
Ville Laitila

Understanding and Analyzing SQL/CLI Database Usage of

Java Software: Empirical Study

Master’s Thesis

in Information Technology (Software Engineering)

21st March 2005

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

URN:NBN:fi:jyu-2005103

Author: Ville Laitila

Contact information: vimalait@cc.jyu.fi

Title: Understanding and Analyzing SQL/CLI Database Usage of Java Software: Empirical

Study

Työn nimi: Tietokannan SQL/CLI-käyttötavan ymmärtäminen ja analysointi Java-sovelluk-

sessa: empiirinen tutkimus

Project: Master’s Thesis in Information Technology (Software Engineering)

Page count:91

Abstract: This thesis focuses on SQL/CLI database usage of Java software. SQL/CLI

database usage requires a relational database. A relational database and an object-oriented

Java program is not a simple combination. This situation produces challenges for software

maintenance. This thesis provides description about the problems of database application

maintenance The empirical study of the thesis aims at finding out the most significant prob-

lems and the most essential information needs of understanding database usage in the target

system.

Suomenkielinen tiivistelmä: Tässä tutkielmassa keskitytään Java ohjelmiston SQL/CLI-

käyttötavan ymmärtämiseen ja analysointiin. SQL/CLI-käyttötapa edellyttää tietokannak-

si relaatiotietokantaa. Relaatiotietokanta ja oliokeskeinen Java-ohjelmisto ei ole yksinker-

tainen yhdistelmä. Tämä tuo haasteita sovelluksen ylläpidolle. Tutkielma kuvaa tieto-

kantasovelluksen ongelmia ylläpidon kannalta. Empiirinen osuus keskittyy selvittämään,

mitkä ovat merkittävimmät ongelmat ja oleellisimmat tiedontarpeet tietokannan käytön ym-

märtämisessä kohdejärjestelmässä.

Keywords: software maintenance, empirical study, program comprehension, reverse engi-

neering, database usage, maintenance problems, maintaining database applications, SQL

Avainsanat: ohjelmistojen ylläpito, empiirinen tutkimus, ohjelman ymmärtäminen, kään-

teistekniikat, tietokannan käyttö, ylläpidon ongelmat, tietokantasovelluksten ylläpito, SQL

Contents

1 Introduction 1

2 Database applications 3

2.1 Background . 3

2.2 Java database applications .4

2.2.1 Java and relational databases .4

2.2.2 JDBC database usage .5

2.3 Characteristics of database applications6

3 Relational databases 8

3.1 Conceptual data modeling .8

3.2 Relational data model . 9

3.3 Database schema and data independence9

3.4 Relational database schema and identity10

3.5 Database as a part of the system .10

3.6 Structured Query Language .11

3.7 Functionality in database .12

3.7.1 Stored procedures .12

3.7.2 Triggers .13

3.8 Relational database reverse engineering14

3.8.1 Nature of DBRE . 14

3.8.2 Importance of DBRE .15

3.8.3 Program comprehension and DBRE16

4 Reverse engineering Java and OO systems 17

4.1 Reverse engineering .17

4.2 Characteristics of OO systems .17

4.3 Understanding OO systems .18

4.4 Unified Modeling Language .19

4.5 Understanding Java systems .20

4.6 Applicability of reverse engineering methodologies for database applications20

i

5 Understanding database usage 22

5.1 Data model representations .22

5.2 Database usage .23

5.3 SQL/CLI database usage .24

5.4 Dealing with dynamic SQL by logging the statements27

5.5 Transactions .29

5.6 Variable and data dependencies .30

5.7 Analyzing embedded SQL .31

5.8 Object-relational mapping (ORM) .32

5.9 Object-relational impedance mismatch .33

5.10 Data dictionaries help understanding database usage34

5.11 Artifacts of database usage .35

5.12 Dependencies between the artifacts .35

5.13 Analyzing database usage .38

5.13.1 Static analysis .38

5.13.2 Dynamic analysis .39

5.14 A way of visualizing database usage .39

6 Software maintenance and database applications 42

6.1 Types of software maintenance .42

6.2 Maintaining database applications .43

6.3 Maintainability of database applications44

6.4 Functionality and data .44

6.5 Maintenance problem situations with database applications46

6.5.1 Problem situations in corrective maintenance46

6.5.2 Problem situations in perfective maintenance47

6.5.3 Problem situations in adaptive maintenance48

6.5.4 Problem situations in preventive maintenance48

6.5.5 Problems in regression testing .48

6.6 General level maintenance problems .49

6.7 Problem classification .49

6.7.1 Background of the classification49

6.7.2 CategoryProgram . 50

6.7.3 CategoryDatabase. 52

6.7.4 CategoryDatabase-application relationship. 53

6.7.5 CategorySQL . 54

6.7.6 Problem relations .55

ii

7 Empirical study 57

7.1 The target system .57

7.2 The hypotheses .58

7.3 The questionnaire .58

7.4 The limitations of the study .59

7.5 The results .59

7.5.1 Subject background .59

7.5.2 Problematic tasks .60

7.5.3 Important tasks .62

7.5.4 Other tasks .62

8 Analysis 64

8.1 Categories differ .64

8.2 Task significance .64

8.3 The most significant problems .66

8.4 Essential information needs .71

9 Conclusion 74

10 References 75

Appendices

A Appendix. Query form 80

iii

1 Introduction

Information systems have become larger through history. The big size has had an impact on

understanding the source code of the system [BH92]. Need for tools that help understanding

has appeared. Several tools are currently available for program comprehension purposes.

Database applications are widespread on almost every domain where software exists. A

database application handles persistent data of database and hence differs substantially from

other software. There are lots of dependencies between the application and the database.

The dependencies are not always very clear for the developer so there are certain needs for

tools supporting maintaining and understanding database applications.

Data reverse engineeringaims at finding out what information is stored and how the in-

formation can be used in different contexts [MJS+00]. Database reverse engineeringis data

reverse engineering process where the target of reverse engineering is persistent data struc-

tures of an information system that uses database management system (DBMS) [MJS+00].

These research areas provide useful information about the information needs that developers

or maintainers have.

Most of the current programming tools, IDEs (Integrated Development Environment)

and CASE (Computer-Aided Software Engineering) tools do not exploit the reverse engi-

neering research. When inspecting database reverse engineering research, the situation is

even worse. What is most important, most reverse engineering tools available do not take

into consideration either databases or database usage, which sets the database application

developers and maintainers in a difficult position.

This thesis aimed at finding clues of what could be proper support for database applica-

tion maintainers. The theoretical background of this minorly researched area was clarified.

Conversation of more practical software development and maintenance tools was tried to

initiated. Practically, the research aimed at finding common problems in the maintenance of

applications that use database. Then the information needs were investigated related to the

problems. The research questions were 1) what the common problems in this type of main-

tenance are and 2) how the problem solving process could be made easier. The hypothesis

was that there are certain problems that occur e.g. in corrective and additive maintenance.

Some problems are more typical in corrective maintenance and vice versa.

The research method was as follows. A query form was sent for 48 maintainers of Ko-

rppi system. Korppi is a web-based information system developed, maintained and used in

the University of Jyväskylä. The system consists of Java code, JSP code and a relational

1

database. The maintainers were asked how problematic certain software maintenance tasks

were related to database usage.

The research area is quite large covering software maintenance, object-oriented systems,

relational databases and, most importantly, database usage. Database usage lacks a widely

accepted theory. Also,maintenance problems in database usageis an untouched area where

this thesis tries to open the ground.

This thesis is organized as follows. Database applications are described in chapter 2.

Then relational databases and reverse engineering them are discussed in chapter 3. Reverse

engineering of OO, Java software and database applications are briefly described in chap-

ter 4. Understanding database usage is discussed in chapter 5. Software maintenance of

database applications and problems of software maintenance are described in chapter 6. The

conducted empirical study is described in chapter 7. The results are analyzed in chapter 8.

Finally, chapter 9 represents the conclusions.

2

2 Database applications

This chapter aims at describing the key concepts of database applications. Background of

the topic is covered in section 2.1. Section 2.2 describes Java database applications and the

most important concepts of database applications. Characteristics of database applications

are discussed in section 2.3

2.1 Background

With database applicationwe mean here software which provides a user interface to a

database, though the term is also used to mean software dedicated to managing databases.

These types of systems are also called database programs, database intensive applications,

data-oriented applications or more generally, information systems. The database is typically

the most essential part of such application.

The amount of database applications is increasingly high. Especially web database ap-

plications have become popular,e.g. thousands of web markets are this type of applica-

tions. Web database application provides web-based user interface and therefore involves

more technologies,e.g.JSP handling the HTML-based user interface. Figure 2.1 shows an

example of the architecture of such application. The arrows of the figure represent usage

relationships.

Relational database has been the synonym for database. It is still widely used in various

application areas, though newer database technologye.g.object-oriented database has been

predicted to take over the market. This thesis is limited to relational databases and Java

systems using them.

The target system of this research is a web application using JSP technology for user

interface, Java code for business logic, JDBC [EHF01] (Java Database Connectivity) for

database usage and PostgreSQL for a database management system. Therefore, embedded

SQL is not part of the research area.

This setting brings us specific maintenance problems that exist in the majority of main-

tenance tasks. This issue is more precisely discussed in the following sections. The main

scope of this research is to find out the problems and the information needs related to them.

3

Server

Client Browser

Presentation (JSP)

Business Logic Java Beans

Relational DBMS (PostgreSQL)

Figure 2.1: An example of web database application.

2.2 Java database applications

Relational database applications can be implemented in Java language with various ways.

Subsection 2.2.1 introduces various ways how Java applications can be combined with rela-

tional databases. Then JDBC (Java Database Connectivity) is introduced in subsection 2.2.2

and a little example is given.

2.2.1 Java and relational databases

Java [GJS96] is an object-oriented programming language widespread over the world. The

syntax is similar to C while some of the features are based one.g. Smalltalk and C++

[Gos97].

There are several ways to build a relational database application. In Java, there exists at

least three ways:

– Program uses call-level interface (e.g. JDBC) in order to communicate with the

database. The SQL code using the database is written in the Java code asString

objects.

– Embedded SQL (SQLJ) manages the database usage. The program is compiled in

two phase because the SQLJ code is first translated into JDBC calls before the actual

compilation.

– Classes are mapped to database tables with object-relational mapping (ORM) software.

4

2.2.2 JDBC database usage

In a Java application, database may be used by SQL and Java Database Connectivity (JDBC)

[Kon98]. An SQL statement is passed as a parameter of typeString in the JDBC API

calls. There are several other APIs that are designed to manage database access, e.g. Open

Database Connectivity (ODBC) [Mic95] but they are not widely used. JDBC API is object-

oriented, which means practically that the API consists of classes which contain methods.

With an OO API, database is always used with method invocation (call). JDBC is also

vendor-neutral, dynamic SQL interface. Dynamic SQL means that SQL statements are con-

structed and evaluated during run-time. [IBM02, XOP95b]

What database usage is in practice? Figure 2.2 shows an example of database usage.

Connection , DriverManager , ResultSet andStatement are classes and belong

to the JDBC API. They are part ofjava.sql-package.

1 Class.forName("oracle.jdbc.driver.OracleDriver");
2 String conS = "jdbc:oracle:thin:@server:1000:STS";
3 Connection con = DriverManager.getConnection(conS,"USER","PASSWORD");
4 String query = "SELECT lastname FROM person WHERE personid ="+personID;
5 Statement statement = con.createStatement ();
6 ResultSet rs = statement.executeQuery(query);
7 while (rs.next()) {
8 System.out.println("Name is " + rs.getString("lastname"));
9 }

10 statement.close();
11 con.close();

Figure 2.2: Code example of database usage.

Line 1 loads driver for database connection. Then connection is initialized (line 3) based

on theconS string (line 2) that has specific information about the database location and port

number. In line 4, a query is formulated. The query consists of a condition that is determined

on runtime becausepersonID variable is a part of it. Line 5 creates astatement object

which represents the query. Thestatement object executes the given query in line 6.

Practically, the statement is sent to the RDBMS which executes it. Lines 7-9 are related to

handling the results of the query and the connection is closed in lines 10 and 11.

The example is trivial but two things must be noted: First, it is important to understand

call (invocation) relationships because the database is used by calls. Second, the roles of the

JDBC classes and the meanings of their methods must be understood.

A sequence diagram in figure 2.3 shows the scenario of the code example. Sequence dia-

gram shows invocation relationships between classes in a dynamic sequence. The drawback

of the sequence diagram is, that it shows the calls to the database API same way as the other

5

calls between objects. However they have a different meaning because they define the model

of the database usage.

Figure 2.3: Sequence Diagram of code in figure 2.2.

The current widely used version of JDBC, version 3.0 [EHF01] includes tens of classes

and interfaces. It consists of two packages:java.sql (core package) andjavax.sql

(optional package). The core package is a part of the Java 2 SDK.

The core package contains one interface (Driver) and three classes (DriverManager ,

SQLPermission andDriverPropertyInfo) related to establishing connection. There

exists five interfaces for sending SQL statements to a database and one interface for retrieving

the results of a query. There are many interfaces and classes for mapping types between Java

and SQL, and custom mapping of user defined types (UDT). The API includes also meta-

data interfaces, which provides information about the structure of the database. Error situ-

ations may be handled with various exceptions,e.g. SQLException andSQLWarning .

[EHF01]

2.3 Characteristics of database applications

Database applications are generally more complex than applications that do not use database.

Database application which uses database with SQL/CLI, may be affected by impedance

mismatch. The application contains two type systems or programming models [NHR99].

6

The relationship between the database and the application may be described bydata de-

pendency. With strong data dependency, the early binding checks the dependencies between

the application and the database. Any mistake in source code is detected at compile time.

Also, all preparation related to DB operations are shifted to compile time, which is good

for run time performance. Strong data dependency is gained using embedded SQL and pre-

compilers. [NHR99] Weak data dependency is achieved with SQL/CLI. Compilation time

is shorter and the “late” binding prevents from detecting DB schema (structure of database)

related errors at compile time. [NHR99]

There exists tree major differences between database applications related to the relation-

ship between the database and the application. They are in fact some sort of dependencies

between the database and the applications. Firstly, relational database management systems

provide own dialects of the SQL language. The dialects are mostly identical when consider-

ing the most widely used SQL statements. It is typical that data types and special functions

differ.

Secondly, there are differences in call level interfaces. Interfaces vary in different

programming languages and with different database vendors. There are, for example,

JDBC [Ree97], DB2 CLI [IBM02] and ADO (ActiveX Data Objects). There are several

interfaces for single language and one interface may be used by many systems with different

programming languages. For example, ADO can be used from several languages,e.g.Visual

Basic and C++. Also, a Visual Basic program can use relational database withe.g.ADO or

RDO (Remote Data Object) [IBM02].

The third difference is the schema of the database. The names of the database tables and

columns belong to database physical schema. Usually every application has its own schema,

but there are also information systems where many applications use the same database and

are therefore similarly dependant. Generally, business applications can not be built to be

fully independent of the database schema. So, when modifying the schema, (e.g.changing a

name of the column) source code of the application must be modified accordingly.

By analyzing these three dependencies, we can find out how strong the relationship be-

tween the database and the application is. When the relationship is strong, it is not easy to

reengineer the application to use a different kind of database or CLI. Also the application

with the strong relationship may be much more difficult to maintain. In that case, changes in

application may require many changes in database and vice versa.

7

3 Relational databases

This chapter describes the key concepts of relational databases. Relational databases contain

the information stored in the tables which are formulated by rows and columns. There are

however more formal model behind this. A relational database may contain both data and

functionality.

Section 3.1 presents basics of conceptual data modeling and describes entity-relationship

(ER) diagram. Section 3.2 describes briefly the relational data model. Database schemas and

data independence are discussed in section 3.3, and more specifically, relational database

schema is described in section 3.4. Theprimary and foreign keys are also handled in

the section. The role of the database and other database related issues are discussed in

section 3.5. Section 3.6 describes SQL (Structured Query Language) as a way to access a

relational database. Functionality stored in relational databases are described in section 3.7.

Finally, section 3.8 presents relational database reverse engineering which is an important

issue related to database comprehension.

3.1 Conceptual data modeling

A data model is a collection of concepts. For databases, data models are used to describe

the structure of the database [EN99]. A relational database application consists of multiple

techniques. Program functionality and the temporary data related to it may be handled with

programming language and its type system. The persistent data is handled with database

technology, relational data model and database query language.

Because of historical reasons, the database and application technologies have gone sep-

arate ways and developed their own modeling techniques and representations for the con-

ceptual model. The UML is a popular notation for application developers who work with

object-oriented systems. It does not only model data but also the structure and behavior of

the system. The database society has developed the Entity-Relationship (ER) model [Che76]

and its successors. There have also been approaches in order to unify the models.

Entity-relationship (ER) diagrams and UML class diagrams are both based on the anal-

ysis process of the problem domain. The output of the analysis process is called conceptual

model. The ER diagram consists ofentities, relationshipsandattributes. An entity repre-

sents a concept of the real-world, while a relationship among two or more entities represents

interaction among the entities. An attribute is an important property of some entity. The ER

8

model, relational model and object-oriented model are compared later in section 5.1. [EN99]

The conceptual model of the problem domain can be achieved from the existing sys-

tem using database reverse engineering tools [HHH+97, HEH+98]. They are focused on

database analysis. Therefore the database reverse engineering tools may not be very helpful

for a maintainer who has to do changes to the source code of the application. Database com-

prehension and database as a source of information for the conceptual model should not be

ignored when reverse engineering database applications [HEH+98]. This issue is discussed

further in section 4.6.

3.2 Relational data model

The relational data model, or shortly relational model is one of the most common database

models used in information systems [EN99]. Relational databases are based on the model.

There are two variants of the model, formal or informal model. The formal model repre-

sents the database as a collection ofrelations, while the informal model uses termtable for

relation. The differencies of the terminologies are described later in section 5.1.

