
Antti Jokipii 

GRAMMAR-BASED DATA EXTRACTION LANGUAGE 

(GDEL) 

Master of Science Thesis 

in Information Technology (Software Engineering) 

10th October 2003 

 

University of Jyväskylä 

Department of Mathematical Information Technology 



Author: Antti Jokipii 

Contact: anoljo@jyu.fi or antti.jokipii@republica.fi 

Title: Grammar-based Data Extraction Language (GDEL) 

Title in Finnish: Kielioppiperustainen tiedon irroittamis kieli (GDEL) 

Number of Pages: 101 + 14 

ACM Taxonomy: Data mapping (D.2.12.a), Syntax (D.3.1.b), Parsing (D.3.4.h) (F.4.2.d), 

Data communication aspects (E.0.a), Data description languages (H.2.3.a), Data translation 

(H.2.5.a), Data sharing (H.3.5.b), Format and notation (I.7.2.b), Languages and systems 

(I.7.2.e), Markup languages (I.7.2.f), Electronic data interchange (K.4.4.c). 

Keywords: XML, Enterprise Application Integration, Enterprise Information Integration, 

Shared Information System, Wrapper, Conversion Problem, Legacy Data Problem, Semi-

Structured Data, Language Engineering, Syntax Definition, Generalized LR parsing, 

Scanner less Parsing, Data Transformation 

Abstract: This thesis examines the wrapper – a data transformation component – approach 

to the data integration and XML as a general interchange format. This thesis will show that 

quite well known context-free parsing methods can be used as the general wrapper. The 

constructive part of the thesis introduces “Grammar-based Data Extraction Language” 

shortly GDEL, a state of art data conversion language. GDEL describes conversions from 

any format, defined as a context-free language, into XML. 

Abstract in Finnish: Pro gradu-työ tutkii wrapper-tietomuunnoskomponenttipohjaista  

lähestymistapaa tiedon integrointiin ja XML-formaattia yleisenä siirtoformaattina. Työ 

osoittaa kuinka kohtuullisen hyvin tunnettuja kontekstivapaita parsintametodeja voidaan 

käyttää yleisinä tietomuunnoskomponentteina. Työssä on kehitetty kielioppeihin tukeutuva 

kieli GDEL, jonka avulla kaikki kontekstivapailla kieliopeilla kuvattavat tietoformaatit 

voidaan muuntaa XML-muotoon. 
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Terms and Abbreviations 

ASCII American Standard Code for Information Interchange 

defines how computers write and read characters. 

ASF Algebraic Specification Formalism. A language for 

equation specification of abstract data types. 

AST Abstract Sytax Tree. A tree representation of language 

syntax. 

B2B Business To Business. A business operation in e-

commerce through which businesses can offer and 

market their products and services. 

B2Bi Business-To-Business Integration. B2Bi makes 

possible the connection between trading partners over 

the Internet. 

Bi-directional The ability to extract, cleanse, and transfer data in two 

directions. 

BNF Backus-Naur Form. Originally Backus Normal Form. 

A formal Meta syntax used to express context-free 

grammars. Backus Normal Form was renamed Backus-

Naur Form at the suggestion of Donald Knuth. 

CFG Context-Free Grammars. See section 4.3. 

CSG Context-Sensitive Grammars. See section 4.3. 

Data Integration Data integration supports the seamless exchange of 

various data formats between applications and between 

trading partners over the Internet. 
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Data Content Quality The accuracy and validity of the actual values of the 

data, in contrast to issues of schema. 

Data Mining Name of technology to find important nuggets of 

information in voluminous texts. 

DTD Document Type Definition. Grammar of XML or 

SGML data. See: XML and SGML. 

EAI Enterprise Application Integration. EAI is a category of 

infrastructure software aimed at facilitating the transfer 

of information between various systems in order to 

update the information and its consistency. This makes 

it easier to establish communications between systems 

initially unable to communicate with each others. 

HTML Hypertext Mark-up Language, The mark-up language 

used to create hypertext documents for use on the 

WWW, based on SGML. 

Information Extraction Systems that accurately extract, correlate, and 

standardize important information from text.  For 

example, converting business articles to a structured 

business database. 

Legacy Pre-existing applications or data that is not possible to 

automatically integrated to new applications. 

Lexical Analyzer (Or "scanner") The initial input stage of a language 

processor (e.g. a compiler), the part that performs 

lexical analysis. 

Mediation Service Covers value-added processing on resulting content, as 

converting and filtering. 
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Mediator Component to provide mediation services. 

Middleware Software designed to establish a permanent relationship 

(including filtering and transformation) between source 

systems and logical models. 

Scanner See Lexical Analyser. 

Schema The organization or structure for a data. 

SDF Syntax Definition Formalism. A language for lexical 

and syntactic specification for context free grammars 

developed by the Programming Research Groups of the 

University of Amsterdam and the Centre of 

Mathematics and Computer Science at Amsterdam. 

SGML Standard Generalized Mark-up Language defines 

device-independent layout for textual data. 

Tag In the world of XML/SGML, a tag is a marker 

embedded in a document. 

URS Universal Rewriting System. See section 4.3. 

Wrapper Component that provides data transformation service. 

XML Extensible Mark-up Language, a Meta language for 

defining specialized mark-up languages that are used to 

transmit formatted data. XML is conceptually related to 

HTML and based on SGML. 

XML Schema W3C Recommendation for Schema and Data Content 

Quality for XML. 
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1 Introduction 

The thesis examines wrapper – a data transformation component – approach to data 

integration and XML as a general interchange format. The thesis will show that the usage 

of quite well known context-free parsing methods can be used as general wrapper. The 

thesis will include an analysis of general grammar based parser techniques and grammar 

representation formats. It also contains description of grammar systems and used XML 

technologies. 

The constructive part of the thesis introduces “Grammar-based Data Extraction Language” 

shortly GDEL, a state of art data conversion language for describing conversions from any 

format defined by a context-free language into XML. This language will be designed and 

its usage will be evaluated against some common usage scenarios in the thesis. The thesis 

shows mechanisms that semi-automatically generate GDEL rules from BNF or other 

grammar representation languages. At last but not least the thesis will contain GDEL 

processor design and implementation considerations. 

The need for enterprise application integration and B2B integration is generating direct 

need to solve data integration problems. Problems of the data integration are a direct result 

of using different data representations. Recently markup languages, particularly XML, 

have been used to address these problems as a general interchange format [Hasselbring00]. 

The research of XML translation studies mostly XML-to-XML transformations and XML 

down transformation back to the legacy format. Area of the up translation is studied mostly 

in specific contexts such as HTML translation to XML [Jokipii99]. 
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In 1998 we in Republica tryed XML/Xlink portal solution [Salonen98]. These issues raises 

the question about the generic syntactic translation on the data from the native data format 

of the application to the XML interchange format. In 1999 we in Republica believed that 

solution could be XML based generic data extraction language (DEL), which is capable to 

transform any unstructured data to XML [Salonen99]. This development resulted to X-

Fetch Wrapper component and DEL language that is contributed W3C as a note 

[Lempinen01]. The three years of intensive usage of the DEL language from our own and 

our customer’s experience has shown that the approach is the best-known practice. DEL is 

already in a second version, which changes it to more XSLT-like and therefore simpler to 

use and learn. 

The DEL approach is pattern based and we have found, that extracting data from formats 

that are designed with grammars, need complex control structures in all pattern-based 

languages. This experience shows that the approach needs the expansion that is capable to 

handle the grammars directly. Idea for GDEL is born. 

Short look to different parser generators and grammar formalisms in autumn 2001 showed 

that there is not a single general formalism for grammars. In that time we could not find 

powerful enough parsing algorithms to parse full range of context-free grammars. In the 

spring 2002 we found works of Eelco Visser [Visser97a-d]. They show that there are 

possibilities to parse full range of context-free grammars and also complete formalism to 

write grammars. Then Republica offers possibility to make thesis from that idea. The thesis 

is result of that process. 

The structure of this thesis is presented in the figure 1. First chapter introduces the thesis, 

its organization, motivation and some background. Second chapter describes techniques of 

data integration used in the thesis. Particularly it introduces XML as a data exchange 

format and an ideology of wrappers. Third chapter introduces family of XML techniques 

used later in the thesis. 
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Chapters 4 through 6 are devoted to context-free grammars. Chapter 4 introduces the basic 

concept of context-free grammars. Disambiguation, abbreviations and restrictions are 

considered in Chapter 5. Some of the known syntactic meta languages, like BNF, are 

evaluated in Chapter 6. The common context-free parsing techniques are described in 

Chapter 7, especially GLR- and Earley-parsing. 

1. Introduction

2. Data Integration

3. XML

4. Languages

5. Grammars

6. CF-Grammars

7. Parsing

8. Design Goals

9. Design

10. Implementation

11. Applications

12. Conclusions

Figure 1. Overview of chapters content. 

The next two chapters present the GDEL desing. Chapter 8 sets design goals. Design 

decisions made are covered in Chapter 9.  

Chapter 10 evaluates GDEL processor as a software component. It also contains the 

processor implementation considerations. Chapter 11 introduces some applications, 

especially possible only with GDEL. The last chapter presents conclusions and avenues for 

future work. 
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2 Data Integration 

Most organizations have many autonomous information systems or pre-existing 

applications (legacy systems). Typically, these applications are developed and deployed 

independently from needs of individual business units. Enterprise application integration 

(EAI) tries to solve a problem how to interoperate between applications within individual 

businesses [Pinkston01], [Erlikh01]. The advent of the Internet and new co-operative 

business models has exacerbated another problem – how to automate business-to-business 

(B2B) interactions efficiently, by using business-to-business integration (B2Bi) 

[Lublinsky02], [Pinkston01]. Most organizations would get benefits from integration; it 

could be even a critical success factory for the order to stay competitive. 

Even the middleware products significantly simplify the integration task, they don’t offer a 

seamless solution. From the technical point of view, integrating heterogeneous hardware 

platforms, operating systems, database management systems, and programming languages 

can be challenging. Without conventions that protect integrator from the details of 

particular environments, it would be almost impossible to integrate such a variety of 

information systems [McLean98]. One way to make these conventions is standard bodies 

like Extensible Markup Language (XML), which helps to create data exchange formats 

and could be used to solve one of the key aspect of all integration – the data exchange. 

State of the art integration technology also uses loosely coupled integration components, 

which are expected to lower costs and increase the system stability through reuse of 

components [Hasselbring00], [Wijegunaratne00]. For this end we need transformation 

components called wrappers, which are able to convert system-specific data 

representations to the chosen XML format. 

This chapter studies in more detail some data integration techniques. First section studies 

XML as a data exchange format. Different kind of wrappers and their implementations are 

studied in the next sections. The last section makes an overview of GDEL approach. 
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2.1 XML as Data Exchange Format 

The Extensible Markup Language (XML) is a standard meta language for describing data. 

XML promises to be a key enabling technology for seamless data exchange between 

applications running on multiple platforms. The World Wide Web Consortium (W3C) 

developed it in 1998 [XML], [XMLse]. 

The basic idea underlying XML is very simple – the separation of the content and structure 

of data [Bosak97]. This makes it possible to freely describe structured and unstructured 

data, and allows defining their relationships without any application or vendor constraints. 

XML standard allows to define structure of document – grammar – as Document Type 

Definition (DTD) that describes relationships between elements via nesting and references 

[Deutsch00]. XML tags have no fixed semantic meaning [Bosak98], which allows so 

called late-binding where the meaning of tag is defined in usage context just before 

execution. One consequence of missing semantics is that XML completely separates the 

data from presentation [Usdin98] and therefore one XML document could have multiple 

presentations. For data exchange XML has several benefits and features, which allow it to 

act as a data exchange format: 

• XML is an open standard which makes it cheap and available to all sizes of 

companies, anywhere in the world. Standardization prevents single vendor to 

control markets and the locking of customers in proprietary technology 

[Widergren99], [Bosak98], [Bos99], [Bapst99], [Lear99]. 

• XML has a strong vendor support [Kotok00], [Worder00]. 

• XML syntax is very simple - hence its documents are easy to create and use 

[Deutsch00]. 

• Users could define and extend XML data structures by modeling it at any level of 

complexity [Bosak98], [Usdin98]. 

• XML allows internationalization and media independence [Bosak98]. 
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• XML data is automatically reusable which preserves and promotes strategic 

investment in company’s data. It can provide greater levels of service and tighter 

integration by making more detailed data available when needed, for example 

portal syndication where data and components can be re-used between several 

companies [Bapst99], [Lear99]. 

• It is self-describing and therefore more understandable and processable 

[Widergren99]. Furthermore meta-data could be used to make applications and data 

more accessible to software agents [Lie99], [Glushko99]. 

Some examples of the XML usage as interchange format can be found in references 

[Ebert99] [Herman00], [Holt00], and [Kienle01]. Further elaboration on how these benefits 

can facilitate electronic commerce, collaboration [Koch99], [Sanborn00], portal services 

[Lowry00], [Lowry01] and information brokers [Lu00] can be found in these references. 

XML will play a fundamental role in the integration of heterogeneous data [Gao99], 

[Lee00], [Petrou99]. As the integration layer data model XML can be used as the least 

common denominator for representing information [Emmerich99], [Gross01]. However, 

XML itself does not solve the whole problem – we need to translate data between disparate 

end point entities that are wanted to interoperate. XML documents are easy to transform to 

proprietary format by using technologies such as XSL [XSL]. Wrapper components could 

be used to automate the translation of information from proprietary format to XML. This is 

a way to use XML, with appropriate enabling software components, to integrate otherwise 

incompatible systems. 

All these characteristics make XML excellent for exchanging information between 

organizations or within an organization. Closer view of different standards in the XML 

standard family is taken in next chapter. 
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2.2 Wrappers 

Generally wrappers are software components or middleware software that change data to 

desired representation from its original source format. If a wrapper is considered in a broad 

sense it is any part of the code that changes data representation. From this point of view 

most wrappers are hand coded and parts of more sophisticated applications. In the thesis 

are considered only wrappers that are software components and therefore well separated 

from applications. 

Even in the software component approach wrappers could be hand-coded. The oldest 

approach to help wrapper generation is to make languages with pattern matching support. 

One example of language designed for wrapper generation is Perl [Cross01]. Data 

Extraction Language (DEL) uses similar approach, but have been specially developed for 

any-to-XML transformations [Lempinen01]. It’s current second version is state of the art 

language for any-to-XML conversions.  

There are lots of examples of pattern approach: [Adelberg98], [Ashish97a-b], [Ek01], 

[Hammer97], [Hsu98]. Some of these also contain more sophisticated user interface that 

make generation of wrappers semi-automatic [Ojanen01], [Muslea99], [Seymor99], 

[Thomas99]. For example W4F (Wysiwyg World Wide Web Factory) [Sahuget98] is a 

toolkit for generating wrappers for Web sources. It assists users to create wrappers fast and 

easily and provides WYSIWYG (What-You-See-Is-What-You-Get) function via some 

wizards. Another example is XWRAP (eXtensible Wrapper Generation System) [Liu00]. It 

is a wrapper generation system, which enables wrappers for Web information sources to be 

constructed semi-automatically. This system can transform non-XML documents into 

XML documents and extract information that user wants. 
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There is also another general way to do a wrapper: the grammar-based method 

[Fankhauser93], [Klein97], [Nakhimovsky01]. Pattern matching only describes interesting 

parts and is very flexible, whereas grammars give an exact description of the document, 

but adapting irregularities is more difficult. Actually, there is no sharp borderline between 

the two approaches. The next two subsections introduce in more detail some of the 

grammar-based wrappers. 

2.2.1 JEDI 

Peter Frankhauser and Gerald Huck from German National Research Center wrote JEDI 

for Information Technology (GMD - Forschungszentrum Informationstechnik GmbH). 

JEDI is an extensible, fault tolerant parser component for the extraction of semi-structured 

data from textual sources, especially from the World Wide Web. It uses simple, grammar-

based syntactical source descriptions and an associated lightweight data model to provide 

for sophisticated and flexible rewriting and restructuring facilities which grant seamless, 

integrated access to various heterogeneous sources [Huck98]. 

The parser can cope with incomplete and ambiguous source specifications by a novel 

parsing technique that chooses always the most specific rule among several applicable 

rules. When it cannot find an applicable rule, it skips as little as possible of document – i.e. 

fallback rules – to continue with an applicable rule. JEDI uses a lightweight generic object 

model as a mediator. Furthermore, the generic output routines are supported to display 

views in XML or any other structured format. JEDI is available at: 

http://www.darmstadt.gmd.de/oasys/projects/jedi/index.html.en. 

2.2.2 XTAL 

XTAL is general Java Package written by Oliver Zeigerman. XTALs architecture consists 

of the front end for reading data in and the back end to produce outputs. Today there exist 

only one XM front end and two back ends to produce XML or TeX. XTAL is based on 

ANTLR description language and Java. XTAL is available at: 

http://www.zeigerman.de/xtal.html 
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2.3 GDEL Approach 

The black box view of GDEL processor shows overall process – see next figure. We can 

separate there four main parts: specification, input material, processor and output XML. 

Input Output
XML

GDEL
Processor

GDEL

Design time
Process Time

Defines Defines

 
Figure 2. The black box view of GDEL processor. 

In design time we need to create the specification that defines the grammar for input, and 

tag names for output. In run time we give input to processor, which then parses input 

described by grammar of specification. Parsing creates a parse tree, or forest if grammar is 

ambiguous, and returns it in XML format. 

The difference between GDEL approach and previously presented grammar-based 

wrappers is mainly that GDEL has wider usage area. The GDEL must allow usage of any 

context-free grammars to describe input while JEDI is limited to only some parts of 

context-free grammars, because it way to handle ambigious grammars, and XTAL only for 

LL(k) grammars and coded input and output materials. 
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3 Family of XML Technologies 

The XML is not just a meta language for defining markup languages. In fact, XML derives 

its strength from a variety of supporting technologies, namely presentation, structure, and 

transformation. In this chapter we examine the XML core and its surrounding technologies. 

The XML core includes the XML itself, based on the XML 1.0 specification [XML], 

namespaces [Namespaces], and XML Information Set (InfoSet) [InfoSet]. Namespaces are 

used to solve the problem of clashing names when documents from different sources to be 

combined. InfoSet provides a consistent set of definitions used in other specifications that 

need to refer to the information in XML document. For data typing we look at 

XMLSchema [XMLSchema]. For transformation, we examine XSL Transformations 

(XSLT) and XPath [XSLT], [XPath]. 

3.1 XML Standard 

The Extensible Markup Language (XML) became World Wide Web Consortium (W3C) 

recommended standard in February 1998 [XML], [XMLse]. XML has a long development 

history. It was developed to overcome the limitations of the Hypertext Markup Language 

(HTML), which was created 1989 in CERN European Nuclear Research Facility [HTML]. 

HTML is application based on Standard Generalized Markup Language (SGML), which 

became an international standard ISO 8879:1986 [ISO8879]. SGML roots can be found 

back to1969, when an IBM team leaded by Charles Goldfarb developed a document 

description language (the Generalized Markup Language, GML) to solve the problem of 

different document formats of various systems [Goldfarb90]. XML is simplification of 

SGML that retains most of the features of the standard, but makes it easier to implement 

and use in the World Wide Web (WWW) environment. 

Next subsection introduces the structure and syntax of XML documents. The purpose is 

not to give a full description about every detail of the language, but rather to explain the 

principal components that form an XML document. 
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3.1.1 Structure 

Each XML document has a physical structure, composed of units called entities. An entity 

may refer to other entities to cause their inclusion in the document. Each XML document 

has at least one entity called the document entity. The logical structure of document 

contains declarations, elements with attributes, comments, character references, and 

processing instructions, all of which are indicated in the document by explicit markup. 

A document entity should begin with an XML declaration which specifies the version of 

XML being used and could contain explicit information of used encoding and information, 

if document contain external entities. Other external entities should begin with text 

declaration, which is similar to XML declaration but could not contain information of 

external entities. Example: 

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?> 

3.1.2 Elements 

Elements are the core of the markup. Each XML document contains one so-called root 

element. Elements are used to identify the content in the document. Syntactically tags with 

element name, which usually indicates their intended meanings, that surround the element 

content, form elements. For example: 

<element>content</element> 

Elements can have an empty content and use the abbreviation: 

<element/> 

Elements can contain attributes, whose order is irrelevant. Attributes are listed as name – 

value pairs that occur within the start-tag after the element name. The same name cannot 

appear twice in an attribute list. Attributes refine the nature of the element by defining its 

characteristics. Example: 

<price currency=”euro”>123</price> 
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3.1.3 Character Data 

Elements can contain character data, which is either parsed character data or CDATA 

sections. In parsed character data entity references are replaced by content of entity. All 

other characters are handled as plain character data. 

CDATA sections could be used anywhere character data may occur. CDATA sections 

begin with the string ‘<![CDATA[’, end with ‘]]>’ and can contain any characters 

except string ‘]]>’. All characters inside CDATA sections are recognized as plain 

character data and therefore sections could be used to escape blocks of text that would 

otherwise be recognized as markup. 

Entity References 

Entities are predefined content that can be added to documents with entity references. In 

XML, some characters have been reserved to identify the start of the markup. For example, 

the left angle bracket ‘<’ normally identifies the beginning of an element start-tag or end-

tag. Entity references are a way to insert these characters into the document content. They 

can also be used to represent often repeated or varying text and to include the content of 

external files. Entity references are marked with sequence of an ampersand ‘&’, entity 

name, and a semicolon ‘;’. Table 1 shows the five predefined entities in the XML 

specification [XML]. 

Entity Reference Content Character 

&lt; < Opening angle bracket 

&gt; > Closing angle bracket 

&amp; & Ampersand 

&apos; ' Apostrophe 

&quot; " Double quotation mark 

Table 1. Predefined character entities in XML. 
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3.1.4 Comments 

Comments are the way to add human readable explanations in XML documents. They 

begin with ‘<!--’ and end with ‘-->’ Comments are not a part of the textual content of 

an XML document. The XML specification does not require XML processors to pass them 

to applications. 

3.1.5 Processing Instructions 

Processing Instructions (PIs) can be used to provide information to applications. They are 

not a part of the document character data but XML processors are required to pass them to 

applications. PIs have the form ‘<?pitarget pidata?>’ where pitarget is used to 

identify the application to which the instruction is directed. The pidata part is optional, it is 

meant for the application that recognizes the target. The target names ‘XML’, ‘xml’, and all 

variations of these are reserved for XML standardization [XML]. 

3.1.6 Document Type Definition (DTD) 

After XML declaration, documents may contain a document type declaration, which 

specifies the document type in terms of the grammar [XML]. This grammar is known as a 

document type definition (DTD). DTD model restrictions are defined in reference 

[Brueggemann-Klein98]. The document type declaration can point to an external subset, 

containing declarations, or it can contain the declarations directly in an internal subset, or it 

can do both. If both subsets have same declarations internal subset overwrites declarations 

of external subset. 

DTD provides a way of defining the logical structure of the XML document by describing 

all the elements that can be used, their attributes, and how they can be related to each other. 

Therefore we are able to enforce certain restrictions on how the XML document can be 

composed and this makes it easy to create applications that process these XML documents 

– especially when XML data binding is used to automatic generation of application 

template classes. A DTD has its own non-XML syntax containing any number of 

declarations of the following types: 
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The element type declaration restricts the kind of children an element can have, and in 

which order they appear. It can say that an element is empty and does not have child 

elements, content is without any restrictions, specify content model, or content may consist 

of character data and child elements whose names are listed. A content model specifies 

sequence matched by regular expressions. Regular expressions consist of child element 

names, list of alternatives, and list of sequences. Each of these can have an optional 

occurrence operator. The occurrence operator could be one or more ‘+’, zero or more ‘*’, 

or zero or one ‘?’. The absence of operator means that content must appear exactly once. 

In this context, white space is called ignorable white space, and may be freely interspersed 

with the elements. 

The attribute list declaration contains attributes associated with a particular element. 

