for pro-
gram behaviour is also required. Program behaviour models how reference strings
are generated by a program.

Much of the work in the field of memory management has included the search
for a good model for program behaviour. The nature of the work has shifted from
complex mathematical models, like in [5], to more straightforward method of trying
to handle real world problem workloads better, as in [7] (ARC, Chapter 4.11), [2]
(CAR and CART, Chapters 4.12 and 4.13), [9] (Token-ordered LRU, Chapter 4.14)
and [11] (CLOCK-Pro, Chapter 4.15).

3.3.1 Working set

The application memory usage, or demand, can also be modeled with working
sets [4]. Informally, a working set consists of the smallest collection of pages that are
needed in main memory for the program to execute efficiently. Denning defines the
working set as a set of pages referenced during last θ units of time. Later Denning,
together with Donald R. Slutz, developed the concept into a generalized working
set, which consist of pages whose retention cost is not more than ξ. The retention
cost of a page is any function, that increases monotonically between references and
starts always from 0 after a reference [5].

The working set may vary greatly during the life time of a program. For exam-
ple, some compilers first generate intermediate presentations of the program source
code compiled, and then produce the actual target machine code from that. This is
usually implemented as multiple phases, which all use different compiler code and
different data, resulting in different working sets.

In [5] Denning makes an argument for local working sets policy, over global LRU
or CLOCK policies (CLOCK and LRU will be introduced in Chapters 4.6 and 4.5).
Time has, however, shown that the presented arguments were not valid or have
become invalid for contemporary software and hardware, as variants of CLOCK

8

policy have long been dominant in general purpose operating systems [9].
Although formal policies based on working set have not survived, the informal

working set concept has. It is still actively used to describe desired and undesired
situations in page replacement, but its exact meaning varies slightly. This is partly
due to the changed balance in cost caused by contemporary hardware and change
in the nature of computer usage, to more interactive and versatile.

3.3.2 Locality

The tendency of referencing to some pages more frequently than others is called
locality [6]. Locality is an important principle in virtual memory systems as it is
found practically in all real world programs. Locality in programs is one of the
reasons that LRU works reasonably well. The working set described earlier captures
some properties of locality in a program and can be used to find its locality set.
Another measure of locality is reuse distance of pages. Reuse distance is the number
of distinct page accessed between current access and previous access of a page. Most
LRU-friendly workloads have strong locality [9].

3.3.3 l-order non-stationary Markov process

A model, in which a program generates a reference string by l-order non-stationary
Markov process, is presented in [1].

A program is defined as

P = (N, U, u0, f , p),

where N is a set of pages, used by the program, U the set of states of the program
and f : N ×U → U is the state transition function. p(x, u, t) is the probability that
a page x is referenced at time t, when the program is in state u. A program is said
to be l-order, when |U| = l + 1, and non-stationary, when the probability p depends
on time t.

For a page replacement algorithm to handle l-order program optimally, it needs
to model all l + 1 states of the program in its own control states [1]. So generally,
an optimal page replacement solution for an l-order program is not practical, even
when handling page replacement for a single program.

9

3.3.4 Stochastic models

Independent Reference Model (IRM) and LRU Stack Model (LRUSM) are exam-
ples of stochastic models [5]. In IRM, the references are considered independent
random variables with a common stationary distribution:

Pr[r(t) = i] = ai,

where r(t) is the reference at time t. So the probability of each distinct page is fixed.
This leads to a geometric inter-reference distribution,

hi(k) = (1− ak)k−1ai,

where hi(k) is the probability that two references to the page i are k references apart.
LRUSM is based on the behaviour of LRU algorithm (See Chapter 4.5). After each

reference, LRU stack is defined as a list of referenced pages ordered by most recent
reference. Stack distance of a reference, d(t), is the position of the referred page in
the LRU stack before the reference. LRUSM assumes that distances are independent
random variables with a common stationary distribution:

Pr[d(t) = i] = bi for all t,

LRU algorithm is optimal, if

b1 ≥ b2 ≥ ... ≥ bi ≥ ...

LRUSM is slightly better in practice than IRM. However, neither of these models
match observations of real programs.

3.3.5 Phase behaviour

A program that has slow-drifting locality follows the phase behaviour model [5].
The basis of this model is the idea that the locality of the program changes slowly
over the course of execution. As a consequence, the model considers relatively stable
phases more important than rapid changes in locality in program execution. As
Denning notes in [5], this assumption is wrong.

3.3.6 Phase-transition model

A good model for real world program behaviour is Phase-transition model [5].
In phase-transition model, program execution consists of distinct phases and short

10

transitions between them. During a phase the working set is relatively stable and
other models, like LRUSM, can be used independently inside the phases. The phase-
transition model can be simulated by generating locality-set/holding-time pairs
(S, T), where the locality-set S is the references in phase and is of length T [5].
Transition is the small period before and after changing locality-set. Page faults
are categorized as either phase faults or transition faults.

Measurements have shown that most (ca. 98%) of the programs virtual time is
spent in phases. However, 40–50% of the page faults happen during short transition
periods [5]. It is therefore very important for a page replacement algorithm to han-
dle these transitions as well as possible. There is also a difference in the distribution
of these page faults. Phase faults show strong serial correlation, but the distribution
of the transition faults is closer to a geometric distribution [5].

3.4 Typical memory usage patterns

The changes in the working set make up a memory usage pattern. There are sev-
eral identified memory usage patterns. Page replacement algorithms are usually
analyzed by using a set of programs that contains a representative from all major
memory usage patterns.

3.4.1 Correlated access

Many programs refer to pages two or more times quickly and then do not use that
page for a long time. This is known as correlated access [2]. In many traditional re-
placement algorithms, as CLOCK (See Chapter 4.6), correlated accesses cause pages
to be falsely identified as hot, i.e. worth to keep in main memory for longer. As
the correlated access pattern is very common in programs, the more recent algo-
rithms contain some mechanism for filtering them out. CART in Chapter 4.13 and
CLOCK-Pro in Chapter 4.15 are good examples.

3.4.2 Scan

The scan pattern consists of a sequential one time pass over pages. In scan, a page
has many correlated accesses in a short period of time and then it is not accessed
for a long time. Scan is performed on a large number of pages in relatively short
time. Typical processes, that causes scanning, are time triggered maintenance jobs,

11

like daily backup, and user initiated one time actions, like searching a set of files
for a matching string. Scanning may cause pushing of frequently used pages out of
main memory, if the scanned pages are misclassified as hot or active pages. This is
generally considered undesirable and the page replacement algorithm behaviour is
usually tested for scanning. The page replacement algorithm, that does not allow
scanning to push frequently used pages out of main memory, is said to be scan
resistant. Scan is a typical LRU-unfriendly pattern [9]

3.4.3 Loop

The loop pattern is, like name the suggests, sequential, repeated pass over a set of
pages. The loop pattern is also an LRU -unfriendly pattern [9]. In the worst case
scenario, where loop accesses more pages than fit in memory, LRU will have zero
hit rate and page fault happens every time the next page in loop is accessed.

3.5 Page replacement policies: global and local

A page replacement algorithm can be either global or local. Local replacement
means that replacement candidates are searched only from pages, that belong to the
page faulted process. This effectively means that, if the working set of the process
does not fit to the memory reserved for it, the process will page fault constantly.
This generally leads to poor usage of memory resources. In global page replace-
ment all processes compete for the main memory and the replacement algorithm
automatically adapts to changing working set sizes of running processes.

3.6 Goals

As in many algorithms, performance is the main goal in developing page replace-
ment algorithms. There are many factors that affect the performance of page re-
placement. As computer is implemented in physical hardware, the features of the
hardware change greatly the balance of different trade-offs. In fact, it is the evolution
of hardware that has made page replacement algorithm research needed again [11].
The amount of main memory has increased far more than the speed of reading and
writing disks (i.e. secondary memory). So if an application has been swapped to a
disk, the time to return it to main memory has increased significantly because the

12

memory usage of applications has increased more than the speed of disks. As a
consequence, many operations users normally do, like starting the computer, have
become slower. This leads to an important goal of minimizing disk IO and IO la-
tency. Minimizing disk IO and keeping IO latency low also frees disk capacity for
actual application work, and keeps the memory subsystem from disturbing latency
sensitive applications, like media players, too much.

13

4 Page replacement algorithms

4.1 Optimal replacement

The Optimal page replacement algorithm is easy to describe. When memory is full,
you always evict a page that will be unreferenced for the longest time [3]. This
scheme, of course, is possible to implement only in the second identical run, by
recording page usage on the first run. But generally the operating system does not
know which pages will be used, especially in applications receiving external input.
The content and the exact time of the input may greatly change the order and timing
in which the pages are accessed. But nevertheless it gives us a reference point for
comparing practical page replacement algorithms. This algorithm is often called
OPT or MIN.

Using the formal model specified earlier, the optimal page replacement algo-
rithm can be defined as

g(S, t, rt+1) =

{
(S, t), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {y}, t + 1), if rt+1 /∈ S,

where y has the longest time to the next reference for all pages in S. The page re-
placement decision depends only on the time of reference and the control state is
fully described as t. In this algorithm and following algorithms, the size of S is m
pages.

4.2 Random replacement

Probably the simplest page replacement algorithm is the replacement of a random
page. If a frequently used page is evicted, the performance may suffer. For ex-
ample, some page, that contains program initialization code which may never be
needed again during the program execution, could be evicted instead. So there are
performance benefits available with choosing the right page [3].

Using the formal model specified earlier, the random page replacement algo-

14

Figure 4.1: In NRU, the page to be evicted is selected from lowest class that contains
pages.

rithm can be defined as

g(S, q0, rt+1) =

{
(S, q0), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {y}, q0), if rt+1 /∈ S,

where y is selected randomly from all pages in S. The algorithm has only one control
state as the replacement decision is done identically every time.

4.3 Not Recently Used (NRU)

In the NRU algorithm [16], pages in main memory are classified based on usage dur-
ing the last clock tick (See figure 4.1). Class 0 contains pages that are not referenced
nor modified, Class 1 pages that are not referenced but modified, Class 2 pages that
are referenced but not modified, and Class 3 contains pages that are both referenced
and modified. When a page must be evicted, NRU evicts a random page from the
lowest class that contains pages.

15

Figure 4.2: FIFO

Using the formal model specified earlier, NRU page replacement can be defined
as

g(S, qt, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {y}, qt+1), if rt+1 /∈ S,

where y is a random page from the lowest class that has pages. The control state is
defined as collection of classes qt = {C0t, C1t, C2t, C3t}. So if C0t = ∅ and C1t 6=
∅ page y ∈ C1t and qt+1 = {C0t+1, C1t+1, C2t, C3t}, where C0t+1 = {rt+1} and
C1t+1 = C1t ∪ rt+1 \ {y}.

NRU is relatively simple to understand and implement. Implementation has a
relatively low overhead, although the reference bit needs to be cleared after every
clock tick. Performance is significantly better compared to pure random selection in
general usage.

4.4 First-In, First-Out (FIFO)

The simple First-In, First-Out (FIFO) algorithm [16] is also applicable to page re-
placement. All pages in main memory are kept in a list where the newest page is
in head and the oldest in tail. When a page needs to be evicted, the oldest page is
selected (page Z in figure 4.2), and the new page is inserted to head of the list (page
A in figure 4.2).

16

Using the formal model specified earlier, FIFO page replacement can be defined
as

g(S, qt, rt+1) =

{
(S, qt), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {ym}, qt+1), if rt+1 /∈ S.

The control state is defined as qt = (y1, y2, ..., ym).
Implementation of FIFO is very simple and it has a low overhead, but it is not

very efficient. FIFO does not take advantage of page access patterns or frequency.
Most applications do not use memory, and subsequently the pages that hold it, uni-
formly, causing heavily used pages to be swapped out more often than necessary.

4.5 Least Recently Used (LRU)

The Least Recently Used (LRU) [16] algorithm is based on generally noted memory
usage patterns of many programs. A page that is just used will probably be used
again very soon, and a page that has not been used for a long time, will probably
remain unused. LRU can be implemented by keeping a sorted list of all pages in
memory. The list is sorted by time when the page was last used. This list is also
called LRU stack [13]. In practice this means that on every clock tick the position
of the pages, used during that tick, must be updated. As a consequence, the imple-
mentation is very expensive, and not practical in its pure form. Updating on every
clock tick is also an approximation, as it does not differentiate between two pages
that were referenced to during the same clock tick [16].

Using the formal model specified earlier, LRU page replacement can be defined
as

g(S, qt, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {ym}, qt+1), if rt+1 /∈ S,

where ym is least recently used page in S. Control state is defined as

qt = (y1, y2, y3..., ym),

where resident pages are ordered by their most recent reference, y1 being the most
recently referenced and ym the least recently referenced.