The relational model is based on predicate logic and set theory [Cod70]. A relational

database stores information intables (or relations). A table has fixed amount ofcolumns

which are used to store certain information. The information of the table is stored inrows

(also calledtuples). [EN99]

3.3 Database schema and data independence

The description of a database is called thedatabase schema. Elmasri and Navathe [EN99]

specifies a database system architecture called the three-schema architecture. It divides the

schema to three levels: internal (physical storage structure), conceptual (database structure

described for a community of users) and external level (database described for a particular

user group). [EN99]

The architecture supports data independence. There are two kinds of data independence:

logical and physical. Logical data independence makes database modification tasks to affect

only to the selected objects and other data remains untouched. With physical data inde-

pendency, changes to the internal schema do not present changes in the other levels of the

schema. [EN99]

9

3.4 Relational database schema and identity

A relational database schema S is a set of relationsS = {R1, R2, ..., Rm}. The schema also

contains a set of integrity constraints. Integrity constraint states that none of theprimary

key values can be null. Primary key is described in the next section. [EN99]

Relational database provides identity for data by primary keys. A primary key is a subset

of the relation’s attributes. It is such subset that no distinct tuples can have the same value.

This constraint is also called theuniqueness constraintand the primary key is sometimes

called thesuperkey. A column or a group of columns of a table may be set to form a primary

key. [EN99]

The concept of foreign key needs more clarifying. Thereferential integrity constraint

manages the consistency among tuples of two relations. A foreign key ofR1 referencing to

relationR2 satisfies always these two conditions [EN99]:

1. The attributes in the foreign key have the same domain(s) as the primary key attributes

of R2 .

2. A value of the foreign key always occurs as a value of the primary key or is null.

It is said that the foreign key refers to another relation, but foreign keys may be used to refer

to its own relation. [EN99]

The foreign keys are used to create relationships between the relations. Types of these

relationships may be 1:1, 1:M or N:M. These types are called cardinality constraints (also

used in UML models). The cardinality 1:1 means that there is one-to-one row correspon-

dence between the tables. For given tuple inR1 it can be related to only one tuple inR2

and conversely. With 1:M relationship betweenR1 andR2, a tuple inR1 may relate to any

number of tuples inR2 but each tuple inR2 must have only one tuple inR1. The cardinality

N:M defines thatR1 may contain multiple tuples for a tuple inR2 and conversely. [EN99]

3.5 Database as a part of the system

Databases are used mostly because of data persistence. The other reasons for using separated

database servers are distributing, sharing data with multiple clients or applications or data

replication.

Data in the objects of the application are temporary. The data is lost when the application

is terminated.Persistent datais data that persists over one data management session in the

database [XOP95a]. Book [Ree97] describes that persistence is the act of making the state

of an application stretch through the end of this process instance of the application to the

next. Application is made persistent by recording its state in a data store. There are many

ways to achieve data persistence. The data store may bee.g.a file, a relational database,

10

object-relational database or an object-oriented database. This thesis focuses on relational

databases.

In some OO systems, relational database is mapped to the classes of the application so

that the objects of the OO system are made persistent [HHH+97]. An object is persistent, if

it survives the termination of program execution and can later be loaded to another program

[EN99]. This mapping is calledobject-relational mapping(ORM). It is discussed more in

section 5.8.

3.6 Structured Query Language

Structured Query Language [ISO03] is not a query language but a database language. It

has multiple features,e.g.for queries, user control management and data defining. SQL is

widely used to access relational databases. It consists of statements that define, retrieve and

manipulate data. Practically, SQL statements of an application that uses database are used to

retrieve, update, add and remove the database data. These operations manipulate the tables

of a relational database.

Widely used SQL statements for these purposes are as follows:

– SELECTretrieves information (by runningqueries) from one or more tables.

– UPDATEalters information in a table.

– INSERT adds row(s) to a table.

– DELETEremoves row(s) from a table.

There are many SQL standards and several RDBMS (relational database management

system) vendors. Most of the vendors provide a language that is compatible with one or

several SQL standards. Some dialects of SQL also support using object-relational databases.

Object-relational model combines features from object model and relational model. The

model is not discussed here. This thesis is focused on relational databases.

The first SQL standard is SQL-86 and after that there have been versions SQL-89, SQL-

92, SQL-99 (also called SQL:1999) and SQL:2003 [ISO03]. The newer standards (SQL-92

and SQL-99) include also features like user right management and controlling transactions

but they are not discussed here. SQL:2003 standard adds new features to the language

(e.g.new sorts of columns, new data types and table functions) [EMK+04]. The existing

widely used statements (e.g.SELECT, UPDATE) that retrieve and manipulate data remain

unchanged.

SQL/CLI (Structured Query Language / Call Level Interface) is a subset of the SQL-92

standard. It has been standardized by X/Open Company Ltd in 1995. It has also become

a part of the SQL-99 standard. It is often callednot-embedded SQL access method. No

11

precompiler is required for SQL statement processing when compiling application because

the database usage is coded in function calls. There are several functions (e.g.execute SQL,

open connection) that define how to use the database.

SQL/CLI usage differs from embedded SQL so that SQL/CLI takes SQL statements to

the variables of programming language. SQL/CLI usage allows developers to build SQL

statements dynamically. The good (and bad) side of embedded SQL is that SQL statements

are written to the application statically. This means that SQL can be checked before com-

piling the application and SQL statements are more visible in the source code. However,

some embedded SQL implementations make it also possible to build SQL statements during

application execution,dynamically[IBM02]. Dynamic SQL is more difficult to analyze than

embedded static SQL but dynamic SQL allows building software with fewer lines of code (in

some cases). There are also other reasons of using dynamic SQL or embedded SQL. They

are not described here bute.g.[IBM02] gives a good overview.

3.7 Functionality in database

Most of the relational database management systems allow writing functionality into the

database. Subsection 3.7.1 describesstored procedures, a kind of functions stored in the

databases.Triggers which may be used to enforce additional constraints are described in

subsection 3.7.2.

3.7.1 Stored procedures

Stored procedures are collections of executable SQL statements. There are several vendor-

specific different extensions for writing them because the SQL standard itself is quite limited.

[EN99] The purpose of stored procedures is to store the functionality which is more closely

coupled to data straight into the database. They can be used in order to reduce the amount of

data to be send to database server. The procedures may be called from the client application

directly, or they can be used fromtriggers which are described later.

Stored procedures may be written with PL/SQL, which is a procedural language ex-

tension to SQL by Oracle. It offers features like data encapsulation, information hiding,

overloading and exception handling. [EN99, chapter 10]
PL/SQL language is block-structured which means that the basic unit of the language

is a block of statements. A block contains logically related declarations and statements. A
PL/SQL block has the following structure [EN99]:

[DECLARE

---declarations]

12

BEGIN

---statements

[EXCEPTION

---handlers]

END ;

The block begins with the declarations part, which is optional. The part may contain variable

declarations with SQL data types or additional PL/SQL data types. The part which begins

with BEGIN is an executable part and may contain procedural code like conditional, iterative

and sequential control-flow statements. The exception part takes care of the error situations

of the executable part. An occurring exception forces the halt of the normal execution and

handling the exception. [EN99, chapter 10, section 5]

3.7.2 Triggers

A trigger (part of SQL2) is a condition and an action to be taken if the condition is met

[EN99, chapter 23, section 1]. A trigger is also called as an active database rule. Normally

triggers are used in order to manage data integrity or prevent unreasonable data being stored

to database. There are several versions of trigger implementations in commercial RDBMS.

Triggers are specified withEvent-Condition-Action, or ECA model:

• An event is usually an update operation that triggers the rule. There are also temporal

events,e.g.periodic time, every day at 6:00 am and other kinds of external events.

• A condition determines whether the action should be executed. If no condition is

specified, the action will be executed immediately after the event occurs.

• An action is a sequence of SQL statements or a database transaction or an external

program that will be executed.

Here is an example of ECA with Oracle notation. The database schema consists of two
tables:EMPLOYEEandDEPARTMENT. The columns of the tables are as follows.

EMPLOYEE

NAME SSN SALARY DNO SUPERVISOR_SSN

DEPARTMENT

DNAME DNO TOTAL_SAL MANAGER_SSN

A definition of a triggerTOTALSALis given here.

CREATE TRIGGER TOTALSAL

AFTER INSERT ON EMPLOYEE

FOR EACH ROW

WHEN (NEW.DNO IS NOT NULL)

13

UPDATE DEPARTMENT

SET TOTAL_SAL =TOTAL_SAL +NEW.SALARY

WHERE DNO = NEW.DNO

The trigger TOTALSAL in the example is basically “Always where adding an employee

(event), update the total salary of the department (action) if the department is known (condi-

tion).” [EN99]

Triggers are important from the maintainer’s view point because they may add data flow

relations between the tables and therefore complicate software maintenance tasks. It is essen-

tial to manage data flow relations in understanding the software and the system as a whole,

making changes and testing. For example, a tester must take care of the triggers when deter-

mining what parts of the application are to be tested [HMD01].

3.8 Relational database reverse engineering

Data reverse engineeringaims at finding out what information is stored and how the in-

formation can be used in different contexts [MJS+00]. Reverse engineering the persistent

data structure of an information system that uses DBMS is more specifically referred to as

database reverse engineering(DBRE).

Subsection 3.8.1 discusses the nature of database reverse engineering. Then the im-

portance of database reverse engineering is discussed in subsection 3.8.2. Finally, subsec-

tion 3.8.3 discusses about how program comprehension and database reverse engireening (or

database comprehension) are related to each other in case of database applications.

3.8.1 Nature of DBRE

Database reverse engineering is a process of recovering the schema of the database

[MJS+00]. In other words, DBRE aims at supporting database comprehension. Database

reverse engineering uses, as input, database declaration text and program source code that

uses database. The result of the process is a conceptual model of the database.

Database reverse engineering may be useful in understanding database usage if the

database documentation is not adequate. Database reverse engineering can helpe.g., in

understanding the meanings of the tables and columns of the database, which is essential

for understanding database usage. Database reverse engineering can be thought as a part

of reengineering databases. Reengineering database applications is a large area and not

discussed here. Reengineering relational database applications to EJB based architecture are

presented in [Lu02]. Article [TP96] describes database reengineering when application using

embedded SQL is translated to use a domestic SQL API called Pst/DB (similar to SQL/CLI).

14

Relational database reverse engineeringis a specific area of database reverse engineer-

ing. It involves the analysis of SQL data definition statements or existing physical structure

of the database. Reverse engineering relational databases is described by Premerlani and

Blaha [PB94]. The article proposes a process where existing relational database is reengi-

neered to an object-oriented conceptual model. Premerlani and Blaha [PB94] conclude that

automated batch-oriented compilers will not succeed. The process of reverse engineering

databases requires flexible and interactive tools.

A generic methodology for reverse engineering databases is presented in [HEH+98].

The methodology consists of two phases. Data structure extraction is the first phase and

produces the logical schema of the database as an output. The inputs are the data of database,

program source code, physical schema of the database and data definition statements. The

phase consists of both program and data analysis. Program analysis is required for detecting

implicit data structures. [HEH+98]

The second phase, data structure conceptualization takes the logical schema as input

and produces the conceptual schema of the database. Program analysis is required here in

order to achieve a complete logical schema. The conceptual schema is an interpretation

of the complete logical schema. The phase consists of transforming and removing non-

conceptual structures, redundancies, technical optimisations and DMS-dependent structures

of the logical schema. [HEH+98]

3.8.2 Importance of DBRE

When extending an existing relational database application there may be many open ques-

tions [AEP96]:

• How to use joins to navigate among relations?

• Where particular type of data is located?

• What other relations will be affected when changing this relation?

• What application code will be affected when changing this relation?

• What portion of the data does this application use in the database?

• Where is the best place to add data for a new or changed database application?

• What existing functions are affected by a proposed change?

Without good answers to the previous questions, maintainability degrades [AEP96]. De-

velopers cannot find the right relations from database and end up adding redundant data to

the database.

15

3.8.3 Program comprehension and DBRE

Program comprehension and databases reverse engineering support each other in database

applications [HEH+98]. Program comprehension techniques are required when reverse en-

gineering database and also, in data-oriented applications it is essential to understand the

database in order to fully understand the system.

Program comprehension is important in database reverse engineering. Finding queries

from the source code may be essential for database reverse engineering, which clearly re-

quires program comprehension. Procedural code analysis helps therefore in understanding

the semantics of the data structures. Some information about integrity constaints and implicit

data structures can be found from the source code of the program. Understanding the busi-

ness rules and the problem domain may give essential hints to understanding the meaning of

the database entities. [HEH+98]

For example, when reverse engineering a relational database into a conceptual schema,

the essential part of the schema is what are the relationships between the tables. The infor-

mation about the cardinalities of the relationships may be found from the source code where

the queries are located. [HEH+98]

As a contradict, database reverse engineering in program comprehension is important

issue. The understanding of the underlying database may ease the understanding of the

functionality of the system. This issue is discussed in section 4.6.

16

4 Reverse engineering Java and OO systems

This chapter describes reverse engineering of Java and OO systems because code reverse en-

gineering may be a helpful process for understanding database usage. Section 4.1 gives a def-

inition for reverse engineering. Section 4.2 describes characteristics of OO (object-oriented)

systems. Section 4.3 describes program comprehension issues of OO systems. UML (Uni-

fied Modeling Language) is shortly introduced in section 4.4 as a representation for support-

ing program comprehension. Understanding Java systems is handled in section 4.5. Finally,

section 4.6 discusses the applicability of the current reverse engineering methodologies for

database usage comprehension.

4.1 Reverse engineering

Reverse engineering aims at representing the software in a form which facilitates program

comprehension. Chikofsky and Cross [CI90] defines reverse engineering as a process of

analyzing a subject system to identify the system’s components and their interrelationships

and to create representations of the system in another form or at higher level of abstraction.

4.2 Characteristics of OO systems

OOPs (object-oriented programs) differ significantly from conventional (i.e. nonobject ori-

ented) programs. In conventional programs, data is mostly used globally and it is separate

from functions accessing it. The system is modularized based on its functionality. OOP is a

paradigm that defines the modules of the system based on conceptual model of the problem

domain [Sny93]. Code and data are encapsulated intoobjects. The code is represented as

methodsand the data asattributes. An object typically has state and behavior. The state is

determined by its attributes and the behavior is determined by the operations (methods) of

the object. Objects are generated,instantiatedfrom a class that is a definition of a concept.

Many characteristics of OO systems make OO code reverse engineering different from

traditional reverse engineering. The characteristics are described in [WH92] and [Tuo95].

Inheritance is a relationship based on the specialization of an existing class to define a new

concept that is a special case of the existing class. The inherited class is called assuper-

classand the new class assubclass[Tuo95]. Dynamic binding means that the target of a

17

method call is not available statically (i.e. at compile time) and is a form ofpolymorphism.

Polymorphism means that a variable of one type can hold also values of other types.

An OO system contains typically many small methods instead of a few number of large

methods. This makes OO systems to resemble message-passing systems where methods

send messages to methods with very little processing. Also, OO system tends to have many

small modules instead of a smaller number of large modules. [WH92]

In a conventional system, there is a top-level module that calls other modules to execute

certain functionalities. The top-level main module is usually a good place to start under-

standing system in order to achieve general understanding. In OO systems, there may not be

real top-level main module where to start system understanding. [WH92]

4.3 Understanding OO systems

The characteristics described in section 4.2 lead OO system understanding to focus on find-

ing chains of method invocations. A chain can lead over several different object classes up

and down an inheritance hierarchy. Searching the chains is time-consuming and requires

good understanding of inheritance dependencies and calling dependencies of the system.

Wilde and Huit [WH92] describe important dependencies of an OO system. A depen-

dency in a software system is a directed relationship between two artifacts. In conventional

programs dependencies can be classified as data dependencies, calling dependencies, func-

tional dependencies and definitional dependencies [WH92]. In OOP, we add new entities that

have dependencies: object classes, methods and messages. Variables may represent instances

of an object class. Use of polymorphism and inheritance brings new kinds of dependencies

into consideration. The dependencies are listed precisely in [WH92]. The dependencies exist

in object-oriented languages,e.g.Smalltalk and C++. Wilde and Huit [WH92] describe the

dependencies so that they can be applied to Smalltalk. Tuovinen [Tuo95] describes similar

dependencies that exist in C++ programs. The dependencies exist similarly in Java language

programs. Understanding Java is discussed later in section 4.5.

Dependencies can be classified as class-to-class, class-to-method, class-to-message,

class-to-variable, method-to-variable, method-to-message and method-to-method dependen-

cies. For example, method-to-method dependencies are “method M1 invokes method M2”

and “method M1 overrides method M2”. Class-to-class dependency can be,e.g.“class C1

uses class C2”. It is important to note that in C++ and other statically typed OOP languages

there is no concept of message. Therefore the dependencies that belong to class-to-message

and method-to-message do not exist in those languages.

Calling hierarchies are a good tool for understanding conventional programs. Because of

the nature of OO, calling hierarchies as such are not applicable. Inheritance hierarchy is an

18

important way to help understanding OO systems, but it does not show any other relation-

ships between classes than inheritance. General system understanding of OO system could

be achieved by inspecting graph of “Class Uses Class” dependencies. “Class Uses Class” de-

pendencies help understanding the responsibilities of the classes through their relationships

to the other classes.

One of the biggest problems of understanding an OO system is polymorphism and espe-

cially dynamic binding. In dynamically typed languages every method call is polymorphic.

The target of a method call is necessarily not available at compile time. In statically typed

languages (e.g.Java and C++), the information of the target is available up to certain degree

at compile time. For example, if there is a variable of whose type is declared as class A, it

can hold only objects of A or objects of the subclasses (direct or in-direct) of A. In languages

with no static typing (e.g.Smalltalk), there are no type constraints attached to variables. The

target can be virtually any method with same name and same number of parameters. The re-

striction of the target candidate can be done better in statically typed languages. It is difficult

to find out exact calling relationships in OOPs if dynamic binding is used.

Wilde and Huit [WH92] suggest that usingexternal dependency graphsimproves the

understanding of polymorphism. An external dependency graph divides methods to equiva-

lence classes. Division is based on method names and dependencies between parameters and

result type. With external dependency graphs we can restrict the number of target candidates.

[WH92]

4.4 Unified Modeling Language

Unified Modeling Language (UML) is a graphical language for describing mainly object-

oriented systems. It may be used for visualizing, specifying, constructing and documenting

purposes [OMG03]. UML is applicable also to defining database schemas [LZ03, OMG03].