Each attribute has a name, a type and possible default value. The type determines the range 

of values that the attribute may hold. The allowed types are: ‘CDATA’, ‘NMTOKEN’, 

‘NMTOKENS’, ‘ENTITY’, ‘ENTITIES’, ‘ID’, ‘IDREF’, ‘NOTATION’ or name group. 

The default value allows specifying if the attribute is required, implied, default or fixed. 

The entity declaration defines entities that are used to avoid repetition in XML 

documents. They are declared once and can be referred many times. Both internal and 

external entities are allowed in DTDs. Internal entities are defined within the current DTD, 

while external entities reside in separate locations. 

The notation declaration is used to refer data that is not in XML format. Notations can 

also be linked with entities by using the ‘NDATA’ keyword. 

It is not important to present the syntax in more detail here, but see appendix 1 for an 

example of a DTD. 
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3.1.7 Well-formedness 

According to XML specification, a textual object is a well-formed XML document if it 

obeys the syntax rules of XML. Walsh [Walsh98] lists the rules in his technical 

introduction to XML. By definition, if a document is not well-formed, it is not XML. This 

implies that there is no such thing as an XML document that is not well-formed. XML 

processors are not allowed to parse such documents [Walsh98]. In well-formed documents, 

it is allowed to add any element with any attribute in any hierarchy, on the condition that 

the rules for well formedness are obeyed.  

3.1.8 Validity 

The use of a DTD allows us to check for validity of the XML document. Everything that is 

in the XML document must conform the rules and the model defined in an associated DTD 

specification. The validation is a process for ensuring that documents conform to structures 

defined in the DTD. In valid XML, the model of the document is explicit in the set of 

declarations (DTD), while in well-formed XML it is implicit in the hierarchy of the data 

[Holman99]. 

3.2 Uniform Resource Identifier (URI) 

To access a unique item over the Internet, it is needed to know how to identify that one 

object among everything else out there. URIs provide a way of uniquely identifying each 

of those items. Described in detail by Request for Comments 1630 [RFC1630], this 

specification spells out the rules used in many different protocols within the URI 

framework. A URI has the form 

<scheme>:<scheme-specific-part> 

When the scheme-specific-part contains slashes ‘/’, those slashes indicate some 

hierarchical structure within the path. The best-known type of URI is the Uniform 

Resource Locator (URL). 
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3.3 XML Namespaces 

XML namespaces define a set of unique names within a given context [Namespaces]. 

Namespaces uses unique URI for each prefix of the element. For example, it allows us to 

create address element in the two different namespaces 

‘office.org/office/namespace’ and 

‘computer.org/memory/namespace’: 

<office:address 
xmlns:office=”office.org/office/namespace”/> 
<memory:address 
xmlns:memory=”computer.org/memory/namespace”/> 

Putting these similar structures into unique namespaces helps prevent the concepts from 

clashing each others and allows the computer to unequivocally determine which structure 

is being referenced. 

3.4 XML Schemas 

An XML Schema provides a superset of the capabilities found in DTD [XMLSchema]. 

They both provide a method for specifying the structure of an XML document. Whereas 

both allow for element definitions, only schemas allow specifying the type information. 

The XML Schema itself is an XML document, and therefore easy to process. 

The XML Schema forms a data type hierarchy where all data types derive, directly or 

indirectly, from the root ‘anyType’. The ‘anyType’ can be used to indicate any value. 

Below ‘anyType’, the hierarchy branches into two groups consisting of simple types and 

complex types. Derivation uses a facet to define an aspect of a value space. 
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3.4.1 Facets 

To aid with the definition and validation of data, an XML Schema uses facets to define 

characteristics of a specific data type. A value space is the set of all valid values for a given 

data type. The XML schema document specifies two types of facets: fundamental and non- 

fundamental facets. A fundamental facet is an abstract property that characterizes the 

values of a value space. These include the following facets: 

Equal: Defines the notion of two values of the same data type being equal. The following 

rules apply to this concept: 

1. For any two values (a, b), a is equal to b (denoted a = b) or a is not equal to b (a ≠ 

b). 

2. No pair of values (a, b) exists such that a = b and a ≠ b. 

3. For every valid value a, a = a. 

4. For any two values (a, b) in the value space, a = b if and only if b = a. 

5. For any three valid values (a, b, c), if a = b and b = c then a = c. 

Order: This specifies a mathematical relation to set the total order of members in the value 

space. For every pair of values (a, b), their relationship is either a < b, b < a, or a = b. For 

every triple (a, b, c), if a < b and b < c then a < c. 

Bounds: This simply states that a given value space may be bounded above or bounded 

below. If a value U exists for all values v in the value space the statement v ≤ U is true, U 

represents the upper bound of the value space (bounded above). If a value L exists for all 

values v in the value space the statement v ≥ L is true, L represents the lower bound of the 

value space (bounded below). If the data type has both an upper and lower bound, then that 

data type is bounded. 
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Cardinality: Some value spaces have a finite set of values. Others have an unlimited set of 

values. A data type has the cardinality of the value space, which is either finite or 

countable infinite. 

Numeric: If the values of the data type are quantities in any mathematical number system, 

then the data type is numeric. Everything else is nonnumeric. 

Non-fundamental or constraining facets are optional properties that can be applied to a data 

type to constrain its value space. The following facets are possible: length, minLength, 

maxLength, pattern (a regular expression), enumeration, maxInclusive, maxExclusive, 

minInclusive, minExclusive, precision, scale, encoding (hex, base64), duration and period. 

Using all of these facets you can constrain existing data types. This helps to perform tasks 

such as data validation and verifying the overall correctness of an XML document. 

Combined with facets, the XML Schema data types can help to give meaning to the items 

contained by schema. 

3.5 XPath 

XPath gets its name from its use of a path notation to the addressing parts of XML 

documents [XPath]. XPath models XML documents as abstraction of a hierarchical tree of 

nodes instead of its surface syntax. XPath’s primary function is the selection of a node or a 

node set from the document. For that purpose it allows distinguishing between different 

types of nodes, including element nodes, attribute nodes, and text nodes. It also contains 

predicates that could be used to filtering wanted set of nodes. XPath uses a compact, non-

XML syntax. It is an important XML technology due to its role in providing a common 

syntax and semantics for functionality in XSLT and other specifications. 

3.6 XSLT 

XSLT (XSL Transformations) is an XML-based language used to transform XML 

documents [XSLT]. Although XSLT is designed primarily for XML-to-XML 

transformations, it is possible to output any other textual formats as well. 
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To perform an XSL transformation, a program referred as an XSLT processor reads both 

an XML document and an XSLT document that defines how to transform the XML. The 

XSLT processor has the capability to read the XML source document, and rearrange and 

reassemble it with advanced pattern matching mechanisms, inserting and copying data and 

document fragments, using conditionals and accessing data via XPath. 

3.7 DOM 

The DOM standard allows a program to interact with the XML document by presenting 

XML tree nodes as objects [DOM]. The DOM API defines these objects. The advantage of 

the DOM standard is not in the resolution of possible ambiguity; it is simply allowing 

programmable interaction with abstract syntax. A similar approach provides support for 

query and transformation languages for XML. 

3.8 XML as Tree 

The popularity of XML based formats for representing structured information appears 

from a certain point of view as recognition of the importance of abstract syntax trees. This 

is exemplified in particular by approaches that provide XML data bindings for 

programming languages [Reinold99]. Unfortunately the “concrete syntax of the abstract 

syntax” provided by XML and its document type definitions are hardly readable for 

readers outside from the area of classical document processing. 
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4 Language Specifications 

A language provides a way to share information in means of communication. Languages 

are under heavy study from many aspects e.g. philosophical, linguistic, etc. A study of 

language syntax and semantics is one of most important parts of modern computer science. 

In this chapter we mainly focus a general concepts and aspects of data formats. 

4.1 Syntax, Semantics and Pragmatics 

Natural languages and computer languages are alike in several respects. The terminology 

of linguistics could be also used to define three main aspects of languages: 

1. Syntax defines forms of well-formed sentences in the language. Each of the 

sentences is composed of words or tokens or sets of strings of symbols. Thereby 

syntax provides structural description of the various expressions of the language, 

without any consideration of their meaning. 

2. Semantics define the meaning of the syntactically correct expression in a language. 

For a programming language, semantics describe the relationship between the 

syntax and the model of computation.  

3. Pragmatics define those aspects of language that involve the users of the language, 

namely psychological and sociological phenomena such as utility, scope of 

application, and effects on the users. For programming languages, pragmatics 

includes issues such as ease of implementation, efficiency in application, and 

programming methodology. Similarly as syntax must be defined before semantics, 

semantics needs to be formulated before considering the issues of pragmatics, since 

interaction with human users can be considered only for expressions whose 

meanings are understood. 
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In the rest of the thesis main concern is the syntactic aspects of language. The concepts and 

terminology for describing the syntax of languages derive from Noam Chomsky’s work for 

the description of linguistic structure [Chomsky56], [Chomsky59]. His classification of 

grammars and the related theory was the basis of much further work on formal language 

theory and theory of computation. Many books contain results on the expressiveness and 

limitations of the classes of grammars and on derivations, derivation trees, and syntactic 

ambiguity, for example see [Hopcroft79], [Martin91], [McCarthy65], and [Meyer90]. 

In fact, much of the early work in mathematical linguistics concerned with efficient 

methods of parsing that eventually found a better home in compiler design, see [Aho86], 

[Appel98], [Parson92] and [Slonger95]. These books contain extensive discussions and 

examples of syntax specification, derivation trees, and lexical and syntactic analysis. 

Compiler writers typically disagree with distinction between syntax and semantics, putting 

context constraints with semantics under the name static semantics [Meek90]. 

4.2 Symbols, Alphabets and Strings 

In trying to specify data format translator, one must be aware of some features of formal 

language theory. We need few definitions. 

Definition: Symbol is an undividable entity. 

Definition: An alphabet A is a finite nonempty set of symbols. 

For example, an alphabet can consist of the 128 symbols of ASCII alphabet. The new 

standard is an alphabet called Unicode, which contains over 38,000 glyphs that could form 

symbols including all symbols from nearly all of the world's languages [Unicode]. All the 

important aspects of formal languages can be modeled using the simple two-letter alphabet 

A = {0,1}. 

Definition: A string x over alphabet A is a finite, possible empty, sequence of symbols 

from A. 
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Definition: The number of symbols i.e. the length of string x is denoted by |x|.  

Definition: A zero length string is denoted by symbol ε. 

Definition: The set of all strings over alphabet A is called a universal set and marked as 

A*. 

Example: the universal set of alphabet A = {a, b} is A* = {ε, a, b, aa, ab, ba, …}. 

Definition: A sentence is valid string of language. 

4.3 Languages and Grammars: Chomsky’s hierarchy 

At the simplest level, languages are sets of sentences, each consisting of a finite sequence 

of symbols from some finite alphabet. Any language of real interest has an infinite number 

of sentences. This does not mean that it has an infinitely long sentence but that there is no 

maximum length for all the finite length sentences. 

A grammar defines a language and it is possible to define same language with a number of 

different grammars. Chomsky’s work formulated three theoretical models for grammars, 

one based on Finite-State Automata (FSA), one based on Context-Free Grammars (CFGs), 

and one on context-sensitive grammars (CSGs) and/or the even more powerful 

Unrestricted Rewriting Systems (URSs) [Chomsky56], [Chomsky59]. A formal grammar 

consists of a finite set of nonterminals (also known as “production symbols” or 

“grammatical types”), a finite set of terminal symbols (the letters of the sentences in the 

formal language), a start symbol and an unordered set of production rules with a left hand 

side and a right hand side consisting of a sequences of these nonterminals and terminal 

symbols. 
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Definition: A grammar G is a quadruple G = (A, N, s, P), where A is a finite nonempty 

set of the terminal symbols, N is a finite nonempty set of nonterminal symbols. Further N 

∩ A = ∅. s is a distinguished nonterminal called the start symbol and s ∈ N. P is set of 

production rules of the form L → R, where L ∈ (N ∪ A)* is called left hand side, R ∈ (N 

∪ A)* is called right hand side of production. 

Grammar defines the formal language of all words consisting solely of terminal symbols 

that can be reached by a sequence of rewriting steps (also known as derivation) from the 

start symbol. In each rewriting step a rule may be applied to a production symbol by 

replacing the left hand side by the right hand side. 

Definition: Rewriting step: u → v is defined if and only if u = xyz, v = xy’z and y → 

y’ ∈ P for some x, y, y’, z ∈ (N ∪ A)*. 

Definition: Derivation: ‘⇒’ is the transitive, reflexive closure of rewriting steps ‘→’, i.e. u 

⇒ v iff ∃(w0, w1, ... ,wj), where u = w0, and wj = v, and j ≥ 0; w0 → w1, w1 → w2, 

…, wj-1  → wj. 

Definition: The language defined by grammar G is L(G) = {w ∈ A* | s ⇒ w), where w 

is the set of all terminal strings derivable from start symbol s. 

Various restrictions on the productions define different types of grammars and 

corresponding languages in the Chomsky hierarchy: 

• Type-0 grammars (unrestricted grammars) include all formal grammars and do not 

have any restrictions. They generate exactly all languages that can be recognized by 

a Turing machine. The language that is recognized by a Turing machine is defined 

as all the strings on which it halts. These languages are also known as the 

recursively enumerable languages. 

 23



• Type-1 grammars (context-sensitive grammars) generate the context-sensitive 

languages: |L| ≤ |R|, exception: s → ε is allowed if s never occurs on any right 

hand side. In normal form these grammars rules have the form αAβ → αγβ with 

A a nonterminal and α, β and γ strings of terminals and nonterminals. The strings 

α and β may be empty, but γ must be nonempty. It can also include the rule s → ε. 

If it does, then it must not have an s on the right side of any rule. These languages 

are exactly all languages that can be recognized by linear-bounded automata – 

Turing machine whose tape is bounded by a constant times the length of the input.  

• Type-2 grammars (context-free grammars) generate the context-free languages. L 

∈ N. These are defined by rules of the form A → γ with A a nonterminal and γ a 

string of terminals and nonterminals. These languages are exactly all languages that 

can be recognized by a pushdown automaton. Context free languages are the 

theoretical basis for the syntax of most programming languages.  

• Type-3 grammars (regular grammars) generate the regular languages. L ∈ N, R = 

a or R = aX, where a ∈ A and X ∈ N. Such a grammar restricts its rules to a 

single nonterminal on the left-hand side and a right-hand side consisting of a single 

terminal, possibly followed by a single nonterminal. The rule s → ε is also allowed 

if s does not appear on the right side of any rule. These languages are exactly all 

languages that can be decided by a finite state automaton. Additionally, this family 

of formal languages can be obtained by regular expressions. Regular languages are 

commonly used to define search patterns and the lexical structure of programming 

languages.  
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These grammar types are arranged according to the complexity required to determine does 

a given string belong to a given language. Every regular language is context-free, every 

context-free language is context-sensitive and every context-sensitive language is 

recursively enumerable. These are all proper inclusions, meaning that there exist 

recursively enumerable languages, which are not context-sensitive, context-sensitive 

languages, which are not context-free and context-free languages, which are not regular. 

Finite
Languages

Type-3

Type-2

Type-1

Type-0

Figure 3. Chomsky hierarchy. 

4.3.1 Closure Properties 

Suppose we have grammars for the languages L1(G1) and L2(G2), for grammars G1 = (A, 

N1, s1, P1) and G2 = (A, N2, s2, P2) where the sets N1 and N2 are disjoint. Then we 

could give following definitions for the set-theoretic operations: 

Definition: Union L1 ∪ L2 is generated by the grammar (A, N, s, P) where s is a fresh 

nonterminal, N = N1 ∪ N2 ∪ s and P = P1 ∪ P2 ∪ {s → s1} ∪ {s → s2}. 
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Definition: Concatenation L1L2 is generated by the grammar (A, N, s, P) where s is a 

fresh nonterminal, N = N1 ∪ N2 ∪ s and P = P1 ∪ P2 ∪ {s → s1 s2}. 

Definition: Kleene closure L1* is generated by the grammar (A, N, s, P) where s is a 

fresh nonterminal, N = N1 ∪ s and P = P1 ∪ {s → s1 s} ∪ {s → ε}. 

Note that the above definitions do not contain the complement language, the difference 

between two languages and the intersection of two languages, because there are no 

equivalent operators for composing grammars that correspond to such intersection and 

difference operators even they are possible operators for languages. 

For a given type of language, we are often interested in the so-called closure properties of 

the type. 

Definition: A type of language is said to be closed under a particular operation – union, 

intersection, complementation, concatenation, and Kleene closure – if every application of 

the operation on language of the class yields a language of the same type. 

Closure properties are often useful in constructing new languages from existing languages, 

and for proving many theoretical properties of languages and grammars. The closure 

properties of the four types of languages in the Chomsky hierarchy are summarized below. 

Proofs can be found in  [Hopcroft79]. 

1. The class of unrestricted languages is closed under union, intersection, 

concatenation, and Kleene closure, but not under complementation. 

2. The classes of context-sensitive and regular languages are closed under all of the 

five operations. 

3. The class of context-free languages is closed under union, concatenation and 

Kleene closure, but not under intersection or complementation. 
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4.4 Regular Expressions 

The language of regular expressions is a formal language, which is composed from 

symbols from alphabet A in conjunction with a few other meta symbols, which represent 

operations that allow: 

• Concatenation: Symbols or strings may be concatenated by writing them next to 

one another, or by using the meta symbol ‘·’ dot if further clarity is required. For 

example, regular expression ‘a·b’ the concatenation of ‘a’ and ‘b’, denotes the 

language that contains the string ‘ab’. In general, the concatenation of two regular 

languages consists of strings that extend each string of the first language with all 

the strings of the second language. 

• Alternation: A choice between two symbols a and b is indicated by separating them 

by the union operator, which is marked with the meta symbol ‘|’ bar. For example, 

regular expression ‘a|b’ denotes the language that contains the strings ‘a’ and ‘b’. 

• Repetition: A expression followed by the meta symbol ‘*’ star indicates that a 

sequence of zero or more occurrences of expression is allowable. This is also 

known as Kleene closure. 

• Grouping: A group of symbols may be grouped by the meta symbols ‘(’, ‘)’ 

parentheses.  For example, regular expressions ‘(a|b)’ and ‘(a)|(b)’ describe the 

same language as expression ‘a|b’. Grouping is sometimes necessary to ensure that 

the expression has the intended meaning. Note that regular expression ‘ab(a|b)’ 

represents the language of ‘aba’ and ‘abb’, whereas the language described by 

‘aba|b’ contains the strings ‘aba’ and ‘b’. 
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Although the presentation of regular expressions is self-explanatory, it is helpful for many 

readers to give a little thought to the differences between the formal language theory and 

the practical use of regular expressions. The theory is concerned with recognizing which 

strings belong to a defined regular language. In practice regular expressions are used to 

search matches. If some substring matches to expression, its start and end position is 

returned to the user. For this kind of usage results could be ambiguous. For example if we 

search expression ‘(ab)*’ from string ‘aabababb’, result is that first match starts from 

second character and ends to third, fifth, or seventh character. The behavior that returns the 

last result is known as greedy and behavior that returns the first possible result is known as 

reluctant. 
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5 Context-Free Grammars 

This chapter describes the features that mainly concern context-free languages and 

grammars. The main focus is to find features that could help the building of the GDEL 

implementation. The first section defines a parse tree and how it is related to grammars. 

Equivalence and transformations of grammars are defined in second section. Third section 

discusses methods to clean up grammars. Ambiguities of grammars are described in the 

fourth section and last section contains information about abstract syntax trees. 

5.1 Parse Tree 

Parsing analyses the structure of string according to given grammar. The string with 

derivation structure is called a parse tree. 

Definition: A labeled and ordered tree T is a parse tree for a context-free grammar G = 

(A, N, s, P) iff the label of the root node of the tree is s. Each non-leaf node of the tree 

lebelled l0 with child nodes labeled l1, …, ln defines the production  (l0 → ln) ∈ P. Each 

leaf node of the tree labeled l0 defines the production (l0 → ε) ∈ P or l0 ∈ A. 

Reverse operation is called yield. Yield computes a string from a tree by concatenating the 

labels of leaves of the tree from left to right. More precisely, it is defined as follows: 

Definition: A yield of parse tree T is yield of the root node of the tree. A yield of node of 

the tree labeled l is l iff l ∈ A; otherwise it is concatenation of yields of the child nodes. 

5.2 Equivalence of Grammars 

In general we may be able to find several equivalent grammars for any language. Two 

grammars are said to be equivalent if they describe the same language, that is, can generate 

exactly the same set of sentences. 
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Definition: Two grammars G1 and G2 are weakly equivalent iff L(G1) = L(G2). 

This does not necessarily mean that grammars use the same nonterminals and productions. 

Definition: Two grammars G1 and G2 are strongly equivalent if they are weakly 

equivalent and have the same structure in derivation trees. 

If two grammars are strongly equivalent they are just notational variants, i.e. they are same 

grammar with different nonterminal names.  

5.2.1 Grammar Transformations 

Equivalence of grammars is needed to understand transformations of the grammars 

[Pepper99], [Behrens00]. When we say that a grammar G1 can be transformed in another 

grammar G2, we mean that there exists some procedure to obtain G2 from G1, and that G1 

and G2 are at least weakly equivalent. 

5.3 Purification 

Context-free grammars can suffer only a small number of ailments. The only requirement 

is that there is exactly one nonterminal in the left-hand side of it’s each rule. 

There could still exist some classes that are almost certainly an error and should therefore 

be handled as errors in case of a user-specified grammar. These classes are undefined 

nonterminals, non-reachable nonterminals, and non-productive nonterminals. To clean up a 

grammar, it is necessary to first remove the non-productive nonterminals, then the 

undefined ones and then the non-reachable ones [Sippu88]. 
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Undefined nonterminals: The right-hand sides of some rules may contain undefined 

nonterminals. This does not seriously affect the sentence generation process, if production 

of grammar containing an undefined nonterminal, there will be no match, and undefined 

nonterminal will be discarded. The rule with the right-hand side containing the undefined 

nonterminal will never be an issue and can be removed from the grammar. If we do this, 

we may of course remove the last definition of another nonterminal, which will then 

become undefined. 

From a theoretical point of view there is nothing wrong with an undefined nonterminal, but 

if a user-specified grammar contains one, there is almost certainly an error, and any 

grammar-processing program should warn user if such an error occurs. 

Non-reachable nonterminals: A nonterminal is called reachable or accessible if there 

exists at least one sentential form, derivable from the start symbol, in which it occurs. Else 

the nonterminal is non-reachable, actually they do not occur in any right-hand side of a 

reachable nonterminal. Again this is no problem, but almost certainly implies an error 

somewhere. 

To clean up a grammar we need to find the reachable nonterminals and remove the non-

reachable non-terminals rules. For this, we can use the following scheme: At first, the start 

symbol is marked: it is reachable. Then, any time as a yet unmarked nonterminal is 

marked, all nonterminals occurring in any of its right-hand sides are marked. In the end, 

the unmarked nonterminals are not reachable.  

It is interesting to note that removing non-reachable nonterminals does not introduce non-

productive nonterminals. However, first removing non-reachable nonterminals and then 

removing non-productive nonterminals may produce a grammar that contains again non-

reachable nonterminals. 

Non-productive nonterminals: Any Nonterminals that do not produce a sublanguage – no 

terminal derivation – is non-productive. In fact a nonterminal has a terminal derivation if 

and only if it has a right-hand side consisting of symbols that all have a terminal 

derivation. 
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To find out non-productive nonterminals we use a following scheme: We mark the 

nonterminals that have a right-hand side containing only terminals. Next, we repeat the 

process that marks all nonterminals that have a right-hand side consisting only of terminals 

and already marked nonterminals, while this process can mark even one new nonterminal. 

Now, the non-productive nonterminals are the ones that have not been marked. 