LRU is relatively simple to implement and it has constant space and time over-
head for given memory. LRU uses only page access recency as the base of the deci-
sion. As discussed earlier, many common memory access patterns follow the princi-
ple of locality and LRU does work well with these. Typically, workloads with strong

17

locality have the most page references with reuse distance small enough to allow
these pages to fit in the main memory [11]. LRU is good also for stack distances
that have common stationary distribution [5]. LRU is even optimal when LRU stack
depth distribution is assumed in page referencing [2]. LRU adapts fast to changes in
the working set [13] and works well with workloads with no clear large-scale access
patterns [7].

LRU is not without problems. The LRU list, or stack, is a shared structure and
must be protected from concurrent access. Especially in virtual memory, where it
is updated on every reference, it will severely limit the performance [2]. LRU also
does not take page use frequency into account. If a frequently used page has slightly
larger inter reference interval (or reuse distance), than can fit to main memory, the
page will always be evicted. This also makes LRU extremely vulnerable to scan
access pattern [7], [9], [2]. In general, LRU does not work well with workloads that
have clear large-scale access patterns until the pages belonging to the pattern fit to
the main memory [7]. While stack distances with common stationary distribution
work well with LRU, most real world programs have strong correlation among stack
distances [5]. Non-uniform page referencing in general is also not handled well
by LRU [13] and it also does not support programs following the phase-transition
model [5]. When used as a global policy, program execution interaction may cause
programs pages to fall further in the LRU stack as a result of the program itself page
faulting, which is again the principle of LRU [9]. In other words, pages are falling
undesirably low in LRU stack because the program’s virtual time has stopped for
the duration of the page fault.

In LRU-k [14], the LRU algorithm is improved by using the time of the kth most
recent reference, instead of the most recent reference to page. This gives LRU a basic
scan resistance as a page must have been used twice recently in order to be high in
the LRU stack.

4.6 Second Change and CLOCK

The second change [16] algorithm makes slight modification to FIFO algorithm. In-
stead of swapping out the last page, the referenced bit is checked. If the bit is set,
the page is then moved to the head of the list as if it had just arrived and the search
continues (See figure 4.3). If all pages are referenced then the oldest page is evicted
like in FIFO.

18

Figure 4.3: Second change

The CLOCK algorithm deserves a note as an implementation detail. CLOCK
implements the second change so that pages are kept in a circular list with a pointer
to the oldest page. When evicting, only the pointer needs to be updated and there is
no need to move pages around (See figure 4.4). As mentioned earlier, CLOCK and
its variants have been dominant in general purpose operating systems for a long
time [9].

Using the formal model specified earlier, the second change algorithm can be
defined as

g(S, q, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {yj}, qt+1), if rt+1 /∈ S,

where yj is the first of the maintained circular FIFO list, which does not have the ref-
erenced bit set. The control state is defined as a circular FIFO list qt = (y1, y2, ..., yi..., ym),
where yi is ith most recently referenced page and pages processed before the evicted
page yj are placed to the head of the list.

Second change algorithm tackles the basic problem of FIFO by literally giving
the page a second change before swapping it out. It can also be though as a one-bit
approximation of LRU. The second change removes the problem of keeping LRU
list updated, but it also shares the rest of the problems of LRU [2], [9].

19

Figure 4.4: CLOCK in operation

4.7 Not Frequently Used (NFU)

Not Frequently Used (NFU) [16] is another approximation of LRU. In NFU, every
page has an associated usage counter which is incremented on every clock tick the
page is used. When a page needs to be evicted, the page with the lowest counter
value is selected. The downside of this approach is that once some process uses
some pages heavily, they tend to stay there for a while, even if they are not actively
used anymore. This program model of doing computation in distinct phases is very
common. Also programs, that have just been started, do not get much space in the
main memory as the counters start from zero.

Using the formal model specified earlier, NFU algorithm can be defined as

g(S, qt, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {ym}, qt+1), if rt+1 /∈ S,

where ym is the least frequently used page in S. Control state is defined as

qt = ((y1, c1), (y2, c2), (y3, c3)..., (ym, cm)),

where yi are resident pages ordered by the usage counters, ci, and y1 being the most
frequently referenced page and ym the least frequently referenced page.

20

4.8 Aging

With few modifications to NFU we get an aging algorithm that is a much better ap-
proximation of LRU. Instead of incrementing an integer counter, a bit presentation
of unsigned integer can be used. On every clock tick the counter value of each page
is bit shifted to right, and the referenced bit of the page is inserted at the left. While
the integer value of the counter is still used to make the selection of the page to be
evicted, the counter value behaviour favours pages that are referenced recently, and
pages that were heavily used few seconds ago, but not anymore, will get evicted
sooner. The downside in this is that as the counter decrements to zero quickly, and
we have no way of knowing when two pages, with zero as counter value, have been
used. The other might have just been decremented to zero, while the other may have
been unused for a long time. In this case a random selection, with its performance
implications, is performed [16].

4.9 Two Queue (2Q)

The two Queue, or 2Q, algorithm [12] tries to improve the detection of real hot pages
and remove cold pages faster from the main memory. 2Q works by maintaining two
separate lists. One is maintained as an LRU list, Hot, and the other as FIFO, F. The
list F is further partitioned in to two parts Fin and Fout. The Fin list contains pages
in main memory, while the Fout list contains only information of pages, not the
actual contents. When page is first accessed, it is placed on the head of the Fin list.
The position of the page, in the Fin list, is left untouched while it remains there. As
new pages are used, Fin list will become full. When this happens the last page in
Fin list is reclaimed next, but the information of the page is inserted to the head of
the Fout list (page X in figure 4.5). If the page, now on the Fout list, is used, space
is reclaimed for it and it is inserted to the head of the Hot list (page Y in figure 4.5).
When the Fin list is not full, reclaiming is done from the tail of the Hot list. The page
reclaimed from the Hot list is not inserted to any list, as it has not been used for a
while (page Z in figure 4.5). Remember, that the Hot list is maintained as an LRU
list.

The 2Q algorithm has two parameters, Kin and Kout. Kin is the maximum size
of Fin and Kout is the maximum size of Fout. Authors note that setting these pa-
rameters is potentially a tuning target, but recommend reasonable values 25 % and

21

Figure 4.5: Operation of 2Q

50 %, of page frame count, for Kin and Kout, respectively.
Using the formal model specified earlier, 2Q algorithm can be defined as

g(S, qt, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {y}, qt+1), if rt+1 /∈ S,

where y is the last page on either the Hot list or the Fin list. The control state is
defined as qt = {Hot, Fin, Fout}, and each list is maintained like described earlier.

2Q algorithm targets to fix a typical memory access pattern by being scan resis-
tant. Simple LRU list is easily trashed by scanned pages, that have many correlated
accesses within small time, but are not needed after that. This is achieved by mov-
ing only truly hot pages to the main LRU list and allowing scanned pages to exit
quickly without effect on the hottest working set. 2Q is an low overhead approxi-
mation of LRU-2 presented in [14] and the Kin parameter is essentially the same as
CIP (Correlated Information Period) parameter in LRU-2 [13] .

22

Figure 4.6: Sequence detection in SEQ

4.10 SEQ

The SEQ algorithm [7] by Gideon Glass and Pei Cao attacks rather directly against
sequential memory access, an LRU unfriendly memory access pattern. SEQ works
by detecting sequences of page faults within single processes address space and per-
forms pseudo Most Recently Used (MRU) replacement. MRU tries to approximate
optimal replacement algorithm. When no appropriate sequences are detected, SEQ
falls back to LRU replacement.

A sequence is defined by four values: PID, low, high and dir. High and low
are pages with highest and lowest virtual addresses, respectively. PID identifies
the process and dir identifies which direction the sequence is. When a page fault
occurs, SEQ checks if the faulted page is adjacent to a sequence, with appropriate
direction, belonging to the process. If so, the page is catenated to that sequence. If
the extended sequence overlaps an existing sequence, the overlapped sequence is
deleted. If the faulted page is in the middle of a sequence, the sequence is broken
into two sequences. One sequence includes pages from the low of the sequence to
page before faulted page, if direction is up, and from the page next to the faulted
page, when the direction is down. The other sequence consists only of the faulted
page without direction. Finally, if none of the above apply, the faulted page forms a
directionless sequence by itself.

A sequence detection is shown in figure 4.6. The first three faulted pages are
detected as a sequence, where 1 is low, 3 is high and the direction is up. The fourth
page faulted is a directionless sequence.

SEQ uses the detected sequences to find pages suitable for eviction. First, SEQ

23

Figure 4.7: SEQ: Selecting a page to evict

chooses a sequence, among sequences longer than L pages, that has most recent
time of the Nth most recent fault in the sequence. For example, if L is 3, N is 2 and
there are two sequences presented in figure 4.7, sequence A is selected, because the
second page of the sequence has timestamp 220 and the second page of sequence
A has 200. From the selected sequence, SEQ evicts the first resident page, that is
at least M pages from the head of the sequence. The head of a sequence is the
direction of the sequence, usually the most recent page faulted to the sequence. If M
is 2, the third page from the head of sequence A is evicted (the slightly darker page
in figure 4.7), in previous example, because the second page is already swapped
out. If no suitable sequences are found, SEQ performs LRU replacement. Authors
of the algorithm suggest that appropriate values for L, N and M are 20, 5 and 20
,respectively [7].

Using the formal model specified earlier, SEQ algorithm can be defined as

g(S, qt, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {y}, qt+1), if rt+1 /∈ S,

where the state q can be defined as collection of sequences and an LRU list for fall
handling, {lru, seq1, seq2, ...}. The page y is selected as described above.

4.11 Adaptive Replacement Cache (ARC)

The Adaptive Replacement Cache (ARC) [13] algorithm, designed by Nimrod Megiddo
and Dharmendra S. Modha, provides an improvement over LRU based algorithms

24

Figure 4.8: ARC: Lists (i.e. the cache directory)

by taking both recency and frequency into account. This is accomplished by main-
taining two lists, L1 and L2 and remembering the history of the pages. The two lists
together are called the cache directory. The list L1 is used to capture the recency and
the list L2 to capture the frequency. Both L1 and L2 are kept at roughly the size of the
number of page frames in the main memory (=c), so the history of at most c pages,
not in the main memory, is remembered. The lists L1 and L2 are partitioned into two
lists, T1, B1, and T2, B2, respectively (See figure 4.8). T1 contains in-cache pages that
have been accessed only once, and T2 pages that have been accessed more than once,
while on lists. Consistently, list B1 stores the history of pages evicted from the list
T1, and B2 stores the history of pages evicted from the list T2. The algorithm has one
integer parameter, p, which is the target size for T1. As the size of the main memory
is c, the target size of the list T2 is implicitly defined as c − p. This parameter p is
the balance between recently used and frequently used pages. It is desirable for the
algorithm to perform well under various , changing workloads and therefore ARC
includes automatic adaptation of the balance between the recency and the frequency
by varying the parameter p.

The eviction policy in ARC is simple. If |T1| > p, the least recently used page
in T1 is evicted, and if |T1| < p, the least recently used page in T2 is evicted. The
eviction of a page, when |T1| = p, is little more complex and, as the authors note,
somewhat arbitrary. This situation is divided into three cases and it uses information
of the page that caused the eviction. If the page is in B1 or not found in B1 ∪ B2, the
least recently used page in T2 is evicted. If the page is in B2, the least recently used
page in T1 is evicted. The placement policy is even more simple. If the page is

25

found in the lists, it is placed to head of list T2, otherwise it is placed to the head
of the list T1. When swapping in a new page (i.e. not in the lists), some history
page needs to be removed. If |T1 ∪ B1| = c and B1 is not empty, the least recently
used page in B1 is removed and if B1 is empty, the least recently used page in T1 is
swapped out and removed from the list. If |T1 ∪ B1| < c and the history is full (i.e.
|T1|+ |B1|+ |T2|+ |B2| = 2c), the least recently used page in B2 is removed.

The T1 target size parameter, p, is continuously adapted to better serve the cur-
rent workload. The basic idea of the adaption is to favour either recently used pages
or frequently used pages. Adaptation is automatic and the direction is based on the
cache hits to lists B1 and B2, while the amount of adaptation is based on the relative
size of lists B1 and B2. If the requested page is found in B1, the parameter p is in-
creased. Likewise, if the requested page is found in B2, the parameter p is decreased.
The amount of increase is 1, if |B1| ≥ |B2|, and |B2|/|B1| otherwise. Similarly, the
amount of decrease is 1, if |B2| ≥ |B1| and |B1|/|B2| otherwise. Naturally, p is lim-
ited to the range [0− c]. Increasing p means that more main memory is reserved
for recently used pages, thus favouring them, while decreasing p favours frequently
used pages.