UML model can be helpful up to some degree in understanding the system. It focuses on de-

scribing objects (and classes) of the system. It includes both static and dynamic approaches.

There are various diagrams for many purposes with different approaches. The most pop-

ular diagram type, class diagram is a diagram that bases on describing the static structure

of the target system. It describes the classes and the relationships between them. The UML

sequence diagram (modeling dynamic aspects) describes a dynamic scenario of the system.

It describes the scenario as a sequence of messages between objects (orcalls between the

classes) An example sequence diagram was presented in section 2.2.2 (figure 2.3).

UML may not be a good representation in understanding database usage because of var-

ious reasons. One reason is that UML does not describe the interaction between the applica-

tion and the database with a special notation. Also,transactiondo not belong to UML as a

19

separate concept.

Usefulness of UML for database applications can be raised by usingstereotypes. There

is a recommendation to use stereotypepersistentwith a class symbol in order to represent

a relation [BRJ99]. A tuple of the relation (a row of the table) corresponds to an instance

of the persistent class. There is also an approach [LZ03] to extend the UML metamodel

with elements for modeling relational dependencies. The UML metamodel is extended with

new stereotypes based on UML metaclassDependency which abstract the dependencies

between the tables of the database. These dependencies are inclusion dependencies, foreign

key dependencies and functional dependencies. [LZ03]

4.5 Understanding Java systems

An experimental environment called Shimba supports reverse engineering of Java sys-

tems [SKM01]. Shimba environment integrates Rigi and SCED tools to analyze and vi-

sualize Java systems. Shimba collects and represents both statically available and run-time

information. It uses both static and dynamic analysis. Shimba produces SCED sequence

diagrams that correspond to the sequence diagrams of UML and also statechart diagrams.

Sequence diagram shows the interaction between objects but statechart diagram gives infor-

mation about the overall behavior of an object.

4.6 Applicability of reverse engineering methodologies for database ap-

plications

Database applications are a specific area of software where the database and its role is a

significant. The current reverse engineering methodologies (e.g.[SKM01, WH92, HHH+97]

are so general that they do not include concepts of database neither the concepts of database

usage or transactions. So, they are not suitable for database applications. Database reverse

engineering is fully different. It approaches the system from the viewpoint of database and

often leaves the program without any attention. Some examples are [Alh03, CF03, AEP96,

PB94].

While the gap between the methodologies exists, there are some useful approaches

to bring them together when reverse engineering COBOL applications [HEH+98, Hen03,

HHH+99, HEH+95]. These publications point out that program comprehension and database

comprehension support each other, as discussed in section 3.8.3. While these publications

emphasize that program comprehension is important for reverse engineering databases, there

are not so many publications to declare the benefits of database comprehension for code re-

20

verse engineering.

One of the main purposes of database applications is to handle the database. The main-

tainer must be aware of the semantics of the tables and columns of the database in order to

fully maintain the database handling code. Different visualizations like database usage graph

may be useful when trying to comprehend the architecture of the application. [Hen03]

21

5 Understanding database usage

Database usage is mapping between data models. It is actions of read and write or some sort

of data flow between the database and the application. Issues of understanding the database

usage are described in this chapter. Database usage is far from simple, since it includes

transactions, data manipulation language and mapping objects to tables.

Section 5.1 shows how different data model representations are mapped to each other.

Section 5.2 discusses the most essential information related to database usage. Section 5.3

describes the different ways of SQL/CLI database usage in object-oriented systems. Logging

down the dynamic SQL statements is an important maintenance method which is discussed

in section 5.4. Transactions are discussed in section 5.5. Data dependencies are discussed in

section 5.6 and a model of maintaining web database applications is described. Analyzing

embedded SQL is discussed in section 5.7. Object relational mapping and object-relational

impedance mismatch are described in sections 5.8 and 5.9. Data dictionaries are presented

in section 5.10 for helping database application maintenance and development. Section 5.11

describes the essential artifacts of understanding database usage in a Java application using

JDBC. Section 5.12 describes some important dependencies of database usage which are

relevant to understanding the application and the database. Analyzing database usage is

discussed in section 5.13 and finally in section 5.14, a way of visualizing database usage is

presented .

5.1 Data model representations

Java is an object-oriented language, so it is quite natural to assume that Java software is

written using object-oriented design principles, although there are some cases where Java

has been used for writing almost fully procedural code. When developing such system, there

are multiple terminologies and overlapping terms. Some of the terms are often mapped to

each other, for example column of a table may be mapped to an attribute of a class.

Here we compare the terminology of object-oriented model, entity-relationship model

and relational model. Table 5.1 describes the correspondence between the terminologies

[EN94]. An entity of ER diagram can be found from an UML class diagram as a class.

Also, a relationship may correspond to a class. If diagrams and classes have good names, the

connection between these may be explicit. ER diagrams are used also in database design.

The data of an ER diagram are transformed and normalized into a relational database schema.

22

Object-relational mapping is a technique which makes the bindings between the models more

straightforward.

Table 5.1: Comparative terminology of data models [EN94]

Entity-relationship model Relational model, formal Relational model, informal OO model

Entity type schema Relation schema Table description Class description

Entity set Relation state Table Collection of objects

Entity instance Tuple Row Object

1:N relationship type __ a __ a __ c

1:N relationship instance __ a __a __ c

Attribute Attribute Column Attribute

Value set Domain Data type Atomic data type

Key Candidate key Candidate key __ b

__ b Primary key Primary key Object identifier

Multivalued attribute __ b __ b Set constructor

Composite attribute __ b __ b Tuple constructor

Letters a, b and c used in the table are described here.

a No corresponding concept; relationship is established by using foreign keys.

b No equivalent concept.

c No corresponding concept; relationship is established by using references.

5.2 Database usage

Database usage comprehension is a quite large area because it involves both database com-

prehension and program comprehension. While program comprehension is the mapping

between the program and the problem domain [HEH+98], database usage comprehension is

the mapping between the program and the database.

The most important issue in the database usage is the information stored in the database.

The information is stored into the tables of the database. The purpose of the table is de-

fined bywhat information is intended to be stored there. This prerequisite for understanding

database usage relates todatabase reverse engineeringwhich aims at building a conceptual

model of the database.

Other important questions in database usage are as follows: What is the purpose of single

database table or column? Which parts of the application use database (are dependent on

database)? When (in which sequences) database is used? What part (what tables) of database

23

is used by the application? How (read, write) database is used? By answering to these

questions we build a model of database usage.

Database usage involves also security issues. The data of database must not be visible to

all users. When database is used such that queries are generated dynamically based on the

input of the user, there is always a security risk that some secret data ends up to the query

[CMS03]. For example, inserting a tautology (1 == 1) to a query, can result in a situation

where the user gets all data entries of the associated tables instead of what the user ought

to be able to see. Understanding the database queries and how they are generated is thereby

important.

5.3 SQL/CLI database usage

Some important entities and interrelationships are described in figure 5.1. OOP consists of

objects that are defined by classes which have methods and attributes. The classes may be

involved in inheritance relationships which may result in a situation (in statically typed OO

languages) where dynamic binding complicates the understanding of method invocation. In

dynamically typed OO languages dynamic binding may complicate method invocation with-

out inheritance. The methods of the classes use the database by generating SQL statements

in String expressions or variables. In order to execute the statement, the method has to invoke

certain methods of database API classes. The SQL statement is passed as a parameter in the

invocation. The database API method passes the SQL statement for the database server and

the server manipulates the database tables accordingly.

Figure 5.1: Important entities and interrelationships of SQL/CLI database usage in OOP.

Main issues in database usage are connecting to database, execution of an SQL statement

and handling its results. Connection is usually handled through a specific class (often named

24

Connection) that belongs to the database API. It typically has operations that open and close

the database connection. There can also bea connection poolthat manages a number of

open connections at one time. Thus, the database is used through a connection pool class

that hides the pooling logic.

CLI Basic Control Flow[XOP95a] gives a good overview of SQL statement execution.

The execution is described more practically from the programmer’s perspective in [IBM02].

Executing SQL statement requires an open connection to the database. The SQL/CLI stan-

dard [XOP95b] defines that statement can first be prepared and then executed or executed

directly. The preparation turns the character string form of the SQL statement into an exe-

cutable form. Preparation makes it possible to execute the same statement repeatedly within

a connection. The preparation allows also constructing parameterized statements. A para-

meterized statement is a query withparameter markers. Parameter marker is indicated by a

question mark (?), and the place wherea host variable(variable of programming language)

is to be substituted inside an SQL statement. Executing directly means that no parameter

markers are used in the SQL statement and the statement is executed directly.

Handling the results is performed through a specific data structure resembling a table.

This structure is declared as a class in many OO APIs that base on SQL/CLI. For example,

there is a class namedResultSet in JDBC API [Ree97].ResultSet is one kind of a

table that contains the fetched data in its columns.ResultSet has usually methods that

allow iterating the table of results through, row by row.

The problem of understanding database usage is mapped to a problem of understanding

source code. If there is information available about what classes (and more precisely: what

methods) have database access responsibilities, the information can be used such that the

system is inspected by searching for usages of the classes (methods).

Figure 5.2 shows a code example where several methods are involved in constructing

an SQL query statement. Construction of the query is managed such that all the methods

append some information to theString -variable that holds the SQL statement.

Line 2 in figure 5.2 createsString -class variable to hold the SQL statement. Line 3

has a call to a methodselectFromPerson which formulates the beginning of the

statement. Line 4 uses the beginning and appends theWHERE–condition to it. Method

whereConditionPersonid creates theSQL WHEREcondition in line 11. Then the

statement is ready for execution and could be executed in line 5. This example shows that

dynamic SQL can be created easily using the mechanisms of the programming language.

Parameter markers and SQL statement preparation is a feature of SQL/CLI interfaces.

Figure 5.3 gives an example of using parameter markers and preparing a statement before

execution. Lines 1 and 2 create a prepared statement object. It has two parameter markers

that are attached on lines 3 and 4 withsetString andsetInt method invocations. At-

25

1 public void runSQL(Person person) {
2 String SQLstmnt = "";
3 SQLstmnt = selectFromPerson("lastname");
4 SQLstmnt += whereConditionPersonid(person.getPersonID());
5 // then execute it...
6 }
7 private String selectFromPerson(String field) {
8 return "SELECT " + field + " FROM person ";
9 }

10 private String whereConditionPersonid(int personid) {
11 return " WHERE personid = " + personid
12 + " AND person.personid=questionnaire.personid";
13 }
14

Figure 5.2: Code example of several methods involved in constructing a query.

1 PreparedStatement del = con.preparedStatement(
2 "DELETE FROM person WHERE lastname = ? AND questionnaireid = ?");
3 prepStmt.setString(1, "Norton");
4 prepStmt.setInt(2, 4);
5 prepStmt.execute();
6 prepStmt.close();

Figure 5.3: Code example of using parameter markers.

26

tachment replaces the question marks of the statement with given parameters. The question

marks are replaced in the order in which they exist in the statement and using the first pa-

rameter of thesetString andsetInt methods. So the order of thesetString and

setInt method invocation is meaningless. In this case, the final statement deletes all rows

with name Norton andquestionnaireid 4 from tableperson in line 5. The state-

ment is closed in line 6. It could have been executed repeatedly using different attached

values before closing.

5.4 Dealing with dynamic SQL by logging the statements

Dynamic SQL complicates database related functionality since the SQL statements are con-

structed at run-time. The statement may depend fully on the run-time state of the application.

It is quite usual (at least in the target system) that the conditions of an SQL statement are

generated dynamically depending on the user input.

In order to guarantee that the application produces valid and correct SQL statements,

static checking of the statements is difficult but possible [GSD04]. However, it is more

common to write debug messages to the application code which write the statements to log

files before they are executed. If a statement is not valid and the DBMS gives an error

message, log file contains the statement and it the error can be found.

Dealing with the effects of changes is a problem related to SQL statements. There are

maintenance situations where the application source code has to be changed without affecting

to the SQL statements. One method, used in the target system maintenance, is to write the

SQL statement downe.g. to comments in the source code. Then, after the change, the

statement can be checked by inspecting the log file containing the newly executed statement

and comparing the old and the new statement. The problem here is, that if the statements are

very dynamic, it is difficult to write down all the various forms of the statement. [Wyk03].

Instead of writing every log message to the source code where the query is constructed,

a sophisticated wrapper interface for database access may provide the logging services. The

target system uses classesDB and PreparedDB for executing SQL statements. These

classes wrap the JDBC functionality and hence ease the use of database. ClassDBprovides

SQL statement execution which corresponds to JDBCStatement interface. The class also

includes logging mechanisms that may be swithed on and off. The class also hides the use

of database driver from the other classes that use the database through it. The class hides

the pooling of database connections and provides similar transaction interface that exists in

the JDBC. The target system classPreparedDB inherits theDBand makes it possible to

use prepared SQL statements with parameter markers. The usage of the class is similar to

PreparedStatement interface of JDBC. Without this kind of separated database inter-

27

face, logging of SQL statements increases the size of the system.

Logging of SQL statements that are executed by JDBCPreparedStatement inter-

face is quite problematic. A good logging entry should describe the statement exactly how it

was executed after the parameter markers of the statement were replaced by the actual val-

ues. However, the interface does not provide such information, because the statement is sent

to the DBMS without the actual values. In order to log down SQL statements, there are many

alternatives,e.g. one may build the logging messages self in the code by concatenating the

statement from parts, or write a method for replacing question marks with values. By doing

this, duplicate code is created, and while changing the form of the statement, the logging

code also has to be changed which is not meaningful. [Wyk03].

An extension [Wyk03] to the interface is presented which makes the logging less prone

to error and tidies the source code. With the extension, logging features can be used quite

easily. An example is presented in figure 5.4.

1 String sql = "select foo, bar from foobar where foo < ? and bar = ?";
2 long fooValue = 99;
3 String barValue = "christmas";
4

5 Connection conn = dataSource.getConnection();
6 PreparedStatement pstmt;
7

8 if(logEnabled) // use a switch to toggle logging.
9 pstmt = new LoggableStatement(conn,sql);

10 else
11 pstmt = conn.prepareStatement(sql);
12

13 pstmt.setLong(1,fooValue);
14 pstmt.setString(2,barValue);
15

16 if(logEnabled)
17 System.out.println("Executing query: "+
18 ((LoggableStatement)pstmt).getQueryString());
19

20 ResultSet rs = pstmt.executeQuery();

Figure 5.4: Code example of logging [Wyk03].

The example shows the usage of the logging features of the extension ofPreparedStatement

interface. Lines 1-3 initialize the variables holding the SQL statement and the values that are

attached to it. Lines 5-6 trivially initialize the connection and declare the type ofpstmt vari-

able to bePreparedStatement which is the super class ofLoggableStatement . A

switch for turning logging off and on is used at line 8. The switch selects the right imple-

mentation of thePreparedStament interface. The values are attached to the statement

28

at lines 13-14. The statement is written to the log at lines 16-18 if the logging is switched

on. Finally, the statement is executed at line 20. [Wyk03]

5.5 Transactions

A database transaction or simply transaction is a logical unit of functionality that accesses

database [EN99]. A transaction includes one or more database operations which may be one

of the four types: insertion, deletion, modification or retrieval. Transaction processing is

needed for concurrency control in multiuser systems,i.e. to handle simultaneous access to

tha data.

There is an analogy between transactions and sequences of UML sequence diagrams.

Both describe the functionality of the system, dynamic behaviour. Elmasri and Na-

vathe [EN99] defines that a transaction is a particular execution of a program on specific

parameters. An UML sequence is a sequence of actions. A sequence diagram represents

the sequence as messages between objects with a time axis [OMG03]. While the UML se-

quence is about interaction between the objects, a transaction is about interaction between

the application and the database.

A transaction is an atomic unit of functionality that must be wholly completed or not

done at all. The database management system must handle the transactions and their effects

in order to provide undoing of transactions. There are several operations in order to process

transactions [EN99]:

– BEGIN_TRANSACTIONmarks the beginning of the transaction execution.

– READor WRITEspecify read or write operations on the database. They are executed

as part of the transaction.

– END_TRANSACTIONmarks the end of the transaction execution. This point requires

checking of whether the effects of the transaction can be committed to the database or

whether the transaction must be aborted.

– COMMIT_TRANSACTIONmarks a successful end of the transaction. This point indi-

cates that the effects (updates) of the transaction can be applied permanently (commit-

ted).

– ROLLBACK (or ABORT) signals an unsuccessful end and forces undoing of the

effects.

How transactions are supported in SQL and JDBC? A single SQL statement is always

atomic since it is completed wholly or it is not executed at all and leaves the database un-

changed. There is no explicitBEGIN_TRANSACTIONoperation in SQL but it is done im-

plicitly when the statement is encountered. EitherCOMMIT_TRANSACTIONor ROLLBACK

29

is required to be executed after the last SQL statement has been processed [EN99]. JDBC

API does not require doing this, since it has auto-commit mode. Auto-commit means that

JDBC driver does a transaction commit after each individual SQL statement when the ex-

ecution of the statement is complete. The completeness is decided with following rules

depending on the statement type:

– INSERT, DELETEandUPDATEstatements are complete when they have been exe-

cuted.

– SELECTstatement is complete when any of the following conditions is true:

– every row has been retrieved,

– associatedStatement object is re-executed or

– anotherStatement object is executed on the same connection.

Transaction management may also be done at a level higher the JDBC driver by setting

auto-commit mode disabled inConnection interface [EHF01]. In that case, each transac-

tion must be ended by callingcommit or rollback method ofConnection .

There are also more settings that specify the transaction processing. The statementSET

TRANSACTIONof SQL2 specifies the access mode, the diagnostic area size and the isolation

level. The settings are so specific that they are not described here but information about them

can be found from [EN99].

5.6 Variable and data dependencies

Variable dependency graphis a weak, easy to compute version of dataflow diagram [HEH+98].

It is described as a useful representation for understanding to which variables an attribute of

the database is connected. Each variable of the program is represented by a node and an

arc represents a direct relation (usually dataflow) between two variables. The construction

techniques of the graph are presented in [HEH+98].