Now it is possible to remove all rules that contain a non-marked nonterminal in either the 

left-hand side or the right-hand side. This removes non-productive nonterminals and non-

productive rules of productive nonterminals. Note that this removal process does not 

remove all rules of a marked nonterminal, as there must be at least one rule for it with a 

right-hand side consisting only of terminals and marked nonterminals. On the other hand 

all rules for the start-symbol could be removed. In that case the grammar describes an 

empty language and the removal of undefined and non-reachable nonterminals leads to an 

empty grammar. 

5.4 Ambiguous Grammars 

Definition: A context-free grammar G is ambiguous if there is a string x ∈ L(G) that has 

two or more distinct derivation trees. Otherwise G is unambiguous. 

It is in general unresolvable whether or not a given context-free grammar is ambiguous. 

This implies that it is impossible to write a program that determines the (non) ambiguity of 

a context-free grammar. Normally ambiguity is a very undesirable property because of the 

lack of a unique interpretation of each sentence in the language. But in some cases it can be 

very useful, for example in software re-engineering to parse legacy programs [Brand98]. 

5.4.1 Disambiguation Rules 

Recall that ambiguity means we have two or more derivations for the same input, or 

equivalently, that we can build more than one parse tree for the same input. A simple 

arithmetic expression grammar is a common example: 

E → E + E | E * E | (E) | id 
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Parsing input: ‘id+id*id’ can produce two different parse trees because of ambiguity. 

The problem could be overcome by re-writing the grammar to introduce new intermediate 

nonterminals that enforce the desired precedence. A better solution is extending the parser 

with priority and associativity operators to disambiguate sentences containing occurrences 

of these operators. The same example with these operators is presented in section 6.5 

where it is expressed in the SDF2 formalism. 

5.4.2 Inherently Ambiguous Grammars 

It is worth to notice that there are context-free languages that cannot be generated by any 

unambiguous context-free grammar. Such languages are said to be inherently ambiguous 

[Hopcroft79]. For example L = {am bm cn dn | m; n > 0} ⋃ {am bn cn dm |m; n > 

0}. The reason is that every context-free grammar G must yield two parse trees for some 

strings of the form x = an bn cn dn, where one tree intuitively expresses that x is a 

member of the first set of the union, and the other tree expresses that x is in the second set. 

5.4.3 Loops 

The above definition makes useful all rules that can be involved in the production of a 

sentence, but there still is a class of rules that are not really useful: rules of the form A→A. 

Such rules are called loops. Loops can also be indirect: A→B, B→C, C→A. A loop can 

legitimately occur in the production of a sentence, but if it does there must also be a 

production of that sentence without the loop. Loops don’t contribute to the language. Any 

production that involves a loop is infinitely ambiguous, that produces infinitely many 

production trees for it. Algorithms for loop detection are given in Section 7.2. 

Different parsers react differently to grammars with loops. Some – most of the general 

parsers – faithfully attempt to construct an infinite number of parse trees, some collapse the 

loop as described above and some – most deterministic parsers – reject the grammar. The 

problem is aggravated by the fact that loops can be concealed by ε-rules: a loop may only 

become visible when certain nonterminals produce ε [Grune90]. 
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5.5 Abstract Syntax 

The goal of this section is to introduce abstract syntax, and to show how to obtain an 

abstract syntax tree (AST) from a concrete syntax [Wile97]. Concrete syntax views data as 

written text. Parser generates a parse tree that reflects concrete syntax. Abstract syntax is a 

more abstract view of data – structured entities – which are the basis for describing the 

semantics of data. Abstract syntax trees reflect precisely the significant components, they 

are as simple as can be. 

Let's consider how an AST differs from a parse tree. An AST can be thought of as a 

condensed form of the parse tree: 

• Operators appear at internal nodes instead of at leaves.  

• Chains of single productions are collapsed.  

• Lists are flattened.  

• Syntactic details (e.g., parentheses, commas, semi-colons) are omitted. 

A common informal approach in the literature is to specify abstract syntax using standard 

context-free grammars, same as those used for concrete syntax. Thus, the right sides of 

rules are strings; however, the reader should interpret them as trees. 

The informal approach is quite appropriate for the presentation and discussion of small 

language fragments. Because it is easier to write and understand a tree than a grammar, the 

tree can inform the reader of its concrete syntax. Names for the syntactic categories, and 

the used structures, are not often needed in a discussion. The most important point is that 

the reader knows what are the components of the structure. However, the approach is 

inadequate for the specification of the abstract syntax of full languages, especially if the 

syntax is to be implemented in a compiler, or used as a standard for exchanging programs 

between systems. Then, a precise specification must be provided. 
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Thinking of fragments as trees rather than strings is an important conceptual step. Once 

preformed, it is possible to go further. One may add operations to the structures used in the 

syntax trees that allow a user to traverse them and manipulate their components 

[Comon99]. The data structures thus become objects [Crew97]. 

In designing a CFG for the concrete syntax of a language, several issues need to be 

considered: ambiguity, operation associativity and precedence. But, in abstract syntax, 

these are non-issues. The important thing about trees is that, unlike strings, their 

compositional structure is inherently unambiguous. And they can represent expression 

structure and evaluation inherently in its structure without a grammar. 

An XML document is defined as a tree and could been seen as a “concrete syntax for 

abstract syntax”. Note that the tag notation of XML ensures there is no syntactic 

ambiguity. Therefore XML could be the standard choice for representing syntax trees. 

XML also allows standard tools for syntax tree manipulation. 
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6 Syntactic Meta languages 

The syntactic meta languages are used to describe possible infinite languages with notation 

that is finite. This chapter describes some common syntactic meta languages. Idea is to find 

good formalism on which to base building of GDEL grammar meta language. 

6.1 BNF 

Backus-Naur Form (BNF) is a syntactic meta language equivalent to context-free 

grammar. John Backus and Peter Naur defined BNF in conjunction with the group that 

developed Algol60 [Naur63]. The BNF uses abstractions to represent classes of syntactic 

structures – they act like syntactic variables, also known as nonterminal symbols. For 

example the rule that describes structure of while statement: 

<whilestatement> ::= while <logicexpression> do <statement> 

In rules variables are enclosed between ‘<’ and ‘>’. The symbol ‘::=’ is used to separate 

the left-hand side (LHS) which has a single nonterminal symbol and the right-hand side 

(RHS) which contains one or more terminal or nonterminal symbols. The grammar is a 

finite nonempty set of rules. In RHS of the rule the symbol bar ‘|’ can be used to separate 

alternatives. Terminals are represented by themselves or are written in a typeface different 

from the symbols of the BNF. 

Here is an example of expression grammar defined as BNF: 

<goal> ::= <expression> 
<expression> ::= <term> | <expression> - <term> 
<term> ::= <factor> | <term> * <factor> 
<factor> ::= a | b | c 
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6.2 ABNF 

A modified version of BNF, called Augmented BNF (ABNF) is specified in Internet 

Engineering Task Force (IETF) Request for Comments (RFC) 2234 [RFC2234]. ABNF 

doesn’t extend the expressive power of BNF, but tries to make it easier and more compact. 

It is intended mainly to help writing of other RFC’s and Internet specifications. The 

differences between BNF and ABNF involve: 

• Rule Naming: The name of a rule is simply the name itself. Enclosing angle 

brackets ‘<’, ‘>’ are not required. Rule names are also case-insensitive. 

• Terminals: The terminal characters must be enclosed in quotes ‘“’ 

• Rule: The separator of RHS and LHS is ‘=’ instead of ‘::=’. 

• Repetition: The repetition operator that can indicate least and most occurrences of 

element. A default repetition operator allows any number, including zero. 

• Alternatives: Alternatives are separated by forward slash ‘/’. An alternative can be 

also so called incremental alternative which is represented as rule where separator 

of RSH and LSH is ‘=/’. 

• Order-independence: The binding order of operators is, from (binding tightest) 

strings, names formation, comment, value range, repetition, grouping, optional, 

concatenation to alternative (binding loosest). 

• Value ranges: A range of alternative numeric values can be specified compactly, 

using dash ‘-’ to indicate the range of alternative values. 

Here is an example of expression grammar defined as ABNF: 

goal = expression 
expression = term / expression “-“ term 
term = factor / term “*“ factor 
factor = %x61-%x63 
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6.3 EBNF 

Many slightly different notations of BNF are in use. Different notations don’t extend the 

expressive power of BNF formalism, but improve the readability. Extended BNF (ISO/IEC 

14977:1996) is general-purpose, and its adoption will save time by avoiding the need to 

choose one of several suggested notations, which must be then amended to overcome their 

limitations [ISO14799]. 

Standardized version is based on one of many variations of BNF. The version from refence 

[Wirth77] has now become rather widely used. In this notation for EBNF: Nonterminals 

are written as single words, rather than inside enclosing angle brackets ‘<’, ‘>’ as in BNF 

notation. Terminals are written in quotes. Equal sign ‘=’ is used in place of the sequence 

‘::=’. Bar ‘|’ is used, as before, to denote alternatives. Spaces are essentially insignificant 

and dot ‘.’ is used to denote the end of each production.  

Further defined metasymbols are: parentheses ‘(’, ‘)’ to denote nesting, brackets ‘[’, ‘]’ 

to denote the optional appearance of a symbol or a group of symbols, braces ‘{’, ‘}’ to 

denote optional repetition of a symbol or group of symbols, and sequences ‘(*’, ‘*)’ are 

used in some extensions to allow comments. 

6.4 SDF 

Heering et al. [Heering89] developed the Syntax Definition Formalism (SDF). A quick 

introduction to SDF can be found in reference [Visser00]. SDF defines the semantics by 

mappings to other formalisms. The Lexical syntax is mapped to a regular grammar and the 

Context-free syntax is mapped to a context-free grammar. SDF still integrates these two 

formalism in the level of it’s own syntax. A parse tree for a string according to grammar is 

viewed as an abstract syntax tree over the signature by means of semantic definition. The 

correspondence of context-free grammars and algebraic signatures to define the semantics 

of programming languages were showed by Goguen et al. [Goguen77]. 
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Heering claims that: “SDF emphasizes compactness of syntax definitions by offering (a) a 

standard interface between lexical and context-free syntax; (b) a standard corresponding 

between context-free and abstract syntax; (c) powerful disambiguation constructs; (d) list 

constructs; and (e) efficient incremental implementation which accepts arbitrary context-

free syntax definitions.” 

6.5 SDF2 

SDF2 was developed by Visser [Visser97a, 115-213] as a generalization of SDF. It is a 

complete family of syntax definition formalisms. This is possible by using simple kernel 

and extensions. Extensions are defined in terms of the primitives of the kernel by means of 

normalization, which is provided through rewriting.  

The kernel of SDF2 is a context-free grammar with additionally defined character classes, 

priorities, reject productions and follow restrictions. The grammar is defined in terms of a 

list of used nonterminals (called sorts) and list of productions. Priority declarations are 

defined by using two productions connected with priority relation which is one of; ‘left’, 

‘right’, ‘assoc’, ‘non-assoc’, or ‘>’. Reject productions are marked. Follow restrictions are 

defined as character class that cannot follow a symbol (nonterminal or terminal). 

The kernel of this family can be extended with many orthogonal extensions containing 

modules, literals, lexical and context-free syntax, aliases, regular expressions, variables, 

renaming. These features are eliminated in normalization process. The normalized 

expression has the same meaning as the original. Thus, normalization is a mapping from 

the language onto the same language. Normalization of SDF2 is defined as pipeline of 

normalizations and is therefore easily extensible and modifiable. 

Following example of expression language should clarify SDF2 functionality: 

sorts Id Exp 
lexical syntax 
  [a-z]+   -> Id 
  [\ \t\n] -> LAYOUT 
context-free syntax 
  Id          -> Exp 
  Exp “*” Exp -> Exp {left} 
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  Exp “+” Exp -> Exp {left} 
  “(” Exp “)” -> Exp {bracket} 
context-free priorities 
  Exp “*” Exp -> Exp > 
  Exp “+” Exp -> Exp 

The first line defines the nonterminals used in the grammar. Next line declares the start of 

the block that contains lexical syntax of language. The third line says that identifiers are 

list of one or more lowercase letters – note that ‘+’ is actually kernel extension. The fourth 

line contains symbol ‘LAYOUT’ with special meaning as definition of layout that can 

appear between context-free tokens. Layout is defined to contain spaces, tabs and new 

lines. The fifth line starts a block of context-free syntax. The sixth line contains a 

production rule that denotes that expression can be derived from the identifier – note that 

the production rules left- and right-hand sides are flipped other way around to make 

similarity to the function declaration more apparent. The next two lines contain two more 

production rules to expression, with an attribute that declares productions to be left 

associative. The next line starts a block of priority rules and last two lines contain a priority 

rule that declares that multiplication has a higher priority. Note that the grammar without 

association or priority rules is ambiguous. 

6.6 Related Specifications 

Various extensions of context-free grammars have been developed. Some of these 

extensions attach semantics to grammars like attribute grammars [Knuth68], affix 

grammars [Koster71], extended affix grammars [Watt77], definite clause grammars 

[Peraire80], assertion grammars [Ragget99], blindfold grammars [Hawke01], and 

SDF+ASF [Heering89]. Parser generator tools also uses extensions like YACC 

[Jonhson75], all of these extensions are specific to the tool used. 
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6.7 Conclusion 

Simplest formalizations collect only those productions with equal left-hand side into one 

rule by allowing alternatives like BNF. An advantage of this approach has a strong relation 

to the underlying mathematical model. Drawbacks are the need of additional recursive 

rules to describe iterative structures (lists, etc…) and only way to resolve ambiguities of 

the grammar is grammar modification, which makes definitions lengthy and often difficult 

to follow. 

Next levels extend metalanguages by more convenient description of repetitive and 

optional constituents, like EBNF. Remarkably, these formalisms have also a mathematical 

background as they describe solutions if the rules of a grammar are interpreted as a system 

of equations. The main disadvantage is the complex binding between nonterminals and 

nodes of syntax tree. 

Due to the use of parser generators, metalanguages are enhanced by unambiguity 

declarations. Additionally, some other metalanguages are tailored to special needs and 

contain therefore some special features. SDF2 is pure syntactic metalanguage, with unified, 

modular and extensible feature set. Seems that using it, as a base of GDEL grammar 

metalanguage, would be sensible. 

 41



7 Context-free Parsing Techniques 

From a practical point of view, grammars may be used to solve membership problem – 

given a string over A, does it belong to language L(G), where grammar G = (A, N, s, P) 

representing some language. Another problem is the so-called parsing problem – Find a 

sequence of rewriting steps from the grammar's start symbol to the given sentence. Parsing 

can be seen as structuring the input according the given grammar. The algorithm that 

makes structuring is called a parser. 

This chapter describes approaches to solve parsing problem, with parsing algorithms that 

are able to handle any context-free grammars, even ambiguous ones. The idea of chapter is 

to describe parsing algorithms that are suitable for GDEL processor. 

7.1 Common parsing algorithms 

The most commonly known context-free parsing algorithms are top-down and bottom-up 

parsing. In top-down parsing parser begins with the start symbol of the grammar and 

attempts to generate the same sentence that it is attempting to parse. The most commonly 

known top-down parsing algorithms are LL, which is described in detail in most compiler 

texts, including the reference [Aho86]. 

In bottom-up parsing parser matches the input of the right-hand side of the productions and 

builds a derivation tree in reverse. The bottom-up parsing uses traditionally one symbol 

lookahead to guide the choice of action. The most commonly known LR, SLR and LALR 

algorithms are described in detail in most compiler texts, including references [Aho72], 

[Aho86], [Appel98] and [Grune90]. 
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Commonly these parsing algorithms are limited to working on subclasses of context-free 

grammars [Grune90]. Hierarchies of subclasses are shown in the figure 4. Descriptive 

powers of these subclasses are limited, which means in most cases that syntax specification 

needs modifications before it is are in a usable form. Using a modified grammar has the 

disadvantage that the resulting parse trees will differ to a certain extent from the ones 

implied by the original grammar. 

Available parser generator tools commonly support only some subclasses. Yacc 

[Johnson75], SableCC [Gagnon98], CUP [Hudson97] and most of the other supports 

LALR(1). ANTLR [Parr95], PCCTS [Parr97] and some others support LL(k) parsing. 

Unambiguous
Grammars

Ambiguous
Grammars

LR(k)

LR(1)

LALR(1)

SLR

LR(0)

LL(k)

LL(1)

LL(0)

 
Figure 4. Hierarchy of Context-free grammar classes [Appel98]. 

7.2 Unger parsing 

An Unger parser [Unger68] is the simplest known method to parse any context-free 

grammar. It’s exponential time requirement limits it’s applicability to occasional use. The 

Unger parser presented as Pascal program can be found at reference [Grune90, 253-263]. 

Algorithm goes as follow: 
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For each right-hand side production of grammar we must first generate all possible 

partitions of the input sentence. Generating partitions is not difficult: if we have m 

productions in right-hand side, numbered from 1 to m, and n is length of input, numbered 

from 1 to n, we have to find all possible partitions such that the numbers of the characters 

for each production are consecutive, and any production does not contain lower-numbered 

characters than any character in a lower-numbered production. 

Partition fails if a terminal symbol in a right-hand side does not match the corresponding 

part of the partition. The non-failed partition results will all lead to similar split-ups as sub-

problems. These sub-problems must all be answered in the affirmative, or the partition is 

not the right one. 

For a grammar that contains loops there are infinitely many derivations to be found. So, the 

process needs to avoid the problem by cutting off the search in these cases. Maintaining a 

list of partitions that we are currently investigating can do this. If a new partitioning 

already appears in the list, we do not investigate that and proceed as if the partition was 

answered negatively. Fortunately, if the grammar does not contain such a loop, a cut-off 

will not do any harm either, because the search is doomed to fail anyway. 

The original paper extends the described method with a series of tests to avoid partitioning 

that could never success. For instance, a section of the input is never matched against a 

nonterminal if it begins with a token that no production of the nonterminal could begin 

with. Several such tests are described and ways are given to statically derive the necessary 

information (FIRST sets, LAST sets, EXCLUDE sets) from the grammar. Although none 

of this changes the exponential character of the algorithm, the tests do result in a 

considerable speed-up in practice. 
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7.3 Generalized LR parsing (GLR) 

The basic idea of GLR parsing is exploring all of the possible actions of LR automaton on 

a given input string, and outputting a parse forest of all of the possible derivations of string. 

Original idea was proposed by Lang [Lang74]. First implementation, based on this 

approach, has been given by Tomita [Tomita86]. The Tomita algorithm was later found to 

fail to terminate on grammars with hidden left recursion, and the correction is provided by 

Nozohoor-Farshi [Nozohoor-Farshi91]. It also could not handle looping grammars. Rekers 

has generalized Tomita’s algorithm to looping grammars [Rekers92]. He also describes 

method for the incremental parser construction. Pseudocode of algorithm goes as follow 

[Reakers92, 25-27]: 

PARSE (Grammar, a1 … an) : 
 an+1 := EOF 
 global accepting-parser := ∅ 
 create a stack node p with state START-STATE (Grammar) 
 global active-parsers := {p} 
 for i := 1 to n + 1 do 
  global current-token := ai 
  PARSEWORD 
 if accepting-parser ≠ ∅ then 
  return the tree node of the only link of accepting-parser 
 else 
  return ∅ 
 
PARSEWORD : 
 global for-actor := active-parsers 
 global for-shifter := ∅ 
 while for-actor ≠ ∅ do 
  remove a parser p from for-actor 
  ACTOR (p) 
 SHIFTER 
 
ACTOR (p) : 
 forall action ∈ ACTION (state (p), current-token) do 
  if action = (shift state´) then 
   add <p, state´> to for-shifter 
  else if action = (reduce A ::= α) then 
   DO-REDUCTIONS (p, A ::= α) 
  else if action = accept then 
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   accetting-parser := p 
 
DO-REDUCTIONS (p, A ::= α) : 
 forall p´ for which a path of length(α) from p to p´ exists do 
  kids := the tree nodes of the links which form the path from p to p´ 
  REDUCER (p´, GOTO (state (p´), A), A ::= α, kids) 
 
REDUCER (p¯, state, A ::= α, kids) : 
 if ∃p ∈ active-parsers whith state(p) = state then 
  if there already exist a direct link link from p to p¯ then 
   ADD-RULENODE (treenode(link), rulenode) 
  else 
   n := GET-SYMBOLNODE (A, rulenode) 
   add a link link from p to p¯ with tree node n 
   forall p´ in (active-parsers – for-actor) do 
     forall (reduce rule) ∈ ACTION (state(p´), current-token) do 
     DO-LIMITED-REDUCTIONS (p´, rule, link) 
 else 
  create a stack node p with state state 
  n := GET-SYMBOLNODE (A, rulenode) 
  add a link link from p to p¯ with tree node n 
  add p to active-parsers 
  add p to for-actor 
 
DO-LIMITED-REDUCTIONS (p, rule, link) : 
 forall p´ for which a path of length(α) from p to p´ through link exists do 
  kids := the tree nodes of the links which form the path from p to p´ 
  REDUCER (p´, GOTO (state (p´), A), A ::= α, kids) 
 
SHIFTER : 
 active-parsers := ∅ 
 create a term node n with token current-token 
 forall <p¯, state´> ∈  for-shifter do 
  if ∃p ∈ active-parsers whith state(p) = state´ then 
   add a link from p to p¯ with tree node n 
  else 
   create a stack node p with state state´ 
   add a link from p to p¯ with tree node n 
   add p to active-parsers 
 
GET-RULENODE (r, kids) : 
 return a rule node with rule r and elements kids 
 
ADD-RULENODE (symbolnode, rulenode) : 
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 add rulenode to the possibilities of symbolnode 
 
GET-SYMBOLNODE (s, rulenode) : 
 return a symbol node with symbol s and possibilities { rulenode } 
 

GLR parsing can be summarized as doing breadth-first search over those parsing decisions 

that are not solved by the LR automaton – shift-reduce and reduce-reduce conflicts in parse 

table. Search paths are investigated simultaneously and, whenever an inadequate state is 

encountered on the top of the stack, the following steps are taken: 

1. For each possible reduce in the state, a clone of the stack is made and the reduce is 

applied to it. This removes part of the right end of the stack and replaces it with a 

nonterminal; using this nonterminal as a move in the automaton, we find a new state to put 

on the top of the stack. If this state allows again reductions, this step is repeated until all 

reductions have been treated, resulting in equally many stacks. 

2. Stacks that have a right-most state that does not allow a shift on the next input token are 

discarded. 

Note that if all stacks are discarded in step 2 the input was in error, at that specific point. 

For looping grammars process needs additional termination rules. There are two solutions: 

upon creating a stack, check if it is already there and then ignore it or check the grammar 

in advance for loops and then reject it. 

Actual implementations of the GLR parser use a graph-structure stack, which is a 

generalization of the parse stack, to represent multiple parse stacks. Graph-structure stacks 

use pointers to connect stack elements, which allow shared parts of the parse stack 

represented only once and therefore make fast stack cloning possible. 
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Figure 5. The structure of GLR parse. 

Experimental data on what type of table is optimal to restrict the breadth-first search can be 

found at reference [Reakers92, 15]. If the automaton uses look-ahead, this is of course 

taken into account in deciding which reduces are possible in steps 1. An LR(0) table is 

relatively easy to construct and should give reasonable results even if it causes more stack 

copies and subsequently discard operations than any other automaton. SLR(1) table 

construction needs only an additional follow set calculation and might be preamble. In a 

view of the additional construction effort, an LALR(1) table may not have any advantage 

over the SLR(1) table in this case. An LR(1) table probably requires too much space. 
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The worst-case time complexity of GRL algorithm is O(np+1), where n is the length of the 

input and p is the length of the longest rule of the right side [Nederhof92]. The bounds as 

mentioned above are, however, for the absolute worst cases. For the most practical 

grammars, like those of programming languages, the GLR parsing algorithm gives a linear 

performance. The theoretical solution is given in [Kipps91] as variant, that has fixed the 

worst-case time complexity O(n3). In the practical cases this solution worsens time 

complexity instead of improving it. Current research makes faster versions of GLR 

algorithm [Aycoc99], [Aycoc01a]. 