Using the formal model specified earlier, ARC algorithm can be defined as

g(S, qt, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {y}, qt+1), if rt+1 /∈ S,

where y is the least recently used page of the list T1 or the list T2. The state q can
be defined simply as set of four lists and the target size parameter {T1, B1, T2, B2, p}
which are all maintained as described before.

ARC has several good qualities. It has constant complexity per request, it uses
both the recency and the frequency of page usage and it balances between them au-
tomatically. Scan resistancy is provided by differentiation of frequently used pages
from pages that have only been used once recently. The scanned pages enter only
the list T1 and are removed relatively quickly, as they are not requested for a second
time. Pages, that need protection from scanning, like program text, are naturally lo-
cated in the list T2, which remains unaffected by processing of scanned pages. Pages
with correlated accesses may, however, enter T2 undesirably. Unfortunately, ARC is
designed for databases and has operations on every page request, and is therefore
unsuitable for virtual memory. ARC has, however, been an important inspiration
for two other algorithms, CAR and CART (See chapters 4.12 and 4.13), which are
suitable for a high throughput environment, such as virtual memory.

26

Figure 4.9: CAR style clocks

4.12 CLOCK with Adaptive Replacement (CAR)

CLOCK with Adaptive Replacement (CAR) [2] algorithm, and its variation CAR
with Temporal filtering (CART) [2], presented in chapter 4.13, are strongly inspired
by ARC (See chapter 4.11).

As in ARC, cache directory of 2c pages is kept, when the main memory can hold
c pages. The directory is also partitioned to two lists L1 and L2, which are further
partitioned to T1 and B1, and T2 and B2, respectively. The lists are maintained much
in the same fashion as in ARC, but there is one big difference to ARC. The strict LRU
ordering of pages in T1 and T2 is changed to a second change (or more precisely
CLOCK, see figure 4.9). This gives the advantage of requiring only the referenced
bit to be set on a page access, which is already handled by MMU, and thus action is
only needed on page fault.

On page fault, the list T1 is scanned until a page with the referenced bit unset is
found. Let T′1 be the pages that the scan passed. Now, the eviction policy of CAR is
as follows. If |T1 \ T′1| ≥ p, a page from T1 is evicted. Otherwise, a page from T′1 ∪ T2

is evicted. The placement policy is exactly as in ARC; if the page is not found in the
history (i.e. B1 ∪ B2) it is placed to T1, otherwise it is placed to T2. The history is

27

managed by removing a page from B1, if |T1 ∪ B1| = c, and from B2 otherwise.
CAR is rather straightforward adaption of ARC for a high throughput environ-

ment, as it removes the overhead of maintaining strict LRU lists.
The formal model for CAR is very similar to ARC and can be defined as

g(S, qt, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {y}, qt+1), if rt+1 /∈ S,

where y is the least recently used page of the list T1 or the list T2. The state q can be
defined simply as a set of four lists and the target size parameter {T1, B1, T2, B2, p}
which are all maintained as described above.

4.13 CAR with Temporal filtering (CART)

CAR with Temporal filtering (CART) [2] is a variation of CAR (See chapter 4.12)
by same authors. To CAR, CART adds a filter to better handle correlated accesses,
which are typical in virtual memory.

In CAR, a page is moved from T1 to T2 if it has been used while on T1. CART
changes this by requiring, that either |T1| ≥ min(p + 1, |B1|) or the page must first
enter B1, before it can be put to T2. This means, that a frequently used page will
stay on the ”recently used” list, if it is used often enough. This prevents pages with
few correlated accesses to enter T2, where it would possibly be much longer than
necessary (for example, a scan that uses each page more than once). Another major
difference is, that a page from T2 is moved back to T1, if it has the referenced bit set.
These combined mean, that the list T1 acts as a temporal locality window.

CART implements filtering by marking each page in the cache directory as either
S, for short-term utility, or L, for long-term utility (See figure 4.10). Every page in B1

is marked as S and every page in T2 ∪ B2 is marked as L. Pages in T1 can be marked
as S or L. When a page enters the cache directory for the first time, it is marked as S.
The page stays in T1 as long as it has the referenced bit set when processed. While
on T1, the page is changed from S to L if |T1| ≥ min(p + 1, |B1|). A page marked
as L is moved to T2 if it has the referenced bit unset when processed. Pages in T2

are moved to T1, if they have the referenced bit set. If the page is found in B1 ∪ B2,
it is marked as L and placed to T1. Naturally, every time a page is processed, the
referenced bit is unset.

The history page from B1 or B2 is removed when |B1|+ |B2| = c + 1. If |B1| >

28

Figure 4.10: CART style clocks

max(0, q) or B2 is empty, the least recently used page from B1 is removed. Otherwise,
the least recently used page from B2 is removed.

The adaption in CART is done by maintaining a target size p for T1, and addi-
tionally a target size q for B1. Also the number of pages marked as S and as L are
maintained by nS and nL, respectively. Like in CAR and ARC, p is increased when
the requested page is found in B1 and decreased when it is found in B2. The amount
of increase is nS/|B1|, if nS > |B1|, and 1 otherwise. Similarly, the amount of de-
crease is nL/|B2|, if nL > |B2|, and 1 otherwise. Again, the value of p is limited
to the range [0− c]. Target size q for the list B1 is maintained as follows. If the re-
quested page is found in B2 and |T2|+ |B2|+ |T1| − nS ≥ c, the value of q is set as
q = min(q + 1, 2c− |T1|). When moving a page from T1 to T2, the value of of q is set
as q = max(q− 1, c− |T1|).

The formal model for CART is very similar to ARC and can be defined as

g(S, qt, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {y}, qt+1), if rt+1 /∈ S,

where y is the least recently used page of list T1 or list T2. The state q can be defined

29

simply as a set of four lists and the target size parameters {T1, B1, T2, B2, p, q} which
are all maintained as described above.

4.14 Token-ordered LRU

Song Jiang and Xiaodong Zhang [11] noticed one significant problem in the global
LRU replacement policy. A process may not be using pages belonging to its working
set just because it is page faulting. A single page fault may cause one IO operation
for reading a page from the secondary memory and another for writing a dirty page
to it. This can lead to a significant delay in the execution of the process and to mark-
ing real working set pages of the process as candidates for eviction. Situation gets
worse, if these pages are then actually evicted, as the process is effectively causing
its own memory to be evicted. These working set pages, that are marked as candi-
dates because the process is page faulting, are called false LRU pages. Eviction of
these false LRU pages can cause serious trashing in the system.

Token-ordered LRU [11] uses a system wide token to prevent false LRU pages
from being evicted. When no main memory is available and a process tries to allo-
cate more memory, the process grabs a token before pages for eviction are searched.
Now, that candidates for eviction are searched, the pages, belonging to the process
holding the token, are excluded. The pages of the token holder are strongly pro-
tected from eviction, and thus allows it to be executed with working set in main
memory. This guarantees that at least one process continues to execute efficiently
and prevents trashing in momentarily memory demand peaks, which are typical
when, for example, system maintenance operations are performed. The token is
always first taken by the process that caused the page fault. As the execution con-
tinues, the process holding the token is monitored and other processes can compete
for the token. If no pages from any other process can be evicted, pages from the
process holding the token are evicted and the process may lose the token. Also, if
the process holds the token for too long, it is released. Overall, the target is to give
the token to a short lived process or to a process that holds lots of resources in the
hope that it will finish execution and release all the resources it holds.

Token-ordered LRU is not actually an algorithm itself, but an addition to LRU
based algorithms to prevent trashing caused by program interaction. Implementa-
tion of token-ordered LRU was officially adopted in the Linux kernel 2.6.10.

30

Figure 4.11: CLOCK-Pro style clock (The graphical style used in this thesis is
adapted from [9])

4.15 CLOCK-Pro

CLOCK-Pro replacement algorithm [9] attacks weaknesses of LRU by changing the
criteria of selecting pages for eviction, while maintaining the simple single circular
list approach of CLOCK algorithm. Instead of using recency as the main criteria,
as LRU does, CLOCK-Pro uses reuse distance. As discussed earlier, reuse distance
is defined as the number of distinct page accesses between current access and pre-
vious access of a page. CLOCK-Pro was inspired by LIRS [10] I/O buffer cache
replacement algorithm.

Using the same strategy as other algorithms, such as 2Q, ARC, CAR and CART,
CLOCK-Pro keeps information of swapped out pages for some time. It uses that
information to detect the reuse distance of the swapped out pages. However, in-
stead of maintaining separate lists of resident and non-resident pages, like 2Q does,
CLOCK-Pro keeps all pages in the same clock.

CLOCK-Pro keeps track of all pages in the main memory and the same amount
of pages, that are swapped out. The resident pages are divided to two types, hot

31

pages and cold pages. The number of hot pages is mh and the number of resident
cold pages is mc. The size of the total main memory, in pages, is m, which is equal
to mh + mc. Additionally, information of m non-resident pages is kept for the reuse
detection.

Instead of one clock hand, CLOCK-Pro has three hands (figure 4.11): hot, cold
and test.

In CLOCK-Pro a page has three basic states. A page can be either hot, cold, and
cold page with an additional flag indicating that it is in test period. When a new
page is inserted to the main memory it is marked as cold page in test period.

The page fault handling, presented in figure 4.12, is performed as follows. First,
the cold hand is used to find a page to be evicted. If the page pointed by the cold
hand has its reference bit set and it is not in test period, the reference bit is cleared,
test period is initiated and it is moved to the head. If the page is already in test
period, the referenced bit is cleared and it is promoted to a hot page. After this, the
hot hand is run once (the process of running the hot hand is explained later) and
running of the cold hand is then continued. If the page pointed by the cold hand
doesn’t have the reference bit set, it is evicted. If the evicted page is in test period
it is kept on the clock, otherwise it is removed from the clock. The cold hand skips
any hot pages it encounters. After a page is evicted, the cold hand is run to the next
resident cold page and stopped there. Next, the faulted page is handled.

If the faulted page is not on the list, it is placed to the head and its test period is
initiated. If the number of cold pages reaches the threshold (mc + m), the test hand
is run next (the running of the test hand is explained later). If the faulted page is in
the clock, it is promoted to a hot page, moved to head and the hot hand is run next.
If the faulted page is on list, it is promoted to a hot page and placed to the head.
After that, the hot hand is run next.

We will first handle running of the test hand. If the page pointed by the test hand
is resident and in test period, its test period is terminated. If it is in test period and
not resident, it is removed from clock, the test hand is run to the next cold page in
test period, and page fault handling is done. The test hand doesn’t touch any pages
that are not in test period.

Now we will go through the running of the hot hand. The hot hand clears the
referenced bit in hot pages that it passes and handles cold pages exactly like the test
hand does. If the page pointed by the hot hand does not have referenced bit set, it is
demoted to cold page and the hot hand is run to the next hot page, still handling the

32

Figure 4.12: CLOCK-Pro page fault handling

33

cold pages on the way, and stopped there. If the hot hand was run while searching
for a page to evict, the running of the cold hand is continued. Otherwise the page
fault handling is done.

There are few things worth to note. First, only a cold page can be swapped
out. Before a hot page is considered for eviction, it has to be demoted to a cold
page. A cold page is granted a test period when it is added to clock and when it
is, with reference bit set, passed by the cold hand. The test period of a cold page
is terminated when it is promoted to hot page or passed by either the hot hand
or the test hand. Second, the cold hand work handles cold pages exactly like in
basic CLOCK algorithm and is moved independently of the hot hand and the test
hand. The hot hand pushes the test hand as it performs work on behalf of the test
hand. The concept of reuse distance is achieved because all pages are kept in the
same clock and the ordering of the pages is only changed by the cold hand. This
guarantees that the relative reuse distance of all pages from the page pointed by the
cold hand to the tail of list are maintained as long as they are in the clock.

Significant parameter in CLOCK-Pro is the percentage of resident cold pages
from main memory. As the cold hand is mainly in charge of handling the resident
cold pages, setting mc near 100 percent of main memory size, causes the algorithm
to perform very similarly to basic CLOCK. When mc is small, the new pages do not
have much time to be reused before they are evicted.

CLOCK-Pro can be made adaptive by dynamically adjusting the balance of mc

and mh. Adaption is based on current reuse distance distribution. When a cold
page, whether resident or not, is accessed in its test period, the value of mc is incre-
mented by one. When a test period of a cold page, again whether resident or not, is
terminated, the value of mc is decremented by one.

Using the formal model specified earlier, CLOCK-Pro algorithm can be defined
as

g(S, qt, rt+1) =

{
(S, qt+1), if rt+1 ∈ S ∪ {∅},
(S ∪ {rt+1} \ {y}, qt+1), if rt+1 /∈ S,

where y is selected as described above . The state q can be defined as the three clock
hands and the parameter mc, {HandH, HandC, HandT, mc}which are all maintained
as described before.

In trace testing, authors found that CLOCK-Pro performs significantly better
than CLOCK and better than CAR with most workloads.

34

5 Empirical analysis

We have implemented nine algorithms for empirical analysis, OPT (Ch. 4.1), FIFO
(Ch. 4.4), CLOCK (Ch. 4.6), LRU (Ch. 4.5), 2Q (Ch. 4.9), ARC (Ch. 4.11), CAR (Ch.
4.12), CART (Ch. 4.13) and CLOCK-Pro (Ch. 4.15). Implementation of these algo-
rithms is done as offline replacement with demand paging policy. In this analysis,
we focus on the offline performance and thus the overhead of the algorithms is not
analyzed. It should, however, be noted, that OPT, LRU and ARC are not suitable
for real world implementation because of the overhead and because OPT requires
the full trace as a parameter. Trace data used (See Chapter 5.2) is very simple and
the results based on it can not be used as a real world performance indicator. The
source code of the implementation can be found in Appendix B.

5.1 Metrics

Offline performance of the algorithms is measured as page fault count and hit ratio.
Hit ratio (hr) is calculated as

hr = 100−mr.

Miss ratio (mr) is

mr = 100 ∗ ((#pf− #distinct)/(#refs− #distinct)),

where #pf is the number of page faults, #distinct is the number of distinct pages used
in the trace and #refs is the number of references in the trace.

Page fault charts give graphical overview of how the algorithm behaves com-
pared to the OPT algorithm.

5.2 Trace Data

Trace data is a reference string and consists of a sequence of page references to
virtual address space of a single process. Traces are both generated with scripts
(Chapter 5.3) and gathered from a real execution of a program (Chapter 5.4). The
generated traces are used to show some key differences in the algorithms. The real

35

execution trace is included more of as an example of what can be done, than for an
algorithm analysis.

5.3 Generated traces

Generated traces, used in the analysis, are short and are created using a simple script
(See Appendix C.1). The generation is based on the phase-transition model (See
Chapter 3.3.6) and typical memory usage patterns (See Chapter 3.4).

Each generated trace has a set of actively used pages (between hot_range_start
and hot_range_end in the DEFAULT section of the trace configuration file), called a
hot range. Pages from this range are referenced often throughout the trace. The
hot range represents the program text, stack and important data structures, that are
needed constantly throughout the execution of the modeled program. Therefore,
these are the pages, that are most likely valuable, to be kept in main memory all the
time. It is assumed that a good replacement algorithm identifies these pages as hot.

Trace generation script supports four type of phases, loop, scan, random and cor-
related, which each imitate the corresponding memory access pattern. Loop phase
generates given amount (ref_count) of references looping from range_start to range_end
with one reference per page. Scan phase generates ref_count references starting from
range_start with one reference per page. Random phase generates ref_count refer-
ences with pages uniformly random selected between range_start and range_end.
Correlated phase generates ref_count references starting from range_start with two
references per page. References to pages in hot range are inserted in each type of
phases.

In this analysis, all the generated traces are processed with 1000 pages of memory
(i.e. page frames).

5.3.1 Scan trace

Scan trace (See Appendix C.2) consists of a hot range and five phases. The first phase
is a loop, which overlaps the hot range. This is meant to stabilize the hot range, so
that the algorithms should be able to identify it in the second phase. The second
phase is a scan over previously unused pages. The third phase is the same loop as
in the first phase. The fourth phase is a small random phase with pages from the
range that was scanned in the second phase. Finally, the fifth phase is a scan over

36

unused pages.

Algorithm Ref count Page count Page faults Hit count Hit ratio

OPT 16175 7150 8031 8144 90.24 %
FIFO 16175 7150 11539 4636 51.37 %
CLOCK 16175 7150 9985 6190 68.59 %
LRU 16175 7150 10471 5704 63.20 %
2Q 16175 7150 9222 6953 77.04 %
ARC 16175 7150 8841 7334 81.26 %
CAR 16175 7150 8843 7332 81.24 %
CART 16175 7150 9310 6865 76.07 %
CLOCKPro 16175 7150 9535 6640 73.57 %

Table 5.1: Results on scan data

Results for each algorithm are in Table 5.1. Page fault charts are in Figures 5.1,
5.2, 5.3 and 5.4.

The results in Table 5.1 support the need for scan resistance. FIFO, CLOCK and
LRU lack scan resistance and perform very similarly, as can be seen in Figures 5.1
and 5.2. All other algorithms show clear advantage over FIFO, CLOCK and LRU,
and best performance is achieved with ARC and CAR. Most of the performance
differences can be found in the short loop phases in the trace, which can be observed
in the charts.

37

0 %

20 %

40 %

60 %

80 %

100 %

0 4 000 8 000 12 000

PF ratio

Time (references)

Scan data page fault ratio using FIFO

0 %

20 %

40 %

60 %

80 %

100 %

0 4 000 8 000 12 000

PF ratio

Time (references)

Scan data page fault ratio using CLOCK

Figure 5.1: Page fault ratio on scan data: FIFO and CLOCK

38

0 %

20 %

40 %

60 %

80 %

100 %

0 4 000 8 000 12 000

PF ratio

Time (references)

Scan data page fault ratio using LRU

0 %

20 %

40 %

60 %

80 %

100 %

0 4 000 8 000 12 000

PF ratio

Time (references)

Scan data page fault ratio using 2Q

Figure 5.2: Page fault ratio on scan data: LRU and 2Q

39

0 %

20 %

40 %

60 %

80 %

100 %

0 4 000 8 000 12 000

PF ratio

Time (references)

Scan data page fault ratio using ARC

0 %

20 %

40 %

60 %

80 %

100 %

0 4 000 8 000 12 000

PF ratio

Time (references)

Scan data page fault ratio using CAR

Figure 5.3: Page fault ratio on scan data: ARC and CAR

40

0 %

20 %

40 %

60 %

80 %

100 %

0 4 000 8 000 12 000

PF ratio

Time (references)

Scan data page fault ratio using CART

0 %

20 %

40 %

60 %

80 %

100 %

0 4 000 8 000 12 000

PF ratio

Time (references)

Scan data page fault ratio using CLOCK-Pro

Figure 5.4: Page fault ratio on scan data: CART and CLOCK-Pro

41

5.3.2 Loop trace

Loop trace (See Appendix C.3) consists of a hot range and five phases. The First,
third and fifth phases are loops over the same page range. The second phase is a
scan over unused pages. The fourth phase is a random phase with pages from a
range that partly overlaps with the loop range.

Algorithm Ref count Page count Page faults Hit count Hit ratio

OPT 27795 2678 6711 21084 83.94 %
FIFO 27795 2678 20518 7277 28.97 %
CLOCK 27795 2678 18065 9730 38.74 %
LRU 27795 2678 18863 8932 35.56 %
2Q 27795 2678 16163 11632 46.31 %
ARC 27795 2678 17569 10226 40.71 %
CAR 27795 2678 17056 10739 42.76 %
CART 27795 2678 16265 11530 45.91 %
CLOCKPro 27795 2678 10383 17412 69.32 %

Table 5.2: Results on loop data

Metrics for each algorithm are in Table 5.2. Page fault charts are in Figures 5.5,
5.6, 5.7 and 5.8.

Unlike in scan trace, there is a clear winner in loop trace. CLOCK-Pro has over
30 percent less page faults compared to next best algorithm, 2Q. In the Figures 5.6
and 5.8, we can clearly see, that both 2Q and CLOCK-Pro try to imitate the OPT
algorithm. CLOCK-Pro, however, succeeds significantly better, than 2Q, in it. Other
algorithms are unable handle the loop pattern efficiently.

42

0 %

20 %

40 %

60 %

80 %

100 %

0 5 000 10 000 15 000 20 000

PF ratio

Time (references)

Loop data page fault ratio using FIFO

0 %

20 %

40 %

60 %

80 %

100 %

0 5 000 10 000 15 000 20 000

PF ratio

Time (references)

Loop data page fault ratio using CLOCK

Figure 5.5: Page fault ratio on loop data: FIFO and CLOCK

43

0 %

20 %

40 %

60 %

80 %

100 %

0 5 000 10 000 15 000 20 000

PF ratio

Time (references)

Loop data page fault ratio using LRU

0 %

20 %

40 %

60 %

80 %

100 %

0 5 000 10 000 15 000 20 000

PF ratio

Time (references)

Loop data page fault ratio using 2Q

Figure 5.6: Page fault ratio on loop data: LRU and 2Q

44

0 %

20 %

40 %

60 %

80 %

100 %

0 5 000 10 000 15 000 20 000

PF ratio

Time (references)

Loop data page fault ratio using ARC

0 %

20 %

40 %

60 %

80 %

100 %

0 5 000 10 000 15 000 20 000

PF ratio

Time (references)

Loop data page fault ratio using CAR

Figure 5.7: Page fault ratio on loop data: ARC and CAR

45

0 %

20 %

40 %

60 %

80 %

100 %

0 5 000 10 000 15 000 20 000

PF ratio

Time (references)

Loop data page fault ratio using CART

0 %

20 %

40 %

60 %

80 %

100 %

0 5 000 10 000 15 000 20 000

PF ratio

Time (references)

Loop data page fault ratio using CLOCK-Pro

Figure 5.8: Page fault ratio on loop data: CART and CLOCK-Pro

46

5.3.3 Correlated accesses trace

Correlated accesses trace (See Appendix C.4) consists of page a hot range and five
phases. The first, third and fifth phases are scans with correlated accesses over the
same page range. The second phase is a plain scan over unused pages. The fourth
phase is a random phase with pages from a range that partly overlaps with the pages
used in correlated accesses.

Metrics for each algorithm are in Table 5.3. Page fault charts are in Figures 5.9,
5.10, 5.11 and 5.12.

Algorithm Ref count Page count Page faults Hit count Hit ratio

OPT 42420 5301 14881 27539 74.19 %
FIFO 42420 5301 20582 21838 58.83 %
CLOCK 42420 5301 20299 22121 59.59 %
LRU 42420 5301 19022 23398 63.04 %
2Q 42420 5301 17505 24915 67.12 %
ARC 42420 5301 18675 23745 63.97 %
CAR 42420 5301 23058 19362 52.16 %
CART 42420 5301 16446 25974 69.97 %
CLOCKPro 42420 5301 19648 22772 61.35 %

Table 5.3: Results on correlated data

Best performers in this trace are 2Q and CART. CLOCK-Pro suffers from adapta-
tion in the correlated access trace phases. The adaptation of CLOCK-Pro (See Chap-
ter 4.15) causes it to behave more like basic CLOCK, which can be confirmed from
Figures 5.9 and 5.12. Difference in CAR and CART can be seen in handling of the
correlated accesses, in Figures 5.11 and 5.12.

Interesting characteristic is the opposite spikes present in all charts. The spikes
are caused by the short scan in second phase. The correlated access scan in the first
phase uses the same pages, that are scanned in the second phase. The OPT algorithm
is able take this into account and keep them in main memory for the second phase.
Because of this, the OPT has a sudden decrease in the page fault ratio.

47

0 %

20 %

40 %

60 %

80 %

100 %

0 10 000 20 000 30 000

PF ratio

Time (references)

Correlated data page fault ratio using FIFO

0 %

20 %

40 %

60 %

80 %

100 %

0 10 000 20 000 30 000

PF ratio

Time (references)

Correlated data page fault ratio using CLOCK

Figure 5.9: Page fault ratio on correlated data: FIFO and CLOCK

48

0 %

20 %

40 %

60 %

80 %

100 %

0 10 000 20 000 30 000

PF ratio

Time (references)

Correlated data page fault ratio using LRU

0 %

20 %

40 %

60 %

80 %

100 %

0 10 000 20 000 30 000

PF ratio

Time (references)

Correlated data page fault ratio using 2Q

Figure 5.10: Page fault ratio on correlated data: LRU and 2Q

49

0 %

20 %

40 %

60 %

80 %

100 %

0 10 000 20 000 30 000

PF ratio

Time (references)

Correlated data page fault ratio using ARC

0 %

20 %

40 %

60 %

80 %

100 %

0 10 000 20 000 30 000

PF ratio

Time (references)

Correlated data page fault ratio using CAR

Figure 5.11: Page fault ratio on correlated data: ARC and CAR

50

0 %

20 %

40 %

60 %

80 %

100 %

0 10 000 20 000 30 000

PF ratio

Time (references)

Correlated data page fault ratio using CART

0 %

20 %

40 %

60 %

80 %

100 %

0 10 000 20 000 30 000

PF ratio

Time (references)

Correlated data page fault ratio using CLOCK-Pro

Figure 5.12: Page fault ratio on correlated data: CART and CLOCK-Pro

51

5.4 Real trace

The real trace presented here is gathered using updated vmtrace patch1. The exe-
cution was done by running Ubuntu 7.042 , with patched Linux kernel 2.6.22.23, in
Qemu 0.8.24.

The vmtrace gathers the reference trace by disabling all page table entries of the
process periodically. Disabling is done by clearing the present bit and setting the
disabled bit. Clearing the present bit causes a page fault on next reference to the
page. Setting of the disabled bit allows the rest of the virtual memory subsystem to
handle the disabled page normally.

The executed program was test.py (A.3), which was run using Python 2.5 5. The
trace was processed with 500 pages of main memory.

Metrics for each algorithm are in Table 5.4. Page fault charts are in Figures 5.13,
5.14, 5.15 and 5.16.

Algorithm Ref count Page count Page faults Hit count Hit ratio

OPT 1514886 6229 151062 1363824 90.40 %
FIFO 1514886 6229 352546 1162340 77.04 %
CLOCK 1514886 6229 577159 937727 62.16 %
LRU 1514886 6229 566656 948230 62.85 %
2Q 1514886 6229 369134 1145752 75.95 %
ARC 1514886 6229 555982 958904 63.56 %
CAR 1514886 6229 567009 947877 62.83 %
CART 1514886 6229 569615 945271 62.66 %
CLOCKPro 1514886 6229 266646 1248240 82.74 %

Table 5.4: Results on test.py data

Best performer in this trace is CLOCK-Pro. Surprisingly, FIFO takes the second
place, while 2Q is third. CLOCK, LRU, ARC, CAR and CART perform equally well,
although the charts are not identical.

1http://linux-mm.org/VmTrace
2http://ubuntu.com
3http://www.kernel.org
4http://fabrice.bellard.free.fr/qemu/
5http://www.python.org

52

0 %

20 %

40 %

60 %

80 %

100 %

0 400 000 800 000 1 200 000

PF ratio

Time (references)

Python alg data page fault ratio using FIFO

0 %

20 %

40 %

60 %

80 %

100 %

0 400 000 800 000 1 200 000

PF ratio

Time (references)

Python alg data page fault ratio using CLOCK

Figure 5.13: Page fault ratio on test.py: FIFO and CLOCK

53

0 %

20 %

40 %

60 %

80 %

100 %

0 400 000 800 000 1 200 000

PF ratio

Time (references)

Python alg data page fault ratio using LRU

0 %

20 %

40 %

60 %

80 %

100 %

0 400 000 800 000 1 200 000

PF ratio

Time (references)

Python alg data page fault ratio using 2Q

Figure 5.14: Page fault ratio on test.py: LRU and 2Q

54

0 %

20 %

40 %

60 %

80 %

100 %

0 400 000 800 000 1 200 000

PF ratio

Time (references)

Python alg data page fault ratio using ARC

0 %

20 %

40 %

60 %

80 %

100 %

0 400 000 800 000 1 200 000

PF ratio

Time (references)

Python alg data page fault ratio using CAR

Figure 5.15: Page fault ratio on test.py: ARC and CAR

55

0 %

20 %

40 %

60 %

80 %

100 %

0 400 000 800 000 1 200 000

PF ratio

Time (references)

Python alg data page fault ratio using CART

0 %

20 %

40 %

60 %

80 %

100 %

0 400 000 800 000 1 200 000

PF ratio

Time (references)

Python alg data page fault ratio using CLOCK-Pro

Figure 5.16: Page fault ratio on test.py: CART and CLOCK-Pro

56

6 Conclusions

The evolution of replacement algorithms shows two clear trends. First, the ana-
lyzing and proof of better performance has moved from mathematical analysis to
testing against real world program traces, and later even by implementing proto-
types on real operating systems. This trend shows how difficult it is to mathemat-
ically model the memory behaviour of programs. An important factor is also the
large amount and easy availability of important programs. The other clear trend
is the realization of the need for workload adaption. As Denning noted in [5], the
phase-transition model, a good high level model for program behaviour, shows the
importance of the transition phase to the replacement algorithm. This implies that
an algorithm that handles the transition phase (i.e. adapts) better will have better
performance on real programs.

The simple traces used in this thesis support the conclusions of the authors.
CART and CLOCK-Pro seem most promising algorithms and offer significant im-
provement over basic CLOCK.

Page replacement plays only a small part in overall performance of applica-
tions, but studies, like [2] and [9], have shown that the benefits are real. It certainly
seems like a worthwhile idea to further evaluate implementations of both CART and
CLOCK-Pro in real operating system. Linux development community has picked
this up and there are experimental implementations of both CART and CLOCK-Pro
available.

57

7 References

[1] Alfred V. Aho, Peter J. Denning and Jeffrey D. Ullman Principals of Optimal Page
Replacement Journal of the Association for Computing Machinery, Volume 18,
No. 1, January 1971

[2] Sorav Bansal and Dharmendra S. Modha CAR: Clock with Adaptive Replacement
FAST’04 - 3rd USENIX Conference on File and Storage Technologies, 2004

[3] L. A. Belady, A study of replacement algorithms for a virtual-storage computer, IBM
Systems Journal, Volume 5, Issue 2, pp. 78–101 (1966).

[4] Peter J. Denning, The working set model for program behavior, Communications of
the ACM, Volume 11 , Issue 5, pp. 323–333 (May 1968).

[5] Peter J. Denning, Working Sets Past and Present, IEEE Transactions on Software
Engineering, Volume 6 , Number 1, pp. 64–84 (January 1980).

[6] Peter J. Denning, The Locality Principle, In Communication Networks and Com-
puter Systems (J. Barria, Ed.) , Imperial College Press, pp. 43–67 (2006).

[7] G. Glass and P. Cao, Adaptive Page Replacement Based on Memory Reference Be-
havior, Proceedings of 1997 ACM SIG- METRICS Conference, May 1997, pp.
115-126.

[8] Mel Gorman, Understanding the Linux Virtual Memory Manager, Bruce Perens’
Open Source Series, Prentice Hall, 2004.

[9] Song Jiang, Feng Chen and Xiaodong Zhang, CLOCK-Pro: An Effective Improve-
ment of the CLOCK Replacement, USENIX Annual Technical Conference, 2005.

[10] Song Jiang and Xiaodong Zhang, LIRS: An Efficient Low Interreference Recency
Set Replacement Policy to Improve Buffer Cache Performance, In Proceeding of 2002
ACM SIGMETRICS, June 2002, pp. 31-42.

[11] Song Jiang and Xiaodong Zhang, Token-ordered LRU: an effective page replacement
policy and its implementation in Linux systems, Performance Evaluation 60 5–29,
2005.

58

[12] Theodore Johnson and Dennis Shasha. 2q: a low overhead high performance buffer
management replacement algorithm In Proceedings of the Twentieth International
Conference on very Large Databases, pp. 439-450, Santiago, Chile, 1994.

[13] Nimrod Megiddo and Dharmendra S. Modha ARC: A Self-tuning, Low Overhead
Replacement Cache USENIX File and Storage Technologies Conference (FAST),
San Francisco, CA, 2003

[14] Elizabeth J. O’Neil, Patrick E. O’Neil and Gerhard Weikum, The LRU-K Page Re-
placement Algorithm For Database Disk Buffering Proceedings of ACM SIGMOD
Conference, pp. 297–306, 1993

[15] C. Northcote Parkinson, Parkinson’s Law The Economist, November 1955.

[16] Andrew S. Tanenbaum and Albert S. Woodhull, Operating Systems: Design and
Implementation, Third Edition, Prentice Hall, 2006.

59

A Utilities

A.1 utils.py

1 """Utility classes

"""

class Algorithm(object):

5 """Abstract algorithm base class

"""

def __init__(self, name, memory):

self.name = name

10 self.memory = memory

self.debug_on = False

def debug(self, obj):

"""Print debug if debug is enabled

15 """

if self.debug_on:

print obj

def process(self, ref):

20 """Process next reference

"""

raise Exception("Implement me...")

class Reference(object):

25 """Reference

"""

def __init__(self, page_id, timestamp):

self.page_id = page_id

self.timestamp = timestamp

30
def __repr__(self):

return ’(page: %(page_id)d, ts: %(timestamp)d)’ \

% vars(self)

35 class Page(object):

60

"""Page

"""

def __init__(self, page_id):

self.page_id = page_id

40
self.referenced = False

def __repr__(self):

return ’(page: % d, r: %d)’ % (self.page_id,

45 self.referenced)

class ClockPage(Page):

"""Page in Clock

"""

50
def __init__(self, page_id):

Page.__init__(self, page_id)

self.next = None

55 self.prev = None

class LRUList(object):

"""LRU list

"""

60
def __init__(self, name, debug=False):

self.page_to_ts = {}

self.ts_to_page = {}

self.debug_on = debug

65 self.name = name

def debug(self, debug_string):

"""Print debug if debug is enabled

"""

70 if self.debug_on:

print debug_string

def size(self):

"""Return current size of LRUList

75 """

return len(self.page_to_ts)

61

def has_page(self, ref):

"""Returns true if page referenced by given ref is in LRUList

80 """

return self.page_to_ts.has_key(ref.page_id)

def remove_page(self, ref):

"""Remove page referenced by given ref from LRUList

85 """

timestamp = self.page_to_ts[ref.page_id]

self.debug(’(%s) Removing page %d with ts %d’ % (self.name,

ref.page_id,

timestamp))

90 del self.page_to_ts[ref.page_id]

del self.ts_to_page[timestamp]

def remove(self):

"""Remove LRU page from LRUList

95 """

keys = self.ts_to_page.keys()

keys.sort()

timestamp = keys[0]

page_id = self.ts_to_page[timestamp]

100 self.debug(’(%s) Removing page %d with ts %d’ % (self.name,

page_id,

timestamp))

del self.ts_to_page[timestamp]

del self.page_to_ts[page_id]

105 return page_id

def update(self, ref):

"""Update referenced timestamp of page referenced by given ref

"""

110 if self.page_to_ts.has_key(ref.page_id):

del self.ts_to_page[self.page_to_ts[ref.page_id]]

self.ts_to_page[ref.timestamp] = ref.page_id

self.page_to_ts[ref.page_id] = ref.timestamp

115

62

A.2 memory_state.py

1 """Presentation of current memory state

"""

class MemoryState(object):

5 """Presentation of current memory state

"""

NO_PAGE_FAULT = 0

PF_NEW = -1

10 PF_OLD = 1

def __init__(self, size):

self.size = size

self.page_fault_count = 0

15 self.page_faults = []

self.page_map = {}

self.all_pages_map = {}

self.last_ref = None

20 def pages_used(self):

"""Return number of page frames used

"""

return len(self.page_map)

25 def has_free_page_frames(self):

"""Returns true, if there are free page frames

false, otherwise

"""

return self.size - len(self.page_map) > 0

30
def reference(self, ref):

"""Returns

true, if page is found in memory,

false, otherwise

35 """

self.last_ref = ref

status = self.page_map.has_key(ref.page_id)

if status:

40 page = self.page_map[ref.page_id]

page.referenced = True

63

self.page_faults.append(MemoryState.NO_PAGE_FAULT)

else:

self.page_fault_count += 1

45 if self.all_pages_map.has_key(ref.page_id):

self.page_faults.append(MemoryState.PF_OLD)

else:

self.page_faults.append(MemoryState.PF_NEW)

50 return status

def get_page(self, page_id):

"""Return page with given page_id

"""

55 return self.page_map[page_id]

def is_resident(self, page_id):

"""Return true, if page with given page_id is resident

"""

60 return self.page_map.has_key(page_id)

def insert(self, page):

"""Insert page referenced by given ref to free page

frame

65 """

if len(self.page_map) == self.size:

raise Exception("BUG! No free page frames!")

else:

self.page_map[page.page_id] = page

70 self.all_pages_map[page.page_id] = page

def evict(self, page_id):

"""Evict page with given page_id from memory

"""

75 del self.page_map[page_id]

A.3 test.py

1 """ Run tests with given parameters.

"""

import sys

64

5 from memory_state import MemoryState

from utils import Reference

from opt import OPT

from fifo import FIFO

10 from clock import CLOCK

from lru import LRU

from twoqueue import TwoQueue

from arc import ARC

from car import CAR

15 from cart import CART

from clockpro import ClockPro

def output_page_fault_ratio(outputfile, memory):

"""Print page fault ratio data of memory to outputfile

20 """

output = open(outputfile,"w")

pfs = memory.page_faults

length = memory.size

pfs_len = len(pfs)

25 if pfs_len < 150:

plen = pfs_len

else:

plen = pfs_len / 150

for ind in xrange(0, pfs_len, plen):

30 tmp = pfs[ind:(ind + length)]

tmp_len = len(tmp)

count = tmp_len - tmp.count(0)

percentage = 100*(count / float(tmp_len))

output.write("%d %f\n" %(ind, percentage))

35
output.close()

def check_memory(memory):

"""Check memory status

40 """

if not memory.page_map.has_key(memory.last_ref.page_id):

raise Exception("BUG! Page referenced is not in memory!")

def print_state(memory):

45 """Return string describing memory state

65

"""

state = ""

distinct_pages = len(memory.all_pages_map)

state += ’\nDistinct pages used: %d’ % distinct_pages

50 refs = len(memory.page_faults)

state += ’\nReferences: %d’ % refs

pf_no_first = memory.page_fault_count - distinct_pages

state += ’\nPage faults(no first accesses): %d’ % (pf_no_first)

state += ’\nHit ratio percentage: %f %%’ \

55 % (100 - (100*(float(pf_no_first) / refs)))

return state

def print_table_row(alg):

"""Return string describing memory state as latex row to

60 outputfile

"""

memory = alg.memory

name = alg.name

distinct_pages = len(memory.all_pages_map)

65 pf_no_first = memory.page_fault_count - distinct_pages

refs = len(memory.page_faults)

hits = refs - memory.page_fault_count

refs_no_first = (refs - distinct_pages)

hit_ratio = (100*(float(pf_no_first) / refs_no_first))

70 hit_ratio = round((100 - hit_ratio), 2)

return "%s & %d & %d & %d & %d & %.2f \\%%\\\\\n" \

%(name,

refs,

distinct_pages,

75 memory.page_fault_count,

hits, hit_ratio)

class TestRunner(object):

"""Class for running tests

80 """

def __init__(self, argv):

self.debug_on = False

self.datafile = argv[1]

self.refs = self.read_refs()

85
self.memory_size = int(argv[2])

66

def debug(self, obj):

"""Print debug if debug is enabled

90 """

if self.debug_on:

print obj

def process_refs(self, alg):

95 """Process self.refs with given alg

"""

for ref in self.refs:

alg.process(ref)

check_memory(alg.memory)

100
def read_refs(self):

"""Read references from file self.datafile

"""

data = open(self.datafile)

105 refs = []

timestamp = 0

for line in data:

page = line

ref = Reference(int(page), timestamp)

110 refs.append(ref)

timestamp += 1

data.close()

return refs

115 def run_algorithm(self, alg):

"""Run alg with refs

"""

print ’--’

print ’%s:\n’ % alg.name

120 self.process_refs(alg)

print print_state(alg.memory)

import os.path

outputfile = "%s/%s-%s" % (os.path.dirname(self.datafile)

,alg.name,

125 os.path.basename(self.datafile))

output_page_fault_ratio(outputfile, alg.memory)

return print_table_row(alg)

def run_tests(self):

67

130 """Run tests

"""

algorithms = [OPT(MemoryState(self.memory_size),

self.refs),

FIFO(MemoryState(self.memory_size)),

135 CLOCK(MemoryState(self.memory_size)),

LRU(MemoryState(self.memory_size)),

TwoQueue(MemoryState(self.memory_size)),

ARC(MemoryState(self.memory_size)),

CAR(MemoryState(self.memory_size)),

140 CART(MemoryState(self.memory_size)),

ClockPro(MemoryState(self.memory_size))]

table = ""

for alg in algorithms:

145 table += self.run_algorithm(alg)

import os.path

outputfile = "%s/table-%s.tex" \

% (os.path.dirname(self.datafile)

,os.path.basename(self.datafile))

150 output = open(outputfile, "w")

output.write("\\begin{tabular}{|l|r|r|r|r|r|}\n")

output.write("\\hline\n")

output.write("Algorithm & Ref count & Page count & " +\

"Page faults & Hit count & Hit ratio\\\\\n")

155 output.write("\\hline\n")

output.write(table)

output.write("\\hline\n")

output.write("\\end{tabular}\n")

output.close()

160
if __name__ == "__main__":

try:

import psyco

psyco.full()

165 except ImportError:

print "Warning! Running without psyco!"

TestRunner(sys.argv).run_tests()

68

B Algorithms

B.1 opt.py

1 """Implements OPT (=optimal) algorithm

"""

from utils import Page, Algorithm

5 class OPT(Algorithm):

"""Implements OPT (=optimal) algorithm

"""

def __init__(self, memory, refs):

Algorithm.__init__(self, "OPT", memory)

10
self.refs = refs

self.refs_count = len(refs)

self.index = 0

15 self.next_ref_cache = {}

def search_next_ref(self, page_id):

"""Search next reference to give page

"""

20 for ind in xrange(self.index+1, self.refs_count):

if page_id == self.refs[ind].page_id:

return self.refs[ind].timestamp

return None

25
def evict(self, ref):

"""Evict page that is unused for longest

"""

pages = []

30 for page_id in self.memory.page_map.keys():

next_ref = -1

if self.next_ref_cache.has_key(page_id):

next_ref = self.next_ref_cache[page_id]

if next_ref < ref.timestamp:

35 next_ref = self.search_next_ref(page_id)

69

self.next_ref_cache[page_id] = next_ref

if next_ref is None:

No references ever again

evict_page_id = page_id

40 break

else:

pages.append((next_ref, page_id))

if next_ref is not None:

45 pages.sort()

pages.reverse()

(next_ref, evict_page_id) = pages[0]

del self.next_ref_cache[evict_page_id]

self.memory.evict(evict_page_id)

50

def process(self, ref):

"""Process a reference

"""

55 if not self.memory.reference(ref):

if not self.memory.has_free_page_frames():

self.evict(ref)

page = Page(ref.page_id)

self.memory.insert(page)

60
self.index += 1

B.2 fifo.py

1 """Implements First-In, First-Out algorithm

"""

from utils import Page, Algorithm

5 class FIFO(Algorithm):

"""Implements First-In, First-Out algorithm

"""

def __init__(self, memory):

Algorithm.__init__(self, "FIFO", memory)

10
self.fifo = []

70

def process(self, ref):

"""Process a reference

15 """

if not self.memory.reference(ref):

if not self.memory.has_free_page_frames():

self.memory.evict(self.fifo.pop(0).page_id)

20 page = Page(ref.page_id)

self.memory.insert(page)

self.fifo.append(page)

B.3 clock.py

1 """Implement CLOCK algorithm

"""

from utils import ClockPage, Algorithm

5 class CLOCK(Algorithm):

"""Implement CLOCK algorithm

"""

def __init__(self, memory):

10 Algorithm.__init__(self, "CLOCK", memory)

self.clock = None

def insert_to_head(self, page, tail):

"""Insert given page to head of the clock

15 """

tail.prev.next = page

page.prev = tail.prev

tail.prev = page

page.next = tail

20
def remove_from_clock(self, page):

"""Remove given page from clock.

"""

page.prev.next = page.next

25 page.next.prev = page.prev

def process(self, ref):

"""Process a reference

71

"""

30 if not self.memory.reference(ref):

if not self.memory.has_free_page_frames():

while self.clock.referenced:

self.clock.referenced = False

self.clock = self.clock.next

35
page = self.clock

self.clock = self.clock.next

self.remove_from_clock(page)

self.memory.evict(page.page_id)

40
page = ClockPage(ref.page_id)

self.memory.insert(page)

if self.clock is None:

page.next = page

45 page.prev = page

self.clock = page

else:

self.insert_to_head(page, self.clock)

50

B.4 lru.py

1 """Implement LRU algorithm

"""

from utils import LRUList, Page, Algorithm

5 class LRU(Algorithm):

"""Implement LRU algorithm

"""

def __init__(self, memory):

10 Algorithm.__init__(self, "LRU", memory)

self.lru_list = LRUList("LRU")

def process(self, ref):

""" Process a reference

15 """

if not self.memory.reference(ref):

if not self.memory.has_free_page_frames():

72

page_id = self.lru_list.remove()

self.memory.evict(page_id)

20
page = Page(ref.page_id)

self.memory.insert(page)

25 self.lru_list.update(ref)

self.debug(self.lru_list.page_to_ts)

self.debug(self.lru_list.ts_to_page)

B.5 twoqueue.py

1 """Implements 2Q algorithm

"""

from utils import LRUList, Page, Algorithm

5 class TwoQueue(Algorithm):

"""Implements 2Q algorithm

"""

def __init__(self, memory):

10 Algorithm.__init__(self, "2Q", memory)

#self.debug_on = True

self.hot = LRUList("Hot")

15 self.fin = []

self.fout = []

self.fin_limit = int(memory.size / 4)

self.fout_limit = int(memory.size / 2)

20
def process(self, ref):

"""Process a reference

"""

if not self.memory.reference(ref):

25 if not self.memory.has_free_page_frames():

self.reclaim()

if ref.page_id in self.fout:

73

self.debug(’Insert to hot: %d’ % ref.page_id)

30 self.hot.update(ref)

else:

self.debug(’Insert to fin: %d’ % ref.page_id)

self.fin.append(ref.page_id)

35 page = Page(ref.page_id)

self.memory.insert(page)

elif self.hot.has_page(ref):

self.debug(’Update in hot: %d’ % ref.page_id)

self.hot.update(ref)

40 return

def reclaim(self):

"""Reclaim a page

45 """

if len(self.fin) > self.fin_limit:

page = self.fin.pop(0)

self.debug(’Reclaim from fin: %d’ % page)

if len(self.fout) > self.fout_limit:

50 self.debug(’Remove from fout: %d’ % page)

self.fout.pop(0)

self.fout.append(page)

else:

page = self.hot.remove()

55 self.debug(’Reclaim from hot: %d’ % page)

self.memory.evict(page)

B.6 arc.py

1 """

Implements ARC replacement algorithm

"""

5 from utils import LRUList, Page, Algorithm

class ARC(Algorithm):

"""

Implements ARC replacement algorithm

10 """

74

def __init__(self, memory):

Algorithm.__init__(self, "ARC", memory)

15 self.debug_on = False

self.t_1 = LRUList("T1")

self.t_2 = LRUList("T2")

self.b_1 = []

20 self.b_2 = []

self.t1_target_size = 0

def cache_hit(self, ref):

"""Handle cach hit

25 """

if self.t_1.has_page(ref):

self.debug("Cache hit T1. Page %s to T2" % ref.page_id)

self.t_1.remove_page(ref)

self.t_2.update(ref)

30 elif self.t_2.has_page(ref):

self.debug("Cache hit T2. Update page %s in T2" \

% ref.page_id)

self.t_2.update(ref)

else:

35 raise Exception("BUG!")

def evict(self, page_in_b2):

"""Evict some page

"""

40 t1_size = self.t_1.size()

if t1_size > self.t1_target_size:

page_id = self.t_1.remove()

self.b_1.append(page_id)

self.debug("Evict: len(T1)>p => Page %d from T1 to B1" \

45 % page_id)

elif t1_size < self.t1_target_size:

page_id = self.t_2.remove()

self.b_2.append(page_id)

self.debug("Evict: len(T1)<p => Page %d from T2 to B2" \

50 % page_id)

else:

if not page_in_b2 or t1_size == 0:

75

page_id = self.t_2.remove()

self.b_2.append(page_id)

55 self.debug("Evict: len(T1)=p => %d from T2 to B2" \

% page_id)

else:

page_id = self.t_1.remove()

self.b_1.append(page_id)

60 self.debug("Evict: len(T1)=p => %d from T1 to B1" \

% page_id)

self.memory.evict(page_id)

65 def cache_miss(self, ref):

"""Handle cach miss

"""

page_in_b1 = ref.page_id in self.b_1

page_in_b2 = ref.page_id in self.b_2

70 b1_len = len(self.b_1)

b2_len = len(self.b_2)

old_p = self.t1_target_size

if page_in_b1:

self.t1_target_size = min(self.t1_target_size \

75 + max(1, (b2_len / b1_len))

,self.memory.size)

self.debug("History hit, B1. p: %d => %d" \

% (old_p, self.t1_target_size))

elif page_in_b2:

80 self.t1_target_size = max(self.t1_target_size \

- max(1, (b1_len / b2_len))

, 0)

self.debug("History hit, B2. p: %d => %d" \

% (old_p, self.t1_target_size))

85
if not self.memory.has_free_page_frames():

self.evict(page_in_b2)

if found in history, place to T2

90 # otherwise, place to T1 and clean history if necessary

if page_in_b1:

del self.b_1[self.b_1.index(ref.page_id)]

self.t_2.update(ref)

elif page_in_b2:

76

95 del self.b_2[self.b_2.index(ref.page_id)]

self.t_2.update(ref)

else:

self.debug("New page %d" % ref.page_id)

clean history

100 t1_size = self.t_1.size()

t2_size = self.t_2.size()

if b1_len + t1_size >= self.memory.size:

if t1_size < self.memory.size:

page = self.b_1.pop(0)

105 self.debug("|B1|+|T1|>=c. Removed %d from B1" \

% page)

else:

page = self.t_1.remove()

self.debug("|T1|>=c. Removed %d from T1" % page)

110 elif (t1_size + t2_size + b1_len + b2_len

>= 2*self.memory.size):

page = self.b_2.pop(0)

self.debug("|T1|+|T2|+|B1|+|B2|>=2c." \

+ " Removed %d from B2" % page)

115
put requested page to T1

self.t_1.update(ref)

insert to memory

120 page = Page(ref.page_id)

self.memory.insert(page)

def process(self, ref):

"""Process reference

125 """

if self.memory.reference(ref):

self.cache_hit(ref)

else:

self.cache_miss(ref)

130
self.debug("Mem: %d / %d" % (self.memory.pages_used(),

self.memory.size))

self.debug("T1:")

self.debug(self.t_1.page_to_ts)

135 self.debug(self.t_1.ts_to_page)

self.debug("B1:")

77

self.debug(self.b_1)

self.debug("T2:")

self.debug(self.t_2.page_to_ts)

140 self.debug(self.t_2.ts_to_page)

self.debug("B2:")

self.debug(self.b_2)

self.debug("p: %d" % self.t1_target_size)

self.debug("--")

B.7 car.py

1 """Implementation of CAR replacement algorithm

"""

from utils import Page, Algorithm

5 class CAR(Algorithm):

"""Class implementing CAR algorithm

"""

def __init__(self, memory):

10 Algorithm.__init__(self, "CAR", memory)

#self.debug_on = True

self.t_1 = []

15 self.t_2 = []

self.b_1 = []

self.b_2 = []

self.t1_target = 0

20 def evict(self):

"""Evict a page from cache

"""

evicted_from_t1 = False

while len(self.t_1) >= max(1, self.t1_target):

25 page_id = self.t_1.pop(0)

page = self.memory.get_page(page_id)

if page.referenced:

page.referenced = False

self.debug("Moved %d from T1 to T2" % page_id)

30 self.t_2.append(page_id)

else:

78

self.debug("Evicted %d from T1" % page_id)

self.b_1.append(page_id)

evicted_from_t1 = True

35 break

if not evicted_from_t1:

page_id = self.t_2.pop(0)

page = self.memory.get_page(page_id)

40 while page.referenced:

page.referenced = False

self.t_2.append(page_id)

page_id = self.t_2.pop(0)

page = self.memory.get_page(page_id)

45 self.debug("Evicted %d from T2" % page_id)

self.b_2.append(page_id)

Remove page from memory

self.memory.evict(page_id)

50
def clean_history(self, ref):

"""Removes a history page, if neccessary

"""

Clean history

55 page_in_b1 = ref.page_id in self.b_1

page_in_b2 = ref.page_id in self.b_2

b1_size = len(self.b_1)

b2_size = len(self.b_2)

60 if not page_in_b1 and not page_in_b2:

t1_size = len(self.t_1)

t2_size = len(self.t_2)

if t1_size + b1_size == self.memory.size:

page_id = self.b_1.pop(0)

65 self.debug("|T1|+|B1|=c. Removed %d from B1" \

% page_id)

elif t1_size + t2_size + b1_size + b2_size \

== 2*self.memory.size:

page_id = self.b_2.pop(0)

70 self.debug("|T1|+|T2|+|B1|+|B2|=2c."

+ " Removed %d from B2" % page_id)

79

def process(self, ref):

75 """Processes a reference

"""

if not self.memory.reference(ref):

if len(self.t_1) + len(self.t_2) == self.memory.size:

self.evict()

80 self.clean_history(ref)

page_in_b1 = ref.page_id in self.b_1

page_in_b2 = ref.page_id in self.b_2

b1_size = len(self.b_1)

85 b2_size = len(self.b_2)

old_t1_target = self.t1_target

if page_in_b1:

self.t1_target = min(self.t1_target +\

90 max(1, (b2_size / b1_size))

, self.memory.size)

self.debug("History hit, B1. p: %d => %d" \

% (old_t1_target, self.t1_target))

del self.b_1[self.b_1.index(ref.page_id)]

95 self.t_2.append(ref.page_id)

elif page_in_b2:

self.t1_target = max(self.t1_target - \

max(1, (b1_size / b2_size))

, 0)

100 self.debug("History hit, B2. p: %d => %d" \

% (old_t1_target, self.t1_target))

del self.b_2[self.b_2.index(ref.page_id)]

self.t_2.append(ref.page_id)

else:

105 self.debug("New page %d" % ref.page_id)

self.t_1.append(ref.page_id)

insert to memory

page = Page(ref.page_id)

110 self.memory.insert(page)

self.debug("T1:")

self.debug(self.t_1)

115 self.debug("B1:")

80

self.debug(self.b_1)

self.debug("T2:")

self.debug(self.t_2)

self.debug("B2:")

120 self.debug(self.b_2)

self.debug("p: %d" % self.t1_target)

self.debug("--------------------------------")

B.8 cart.py

1 """Implementation of CART replacement algorithm

"""

from utils import Page, Algorithm

5 class CARTPage(Page):

"""Page id + filter bit

"""

def __init__(self, page_id, filter_bit="S"):

Page.__init__(self, page_id)

10 self.filter_bit = filter_bit

def __eq__(self, other):

import types

15 if type(self) == type(other):

return self.page_id == other.page_id

elif type(other) == types.IntType:

return self.page_id == other

else:

20 return False

def __repr__(self):

return (’(page: %(page_id)d’\

+’, r: %(referenced)d, f: %(filter_bit)s)’)\

25 % vars(self)

class CART(Algorithm):

"""Class implementing CART algorithm

"""

30
def __init__(self, memory):

Algorithm.__init__(self, "CART", memory)

81

#self.debug_on = True

35
self.t_1 = []

self.t_2 = []

self.b_1 = []

self.b_2 = []

40 self.t1_target = 0

self.b1_target = 0

self.n_s = 0

self.n_l = 0

45 def process_list_t2(self):

"""Process T2 before eviction as defined in algorithm

"""

adapt_b1_target = len(self.t_1) \

+ len(self.t_2) + len(self.b_2) \

50 - self.n_s >= self.memory.size

if len(self.t_2) > 0:

cart_page = self.t_2.pop(0)

page = self.memory.get_page(cart_page.page_id)

55 while page.referenced:

page.referenced = False

self.debug("Moved %d from T2 to T1" \

% cart_page.page_id)

self.t_1.append(cart_page)

60 if adapt_b1_target:

self.b1_target = min(self.b1_target + 1

, 2*self.memory.size \

- len(self.t_1))

if len(self.t_2) > 0:

65 cart_page = self.t_2.pop(0)

page = self.memory.get_page(cart_page.page_id)

else:

cart_page = None

break

70 # Insert last page back, if necessary

if cart_page:

self.t_2.insert(0, cart_page)

def process_list_t1(self):

82

75 """Process T1 before eviction as defined in algorithm

"""

if len(self.t_1) > 0:

cart_page = self.t_1.pop(0)

page = self.memory.get_page(cart_page.page_id)

80 while page.referenced or cart_page.filter_bit == "L":

if page.referenced:

page.referenced = False

self.t_1.append(cart_page)

if len(self.t_1) >= min(self.t1_target + 1 \

85 , len(self.b_1)):

self.debug("Set filter of %d to L" \

% cart_page.page_id)

cart_page.filter_bit = "L"

self.n_s -= 1

90 self.n_l += 1

else:

page.referenced = False

self.debug("Moved %d from T1 to T2" \

% cart_page.page_id)

95 self.t_2.append(cart_page)

self.b1_target = max(self.b1_target - 1

, self.memory.size \

- len(self.t_1))

if len(self.t_1) > 0:

100 cart_page = self.t_1.pop(0)

page = self.memory.get_page(cart_page.page_id)

else:

cart_page = None

break

105 # Insert last page back, if necessary

if cart_page:

self.t_1.insert(0, cart_page)

def evict(self):

110 """Evict a page from cache

"""

self.process_list_t2()

self.process_list_t1()

115 if len(self.t_1) >= max(1, self.t1_target):

cart_page = self.t_1.pop(0)

83

self.debug("Evicted %d from T1" % cart_page.page_id)

self.b_1.append(cart_page)

self.n_s -= 1

120 else:

cart_page = self.t_2.pop(0)

self.debug("Evicted %d from T2" % cart_page.page_id)

self.b_2.append(cart_page)

self.n_l -= 1

125
Remove page from memory

self.memory.evict(cart_page.page_id)

def clean_history(self, ref):

130 """Removes a history page, if neccessary

"""

Clean history

page_in_b1 = ref.page_id in self.b_1

page_in_b2 = ref.page_id in self.b_2

135 b1_size = len(self.b_1)

b2_size = len(self.b_2)

if not page_in_b1 and not page_in_b2 \

and b1_size + b2_size == self.memory.size + 1:

140 if b2_size == 0 or b1_size > max(0, self.b1_target):

page_id = self.b_1.pop(0).page_id

self.debug("Removed %d from B1" % page_id)

else:

page_id = self.b_2.pop(0).page_id

145 self.debug("Removed %d from B2" % page_id)

def process(self, ref):

"""Processes a reference

150 """

if not self.memory.reference(ref):

if len(self.t_1) + len(self.t_2) == self.memory.size:

self.evict()

self.clean_history(ref)

155
page = None

page_in_b1 = ref.page_id in self.b_1

page_in_b2 = ref.page_id in self.b_2

84

b1_size = len(self.b_1)

160 b2_size = len(self.b_2)

old_t1_target = self.t1_target

if page_in_b1:

self.t1_target = min(self.t1_target +\

165 max(1, (self.n_s / b1_size))

, self.memory.size)

self.debug("History hit, B1. p: %d => %d" \

% (old_t1_target, self.t1_target))

ind = self.b_1.index(ref.page_id)

170 page = self.b_1[ind]

del self.b_1[ind]

self.debug("Set filter of %d to L" \

% page.page_id)

page.filter_bit = "L"

175 page.referenced = False

page.modified = False

self.n_l += 1

self.t_2.append(page)

elif page_in_b2:

180 self.t1_target = max(self.t1_target -\

max(1, (self.n_l / b2_size))

, 0)

self.debug("History hit, B2. p: %d => %d" \

% (old_t1_target, self.t1_target))

185 ind = self.b_2.index(ref.page_id)

page = self.b_2[ind]

del self.b_2[ind]

self.t_2.append(page)

page.referenced = False

190 page.modified = False

if len(self.t_1) + len(self.t_2) + len(self.b_2) \

- self.n_s >= self.memory.size:

self.b1_target = min(self.b1_target + 1

195 , 2*self.memory.size \

- len(self.t_1))

else:

self.debug("New page %d" % ref.page_id)

200 page = CARTPage(ref.page_id)

85

self.t_1.append(page)

self.n_s += 1

insert to memory

205 self.memory.insert(page)

self.print_debug()

def print_debug(self):

210 """Print algorithm state

"""

self.debug("T1:")

self.debug(self.t_1)

self.debug("B1:")

215 self.debug(self.b_1)

self.debug("T2:")

self.debug(self.t_2)

self.debug("B2:")

self.debug(self.b_2)

220 self.debug("p: %d" % self.t1_target)

self.debug("q: %d" % self.b1_target)

self.debug("n_s: %d" % self.n_s)

self.debug("n_l: %d" % self.n_l)

self.debug("------------------------------------")

B.9 clockpro.py

1 """Implements ClockPro algorithm

"""

from clock import CLOCK

from utils import ClockPage

5
class ClockProPage(ClockPage):

"""Page in ClockPro Clock

"""

10 def __init__(self, page_id):

ClockPage.__init__(self, page_id)

self.is_hot = False

self.in_test = True

15 self.is_resident = True

86

def __repr__(self):

type_s = ""

if self.is_hot:

20 type_s += "H"

else:

type_s += "C"

if self.in_test:

25 type_s += "T"

if self.is_resident:

type_s += "R"

30 return ’(page: % d, r: %d, flags: %s)’ % (self.page_id,

self.referenced,

type_s)

class ClockPro(CLOCK):

35 """Implements ClockPro algorithm

"""

M_H_MIN = 0

M_H_MAX = 0

40
def __init__(self, memory):

CLOCK.__init__(self, memory)

self.name = "CLOCKPro"

#self.debug_on = True

45
self.hot = None

self.cold = None

self.test = None

50 self.m_h = 1

self.hot_count = 0

self.non_resident_count = 0

self.size = self.memory.size

55
ClockPro.M_H_MIN = self.size / 10

ClockPro.M_H_MAX = self.size - (self.size / 10)

87

def remove_from_clock(self, page):

60 """Remove given page from clock.

Before removing, make sure that no hands point to that

page.

"""

Move hot hand if it points to page

65 if page is self.hot:

self.debug("Hot points to a page-to-be-removed.")

self.hot = self.hot.next

Move test hand if it points to page

70 if page is self.test:

self.debug("Test points to a page-to-be-removed.")

self.test = self.test.next

Move cold hand if it points to page

75 if page is self.cold:

self.debug("Cold points to a page-to-be-removed.")

self.cold = self.cold.next

remove from list

80 page.prev.next = page.next

page.next.prev = page.prev

def move_to_head(self, page):

""" Move page to head

85 """

self.remove_from_clock(page)

self.insert_to_head(page, self.hot)

def m_h_inc(self):

90 """Adapt m_h by increasing value

"""

self.m_h = min(self.m_h + 1, ClockPro.M_H_MAX)

self.debug("m_h++")

95 def m_h_dec(self):

"""Adapt m_h by decreasing value

"""

self.m_h = max(self.m_h - 1, ClockPro.M_H_MIN)

self.debug("m_h--")

88

100
def run_cold(self):

"""Run the cold hand

"""

#self.debug("Running cold hand")

105 page_evicted = None

while page_evicted is None:

if not self.cold.is_resident:

self.cold = self.cold.next

110 elif self.cold.is_hot:

self.cold = self.cold.next

elif self.cold.in_test and self.cold.referenced:

self.cold.in_test = False

self.cold.referenced = False

115 self.cold.is_hot = True

self.hot_count += 1

self.move_to_head(self.cold)

If no hot pages before,

if not self.hot.is_hot:

120 # point hot hand to the first hot page

self.hot = self.hot.prev

self.m_h_dec()

if self.hot_count > self.m_h:

self.run_hot()

125 #self.debug("Back to running cold hand")

elif self.cold.referenced:

self.cold.referenced = False

self.cold.in_test = True

#self.debug("Moved %s to head" % self.cold)

130 self.move_to_head(self.cold)

else: # cold, not referenced, in test period

self.debug("Evicted %s" % self.cold)

page_evicted = self.cold

self.cold = self.cold.next

135 if not page_evicted.in_test:

self.remove_from_clock(page_evicted)

self.debug("Removed %s from Clock"

% page_evicted)

else:

140 self.non_resident_count += 1

self.m_h_inc()

89

page_evicted.referenced = False

page_evicted.modified = False

145 page_evicted.is_resident = False

self.memory.evict(page_evicted.page_id)

run cold hand to next cold resident page

page = self.cold.prev

150 while self.cold.is_hot or not self.cold.is_resident:

if self.cold is page:

break

self.cold = self.cold.next

155
def run_hot(self):

"""Run the hot hand

"""

#self.debug("Running hot hand")

160
page_set_cold = False

set some page cold and then run to next hot

while not page_set_cold or \

(page_set_cold and not self.hot.is_hot):

165 # push test hand forward, if necessary

if self.hot == self.test:

#self.debug("Pushing test hand forward")

self.test = self.test.next

if not self.hot.is_hot:

170 if not self.hot.is_resident:

page = self.hot

self.hot = self.hot.next

self.remove_from_clock(page)

self.debug("Removed %s from Clock" % page)

175 self.non_resident_count -= 1

self.m_h_inc()

else:

if self.hot.in_test:

self.hot.in_test = False

180 if self.hot.referenced:

self.m_h_dec()

else:

self.m_h_inc()

90

self.hot = self.hot.next

185 elif self.hot.referenced:

#self.debug("%s unset referenced" % self.hot)

self.hot.referenced = False

self.hot = self.hot.next

else:

190 self.hot_count -= 1

self.hot.is_hot = False

#self.debug("%s set cold" % self.hot)

self.hot = self.hot.next

page_set_cold = True

195
def run_test(self):

"""Run the test hand

"""

#self.debug("Running test hand")

200
non_resident_page_removed = False

while not non_resident_page_removed:

if self.test.in_test:

if self.test.is_resident:

205 self.test.in_test = False

if self.test.referenced:

self.m_h_dec()

else:

self.m_h_inc()

210 self.test = self.test.next

else:

self.m_h_inc()

page = self.test

self.test = self.test.next

215 self.remove_from_clock(page)

self.debug("Removed %s from Clock" % page)

self.non_resident_count -= 1

non_resident_page_removed = True

else:

220 self.test = self.test.next

run test hand to next cold page in test period

while self.test.is_hot or not self.test.in_test:

self.test = self.test.next

225

91

def page_in_clock(self, ref):

"""Checks if the faulted page is in clock

and returns it, if it is

"""

230 page = self.cold.prev

only pages between test hand

and cold hand needs to be checked

while page is not self.test.prev:

if page.page_id == ref.page_id:

235 return page

else:

page = page.prev

return None

240 def process(self, ref):

"""Process a reference

"""

if not self.memory.reference(ref):

if not self.memory.has_free_page_frames():

245 self.run_cold()

No pages yet

if self.cold is None:

page = ClockProPage(ref.page_id)

250 self.debug("%s is the first page" % page)

self.cold = page

self.cold.next = page

self.cold.prev = page

self.hot = page

255 self.test = page

else:

page = self.page_in_clock(ref)

if page is None:

new cold page

260 page = ClockProPage(ref.page_id)

self.debug("%s is a new page" % page)

place to head

self.insert_to_head(page, self.hot)

else:

265 # move to head and set hot

self.non_resident_count -= 1

#self.debug("%s is a cache hit" % page)

92

self.move_to_head(page)

self.hot_count += 1

270 page.is_resident = True

page.is_hot = True

page.in_test = False

if not self.hot.is_hot:

self.hot = page

275 if self.hot_count > self.m_h:

self.run_hot()

if self.non_resident_count > self.size:

280 #self.debug("Too many history pages")

self.run_test()

self.memory.insert(page)

285 self.debug("")

self.debug("Clock:")

self.debug_clock()

self.debug("m_h: %d" % self.m_h)

self.debug("non-resident: %d" % self.non_resident_count)

290 self.debug("hot: %d" % self.hot_count)

self.check()

self.debug("-------------------------------------")

return

295
def debug_clock(self):

"""Print clock

"""

tmp_page = self.hot.prev

300 while tmp_page is not self.hot:

tmp = ""

if tmp_page is self.cold:

tmp += " C"

if tmp_page is self.test:

305 tmp += " T"

self.debug("%s%s" % (tmp_page, tmp))

tmp_page = tmp_page.prev

tmp = ""

if tmp_page is self.cold:

93

310 tmp += " C"

if tmp_page is self.test:

tmp += " T"

self.debug("%s H%s" % (tmp_page, tmp))

315
def check(self):

"""Check some things and warn if something wrong

"""

if self.hot_count > 0 and not self.hot.is_hot:

320 print "There are hot pages but " \

+ "hot hand does not point to one"

if self.non_resident_count > 0 \

and self.number_resident_pages() < self.size:

print "There are non resident pages but " \

325 + "still more space in memory"

def number_resident_pages(self):

"""Return number of resident pages

330 """

count = 0

page = self.hot.next

while page is not self.hot:

if page.is_resident:

335 count += 1

page = page.next

if page.is_resident:

count += 1

return count

94

C Trace data scripts

C.1 generate.py

1 import sys

import random

import ConfigParser

5
class TraceGenerator(object):

def __init__(self, hot_range_start, hot_range_end):

self.hot_range_start = hot_range_start

10 self.hot_range_end = hot_range_end

for page in xrange(hot_range_start, hot_range_end):

print "%d" % (page)

15 def print_hot_pages(self):

if random.random() < 0.2:

count = random.randint(1,5)

for i in xrange(0, count):

print "%d" % random.randint(self.hot_range_start

20 , self.hot_range_end)

def generate_loop(self, ref_count, range_start, range_end):

page_range = range_end - range_start

25 for i in xrange(0, ref_count):

page = range_start + (i % page_range)

print "%d" % (page)

self.print_hot_pages()

30 def generate_scan(self, ref_count, range_start):

for i in xrange(0, ref_count):

page = range_start + i

print "%d" % (page)

self.print_hot_pages()

35

95

def generate_random(self, ref_count, range_start, range_end):

for i in xrange(0, ref_count):

page = random.randint(range_start,range_end)

print "%d" % (page)

40 self.print_hot_pages()

def generate_correlated(self, ref_count, range_start):

for i in xrange(0, (ref_count / 2)):

page = range_start + i

45 print "%d" % (page)

self.print_hot_pages()

print "%d" % (page)

if __name__ == "__main__":

50 conf = ConfigParser.SafeConfigParser()

conf.read([sys.argv[1]])

hot_start = conf.getint("DEFAULT","hot_range_start")

hot_end = conf.getint("DEFAULT","hot_range_end")

55 generator = TraceGenerator(hot_start,hot_end)

ind = 1

section = "phase%d" % ind

while(conf.has_section(section)):

section_type = conf.get(section, "type")

60 ref_count = conf.getint(section, "ref_count")

if section_type == "loop":

range_start = conf.getint(section, "range_start")

range_end = conf.getint(section, "range_end")

generator.generate_loop(ref_count, range_start

65 , range_end)

elif section_type == "random":

range_start = conf.getint(section, "range_start")

range_end = conf.getint(section, "range_end")

generator.generate_random(ref_count, range_start

70 , range_end)

elif section_type == "correlated":

range_start = conf.getint(section, "range_start")

generator.generate_correlated(ref_count, range_start)

elif section_type == "scan":

75 range_start = conf.getint(section, "range_start")

generator.generate_scan(ref_count, range_start)

else:

96

sys.stderr.write("Invalid phase type %s in %s \n"

% (section_type, section))

80
ind += 1

section = "phase%d" % ind

C.2 scan.conf

1 [DEFAULT]

hot_range_start = 100000

hot_range_end = 100300

5 [phase1]

type = loop

ref_count = 1500

range_start = 100150

range_end = 101150

10
[phase2]

type = scan

ref_count = 4000

range_start = 0

15
[phase3]

type = loop

ref_count = 1500

range_start = 100150

20 range_end = 101150

[phase4]

type = random

ref_count = 1000

25 range_start = 0

range_end = 1600

[phase5]

type = scan

30 ref_count = 2000

range_start = 10000

97

C.3 loop.conf

1 [DEFAULT]

hot_range_start = 100000

hot_range_end = 100300

5 [phase1]

type = loop

ref_count = 5000

range_start = 0

range_end = 1050

10
[phase2]

type = scan

ref_count = 1000

range_start = 2000

15
[phase3]

type = loop

ref_count = 5000

range_start = 0

20 range_end = 1050

[phase4]

type = random

ref_count = 1000

25 range_start = 500

range_end = 1600

[phase5]

type = loop

30 ref_count = 5000

range_start = 0

range_end = 1050

C.4 correlated.conf

1 [DEFAULT]

hot_range_start = 100000

hot_range_end = 100300

5 [phase1]

98

type = correlated

ref_count = 10000

range_start = 0

10 [phase2]

type = scan

ref_count = 1000

range_start = 2000

15 [phase3]

type = correlated

ref_count = 10000

range_start = 0

20 [phase4]

type = random

ref_count = 1000

range_start = 500

range_end = 1600

25
[phase5]

type = correlated

ref_count = 10000

range_start = 0

99

	Preface
	Glossary
	List of Figures
	1 Introduction
	2 Overview of Memory Management
	2.1 Paging
	2.2 Page fault handling

	3 Page replacement algorithm theory
	3.1 A formal model for paging algorithm
	3.2 The cost
	3.3 Program behaviour
	3.3.1 Working set
	3.3.2 Locality
	3.3.3 l-order non-stationary Markov process
	3.3.4 Stochastic models
	3.3.5 Phase behaviour
	3.3.6 Phase-transition model

	3.4 Typical memory usage patterns
	3.4.1 Correlated access
	3.4.2 Scan
	3.4.3 Loop

	3.5 Page replacement policies: global and local
	3.6 Goals

	4 Page replacement algorithms
	4.1 Optimal replacement
	4.2 Random replacement
	4.3 Not Recently Used (NRU)
	4.4 First-In, First-Out (FIFO)
	4.5 Least Recently Used (LRU)
	4.6 Second Change and CLOCK
	4.7 Not Frequently Used (NFU)
	4.8 Aging
	4.9 Two Queue (2Q)
	4.10 SEQ
	4.11 Adaptive Replacement Cache (ARC)
	4.12 CLOCK with Adaptive Replacement (CAR)
	4.13 CAR with Temporal filtering (CART)
	4.14 Token-ordered LRU
	4.15 CLOCK-Pro

	5 Empirical analysis
	5.1 Metrics
	5.2 Trace Data
	5.3 Generated traces
	5.3.1 Scan trace
	5.3.2 Loop trace
	5.3.3 Correlated accesses trace

	5.4 Real trace

	6 Conclusions
	7 References
	A Utilities
	A.1 utils.py
	A.2 memory_state.py
	A.3 test.py

	B Algorithms
	B.1 opt.py
	B.2 fifo.py
	B.3 clock.py
	B.4 lru.py
	B.5 twoqueue.py
	B.6 arc.py
	B.7 car.py
	B.8 cart.py
	B.9 clockpro.py

	C Trace data scripts
	C.1 generate.py
	C.2 scan.conf
	C.3 loop.conf
	C.4 correlated.conf