The graph may be used for gaining understanding of database usage. Let us assume that

certain attribute of a class contains some information that is stored in database. In order

to understand how that information is used, we can read variable dependency graph for the

attribute and find out the other variables that are in relation to the variable.

A model of maintaining web database applications is described in [HLCW99]. The

model decomposes a web database application into hyperlink diagrams (HLD), entity-

relationship diagrams (ERD) and dataflow diagrams (DFD). DFD represents how data is

manipulated in the application. It comprises process, data store, external entity and the

dataflow between these. The process means here a single unit of work, in web application it

30

could be a single web page. A data flow consists of data items that are described in ERD as

attributes or represent a passing parameter between files. A data store is an entity of ERD.

DFD and ERD are used in maintenance tasks in order to identify the affected programs

when database changes happen. This process is called database analysis. Database changes

are deletion or addition of field, relationship or table. Also the change of the data type of an

attribute is regarded as a database change. There are three types of database analyses to find

out affected program source code. [HLCW99]

Attribute usage analysis searches usages of an attribute from the source code. For each

process in DFD, if its input or output data flows contain the attribute, this process is

identified as an affected program.

Entity usage analysissearches usages of a table from the source code. Attribute usage

analysis is done for each attribute of the entity. The identified programs of entity

usage analysis are the union of the programs identified by attribute usage analysis.

Relationship usage analysissearches usages of a relationship between two tables. The re-

lationship usage analysis is based on attribute usage analysis. It is done on both at-

tributes of a relationship. The identified programs are the intersection of the programs

identified by the attribute usage analysis.

Data-flow diagrams appear to be useful in software maintenance tasks and also in regres-

sion testing of database applications [HMD01].

5.7 Analyzing embedded SQL

Analyzing embedded SQL focuses on finding ESQL (embedded SQL) statements from the

program source code and extracting the information from them. The main purpose is to

describe the artifacts and the dependencies between the database and the program. This

section describes two approaches to analysis of embedded SQL.

Analyzing ESQL from COBOL program is described in [HEH+98]. It is a good example

how code reverse engineering techniques are used to support database reverse engineering.

Analysis uses an extension of program slicing technique to analyze programs with ESQL.

As a difficulty of the analysis, [HEH+98] describes that the physical schema is not ex-

plicitily declared in the program. Physical schema can be obtained by reading DDL (Data

Definition Language) statements if they are available.

Suominen explains how the HyperSoft system is extended to cover the analysis of

ESQL [Suo97]. The HyperSoft system is a reverse engineering tool that represents de-

pendencies of software artifacts via hypertext. The system producesaccess structureslike

declaration, occurrence lists, forward call graphs, backward call graphs, forward slices and

31

backward slices [Suo97].

Analysis of embedded SQL is based on ESQL definition blocks that are separated from

host language byEXEC SQLprefix [Suo97]. There are four kinds of symbols in embedded

SQL statements: variables, tables, columns and cursors. The HyperSoft system searches all

the occurrences of these symbols from ESQL statements.

The HyperSoft system produces occurrence lists of ESQL symbols. This is a useful

feature when inspecting,e.g.how cursor is handled. Occurrence list for a table shows all

places of the source code where the name of the table is used. This is useful in situations

where the table contains erroneous or wrong data.

The HyperSoft system can perform slicing between SQL and C source code. For ex-

ample, a backward slice from a variable used in ESQL statement gives all statements of the

program that influence to the value of the variable. Also, a backward slice from program-

ming language variable in C code gives slice that can contain SQL code if the variable is

influenced bySQL SELECTstatement.

Forward slice contains a subset of the program where the value of given variable influ-

ences. It can also be used between SQL and C source code. SQL UPDATE and INSERT

statements belong to the forward slice if there is a relevant variable in the statement that

produces data flow to the database. The system does not aim at representing the data flow

between SQL statements because it could be misleading [Suo97].

Analysis of embedded SQL differs from analysis of SQL/CLI usage in many ways. There

are noEXEC SQLprefix in the source code of SQL/CLI application. SQL is located in

the values ofString -variables. It is more difficult to find where SQL statements exist in

the source code. There are no cursors or variables in the SQL statements of the SQL/CLI

application unlike in embedded SQL statements.

SQL/CLI application uses SQL statements such that these kind of special slicing mech-

anisms as described earlier are not needed. In SQL/CLI application there may be complex

SQL statement that has been constructed in source code from many different variables and

in many different places. We can use backward slicing for theString -variable holding the

complex SQL statement to find out what values the statement is constructed from.

5.8 Object-relational mapping (ORM)

There is a correspondence between the classes and the tables of the database. Attributes of

the classes correspond to the fields of the tables. A row of the table may correspond to an

object in the application. The mapping techniques are described in [Amb03].

A table in relational database schema may correspond to a class of OO system and in

some cases, the table is handled only through the class. Understanding connections between

32

these areas (relational schema and application) is important in order to understand the whole

application. However, in some cases the correspondence does not exist. If the classes do

not represent the tables in the database directly, the application needs to be analyzed more

thoroughly.

There are many frameworks for object-oriented languages (e.g. Java Data Objectsfor

Java) to make the persistence of the objects “transparent”. They are called object relational

mapping (ORM) frameworks. These frameworks map the objects of the application to the

relational database such that usage of the database (orusage of the persistent objects) be-

comes simpler for the developers. The program becomes also more independent from the

database.

5.9 Object-relational impedance mismatch

Relational database and OOP is not a simple combination. These two architecture models

are very different from each other. The problem of the fit between two technologies is called

object-relational impedance mismatch. Book [Amb03, chapter 7] describes the impedance

mismatch. The industry has been actively providingobject-relational modelas a solution

for the problem. The majority of relational database vendors have extended their RDBMS to

support some features of object-oriented model.

The problem is deep. The relational paradigm behind the relational databases and the

object-oriented paradigm have many differences. Objects have both functionality and data

encapsulated as a single logical unit. Relational technologies support the storage of data

in tables and the manipulation of the data is performed externally via SQL or within the

database via stored procedures. While relational databases aim at separating data and be-

havior, object-oriented programming tries to encapsulate them. Object-oriented approach

considers both data and behavior when modeling the data while relational approach consid-

ers only data. This difference results in differently structured models of the problem domain.

[Amb03]

Problem occurs in case ofrelationshipsbetween objects andreference keysbetween ta-

bles. A many-to-many relationship between two classes does not require third class to man-

age the relationship. For example, there is a many-to-many relationship betweencustomer

andaddress. However, there are three tables in the relational model:Customer , Address

andCustomerAddress . [Amb03]

According to Ambler [Amb03], it is common practice not to show keys on class dia-

grams. However, in an application using relational database, keys are needed in every class

of which objects are written to the database. Ambler calls the keysshadow information. He

defines shadow information as “any data that objects need to maintain, above and beyond

33

their normal domain data, to persist themselves”.

SQL is nestedinto the programming language. It is written to the values of the pro-

gramming language. This affects to maintenance of the application in two ways. Firstly, if

a database administrator wants to change a database query, he must understand the language

of the source code in order to locate the query. To prevent this problem, some systems are

designed such that there are only few specific modules that construct SQL statements and

other modules use them in order to access database. Secondly, a programmer must under-

stand SQL up to some degree if he must implement features that access the database. A

programmer must understand the various symbols of the SQL statements.

In order to cope with the impedance mismatch, the object relational (OR) mapping frame-

works are useful, (e.g. Java Data Objectsfor Java).

5.10 Data dictionaries help understanding database usage

Data dictionaries are used in some organizations in order to store and manage metadata

about the databases, the applications and the authorizations that are used in the organization.

A useful dictionary system should manage

1. descriptions of the schemas

2. detailed information on physical database design

3. description of the database users

4. high-level descriptions of the database transactions and applications and of the rela-

tionships of users to transactions

5. the relationships between database transactions and the data items (tables) referenced

by them

6. usage statistics: frequencies of queries, etc.

For a maintainer of a database application, these things are very important, especially the

fourth and the fifth points. By [EN99], the fourth is useful in determining which transactions

are affected when the database schema is altered. In other words, it may be critical to under-

stand the dependencies between certain application parts and database tables in order to make

modifications to the database. However, Elmasri and Navathe [EN99] does not give any hint

how to build the data dictionary and how to get the important information. When manually

collected, reading code and database definitions, the process may be too time-exhausting.

In big systems, the continuous updating of the data may become too expensive. It is clear

that automated solutions become necessary when the size of the database and the application

increases.

34

5.11 Artifacts of database usage

Artifacts related to database usage can be groupped into five categories: ER model, OOP,

database API, query language and relational database schema (physical schema). Table 5.2

lists some of the artifacts of the categories and corresponding examples. Due to the large

amount of artifacts of several categories, a single representation for describing database us-

age (showing necessary artifacts) may not be reasonable.

Table 5.2: Artifacts related to database usage.

Category Artifact Example

ER model entity Person

relationship Job

OOP class Person

object e.g.Patrick Norton

attribute last name

method changeID()

invocation invocation of methodchangeID

Database API database connection Connection object

results of the query ResultSet object

Query language (SQL) statement INSERT statement

query SELECTstatement

Relational database relation (table) person

tuple (row) person Norton

attribute (column) id

join person <–> department

5.12 Dependencies between the artifacts

Wilde and Huitt [WH92] define object-oriented system dependencies. A dependency is a

directed relationship between two things. If A is dependent on B, changing B has an impact

on A. Based on the model presented in [WH92], the dependencies of database usage could

be as described in table 5.3. The termstatementrefers to SQL statement in the table.

There are different distinctions between the categories. This approach to divide depen-

dencies to the categories requires that all the SQL statements are identified from the source

code. Also, having information about the database schema (e.g.reading data definition state-

35

Table 5.3: Dependencies of database usage.

Category Dependency

Column To Table C belongs to table T.

SQL Statement (S) To Table S reads (SELECT) data from table T.

S alters (UPDATE) data in table T.

S adds (INSERT) data to table T.

S deletes (DELETE) data from table T.

Method To SQL Statement M constructs a statement S.

M executes a statement S.

M handles results of aSELECT-statement.

Method To Table M constructs a statement that has an impact on table T.

M executes a statement that has an impact on table T.

M handles results of a query related to table T.

ments) will be useful in finding out the dependencies.

The first dependency,Column To Tablecan be easily found from the database schema.

Database reverse engineering may also help here if the database schema information is not

available. The dependency is not very useful as such but may be helpful when combined

with the other dependencies.

SQL Statement (S) To Tabledependencies are trivial in static SQL but may be more dif-

ficult to find when analyzing dynamic SQL. Finding the dependencies requires that source

code is extracted into a form where each statement is located and identified from the source

code. The identification is ambiguous. There are at least three ways to identify SQL state-

ments in the source code.

Structure identification separates all SQL statements that differ from each other by

their structure. For example, queriesSELECT * FROM person WHERE id = 2and

SELECT * FROM person WHERE id = 3are identified as the same query because

of their identical structure.

The other way to identify SQL statements is the location identification which is based

on the location of the execution place. The execution place is a line of source code, where

database interface is called in order to send the SQL statement to be executed by database

server. This kind of line is called laterhotspot. If the query A is executed in place P, then it is

not the same query as the query executed in place P2. In other words, if two queries share the

same hotspot, then the queries are also the same. The result of this identification depends on

the interpretation of database interface. Database interface is normally same as JDBC API.

36

However, in some cases, there may be self-made classes which create higher abstractions on

top of the JDBC. Those classes should be also regarded as a part of the database interface, in

order to keep this identification reasonable.

Third, value identification separates the queries that are lexically different. This iden-

tification does not serve the purpose in static SQL or dynamic SQL. In practical database

applications, the queries always change in some degree.

The Method To Tabledependencies are indirect because they are derived fromMethod

To SQL StatementandSQL Statement To Tabledependencies. They are however represented

here as a separate category because it might be comfortable for a maintainer to analyze

database usage atMethod To Tablelevel.

The dependencyMethod constructs a statementmeans that M is changing the value of

the String variable that holds the statement S. For example, M gets the variable as a

parameter and adds something to it and then returns the updated value. This dependency is

clearly a dataflow dependency which means that in M there exists some dataflow towards the

variable holding the statement S. A single SQL statement may be stored in severalString

variables in the application. In that case, all the variables would be regarded as they hold the

statement S. There are plenty of these dependencies in systems that generate queries from

parts dynamically.

The dependencyMethod executes a statementmeans that M is the method that sends the

String variable (holding the statement) for database interface class that will send it forward

for the database server. Database server then finally validates and executes it. SQL/CLI

interfaces have one or two functions that send statements for the server. This type of a

function is calledhotspotin [GSD04]. These dependencies are extracted from the source

code in two phases: first finding the methods that call the hotspots and then formulating

the values of theString variable for separately to find out the SQL statements involved.

In a JDBC application, every method that invokesexecuteQuery or executeUpdate

of JDBC interface [Ree97], has suchexecutedependency. There are, in some cases, self-

made database utility classes that provide methods for sending the SQL statements for JDBC

interface. In those cases, it should be important to classify the use of such database utility

classes as they were a part of the JDBC interface. All uses of such interfaces are classified

with the execute dependency.

The dependencyMethod handles results of a querymeans that the method handles the

data of database and usually transforms it to objects that represent the data. The results of

a query are represented in a table. The method having this dependency does the mapping

between relational database data types and OO language data types. This dependency can

be analyzed from the source code in a JDBC application by finding the uses ofResultSet

object (that holds the results). In order to find out the dependency, the ResultSet object must

37

be connected to the query. The information aboutmethod executes statementdependencies

is useful in connecting the query to theResultSet object. In some cases, it is impossible

to see the connection statically. For example, there may be several queries that are all han-

dled by some generic method and dynamic binding is used such that it cannot be found out

statically.

5.13 Analyzing database usage

This section discusses briefly analysis methods of database usage. Two approaches are pre-

sented: static analysis (subsection 5.13.1) and dynamic analysis (subsection 5.13.2). This

area of research is new and there are few good publications available. This discussion is

based largely on code reverse engineering.

5.13.1 Static analysis

Static analysisdoes not require running of the system. It requires reading source code

in order to find SQL statements. Static analysis of database usage should also involve the

analysis of SQL statements. It is often database API specific, RDBMS and source code

language specific. It is a complex area because of various technologies in databases, database

interfaces and database query languages.

Use of code reverse engineering tools may help. Visualizing source code and under-

standing the semantics of the methods and classes is important. The majority of reverse

engineering tools do not analyze database usage in any special way. The tools show the

method calls to the API. Some of the tools like Java Analyzer by Cast Software and To-

tal Access Analyzer by Fmsinc.com provide a visualization of the dependencies between

database and source code entities.

An analysis technique represented in [GSD04] is useful in analyzing database usage.

Dynamically generated SQL queries are checked statically. The technique makes use of a

string analysis technique that is presented in [CMS03]. Using the technique represented

in [GSD04] it is possible to determine statically if the SQL queries are type-safe. The tech-

nique applies the static string analysis to Java programs and uses Java bytecode and database

schema as input.

The simplest way to find information in a program is using pattern (string) matching tools

[HEH+98]. They can be used to find SQL statements from the source code. Pattern definition

language for pattern matching is represented in [HEH+98]. Pattern matching suits well for

static SQL usage, but is adequate for dynamic SQL in some cases only. Pattern matching is

not useful when the application is object-oriented and involves dynamic binding. If the SQL

38

statements are built dynamically in several places of the program, it can be difficult to locate

all uses of certain table in the program code by pattern matching.

5.13.2 Dynamic analysis

Dynamic analysisof database usage collects SQL statements runtime. Every time an SQL

statement is performed, the information where it was performed (class and method) and what

was the statement is saved. The structure of the statement defines what tables and columns

are used.

Dynamic analysis can be done by building test cases that cover sufficient part of the

application. This approach is well known from OO source code analysis [WH92]. The

drawbacks of dynamic analysis are that it may be costly and time consuming.

Database logs and special logging mechanisms can be used for collecting information

about the database usage. A special log collects information about which methods of which

classes execute database operations.

5.14 A way of visualizing database usage

Visualizations of database usage are presented in [Hen03] and [AEP96]. Henrard [Hen03]

definesdatabase usage graphas a graph with vertices of two types (the programs and the

collections/entity types) and the edges link the programs with the collections/entity types

they use. The edges are labeled according to their usage (input, output or update).

The approach of Henrard is applicable for COBOL programs with network database

model. The wordprogrammeans here a block of statements (a method in OO language).

The collections/entity would be a database table in relational model.

Henrard [Hen03] presents a combination of procedure call graph anddata usage graph

for representing general architecture of a COBOL program. Data usage graph means a graph

with read and write dependencies between procedures and data entities. The distinction

between database usage graph and data usage graph remains unclear.

When applying the ideas of Henrard to an OO system using a relational database with

dynamic SQL statements, the result might be as follows. There would be a table usage graph

that describes which methods (and classes) use which tables. There would also be method

invocation graphs. In OO systems there should also be inheritance graphs. Dynamic binding

clearly reduces the power of the call graphs of OO system but they are useful where dynamic

binding is not used. Combined graph of database usage might have method invocation, SQL

statements and database tables.

Such graph is presented in figure 5.5. The figure shows the database usage of exam-

39

ple code of figure 2.2. The entities and relationships of the figure are described in sec-

tion 5.12. The figure describes that the methodoperation1 constructs and executes a

query (SELECTstatement) that reads from tableperson . The method also handles the

results of the query. The figure describes also that the columnspersonid andlastname

are involved in the query.

Figure 5.5: Diagram of database usage based on code in figure 2.2.

When applied to a more complex database usage scenario, the result might be like in

figure 5.6. This example involves several methods that are in different roles: constructing,

executing and handling the results. The arcs between methods are call relationships and the

arcs between methods and the query are the same relationships described in section 5.12.

The graph shows methodsmethod1 and method5 are the methods that construct the

query. The query is then sent formethod2 and onwards tomethod3 that executes it. The

method3 then invokesmethod4 in order to send the results of the query to be handled.

The graph displays also that the query reads data from two tables,table1 andtable2 .

This example is only a single database operation. A scenario with several operations

involving transactions and user rights management would be interesting but too large area to

be discussed here.