7.4 Earley Parsing 

Earley’s parser can be described as a breadth-first top-down parser with a bottom-up 

recognition [Earley70]. It can also be seen as breadth-first bottom-up parsers that will 

restrict the fan-out to reasonable proportions – reductions are restricted to only those 

reductions that are derived from the start symbol.  

Just as in the case of non-restricted algorithm, at all times there is a set of partial solutions 

that is modified by each symbol that is read. The sets shall be written between the input 

symbols; earlier sets have to be kept, since the algorithm will still use them. 

Unlike the non-restricted algorithm, in which the sets contained stacks, the sets consist of 

what are technically known as Earley items. An item is a grammar rule with a gap in its 

right-hand side; the part of the right-hand side to the left of the gap – which may be empty 

– has already been recognized, the part to the right of the gap is predicted. An Earley item 

is an item with an indication of the position of the symbol at which the recognition of the 

recognized part started. 

The sets of items contain exactly those items a) of which the part before the dot in the 

Earley item has been recognized so far and b) of which we are certain that we shall be able 

to use the result when they will happen to be recognized in full – but we cannot, of course, 

be certain that recognition will happen. 
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Figure 6. The Earley item set for one input symbol [Grune98]. 

The construction of an Earley item set from the previous Earley item set proceeds in three 

phases, ‘Scanner’, ‘Completer’ and ‘Predictor’. Scanner corresponds to ‘shift’ and 

Completer correspond to ‘reduce’ in the non-restricted algorithm. The Predictor is new and 

is related to the top-down component. Pseudocode of algorithm goes as follow: 

PARSE (Grammar, a1 … an) : 
 an+1 := EOF 
 global chart[n + 1] 
 chart[0] := { [0, 0, START-STATE (Grammar)] } 
 PREDICT (0) 
 COMPLETE (0) 
 for i := 1 to n + 1 do 
  SCAN (i, ai) 
  COMPLETE (i) 
  PREDICT (i) 
 if chart[n + 1] ≠ ∅ then 
  return MAKE-TREE (chart) 
 return ∅ 
 
PREDICT (position) : 
 forall [i, position, A ::= B * C D] ∈ chart[position] do 
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  forall (C ::= E) ∈ Grammar do 
   ADD-EDGE ([position, position, C ::= * E], position) 
 
SCAN (position, α) : 
 forall [i, position - 1, A ::= B * α C] ∈ chart[position - 1] do 
  ADD-EDGE ([i, position, A ::= B α * C], position) 
  
COMPLETE (position) : 
 forall [j, position - 1, A ::= B C D *] ∈ chart[position] do 
  forall [j, i, E ::= F * A G] ∈ chart[j] do 
   ADD-EDGE ([i, position, E ::= F A * G], position) 
 
ADD-EDGE (edge, position) : 
 if not edge ∈ chart[position] then 
  add edge on chart[position] 

The Scanner, Completer and Predictor deal with four sets of items for each token in the 

input; 1) an item set contains the items available just before token is completed, 2) a 

completed set, which is the set of items that have become completed due the token, 3) an 

activated set contains the non-completed items that passed token, 4) a predicted set of 

newly predicted items. 

Initially, set 1 is filled, as a result of processing earlier token, or initialized by algorithm if 

tokens are not yet read, and the other sets are empty. 

The Scanner goes through the whole item set and makes copies of all items that contain 

token as the next symbol. All other items are ignored. Consequently, the Scanner changes 

place of the item. If the item is now at the end, it stores the item in the set completed; 

otherwise it stores it in the set active. 
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Next the Completer inspects the completed set, which contains the items that have just 

been recognized completely and can now be reduced as follows. For each item the 

Completer calls the Scanner with an item set that Earley item shows, which is now directed 

to work on the token recognized by the Completer and given the item set. It will make 

copies of all items in given item set featuring changes of item place and store them in 

either set completed or in the set active, as appropriate. This can add indirectly recognized 

items to the set completed, which means more work for the Completer. After a while, all 

completed items have been reduced, and the Predictor’s turn has come. 

The Predictor goes through the active set – which was filled by the Scanner – and the 

predicted set – which is empty initially – and considers all nonterminals that have an 

Earley item in front of them; these we expect to see in the input. For each predicted 

nonterminal and for each rule for that nonterminal, the Predictor adds an Earley item that 

points to next token of input in front of productions and put that construction to the set 

predicted. This may introduce new predicted nonterminals in set predicted which cause 

more predicted items. After a while, this will stop too. 

The sets active and predicted together form the new item set for the next input token. If the 

completed set for the last symbol in the input contains an Earley item that spanning the 

entire input and reducing to the start symbol, we have found at least one parsing. 

All this does not directly give us a parse tree, just a recognizer. However, the intermediate 

sets contain enough information about fragments and their relations to construct a parse 

tree easily. A simple top-down Unger-type parser can serve for this purpose, since the 

Unger parser needs only the lengths of the various components of the parse tree and that is 

exactly information that the Earley parser provides. Earley’s original article gives a method 

of constructing the parse trees while parsing, by keeping with each item a pointer back to 

the item that caused it to be present, but it has shown to produce incorrect parse trees on 

certain ambiguous grammars [Tomita86, 74-77]. 
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The correspondence between the Earley and the CYK algorithms has been analyzed by 

Graham and Harrison [Graham76]. A simple, robust and efficient version of the Earley 

parser has been resulted in a combined algorithm described by Graham, Harrison and 

Ruzzo [Graham80]. 

The worst-case time complexity of Earley parsing requires a time proportional to O(n3) for 

ambiguous grammars, at most O(n2) for unambiguous grammars and at most O(n) for 

grammars for which a linear-time method would work. These time complexity calculations 

does not contain a time needed to ouput parse tree(s). A fast implementation of algorithm 

can be found from reference [Aycoc01b]. 

7.5 Other Algorithms 

A generalized version of recursive descent parser (GRD) is proposed by Johnstone and 

Scott [Johnstone97a], [Johnstone97b]. It can parse any non-left recursive grammar. In 

principle this technique could be used to any context free grammar by removing left 

recursion, by using a well-known algorithm from reference [Aho86, 176-178]. 

Generalized Left-Corner Parsing (GLC) has been examined by Nederhof [Nederhof92] and 

Leemakers even without any mention of connections with left corner parsing 

[Leemakers91]. It is very interesting because it should beat both Earley and GLR in time 

complexity. 

7.6 Conclusion 

By allowing any context-free grammar, maximal freedom is given to the writers of 

specifications. Finding so many parsing algorithms, which can be a reasonable time to 

parse any context-free grammar and are therefore possible to use in the implementation of 

GDEL processor, is amazing. 
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The existence of powerful enough algorithms should mean existence of parser generators 

that uses them, which is not the case. We really need feedback from theory into 

engineering practice, which currently uses unpleasant tricks to solve problems of limitedly 

powered parser generators. 

There is also a good opportunity for the future study of relative speeds of different 

algorithms. There could be also a possibility to predict which algorithm gives best speed 

with given grammar and build a state of the art parser generator as a result. 
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8 GDEL Language Design 

This chapter presents the design of Grammar-based Data Extraction Language (GDEL). 

The first section contains the goals of overall design. The second section describes 

selection of grammar syntax, while actual design decisions about the XML-syntax of the 

grammar found in next chapter. The third section considers how language semantics could 

be expressed. The fourth section contains considerations about the syntax tree binding to 

XML-format. 

8.1 Design Goals 

The main design goal of Grammar-based Data Extraction Language is a high-level 

specification language that can specify transformation of any context-free language to 

XML.  

Keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in 

requirements, are used in the sense of how they would be used within other documents 

with the meanings as specified in Internet Engineering Task Force (IETF) Request for 

Comments (RFC) 2119 [RFC2119]. 

All requirements are given with reference numbers, where sub requirements are separated 

with dots. All requirements are given with RATIONALE, which gives a more verbose 

explanation why the requirement is given. 

General GDEL language requirements: 

1. GDEL language MUST be descriptive, expressive, formal and concise. RATIONALE: 

The language should be as easy to write and understand as possible. 
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2. GDEL language MUST be executable in the sense of an algorithm to convert from the 

instance of the specification to a sequence of operations that carry out the XML 

transformation task. RATIONALE: The language processor must be implementable and 

runnable without any further information from user. 

2.1. GDEL language MUST define the context-free grammar of the input. RATIONALE: 

The context-free grammar class is the largest class of grammars where input can be 

efficiently parsed with general parser. Secondly without defined grammar process has no 

sense. 

3. GDEL language MUST be defined in XML format. RATIONALE: The language 

processor implementation should be as easy as possible and XML format as language 

definition allows implementers to use general XML parsers to implement language 

processor. XML format allows writing GDEL scripts which automatically or 

semiautomatically generates GDEL scripts from other syntax specifications like BNF or 

SDF. XML format also allows writing XSL scripts, which transfers the specification to 

documentation or other specifications. 

4. Complete list of errors MUST be defined. RATIONALE: The user of the language 

should know what kinds of errors are possible and why these errors would occur. 

4.1. Each occurrence of errors MUST specify the severity level as warning, error or fatal 

error. RATIONALE: Different severities are needed to specify different behavior of 

processor of the language. 

4.1.1. The occurrence of the warning SHOULD NOT affect to processing. RATIONALE: 

Example non-reachable nonterminals in grammar do not affect to processing, and an error 

can therefore be a warning severity. It is also possible to define warning in cases where 

error changes result, without consequences. 

4.1.2. The occurrence of errors SHOULD NOT stop processing. RATIONALE: The error 

shows to user that the result of processing is not correct. Errors should not lead to complete 

failure of the process.  
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4.1.3. The occurrence of the fatal error MUST stop processing. RATIONALE: The fatal 

errors lead to the complete failure of process. 

5. GDEL language SHOULD be modular. RATIONALE: A good modular structure is 

important, because it allows more elegant specifications in the means of reuse and lifetime 

support. 

6. GDEL language SHOULD be visualizable. RATIONALE: This is intended to help users 

to create and understand the transformation specifications. 

7. GDEL language MUST be extensible. RATIONALE: This allows GDEL grammars to 

be used on other tasks that need grammars. It also allows extensions that help the writing 

of more complex specifications. 

8. GDEL language MUST allow the use of any context-free grammar to specify input. 

RATIONALE: This is intended to allow reuse of grammars from other specifications 

without a complex grammar re-engineering, but not without a syntax transformation to 

GDEL syntax. 

9. GDEL language SHOULD define grammars for the outputs (schema for XML output). 

RATIONALE: The output grammar depends on the input grammar and has some 

additional information like XML tag names. This information given as XML Schema helps 

users. 

9.1. GDEL processor MUST guarantee that the output belongs to the defined class. 

RATIONALE: The processor implementation is certainly erroneous if this requirement is 

not true. 

10. Creation of GDEL grammar MUST be possible automatically or semiautomatically 

from other grammar formalisms. RATIONALE: This requirement is intended to ensure 

that the transformation of other grammar syntaxes to GDEL syntax is possible. 
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8.2 Syntax design 

The GDEL specification must define the context-free grammar of the input as requirement 

2.1 states. This grammar should be presented as XML as the requirement 3 states. There 

are many syntactic meta-languages as we have seen in chapter 6 but none of these are 

defined in XML format. In this section XML syntax presentations are consider for these 

meta-languages and finally define XML-based grammar format. 

Another points of design are modularity and extensibility stated in requirement 5 and 6. 

Modularity is gained by using simple kernel and extensions. Extensions are defined in 

terms of the primitives of the kernel by means of normalization, which is provided through 

rewriting functions. This approach is adopted from Eelco Visser PhD Thesis where 

approach is used to define Syntax Definition Formalism (SDF2) [Visser97a]. For more 

detail description of SDF2 see section 6.5. 

The first design point of kernel is to limit kernel features. SDF2 kernel contains context-

free grammar, character-classes, and priorities, reject productions and follow restrictions. 

Eelco Visser’s further work shows that context-free grammar and priorities could also be 

expressed as character-class grammar [Visser97d]. The selection of kernel features is equal 

to SDF2 kernel; because usage of character class-grammars binds the implementation too 

tightly to scanner less generalized LR-parsing. The selection of SDF2 also allows direct 

translation of SDF2 grammars to GDEL grammar format, and to the other direction as 

well. Actual design decisions about the XML-syntax of grammar found in next chapter. 

8.3 Semantics of GDEL 

Formal specifications play an important role in the software design, especially in the 

language design. The most important point is that the formal specifications could be used 

as an unambiguous interface between designers, programmers and users. An algebraic 

specification could be used for purpose.  
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The algebraic specification consists of signature as a definition of the syntax and a set of 

axioms to specify the semantics. The meaning of the algebraic specification is specified as 

the isomorphic class of all initial models. These models are any algebraic structures 

satisfying given axioms. A unique symbolic model constructed from Herbrand's universe 

of all well-formed terms by the smallest congruence relation generated by axioms of a 

specification always exists. Therefore it could be used as starting point if it could be found. 

The result is so-called decision procedure for the equality problem in the defined class. A 

decision procedure is usually modeled by a term rewriting system. 

How to construct an appropriate term rewriting system for a given algebraic specification? 

A simple method is to transform the term rewriting system to Prolog or another similar 

high-level logical programming language [Bergstra89]. The other possibility is to use 

dedicated languages and design environments like SDF+ASF Meta Environment 

[Brand01]. 

In case of GDEL design variation of the first approach could be chosen, even the later 

approach is already used to define SDF2 formalism, which GDEL grammar is based. XSL 

transformations [XSL] could be used for term rewriting purpose, because GDEL is an 

XML-based language. This approach would fit in the most natural way. The input 

specification could be expressed as an XML-document. The signature could be expressed 

as an XML Schema [XMLSchema]. The semantic part of a specification would be 

converted into XSL-code and used as a rewriting system. The prototyped expression can be 

formed as an XML-term, which could be rewritten with the help of XSL into a canonical 

form – the meaning of this term. 
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8.4 Syntax tree binding to XML format 

Syntax tree binding to the XML format could be done several ways. One possibility is to 

set an id attribute for each production of the grammar and then point each production from 

a separate part where XML syntax is declared. This approach allows a flexible way to 

define how the syntax tree is outputted as XML, but at the same time it makes GDEL 

language harder to write and more complex to implement. Another way is to set the id 

attribute for each production of the grammar and use the id as an XML element name in 

output. This approach fits better to our needs so we select it. It is also allows an easy way 

to define XSLT stylesheets when the more complex output is needed. 
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9 GDEL Grammar Syntax 

This chapter contains actual design decisions concerning the GDEL grammar syntax. The 

first section considers a basic syntax of the grammar. The second section defines XML 

syntax for terminals. The third section considers regular expression syntax. The fourth 

section introduces syntax for disambiguation productions. The fifth section defines a layout 

and sixth modularization of the grammar. 

The syntax for the GDEL grammar is defined with prototyping method. Initial basic syntax 

definition is taken from BNF and then features are added incrementally towards SDF2 

definition. Each step contains also explanation why certain changes are made. The final 

definition for GDEL grammar can be found at Appendix 4. 

9.1 Basic Syntax 

Here is an example of an expression grammar defined as BNF: 

<goal> ::= <expression> 
<expression> ::= <term> | <expression> - <term> 
<term> ::= <factor> | <term> * <factor> 
<factor> ::= a | b | c 

The expression grammar example above could be described as follow: 

<?xml version=”1.0”?> 
<Grammar> 
  <Rule> 
    <Rhs>goal</Rhs> 
    <Lhs> 
      <Nonterminal>expression</Nonterminal> 
    </Lhs> 
  </Rule> 
  <Rule> 
    <Rhs>expression</Rhs> 
    <Lhs> 
      <Alternative> 
        <Nonterminal>term</Nonterminal> 
      </Alternative> 
      <Alternative> 
        <Nonterminal>expression</Nonterminal> 
        <Terminal>-</Terminal> 
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        <Nonterminal>term</Nonterminal> 
      </Alternative> 
    </Lhs> 
  </Rule> 
  <Rule> 
    <Rhs>term</Rhs> 
    <Lhs> 
      <Alternative> 
        <Nonterminal>factor</Nonterminal> 
      </Alternative> 
      <Alternative> 
        <Nonterminal>term</Nonterminal> 
        <Terminal>*</Terminal> 
        <Nonterminal>factor</Nonterminal> 
      </Alternative> 
    </Lhs> 
  </Rule> 
  <Rule> 
    <Rhs>factor</Rhs> 
    <Lhs> 
      <Alternative> 
        <Terminal>a</Terminal> 
      </Alternative> 
      <Alternative> 
        <Terminal>b</Terminal> 
      </Alternative> 
      <Alternative> 
        <Terminal>c</Terminal> 
      </Alternative> 
    </Lhs> 
  </Rule> 
</Grammar> 

XML syntax could be made more concise as the GDEL language requirement 1 says: 

<?xml version=”1.0”?> 
<Grammar> 
  <Rule nonterminal=”goal”> 
    <Nonterminal name=”expression”/> 
  </Rule> 
  <Rule nonterminal=”expression”> 
    <Nonterminal name=”term”/> 
  </Rule> 
  <Alternative nonterminal=”expression”> 
    <Nonterminal name=”expression”/> 
    <Terminal>-</Terminal> 
    <Nonterminal name=”term”/> 
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  </Alternative> 
  <Rule nonterminal=”term”> 
    <Nonterminal name=”factor”/> 
  </Rule> 
  <Alternative nonterminal=”term”> 
    <Nonterminal name=”term”/> 
    <Terminal>*</Terminal> 
    <Nonterminal name=”factor”/> 
  </Alternative> 
  <Rule nonterminal=”factor”> 
    <Terminal>a</Terminal> 
  </Rule> 
  <Alternative nonterminal=”factor”> 
    <Terminal>b</Terminal> 
  <Alternative> 
  <Alternative nonterminal=”factor”> 
    <Terminal>c</Terminal> 
  </Alternative> 
</Grammar> 

The DTD of complete XML BNF format can be found at Appendix 1. 

The next SDF2 example in section 6.5 should be considered. It’s XML form could be 

follow: 

<?xml version=”1.0”?> 
<Grammar> 
  <Sorts> 
    <Sort type=”Id”/> 
    <Sort type=”Exp”/> 
  </Sorts> 
  <LexicalSyntax> 
    <Rule nonterminal=”Id”> 
      <Terminal>[a-z]+</Terminal> 
    </Rule> 
    <Rule nonterminal=”LAYOUT”> 
      <Terminal>[\ \t\n]</Terminal> 
    </Rule> 
  </LexicalSyntax> 
  <ContextFreeSyntax> 
    <Rule nonterminal=”Exp”> 
      <Nonterminal name=”Id”/> 
    </Rule> 
    <Rule nonterminal=”Exp” assoc=”left” id=”Mul”> 
      <Nonterminal name=”Exp”/> 
      <Terminal>*</Terminal> 
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      <Nonterminal name=”Exp”/> 
    </Rule> 
    <Rule nonterminal=”Exp” assoc=”left” id=”Add”> 
      <Nonterminal name=”Exp”/> 
      <Terminal>*</Terminal> 
      <Nonterminal name=”Exp”/> 
    </Rule> 
  </ContextFreeSyntax> 
  <ContextFreePriorities> 
    <Priority type=”>”> 
      <Ref rule=”Mul”> 
      <Ref rule=”Add”> 
    </Priority> 
  <ContextFreePriorities> 
</Grammar> 

Note, that the given SDF2 and BNF are quite similar in the selected XML form, exceptions 

are following: BNF contains elements named as Alternative. In BNF elements named as 

Rule are children of the root element, while SDF2 elements are children of LexicalSyntax 

and ContextFreeSyntax elements. SDF2 contains elements named as Sorts, Sort, 

LexicalSyntax, ContextFreeSyntax, ContextFreePriorities, and Priority. In some cases the 

SDF2 element named Rule contains the attributes named associativity and id. Also 

contents of Terminal elements are different. 

If Alternative element is considered, it is possible to write BNF without the element in the 

means of converting all Alternative elements to Rule elements, which copy the attribute 

nonterminal from the previous-sibling element. Additional elements and attributes that 

SDF2 has, are all additional features of SDF2. A similarly changed place of Rule elements 

is a result of the separation of the lexical and context-free syntax. 

9.2 Terminals 

The contents of Terminal elements, as in the previous example, are the only problems. 

Terminals in BNF are always single characters or literal strings (see subsection 9.2.1). In 

SDF2 terminals can be characters or character classes. There is also a difficulty caused by 

the XML syntax. The XML specification [XML] defines follow: 

Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] 
| [#x10000-#x10FFFF] 
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The meaning is that XML uses all other Unicode characters except surrogates – Unicode 

reserves these to represent the start of characters ‘[#x10000-#x10FFFF]’ – and control 

characters ‘[#x00-#08]’, ‘#x0B’, ‘#x0C’ and ‘[#x0E-#1F]’. The control characters 

can not be presented as XML characters. This causes problems, especially with binary 

formats. A solution for these problems is to redefine the Terminal elements. An example: 

<Terminal>*</Terminal> 

should be changed to 

<Char value=”*”/> 

Hexadecimal character ‘#x1D’ would be presented as: 

<Char value=”0x1D”/> 

Character classes 

<Terminal>[a-z]+</Terminal> 
<Terminal>[\ \t\n]</Terminal> 

should be changed to 

<CharacterClass> 
  <OneOrMore> 
    <Range start=”a” end=”z”/> 
  </OneOrMore> 
</CharacterClass> 
<CharacterClass> 
  <Char value=”0x20”/> 
  <Char value=”0x09”/> 
  <Char value=”0x0A”/> 
</CharacterClass> 

In addition to the normal union, SDF2 character class can also be a difference or an 

intersection of two character classes, or a complement respect to the complete character 

class. The following example shows three different ways to construct equal character 

classes: 

<CharacterClass> 
  <Difference> 
    <Range start=”a” end=”m”/> 
    <Range start=”j” end=”m”/> 
  </Difference> 
</CharacterClass> 
<CharacterClass> 
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  <Intersection> 
    <Range start=”a” end=”m”/> 
    <Range start=”a” end=”i”/> 
  </Intersection> 
</CharacterClass> 
<CharacterClass> 
  <Range start=”a” end=”d”/> 
  <Range start=”e” end=”i”/> 
</CharacterClass> 

9.2.1 Literal Strings 

Literal strings would be defined as: 

<String value=”xyz”/> 

where ‘xyz’ is literal string. In SDF2 the normalization of strings creates the new 

production that contains the string as separated terminal characters – see section 10.2 for 

information about GDEL normalization process. 

9.3 Regular Expressions 

Commonly context-free grammars contain patterns, that occur again and again. Some 

examples of such patterns are optional constructs and iterations. Therefore many 

formalisms are extended with regular operators, that provide shortcuts for such patterns. 

SDF2 regular operators are defined via extra productions generated by a normalization 

function  – see section 10.2 for information about GDEL normalization process. 

In SDF2 the regular expressions provide abbreviations for grouping ‘(’, ‘)’, zero or more 

iteration ‘*’, one or more iteration ‘+’, optional constructs ‘?’, and alternatives ‘|’. An 

example of regular expression features: 

Identifier (“=” (Number|Identifier))? 
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There are several possibilities for the XML syntax. The DSD uses following elements: 

‘<Sequence>’ for groups, ‘<Optional>’ for ‘?’, ‘<ZeroOrMore>’ for ‘*’, 

‘<OneOrMore>’ for ‘+’, and ‘<Union>’ for alternatives [DSD], [Karlund00]. The XML 

Schema uses a different scheme [XMLSchema]: ‘<sequence>’ for groups, 

‘<choice>’ for alternatives, and attributes minOccurs and maxOccurs to limit the 

occurrence of other constructions. Both syntaxes use similar elements for grouping. For 

alternatives could also be considered an element ‘<OneOf>’. The final version of 

expression of the previous example as the XML is following: 

<Nonterminal name=”Identifier”/> 
<Optional> 
  <Char value=”=”/> 
  <Alternatives> 
    <Nonterminal name=”Number”/> 
    <Nonterminal name=”Identifier”/> 
  </Alternatives> 
</Optional> 

SDF2 provides an abbreviation for following operators: concatenation, grouping, zero or 

more, one or more, optional constructs, alternatives, iteration, list, set expressions, and 

permutation. The complete XML syntax for the GDEL grammar can be found at Appendix 

4. 