40

Figure 5.6: Diagram of a complex database usage scenario.

41

6 Software maintenance and database applications

Software maintenance is the totality of activities to provide cost-effective support to software

[ABDM01]. There are several types of software maintenance. Software maintenance can be

described as a process involving certain phases. The critical factor in software maintenance

and also in software evolution is program comprehension [vMV95b]. Von Mayrhauser and

Vans [vMV95b] describe how maintainer develops cognitive models with various ways dur-

ing program comprehension.

Section 6.1 describes the types of software maintenance. Maintaining database appli-

cations is discussed in section 6.2. Maintainability of database applications is described in

section 6.3 and simple metrics are presented of evaluating the maintainability of SQL state-

ments. Section 6.4 discusses about database applications at a very general level. Section 6.5

describes different problem situations when maintaining database applications. Problematic

issues of software maintenance in general are described in section 6.6. Section 6.7 represents

the problems which were studied in the conducted empirical study.

6.1 Types of software maintenance

Software maintenance can be classified [Swa76] in perfective, corrective and adaptive main-

tenance. Sommerville [Som01] presents a software maintenance type called preventive

maintenance. There are also other ways [CHK+01] to classify software maintenance tasks

the classification which divides the maintenance tasks to perfective, corrective, adaptive and

preventive maintenance is suitable for the purpose of this paper.

Perfective maintenance adds functionality to the system or enhances its quality attributes.

Corrective maintenance aims at eliminating the failures of the software. Swanson [Swa76]

classifies the failures in processing failures, performance failures and implementation fail-

ures. Adaptive maintenance adapts the software to fit in a new data environment or new

processing environment. The goal of preventive maintenance is to make the software more

maintainable or and to ensure the level of maintainability. It consists of re-engineering, re-

structuring and re-documenting.

Corrective maintenanceprocess involves the steps: [JSKCG94]

1. Analyze the bug report to understand the nature of malfunction.

2. Develop an understanding of the software.

42

3. Based on information gathered in steps 1 and 2 establish association between the bug

and the code.

4. Design changes and modify the software to correct the bug.

5. Test to make sure the bug is fixed.

6. Test to make sure all other functionalities are working properly.

The process of software maintenance may involve following phases: locating relevant

piece of code, planning the change, implementing the change, documenting, debugging

and testing. The tasks are strongly related with code comprehension. For example, study

[vMV95a] shows that inadaptive maintenance, there are two-way task connections from

program comprehension task to

• defining adaptation requirements,

• developing preliminary and detailed adaptation design,

• implementing changes,

• debugging and

• regression testing.

6.2 Maintaining database applications

Maintenance of an application that uses a relational database differs from maintenance in

general. Generally, program comprehension (orsystem comprehension) becomes a larger

area covering database and SQL concepts. Thus, the more complex implementation domain

brings many new challenges for maintainers.

Database comprehension is an important issue in understanding the whole application

and it is in a strong relationship between program comprehension. Program comprehension

techniques are essential for database reverse engineering, and conversely. [HEH+98]

Database application may require changes in database schema or in program source code.

The most important point is, that there is so strong relationship between the application and

the database that many changes involve changes both sides and must be done accordingly.

Also, understanding is in a primary role. Database comprehension is a prerequisite for DB

schema changes and adding functionality which accesses existing tables.

One good example is a situation where a new column is added to a table. The most

difficult job is changing all the SQL statements in the program source code handling the

altered table. Making the change may be trivial but locating all the statements may take the

most of the time. Testing of the altered code may also be time-consuming if the changed

statements are spread over the application.

43

Many of the software maintenance tasks could be made easier with suitable program

comprehension or reverse engineering tools. Investing in program comprehension technol-

ogy is critical for the software industry [MJS+00].

6.3 Maintainability of database applications

Metrics for measuring the maintainability of database applications are presented in [PM00].

However, the restriction of the metrics is that they can be applied only forSQL programs

(programs written only with SQL). They should be called more preciselySQL metrics. They

are as follows [PM00]:.

NT is the number of tables referred in the statement

NN is the number of nestingSELECTclauses in the statement

G tells whether there exists (1==exists, 0==not)GROUP BYclause in the statement

Different measures are required for 4GL (e.g. Java) database applications [PM00].

Clearly, the maintainability of database application depends strongly on the complexity of

the application. A database application has three major sources of complexity: application

source code, SQL code and database schema.

Application source code complexity is a well researched area which we will not discuss

here. SQL code complexity metrics are described in the next chapter. Database schema

complexity [CPG01] is another area with metrics. There exists three simple metrics, too:

NT is the number of tables in the schema,

NA is the number of attributes of all the tables in the schema and

NFK is the number of foreign keys in the schema.

6.4 Functionality and data

The database usage becomes problematic when the software is large and there are many

dependencies between the database and the application. Especially undirected, hidden de-

pendencies hinder understanding the IS as a whole. Here we present a general level model of

database usage which has four components: functionality, persistent information, database

and source code. Functionality and persistent information are high-level entities of the sys-

tem and they are implemented by source code and database.

Figure 6.1 describes the model components. Program functionality is implemented in

source code. Source code of the program contains references to database entities, which

store persistent information of the IS. When studying the database usage, there exists four

44

persistent information database

source codeprogram functionality implement

store

use

Figure 6.1: Model of IS related to database usage.

main questions related to the model.

Where is certain functionality located in the source code of the application and in

the database as stored procedures or triggers?This is a question that is familiar in re-

verse engineering and program comprehension. But with database applications, the problem

is wider because functionality may also reside in the database. The reverse version of this

question is which functionality is related to this source code place, stored procedure or trig-

ger?

Where is this information stored in the database?This may be expressed at a lower

level in a form: Which table (and which column) stores this kind of information? The

reversed version of the question is what information is stored in this table?

Which functionality uses or manipulates this information? In order to answer this

question, we must first find out which tables are used to store that information. Then follows

finding out which parts of the applications are using the tables. Finally, we must understand

the places of source code in order to recognize the functionalities.

Which information (that is stored in database) is used by this functionality? First

we must find out where the functionality is located and which tables are used by that source

code. Finally, the answer is clear when an answer of the questionwhat information is

stored in those tableshas been received.

As a conclusion of the above, database applications may not be easily understandable

because of strong separation between functionality and information. As a contrast, object-

oriented architecture tries to encapsulate the both in a single unit,object. Therefore, a com-

bination of object-oriented architecture and relational databases is clearly unlogical.

45

6.5 Maintenance problem situations with database applications

This section discusses about problem situations with database application maintenance. Sub-

sections 6.5.1, 6.5.2, 6.5.3 and 6.5.4 describe some problem situations in corrective, perfec-

tive, adaptive and preventive software maintenance related to database usage. Problems of

regression testing database applications are discussed in subsection 6.5.5.

6.5.1 Problem situations in corrective maintenance

Corrective software maintenance processes bring some tasks and problems: locating rele-

vant place, changing source code or DB schema and testing. In these tasks, comprehensive

understanding of the system is essential.

Corrective maintenanceincludes work of correcting database access errors. These are

typical error situations:

• A user or a developer detects erroneous data (of database).

• The system prints error message from RDBMS during execution: broken SQL state-

ment.

Erroneous data may be created by faulty SQL code, erroneous program code (e.g.Java),

erroneus DB functionality or user malfunction. If the situation does not give any good hints

about the real reason of the error situation, the bug hunting process may be time-consuming.

There are several types of errors related to SQL code. Some of those produce a run-time

error message. A faulty SQL statement may also produce erroneous data without any error

message. The reasons for the falty SQL code are incorrect syntax, data type mismatch, DB

schema mismatch and semantical error. They are described in table 6.1.

Table 6.1: Reasons and occurrences for faulty SQL code

Reason Occurrence

Incorrect syntax Run-time exception from RDBMS

Data type mismatch Run-time exception from RDBMS

DB schema mismatch Run-time exception from RDBMS or wrong data

Semantically incorrect Odd behavior or missing/erroneous data

Broken SQL statement, incorrect syntax is a concrete problem in corrective maintenance.

One typical instance of this problem is a missing ending parenthesis problem. This

problem leads often to a run-time error message by DBMS and is therefore fairly

easy to detect. The source of the problem may be complexity of constructing SQL

dynamically from pieces.

46

Broken SQL statement, data type mismatchoccurs when the data type correspondence

between the DBMS and Java is not matching. This problem leads often to a run-time

error message by DBMS. The source of the problem may be misunderstanding of the

data types.

Broken SQL statement, DB schema mismatchis a problem where DB schema is not

matching to the schema written in the SQL statement. For example, SQL query tries to

read data from tableBMColl but should be using tableColl instead. This problem

leads often to a run-time error message by DBMS.

Broken SQL statement, semantically incorrect is a problem which is more difficult to lo-

cate than the above problems related to broken SQL. The reason is that this problem

may not be detected by DBMS. Unexpected functionality or errors in processed data

may occur during run-time. The source of the problem may be either complexity of

SQL statement or database schema.

Corrective maintenance also tracks down bugs in software. One such database usage

related bug could bewrong data in tablewhich means that data in table is erroneous, missing

or duplicate. A solution [GSD04] for data type mismatch checking of SQL queries has

been presented. The solution is based on a string expression analysis technique presented

in [CMS03].

6.5.2 Problem situations in perfective maintenance

Perfective maintenancesituations may require adding functionality related to DB or alter-

ing DB schema. Here is an example of a maintenance process related to perfective mainte-

nance. The task is to add a new column to a table named T1. Firstly, we must do some trivial

things, i.e. determine the data type of the colum and modify the database schema. Then

we must find out which parts of the application have to be modificated. Modifications must

be done for two reasons: adding the functionality related to handling the new column and

keeping the application working correctly.

The most important way of locating the parts to be modified is by searching the places

where T1 is used in the application. This may be trivial with text-search tools likegrep

if there are no application concepts named to T1. With bigger applications and databases,

text-search tools may become useless.

Planning modifications may not be easy if there are many places to change. Modifications

may be targeted to Java-code handling the database queries or to SQL-statements (or parts

of them) nested in Java. In normal case, both of these should be changed. Implementing

modifications should be trivial.

Testing may point out to be challenging and time-consuming. Especially regression test-

47

ing of database applications involves many difficulties [HMD01]. In that case, there should

be methods for determining which parts of the application have to be tested.

6.5.3 Problem situations in adaptive maintenance

Adaptive maintenance tasks may include altering the database schema and changing the

application source code. In order to adapt the system to a new environment, it is essential to

understand the system at the general level [vMV95b].

Adapting the system by changing the database schema requires locating relevant places

of the application source code where to make fixes accordingly.E.g. a data type change

of a column needs checking each SQL statement of the application source code where the

column is referenced.

Changing the functionality of the system may require changes to either functionality

of the application or the functionality that is stored in the database. Functionality changes

require regression testing which is an important activity in adaptive maintenance [vMV95b].

Debugging is also a relevant activity in adaptive maintenance. This was already discussed

in section 6.5.1

6.5.4 Problem situations in preventive maintenance

Preventive maintenance may also require changes in either functionality or database schema.

For example, changing the currency of stored money values, may be achieved by a simple

SQL UPDATE statement. In that case, the application source code has to be also fixed to

show the relevat monetary unit in the user interface. In order to find out every place where

the unit is present in the source code, following data flow dependencies is useful.

Preventive maintenance is quite near to perfective maintenance, so the cases discussed in

the section 6.5.2 apply quite well here.

6.5.5 Problems in regression testing

Regression testing is important in almost all kinds of maintenance tasks [vMV95b]. Regres-

sion testing of database usage presents new problems [HMD01]: find out affected source

code modules in DB schema change and affected tables in application code change. These

dependencies are needed for defining what program components should be tested after the

change, because testing all the components after every change is practically impossible.

48

6.6 General level maintenance problems

Lienz and Swanson [LS81] studied over four hundred software maintenance projects in order

to find out the most common problems in software maintenance. The most frequent problem

factor is user knowledge. Inadequate user knowledge is such a frequent problem in main-

tenance due to lack of user understanding and inadequate training. Also, user demands for

new functionality and enhancements is reported often as a problem in maintenance projects.

This is understandable because user demands are not controllable by maintenance personnel.

Other frequent problems weree.g.competing demands for programmer time and documen-

tation quality. However, the study explores the manager level personnel and is not applicable

for this study.

SWEBOK [ABDM01] also stresses on the importance of the understanding in software

maintenance. It lists four technical issues in software maintenance: limited understanding of

software, testing, impact analysis and maintainability.

6.7 Problem classification

There are several problems of several types related to dabatase usage and software main-

tenance. This thesis focuses on programming level problems, though there would also be

different problems,e.g. related to project management or the maintenance process. The

problems which were studied in the empirical part of this thesis are classified by the con-

cept areas. This section may mix the termstask andproblem. Another expression for them

might beproblematic task but it is not known here if the tasks are problematic at all. The

empirical study (chapter 7) was conducted for finding that out.

Subsection 6.7.1 presents the classification. Then, the categories are presented in the

next four subsections. Subsection 6.7.2 describes the tasks related to the program category.

Subsection 6.7.3 presents the tasks of the database category. Subsection 6.7.4 describes the

category which consists of the tasks related to the relationship between the application and

the database. The fourth category, SQL is described in subsection 6.7.5. Finally, subsec-

tion 6.7.6 discusses briefly about some relations between the problems.

6.7.1 Background of the classification

The problems can be classified with several ways. Some of the problems relate to compre-

hending application, database or relationship between database and application. There are

some more general level problems that are more independent of the implementation than the

others. The problem classification used is based on the concept areas, and the used concept

49

area defines the category for a task. A concept area is a group of concepts that are required in

executing a maintenance task. There are four major concept areas in understanding database

usage: program, database, application–database relationship and SQL.

The literature did not offer any classification so there was a need to create one myself.

This classification was formed as follows. Several tasks were collected from the experiences

with Korppi system. Because some of the tasks were database-specific and some application-

specific, it felt natural to create corresponding categories. Since SQL was used for accessing

database from the application and SQL related tasks were not fully program specific, a sep-

arate SQL category for SQL related tasks was created. Some of the tasks (e.g. Finding out

which DB entities are used by a specific part of the application) did not belong to these

categories because they consisted of both program and database concepts. A new category,

database–application relationship for them was created. The tasks fit in the categories quite

well though there surely are many other ways to classify these tasks.

6.7.2 CategoryProgram

Program comprehension is a critical factor for software maintenance [vMV95b]. This cat-

egory consists of tasks which belong to program comprehension activities. The category

contains only the tasks that are related to program artifacts. Tasks related to database arti-

facts are handled later in their own category. Here are some of the tasks that belong to this

category:

Understanding the program at general levelis a task that requires understanding of the

main components of the program. It is also relevant to know about the problem domain

and what the program is used for. The task is an important part of program compre-

hension and is typical for perfective, corrective and adaptive software maintenance

[vMV95b]. Comprehending object-oriented systems at the general level is more diffi-

cult than comprehending conventional systems because call hierarchy is not applicable

for this purpose [WH92].

Understanding the meaning of a part of the programrequires specific understanding about

a software artifact. The artifact may bee.g.a class, method or a block of code. Es-

sential is to understand what is the meaning of the artifact. The task belogs to detailed

code understanding. [WH92]

Locating relevant place of codeis a very frequent task in many kinds of maintenance activ-

ities. It may involve checking references of some variable, following call hierarchy,

finding side-effects or finding a bug, depending on the type of the activity. One form of

it is also locating specific functionality in source code which is important when maxi-

mizing the benefits of reuse. This problem may be more serious in OO systems than in

50

Table 6.2: Maintenance problems of database usage: Classification

Category Task

Program Understanding the program at general level

Understanding the meaning of a part of the program

Locating relevant place of code

Finding out call relationships

Understanding dynamic binding

Determining the effects of changes

Locating a bug

Fixing a bug

Dealing with the complexity of functionality

Other program related problems

Database Understanding the database at general level

Understanding the meaning of a database entity

Understanding the relationships between tables

Finding out where particular data is stored

Determining the data type of a column

Changing the database schema

Understanding the functionality stored in the database

Dealing with the complexity of data

Other database related problems

Database- Understanding data flow relations between the database and the application

application Understanding data flow relations between the application modules through DB usage

relationship Finding out where a DB entity is used

Finding out which DB entities are used by a specific part of the application

Finding out the mappings between the classes and tables

Understanding the database interface

Understanding the transactions

Other problems related to the relationship between the application and the database

SQL Understanding the meaning and the impacts of an SQL statement

Understanding how the SQL statement is constructed

Understanding and managing the bindings between Java code and SQL code

Determining how the data types should be matched between SQL and Java

Slowness of an SQL query

Dealing with the complexity in SQL statement

Other SQL related problems

51

conventional systems because the functionality is spread over various object classes.

[WH92]

Finding out call relationships is usual in program comprehension [WH92]. Following calls

is more difficult when dynamic binding is in effect. It is important to identify chains

of call dependencies. [WH92]

Understanding dynamic bindingis a problem typical for OO systems since it complicates

call relationships. Since static analysis is not able to identify all the dependencies

caused by dynamic binding, other approaches are needed. [WH92]

Determining the effects of changesis a general task with any kind of software mainte-

nance and development. It requires detecting modifications and locating the effects

of changes. The task becomes more difficult when the complexity of the system in-

creases because dependencies between the software artifacts expand. Making changes

to source code requires checking all the relevant dependencies which may produce

unexpected side-effects. This task is important in regression testing. [HMD01]

Locating a bug is a task of reading code or running debugger. It involves making hypotheses

about the program behavior and revising them. Knowledge of the problem domain is

important in corrective maintenance. [vMV97].

Fixing a bug is an action which requires good understanding of the bug. In addition, making

changes to source code may cause side-effects. This task involves activity of detailed

algorithms and code specifics. [vMV97]

Dealing with the complexity of functionalitybecomes more important when the size of the

software increases. Refactoring is needed in order to manage the complexity. Some

metrics,cyclomatic complexitycan be used to detect the most complex parts of the

application. [BR00]

6.7.3 CategoryDatabase

Database comprehension tasks relate only to database and not to the application or SQL

statements.A database entity(or an artifact) is either table, view or column.

Understanding the database at general levelis a common taske.g. when the information

system is extended with new functionality and existing database structure must be

utilized. Understanding becomes difficult with a database consisting of hundreds of

tables [AEP96].

Understanding the meaning of a database entityis a task usual in database maintenance.

This problem is also represented with a question: What information is stored in this

table or column? The problem can be solvede.g.by locating the references of the table

52

(or view/column) in the application source code and finding out what information is

processed there. Database documentation or data dictionary is also useful [EN99].

Understanding the relationships between tablesis a task related to the previous task. The

tables are related to each other with keys. This task is difficult with big databases [AEP96].

Finding out where particular data is storeda task which requires understanding tables and

the database at the general level. For example, a maintainer might need to know

where the addresses of students are stored. Answer might be a table namedSTADDR.

[AEP96]

Determining the data type of a columnis a task which becomes problematic only in the sit-

uation where the information about database schema is not available readily enough.

The information may be fetched from multiple sources, e.g. database document, pro-

gram source code or database administration application.

Changing the database schemais e.g. one of the following tasks: adding a column to a

table, changing the data type of a column or removing a column. Dealing with the

effects of the change is essential. The change may affect to the application or to other

database artifacts. [AEP96]

Understanding the functionality stored in the databasebecomes more important when the

significant part of the application functionality is stored in database. Functionality may

be stored in triggers and stored procedures. They create data flow relations between

tables which increases the complexity of the system. [EN99]

Dealing with the complexity of datais a proble typical for large databases. The dimensions

of database complexity aree.g.set of relations, size and quantity of data in the database

and number of associations among relations [AEP96]. The complexity can be mea-

sured by metrics [CPG01].

6.7.4 CategoryDatabase-application relationship

The database and the application may be totally tangled up in each other. As a result mak-

ing little changes to the database schema may require huge modifications in the application

source code. This duality of database and application provides us certain understanding

activities to be managed:

Understanding data flow relations between the database and the applicationis a high-level

understanding task. This kind of knowledge is important when the semantics of

database entities is unknown but the maintainer is familiar with some part of the pro-

gram (e.g. a user interface component) or conversely. Data flow comprehension is

thereby useful in mining the missing semantics of either database or the application.

53

Testing is another main activity where relations must be managed [HMD01].

Understanding data flow relations between the application modules through DB usagecom-

plicates systems. When module A writes to table T and module B reads from it, there

exist a data flow from A to B. These kind of dependencies make testing challenging

and regression testing strategies are needed [HMD01].

Finding out where a DB entity is usedis a task related to understanding the dependencies

between application and database [AEP96]. This may occur in perfective or corrective

maintenance. Typical situations are altering DB schema by adding a column to a

table (perfective maintenance) and correcting DB usage error where erroneous data

has been inserted to a table (corrective maintenance). It is essential to find out which

source code modules may be affected when database changes. [AEP96]

Finding out which DB entities are used by a specific part of the applicationis a task that

is a mirror-image of the previous task. For example, a maintainer might ask what

tables are updated byUser class. This is important task in testing, since changes in

the source code may lead to erroneous data in any of those tables.

Finding out the mappings between the classes and tablesis a difficult task because of the

object–relational impedance mismatch [Amb03]. The differencies between the archi-

tectures make the mapping complex. Logical naming conventions might help under-

standing the mapping.

Understanding the database interfaceis a task of understanding JDBC or other kind of

database interface. The database interface may be part of the application.

Understanding the transactionsis a task of transaction-based systems. The target system

uses transactions throughDBclass. Understanding how a transaction works is relevant,

because a fault in a transaction may lead to erroneous data in the database.

6.7.5 CategorySQL

There are two main reasons to problems related to SQL: complexity of SQL statement and

complexity of how SQL is embedded within Java code. The former reason is explained

in [PM00] through three simple metrics.

Understanding the meaning and the impacts of an SQL statementis a problem where the

statement is too complex for comprehending fast enough. Themeaningof a statement

is what the statement should do,e.g. fetch all unnamed persons. Theimpacts is what

the statement actually does, including any side-effects. The SQL code metrics NT, NN

and G describe how understandable the SQL statement is. More higher the metrics

are, the more difficult the statement is to understand. [PM00]

54

Understanding how the SQL statement is constructedfrom parts at run-time is a problem

with dynamic SQL. This may create several problematical situations like difficulties

in checking the validity of the SQL statement [GSD04]. Especially, if the statement is

generated conditionally or under loop statements, the construction is more difficult to

comprehend.

Understanding and managing the bindings between Java code and SQL codeis a binding

problem related to code and database schema changes [NHR99]. This is related

strongly to the understanding of the meaning and the impacts of an SQL statement

because if it is not known what a query fetches, it is impossible to code or change the

Java statements that handle the results of the query.

Determining how the data types should be matched between SQL and Javais a problem that

occurs because the mapping of data types is not very clear. For example,REAL(SQL)

is mapped tofloat (Java) andFLOAT (SQL) is mapped todouble(Java). [EHF01]

Slowness of an SQL queryis a problem with both performance and complexity. SQL state-

ments may contain difficult nested structures which use multiple tables under complex

conditions. It weakens changeability of the statements and hinders the performance

tuning. [EN99]

Dealing with the complexity in SQL statementis a task of SQL programming. SQL state-

ments tend to be complex in large systems. Several statements in the target system

consist of over one hundred lines of code. Complexity metrics are useful in detecting

the threats in the application [PM00].

6.7.6 Problem relations

Problems are strictly related to each other. Figure 6.2 illustrates some of the relationships

between the practical maintenance problems. The purpose of figure 6.2 is not to list all

relationships between problems but to demonstrate how the problems could be connected

together. The problems of the SQL category are not involved in the figure. The relationships

are derived from the following definition. If problem B might occur when solving problem

A, there is a directed relationship from A to B.

For example, the meaning of a table might be found out by searching the locations of

table usage in the Java code and studyinge.g.the SQL code using that table. Therefore there

is a relationship in figure 6.2 fromUnderstanding the meaning of a database entityto Where

an entity of DB is used is used.

55

Pr
og

ra
m

 ta
sk

s

D
at

ab
as

e
ta

sk
s

A
pp

lic
at

io
n-

D
B

 r
el

at
io

ns
hi

p

G
en

er
al

 le
ve

l u
nd

er
st

an
di

ng
 o

f
th

e
pr

og
ra

m

Fi
nd

in
g

ou
t c

al
l r

el
at

io
ns

hi
ps

U
nd

er
st

an
di

ng
 d

yn
am

ic
 b

in
di

ng

U
nd

er
st

an
di

ng
 a

pp
-D

B
 d

at
a

fl
ow

 r
el

at
io

ns
G

en
er

al
 le

ve
l u

nd
er

st
an

di
ng

 o
f

th
e

da
ta

ba
se

U
nd

er
st

an
di

ng
 th

e
m

ea
ni

ng
 o

f
a

pa
rt

 o
f

th
e

pr
og

ra
m

W
hi

ch
 e

nt
iti

es
 o

f
D

B
 a

re
 u

se
d

by
 a

pp
lic

at
io

n
pa

rt

L
oc

at
in

g
re

le
va

nt
 p

la
ce

 o
f

co
de

W
he

re
 p

ar
tic

ul
ar

 d
at

a
is

 s
to

re
d

U
nd

er
st

an
di

ng
 th

e
m

ea
ni

ng
 o

f
a

da
ta

ba
se

 e
nt

ity
W

he
re

 a
n

en
tit

y
of

 D
B

 is
 u

se
d

F
ig

ur
e

6.
2:

S
om

e
re

la
tio

ns
hi

ps
be

tw
ee

n
th

e
pr

es
en

te
d

pr
ob

le
m

s.

56

7 Empirical study

The empirical part is described in this chapter. The target system maintainers were sent a

questionnaire asking how problematic and important certain tasks were in practical program-

ming or code understanding tasks related to database usage.

Section 7.1 describes the attributes of the target system. Hypotheses are discussed in

section 7.2. The questionnaire is described in section 7.3. Limitations of the study are

described in section 7.4, and the results of the questionnaire are described in section 7.5.

7.1 The target system

The empirical study was performed in order to recognize most significant problems related

to database usage in target system called Korppi. The system has a long history, since its

development has been started as early as in 1998 as a student project coordinated by the

department of applied mathematics in the University of Jyväskylä.

The development of the current version was started in 2000. Since then, there have

been nine four-month software projects and individual developers developing the system

further [Kor05]. There has been more than 50 persons involved in maintaining or developing

the system. Some of the persons have been developing the system as techical advisors or

employed maintainers. If the project supervisors and representatives are also counted, the

number is near to one hundred.

The involved persons are mainly students with little experience of software development.

Many of the developers had not received training on Java when they began working. The

mandatory main programming courses were in C++ yet in the spring of 2002. So, the skills

and the experience must have not been the best possible.

The system consists of more than 255 000 lines of source code. The database of the

system has over one hundred tables. The system resembles a legacy system because it is a

demanding challenge for the maintainers. There are 28 394 (at 18.1.2004) registered users.

There are at least 250 simultaneous users.

The developers used various tools like JBuilder and NetBeans. Database schema changes

were executed with the WWW-based UI of postgres.

57

7.2 The hypotheses

Like stated in chapter 2, database applications are very different from other applications.

This leads to major differencies in software development and maintenance of database ap-

plications. One of the biggest difference is increased complexity. The complexity hinders

program comprehension and makes maintaining slower.

Due to practical experiences in maintaining the target system, some hypotheses occurred.

One of the most important experiences was that the changing of code or database was both

difficult due to complex dependencies between the Java classes and database artifacts. That

raised many questions with architecture, persistence frameworks and object-relational map-

ping. Using some persistence frameworks or even doing the mapping by hand could have

been very helpful. However, the situation was bad and the parts of the software could not be

refactored easily to reach a better architecture.

The base hypothesis is that a database application like the target system has many signifi-

cant problems in software maintenance. What are the problems and to what are they related?

This research aims at finding out the most important problems and information needs related

to database usage. This was achieved by asking the maintainers and developers of the target

system the problemacy of tasks related to database usage.

Another hypothesis is that finding table usages is important for database applications

[HMD01]. It is also interesting to see how significant is the role of understanding database

in the maintenance of the target system.

7.3 The questionnaire

The questionnaire (see Appendix A) was an online form. The URL of the questionnaire

was sent to 50 e-mail addresses of persons who had been involved in the development or

maintenance of the target system. Since e-mail was used so there was a little risk of old or

invalid e-mail addresses. In fact, two of the addresses were reported old by the mail system,

so the real count was 48.

The questionnaire consisted of five main parts. The first part handled the background

information of the participant: age and work experience. Also they were asked how long

time had elapsed from the last work experience with a database application (e.g. the target

system). Then parts 2-4 dealt with the problematic nature of some maintenance and devel-

opment tasks. There were also asked the task importancy. The tasks are identical to the tasks

represented in the earlier chapter in table 6.2. The final part had a question about whether the

participant had answered to the earlier questions based on possessed experience with Korppi

or on other experience or the both.

58

The answering time of the questionnaire was initially two weeks. After 17 answers were

received in that time period, another notification of the questionnaire was sent and the an-

swering time was extended to three weeks. Finally, 22 answers were gotten. This covered

46% of the total 48 persons to whom the questionnaire was meant.

7.4 The limitations of the study

It is important to note that the whole population does not consist of all database application

developers but only of the developers and maintainers of the target system. The target system

differs significantly from other system because it has been developed in small projects during

several years. This development process has had an influence to the current architecture of

the system.

Some of the e-mail addressess, where the notification was sent, were expired or not

used anymore. Especially those who had graduated and employed years ago, had certainly

switched the e-mail address. They were typically developing first modules of the system

and the nature of their tasks differs therefore from the tasks of the latest developers. So the

persons who answered to the questionnaire do not represent very well the whole group of the

maintainers and developers. but describe the latter situation of the Korppi.

7.5 The results

This section represents the answers of the questionnaire. Subsection 7.5.1 describes the back-

ground properties of the subjects. Subsection 7.5.2 represents a table of the task containing

the problemacy value. Subsection 7.5.3 represents a similar table about the task importance.

Other tasks which were received as literal answers are described in subsection 7.5.4.

7.5.1 Subject background

The background of the subjects (the persons who answered to the questionnaire) is described

here. The subjects do not represent very well the whole group of the maintainers of the target

system, as discussed in section 7.4.

The subjects were typically young, 24-27 year old (half of them). Most of the subjects

(72%) had been involved in developing database application inside a year. The IT-related

work experience was quite high because the highest class (over 3 years of experience) was

40% while the smallest class (below year) was covering only 23% of the subjects. The

subjects were quite experienced because 55% of them had over 2 years of work experience

There were some subjects who had been as a project member, technical advisor and

59

other maintainer or developer. Almost every one of the subjects had been involved in the

development of the target system as a project member. About 27% of the subjects had been

technical advisors and 41% had been also developing or maintaining the system within a

different relationship. Generally, the subjects had deep experience about the target system.

The types of the maintenance tasks were also asked. The asked types were corrective,

perfective, adaptive and preventive. Some subjects had been doing all kinds of maintenance,

but the most frequent type was perfective, 59%. Corrective was also quite frequent, 46%

while preventive and adaptive were quite rare, 18% and 23%.

They were also asked how much the answers about task problemacies and importancies

were based on the experience with the target system. There were five alternatives: completely

based on the target system, mainly based on the target system but partly to other systems,

both the target system and other systems, mainly other systems and partly the target system

and completely other systems. This question was asked in the end of the questionnaire

because that point was the best to determine the answer to this question. Most of the subjects

had experience with other systems also (see tabler̃efBaseOfAnswersTable).

Table 7.1: Experience types of which the answers are based on

Frequency Percent (%)

Completely the target system 2 9.1

Mainly the target system but partly other 7 31.8

Both the target system and other 8 40.9

Mainly other and partly the target system 4 18.2

Completely other 0 0

7.5.2 Problematic tasks

The subjects were asked the task problemacy especially related to database usage. It is

important that the subjects were told to answer to the problemacy and importancy questions

using their experience from both the target system and other experience. The alternatives to

the question about task problemacy were 0 (not problematic at all), 1, 2, 3, 4 and 5 (very

problematic). Importance of the tasks related to the totality of the working were also in a

similar scale: 0 (not important at all), 1, 2, 3, 4 and 5 (very important). Means of the task

problemacies were calculated.

Table 7.2 describes the tasks and their problemacies. The columnN shows the number

of subjects that answered to the question. Problemacy is described by mean value. Cate-

gories (columnCat in the table) are P (Program), D (Database), R (Relationship between

60

the application and the database) and S (SQL). The categories are based on the classifica-

tion presented in section 6.7. The columnSTDEV presents the standard deviation of the

problemacy.

The two most problematic tasks wereDetermining the effects of changesandDealing

with the complexity of functionalityfrom the program category. The third wasFinding

out which DB entities are used by a specific part of the applicationfrom the Database–

Application relationship category.

Table 7.2: Task problemacy

Task Cat N Mean STDEV

Determining the effects of changes P 22 3.82 1.181

Dealing with the complexity of functionality P 22 3.00 1.195

Finding out which DB entities are used by a specific part of the application R 22 2.95 1.253

Dealing with the complexity in SQL statement S 21 2.86 1.276

Locating a bug P 22 2.77 1.232

Dealing with the complexity of data D 22 2.77 1.510

Slowness of an SQL query S 22 2.64 1.293

Understanding the functionality stored in the database D 22 2.64 1.093

Finding out where a DB entity is used R 22 2.50 1.263

Finding out the mappings between the classes and tables R 22 2.27 1.486

Understanding data flow relations between the application modules through DB usageR 22 2.27 0.703

Finding out call relationships R 22 2.24 1.136

Fixing a bug P 21 2.18 1.435

Understanding how the SQL statement is constructed S 22 2.14 1.246

Understanding and managing the bindings between Java code and SQL code R 21 2.10 1.179

Understanding the relationships between tables D 22 2.09 1.444

Locating relevant place of code P 21 2.05 1.117

Understanding data flow relations between the database and the application R 22 2.00 0.816

Understanding dynamic binding P 21 1.95 1.322

Understanding the transactions R 22 1.82 1.140

Understanding the meaning of a part of the program P 22 1.77 0.973

Understanding the program at general level P 22 1.73 1.120

Understanding the database interface R 22 1.64 1.049

Finding out where particular data is stored D 22 1.59 1.141

Understanding the database at general level D 22 1.55 1.438

Changing the database schema D 22 1.50 1.263

Understanding the meaning of a database entity D 22 1.41 1.098

Determining how the data types should be matched between SQL and Java S 22 1.36 1.093

Understanding the meaning and the impacts of an SQL statement S 22 1.27 1.077

Determining the data type of a column D 22 0.64 0.727

61

7.5.3 Important tasks

The task importancy was asked in order to find out whether the most problematic tasks are

important for the work. The tasks may not be similarly important or relevant if they are

compared to the success of executing maintenance tasks.

What is most important, is that if the tasks are executed well enough, maintenance in the

future becomes easier. For example, if the maintainer is changing the schema by renaming

some columns, and he does not check accurately all the places of source code, where the

columns are referenced, he may seem to get the system working. But in the future, the

system may fail because of invalid references in some SQL clause inside the application

source code.

The subjects were asked how important these tasks are when considering the performance

of the whole maintenance work. The scale was 0–5 where zero meansnot important at all

and five meansvery important. Table 7.3 shows the tasks ordered by importance (described

as mean in the table). Column Cat shows the category of the task, column N presents the

number of answerers to the question, and column STDEV shows the standard deviation of

the answers

The three most important tasks were related to database and SQL categories:Under-

standing the relationships between tables(database category),Understanding the meaning

and the impacts of an SQL statement(SQL category) andUnderstanding the database at

general level(DB category).

7.5.4 Other tasks

Literal answers were received which contained information about problematic tasks and

feedback about the reasons, why there were some problems in the maintenance. The in-

dividual answers were:

– Ensuring expandability was challenging. Optimizing the code too early lead into poor

extensibility.

– Communicating and concurrent changes were quite problematic (3 at scale 0-5).