9.4 Productions for Grammar Disambiguation 

SDF2 uses priority declarations, reject productions, and follow restrictions to disambiguate 

the grammar. Priority declarations can be a priority-chain or an associativity relation: 

‘left’, ‘right’, ‘assoc’, or ‘non-assoc’. The highest priority in the priority-chain 

comes first. The priority declaration can be written inside a separated tag 

‘<Priorities>’. The associativity reletations can be also written directly to the 

production rule attribute, named ‘assoc’. Objects of these declarations are single 

productions or groups of productions. 
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The reject productions are marked directly to the production rule attribute, named 

‘reject’ with the value ‘true’. The follow restriction contains the class of characters 

that cannot follow the production. Follow restrictions are used to simulate greedy matching 

(see chapter 4.4). The follow restriction syntax is: 

<FollowRestriction rule=”rulename”> 
  <CharacterClass> 
    <Range start=”a” end=”z”/> 
  </CharacterClass> 
</FollowRestriction> 

The complete XML syntax for the GDEL grammar can be found at Appendix 4. 

9.5 Layout 

SDF2 defines both the syntax of sentences – the context-free syntax – and the syntax of 

tokens – the lexical syntax – within single definition. The distinction between tokens and 

sentences is that the tokens making up sentence can be separated by layout – whitespaces 

etc. – while the characters making up a token cannot. The XML syntax for lexical and 

context-free parts are allredy defined in the first section of this chapter.  

The layout that can occur between tokens must be also specified. In SDF2 the symbol 

‘LAYOUT’ is reserved for this purpose and it must be defined inside the lexical syntax 

section. In the XML syntax layout can be written inside a ‘<Layout>’ element. In 

example, layout is defined as 

<Layout> 
  <Nonterminal name=”Comment”/> 
</Layout> 

meaning that comments are layout. 
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Notice that the abstract syntax tree do not contain layout tokens. Therefore result XML do 

not contain layout tokens. SDF2 generic layout definition mechanism works well for 

programming languages. It also works for simple data formats, but it fails to provide the 

correct abstract syntax and output for complex data formats such as EDIFACT 

[EDIFACT]. The reason is that these formats uses a kind of layout to pointing different 

parts. Therefore GDEL allows the ‘<Layout>’ element usage also inside the context-free 

syntax section, there the ‘<Layout>’ element define parts that are not included to the 

abstract syntax. 

9.6 Modularization 

SDF2 uses alias and module mechanism for reusing parts of syntax definitions. The XML 

syntax could use ‘<Alias>’ element, with the attribute ‘name’ when it is defined, and 

with the attribute ‘ref’ when it is referenced.  

Last syntax definition need to be defined is syntax for modules. Consider following 

module: 

module Substitutions 
import Terms 
       Tables[Key => Var] 

As following XML representation: 

<?xml version=”1.0”?> 
<Module name=”Substitutions”> 
  <Import module=”Terms”/> 
  <Import module=”Tables”> 
    <Rename nonterminal=”Key” to=”Var”/> 
  </Import> 
</Module> 

XML Schema for grammar found at appendix 4. 
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10 GDEL Processor 

This chapter describes two different implementation approaches – interpreter and compiler 

– for the GDEL processor. These approaches create the framework where GDEL 

specifications are easy to write and test from developer point of view and give enough 

performance in production environments. From developer point of view interpreter 

approach is a better solution, because time consuming parse table generation phase can be 

made incremental for rules that are currently needed for parsing [Reakers92]. For 

production environments, processor with compiled specification gives a better performance 

and should therefore be a better solution. We have also developed a prototype 

implementation of GDEL processor, which is briefly described in the last section. 

10.1 Overview 

The black box view of processor shows the overall process – see figure 2 in page 9. Four 

main parts can be identified: GDEL specification, input material, processor, and output 

XML. 

In design time it is necessary to create the specification that defines the grammar of input 

material, and XML tag names for output. In the interpreter approach the specification is 

directly set to processor before actual processing starts. In the compiler approach the 

specification is compiled to actual processor. 

At run time input material is given to the processor, which then parses input as described 

by the grammar of the specification. Parsing creates a parse tree – or a forest if the 

grammar is ambiguous – and returns it in XML format. 

If we look in more detail inside the processor, we can find four subproceses: the 

normalization of specification, the generation of the parse table or the parser, the actual 

parsing process, and the process that generates the XML output. 
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The normalization process takes the specification as input and rewrites it to the core 

language. This phase simplifies the parser generation dramatically, because only basic 

functionality needs to be supported. Normalization also allows using a very simple 

extension mechanism to extend GDEL specifications, because we can just add a new 

normalization step for each extension of specification language. 

The parser generation creates the actual parser from the normalized specification. This 

process separation allows the selection of the parse algorithm used. It also gives the 

possibility to use nearly same processor for interpreters and compilers. The result of the 

process is a parse table, if we use interpreter approach, or compiled parser component, if 

we use compiler approach. 

Input Output
XML

GDEL
Specificat.

Normali-
zation

Parsing XML
Generation

Parser
generation

GDEL Processor

Design time
for
Interpreter

Design time
for
Compiler

 
Figure 7. A more detailed picture of the processor. 

The parsing process takes the input material and parses it. Parsed material is then changed 

to XML in the XML generation process. The XML generation process is separated for two 

reasons. First, its removal allows the GDEL specifications to be used as a classic parser 

generator, and secondly, it allows an easy way to support different XML APIs – like SAX, 

DOM – for output. 
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10.2 Normalization 

The normalization takes the specification as input and rewrites it to the core language. The 

core language contains only basic syntax, terminals without literal strings, and productions 

for grammar disambiguation. This phase simplifies the parser generation dramatically, 

because only the basic functionality needs to be supported. Other fuctionality like literal 

strings and regular expression operators are normalized back to core language. The 

normalization also allows using very simple mechanism to extend GDEL specifications, 

because there could just be added a new normalization step for each extension of 

specification language. 

GDEL
Spec.

Normalized
Spec.

Filter
n

Filter
1

Pipe
Factory

Filter
...

Config

Normalization Process

generates

Figure 8. Normalization process 

Actual normalization process is a pipeline of normalization steps. Because the 

normalization input and output are in XML form we use XSLT for each step except the 

character class normalization. Using the commonly supported XSLT makes 

implementation of normalization very easy and it also serves people who want to make 

extensions to the language. 
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The best design of normalization process uses Pipes & Filters design pattern 

[Buschmann96] with Factory pattern [Gamma95] that configures the process. More details 

of these design patterns can be found from [Gamma95], [Buschmann96]. Another 

description of the used design pattern can be found in reference [Spinellis01]. The 

configuration information should be defined in a way that allows extensions of the 

language without any code changes for GDEL processor implementation. 

The normalization must also expose syntactic errors from the specification and report them 

as a fatal error. If each normalization step is reliable, the syntactic errors should be tested 

only in the first step. Other sources of fatal errors are missing specification or errors in 

configuration. 

10.3 Parser generation 

The parser generation creates an actual parser from normalized specification. This process 

separation allows selection of used parse algorithm. It also gives possibility to use nearly 

same processor for interpreters and compilers. The result of process is a parse table if we 

use interpreter approach or compiled parser component, if we use compiler approach. 
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According to our experiences, the best way to make a grammar object is to use the 

technique known as XML data binding, which marshals the data from XML instance into 

the properties of classes [JAXB]. The main benefit of data binding is much sorter and 

cleaner code for XML handling. From implementer point of view it could also reduce 

errors and development time. The grammar object is used for internal representation of 

given specification. The grammar object allows querying needed parts of grammar. 

A parser factory can use the configuration data to select the wanted parser type and finally 

create a parser. It should be noticed that in case of LR and GLR parsers their parse table 

generation is similar and LR parsing should always be used when the result parse table 

does not contain ambiguities. It is also notable that Earley parser uses nearly similar items 

that are used in the LR parse table generation. These facts allow lots of reuse in the finer 

levels of design. We believe that actually there is a possibility to create a very good parser 

framework with little code if design is correct. 
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For interpreter it is also possible to use an incremental parsing method. That means the 

parse table is constructed at run time, and only the parts that are currently needed are 

calculated. This allows faster parsing especially in cases where the grammar changes 

constantly. See [Reakers92] and [Visser97a]. 

The parser generation process should generate an error if the given grammar is ambiguous 

and the currently configured parsing method does not support ambiguous grammars. For 

better usability it could support automatic change of parsing method and continuation of 

process. If supported, this feature must be configurable. Else it should report a fatal error 

and stop. Another usability feature that could be supported is purification. For more details 

on purification see section 5.3. Every problem that is purified should generate warning and 

processing should continue normally. 

10.4 Parsing 

The parsing process reads the given input material, parses it and creates a parse tree as a 

result. The most practical approach for parsing is scanner less parsing, because it simplifies 

design and implementation. For more detailed information of the advantages see 

[Visser97a, 30-36]. 

The instance of the reader is used for the input material reading. Reader’s actual task is to 

support the wide variety of the input encoding – like: ASCII, UTF-8, EBCDIC – and 

change these to the Unicode supported by parser. A scanner could replace the reader if it is 

needed. The Factory pattern is used to create the reader of the configured type. It allows 

the selection of optimized readers for different encoding. The actual parser and the parse 

tree generation depend on the type of the parser. 

 75



Input
Material

Parse
Tree

Reader Parser

Config Reader
Factory

Figure 10. Parsing process. 

If reading of the input fails – because of the I/O errors etc. – the processor must report a 

fatal error and stop. If input material contains syntactic errors, parsing fails and the 

processor must generate an error report. If the processor has a recovery mechanism and it 

succeeds, it could continue, else the error is fatal. For better usability the parsing error 

reports should identify location from input material, where the error is detected – in most 

cases the actual cause of an error is before that position – and current state of parsing. 

10.5 XML generation 

The parsing process generates an internal representation of a parse tree or a forest. The 

XML generation process creates the actual XML representation from the internal 

representation. The XML generation process should be separated for three reasons. First it 

makes the implementation cleaner, secondly it gives an easy way to support different XML 

APIs – like SAX and DOM – for output. And third its removal makes it possible to use the 

GDEL processor like classic parser generators. 
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The best way to implement the output method selection is the Factory pattern that creates 

the instance of output component. It takes the information of which output component 

should be created from the configuration. 

An actual parse tree or forest can be gone through by the generic Visitor pattern that uses 

given output component. The Visitor design patterns can be found from [Gramma95], 

[Cooper98]. Note that output components could have a very simple interface, because the 

generated XML contains only elements and parsed character data. If more complex XML 

structure is needed the Visitor implementation should be changed to use SAX API directly. 

The Visitor also needs the instance of grammar, which it uses for looking up the names of 

output XML elements. 

Factory

SAXParse
Tree

Grammar

Config

SerializerVisitor

Output
XML

Output
Components

Figure 11. XML generation process. 

10.6 Prototype Implementation 

A prototype implementation of the GDEL processor has been developed in the Java 

programming language [Java]. Java was chosen because it is platform independent. The 

implementation conforms to the JAXP 1.2 Transformation API for XML, also known as 

TrAX [JAXP]. 
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A prototype implementation needs an environment in which has been installed: Java virtual 

machine version 1.3 or higher [JavaVM], XSLT processor that supports TrAX – prototype 

has been tested with Xalan-Java version 2.4.1 and version 2.5.1 [Xalan] and Saxon version 

6.5.2 [Saxon] –, Log4j version 1.2.8 or higher [Log4j] – for logging component messages 

in a common way – and X-Fetch Performer version 2.2 or higher [Performer]. 

10.6.1 TrAX 

There is a need for Java applications that are able to transform XML and related data 

structures. The TrAX attempts to define a model that is clean and generic, yet fills general 

application requirements across a wide variety of uses. It defines objects and methods for 

processing input and producing output in a variety of formats. 

The abstract model of TrAX usage is following: A TrAX TransformerFactory object 

processes transformation instructions and produces Templates objects. A Templates object 

provides Transformer objects, which can transform one or more Source objects into one or 

more Result objects. 

There might be one minor missing feature from TrAX. A TransformerFactory object is 

normally a globally declared property and there’s no need to worry anything about an 

implementation. In this case it’s needed to use the XSLT processor during usage of the 

GDEL processor. Both have their own TransformerFactory objects. One more line in the 

GDEL configuration can tell where XSLT TransformerFactory is and setting global 

property point to GDEL TransformerFactory can solve the problem. As a result it is 

impossible to run the XSLT from other applications, because the GDEL processor doesn’t 

understand XSLT stylesheets. 

How to solve the problem? Because both languages are in the XML format it is possible to 

automatically detect the transformation language. If configuration tells how all possible 

root tags and namespaces are related to the TransformerFactory object it is possible to 

redirect used instructions to the correct object. The implementation of the GDEL processor 

has now this feature. Hopefully someday every TrAX user can enjoy it. 
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10.6.2 X-Fetch Performer 

X-Fetch Performer is a second-generation XML processor. It combines features of 

filtering, SAX and DOM interfaces, and also provides help for XML Data Binding. 

Actually X-Fetch Performer is only dynamic XML Data Binding solution. It also solves 

some of the speed and memory problems of XML handling. For more details, see the X-

Fetch web site (http://www.x-fetch.com/). 

X-Fetch Performer makes XML very easy to handle. The actual implementation contains 

only two small classes to handle XML, one to solve TrAX transformation language 

redirection – mentioned in previous section – and another to bind the normalized GDEL 

specification to Java objects. The same task by using SAX or DOM interface would need 

ten times more implementation work, which also raises the possibility of errors, makes 

future changes harder, and increases the code maintenance work. 

10.6.3 Normalization 

The implementation of normalization process uses the standard XSLT processor. Running 

many XSLT stylesheets in the pipeline is not as efficient as it should be. One reason could 

be poorly optimized XSLT processor implementations – We have been testing Java 

versions of Xerces-Java versions 2.4.1 and 2.5.1 [Xerces] and Saxon 6.5.2 [Saxon]. One 

possible solution is to use Xerces XSLT compiler and compile each stylesheet. As the 

better approach we suggest a new model where XSLT transformation pipeline is used as 

the design time representation and compiling phase changes these to single stylesheet – in 

theory sequential transformations can be replaced by a single transformation. 

 79

http://www.x-fetch.com/


The normalized grammar is bonded to the Java grammar object through the X-Fetch 

Performer. In the grammar all strings – names of elements, nonterminal names, etc. – are 

stored to the container class that bases on the ternary tree structure. The container allows 

minimal memory usage, it has O(1) time complexity of direct get operations, and O(log(n)) 

time complexity for put, seek and get operations. The priority and follow restriction 

information are both stored to own classes that are optimized. All other grammatical 

information is stored to an object network, which makes some operations easy to 

implement but is not very efficient.  

10.6.4 Parsers 

The prototype parser generation and parsing supports LR and GLR parsing algorithms with 

LR0, SLR, LR1 parse tables. Adding the LALR parse table generation support needs 

changes only in one class. Also adding a new parsing algorithm affects only one class. 

Because of implementation conforms to TrAX requirements, it must also support compiled 

transformers. This is currently done in a minimal possible level by using serializable 

Templates objects. We can see only little performance benefits if these are changed to real 

byte code level compiling. 

10.6.5 XML generation 

The XML generation supports currently natively only serialized output, otherwise it is 

implemented in the way described earlier in this chapter. SAX and DOM support work 

through XSLT transformation, which does not change the result. 

10.6.6 Notes 

Most of the testing of prototype is done by functional tests. These tests should form later 

the base for the complete regression test set. Ideally the same test set could be used to other 

possible implementations and also for benchmarking purposes. 
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10.7 Conclusion 

This chapter has shown one of the possible designs of the GDEL processor. It is based on 

good design principles like the separation of concerns, modularity, and extensibility. The 

design also shows that design patterns could improve designing. The prototype 

implementation shows that the processor is quite easy to create. Especially it shows that 

the usage of external parts could reduce the implementation time. 

In this chapter one missing minor feature of TrAX has been pointed out, and a way it could 

be corrected has been presented. There is also a need for a new kind of software that could 

optimize transformation pipeline to a single transformation that concerns especially 

sequential XSLT processing. 
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11 Applications of GDEL 

This chapter describes some applications of the GDEL that are essential for any grammar 

system. These applications do not contain normal usage, which is clear enough – some 

common usage scenarios can be found at reference [Lempinen03]. These applications are 

very easy to create in GDEL and normally quite hard for other grammar systems. 

The first application shows how GDEL can be used to create new GDEL specifications 

from other grammar specifications formalism by extracting the necessary information. The 

second application automatically generates XSLT stylesheet that convert extracted data 

back to its original form. The third section describes an application that generates XML 

schema for output XML. The fourth section considers some other possible applications. 

11.1 Converting other specifications to GDEL 

As shown in Chapter 6 there are lots of different grammar specification formalisms. One of 

the desired properties of GDEL is that there is the possibility of writing specifications to 

extract new specifications from other grammar formalisms. This is possible because nearly 

all grammar metalanguages have their own descriptions as grammars. Using the grammar 

of a grammar in GDEL form allows us to obtain data from grammar in XML form. XSLT 

could be then used to transform the obtained XML form of grammar to the new GDEL 

specification. Generally this seems to be the most practical way to transform existing 

grammars to GDEL specification. 
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11.2 Bi-directional transformations 

In some use cases there is need for a bi-directional transformation. Bi-directionality means 

that data can be transformed in both directions. This is also a desired property of GDEL. 

The bi-directional transformations are easy to support, because there could be made XSLT 

stylesheet that transforms the given GDEL specification to XSLT stylesheet that outputs 

original data from extracted data (see figure 12). The actual XSLT stylesheet that does the 

necessary transformation can be found at Appendix 2. In some ways similar bi-directional 

transformations system for SDF2 could be found in [Brand96]. 

11.3 Generation of XML Schema for output 

In some cases it is desired that the XML Schema of the processor output is known. It is 

possible to generate the needed schema instance directly from GDEL specification by 

using XSLT transformation. The XSLT stylesheet for this operation can be found at 

Appendix 3. 
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Figure 12. GDEL transformation to reverse XSLT and XML schema. 
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11.4 Other applications 

Grammar visualization could be also done as a simple XSLT transformation from GDEL 

specification to the SVG picture. It is also possible to do other kinds of reports from the 

grammar in similar manner. 

Several markup techniques for the source code have been proposed: [Badros00], 

[Boshernitsan00], [Holt00], [Mamas00] and [Maletic02]. They do not give the solution for 

straightforward source code transformation to marked up code. We think that GDEL 

specification and processing could help to create solution for that kind of problems. It 

could be also interesting to investigate GDEL usage to the area of program transformations 

[Feather86], [Jonge00a-b], [Karsai00] and [Murata97]. 

11.5 Conclusion 

As seen, the GDEL allows an easy creation of many applications that are hard to 

implement in other kinds of grammar systems. It is basically the result of the choice that 

GDEL specifications are in the XML form. 
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12 Epilogue 

Famous Richard Hamming used to ask three questions for new hires at Bell Labs 

[Hamming86]. The first question is “What are you working on?” the second “What's the 

most important open problem in your area?” and the final question, “Why aren't they the 

same?” How do I answer these questions? The First is simply, “Data transformations 

systems.” second “Find to final solution to so called legacy data problem. The final 

solution must prevent legacy data to even exist.” and answer for final question, “They are 

actually same. First we need the bi-directional transformations and then the automatic 

generation of these. Then legacy is no more legacy.” 

12.1 Conclusions 

The minimal standard of the well-defined grammar systems contains two fundamental 

properties. First it must allow different applications in a given implementation, and 

secondly different implementations in a given application. In this sense GDEL is a well-

defined grammar system. 

The grammar part of the GDEL syntax was a derived form of SDF2 [Visser97a]. If 

differences between these formalisms are thought, there can be found: GDEL semantics is 

not currently as well defined as SDF2 semantics. XML makes grammars bigger and quite 

hard to write with plain text editors, but there is also a possibility to write grammar in 

another formalism and transform it to GDEL. Benefits of XML usage are more important. 

It shows an easier way to extend language through normalization by writing the XSLT 

stylesheet. The implementation of the processor is easier because of XML data binding and 

very easy implementation of the normalization process. XML also allows easier usage of 

grammar information in the other applications like reverse transformation and grammar 

visualization. 
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GDEL uses XML as an output format of parsed data. If we consider data integration usage, 

this approach is clearly good. For other possible usages – like parser generators – it could 

create too much overhead in final application. This is taken account in the modular 

processor design. 

12.2 Future Directions 

In the near future Republica will include GDEL processor to the family of X-Fetch 

components. It will be freely available for academic use. There is also a small possibility 

that processor implementation would be published as an open source. If that happens there 

could also be a library of grammars for GDEL – similar to the grammar base for SDF 

grammars [GBASE]. The future development of GDEL specification would be donated to 

some standardization organization or community, because otherwise it’s significance will 

be small. 

There are lots of possibilities for further improvements. From the parser implementation 

view, there is a good opportunity for the future study of relative speeds of different 

algorithms. There could also be a possibility to predict which algorithm gives the best 

speed with the given grammar and build state of the art parser generator as a result. The 

grammar visualization and it’s visual editing could also be interesting.  

The automatic optimisation of the transformation pipeline could be an interesting research 

issue. Another open research issue is the possibility to integrate DEL specification to 

GDEL as a so-called island grammar [Moonen01], [Moonen02]. We also see that term 

rewriting with XSLT as a general extension mechanism for XML-based languages could 

be studied more closely. 
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From the data integration point of view bi-directionality is important, but not enough to 

solve all data integration problems. The complete solution must also manage these 

transformations in terms of semantics. My future research would be concentrated to 

Transformation Management Server architecture shown in figure 13. There ebXML 

registry is used to define semantics for transformed data and additional layout properties of 

possible formats of data [ebRS][ebXML]. Therefore it could allow an automatic generation 

of the transformation specifications – at last in a level where semantically similar parts are 

transformed to each other [Behrens00]. In this architecture GDEL could be a valuable part. 

 87



References 

The reference entries are indexed by the (first) author of the document if the source is a 

book or an article, and by the title of the document if the source is a specification. All 

online resources are accessed on 25th of June 2003. 

[Adelberg98] B. Adelberg, “NoDoSe: A Tool for Semi-Automatically Extracting Semi-Structured Data from 

Text Documents”, SIGMOD Conference 1998: 283-294. 

[Aho72] A. V. Aho, J. D. Ullman, “The Theory of Parsing, Translation, and Compiling, Volume 1: Parsing”, 

Prentice-Hall, 1972. 

[Aho86] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers. Principles, techniques, and Tools”, Addison-

Wesley, 1986. 

[Alur01] D. Alur, J. Crupi, D. Malks, “Sun Java Center J2EE Patterns”, First Public Release: Version 1.0 

Beta, the Sun Java Center, March 2001, Available at: 

http://developer.java.sun.com/developer/technicalArticles/J2EE/patterns/ 

[Appel98] A. W. Appel, “Modern Compiler Implementation in Java”, Cambridge University Press, 1998. 

[Ashish97a] N. Ashish, C. A. Knoblock, “Wrapper Generation for Semi-structured Internet Sources”, 

SIGMOD Record 26(4), pp. 8-15, 1997, Available at: http://www.isi.edu/sims/naveen/sig.ps 

[Ashish97b] N. Ashish, C.A. Knoblock “Semi-automated Wrapper Generation for Internet Information 

Sources”, Proceeding of 2nd IFCIS Int. Conference on Cooperative Information Systems (Coopis '97), 

Kiawah Island, June 1997, Available at: http://www.isi.edu/sims/naveen/autowrap.ps 

[Aycock01a] J. Aycock, R. Horspool, J. Janousek, B. Melichar, “Even Faster Generalized LR Parsing”, Acta 

Informatica, vol. 37, 9 (2001), pp. 633-651. Available at: 

http://www.csr.uvic.ca/~nigelh/Publications/czech.pdf 

[Aycock01b] J. Aycock, N. Horspool, “Directly-executable Earley parsing”, In Proceedings of the 10th 

International Conference on Compiler Construction (LNCS #2027). Springer-Verlag, 2001, pp. 229-243. 

[Aycock99] J. Aycock, R. Horspool, “Faster Generalized LR Parsing”, Proceedings of CC'99, 8th Intl. 

Conference on Compiler Construction, Amsterdam, March 1999. LNCS 1575, Springer-Verlag, pp. 32-46. 

Available at: http://www.csr.uvic.ca/~nigelh/Publications/cc99-paper.pdf 

 88

http://developer.java.sun.com/developer/technicalArticles/J2EE/patterns/
http://www.isi.edu/sims/naveen/sig.ps
http://www.isi.edu/sims/naveen/autowrap.ps
http://www.csr.uvic.ca/~nigelh/Publications/czech.pdf
http://www.csr.uvic.ca/~nigelh/Publications/cc99-paper.pdf


[Badros00] G. Badros, “JavaML: a markup language for java source code”, In WWW9, Ninth International 

World Wide Web Conference, Amsterdam, May 2000, Available at: 

http://www.cs.washington.edu/homes/gjb/papers/badros-javaml-www9.pdf 

[Bapst99] F. Bapst and C. Vanoirbeek, “XML documents production for an electronic platform of requests 

for proposals”, presented at Reliable Distributed Systems, 1999. Proceedings of the 18th IEEE Symposium 

on, 1999. 

[Bergstra89] J. A. Bergstra, J. Heering, P. Klint, “Algebraic Specification”, ACM Press, ISBN 0-201-41635-

2, Addison-Wesley, 1989. 

[Behrens00] R. A Behrens, “Grammar Based Model for XML Schema Integration”, Proceedings of British 

National Conference on Databases (BCNOD), 17., 2000. 

[Bos99] B. Bos, “XML in 10 points”, vol. 2000: W3C, 1999, Available at: 

http://www.w3.org/XML/1999/XML-in-10-points.html 

[Bosak 97] J. Bosak, “XML, Java, and the future of the web”, October 1997, Available at:  

http://sunsite.unc.edu/ pub/sun-info/standards/xml/why/xmlapps.html   

[Bosak 98] J. Bosak, “Media-independent publishing: four myths about XML”, Computer, vol. 31, pp. 120-

122, 1998, Available at: http://www.ibiblio.org/pub/sun-info/standards/xml/why/4myths.htm  

[Boshernitsan00] M. Boshernitsan, S. L. Graham, “Designing an XML-Based Exchange Format for 

Harmonia”, Proceedings of the Seventh Working Conference on Reverse Engineering (WCRE'00), 2000, 

Available at: http://www.cs.berkeley.edu/Research/Projects/harmonia/papers/harmonia-xml.pdf 

[Brand01] M. van den Brand, J. Heering, H. de Jong, M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. 

Olivier, J. Scheerder, J. Vinju, E. Visser, J. Visser, “The ASF+SDF Meta-Environment: a component-based 

language development environment”, In Compiler Construction 2001 (CC 2001), LNCS. Springer, 2001, 

Available at: http://www.cwi.nl/~jvisser/papers/meta01.pdf 

[Brand96] M. van den Brand, E. Visser, “Generation of Formatters for Context-Free languages”, ACM 

Transactions on Software Engineering and Methodology, Volume 5, Issue 1, January 1996. 

[Brand98] M. van den Brand, A. Sellink, C. Verhoef, “Current Parsing Techniques in Software Renovation 

Considered Harmful”, In the proceedings of the International Workshop on Program Comprehension, Italy, 

1998, Available at: http://carol.wins.uva.nl/~x/ref/ 

 89

http://www.cs.washington.edu/homes/gjb/papers/badros-javaml-www9.pdf
http://www.w3.org/XML/1999/XML-in-10-points.html
http://www.ibiblio.org/pub/sun-info/standards/xml/why/4myths.htm
http://www.ibiblio.org/pub/sun-info/standards/xml/why/4myths.htm
http://www.ibiblio.org/pub/sun-info/standards/xml/why/4myths.htm
http://www.cs.berkeley.edu/Research/Projects/harmonia/papers/harmonia-xml.pdf
http://www.cwi.nl/~jvisser/papers/meta01.pdf
http://carol.wins.uva.nl/~x/ref/


[Brueggemann-Klein98] A. Brueggemann-Klein, D. Wood, “One-Unambiguous Regular Languages”, 

Information and Computation, 140, pp. 229-253, 1998, A preliminary version of this paper available at: 

http://www.cs.ust.hk/~dwood/preprints/infocomp.ps.gz 

[Buschmann96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, “Pattern-Oriented 

Software Architecture: A System Of Patterns”, John Wiley & Sons Ltd., 1996. 

[Chomsky56] N. Chomsky, “Three Models for the Description of Language”, IRE Transactions on 

Information Theory, 2 (1956), pp. 113-124, 1956. 

[Chomsky59] N. Chomsky, “On Certain Formal Properties of Grammars”, Information and Control, 1 

(1956), pp. 137-167, 1959. 

[Crew97] R. F. Crew, “ASTLOG: A language for examining abstract syntax trees”, In Proceedings of the 

USENIX Conference on Domain-Specific Languages, Santa Barbara, CA, October, 1997, Available at: 

http://www.usenix.org/publications/library/proceedings/dsl97/full_papers/crew/crew.pdf 

[Cross01] D. Cross, “Data Munging with Perl”,  Manning Publications, 2001. 

[Comon99] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, “Tree 

Automata Techniques and Applications”, 1999, Available at: http://www.grappa.univ-lille3.fr/tata/ 

[Cooper98] J. W. Cooper, “The Design Patterns Java Companion”, Addison-Wesley, 1998, Available at: 

http://www.patterndepot.com/put/8/JavaPatterns.htm 

[Deutsch00] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu, “XML-QL: A Query Language for 

XML”, vol. 2000: W3C, 1998, Available at: http://www.w3.org/TR/NOTE-xml-ql/ 

[DOM] W3C Recommendation, “Document Object Model Level 1”, V. Apparao, S. Byrne, M. Champion, S. 

Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, L. Wood, 1 October 1998, Availale at: 

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/ 

[DSD] N. Klarlund, A. M¢ller, and M. I. Schwartzbach, “Document Structure Description 1.0”, AT&T & 

BRICS, October 1999, BRICS NS-00-7, Available at: http://www.brics.dk/DSD/specification.html 

[Earley70] J. Earley, “An efficient context-free parsing algorithm”, Communications of the ACM 13, 2 (Feb. 

1970), 94-102. 

[Ebert99] J. Ebert, B. Kullbach, A. Winter, "GraX - An Interchange Format for Reengineering Tools", 

Proceedings of the Sixth Working Conference on Reverse Engineering, 1999, Available at: 

http://www.gupro.de/winter/Papers/ebert+1999.pdf 

 90

http://www.cs.ust.hk/~dwood/preprints/infocomp.ps.gz
http://www.usenix.org/publications/library/proceedings/dsl97/full_papers/crew/crew.pdf
http://www.grappa.univ-lille3.fr/tata/
http://www.patterndepot.com/put/8/JavaPatterns.htm
http://www.w3.org/TR/NOTE-xml-ql/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.brics.dk/DSD/specification.html
http://www.gupro.de/winter/Papers/ebert+1999.pdf


[ebRS] OASIS/ebXML Registry Technical Committee, “OASIS/ebXML Registry Services Specification 

V2.0”, 6 Dec 2001, Available at: http://www.ebxml.org/specs/ebrs2.pdf 

[ebXML] ebXML Technical Architechture Project Team, ”ebXML Technical Architechture Specification 

v1.0.4”, 16 Feb. 2001, Available at: http://www.ebxml.org/specs/ebTA.pdf 

[EDIFACT] UN/EDIFACT Standard Directory, Available at: 

http://www.unece.org/trade/untdid/welcome.htm 

[Ek01] M. Ek, H. Hakkarainen, P. Kilpeläinen, E. Kuikka, T. Penttinen, ”Describing XML Wrappers for 

Information Integration”, University of Kuopio, Department of Computer Science and Applied Mathematics, 

Technical Reports, Series A, Report A/2001/2, 2001. 

[Emmerrich99] W. Emmerich, W. Schwarz, and A. Finkelstein, “Markup Meets Middleware”, In Proc. of the 

7 th IEEE Workshop on Future Trends in Distributed Systems, Capetown, South Africa. IEEE Computer 

Society Press, 1999, Available at: http://www.cs.ucl.ac.uk/staff/W.Emmerich/publications/FTDCS99/m3.pdf 

[Erlikh01] L. Erlikh, L. Goldbaum, “EAIs Missing Link: Lecacy Integration”, EAI Journal, Apprill 2001, pp. 

12-16, Available at: http://www.eaijournal.com/PDF/EAI%20Missing%20Link.pdf 

[Fankhauser93] P. Fankhauser, Y. Xu, ”MarkItUp! An incremental approach to document structure 

recognition”, Electronic Publishing, vol. 6(4),  pp. 447-456, Dec. 1993, Available at: 

ftp://ftp.darmstadt.gmd.de/pub/oasys/reports/P-94-07.ps.Z 

[Feather86] M S. Feather, “A Survey and Classification of some Program Transformation Approaches and 

Techniques”, Information Sciences Institute, University of Southern California, April 1986, presented at IFIP 

WG2.1 Working Conference on Program Specification and Transformation, Bad Toelz, Germany, April 

1986. 

[Gamma95] E. Gamma, et al., “Design Patterns. Elements of Reusable Software”, Addison-Wesley, 1995 

[Gagnon98] E, Gagnon, “SableCC, an Object-Oriented Compiler Framework”, PhD thesis, School of 

Computer Science, McGill University, Montreal, March 1998, Available at: 

http://www.sablecc.org/thesis.pdf 

[Gao99] X. Gao, L. Sterling, “AutoWrapper: automatic wrapper generation for multiple online services”, 

1999, Available on the web at: http://www.cs.mu.oz.au/~xga/apweb99/index.htm 

[GBASE] M. de Jonge, E. Visser, and J. Visser, “The Grammar Base”, Available at: http://www.program-

transformation.org/gb/  

 91

http://www.ebxml.org/specs/ebrs2.pdf
http://www.ebxml.org/specs/ebTA.pdf
http://www.unece.org/trade/untdid/welcome.htm
http://www.cs.ucl.ac.uk/staff/W.Emmerich/publications/FTDCS99/m3.pdf
http://www.sablecc.org/thesis.pdf
http://www.cs.mu.oz.au/~xga/apweb99/index.htm
http://www.program-transformation.org/gb/
http://www.program-transformation.org/gb/


[Glushko99] R. J. Glushko, J. M. Tenenbaum, and B. Meltzer, “An XML framework for agent-based E-

commerce”, Communications of the ACM, vol. 42, pp. 106-114, 1999, Available at: 

http://www.commerce.net/research/technology-applications/1999/99_23_r.pdf  

[Goguen77] J. A. Goguen, J.W. Thatcher, E. G. Wagner, J.B. Wright, “Initial algebra semantics and 

continuous algebras”, Journal of ACM, 24 (1), pp. 68-95, 1977. 

[Goldfarb90] C. F. Goldfarb “The SGML Handbook”, Oxford University Press Inc., 1990. 

[Graham76] S. L. Graham, M. A. Harrison, “Parsing of general context-free languages”. In Advances in 

Computing, Vol. 14, Academic Press, New York, p. 77-185, 1976. 

[Graham80] S.L. Graham, M.A. Harrison, W.L. Ruzzo, “An improved context-free recognizer”, ACM Trans. 

Prog. Lang. Syst., vol. 2, no. 3, p. 415-462, July 1980. 

[Grosh01] G. Grosh, “Data Imperatives: Patterns in EAI behaviour”, EAI Journal, Septemper 2001, 

Available at: http://www.eaijournal.com/PDF/DataImperatives.pdf 

[Grune90] D. Grune, C. J. H. Jacobs, "Parsing Techniques: A Practical Guide", Ellis Horwood, 1990. 

[Hammer97] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, A. Crespo, “Extracting Semistructured 

Information from the Web”, Proceedings of the Workshop on Management of SemiStructured Data in 

conjunction with the 1997 ACM, Available at: ftp://db.stanford.edu/pub/papers/extract.ps  

[Hamming86] R. Hamming, "You and Your Research", Talk given at Bell Labs, March, 1986, Available at: 

http://www.cs.wisc.edu/~cs736-1/cs736.html/Papers/hamming.ps.gz 

[Hasselbring00] W. Hasselbring, “Information System Integration”, Communications of the ACM 43 (6), pp. 

33-38, June 2000, Available at: http://se.informatik.uni-oldenburg.de/publications/PDF/CACM-ISI2000.pdf 

[Hawke01] S. Hawke, “Blindfold Grammars”, Available at: http://www.w3.org/2001/06/blindfold/grammar 

[Heering89] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. “The syntax definition formalism SDF — 

Reference manual”. SIGPLAN Notices, 24(11), pp. 43–75, 1989. 

[Herman00]  I. Herman and M. S. Marshall, “GraphXML – An XML based graph interchange format” 

Technical Report INS-R0009, CWI, 2000, Available at: http://www.cwi.nl/ftp/CWIreports/INS/INS-

R0009.pdf 

[Holman99] K. G. Holman, “The XML family of standards”, XML Finland'99: SGML Users Group Finland - 

Conference Paper, September 23, 1999. 

 92

http://www.commerce.net/research/technology-applications/1999/99_23_r.pdf
http://www.eaijournal.com/PDF/DataImperatives.pdf
http://www.cs.wisc.edu/~cs736-1/cs736.html/Papers/hamming.ps.gz
http://www.w3.org/2001/06/blindfold/grammar
http://www.cwi.nl/ftp/CWIreports/INS/INS-R0009.pdf
http://www.cwi.nl/ftp/CWIreports/INS/INS-R0009.pdf


[Holt00] R. Holt, A. Winter, A. Schürr, “GXL: Toward a standard exchange format”, Fachbericht Informatik 

1/2000, Institutfür Informatik, Koblenz, Universitü at Koblenz-Landau, Mai 2000. Available at: 

http://www.gupro.de/techreports/RR-1-2000. 

[Hopcroft79] J. Hopcroft, J. Ullman, “Introduction to Automata Theory, Languages, and Computation”, 

Addison-Wesley, Reading, MA, 1979.  

[Hsu98] C. N. Hsu, “Initial Results on Wrapping Semistructured Web Pages with Finite-State Transducers 

and Contextual Rules”, AAAI'98 Workshop 'AI and Information Integration, Madison, July 1998, Available 

at: http://www.iis.sinica.edu.tw/~chunnan/DOWNLOADS/softmealy.ps.gz 

[HTML] “HTML 4.0 Specification”, W3C Recommendation, D. Raggett, A. Le Hors, I. Jacobs. Available at: 

http://www.w3.org/TR/html4/ 

[Huck98] G. Huck, P. Frankhauser, K. Aberer, E. Neuhold, “Jedi: Extracting and Synthesizing Information 

from web”, IEEE Computer Society Press, New York, August, 1998, Available at: 

http://www.darmstadt.gmd.de/oasys/projects/jedi/jp.pdf  

[Hudson97] S. E. Hudson, “CUP parser generator for Java”, 1997. Available at: http://www.cs.princeton.edu/ 

appel/modern/java/CUP/ 

[InfoSet] “XML Information Set”, W3C Recommendation, J. Cowan, R. Tobin, 24 October 2001, Available 

at: http://www.w3.org/TR/xml-infoset/ 

[ISO8879] International Organization for Standardization, “Information Processing – Text and Office 

Systems – Standard Generalized Markup Language (SGML)”, Ref. No. ISO/IEC 8879:1986(E), 1986. 

[ISO14799] International Organization for Standardization, “Extended BNF”, Ref. No. ISO/IEC 

14799:1996(E), 1996. 

[Java] J. Gosling, B. Joy, G. Steele, G. Bracha, “The Java Language Specification (2nd edition)”, Addison-

Wesley, 2000. 

[JavaVM] Available at: http://java.sun.com/downloads/ 

[JAXB] Java Architecture for XML Binding (JAXB), Available at: http://java.sun.com/xml/jaxb/ 

[JAXP] Java API for XML Processing (JAXP), Available at: http://java.sun.com/xml/jaxp/ 

[Jokipii99] A. Jokipii, “Data Wrapping Technologies for HTML”, B.Sc Thesis, University of Jyväskylä, 

1999. 

 93

http://www.iis.sinica.edu.tw/~chunnan/DOWNLOADS/softmealy.ps.gz
http://www.w3.org/TR/html4/
http://www.cs.princeton.edu/ appel/modern/java/CUP/
http://www.cs.princeton.edu/ appel/modern/java/CUP/
http://www.w3.org/TR/xml-infoset/
http://java.sun.com/downloads/
http://java.sun.com/xml/jaxb/
http://java.sun.com/xml/jaxp/


[Jonge00a] M. de Jonge and J. Visser. “Grammars as contracts. In Generative and Component-based 

Software Engineering (GCSE)”, Erfurt, Germany, Oct. 2000, Available at: 

http://www.cwi.nl/~mdejonge/papers/GrammarsAsContracts.pdf 

[Jonge00b] M. de Jonge, R. Monajemi, “Grammar re-engineering for language centered software 

engineering”, draft, oct 2000, Available at: 

http://www.cwi.nl/~mdejonge/papers/GrammarReengineeringforLCSE.pdf 

[Johnson75] S. C. Johnson, “YACC - Yet Another Compiler-Compiler”, Technical Report Computer Science 

32, Bell Laboratories, Murray Hill, New Jersey, 1975, Available at: 

http://epaperpress.com/lexandyacc/download/yacc.pdf 

[Johnstone97a] A. Johnstone, E. Scott, “Generalized recursive descent part1: Language desing and parsing”, 

Technical Report TR-97-18, Royal Holloway, University of London, Computer Science Department, October 

1997. 

[Johnstone97b] A. Johnstone, E. Scott, “Generalized recursive descent part2: Some underlying theory”, 

Technical Report TR-97-19, Royal Holloway, University of London, Computer Science Department, 

December 1997. 

[Karsai00] G. Karsai, "Design Tool Integration: An Exercise in Semantic Interoperability", Proceedings of 

the 7th IEEE International Conference and Workshop on the Engineering of Computer Based Systems, 2000, 

Available at: http://www.isis.vanderbilt.edu/publications/archive/Karsai_G_3_0_2000_Design_Too.pdf 

[Kienle01] H. Kienle, ”Exchange format bibliography”, ACM Software Engineering Notes, Volume 16, 

Number 1, pages 56-60, January 2001, Available at: 

http://cedar.csc.uvic.ca/twiki/kienle/pub/Main/MyPublications/Kienle:SEN:01.ps 

[Kipps91] J. R. Kipps, ”GLR parsing in time O(n3)”, In [Tomita91], chapter 4, pp. 43-59. 

[Klarlund00] N. Klarlund, A. M¢ller, and M. I. Schwartzbach, “DSD: A schema language for XML”, In 

ACM SIGSOFT Workshop on Formal Methods in Software Practice (FMSP’00), 2000, Available at: 

http://www.brics.dk/DSD/ 

[Klein97] B. Klein, P. Fankhauser, “Error tolerant document structure analysis”, International Journal of 

Digital Libraries 1997, pp. 344-357, Available at: ftp://ftp.darmstadt.gmd.de/pub/oasys/reports/P-97-18.ps.Z 

[Knuth68] D. E. Knuth, “Semantics of context-free languages”, Mathematical Systems Theory, 2 (2), pp. 

127-145, Springer-Verlag, 1968. 

 94

http://www.cwi.nl/~mdejonge/papers/GrammarsAsContracts.pdf
http://www.cwi.nl/~mdejonge/papers/GrammarReengineeringforLCSE.pdf
http://epaperpress.com/lexandyacc/download/yacc.pdf
http://www.isis.vanderbilt.edu/publications/archive/Karsai_G_3_0_2000_Design_Too.pdf
http://cedar.csc.uvic.ca/twiki/kienle/pub/Main/MyPublications/Kienle:SEN:01.ps
http://www.brics.dk/DSD/
ftp://ftp.darmstadt.gmd.de/pub/oasys/reports/P-97-18.ps.Z


[Koch99] T. Koch, “XML in practice: the groupware case”, presented at Enabling Technologies: 

Infrastructure for Collaborative Enterprises, 1999. (WET ICE '99)., 1999, Available at: 

http://bscw.gmd.de/Papers/wetice99/wetice99.pdf 

[Koster71] C. H. A. Koster, ”Affix Grammars”, In J. E. L. Peck, Editor, “Algol-68 Implementation”, North-

Holland, Amsterdam, 1971. 

[Kotok00] A. Kotok, “Extensible and more: An Updated Survey of XML Business Vocabularies”, August 

2000, Available at: http://www.xml.com/pub/2000/08/02/ebiz/extensible.html 

[Lang74] B. Lang, "Deterministic techniques for efficient non-deterministic parsers", In Automata, 

Languages, and Programming (LNCS #14). Springer-Verlag, 1974, pp. 255-269. 

[Lear99] A. C. Lear, “XML seen as integral to application integration”, IT Professional, vol. 1, pp. 12-16, 

1999, Available at: http://www.soc.staffs.ac.uk/~cmryl/refpapers/00793665.pdf 

[Lee00] S. Lee, “Template-based XML Data Integration System”, International Conference on Electronic 

Commerce, Seoul, Korea, 2000 

[Leemakers91] R. Leemakers, “Non-deterministic recursive ascent parsing”, In Fifth Conference of the 

European Chapter of Assosiations for Computational Linguistics, Proceeding of the Conference, pp. 63-68, 

Berlin, Germany, April 1991. 

[Lempinen01] E. Lempinen, H.Saarikoski, Editors, A. Jokipii, E. Ojanen, Submitters, ”Data Extraction 

Language DEL, submission”, W3C, 2001, Available at: http://www.w3.org/Submission/2001/10/ 

[Lempinen03] E. Lempinen, "Tekstitiedon muuntaminen XML-dokumenteiksi", M.Sc thesis, 15th October 

2003, draft 

[Lie99] H. W. Lie and J. Saarela , “Multipurpose Web publishing using HTML, XML, and CSS”, 

Communications of the ACM, vol. 42, pp. 95-101, 1999, Available at: 

http://www.w3.org/People/Janne/porject/paper.html 

[Liu00] L. Liu, C. Pu, and W. Han, “XWRAP: An XML-enabled Wrapper Construction System for Web 

Information Sources”, presented at 16th International Conference on Data Engineering, 2000.  

[Log4j] Available at: http://jakarta.apache.org/log4j/docs/download.html 

[Lowry00] P. B. Lowry, “XML, an enabler to extend intra-company collaboration through e-commerce: 

benefits, issues, and implementation strategies”, University of Arizona, Tucson Working Paper, May 31 

2000. 

 95

http://bscw.gmd.de/Papers/wetice99/wetice99.pdf
http://www.soc.staffs.ac.uk/~cmryl/refpapers/00793665.pdf
http://www.w3.org/Submission/2001/10/
http://jakarta.apache.org/log4j/docs/download.html


[Lowry01] P. B. Lowry, “XML data mediation and collaboration: a proposed comprehensive architecture and 

query requirements for using XML to mediate heterogeneous data sources and targets,” 34th Annual Hawaii 

International Conference On System Sciences (HICSS), Maui, Hawaii, 2001, Available at: 

www.cmi.arizona.edu/personal/plowry/ papers\2001 HICSS xml.pdf 

[Lu00] J. Lu, J. Mylopoulos, J. Ho. ”Towards extensible information brokers based on xml”, In To appear in 

12th Conference on Advanced Information Systems Engineering, 2000, Available at: 

http://www.cs.toronto.edu/~jglu/pub/caiseLNCS.pdf 

[Lublinsky02] B. Lublinsky, “Approaches to B2B integration”, EAI Journal, February 2002, pp. 38-47, 

Available at: http://www.eaijournal.com/PDF/B2BApproachesLublinksy.pdf 

[Lämmel01a] R. Lämmel, ”Grammar Adaption”, Proc. Formal Methods Europe (FME) 2001, LNCS(2021): 

550-570, Springer-Verlag, 2001, Available at: http://www.cwi.nl/~ralf/fme01/ 

[Lämmel01b] R. Lämmel, C. Verhoef, “Semi-automatic Grammar Recovery”, Software: Practice and 

Experience, vol. 31, no. 15, December 2001, pp. 1395-1438, Available at: http://www.cs.vu.nl/~x/ge/ge.pdf 

[Maletic02] J. Maletic, M. Collard, A. Marcus, ”Source code files as structured documents”, In Tenth 

International Workshop on Program Comprehension, Paris, France, June 2002. To appear. Available at: 

http://trident.mcs.kent.edu/~jmaletic/papers/iwpc02.pdf 

[Mamas00] E. Mamas, C. Kontogiannis, “Towards Portable Source Code Representations using XML”, in 

Proceedings of 7th Working Conference on Reverse Engineering (WCRE '00), Brisbane, Queensland, 

Australia, pp. 172-182, November 2000, Available at: 

http://www.swen.uwaterloo.ca/~evan/Papers/wcre2000.pdf 

[Martin91] J. C. Martin, “Introduction to Languages and the Theory of Computation”, McGraw-Hill, New 

York, 1991. 

[McCarthy65] J. McCarthy, “A Basis for a Mathematical Theory of Computation”, In Computer 

Programming and Formal Systems, edited by P. Braffort and D. Hirschberg, North-Holland, Amsterdam, 

1965, pp. 33-70. 

[Mclean98] Thom McLean, Leo Mark, David Rosenbaum, Jack Sheehan, Mike Hopkins: “Self-Defining 

Data Interchange Formats: A Mechanism for Preserving Interface Investment”, presented at the Fall 

Simulation Interoperability Workshop, Orlando, FL, 1998. 

[Meek90] B. Meek, "The Static Semantic File", ACM SIGPLAN Notices, 25(4), 1990, pp. 33-42, Available 

at: http://www.kcl.ac.uk/kis/support/cit/staff/brian/statsem.html 

 96

http://www.cs.toronto.edu/~jglu/pub/caiseLNCS.pdf
http://www.cwi.nl/~ralf/fme01/
http://www.cs.vu.nl/~x/ge/ge.pdf


[Meyer90] B. Meyer, "Introduction to the Theory of Programming Languages", Prentice Hall, Hemel 

Hempstead, UK, 1990. 

[Moonen01] L. Moonen, ”Generating robust parsers using island grammars”, In Proceedings of the 8th 

Working Conference on Reverse Engineering, pages 13-22. IEEE Computer Society Press, October 2001, 

Available at: http://www.cwi.nl/~leon/papers/wcrc2001/wcrx2001.pdf 

[Moonen02] L. Moonen, ”Lightweight impact analysis using island grammars”, In Proceedings of the 10th 

International Workshop on Program Comprehension (IWPC 2002). IEEE Computer Society Press, June 

2002, Available at: http://www.cwi.nl/~leon/papers/iwpc2002/iwpc2002.pdf 

[Murata97] M. Murata, ”Transformation of documents and schemas by patterns and contextual conditions”, 

In Principles of Document Processing '96, volume 1293 of Lecture Notes in Computer Science, pages 153-

169. Springer-Verlag, 1997. 

[Muslea99] I. Muslea, S. Minton, C. A. Knoblock, “Hierarchical Approach to Wrapper Induction”, 3rd 

conference on Autonomous Agents, 1999, Available at: http://www.isi.edu/~muslea/PS/hwi_aa99.ps 

[Nakhimovsky01] A. Nakhimovsky, “Parser generators for legacy data integration”,  Paper at the annual 

XML-Europe Conference, Berlin, May 21-25, 2001, Available at: 

http://www.gca.org/papers/xmleurope2001/papers/html/s07-3.html 

[Namespaces] W3C Recommendation, "Namespaces in XML", Editors: T. Bray, D. Hollander, A. Layman, 

14 January 1999. Available at: http://www.w3.org/TR/REC-xml-names  

[Naur63] P. Naur, editor, “Revised Report on the Algorithmic Language Algol 60”, Communications of the 

ACM, 6.1, January 1963, pp. 1-20, Available at: 

http://burks.brighton.ac.uk/burks/language/other/a60rr/report.htm 

[Nederhof92] M. J. Nederhof, “Generalized Left-Corner Parsing”, Technical report no.92-21, Unversity of 

Nijimegen, Department of Computer Science, August 1992. 

[Nozohoor-Farsi91] R. Nozohoor-Farsi, “GLR parsing for ε-grammars”,  In [Tomita, 1991], chapter 5, pp. 

61-75. 

[Ojanen01] E. Ojanen, "Method and Apparatus for Regrouping Data", US Patent Application #20020129005, 

2001. 

[Parr95] T. J. Parr and R. W. Quong, “ANTLR: A predicated-LL(k) parser generator”, Software –Practice 

and Experience, 25(7):789–810, July 1995, Available at: http://www.antlr.org/papers/antlr.ps 

 97

http://www.cwi.nl/~leon/papers/wcrc2001/wcrx2001.pdf
http://www.cwi.nl/~leon/papers/iwpc2002/iwpc2002.pdf
http://www.isi.edu/~muslea/PS/hwi_aa99.ps
http://www.gca.org/papers/xmleurope2001/papers/html/s07-3.html
http://www.w3.org/TR/REC-xml-names
http://burks.brighton.ac.uk/burks/language/other/a60rr/report.htm
http://www.antlr.org/papers/antlr.ps


[Parr97] T. J. Parr, “Language Translation Using PCCTS & C++”, Automata Publishing Company, 1997. 

ISBN: 0962748854. 

[Parsons92] T. W. Parsons, "Introduction to Compiler Construction", Computer Science Press, New York, 

1992. 

[Pepper99] P. Pepper, “LR Parsing = Grammar Transformation + LL Parsing”, Technical Report CS-99-05, 

TU Berlin, Apr. 1999, Available at: http://www.cs.tu-berlin.de/cs/ifb/TeBericht/99/tr99-5.ps 

[Pereira80] F. C. N. Pereira, D. H. D. Warren, ”Definite Clause Grammars for language analysis -  a survey 

of the formalism and comparison with augmented transition networks”, Artifical Inteligence, 13, pp. 231-

278, 1980. 

[Performer] Available at: http://www.x-fetch.com/performer.html 

[Petrou99] C. Petrou, S. Hadjiefthymiades, D. Martakos, “An XML-based, 3-tier scheme for integrating 

heterogeneous information sources to the WWW”, presented at Tenth International Workshop on Database 

and Expert Systems Applications, 1999. 

[Pinkston01] J. Pinkston, “The Ins and Outs of Integration – How EAI differs from B2B Integration”, EAI 

Journal, August 2001, pp. 48-52, Available at: http://www.eaijournal.com/PDF/Ins&OutsPinkston.pdf 

[Ragget99] D. Raggett, “Assertion grammars”, May 1999, Available at: 

http://www.w3.org/People/Raggett/dtdgen/Docs/ 

[Reinold99] M. Reinold, “An XML Data-Binding Facility for the Java Platform”, Palo Alto, 1999. Available 

at: http://java.sun.com/xml/white-papers.html. 

[Rekers92] J. Rekers, “Parser Generation for Interactive Environments”, Ph.D. thesis, University of 

Amsterdam, 1992, Available at: ftp://ftp.cwi.nl/pub/gipe/reports/Rek92.ps.Z 

[RFC1630] T. Berners-Lee, “Universal Resource Identifiers in WWW”, RFC 1630, June 1994. Available at: 

http://www.ietf.org/rfc/rfc1630.txt 

[RFC2119] S. Bradner, Editor, “Key words for use in RFCs to Indicate Requirement Levels”, RFC 2119, 

March 1997. Available at: http://www.ietf.org/rfc/rfc2119.txt 

[RFC2234] D. Crocker, Ed., “Augmented BNF for syntax specifications: ABNF”, RFC 2234, November 

1997. Available at: http://www.ietf.org/rfc/rfc2234.txt 

 98

http://www.cs.tu-berlin.de/cs/ifb/TeBericht/99/tr99-5.ps
http://www.x-fetch.com/performer.html
http://www.w3.org/People/Raggett/dtdgen/Docs/
http://java.sun.com/xml/white-papers.html
ftp://ftp.cwi.nl/pub/gipe/reports/Rek92.ps.Z
http://www.ietf.org/rfc/rfc1630.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2234.txt


[Salonen98] J. Salonen, E. Ojanen, M. Paananen, “XML & Structurally and Semantically Advanced 

Knowledge Retrieval and Distribution”, SGML/XML Finland '98, Conference Proceedings, 1998 

[Salonen99] J. Salonen, E. Ojanen, M. Paananen, T. Eskelinen, J. Lemmetty and A. Jokipii, “XML and 

Information Brokering; How E-services will Change Business Communication”, XML Finland '99 

Conference Proceedings, 1999  

[Sanborn00] S. Sanborn, “Portal proliferation benefits e-business”, InfoWorld, vol. 22, pp. 30, 2000, 

Available at: http://www.infoworld.com/articles/hn/xml/00/04/24/000424hnenabler.xml 

[Sahuguet98] A. Sahuguet, F. Azavant, “W4F: the WysiWyg Web Wrapper Factory”, Technical report, 

University of Pennsylvania, Department of Computer and Information Science, 1998, Available at: 

http://db.cis.upenn.edu/~sahuguet/WAPI/wapi/ 

[Saxon] Available at: http://saxon.sourceforge.net/ 

[Seymore99] K. Seymore, A. McCallum, R. Rosenfeld, “Learningh hidden Markov model structure for 

information extraction”, AAAI'99 Workshop on Machine Learning for Information Extraction, 1999, 

Available  at:  http://www.cs.cmu.edu/~mccallum/papers/iestruct-aaaiws99.ps.gz  

[Sellink00] M. Sellink, C. Verhoef, ”Development, assessment, and reengineering of language descriptions”, 

In J. Ebert, C. Verhoef, Editors, Proceeding of the Fourth European Conference of Software Maintenance and 

Reengineering, pages 151-160, IEEE Computer Society, March 2000, Available at: 

http://adam.wins.uva.nl/~x/ase98/ase98.html 

[Sippu88] S. Sippu, E. Soisalon-Soininen, ”Parsing Theory: Languages and Parsing. Volume 1”, EATCS 

Monographs on Theoretical Computer Science 15,  Springer-Verlag, 1988 

[Slonger95] K. Slonneger, B. L. Kurtz, “Formal Syntax and Semantics of Programming Languages: A 

Laboratory Based Approach”, Addison-Wesley, 1995, Available at: 

http://www.cs.uiowa.edu/~slonnegr/plf/Book/ 

[Spinellis01] D. Spinellis, “Notable design patterns for domain specific languages”, Journal of Systems and 

Software, 56(1):91-99, February 2001, Available at: http://softlab.icsd.aegean.gr/~dspin/pubs/jrnl/2000-JSS-

DSLPatterns/html/dslpat.html 

[Thomas99] B. Thomas, “Learning T-Wrappers”, Information Extraction Workshop on machine learning on 

human language technology, Advanced Course on Artificial Intelligence 1999 (ACAI'99), pp. 5-16, July 

1999, Available at: http://www.informatik.uni-koblenz.de/~bthomas/PAPERS/ACAI-99/full-paper.ps.gz  

 99

http://www.infoworld.com/articles/hn/xml/00/04/24/000424hnenabler.xml
http://db.cis.upenn.edu/~sahuguet/WAPI/wapi/
http://saxon.sourceforge.net/
http://www.cs.cmu.edu/~mccallum/papers/iestruct-aaaiws99.ps.gz
http://adam.wins.uva.nl/~x/ase98/ase98.html
http://www.cs.uiowa.edu/~slonnegr/plf/Book/
http://softlab.icsd.aegean.gr/~dspin/pubs/jrnl/2000-JSS-DSLPatterns/html/dslpat.html
http://softlab.icsd.aegean.gr/~dspin/pubs/jrnl/2000-JSS-DSLPatterns/html/dslpat.html
http://www.informatik.uni-koblenz.de/~bthomas/PAPERS/ACAI-99/full-paper.ps.gz


[Tomita86] M. Tomita, “Efficient Parsing for Natural Languages”, Kluwer Academic Publisher, 1986. 

[Tomita91] M. Tomita, editor. “Generalized LR parsing”, Kluwer Academic Publisher, 1991. 

[Unger68] S.H. Unger, "A global parser for context-free phrase structure grammars", Commun. ACM, vol. 

11, no. 4, p. 240-247, April 1968. 

[Unicode]. The Unicode Consortium, “The Unicode Standard, Version 4.0”, Reading, MA, Addison-Wesley, 

2003. 

[Usdin98] T. Usdin and T. Graham, “XML: not a silver bullet, but a great pipe wrench”, Standard View, vol. 

6, pp. 125-132, 1998, Available at: 

http://www.cs.uiowa.edu/~rlawrenc/teaching/296/Notes/XML_not_silver_bullet.pdf 

[Visser97a] E. Visser, “Syntax Definition for Language Prototyping”, PhD thesis, University of Amsterdam, 

1997, Available at: http://www.cs.uu.nl/people/visser/ftp/Vis97.ps.zip 

[Visser97b] E. Visser, “Character classes”, Technical Report P9708, Programming Research Group, 

University of Amsterdam, August 1997, Available at: http://www.cs.uu.nl/people/visser/ftp/P9708.ps.zip 

[Visser97c] E. Visser, “A family of syntax definition formalisms”, Technical Report P9706, Programming 

Research Group, University of Amsterdam, July 1997, Available at: 

http://www.cs.uu.nl/people/visser/ftp/P9706.ps.zip 

[Visser97d] E. Visser. “From context-free grammars with priorities to character class grammars”, In Liber 

Amicorum Paul Klint. CWI, Amsterdam, November 1997, Available at: 

http://www.cs.uu.nl/people/visser/ftp/P9717.ps.zip 

[Visser00] J. Visser, J. Scheerder, “A quick introduction to SDF”, Draft, 2000, Available at: 

http://www.cwi.nl/~jvisser/papers/sdfintro.pdf 

[Watt77] D. A. Watt, “The Parsing Problems of Affix Grammars”, Acta Informatica, 8 (1), 1-20, 1977. 

[Xalan] Available at: http://xml.apache.org/xalan-j/downloads.html 

[XML] W3C Recommendation , “Extensible Markup Language (XML) 1.0 Specification”, T. Bray, J. Paoli, 

C. M. Sperberg-McQueen, 10 February 1998. Available at: http://www.w3.org/TR/REC-xml 

[XMLSchema] W3C Recommendation , “XML Schema Part 0: Primer”, D. C. Fallside, editor, 2 May 2001, 

Available at: http://www.w3.org/TR/xmlschema-0/ 

 100

http://www.cs.uiowa.edu/~rlawrenc/teaching/296/Notes/XML_not_silver_bullet.pdf
http://www.cs.uu.nl/people/visser/ftp/Vis97.ps.zip
http://www.cs.uu.nl/people/visser/ftp/P9708.ps.zip
http://www.cs.uu.nl/people/visser/ftp/P9706.ps.zip
http://www.cs.uu.nl/people/visser/ftp/P9717.ps.zip
http://www.cwi.nl/~jvisser/papers/sdfintro.pdf
http://xml.apache.org/xalan-j/downloads.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-0/


[XMLse] W3C Recommendation , “Extensible Markup Language (XML) 1.0 (Second Edition)”, T. Bray, J. 

Paoli, C. M. Sperberg-McQueen, October 2000, Available at: http://www.w3.org/TR/REC-xml  

[XPath] W3C Recommendation , “XML Path Language”, J. Clark, S. DeRose, editors, 16 November 1999, 

Available at: http://www.w3.org/TR/xpath 

[XSL] W3C Recommendation , “Web Style Sheets”, May 2000, Available at: http://www.w3.org/Style/XSL/ 

[XSLT] W3C Recommendation, “XSL Transformations (XSLT)”, J. Clark, editor, 16 November 1999, 

Available at: http://www.w3.org/TR/xslt 

[Walsh97] N. Walsh, “A Guide to XML”, World Wide Web Journal, vol. 2, issue 4, fall 1997, O'Reilly & 

Associates, 1997, revised and XML 1.0 up-to-date edition is available at: 

http://www.xml.com/pub/98/10/guide0.html. 

[Watt91] D. Watt, “Programming Language Syntax and Semantics”, Prentice Hall International, Hemel 

Hempstead, UK, 1991.  

[Widergren99] S. Widergren, A. deVos, J. Zhu, “XML for data exchange”, presented at Power Engineering 

Society Summer Meeting, 1999, Available at: http://ce.sejong.ac.kr/~dshin/Papers/XML/00787426.pdf 

[Wile97] D. S. Wile. “Abstract syntax from concrete syntax”. In Proceedings of the 19th International 

Conference on Software Engineering (ICSE ’97), pages 472–480, Berlin - Heidelberg – New York, May 

1997, Available at: http://mr.teknowledge.com/wile/Popart/ConcreteToAbstract.pdf  

[Wirth77] N. Wirth, “What can we do about the unnecessary diversity of notation for syntactic definitions?”, 

Communications of the ACM, 20(11), 822-823, 1977. 

[Worder00] R. Worden, “XML e-business standards: Promises and pitfalls”, vol. 2000: XML.com, 2000, 

Available at: http://www.xml.com/pub/a/2000/01/ebusiness/ 

[Wijegunaratne00] I. Wijegunaratne, G. Fernandez, J. Valtoudis, “A federated architecture for enterprise data 

integration”, Software Engineering Conference, 2000. Proceedings. 2000 Australian ,  pp. 159 –167, 2000, 

Available at: 

 101

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt
http://ce.sejong.ac.kr/~dshin/Papers/XML/00787426.pdf
http://mr.teknowledge.com/wile/Popart/ConcreteToAbstract.pdf
http://www.xml.com/pub/a/2000/01/ebusiness/


Appendices 

Appendix 1. DTD for BNF 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- This is the DTD for the BNF grammars. --> 
 
<!-- ================================================== --> 
<!-- ENTITIES --> 
<!-- ================================================== --> 
<!-- Member elements for Rules and Alternatives --> 
<!ENTITY % members "(Nonterminal|Terminal)+"> 
 
<!-- ================================================== --> 
<!-- GRAMMAR ELEMENTS --> 
<!-- ================================================== --> 
 
<!-- this is the top-level element --> 
<!ELEMENT Grammar (Rule, Alternative*)+> 
 
<!-- this is definition for nonterminal rules --> 
<!ELEMENT Rule %members;> 
<!ATTLIST Rule 
 nonterminal CDATA #REQUIRED 
> 
 
<!— 
This is definition for alternative rules to preceeding sibling rule. 
 --> 
<!ELEMENT Alternative %members;> 
 
<!ELEMENT Nonterminal EMPTY> 
<!ATTLIST Nonterminal 
 name CDATA #REQUIRED 
> 
 
<!ELEMENT Terminal (#PCDATA)> 

Appendix 2. XSLT stylesheet to generate reverse XSLT 
<?xml version="1.0" encoding="iso-8859-1" ?> 
 
<!-- 
  This XSLT stylesheet generates reverse XSLT stylesheet for the given GDEL 
specification. 
  Author: Antti Jokipii, Republica Corp. (2002) 
 --> 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
 
   <xsl:output method="xml" indent="yes"/> 
   <xsl:strip-space elements="*"/> 
 
   <xsl:template match="Grammar"> 
      <xsl:element name="xsl:stylesheet"> 
         <xsl:attribute name="version">1.0</xsl:attribute> 
         <xsl:element name="xsl:output"> 
            <xsl:attribute name="method">text</xsl:attribute> 
         </xsl:element> 
         <xsl:element name="xsl:strip-space"> 
            <xsl:attribute name="elements">*</xsl:attribute> 
         </xsl:element> 
         <xsl:apply-templates/> 
      </xsl:element> 
   </xsl:template> 
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   <xsl:template match="Rule"> 
      <xsl:element name="xsl:template"> 
         <xsl:attribute name="match"> 
            <xsl:value-of select="@id"/> 
         </xsl:attribute> 
         <xsl:if test=".//*[self::Char or self::String]"> 
           <xsl:apply-templates/> 
         </xsl:if> 
         <xsl:if test="not(.//*[self::Char or self::String])"> 
            <xsl:element name="xsl:apply-templates"/> 
         </xsl:if> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="Nonterminal"> 
      <xsl:element name="xsl:apply-templates"> 
         <xsl:attribute name="select"> 
            <xsl:text>*[</xsl:text> 
            <xsl:for-each select="/.//Rule[@nonterminal = current()/@name]"> 
               <xsl:text>self::</xsl:text> 
               <xsl:value-of select="@id"/> 
               <xsl:if test="position() != last()"> 
                  <xsl:text> or </xsl:text> 
               </xsl:if> 
            </xsl:for-each> 
            <xsl:text>]</xsl:text> 
            <xsl:if test="count(../Nonterminal[@name = current()/@name]) > 1"> 
               <xsl:text>[</xsl:text> 
               <xsl:value-of select="count(preceding-sibling::Nonterminal[@name = 
current()/@name])+1"/> 
               <xsl:text>]</xsl:text> 
            </xsl:if> 
         </xsl:attribute> 
         <xsl:apply-templates/> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="OneOrMore/Nonterminal | ZeroOrMore/Nonterminal"> 
      <xsl:element name="xsl:apply-templates"> 
         <xsl:attribute name="select"> 
            <xsl:for-each select="/.//Rule[@nonterminal = current()/@name]"> 
               <xsl:text>self::</xsl:text> 
               <xsl:value-of select="@id"/> 
               <xsl:if test="position() != last()"> 
                  <xsl:text> | </xsl:text> 
               </xsl:if> 
            </xsl:for-each> 
         </xsl:attribute> 
         <xsl:apply-templates/> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="Char"> 
      <xsl:element name="xsl:text"> 
         <xsl:if test="string-length(@value) = 1"> 
            <xsl:value-of select="@value"/> 
         </xsl:if> 
         <xsl:if test="string-length(@value) > 1"> 
            <xsl:text disable-output-escaping="yes">&amp;#x</xsl:text> 
            <xsl:value-of select="@value"/> 
            <xsl:text>;</xsl:text> 
         </xsl:if> 
      </xsl:element> 
   </xsl:template> 
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   <xsl:template match="String"> 
      <xsl:element name="xsl:text"> 
         <xsl:value-of select="@value"/> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="CharClass"> 
      <xsl:element name="xsl:value-of"> 
         <xsl:attribute name="select"> 
            <xsl:text>substring(text(),</xsl:text> 
            <xsl:if test="not(parent::OneOrMore | parent::ZeroOrMore)"> 
               <xsl:value-of select="count(preceding-sibling::*[self::CharClass])+1"/> 
               <xsl:text>,</xsl:text> 
               <xsl:text>1</xsl:text> 
            </xsl:if> 
            <xsl:if test="parent::OneOrMore | parent::ZeroOrMore"> 
               <xsl:value-of select="count(../preceding-
sibling::*[self::CharClass])+1"/> 
               <xsl:text>,string-length(text()) - </xsl:text> 
               <xsl:value-of select="count(../preceding-sibling::*[self::CharClass])"/> 
            </xsl:if> 
            <xsl:text>)</xsl:text> 
         </xsl:attribute> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="OneOrMore[Nonterminal] | ZeroOrMore[Nonterminal] | 
Optional[Nonterminal]"> 
      <xsl:element name="xsl:for-each"> 
         <xsl:attribute name="select"> 
            <xsl:text>*[</xsl:text> 
            <xsl:for-each select="/.//Rule[@nonterminal = current()/Nonterminal/@name]"> 
               <xsl:text>self::</xsl:text> 
               <xsl:value-of select="@id"/> 
               <xsl:if test="position() != last()"> 
                  <xsl:text> or </xsl:text> 
               </xsl:if> 
            </xsl:for-each> 
            <xsl:text>]</xsl:text> 
         </xsl:attribute> 
         <xsl:apply-templates/> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="OneOrMore | ZeroOrMore | Optional"> 
      <xsl:apply-templates/> 
   </xsl:template> 
    
    
</xsl:stylesheet> 

Appendix 3. XSLT stylesheet to generate XML Schema 
<?xml version="1.0" encoding="iso-8859-1" ?> 
 
<!-- 
  This XSLT stylesheet generates XML Schema for the given GDEL specification. 
  Author: Antti Jokipii, Republica Corp. (2003) 
 --> 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
 
   <xsl:output method="xml" indent="yes"/> 
   <xsl:strip-space elements="*"/> 
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   <xsl:template match="Grammar"> 
      <xsl:element name="xsd:schema"> 
         <xsl:for-each select="//Rule[not(@nonterminal=preceding-
sibling::Rule/@nonterminal)]"> 
            <xsl:element name="xsd:group"> 
               <xsl:attribute name="name"> 
                  <xsl:value-of select="@nonterminal"/> 
               </xsl:attribute> 
               <xsl:element name="xsd:choice"> 
                  <xsl:for-each select="//Rule[@nonterminal=current()/@nonterminal]"> 
                     <xsl:element name="xsd:element"> 
                        <xsl:attribute name="name"> 
                           <xsl:value-of select="@id"/> 
                        </xsl:attribute> 
                     </xsl:element> 
                  </xsl:for-each> 
               </xsl:element> 
            </xsl:element> 
         </xsl:for-each> 
         <xsl:apply-templates/> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="Rule"> 
      <xsl:element name="xsd:element"> 
         <xsl:attribute name="name"> 
            <xsl:value-of select="@id"/> 
         </xsl:attribute> 
         <xsl:if test=".//Nonterminal"> 
            <xsl:element name="xsd:complexType"> 
               <xsl:element name="xsd:sequence"> 
                  <xsl:apply-templates/> 
               </xsl:element> 
            </xsl:element> 
         </xsl:if> 
         <xsl:if test="not(.//Nonterminal)"> 
            <xsl:element name="xsd:simpleType"> 
               <xsl:element name="xsd:restriction"> 
                  <xsl:attribute name="base">xsd:string</xsl:attribute> 
               </xsl:element> 
            </xsl:element> 
         </xsl:if> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="Nonterminal"> 
      <xsl:element name="xsd:group"> 
         <xsl:attribute name="ref"> 
            <xsl:value-of select="@name"/> 
         </xsl:attribute> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="OneOrMore"> 
      <xsl:element name="xsd:sequence"> 
         <xsl:attribute name="minOccurs">1</xsl:attribute> 
         <xsl:attribute name="maxOccurs">unbounded</xsl:attribute> 
         <xsl:apply-templates/> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="ZeroOrMore"> 
      <xsl:element name="xsd:sequence"> 
         <xsl:attribute name="minOccurs">0</xsl:attribute> 
         <xsl:attribute name="maxOccurs">unbounded</xsl:attribute> 
         <xsl:apply-templates/> 
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      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="Optional"> 
      <xsl:element name="xsd:sequence"> 
         <xsl:attribute name="minOccurs">0</xsl:attribute> 
         <xsl:attribute name="maxOccurs">1</xsl:attribute> 
         <xsl:apply-templates/> 
      </xsl:element> 
   </xsl:template> 
    
    
   <xsl:template match="String"> 
      <xsl:element name="xsd:element"> 
         <xsl:attribute name="name"> 
            <xsl:value-of select="@value"/> 
         </xsl:attribute> 
         <xsl:attribute name="type">xsd:string</xsl:attribute> 
      </xsl:element> 
   </xsl:template> 
    
    
</xsl:stylesheet> 

Appendix 4. XML Schema for GDEL 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<!-- Antti Jokipii (Republica Corp) 2003 --> 
<xs:schema targetNamespace="http://www.x-fetch.com/GDEL" 
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:gdl="http://www.x-fetch.com/GDEL" 
elementFormDefault="qualified" attributeFormDefault="unqualified"> 
  <xs:element name="Gdel"> 
    <xs:annotation> 
      <xs:documentation>The root element of GDEL specification.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:choice minOccurs="0" maxOccurs="unbounded"> 
        <xs:element ref="gdl:Annotation"/> 
        <xs:element ref="gdl:Property"/> 
        <xs:element ref="gdl:Grammar"/> 
      </xs:choice> 
      <xs:attribute name="version" use="optional" fixed="1.0"> 
        <xs:annotation> 
          <xs:documentation>GDEL language version. The GDEL processor verifies the 
compatibility from this attribute. (In version 1.0 of GDEL Language Specification, for 
example, this attribute must have value 1.0.)</xs:documentation> 
        </xs:annotation> 
        <xs:simpleType> 
          <xs:restriction base="xs:string"/> 
        </xs:simpleType> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Property"> 
    <xs:annotation> 
      <xs:documentation>The property element defines a value of the named 
property.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:attribute name="name" type="gdl:PropertyNames" use="required"> 
        <xs:annotation> 
          <xs:documentation>Name of property.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
      <xs:attribute name="value" type="xs:string" use="required"> 
        <xs:annotation> 
          <xs:documentation>Value of property</xs:documentation> 
        </xs:annotation> 
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      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="FollowRestriction"> 
    <xs:annotation> 
      <xs:documentation>Defines the follow restriction for the rule. Follow restrictions 
are used as "a prefer longest match" to lexical tokens.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element ref="gdl:CharClass"/> 
      </xs:sequence> 
      <xs:attribute name="rule" type="xs:IDREF" use="required"/> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Grammar"> 
    <xs:annotation> 
      <xs:documentation>Defines the grammar.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:choice minOccurs="0" maxOccurs="unbounded"> 
        <xs:element name="Params"> 
          <xs:annotation> 
            <xs:documentation>Define needed parameters.</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
            <xs:sequence maxOccurs="unbounded"> 
              <xs:element ref="gdl:Nonterminal"/> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
        <xs:element name="Import"> 
          <xs:annotation> 
            <xs:documentation>Import selected module to this modele.</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element name="WithParams" minOccurs="0"> 
                <xs:annotation> 
                  <xs:documentation>Import module with these 
parameters.</xs:documentation> 
                </xs:annotation> 
                <xs:complexType> 
                  <xs:sequence maxOccurs="unbounded"> 
                    <xs:element ref="gdl:Nonterminal"/> 
                  </xs:sequence> 
                </xs:complexType> 
              </xs:element> 
              <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
                <xs:element name="Rename"> 
                  <xs:annotation> 
                    <xs:documentation>To avoid name clashes terms of imported mmodule 
could been renamed. This element defines renaming for imported 
module.</xs:documentation> 
                  </xs:annotation> 
                  <xs:complexType> 
                    <xs:attribute name="sort" type="xs:string" use="required"> 
                      <xs:annotation> 
                        <xs:documentation>Name of imported nonterminal to be 
renamed.</xs:documentation> 
                      </xs:annotation> 
                    </xs:attribute> 
                    <xs:attribute name="to" type="xs:string" use="required"> 
                      <xs:annotation> 
                        <xs:documentation>New name.</xs:documentation> 
                      </xs:annotation> 
                    </xs:attribute> 
                  </xs:complexType> 
                </xs:element> 
              </xs:sequence> 
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            </xs:sequence> 
            <xs:attribute name="Module" type="xs:anyURI" use="required"> 
              <xs:annotation> 
                <xs:documentation>An import of module M into this module means that the 
syntax of M is included in the syntax of this module.</xs:documentation> 
              </xs:annotation> 
            </xs:attribute> 
          </xs:complexType> 
        </xs:element> 
        <xs:element name="Alias"> 
          <xs:annotation> 
            <xs:documentation>Defines alias.</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
            <xs:complexContent> 
              <xs:extension base="gdl:RuleType"> 
                <xs:attribute name="name" type="xs:ID" use="required"> 
                  <xs:annotation> 
                    <xs:documentation>Name of alias.</xs:documentation> 
                  </xs:annotation> 
                </xs:attribute> 
              </xs:extension> 
            </xs:complexContent> 
          </xs:complexType> 
        </xs:element> 
        <xs:element ref="gdl:LexicalSyntax"/> 
        <xs:element ref="gdl:FollowRestriction"/> 
        <xs:element ref="gdl:ContextFreeSyntax"/> 
        <xs:element ref="gdl:Priorities"/> 
        <xs:element ref="gdl:Rule"/> 
        <xs:element ref="gdl:Annotation"/> 
        <xs:element ref="gdl:Layout"/> 
      </xs:choice> 
      <xs:attribute name="module" type="xs:string" use="optional"> 
        <xs:annotation> 
          <xs:documentation>Name of module.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="LexicalSyntax"> 
    <xs:annotation> 
      <xs:documentation>Defines lexical tokens.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:choice maxOccurs="unbounded"> 
        <xs:element ref="gdl:Rule"/> 
        <xs:element ref="gdl:FollowRestriction"/> 
        <xs:element ref="gdl:Annotation"/> 
      </xs:choice> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="ContextFreeSyntax"> 
    <xs:annotation> 
      <xs:documentation>Defines the context-free productions.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:choice maxOccurs="unbounded"> 
        <xs:element ref="gdl:Rule"/> 
        <xs:element ref="gdl:FollowRestriction"/> 
        <xs:element ref="gdl:Annotation"/> 
      </xs:choice> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Range"> 
    <xs:annotation> 
      <xs:documentation>The range of characters in the character 
class.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
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      <xs:attribute name="start" type="gdl:CharValue" use="required"> 
        <xs:annotation> 
          <xs:documentation>Start character of range.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
      <xs:attribute name="end" type="gdl:CharValue" use="required"> 
        <xs:annotation> 
          <xs:documentation>End character of range.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Rule"> 
    <xs:annotation> 
      <xs:documentation>Defines the rule for the nonterminal 
production.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:complexContent> 
        <xs:extension base="gdl:RuleType"> 
          <xs:attribute name="nonterminal" type="xs:string" use="required"> 
            <xs:annotation> 
              <xs:documentation>Name of nonterminal of rule.</xs:documentation> 
            </xs:annotation> 
          </xs:attribute> 
          <xs:attribute name="id" type="xs:ID" use="required"> 
            <xs:annotation> 
              <xs:documentation>Identifier of rule. Identifier is used as element name 
in output XML.</xs:documentation> 
            </xs:annotation> 
          </xs:attribute> 
          <xs:attribute name="assoc" type="gdl:AssocValue" use="optional"> 
            <xs:annotation> 
              <xs:documentation>Type of associativity relation of 
rule.</xs:documentation> 
            </xs:annotation> 
          </xs:attribute> 
          <xs:attribute name="reject" type="xs:boolean" use="optional" default="false"> 
            <xs:annotation> 
              <xs:documentation>Defines reject production.</xs:documentation> 
            </xs:annotation> 
          </xs:attribute> 
        </xs:extension> 
      </xs:complexContent> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Layout" type="gdl:RuleType"> 
    <xs:annotation> 
      <xs:documentation>The content of this element is the layout and does not appear in 
output XML.</xs:documentation> 
    </xs:annotation> 
  </xs:element> 
  <xs:element name="Nonterminal"> 
    <xs:annotation> 
      <xs:documentation>Refers to the named nonterminal.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:attribute name="name" type="xs:string" use="required"> 
        <xs:annotation> 
          <xs:documentation>Name of nonterminal referred</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Char"> 
    <xs:annotation> 
      <xs:documentation>Terminal character.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:attribute name="value" type="gdl:CharValue" use="required"> 
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        <xs:annotation> 
          <xs:documentation>Character or hexadecimal value of 
character.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="CharClass"> 
    <xs:annotation> 
      <xs:documentation>A set of terminal characters. The content of this element is 
handled as union.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:choice maxOccurs="unbounded"> 
        <xs:element ref="gdl:Range"/> 
        <xs:element ref="gdl:Char"/> 
        <xs:element name="Difference"> 
          <xs:annotation> 
            <xs:documentation>Difference of two character clases.</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element ref="gdl:CharClass"/> 
              <xs:element ref="gdl:CharClass"/> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
        <xs:element name="Intersection"> 
          <xs:annotation> 
            <xs:documentation>Intersection of two character classes.</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element ref="gdl:CharClass"/> 
              <xs:element ref="gdl:CharClass"/> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
        <xs:element ref="gdl:CharClass"/> 
        <xs:element ref="gdl:Alias"/> 
        <xs:element ref="gdl:Annotation"/> 
      </xs:choice> 
      <xs:attribute name="negated" type="xs:boolean" use="optional" default="false"> 
        <xs:annotation> 
          <xs:documentation>Is this character class negated.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Optional" type="gdl:RuleType"> 
    <xs:annotation> 
      <xs:documentation>The element content is optional.</xs:documentation> 
    </xs:annotation> 
  </xs:element> 
  <xs:element name="OneOrMore" type="gdl:RuleType"> 
    <xs:annotation> 
      <xs:documentation>The element content occurs once or several 
times.</xs:documentation> 
    </xs:annotation> 
  </xs:element> 
  <xs:element name="ZeroOrMore" type="gdl:RuleType"> 
    <xs:annotation> 
      <xs:documentation>The element content occurs zero or more 
times.</xs:documentation> 
    </xs:annotation> 
  </xs:element> 
  <xs:element name="String"> 
    <xs:annotation> 
      <xs:documentation>A string i.e. sequence of characters.</xs:documentation> 
    </xs:annotation> 
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    <xs:complexType> 
      <xs:attribute name="value" type="xs:string" use="required"> 
        <xs:annotation> 
          <xs:documentation>Actual string value.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Alternatives" type="gdl:RuleType"> 
    <xs:annotation> 
      <xs:documentation>One of content elements.</xs:documentation> 
    </xs:annotation> 
  </xs:element> 
  <xs:element name="Sequence" type="gdl:RuleType"> 
    <xs:annotation> 
      <xs:documentation>The explicit sequence of content elements.</xs:documentation> 
    </xs:annotation> 
  </xs:element> 
  <xs:element name="Alias"> 
    <xs:annotation> 
      <xs:documentation>An alias reference.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:attribute name="ref" type="xs:IDREF" use="required"/> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="List"> 
    <xs:annotation> 
      <xs:documentation>The list of items separated with the 
separator.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element name="Separator" type="gdl:RuleType"> 
          <xs:annotation> 
            <xs:documentation>Definition of list separator.</xs:documentation> 
          </xs:annotation> 
        </xs:element> 
        <xs:element name="Item" type="gdl:RuleType"> 
          <xs:annotation> 
            <xs:documentation>Definition of Items of list.</xs:documentation> 
          </xs:annotation> 
        </xs:element> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Permutation" type="gdl:RuleType"> 
    <xs:annotation> 
      <xs:documentation>Content elements occur exactly once in any 
order.</xs:documentation> 
    </xs:annotation> 
  </xs:element> 
  <xs:element name="Priorities"> 
    <xs:annotation> 
      <xs:documentation>Defines the priority chain of rules.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:choice maxOccurs="unbounded"> 
        <xs:element ref="gdl:Annotation"/> 
        <xs:element ref="gdl:Group"/> 
        <xs:element name="Chain"> 
          <xs:annotation> 
            <xs:documentation>Defines the chain of priority rules.</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
            <xs:choice maxOccurs="unbounded"> 
              <xs:element name="Rule"> 
                <xs:annotation> 
                  <xs:documentation>Reference to rule.</xs:documentation> 
                </xs:annotation> 
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                <xs:complexType> 
                  <xs:attribute name="ref" type="xs:IDREF" use="required"> 
                    <xs:annotation> 
                      <xs:documentation>Reference to specific rule.</xs:documentation> 
                    </xs:annotation> 
                  </xs:attribute> 
                </xs:complexType> 
              </xs:element> 
              <xs:element ref="gdl:Group"/> 
            </xs:choice> 
          </xs:complexType> 
        </xs:element> 
        <xs:element name="Priority"> 
          <xs:annotation> 
            <xs:documentation>Declares single priority relation.</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
            <xs:attribute name="rule" type="xs:IDREF" use="required"> 
              <xs:annotation> 
                <xs:documentation>Rule referen.</xs:documentation> 
              </xs:annotation> 
            </xs:attribute> 
            <xs:attribute name="hasRelation" type="gdl:PriorityRelations" 
use="required"> 
              <xs:annotation> 
                <xs:documentation>Type of priority.</xs:documentation> 
              </xs:annotation> 
            </xs:attribute> 
            <xs:attribute name="toRule" type="xs:IDREF" use="required"> 
              <xs:annotation> 
                <xs:documentation>Rule reference.</xs:documentation> 
              </xs:annotation> 
            </xs:attribute> 
          </xs:complexType> 
        </xs:element> 
      </xs:choice> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Iteration"> 
    <xs:annotation> 
      <xs:documentation>The element content occurs as many times as the attribute value 
defines.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:complexContent> 
        <xs:extension base="gdl:RuleType"> 
          <xs:attribute name="times" type="xs:int" use="required"> 
            <xs:annotation> 
              <xs:documentation>How many iterations.</xs:documentation> 
            </xs:annotation> 
          </xs:attribute> 
        </xs:extension> 
      </xs:complexContent> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Group"> 
    <xs:annotation> 
      <xs:documentation>A Group of mutually associative rules.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:choice maxOccurs="unbounded"> 
        <xs:element name="Rule"> 
          <xs:annotation> 
            <xs:documentation>Reference to rule.</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
            <xs:attribute name="ref" type="xs:IDREF" use="required"> 
              <xs:annotation> 
                <xs:documentation>Reference to specific rule.</xs:documentation> 
              </xs:annotation> 
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            </xs:attribute> 
          </xs:complexType> 
        </xs:element> 
      </xs:choice> 
      <xs:attribute name="assoc" type="gdl:AssocValue" use="required"> 
        <xs:annotation> 
          <xs:documentation>Type of associativity of rules in group.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:complexType name="RuleType"> 
    <xs:annotation> 
      <xs:documentation>Type for rule content.</xs:documentation> 
    </xs:annotation> 
    <xs:choice minOccurs="0" maxOccurs="unbounded"> 
      <xs:element ref="gdl:Nonterminal"/> 
      <xs:element ref="gdl:Char"/> 
      <xs:element ref="gdl:CharClass"/> 
      <xs:element ref="gdl:String"/> 
      <xs:element ref="gdl:Optional"/> 
      <xs:element ref="gdl:ZeroOrMore"/> 
      <xs:element ref="gdl:OneOrMore"/> 
      <xs:element ref="gdl:Iteration"/> 
      <xs:element ref="gdl:Alternatives"/> 
      <xs:element ref="gdl:Sequence"/> 
      <xs:element ref="gdl:Permutation"/> 
      <xs:element ref="gdl:List"/> 
      <xs:element ref="gdl:Annotation"/> 
      <xs:element ref="gdl:Layout"/> 
      <xs:element ref="gdl:Alias"/> 
    </xs:choice> 
  </xs:complexType> 
  <xs:simpleType name="PropertyNames"> 
    <xs:annotation> 
      <xs:documentation>An enumeration of property names.</xs:documentation> 
    </xs:annotation> 
    <xs:restriction base="xs:string"> 
      <xs:enumeration value="GrammarStartSymbol"/> 
      <xs:enumeration value="InputEncoding"/> 
      <xs:enumeration value="CharacterSet"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="CharValue"> 
    <xs:annotation> 
      <xs:documentation>The character value or it's hexadecimal 
representation.</xs:documentation> 
    </xs:annotation> 
    <xs:union> 
      <xs:simpleType> 
        <xs:restriction base="xs:string"> 
          <xs:minLength value="1"/> 
          <xs:maxLength value="1"/> 
        </xs:restriction> 
      </xs:simpleType> 
      <xs:simpleType> 
        <xs:restriction base="xs:hexBinary"> 
          <xs:minLength value="1"/> 
          <xs:maxLength value="3"/> 
        </xs:restriction> 
      </xs:simpleType> 
    </xs:union> 
  </xs:simpleType> 
  <xs:simpleType name="AssocValue"> 
    <xs:annotation> 
      <xs:documentation>An enumeration of assoc values.</xs:documentation> 
    </xs:annotation> 
    <xs:restriction base="xs:NMTOKEN"> 
      <xs:enumeration value="left"/> 
      <xs:enumeration value="right"/> 
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      <xs:enumeration value="assoc"/> 
      <xs:enumeration value="non-assoc"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="PriorityRelations"> 
    <xs:annotation> 
      <xs:documentation>A union of priority relations and assoc 
values.</xs:documentation> 
    </xs:annotation> 
    <xs:union> 
      <xs:simpleType> 
        <xs:restriction base="gdl:AssocValue"/> 
      </xs:simpleType> 
      <xs:simpleType> 
        <xs:restriction base="xs:NMTOKEN"> 
          <xs:enumeration value="greater"/> 
        </xs:restriction> 
      </xs:simpleType> 
    </xs:union> 
  </xs:simpleType> 
  <xs:complexType name="openAttrs"> 
    <xs:annotation> 
      <xs:documentation>The type is extended by almost all schema types to allow 
attributes from other namespaces to be added to user schemas.</xs:documentation> 
    </xs:annotation> 
    <xs:complexContent> 
      <xs:restriction base="xs:anyType"> 
        <xs:anyAttribute namespace="##other" processContents="lax"/> 
      </xs:restriction> 
    </xs:complexContent> 
  </xs:complexType> 
  <xs:complexType name="annotated"> 
    <xs:annotation> 
      <xs:documentation>The type is extended by all types which allow 
annotations.</xs:documentation> 
    </xs:annotation> 
    <xs:complexContent> 
      <xs:extension base="gdl:openAttrs"> 
        <xs:sequence> 
          <xs:element ref="gdl:Annotation" minOccurs="0"/> 
        </xs:sequence> 
      </xs:extension> 
    </xs:complexContent> 
  </xs:complexType> 
  <xs:element name="Appinfo"> 
    <xs:annotation> 
      <xs:documentation>The element content is intended for for automatic 
processing.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType mixed="true"> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:any processContents="lax"/> 
      </xs:sequence> 
      <xs:attribute name="source" type="xs:anyURI"> 
        <xs:annotation> 
          <xs:documentation>An optional URI reference to supplement the local 
information.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Documentation"> 
    <xs:annotation> 
      <xs:documentation>The element content is intended for human 
consumption.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType mixed="true"> 
      <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
        <xs:any processContents="lax"/> 
      </xs:sequence> 
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      <xs:attribute name="source" type="xs:anyURI"> 
        <xs:annotation> 
          <xs:documentation>An optional URI reference to supplement the local 
information.</xs:documentation> 
        </xs:annotation> 
      </xs:attribute> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="Annotation"> 
    <xs:annotation> 
      <xs:documentation>An annotation is information for human and/or mechanical 
consumers. The interpretation of such information is not defined in this 
specification.</xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
      <xs:complexContent> 
        <xs:extension base="gdl:openAttrs"> 
          <xs:choice> 
            <xs:element ref="gdl:Appinfo"/> 
            <xs:element ref="gdl:Documentation"/> 
          </xs:choice> 
          <xs:attribute name="id" type="xs:ID"/> 
        </xs:extension> 
      </xs:complexContent> 
    </xs:complexType> 
  </xs:element> 
</xs:schema> 
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