– When changing the database schema, removing a column or changing the data type of

a column is very difficult (5) but adding a column is not difficult at all.

– The SQL statements were spread all over the application source code.

– The tools used were slow and unstable. Much time was spent with configuring the

tools to work properly.

62

Table 7.3: Task importance

Task Cat N Mean STDEV

Understanding the relationships between tables D 22 4.18 0.644

Understanding the meaning and the impacts of an SQL statement S 22 4.09 0.921

Understanding the database at general level D 22 4.09 1.019

Understanding the program at general level P 22 4.00 1.345

Determining the effects of changes P 22 3.82 1.332

Understanding the functionality stored in the database D 22 3.82 1.097

Dealing with the complexity of functionality P 22 3.82 1.097

Slowness of an SQL query S 22 3.77 1.110

Dealing with the complexity of data D 22 3.77 0.869

Locating a bug P 22 3.73 1.241

Understanding the meaning of a part of the program P 22 3.68 0.995

Understanding the meaning of a database entity D 22 3.64 1.136

Dealing with the complexity in SQL statement S 22 3.59 0.959

Fixing a bug P 22 3.59 1.403

Understanding data flow relations between the database and the application R 22 3.45 0.912

Understanding and managing the bindings between Java code and SQL code S 21 3.38 1.161

Understanding how the SQL statement is constructed S 22 3.36 1.177

Understanding data flow relations between the application modules through DB usageR 22 3.23 1.020

Finding out where particular data is stored D 22 3.23 1.193

Locating relevant place of code P 22 3.14 1.521

Finding out call relationships P 21 3.10 1.136

Understanding dynamic binding P 21 3.05 1.499

Finding out which DB entities are used by a specific part of the application R 22 2.95 1.463

Understanding the transactions R 22 2.91 1.269

Finding out the mappings between the classes and tables R 22 2.91 1.306

Understanding the database interface R 22 2.82 1.332

Changing the database schema D 22 2.68 1.211

Finding out where a DB entity is used R 22 2.59 1.368

Determining how the data types should be matched between SQL and Java S 22 2.41 1.260

Determining the data type of a column D 22 2.18 1.259

63

8 Analysis

The results of the questionnaire are analyzed here. Section 8.1 discusses about how the

categories are different. Section 8.2 describes the task significance by calculating the mean

of problemacy and importance. Section 8.3 discusses about the most significant problems.

Information needs related to these problems are then discussed in section 8.4.

8.1 Categories differ

It is notable that the two database related tasks were at the highest positions (first and third)

by importance, but were not regarded problematic. Similar but reversed phenomenon exists

with database–application relationship related taskFinding out which DB entities are used by

a specific part of the application. It is third in the problemacy list but 22nd in the importance

list. Task Finding out where a DB entity is usedbehaves also similarly. Generally, database–

application relationship is not regarded as a very important category but the tasks of the

category are regarded quite problematic.

8.2 Task significance

By taking average of the two averages (importance and problemacy), we get table 8.1 which

describes the significance of the problems in the maintenance situations. Table columnCat

means the task category. The table headersS, P andI mean significance (mean ofP andI),

problemacy and importance.

Minimum significance was as low as 1.41 while the maximum was 3.82. The mean of

the significance numbers was 2.74 and median was also 2.74.

The five most significant tasks are related to change effects, software complexity and

corrective maintenance (Locating a bug). This is well aligned with the fact that about half of

the subjects had been involved in corrective maintenance tasks related to the target system.

When finding and fixing bugs, it is essential to manage the complexity if the size of the soft-

ware increases. If the sofware is very complex, dealing with the effects of changes becomes

difficult and important because in a complex systems there are more unknown dependencies

that may lead to unexpected side effects.

Tasks may be observed by the categories specified earlier, but also with another way.

64

Table 8.1: Task significance

Task Cat S P I

Determining the effects of changes P 3.82 3.82 3.82

Dealing with the complexity of functionality P 3.41 3.00 3.82

Dealing with the complexity of data D 3.27 2.77 3.77

Locating a bug P 3.25 2.77 3.73

Dealing with the complexity in SQL statement S 3.24 2.86 3.59

Understanding the functionality stored in the database D 3.23 2.64 3.82

Slowness of an SQL query S 3.20 2.64 3.77

Understanding the relationships between tables D 3.14 2.09 4.18

Finding out which DB entities are used by a specific part of the application R 2.95 2.95 2.95

Fixing a bug P 2.89 2.18 3.59

Understanding the program at general level P 2.86 1.73 4.00

Understanding the database at general level D 2.82 1.55 4.09

Understanding how the SQL statement is constructed S 2.75 2.14 3.36

Understanding data flow relations between the application modules through DB usageR 2.75 2.27 3.23

Understanding and managing the bindings between Java code and SQL code S 2.74 2.10 3.38

Understanding data flow relations between the database and the application R 2.73 2.00 3.45

Understanding the meaning of a part of the program P 2.73 1.77 3.68

Understanding the meaning and the impacts of an SQL statement S 2.68 1.27 4.09

Finding out call relationships P 2.67 2.24 3.10

Locating relevant place of code P 2.62 2.05 3.14

Finding out the mappings between the classes and tables R 2.59 2.27 2.91

Finding out where a DB entity is used R 2.55 2.50 2.59

Understanding the meaning of a database entity D 2.52 1.41 3.64

Understanding dynamic binding P 2.50 1.95 3.05

Finding out where particular data is stored D 2.41 1.59 3.23

Understanding the transactions R 2.36 1.82 2.91

Understanding the database interface R 2.23 1.64 2.82

Changing the database schema D 2.09 1.50 2.68

Determining how the data types should be matched between SQL and Java S 1.89 1.36 2.41

Determining the data type of a column D 1.41 0.64 2.18

65

Some of the tasks require general level understading and do not require going to the specifics,

e.g. Understanding the program at general level, Understanding the database at general

levelandUnderstanding data flow relations between the database and the application. These

tasks were relatively significant (2.73 – 2.86) and the most significant of them wasUnder-

standing the program at general level.

The specific level understanding tasks likeUnderstanding the meaning of a part of the

program, Understanding the meaning of a database entityandUnderstanding the meaning

and the impacts of an SQL statementare located in the latter half of the list. The significance

values 2.73, 2.52 and 2.68 are slightly below the mean 2.74. The subjects clearly do not

consider them of being problematic.

Data type related tasksDetermining the data type of a columnandDetermining how the

data types should be matched between SQL and Javaare the least significant tasks. Data

types are not a very challenging issue for maintainers though there exists some oddities with

SQL and Java data type mapping.

Surprisingly, some of the tasks which are usually regarded as serious issues in program

comprehension were not very high on the list. For example, the taskFinding out call rela-

tionshipswas below than the average, with significance 2.67. Also,Understanding dynamic

binding, 2.50 was the seventh from the bottom. This could mean that database applications

would be remarkably different than the other applications.

8.3 The most significant problems

This section discusses about the most significant (problematic and important) problems.

Based on the results, the most significant tasks are as follows.

1. Determining the effects of changes

2. Dealing with the complexity of functionality

3. Dealing with the complexity of data

4. Locating a bug

5. Dealing with the complexity in SQL statement

6. Understanding the functionality stored in the database

7. Slowness of an SQL query

8. Understanding the relationships between tables

9. Finding out which DB entities are used by a specific part of the application

10. Fixing a bug

66

These problems are presented in figure 8.1 with boxplots. The problems are in the same

order in the figure as in the previous list. The figure describes the mean and the range of the

answers.

Figure 8.1: The boxplots of ten most significant problems ordered by significance.

Dealing with change effects with a big software is difficult and important. These results

can be explained with following facts. The target system is very large, containing over

255,000 lines of code. The SQL statements inside the Java source code are also related to

this problem, as stated in section 5.4. Because the SQL statements of the target system are

spread all over the source code, this problem is emphasized.

Dealing with the complexity of the application and database is another very demanding

issue for the maintainers. The complexity of the target system has increased continuosly,

because the system has been developed in separate projects where the project members have

not had earlier experience of the system. Every project has been assigned to add certain

functionality to the system and some projects have also partly maintained the existing func-

tionality. The increasing complexity has been tried to manage by training the members and

explaining the architecture of the system for them. However, due to limited project time and

limited experience of developing Java/JSP relational database applications, every project has

developed their own kind of architecture. The project members have not been too aware of

the existing functionality of the system and have end up adding redundant code to the system.

As an example of the mixed architecture (or lack of architecture), one column is referenced

67

in over 30 Java or JSP files.

Finding and fixing bugs is the heart of corrective maintenance. The debugging features

of the development tools are in important role in these tasks. The target system is based on

multiple servers (Tomcat for JSP and PostgreSQL for database management system) which

complicated the debugging sessions. For example, launching a local Tomcat server for de-

bugging may require tens of seconds. The system was also debugged by writing debugging

messages, running the system, and inspecting the log files, which is sometimes slow. The

developers also complained about that the development tools were not reliable enough.

Understanding functionality stored in the database being one of the most significant prob-

lems is quite a surprising result. This issue has not been discussed in the theory. The article

[HMD01] about regression testing emphasizes this because the functionality of DB may

create data flow dependencies between the tables which are not always visible for the main-

tainer.

SQL queries tend to be slow if they are written without being aware of the performance

issues. The slowness also depends on the specialities of the database management systems.

Some structures may be optimized by the server while others may not.

A very interesting result is, that finding out which DB entities (tables, views or columns)

are used in the application was also a significant problem. This result confirms the hypoth-

esis that the relationship between the application and the database is in an important role

in the maintenance of the target system. This problem is quite more significant than its in-

verse versionFinding out where a DB entity is used. Based on my own experiences of the

maintenance of the target system, I expected that this would have be less significant than

the inverse version. This may depend on the type of the maintenance task. For example, a

situation where a table contains erroneous data is related to the problemFinding out where

a DB entity is usedwhile a situation with unawareness of how the database used from an

application module is related to theFinding out which DB entities are used by a specific

part of the application. Figure 8.2 describes the differecies between the answerers who had

been involved in corrective and perfective maintenance tasks (some of the were involved in

both) and their opininons about these tasks. Preventive and adaptive maintenance are not

discussed here because so few of the subjects had been involved in those types of software

maintenance.

The means, which are present in figure 8.2 are calculated from the significancy of the task

(mean of problemacy and importancy). Finding used DB entitites is much more significant

for the subjects who had been in corrective maintenance than who had not. In the perfective

maintenance, there is no such difference. The taskFinding out where a DB entity is used

behaves similarly, it is regarded as much more significant with the users who have been

doing either corrective, perfective or both types of maintenance.

68

Figure 8.2: Corrective and perfective maintenance tasks related to the two problems of un-

derstanding the dependencies between the database and the application.

Figure 8.3 gives more information about the ten most significant tasks. The tasks are

numbered as 1 to 10 and plotted in the scatterplot with the axis CY and CN. The axis CY

means the significancy of the task in the group of answers who had been involved in cor-

rective maintenance. The axis CN is similar but with the users who had not been involved

in it. As shown in the figure, some tasks are at the diagonal, which means that they are

tasks that are not dependant on this issue at all. On the other hand, some tasks belong to the

corner where CN is high but CY is low, which means that the tasks are not so significant in

corrective maintenance.

Figure 8.4 gives similar information about the properties of the tasks in perfective main-

tenance. The tasks are the same tasks as above. The axis PY means the significancy of the

task in the group of answers who had been involved in perfective maintenance. The axis PN

is similar but with the users who had not been involved in it.

As a result of searching correlation between the task significance and the maintenance

type (corrective and perfective), one statistically significant (at the 0.05 level) correlation

was found. Complexity of data is correlated with perfective maintenance, as shown in the

figure 8.5. The Spearman correlation coefficient was 0.481 and two-tailed significancy 0.023.

The correlation predicts that if a person been involved in perfective maintenance, he does not

keep taskDealing with the complexity of dataso significant (problematic and important for

the whole task).

69

Figure 8.3: The ten most significant tasks and their significancies in corrective maintenance.

Figure 8.4: The ten most significant tasks and their significancies in perfective maintenance.

70

Figure 8.5: Perfective maintenance tasks related to the data complexity problem.

Some other correlations between the task significancies also exist,e.g.

– Understanding the relationships between tablesandDealing with the complexity of data

– Understanding the relationships between tablesandDealing with the complexity in SQL

statement

– Understanding the functionality stored in the databaseandDealing with the complexity of

data

– Dealing with the complexity of functionalityandDetermining the effects of changes

The first and second correlations are fully logical because complex relationships are one

factor of the data and SQL complexity. The third correlation is also clear. More complex

the data goes, the more difficult is to understand the functionality which uses the complex

data. The fourth describes that if the application is very complex, the effects of changes can

be difficult to determine. Inspecting the correlations between the task significancies is not

the goal of the study, but it is inspiring to see that there are clear and logical connections

between the variables.

8.4 Essential information needs

Essential information needs related to the problems presented above are discussed here. Very

essential is to understand the whole IS (application, database and data flow) at a general

level in order to maintain the application successfully. The general level understanding was

however mentioned to be quite trivial. The change effects occur when there are lots of

dependencies in software. If the developer is not aware of all the relevant dependencies he

71

may cause side effects while changing the code. It is essential to manage the dependencies.

The problems about managing the complexity of the software requires some discussion.

Complexity can be managed with abstractions. A complex system can be reverse engineered

to a simpler model which is also easier to understand and manage. The complexity reside in

the program functionality, in the database or in the SQL statements. The complexity is often

due to bad design. Thereby, reengineering database applications to a new design is a relevant

issue.

Corrective maintenance is a process that needs support. With poor debugging tools and

the target system with lots of artifacts and dependencies, there are problems. Locating a bug

is done bye.g. inspecting logs, reading code, trying to understand a piece of code, running

debugger or just simulating the code in mind. The essential thing for bug hunting is a good

understanding of the system, both database and the application.

Understanding the functionality stored in the database proves to be problematic. Stored

procedures and triggers may cause multiple dependencies (mainly data flow) between the

application and the database, between the application modules and between the database

tables. Managing these dependencies is important, especially in testing [HMD01]. A stored

procedure can be understood by inspecting the source code places where it is referenced.

Optimizing SQL is a task that needs knowledge about the database server implementation

issues and relation algebra [EN99]. Complex queries are difficult to understand and thereby

hard to optimize.

Larger database applications include hundreds of database tables. Relationships between

tables are complex and access paths difficult to find. Database documentation might be useful

in understanding the relationships. There are also several approaches to extract a conceptual

model from a relational database,e.g. [Alh03]. Using the model, relationships may become

understandable. In addition to the documentation, a source of information for understanding

relationship is the application source code. The SQL statements which use multiple tables

with JOIN clause contain information about the relationships between the tables [Alh03].

Thereby, this problem requires undestanding where those SQL statements are located in the

source code which belongs to the taskFinding out which DB entities are used by a specific

part of the application

Finding out which DB entities (e.g. tables) are used in the application is a challenging

task. It is not usually documented, and the traditional reverse engineering tools are not capa-

ble of mining the information. What makes it difficult to reverse engineer, is the mix of the

technologies: Java (general-purpose language), JSP (user interface and a sort of language),

SQL (database language) and PostgreSQL (database management system that presents some

requirements for the used SQL syntax). They all define the requirements for the reverse

engineering process and make the simple thing complex.

72

Essential dependencies which cover these information needs are as follows.

– A class or module uses a table/view

– A class or module uses a column

– An SQL statement in the application uses a relationship

– A table relates (with 1:1, 1:M or N:M type relationship) to a table.

– A class or method uses a stored procedure

73

9 Conclusion

Maintenance of relational database applications differs essentially from maintaing other

kinds of applications. Mix of program and database technologies increases complexity.

Relational databases involve concepts like table and column. Database usage is mapping

between the database and the application. The maintainers need to observe this in order

to successfully manage changes to the application. The maintainers need various types of

comprehension: program comprehension and database comprehension.

Both database comprehension and program comprehension are vital for maintaining

database applications. With large applications,e.g.over 100 tables and 20,000 LOC, it is

also important to understand and manage the dependencies between the application and the

database.

An empirical study was conducted to find out what are the most significant problems and

related information needs when maintaining a database application called Korppi. Based

on the answers of 22 maintainers or developers, the most significant problems weree.g.

dealing with the effects of changes, managing the complexity (of functionality and data),

understanding table relationships and finding out which database tables, columns or views

are used in the application.

In database application maintenance, there are such information needs that are peculiar

to database applications. The information needs are basically related to managing all sorts of

software dependencies, including the database dependencies and the dependencies between

the application and the database. For example,Class uses tableis a dependency which was

regarded more important than call dependency.

The limitations of the study are due to the properties of the target system. Because the

answers based so heavily on the experience with the target system, it is sure that some of

detected problems may be unique for the system.

74

10 References

[ABDM01] Alain Abran, Pierre Bourque, Robert Dupuis, and James W. Moore.Guide to

the Software Engineering Body of Knowledge - SWEBOK. IEEE Press, 2001.

[AEP96] Jacqueline M. Antis, Stephen G. Eick, and John D. Pyrce. Visualizing the

Structure of Large Relational Databases.IEEE Softw., 13(1):72–80, 1996.

[Alh03] Reda Alhajj. Extracting the Extended Entity-Relationship Model from a Legacy

Relational Database.Information Systems, 28(6):597–618, 2003.

[Amb03] Scott W. Ambler.Agile Database Techniques: Effective Strategies for the Agile

Software Developer. John Wiley & Sons, 2003.

[BH92] Erich Buss and John Henshaw. Experiences in Program Understanding. In

Proceedings of the 1992 Conference of the Centre for Advanced Studies on

Collaborative Research, pages 157–189. IBM Press, 1992.

[BR00] K. H. Bennet and V. T. Rajlich. Software Maintenance and Evolution: A

Roadmap. InProceedings of the Conference on the Future of Software En-

gineering, pages 73–87. ACM Press, 2000.

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling

Language User Guide. Addison Wesley Longman Publishing Co., Inc., 1999.

[CF03] Yossi Cohen and Yishai A. Feldman. Automatic High-Quality Reengineering

of Database Programs by Abstraction, Transformation and Reimplementation.

ACM Transactions on Software Engineering and Methodology, 12(3):285–316,

2003.

[Che76] Peter Pin-Shan Chen. The Entity-Relationship Model–Toward a Unified View

of Data.ACM Transactions on Database Systems, 1(1):9–36, 1976.

[CHK+01] Ned Chapin, Joanne E. Hale, Khaled Md. Kham, Juan F. Ramil, and Wui-Gee

Tan. Types of Software Evolution and Software Maintenance.Journal of Soft-

ware Maintenance, 13(1):3–30, 2001.

[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and Design

Recovery: A Taxonomy.IEEE Softw., 7(1):13–17, 1990.

75

[CMS03] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Pre-

cise Analysis of String Expressions. InProceedings of the 10th International

Static Analysis Symposium, SAS’03, volume 2694 ofLNCS (Lecture Notes in

Computer Science), pages 1–18. Springer-Verlag, June 2003.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.Com-

munications of the ACM, 13(6):377–387, 1970.

[CPG01] Coral Calero, Mario Piattini, and Marcela Genero. A Case Study with Rela-

tional Database Metrics. InACS / IEEE International Conference on Com-

puter Systems and Applications (AICCSA 2001), pages 485–487. IEEE Com-

puter Soc., 2001.

[EHF01] Jon Ellis, Linda Ho, and Maydene Fischer.JDBC API Specification 3.0 Final

Release. Sun Microsystems, Inc., 2001.

[EMK+04] Andrew Eisenberg, Jim Melton, Krishna Kulkarni, Jan-Eike Michels, and Fred

Zemke. SQL:2003 Has Been Published.ACM SIGMOD Record, 33(1):119–

126, 2004.

[EN94] Ramez A. Elmasri and Shamkant B. Navathe.Fundamentals of Database Sys-

tems, 2nd Edition.Benjamin/Cummings, 1994.

[EN99] Ramez A. Elmasri and Shamkant B. Navathe.Fundamentals of Database Sys-

tems, 3rd edition. Addison-Wesley Longman Publishing Co., Inc., 1999.

[GJS96] James Gosling, Bill Joy, and Guy L. Steele.The Java Language Specification.

Addison-Wesley Longman Publishing Co., Inc., 1996.

[Gos97] James Gosling. The Feel of Java.Computer, 30(6):53–57, 1997.

[GSD04] Carl Gould, Zhendong Su, and Premkumar Devanbu. Static Checking of Dy-

namically Generated Queries in Database Applications. InProceedings of the

26th International Conference on Software Engineering. IEEE Computer Soc.,

2004.

[HEH+95] Jean-Luc Hainaut, Vincent Englebert, Jean Henrard, Jean-Marc Hick, and Di-

dier Roland. Requirements for Information System Reverse Engineering Sup-

port. InWCRE ’95: Proceedings of the Second Working Conference on Reverse

Engineering, page 136. IEEE Computer Soc., 1995.

76

[HEH+98] Jean Henrard, Vincent Englebert, Jan-Marc Hick, Didier Roland, and Jean-Luc

Hainaut. Program Understanding in Databases Reverse Engineering. InPro-

ceedings of the 9th International Conference on Database and Expert Systems

Applications, pages 70–79. Springer-Verlag, 1998.

[Hen03] Jean Henrard.Program Understanding in Database Reverse Engineering. PhD

thesis, University of Namur, Belgium, jhe@info.fundp.ac.be, 2003.

[HHH+97] Jean Henrard, Jean-Luc Hainaut, Jan-Marc Hick, Didier Roland, and Vincent

Englebert. Contribution to the Reverse Engineering of OO Applications -

Methodology and Case Study. InProceedings of the IFIP 2.6 Working Con-

ference on Database Semantics. Chapman-Hall, 1997.

[HHH+99] Jean Henrard, Jean-Luc Hainaut, Jan-Marc Hick, Didier Roland, and Vincent

Englebert. Data Structure Extraction in Database Reverse Engineering. InPro-

ceedings of the Workshops on Evolution and Change in Data Management, Re-

verse Engineering in Information Systems, and the World Wide Web and Con-

ceptual Modeling, pages 149–160. Springer-Verlag, 1999.

[HLCW99] Chia-Lin Hsu, Hsien-Chou Liao, Jiun-Liang Chen, and Feng-Jian Wang. A

Web Database Application Model for Software Maintenance. InProceedings

of the Fourth International Symposium on Autonomous Decentralized Systems,

pages 334–338. IEEE Computer Soc., March 1999.

[HMD01] Ramzi A. Haraty, Nash’at Mansour, and Bassel Daou. Regression Testing of

Database Applications. InProceedings of the 2001 ACM Symposium on Applied

Computing, pages 285–289. ACM Press, 2001.

[IBM02] Application Development Guide: Programming Client Applications, Version 8.

IBM, 2002.

[ISO03] ISO/IEC. Information Processing Systems - Database Language SQL. 2003.

[JSKCG94] K. Jambor-Sadeghi, M. A. Ketabchi, J. Chue, and M. Ghiassi. A Systematic

Approach to Corrective Maintenance.The Computer Journal, 37(9):764–778,

1994.

[Kon98] Manu Konchady. An Introduction to JDBC.Linux J., 1998(55es):2, 1998.

[Kor05] Korppiadmin. Historia - korppi, 2005. Available at

<https://korppi.it.jyu.fi/kotka/help/faq/history.jsp>, checked 19.1.2005.

77

[LS81] Bennet P. Lientz and E. Burton Swanson. Problems in application software

maintenance.Communications of the ACM, 24(11):763–769, 1981.

[Lu02] Jianguo Lu. Reengineering of Database Applications to EJB Based Architec-

ture. InProceedings of the 14th International Conference on Advanced Infor-

mation Systems Engineering, pages 361–376. Springer-Verlag, 2002.

[LZ03] Liwu Li and Xin Zhao. UML Specification of Relational Database.Journal of

Object Technology, 2(5):87–100, 2003.

[Mic95] Microsoft Corporation. Open Database Connectivity, 1995. Available at

<http://www.microsoft.com/data/odbc/default.htm>, checked 19.3.2005.

[MJS+00] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey,

Scott R. Tilley, and Kenny Wong. Reverse Engineering: A Roadmap. In

Proceedings of the Conference on the Future of Software Engineering, pages

47–60. ACM Press, 2000.

[NHR99] Udo Nink, Theo Härder, and Norbert Ritter. Generating Call-Level Interfaces

for Advanced Database Application Programming. InVLDB ’99: Proceedings

of the 25th International Conference on Very Large Data Bases, pages 575–586.

Morgan Kaufmann Publishers Inc., 1999.

[OMG03] OMG. Unified Modeling Language (UML) Specification (2003). Version 1.5,

March 2003, UML Specification, revised by the OMG on the World Wide Web:

http:// www.omg.org, 2003.

[PB94] William J. Premerlani and Michael R. Blaha. An Approach for Reverse Engi-

neering of Relational Databases.Communications of the ACM, 37(5):42–49,

1994.

[PM00] Mario Piattini and Antonio Martínez. Measuring for Database Programs Main-

tainability. In Mohamed T. Ibrahim, Josef Küng, and Norman Revell, edi-

tors,DEXA, volume 1873 ofLecture Notes in Computer Science, pages 65–78.

Springer, 2000.

[Ree97] George Reese.Database Programming with JDBC and Java. O’Reilly, 1997.

[SKM01] Tarja Systä, Kai Koskimies, and Hausi Müller. Shimba – An Environment for

Reverse Engineering Java Software Systems.Software – Practice & Experi-

ence, 31(4):371–394, 2001.

78

[Sny93] Alan Snyder. The Essence of Objects: Concepts and Terms.IEEE Software,

10(1):31–42, 1993.

[Som01] Ian Sommerville.Software Engineering (6th Ed.). Addison-Wesley Longman

Publishing Co., Inc., 2001.

[Suo97] Timo Suominen. Upotetun SQL:n analysointi Hypersoft-järjestelmässä. Mas-

ter’s thesis, University of Helsinki, Finland, 1997.

[Swa76] E. Burton Swanson. The Dimensions of Maintenance. InProceedings of the

2nd International Conference on Software Engineering, pages 492–497. IEEE

Computer Soc., 1976.

[TP96] Antti-Pekka Tuovinen and Jukka Paakki. Translating SQL for Database Reengi-

neering.ACM SIGPLAN Notices, 31(2):21–26, 1996.

[Tuo95] Antti-Pekka Tuovinen. Analyzing, Understanding and Maintaining Object-

Oriented Programs. Technical report, HyperSoft Project, 1995. Dept. of Com-

puter Science, University of Helsinki.

[vMV95a] Anneliese von Mayrhauser and A. Marie Vans. Industrial Experience with

an Integrated Code Comprehension Model.Software Engineering Journal,

10(5):171–182, 1995.

[vMV95b] Anneliese von Mayrhauser and A. Marie Vans. Program Comprehension Dur-

ing Software Maintenance and Evolution.Computer, 28(8):44–55, 1995.

[vMV97] Anneliese von Mayrhauser and A. Marie Vans. Program Understanding Behav-

ior During Debugging of Large Scale Software. InESP ’97: Papers Presented

at the Seventh Workshop on Empirical Studies of Programmers, pages 157–179.

ACM Press, 1997.

[WH92] Norman Wilde and Ross Huitt. Maintenance Support for Object-Oriented Pro-

grams.IEEE Transactions on Software Engineering, 18(12):1038–1044, 1992.

[Wyk03] Jens Wyke. JDBC Query Logging Made Easy, 2003. Available at <http://www-

128.ibm.com/developerworks/java/library/j-loggable.html>, checked 1.3.2005.

[XOP95a] X/Open Guide: Data Management: Reference Model. X/Open Company Lim-

ited, 1995.

[XOP95b] X/Open Technical Standard: Data Management: SQL Call Level Interface

(CLI). X/Open Company Limited, 1995.

79

A Appendix. Query form

80

Korppi-järjestelmä https://korppi.jyu.fi/kotka/survey/answering/resultHandler.jsp?quest...

1 of 6 18.1.2005 12:22

��

����������	�
		�����

������������
������������
����������

�����������	
����

����
��
�	��	�����

���

�	��
	
���

���
�����
����	�	�������������
����������

���������

� ���������	�
������
��������	������
��������

���������	�
����
�����������
��
����

��������������
�������
����������
����

����� ����� �����

���
��
����������������
�������
	������������
�����������������

��
���������
����
����	�	�

� ��	
�����
���	
������
����
��

�������������������
������
���������������

���������������������
��
������������������
�������������
����	������

��������
���	��������
�����������������

����� ����� ����� �����

 ������������

���	
 � ����!"�������

���	
 �!"#!$�������

���	
 �!%#!&�������

���	
 �'��!&�������

�����	��	����������	���
��������
	�
��

������	��	�	�
	�

���	
 � ��������

���	
 �(#!�������

���	
 �!#$�������

���	
 ����$�������

�����	���
���	��	������
������������������
�
�����������
�
��
�	�
	�����������!�����������"
�	����	�

���	
 � ��������

���	
 �(#!�������

���	
 �!#$�������

���	
 ����$�������

#��������������

���
������	

#���		�	����
������	�������	�����		�	��	�����	�����
��������	��
���
��
�����
�����	������

	��	������

����

������
��������
���
����
��
�	�
	�����������������
��	
����

���������	���
�����	�������������

���������������
��������	�
��
�	�
	�����������
�������������������������
�	����

���
�
��
�	�
		���������
�����

���	�
	����
������
��	

�����������������	�������������

$�������	������	�����������

������		�	��
��
�����������������������
�����!%�&�'���	���		�
�����	��������(�&�'��

���������	������"

� " (! $ %)

(*�+���������������	����������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

Korppi-järjestelmä https://korppi.jyu.fi/kotka/survey/answering/resultHandler.jsp?quest...

2 of 6 18.1.2005 12:22

!*�,�
�������������	������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

$*�-������������������������������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

%*�������������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

)*�.���������������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

/*�������������������������	������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

&*�0�������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

1*�0�����	
��� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

2*�������������������������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

)�� ��
������	�����
�
��
���
����������������

���

3���
���������������������������������������
�������������������������4���������������
���������
���	���������������������������
��*����������"#)����������5

*�������	������

���������

������		�	��
��
�����
��������
���������	���������	��	�
	
������������������
�����!%�&�'���	���		�������

�����(�&�'��

���������

���"

� " (! $ %)

(*�+���������������	����������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

!*�,�
�������������	������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

$*�-������������������������������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

%*�������������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

)*�.���������������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

/*�������������������������	������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

&*�0�������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

1*�0�����	
��� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

2*�������������������������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

+�� �����������	����
���
��
�����������

������
��
�����
��������
���������	�������
�	��	�
	�

3�������������������������!�����������
�������4����������������������������
���	��
��������	�����������*����������"#)�
������5

���
�	�
		�����

���
������	

$�������	������	�����������

������		�	��
��
�����������������������
�����!%�&�'���	���		�
�����	��������(�&�'��

���������	������"

Korppi-järjestelmä https://korppi.jyu.fi/kotka/survey/answering/resultHandler.jsp?quest...

3 of 6 18.1.2005 12:22

� " (! $ %)

(*����������������	����������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

!*�������������������������������������	�����������
��	������������	������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

$*������
������������������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

%*��������������������������������������*�������������
�
��	��������������������������
���������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

)*�+�	���������������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

/*����������	������������������������*���	������������
��������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

&*��	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

1*����������������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

)�� ��
������	�����
�
��
���
�
��
�	�
		�����

���

3���
��������������������������������������
�������������������������4���������������
���������
���	���������������������������
��*����������"#)����������5

*�������	������

���������

������		�	��
��
�����
��������
���������	���������	��	�
	
������������������
�����!%�&�'���	���		�������

�����(�&�'��

���������

���"

� " (! $ %)

(*����������������	����������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

!*�������������������������������������	�����������
��	������������	������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

$*������
������������������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

%*��������������������������������������*�������������
�
��	��������������������������
���������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

)*�+�	���������������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

/*����������	������������������������*���	������������
��������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

&*��	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

1*����������������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

+�� �����������	����
���
��
�����������

������
��
�����
��������
���������	�������
�	��	�
	�

3�������������������������!�����������
�������4����������������������������
���	��
��������	�����������*����������"#)�
������5

Korppi-järjestelmä https://korppi.jyu.fi/kotka/survey/answering/resultHandler.jsp?quest...

4 of 6 18.1.2005 12:22

#�����������	�
��
�	��	�����
���������

���
������	

$�������	������	�����������

������		�	��
��
�����������������������
�����!%�&�'���	���		�
�����	��������(�&�'��

���������	������"

� " (! $ %)

(*������������
���������������������������	��
��
����	������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

!*�+��
���������������	��
�������	������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

$*����������������������������	���������������
��������������������������
��������������������������
�������������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

%*�+����������4��������������������������������������
�����������������������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

)*������
���
���������������������������	�����������
��

���	
 ���	
 ���	
 ���	
 ���	
 ���	

/*����������	�
�����������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

&*��	���������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

)�� ��
������	�����
�
��
���
�������������	�
��
�	��	�����
�������!������
��
�	��	�
���

���"����

���

3���
��������������������������������
�
��
�����������4�������������������������
���	��
���������������������������*����������"#)�
��������5

*�������	������

���������

������		�	��
��
�����
��������
���������	���������	��	�
	
������������������
�����!%�&�'���	���		�������

�����(�&�'��

���������

���"

� " (! $ %)

(*������������
���������������������������	��
��
����	������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

!*�+��
���������������	��
�������	������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

$*����������������������������	���������������
��������������������������
��������������������������
�������������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

%*�+����������4��������������������������������������
�����������������������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

)*������
���
���������������������������	�����������
��

���	
 ���	
 ���	
 ���	
 ���	
 ���	

/*����������	�
�����������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

&*��	���������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

+�� �����������	����
���
��
�����������

������
��
�����
��������
���������	�������
�	��	�
	�

Korppi-järjestelmä https://korppi.jyu.fi/kotka/survey/answering/resultHandler.jsp?quest...

5 of 6 18.1.2005 12:22

3�������������������������!�����������
�������4����������������������������
���	��
��������	�����������*����������"#)�
������5

#,-��	������������

���
������	

$�������	������	�����������

������		�	��
��
�����������������������
�����!%�&�'���	���		�
�����	��������(�&�'��

���������	������"

� " (! $ %)

(*�+67#����������	��������
�����������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

!*�+67#�����������������������	�������������
�������������3���#������������������������
����������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

$*�+67#�������������
��3���#��������������������������
+�����������	�������
���������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

%*������������������������������	��������3���#������
�
+67#������������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

)*�+67#����������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

/*�+67#�� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

)�� ��
������	�����
�
��
���
�#,-��	������������

���

3���
��������������������+67#��������������
�������������������������4���������������
���������
���	���������������������������
��*����������"#)����������5

*�������	������

���������

������		�	��
��
�����
��������
���������	���������	��	�
	
������������������
�����!%�&�'���	���		�������

�����(�&�'��

���������

���"

� " (! $ %)

(*�+67#����������	��������
�����������������	������ ���	
 ���	
 ���	
 ���	
 ���	
 ���	

!*�+67#�����������������������	�������������
�������������3���#������������������������
����������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

$*�+67#�������������
��3���#��������������������������
+�����������	�������
���������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

%*������������������������������	��������3���#������
�
+67#������������

���	
 ���	
 ���	
 ���	
 ���	
 ���	

)*�+67#����������������������� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

/*�+67#�� ���	
 ���	
 ���	
 ���	
 ���	
 ���	

+�� �����������	����
���
��
�����������

������
��
�����
��������
���������	�������
�	��	�
	�

Korppi-järjestelmä https://korppi.jyu.fi/kotka/survey/answering/resultHandler.jsp?quest...

6 of 6 18.1.2005 12:22

3�������������������������!�����������
�������4����������������������������
���	��
��������	�����������*����������"#)�
������5

.	�
	������������
	

 ������������������	�
	������������
��

� �����
��	��#���������

8�����
��	��#����������

�������������
���������

+���
��	��#����������
�����������

8����������
����������
��
������
��	��#���������

�����
�����
���������

���	
 ���	
 ���	
 ���	
 ���	

������

