Santtu Salminen

Teemu Vidgrén

MANAGING RAPID APPLICATION DEVELOPMENT RISKS
WITH A GRAPHICAL MODELING METHOD

Information systems
Master of Science thesis
6.7.2001

University of Jyvaskyla
Department of Computer Science and Information Systems

Jyviaskyld

ABSTRACT

Managing Rapid Application Development Risks with a Graphical Modeling Method
Salminen, Santtu Harri Severi and Vidgrén, Teemu Olavi

Information systems

August 7%, 2000

University of Jyviskyld

123 p.

M.Sc. Thesis

The controllability of software project risks has always been an area of interest in
software engineering. Software project risk management in general has been studied
extensively, but the scope of the inspection has traditionally been on linear software
development paradigms, for example waterfall approach.

With the emergence of software development environments and tools that allow
information systems to be developed significantly faster than before, the rapid
application development has gained a strong foothold among information systems
development methodologies. However, the controllability of risks in rapid application
development projects poses a new challenge. In this thesis, we study the effects of using
a graphical modeling method and a CASE tool on rapid application development project
risks.

By identifying risks emerging in typical rapid application development projects, a tool
for managing these risks was developed. The tool consisted of Notes Design Language
modeling method and NotesEdit CASE tool. The effects of the tool utilization on the
identified risks was studied in two pilot projects.

Our study indicates that the use of the modeling method has an effect of reducing the
risk exposure of those risk items, that are usually predominant in rapid application
development. These risk items are mainly related to the scope and requirements and
execution of the project. However, the rapid application development sets some special
requirements for the CASE tool.

KEYWORDS: risk management, rapid application development, graphical modeling
methods, metamodels

THVISTELMA

Managing Rapid Application Development Risks with a Graphical Modeling Method
Salminen, Santtu Harri Severi ja Vidgrén, Teemu Olavi

Tietojarjestelmétiede

1.12.2000

Jyviskylan yliopisto

123 s.

Tutkielma

Tietojérjestelméprojektien riskien hallinta on yksi ohjelmistosuunnittelun térkeimpia
osa-alueita. Riskien hallintaa tietojarjestelméprojekteissa on tutkittu runsaasti, mutta
useimpien tutkimusten painopiste on ollut perinteisissd tietojérjestelmien
kehittamismalleissa, kuten vesiputousmallissa.

Tehokkaampien kehitysymparistojen ja -tyOkalujen yleistyessd on tietojédrjestelmien
kehittimiseen kuluva aika lyhentynyt merkittdvasti. Samalla on yleistynyt myos
nopeutunutta sovelluskehitystd tukevan, rapid application development (RAD) —
metodologian hy6dyntdminen kehittdmisprojekteissa. Nopeissa
sovelluskehitysprojekteissa projektien hallittavuus asettaa uusia vaatimuksia myos
riskien hallinnalle. Tassd tutkielmassa selvitimme graafisen mallinnusmenetelmén ja
CASE —tyOkalun kayton vaikutuksia nopeiden sovelluskehitysprojektien yleisimpiin

.....

Tunnistamalla tyypillisille nopeille sovelluskehitysprojekteille ominaiset riskit,
kehitimme tutkimuksen aikana tydkalun, jonka avulla pyrimme tukemaan RAD-
metodologialla toteutettujen tietojarjestelmén kehittdmisprojektien riskien hallintaa.
Tyokalu koostuu Notes Design Language (NDL) mallinnusmenetelmistd ja NotesEdit
CASE —ohjelmistosta. Tyokalun kdyton vaikutuksia tunnistettuihin riskeihin tutkittiin
kahden pilot-projektin avulla.

Tutkimuksemme osoittaa, ettd mallinnusmenetelmaén ja sitd tukevan CASE-ohjelmiston
kaytolla on riskialttiutta alentava vaikutus joihinkin nopeissa
liittyvdt teknisen dokumentaation laatuun sekd tietojérjestelmén maédrittely- ja
suunnitteluprosessiin ja ndiden prosessien aikana tuotettavan dokumentaatioon. Nopea
sovelluskehitysympdrist6 ja —metodologia asettavat kuitenkin joitakin
erityisvaatimuksia kéytettédville CASE tyokalulle.

AVAINSANAT: riskien hallinta, nopea sovelluskehitys, graafiset mallinnusmenetelmit,
metamallit

1

2

INTRODUCTION 5
1.1 BACKGROUNDuvtrieiierireirtesstiestessessaesseessesssessasssssssssssssssesssssssasssesstarsorssssstenseasssesssansessssenss 5
1.2 BASIC CONCEPTS USED IN THE THESISecotretrerveeereueeteeneseesseessesssesseessesssesssesssessssssssessenssnes 9
1.3 OUTLINE OF THE THESIS......cccvetimrieiniireeisiniieesiaestsesissisesenesaossessesesessosssssessusssssssassosessosassssensos 9
INFORMATION SYSTEMS DEVELOPMENT 13
2.1 SOFTWARE PROJECTSucecirenreeireereesseessessssssesssessssssssssessssssasssassasssessssssssssessssssssssssesssassensss 13
2.1.1 Software development MetROAOIOZIESccveveveinieieiereecirenieienireeseeeeeresesveennenens 17
2.1.2 Approaches for SOftWare deVeIOPMENL..................cuooeivueevvervcerneieiniireenesietreeesasiessenenees 19
2.1.3 PrOtOLYPE APPIOACH...........ocoeeveireeereeirieieesireesses ettt ssste st be st s e st sa s see e sseeasasnanen 21
2.1.4 The benefits and weaknesses of prototype APPYOACHccveeereceevveercearenesreererevannes 22
2.1.5 Prototyping MEtROGScccoevevioirieiieeiistsie ettt ettt sttt et ten 24
2.1.6 Rapid Application Development (RAD) PFOJECEScccueureeirrvererireerereneresesesseeessssnseses 26
2.1.7 Developing groupware applications with Lotus Notes ™...........cccveeveevenenvnveeenenen 27
22 MODELING METHODS IN INFORMATION SYSTEMS DEVELOPMENTcccovuvimiererireireorioneecunns 30
221 CASE B0OIS ...ttt e e st e e et 32
2.2.2 Strengths and weaknesses Of CASE tOOIS.............ccccoeeeevevivieerseireeseressiessesseeseserestassessaeneens 34
2.2.3 Method engineering and Meta~CASE tOOIS............ccccveeeeervereovccneereecrnreerecnenneenienn 36
224 MeEtAEItF ...ttt ettt sttt ettt st et s nene 39
2.2.5 GOPRR metamodeling languagec.cccoveiveeecinecerieeerinenreiseeseeeceeeeseeeescnsessenns 41
2.2.6 Supporting RAD with modeling Methodsccccoeeveerenveearinnencrcreceirecneeeeesaens 42
2.3 CHAPTER SUMMARY ...ouvtiiiiiiieeiirecieteerisesasesenisnsseessssessssessssesessssssssssssasssssssssessssessssessssnessssenssss 43
SOFTWARE PROJECT RISKS 44
3.1 MANAGING SOFTWARE PROJECT RISKS ...eceouveeeiiersurenneesorveensseeroseessseessnssssssosasssaessossassresssseees 44
32 CLASSIFICATION OF SOFTWARE PROJECT RISKSc.covirtrrirrinmieerinnienesmiisiorsscsscssssssesasssssens 46
33 GROUPWARE APPLICATION DEVELOPMENT RISKSccoooiicemimuincirniinciresinensisisisnesissessesssesesnenes 50
34 RAPID APPLICATION DEVELOPMENT RISKS........ccoiuieiiieiieeenreieriianeesesssesesssseseaesssessnsssssessssnesns 52
3.5 MANAGING RAPID APPLICATION DEVELOPMENT RISKSoooiiiiecreeirirenreeniieeniresivreeseneesssnens 54
3.6 CHAPTER SUMMARY ...oovviiimiiiiiiiiiiiitteeiss et bess st eas b sas s ben st eren 55
EVALUATION CRITERIA 56
4.1 NDL MODELING METHOD AND NOTESEDIT CASE TOOL DESCRIPTIONcccooveuimiininrinienians 57
42 RISK ASSESSMENTuouieimiieminrirerenemeneneienttsteteseressesesessssonasssiosssenesessncssnmssesersiessssssassssssens 59
43 CASE PROJECTS IMPLEMENTED BEFORE N OTESEDIT DEVELOPMENTcvecocieeeeerecrnresnesennees 63
431 CASEPFOJECE 1 ...ttt ettt 04
4.3.2 CASEPIOJECE 2 ...ttt ettt ettt 68

4.3.3 CASEPIOJECE 3 ..ottt et ettt ettt ettt ettt 73

44 GENERAL RAD RISKS......ooviieuieeieteeteieeeeeeteseessesesvesssrassereserssossossssossesssssssassasssassesnesnssmenesnsanone 79
4.4.1 General project risk identifiCation................oooeeeeieeeceecieieeeeseeieeeeeeeeeeeeeeeeee e 80

4.4.2 General project risk analysis and priovitization...............coevvvevvuerrvererennieeseeeeeesenns 95

4.4.3 General project risk CA1EGOVIZALIONovoveeovveeieiiereieeeiieeete et 97

4.5 CHAPTER SUMMARY ...coouveiireereeranrenersiorisresoressessesessossssossosensosossssssssssessssssssosenesnsssensssssseseens 100

5 APPLICATION OF THE EVALUATION CRITERIA 101
5.1 PILOTPROJECT 1 ..cvouiiteteieeieiictestetet ettt vt st eans et esaebes st st ereeresssnnsssansonaostonenssssoses 102
52 PILOT PROJECT 2uititenirineisiesiensesesessecasasessasesaesessessasessesssssasessesseresssssessessnsonssssosesonsosonnan 105
53 EVALUATION OF THE NOTESEDIT —TOOLocueovietietiriierieieerrereerseneerteneeessonsossosseossesessonesssens 108
3.3.1 Primary risk factors in RAD PFOJECES..........cccovcuvomeeoreiesvsessreseseseesseneee oo 109

5.3.2 Risk factors affected by the use of the NotesEdit CASE t00L.................cucevevcevenevennn.. 110

5.3.3 Advantages and disadvantages of using the NotesEdit CASE tool......................cuou...... 110

5.3.4 Efficient utilization of the NotesEdit CASE-{00Lcccovueeeeveeeeeeereieeieesireieesnen, 112

6 SUMMARY AND CONCLUSIONS 113
6.1 FURTHER RESEARCHcoouiiiietiiieienistestisesectensesessesseseseassasessesesansssonsesestossossossmsonsesnonesnennenen 114

REFERENCES 116

1 INTRODUCTION

1.1 Background

Software engineering is pressed by an increasing demand for producing applications of
better quality in less time and with smaller resources. The usability and characteristics
of applications are emphasized while at the same time the necessary support for the
software design process is often neglected. Furthermore, while new software
development approaches such as prototyping and rapid application development (RAD)
have dramatically decreased time needed to develop a software product, the actual
design phase has suffered an inflation and the implementation phase easily gets the top
priority (Budde, Kautz, Kuhlenkamp, and Ziillighoven 1992). Even though the
emphasis of software development lies on the finalized product, the development

process and tools supporting it must be taken into appropriate consideration.

Software projects are often difficult to manage and too many of them end in failure.
Nevertheless, it is claimed that the overall risk of a project can be significantly reduced
by identifying and managing the individual risk factors threatening the project. Even
with the continuous development of risk management approaches, a large percentage of
software projects suffers from the realization of risk factors (Barki, Rivard, and Talbot
1993). By identifying these factors we can develop tools and methods to support risk
intensive phases of the software project and thus decrease the possibility of project
failure (Keil, Cule, Lyytinen, and Schmidt 1998). When successfully applying software
engineering risk analysis and management techniques to projects, it is possible to
increase the development productivity by 50 percent or more and produce systems with
a better quality (Charette 1989). There are additional benefits from good risk analysis

and management procedures, as listed by Charette (1989):

e Better and clearer perspective into risks, options, associated tradeoffs, and their
effects and interactions between them.

o Consistent view of the problematic situation.

o Explicit identification of project assumptions and confidence that all information
has been accounted for.

e Improved credibility of plans, rationale for actions made, inside and outside the
organization.

e Better contingency planning, and a better selection of choices available to react
to those risks that occur.

e More flexible assessment of the appropriate mix of ways of dealing with risk
impacts, allowing for less reactive management, and more pro-active
management.

e Better means to identify opportunities and ways to take advantage of them.

e Feedback into the design and planning process in terms of ways of preventing or
avoiding risks.

e TFeed-forward into the construction and operation of projects in ways of
mitigating the impacts of risks that can arise, in the form of responsible selection
and contingency planning.

e Decisions compatible with project policies, goals, and objectives ensured.

o Insight, knowledge, and confidence for better decision making, and overall

reduction in project exposure to risk.

Our research concentrates on examining how the use of a graphical modeling method
affects the identification and management of risk factors that become apparent
especially in rapid, prototype-based software development projects. Traditionally,
graphical modeling methods have been used to reduce risks in projects implemented
using traditional development methods (e.g. waterfall approach). The evolutionary
development methods (e.g. prototype approach) are also tools for managing these risks.
However, as the evolutionary approaches help in managing some of the risks related to
traditional approaches, they also bring forward some additional risk factors (Figure 1).
We concentrate on studying the graphical modeling method utilization in RAD project

risk management.

Traditional > Risks » Pratotype > Protqtypmg
methods approach risks
Graphical
——————® modsling M——————
method

Figure 1: Graphical modeling methods in risk management

We use Lotus Notes as an example of a rapid application development environment
since evolutionary development methods (e.g. Plan, Do, Check, Act by Larson-Hughes
and Skalle, 1995) are typically utilized in Lotus Notes™ application development
projects. As Lotus Notes is a visual development environment, the application
prototypes and user-interface demonstrations can be quickly developed and the required
changes can be implemented efficiently during the prototyping iterations. Additionally,
Lotus Notes applications are typically developed for the use of groups of people and
this necessitates the utilization of an evolutionary development method. The continuous
communication between the developers and end-users can be considered essential for

the success of a multi-user application development project (Grudin 1990).

By developing a graphical modeling method for modeling Lotus Notes applications we
study how its implementation affects risk factors identified in rapid application

development projects.

The main research question addressed in our research can be formulated as: “How are
risks in rapid application development projects affected by utilizing a graphical

modeling method?” This problem can be divided into following sub-problems:

1. What are the primary risk factors experienced during rapid application
development projects?

2. Which of the primary risk factors can be controlled by implementing a graphical
modeling method in RAD projects?

3. What is the most effective way to utilize a graphical modeling method in order

to control risks in a RAD project?

Using previous research and the results from case projects, we create a graphical
modeling method for supporting the risk management of RAD projects and a theoretical
framework to analyze the constructed method in detail. By validating the technique, its
effectiveness and functional integrity with a measurement system, we evaluate the
method’s usefulness in operational use and find out how the software project risks have

been affected.

The methodological approach in this research is both constructive and empirical. At
first, a modeling method for modeling Lotus Notes applications is developed and
implemented in the MetaEdit+ environment. Then, the method is piloted in two Lotus
Notes software development projects. The method is then evaluated with a developed

theoretical framework based on related research and previous case project experiences.

Practical implications of this research are the following:

1. A graphical method for modeling Lotus Notes applications.

2. A checklist of risk factors that can be managed using a graphical modeling
method.

3. A guideline for implementing the graphical modeling method in order to reduce
software project risks when using a prototype approach.

4. Evaluation of the graphical modeling method usability in RAD project risk

management.

The developed method is validated and evaluated within the scope of this research and
further development suggestions and possible improvements to the method are
considered. Additionally, the potential of an integrated code-generator and component

repository are taken into consideration.

1.2 Basic concepts used in the thesis

In the following, we present a short summary of the key concepts that are relevant to

our research.

A Software project is a process of developing a software product or products for a
customer. Software project risk management is a discipline for identifying and
controlling the risk factors threatening the successful completion of a software project.
The social and technological environment in which the developed system is to be

installed is referred to as an object system.

Rapid Application Development (RAD) is an approach for developing applications
rapidly using high-level development tools (i.e. 4™ generation programming languages
and graphical development environments). Typically the RAD involves utilization of

iterative development methods such as prototyping.

1.3 Outline of the thesis

Thesis proceeds as follows: In chapter 2 we discuss the area of information systems and
software projects in general, and clarify the concepts of prototyping, rapid application
development, groupware development, graphical modeling methods, method

engineering, metamodeling, and CASE-tools.

In chapter 3 we introduce the concepts of software project risk and risk management,
and present risk management strategies by Boehm and Ross (1989), Boehm (1991), and
Charette (1989). The principles of risk categorization are also presented according to

Keil et al. (1998).

Chapter 4 describes the case projects implemented prior to the modeling method
development and the construction of the evaluation criteria using the case project
experiences and the risk management principles and techniques put forward by Boehm
(1989), Boehm and Ross (1989), Boehm (1991), and Keil et al. (1998). A prioritized list

10

of general RAD project risk factors is presented to support the evaluation of the

developed modeling method.

In chapter 5 the NDL modeling technique and NotesEdit tool are described and
evaluated using the evaluation criteria described in chapter 4. The developed modeling
method is evaluated regarding software project risks by comparing the risk assessment
results of the two pilot projects to the risk assessment of the case projects implemented
before NDL development. The pilot projects are described and the identified risk factors
are analyzed, critical risk items are identified, and the effect of the modeling method is
studied. The results are then formalized into a general checklist and guideline for risk

management with a modeling method in prototyping projects.
Finally, in chapter 6, conclusions of the research are presented and the most important
findings are summarized. In addition, further research areas are suggested and some

unanswered topics are listed.

The research outline is described graphically in Figure 2.

11

Y EE— Sw projects
R [T Methodologies
i development
! \ / Approaches
: CASE tools
. ' I
thergture —dans Modeling | ______ Method eng.
review ' methods
‘ Metamodeling
P
:"" Swproject | ... Management
risks Classification
—
'
' ™ I dentification
. Risk :
--------------- Analysis
Case projects assessment ¥
\. . / Prioritization
: | dentification
™
E\::Ii:::ilaon ______ General RAD | ______ Analysis
development risks Prioritization
i
l E Categorization
J
NDL o)
develepment
T
~~~1 NDL piloting
1
I U
. . '
Pilot projects [~ o
! ! dentification
- Risk L. Analysis
assessment Y
N~— Prioritization
j
P
Comparison
-~ of case-and
Application of ¢ \pilot projects
evaluation |-+
S R
crieria i [ NDLeftects
-=-1 on general
risks

Figure 2: Research outline

The concepts presented in Figure 2 correspond to the chapters of thesis as follows:

e Literature review: Chapters 2 and 3.

e Case projects: Chapter 4.

e Evaluation criteria development: Chapter 4.

e Description of NotesEdit CASE tool: Chapter 4 (more information can be found
in Appendix 1).

o Pilot projects: Chapter 5.

e Application of evaluation criteria: Chapter 5.



12

Summary of the research progress: The literature review was used as the basis for
developing the evaluation criteria. Additionally three case projects were conducted to
support RAD risk identification and analysis. The NDL modeling method was
developed according to the experiences gained from the case projects and the literature.
The NDL method and NotesEdit tool were then piloted in two pilot projects and the
pilot project risk assessment results were compared to the case projects according to the
evaluation criteria. Finally, the constructed method was evaluated and the findings were

summarized.



13

2 INFORMATION SYSTEMS DEVELOPMENT

Software development is probably the most investigated subject in the area of
information technology. The internal and external factors affecting the process have
initiated a lot of discussion and studies. Software project risks with the traditional
software development methodologies have been extensively studied. However, the field
of software development is changing rapidly: software projects increase in both size and
complexity, project costs are getting higher and available time and resources are scarce.
In order to cope with the new requirements of software production, new techniques and

tools have emerged.

The appearance of rapid application development (RAD) environments has made it
possible to create relatively complex software in a fraction of time spent earlier. RAD
environments encouraged the evolutionary approach to software development —

prototyping and specifically, rapid prototyping.

While the use of RAD environments helped to increase effectiveness of software
development, some insights have not been taken into widespread consideration. The
risks associated with the new approaches and tools require a deeper understanding of
the risk factors prevalent in rapid prototyping projects. These risks are further studied in
chapter 3. In this chapter we attempt clarify the concepts of software project, different
software development approaches, and the role of modeling methods in IS development.
Additionally, the concepts of CASE tools, method engineering and metamodeling are

presented.

2.1 Software projects

A project is a process that has predefined objectives that should be achieved within
specific resources and time span. Cotterell and Hughes (1995) summarize the key

characteristics of a project as follows:



14

Non-routine nature of the tasks involved

Planning is required

Specific objectives are to be met or specified product is to be created
The project has a predetermined time span

Work is carried out for someone other than yourself

Work involves several specialisms

Work is carried out in several phases

The resources that are available for use on the project are constrained

I A

The project is large or complex

A Software project is a process of developing a software product or products by the
developer for the customer. Typical software projects have most of the characteristics of
a project concept in general. Therefore many techniques of general project management
can be applied to software projects. However, software projects have also some

characteristics which differ them from general projects.

A software project is a highly people-intensive effort that spans a very lengthy period,
with fundamental implications on the work and performance of many different classes
of people (Boehm and Ross 1989). The implementation of the developed software
usually leads to major changes in organization, so the specification and development of

software product is surrounded by a great deal of social and political tensions.

Another issue distinguishing software projects from traditional engineering projects is
that the software products are not physical artifacts and the progress being made cannot
necessarily be seen during the project. The estimation and control of a software
development process and resources is much more difficult compared to physical

artifacts and requires additional measures and progress indicators to be specified.

Software products can also be more complex than typical engineered artifacts.
However, despite their complexity, the software products can be considered to be

relatively flexible compared to physical products, due to the ease with which changes



15

can be implemented during the development. This means that where the software
system interfaces a physical or organizational system, it is expected to change if
necessary to accommodate the other components. In many cases this leads to high

degree of changes in software systems. (Cotterell and Hughes 1995)

To increase their controllability and measurability the software projects are usually
divided into phases which each has pre-specified objectives and outcomes. According to
Cotterell and Hughes (1995) individual software projects are likely to differ

considerably but will typically have the following nine phases.

¢ Project evaluation: Investigation of project feasibility.

¢ Planning: Formulation of outline plan for the whole project and detailed one for
the first stage.

e Requirements analysis: Finding out in detail what the users require of the
system that the project is to implement.

e Specification: Creating detailed documentation of what the proposed system is
to do.

e Design: Designing a system that meets the specification. The design phase
includes designing both the user interface and the underlying functionality of the
system.

e Coding: Coding the software may include writing code in procedural or object
oriented languages, and using 4™ generation development environments to
support the user interface implementation. System may be built from scratch or
tailored from a base package.

e Verification and validation: Testing the software to meet its requirements.

¢ Implementation: Installing the system to the production environment includes
such things as setting up data files and system parameters, writing user manuals,
and training users to operate the new system.

e Maintenance and support: Correcting and improving the system. In many

environments, most software development is in fact maintenance.



16

Cotterell and Hughes (1995) emphasize the importance of the early phases of software
development projects arguing that the key success factor in any project is having clear
objectives. To be able to utilize the objectives effectively, the project staff needs

practical tools and measures for testing whether or not the objectives have been met.

Because different stakeholders in a project are likely to have different objectives, a
recognized overall project authority is needed. This authority usually comes in the form
of a project manager. According to Boehm and Ross (1989) the project manager’s
primary problem is that the project needs to simultaneously satisfy a variety of parties.
The users, the customers, the development team, the maintenance team and the
management each have their own desires with respect to the software project. These
conflicts are likely to cause problems when taken together and these conflicts are the
root of most software project management difficulties both at the strategic and at the

tactical level (Boehm and Ross 1989).

When specifying the project objectives and the specific requirements of the system with
users, active communication between the development team and the target organization
is necessary. Using semiformal specification techniques (e.g. graphical modeling
methods) in determining and communicating the specifications among different interest
groups can increase the understandability of the specifications and help in creating a
sufficient common understanding of the system. Formal specifications can also be used
as a basis for application models and technical documentation in later development

phases.

Formal specifications and technical documentation also help in justifying the agreed
system specifications if users are demanding additional functionality in later
development phases. The cost effects of additional functions can be visualized in terms

of changes needed to the initial design.

Boehm and Papaccio (1988) have studied the productivity of software development and
identified typical cost factors that cause software project budget overruns. They state

that the most significant individual factor affecting the software costs is the number of



17

source instructions that must be programmed during the development. The strategies for

reducing the amount of coding involve:

1. The use of 4" generation languages, or reusable components to reduce the
number of source instructions developed

2. The use of prototyping and other requirements analysis techniques to ensure that
unnecessary functions are not developed

3. The use of already developed software products

Other important factors influencing software costs are the selection, motivation, and
management of the people, the complexity of the product, and the volatility of

requirement specifications (Boehm and Papaccio 1988).

The product complexity management and requirement specifications can both be
improved by utilizing formal specification and design methods to standardize the
product specification and design practices (Aaen et al. 1992). Utilization of formal
modeling methods also emphasize the role of the system design phase and helps the
developers in identifying reusable components which can be utilized or developed

during the project.

2.1.1 Software development methodologies

In the early ages of information systems development the software developers attempted
to design and implement increasingly complex systems, often seeking to make
innovative use of computers and information technology. There were no standardized
procedures for developing software products. As a result, a significant percentage of
these systems was unsuccessful in satisfying the end users’ demands, was not timely
delivered, or caused significant overruns in the pre-specified budgets and resource
plans. The alarming situation of software development made it apparent that the major
cause of the difficulties was the lack of a systematic approach to information systems

development. (Wasserman 1980)



18

The software development techniques emerged due to the lack of standardization and
controllability in software development. The techniques were designed to guide and
standardize individual phases of the development process (e.g. design or coding). The
techniques consist of a set of instructions and tools that guide the activities of a

particular phase of a software project.

Although the individual steps of a project were supported by design techniques, the
software development still lacked a framework for overall management of the separate
development phases. The emergence of the concept of sofiware life cycle made it
possible to divide the whole software development project into successive phases and
bring together all of the different techniques for software production with appropriate

management techniques (Wasserman 1980).

When the individual development techniques were integrated to cover the whole
software lifecycle, the sets of techniques appeared as sofiware development
methodologies. The methodologies were aimed to guide all the relevant activities
associated with the development project and hence to introduce discipline for software

development, and to standardize both the development process and the developed

products.

According to Taylor and Wood-Harper (1996) the major benefits of using software

development methodologies are:

1. Consistency
2. Completeness

3. Efficiency

By consistency Taylor and Wood-Harper (1996) refer to the consistency of the work
practices and the produced artifacts. Using a common methodology, the different teams
working on the same project are able to produce compatible components, and the work

can be passed from one team to another for completion.



19

A proper information systems development methodology should ensure the
completeness of the actions of the development team. Following the steps of the
methodology should guarantee that all the necessary views of the system have been
considered and that the design and implementation contain all the necessary

functionality and attributes. (Taylor and Wood-Harper 1996)

Taylor and Wood-Harper (1996) suggest that if the information systems development
methodology is chosen and implemented correctly it should lead to systems with
appropriate quality being implemented in the shortest possible time scale. This

efficiency is most likely missed by ad hoc development projects.

The diversifying nature of software projects makes it difficult to choose a suitable
methodology for different situations. The methodology implemented successfully in one
project is not necessarily the best one for another project with different objectives. The
selection of an appropriate methodology is apparently crucial to the success of the
project, but even today, there is no commonly accepted framework for supporting

methodology selection.

2.1.2 Approaches for software development

Software development process can be examined from a multitude of views. The
prevalent view since the beginning of information systems development has been that of
the traditional approach. The traditional approach is characterized by the use of
traditional methods, such as the waterfall approach. In traditional development methods
the process of developing a software product is seen as a linear path from one step to
another successive step. These steps are separated by certain goals or markers, which
make it easy to evaluate the progress being made. Some traditional methods also
contain feedback loops between stages, and guidelines to confine the feedback loops to
successive stages to minimize the extensive rework involved in feedback across many
stages (Boehm 1988). When all successive steps have been taken, a software product is

considered to be ready for implementation.



20

The use of prototyping requires a different view to software development. Evolutionary
approaches suggest that the software project is not a linear process consisting of
successive development phases but a cyclic process including evolutionary iterations.
The stages consist of expanding increments of an operational software product, with the
directions of evolution being determined by operational experience (Boehm 1988).
These process iterations are repeated until the software product is considered to achieve

particular requirements set for it.

Evolutionary approaches are best suitable when using visual development
environments, and the system prototypes can be developed in rapid succession. It is also
well suited for situations where the end users are not capable to determine the system

properties and functionality at the beginning of the development project. (Boehm 1988)

Evolutionary approaches can be considered as a risk management technique since they
provide means for controlling many of the risks related to traditional development
methods. As the future development directions are determined on each iteration, the
project risks can be identified and analyzed actively, and appropriate risk management
techniques can be applied correspondingly (Boehm 1988). However, the evolutionary
approaches also bring forward additional risks. These risks are further discussed in the

subsequent chapters.

The evolutionary approach and traditional approach can also be combined. For example,
it is possible to set a traditional phase-division for a software project, but some steps
within the traditional process are carried out in an evolutionary fashion using a cyclic

model.

Several evolutionary development methodologies exist and they differ primarily by the
focus of the methodology. Some examples of the evolutionary development techniques
are prototyping, which is focused on the software requirement specification and the
spiral model by Boehm (1988) which focuses on the risk management aspects of the

software development. Within the range of our study, we concentrate on the prototype-



21

based software development within the evolutionary approach and attempt to isolate the

factors that emerge especially in RAD projects.

2.1.3 Prototype approach

A basic problem often encountered with software development project, is the difficult
process of requirement specification analysis. There are two major directions in
approaching this problem: formalization of activities so that the requirements may be
identified by formal means, and the use of experimental methods to assist the collection
of necessary information (Budde et al. 1992). One widespread method belonging to the
latter category is prototyping.

The errors in software requirement specification may lead to significant additional costs
in later development phases (Boehm 1991). This brings forward the need for an iterative
feedback mechanism (Budde et al. 1992). Prototyping is a common approach in
software development when specification requirements are unclear or amorphous, when
an application needs to be developed rapidly, or when we need to clarify the

problematic nature of the target system.

Krief (1996) defines software prototyping as:

“... a process of building software whose purpose is to attain information about
the adequacy and the value of the software design. The prototype is normally
used as the precursor to the final software. A prototype differs from the final
product in that it is developed more quickly and it is more easily parameterized
and manipulated, at the expense of efficiency and performance. The prototype is

therefore used to quickly extract information about the software to come.”

According to Krief’s definition of prototyping, the main role of prototype is to provide
the developers with the relevant information needed in order to construct the finalized

software product.



22

2.1.4 The benefits and weaknesses of prototype approach

Prototype approach allows new ideas and concepts to be quickly incorporated into
software, without a cumbersome requirements freezing process. Budde et al. (1992)

suggest the following beneficial factors of utilizing prototype approach in software

development:

e Prototyping provides a communication basis for discussions among all the
groups involved in the development process, especially between users and
developers.

¢ Prototyping improves coordination between users and the developers

e Prototyping reduces inhibitions on the part of the users and replaces unrealistic
expectations by a more realistic view

e Prototyping enhances the sense of commitment on the user’s part and increases
motivation to cooperate with the developers

e Prototyping enables us to adopt an approach to software construction based on
experiment and experience.

e Prototyping enables us to clarify problems by experimentation.

Budde et al. (1992) also point out some software development situations where

prototyping is not an appropriate solution for a specific type of target system

e Systems requiring extensive data protection and recovery facilities
e Systems with very large number of transactions

e Systems that are subject to auditing

e Systems requiring professional maintenance

e Systems that are highly resource-intensive in operation

The use of prototyping sets some requirements for the users due to the required high

degree of participation. Budde et al. (1992) sum up the three main requisites:



23

e Need of a basic knowledge of computers in order to be able to understand the
effects of computer use on their own work activities

e Necessary skills enabling them to give an abstract representation of their own
work activities as part of requirements analysis

e Need of additional knowledge in order to be able to use problem-oriented

languages to support their own work with self-programmed applications

Krief (1996) points out that research in knowledge representation and problem
formulation has shown that finding a proper representation of a problem is essential for
its solution. By representing a problem graphically, for example with a graphical model,

proper resolutions can be taken in order to solve that problem.

However, graphical modeling methods and supporting tools are rarely utilized in
projects based on prototype approach. As the prototype itself serves as a model of the
target system, the graphical representation of the system is typically considered
unnecessary. Additionally, the prototype approach wusually requires several
modifications to be implemented to the target system during the development. These
modifications are also to be implemented in the graphical models to keep the
documentation up-to-date. The continuous updating of the models is typically
considered time-consuming compared to the benefits acquired from the documentation

during the project.

According to Budde et al. (1992) it is difficult to abandon traditional software
development strategies (e.g. waterfall approach to software development), because they
provide means of formal control on the produced documents and milestones. Graphical
modeling methods are supposed to introduce discipline in software development and
increase the controllability of the projects (Aaen et al. 1992). Since the graphical
modeling methods are typically implemented only in projects based on traditional
software development strategies, it is important to study their benefits in projects based

on evolutionary approaches.



24

2.1.5 Prototyping methods

Basically, there are two types of prototypes: Software prototypes that are used as a
functional frame for the final application, and prototypes that are used only as a model
for the finalized software product. The first approach requires a transformational phase
where the prototype is transformed in successive steps to a fully functional, efficient
program. In the latter case, the prototype is discarded at the end, and a new application
being constructed by consulting the developed prototype. The latter method also
requires that a functional software product is to be built based on the experiences,

feedback and test results from the simulation prototype. (Krief 1996)

Budde et al. (1992) present a categorization of three main types of prototypes: a
prototype proper, a breadboard and a pilot system. A prototype proper is a prototype
designed to illustrate specific aspects of the user interface or some part of the
functionality of the target system. This type of a prototype is then used to develop the
final target system. Breadboard prototype is mainly used by the developers to help them
clarify construction related questions for the developer team. The constructed prototype
can be used as a comparison standpoint when developing the final system. Pilot system
is a prototype which is employed in the application area itself. Clearly, the level of

technical design must be much higher than in the other types of prototypes.

Budde et al. (1992) also categorize prototyping approach according to the goals set to
prototyping and the dimensions of the target system covered with the prototype. There
are three types of goals for prototyping: exploratory prototyping is used when the
problem is unclear. In this type of approach the initial ideas are used as a basis for
clarifying user and management requirements with respect to the future system. The
second prototyping method is experimental prototyping where the focus is on the
technical implementation. Here communication about software functionality and
usability between end users and developers is important. The last category of
prototyping is evolutionary prototyping which emphasizes the continuing process for

adapting an application system to rapidly changing organizational constraints. In this



25

approach, the developers are in a role of technical consultants working in close

cooperation with the users to improve the application system.

In addition to the categorization criteria presented above, Budde et al. (1992) present
how to divide prototyping into subcategories according to the approach that is taken to
the implementation of the prototype system. In horizontal prototyping specific levels of
the target system are built — usually this means the user-interface. In vertical
prototyping a selected part of the target system is implemented completely, through all
vertical layers. This method of prototyping is usually used when developing pilot
systems. It is also possible to divide these approaches into a functional approach and an
interactive approach. A Functional approach means concentrating on the functional
components of the target system which is useful especially when the functionality is
uncertain. Different functional prototypes can be embedded into simple interactive
shells. The emphasis of the interactive approach is on customizing the interactive
components of the target system according to the user feedback. This kind of approach
is useful only when the application functionality is well known or prescribed
beforehand. It should be remembered, however, that designing interactive components

is impossible without a proper knowledge of the underlying functionality.

Krief (1996) sees prototyping as an interactive and iterative decision-making process
between the expert and the developer. By the term expert Krief (1996) refers to the
expert of the application domain as the term developer refers to the personnel

developing the application.

First, the expert defines the specifications and requirements for the system together with
the developer. Based on the specifications, the developer creates the first prototype,
which is then evaluated by the expert according to the requirements. If there are
deficiencies or errors in the prototype, the developer creates a new version of the
prototype, which is again evaluated by the expert. This iterative process continues until
the prototype is ready — either as a model for the future information system or as a

functional frame for the upcoming application.



26

In this research we study the effects of a graphical modeling method implementation on
risks of software development projects, where the prototype approach is used for
exploratory purposes (e.g. the prototype is transformed to a software product through
transformational phases and the objective of prototyping is to clarify the system

requirements).
2.1.6 Rapid Application Development (RAD) projects

The emergence of very high level programming languages and 4 generation languages
provided the tools for developing applications much faster than it was previously
possible. Through the advent of graphical, user-interface centric integrated development
environments (IDEs) and the rise of component-based software development, the time
of laborious programming of basic system functionality was dramatically lowered.
However, this, allowed the developers to engage in unsystematic, ad hoc software
development. When applying rapid prototyping, it is necessary to consider technical
product quality and division of labor in the construction process, and not to give way to

purely trial-and-error approach to software development (Budde et al. 1992).

The development environment used in rapid prototyping must allow the developer to
quickly change specifications, implement changes rapidly, improve functionality of the
prototype, and therefore produce different working versions of the prototype quickly.
(Krief 1996)

In rapid application development, creating and utilizing reusable software components
is emphasized. If the application utilizes reusable components, it is easier and faster to
develop more robust and reliable, and more flexible and easier to adapt to evolving
requirements (Nierstrasz et al. 1992). All this requires that the rapid application
development environment supports the development and utilization of reusable
components. The reuse of existing components during the early phases of development
process also increases the likelihood of reuse of later products developed from it

(Barnes and Bollinger 1991).



27

However, the development of reusable components in RAD projects is considered
difficult since the applications are developed rapidly without specific design and
modularization phases. The lack of comprehensive design also complicates the
utilization of reusable components in the development phase. Additionally, the lack of
design and modularization usually leads to problems in software maintenance and
updating activities. The problems in searching and identifying the correct components
for individual development problem are also complicating the reuse of existing software

components.

2.1.7 Developing groupware applications with Lotus Notes™

Lotus Notes is a distributed client/server platform for developing and deploying
groupware solutions. These solutions allow teams to share information electronically
across network. Lotus Notes also supports mobile computing by allowing the usage of
information even if only occasional connection to network is available. The focus of
Lotus Notes is the capture and communication of the unstructured information that
supports and flows within the work process. (Larson-Hughes and Skalle 1995)
Generally, applications that are designed to support groups are referred to as groupware

applications.

Typical Lotus Notes applications include shared document databases that can contain
different types of documents produced and shared in a particular organization, team, or
project (e.g. memos, agendas, and minutes) and indexes utilized for different purposes
(e.g. customer and product indexes). In the late 90’s the Lotus Notes applications have
also begun to emerge in Internet and extranet solutions due to the Lotus Domino and
WWW-technology breakouts. Further information about the Lotus Notes design
components and application development in Lotus Notes environment can be found e.g.

in Larson-Hughes and Skalle (1995).

Before we start analyzing rapid application development projects implemented using
Lotus Notes, we must first specify the reasons why rapid application development is

suited when developing software in Lotus Notes environment. Larson-Hughes and



28

Skalle (1995) present three reasons, why Lotus Notes is suitable environment for rapid

application development:

e Since Lotus Notes is a high-level platform for applications, it handles much of
the developer's work automatically (for example, network communication, mail
requirements and security issues)

e Lotus Notes does not require the developers to know traditional programming
languages. Most functionality can be constructed with a simple macro-language

e The results are instant - there is no compiling necessary. When changes are

made to the application, it can be used immediately or even simultaneously.

All these features characterize Lotus Notes as a rapid application development
environment. Larson-Hughes and Skalle (1995) suggest that evolutionary approach is
the most useful approach for Lotus Notes application development. They recommend a
PDCA (Plan, Do, Check, Act) -based rapid prototype method suitable for developing
applications for the changing requirements of the business processes and the
environment. The PDCA-method is a closed-loop problem-solving methodology created

at early 1930’s by Bell Telephone Laboratories.

In early 1990’s typical Lotus Notes applications were quite small document
management products built by utilizing basic Lotus Notes functionality. Due to the
evolution of Lotus Notes technology and the popularity of Lotus Notes as an
organizational Intranet solution, thé applications have grown tremendously both in size
and complexity. Applications have also a much wider variety of purposes than before;
reservation, material management, and inventory systems, as well as other, traditionally
RDBMS (Relational DataBase Management Systems) based systems are now feasible

to construct by using Lotus Notes / Domino —architecture.

While the development approach has remained the same as before, several problems
emerge in software development and maintenance. Poor design of the software and
deficiencies in the design documentation lead to problems in system maintenance

activities, development and utilization of reusable components, difficulties in dividing



29

the development activities for different teams, and implementation of inefficient design
solutions. This necessitates the use of supporting tools in software development

projects.

Problems related to information systems specification in general also apply to Lotus
Notes application development. The end users are rarely able to specify all the system
properties and functions in the beginning of the development project and this typically
leads to design changes and implementation of additional properties in the later project
phases. As the Lotus Notes applications are typically developed for groups of people,
the requirement specification requires additional effort in order to support the group

activities appropriately.

According to Larson-Hughes and Skalle (1995) it is difficult for the end user to
visualize the functionality and effects of software without actually seeing it on the
screen, discussing it and suggesting changes to it. Prototype approach provides means
for discussing the system properties with the end users and thus supports the
requirement specification activities. However, the role of formalized specifications and
design documentation is emphasized also in prototyping projects. As the users suggest
changes and additional functionality to the original prototype, the developers must be
able to distinguish the originally specified properties as well as to demonstrate the
required design changes to the users in order to justify the project schedule and resource
plans. One way of demonstrating the structure and logic of the application is the use of
graphical modeling methods (further discussed in section 2.2). This also helps the
designers to keep up with the changing requirement specifications. As the prototype is a
way for the developer to demonstrate the future system properties and functionality for
the user, the graphical models are a way to demonstrate the future or current prototype
properties and internal structure for the developers as well as for the end users if

necessary.

When iterating through the prototype revisions, the use of a graphical modeling method
also helps the designers trace the requirement specification changes to the

corresponding development ideas. However, the problems of graphical modeling



30

method utilization associated with prototyping projects also apply to rapid application

development.

2.2 Modeling methods in information systems development

Development of an information system is always a collaborative process.
Communication is needed among the system developers as well as between the system
developers and the target organization. According to the Vessey and Sravanapudi
(1995) the studies by DeMarco and Lister suggest that on large projects typical system
developers spend 70% of their time working with others while Jones reports that team

activities account for 85% of the costs of large software systems.

Even though information system development is a collaborative process the knowledge
concerning the technical design of the system resides usually in minds of a few IS
personnel. The use of graphical modeling methods attempts to utilize sharing of this

knowledge with other key personnel. (Gibson et al. 1989)

Graphical modeling method is a method for modeling an object system using a

graphical notation.

The basic concepts of graphical modeling are presented in Figure 3.



31

Modeling
method

Graphical
model

Resulting
— ™ information

system

Figure 3: Concepts of graphical modeling

The developers generate the graphical models of the system to be developed in
cooperation with the future system users. The models describe the desired system using
the rules specified by the selected graphical modeling method. At this point the models
can be considered as requirement specifications for the system to be developed. The
generated models are updated during the development as necessary in order to ensure
the correspondence of the models and the resulting system. When the system is
finalized, the graphical models can be used as a part of technical documentation of the
generated system. The resulting information system typically manipulates the behavior

of the object system.

The graphical modeling methods can be utilized in all the systems development phases.
In requirement specification phase the methods can be used in modeling the system to
be built. In design phase the internal structure and the behavior of the system can be
designed using graphical modeling and analyzing tools. In the development phase the
system documentation can be constructed using graphical models. In the maintenance
and updating phase the maintenance personnel can be supported offering them graphical

representations of the system.

Graphical modeling methods can be utilized in enhancing communication between the

developers and the end users as well as in introducing standard work practices in



32

development teams. The application of graphical models in visualizing the system in the
early phases of development increases the understandability of the system specifications
and enforces standard ways of communication between different interest groups.
According to Khosrowpour (1993) the studies of Granger and Pick also indicate that the
systems developed with a graphical modeling method and a CASE tool support are

better capable to meet the requirement specifications than non-case developed systems.

Formal specifications are an important solution to address software quality problems
since they allow several important properties to be analyzed by the means of
mathematics and sometimes by computerized tools (Jarke and Pohl 1992, Khosrowpour
1993). Most graphical modeling methods combined with CASE tools enable versatile
analysis of the generated models according to specified rules. Analyzing models and
specifications generated using graphical modeling methods decreases design errors and

prevents inconsistent application specifications.

2.2.1 CASE tools

CASE tools are computer-based products aimed at supporting one or more techniques
within a software development method. Typical CASE tool offers graphical editors to
help developers model different aspects of a software system. In addition, most CASE
tools have capabilities of checking integrity of generated models according to built-in

knowledge about method rules. (Jarzabek and Huang 1998)

A number of surveys have been conducted to examine the major benefits of utilizing
CASE tools in software development projects. Most of these studies report that CASE
tools are perceived to improve software development productivity (Necco et al. 1989,
Norman and Nunamaker Jr. 1988) and product quality (Wijers and van Dort 1990, Aaen
and Sorensen 1991, Khosrowpour 1993).

Both of these factors include large sets of activities that can be improved with a proper
use of CASE technology. Nevertheless, Aaen and Sorensen (1991) state that the

benefits of using CASE tools are largely dependent upon the particular circumstances in



33

which the tool is used. Therefore, it is important to study the factors that affect the
efficient implementation of CASE tools in a particular type of software development

project.

In our study we examine the benefits of CASE tool utilization in risk management of
rapid application development projects. CASE tools are rarely utilized in combination
with evolutionary approaches since the CASE tends to facilitate the use of structured

tools in system design (Khosrowpour, 1993).

According to Aaen and Sorensen (1991) the impacts of CASE tool implementation can

be studied with at least three alternative scopes:

1. Productivity improvements in diagramming and document production.
2. Tool impact on software life cycle.

3. Downstream benefits.

Productivity improvements in diagramming and document production refer mainly to
the software analysis and design phases although the technical documentation of the
later phases can be significantly improved by utilizing reports and diagrams generated
with CASE tools. This scope of CASE tool benefits is the most measurable, but

probably also the least informative because of its limited view.

Examining tool impact on software life cycle offers a wider perspective on CASE tool
benefits. Besides speeding up analysis and design activities, the tools may improve
design, e.g., by reducing the error rate or by modularizing the design structure.
Profitability of CASE tool implementation can be measured relative to the costs of the
software development process or relative to the total life cycle costs of the developed
software. Measuring costs relative to the total product life cycle can be expected to
provide more relevant findings, since the quality improvements in early phases of
software life cycle can be expected to reduce subsequent costs significantly. (Boehm

and Papaccio 1988).



34

In most cases the implementation of a CASE tool seems to warrant the introduction of
new methods and work procedures, e.g. project management, configuration
management, and quality assurance. According to Aaen and Sorensen (1991) these

downstream benefits may contribute significantly to the profitability of CASE.

While Aaen and Sorensen (1991) focus on examining the outcomes of CASE tool
implementation, Orlikowski (1993) suggests that the adoption and use of CASE tools
should be conceptualized as a form of organizational change. According to Orlikowski
(1993) much of the literature on CASE tools focuses on the discrete outcomes, such as
productivity, system quality, and development costs, but neglects the social context of
systems development, the intentions and actions of key players and the consequences of
the implementation process. Examining how CASE tool implementation affects an
organization allows us to anticipate, explain, and evaluate different experiences and

consequences following the CASE tool introduction process.

2.2.2 Strengths and weaknesses of CASE tools

According to a survey conducted by Aaen et al. (1992) the five main strengths of using

CASE tools are the abilities to:

Check consistency
Improve understandability
Automate routine procedures

Support software evolution

hANEE S e

Introduce discipline in software development

Most CASE tools are capable of checking the consistency among various activities of
software development. Consistency checking is based on the knowledge about the rules

of a particular method that are built in the CASE tool.

Since typical CASE tools offer graphical editors, report generators, and support

software documentation, they are assumed to improve the understandability of the



35

developed software product. Especially in large system development projects, the
understandability of the software design can be increased, by examining the system at
various abstraction levels using appropriate modeling methods and abstraction features

of CASE tools.

The productivity of an application development process can be increased using CASE
tools to automate routine procedures like coding and report generation. Automating
such tasks prevents errors and supports consistency among the generated models and

the developed outcome.

Even though Aaen et al. (1992) have identified the support for software evolution as one
of the main strengths of CASE tools, Jarke and Pohl (1992) state that CASE tools are
ill-suited for the requirements of long-lived information systems with continuously
increasing user demands on their functionality. According to Jarke and Pohl (1992) the
CASE tools support the life-cycle phases only by improving the methodological

consistency and communication within software development teams.

The introduction of a CASE tool in a software engineering organization affects both the
development process and the product to be developed (Aaen and Sorensen 1991). Since
the CASE tool implementation introduces consistent work practices for the software
development teams, the level of standardization of the overall development process and

the developed product increases (Aaen et al. 1992, Nunamaker 1989).

While Aaen and Sorensen (1991) and Aaen et al. (1992) consider the standardization of
development process as a positive effect of CASE tool implementation, Norman and
Nunamaker (1989) criticize the CASE tools for enforcing the development teams to
rigid standards instead of supporting teams for continuous improvement. As CASE
tools are mostly hardcoded, and there is no representation of the process or the
rationales and goals behind their capabilities and actions, it is difficult for the users to
describe the desired state of the process. This makes the migration to a new improved

process structure complicated (Jarke and Pohl 1992).



36

The inflexible nature of CASE tools may also impede the tool implementation process.
Since most CASE tools are too inflexible to adapt to different work procedures and
methodologies used in organization, the software engineering personnel must be trained
to use the particular methodologies supported by the CASE tool. Heym and Osterle
(1993) state that when installing CASE-technology at the IS department of any
corporation, the major success and cost factors are adaptation and training for

methodological support in using these tools.

Another problem derived from the inflexible nature of CASE tools is their insufficient
support for local method development. By local method development we mean an
organization’s attempts to develop its own methods. According to Tolvanen (1998)
organizations prefer to develop their own local variants of third-party methods, or adapt
them to their specific needs. Most CASE tools support only fixed, situation independent

methods, while the tool users prefer to use local, situation-bound methods.

While an organization applies information system development (ISD) methods, it
creates knowledge about how to carry out ISD projects (Tolvanen 1998). The
understanding of the possibilities of methods also increases. Therefore it is essential to
be able to improve the development methods according to the experiences of previous
projects. CASE tools’ support for such development is scarce due to fixed and

hardcoded methods.

Meta-CASE tools and so-called CASE shells can provide some solutions for the
inflexibility problems of most CASE tools. These issues are discussed further in the

next chapter.

2.2.3 Method engineering and Meta-CASE tools

Method engineering is a discipline of designing, constructing and adopting methods and
tools for information systems development (Kumar and Welke 1992, Brinkkemper

1995). Heym and Osterle (1993) define method engineering more narrowly stating that



37

method engineering is a disciplined process of building, improving, or modifying a

method by means of specifying the method’s components and their relationships.

The idea behind method engineering is that instead of selecting one of the existing
methods according to environmental contingencies, ISD methods should be constructed

or tailored to meet a particular ISD project’s requirements (Tolvanen 1998).

Method engineering can be carried out based on the needs of the whole organization or
a particular project. In case of organization-based method engineering the methods can
be engineered to fit the needs of the organization while the level of standardization of
work procedures and products are maintained organization wide. When implementing
project-based method engineering the organization can improve the method

applicability at the expense of work process and product standardization.

When carrying out method engineering an organization must be able to compare
existing information system development methods in order to select one as the basis for
engineering (Olle et al. 1983). This initiates a need for a common notation to describe

different modeling methods and thus support the comparison process.

A common notation for describing modeling methods is also needed when developing
methods from scratch. When a new or re-engineered method is described with a
common notation, supporting tools can be created by third party, according to these
descriptions. Using a common notation to describe modeling methods also supports

standardization and formalization of developed methods.

Metamodeling languages serve as common notations for describing different modeling
methods. Notations can be textual, graphical or a combination of both. The
metamodeling languages support communication during the method engineering
process and provide means to formally describe the developed methods (Tolvanen

1998).



38

A metamodel is a model for describing the conceptual schema of a modeling method
and metamodeling is a process of modeling a particular modeling method. According to
Tolvanen et al. (1996) Brinkkemper presents the relationships between modeling and

metamodeling as illustrated in Figure 4.

Metamodeling

Develops Petceives

Model of a
method
m etam odel

Represents———  Modeling

<

Determines Develops Perceives

Model of a ) A system to be
system Represents modeled

Figure 4: Conceptual schema of modeling and metamodeling (after Brinkkemper 1990).

Configurable CASE tools, meta-CASE tools, or CASE shells are aiming to improve the
customizability of CASE tools (Heym and Osterle 1993). They support a set of
primitives (metamodeling languages), which allow users to describe a method quickly
and mechanisms to implement a tool to support the defined method (Tolvanen et al.
1996). The modification of the underlying repository and the specification diagrams are

the minimal requirements of meta-CASE tools (Heym and Osterle 1993).

To support local method tailoring and development the method knowledge built in
meta-CASE tools should be represented in an adequate way so that users can

understand, apply, and enhance this knowledge (Heym and Osterle 1993).

Heym and Osterle (1993) have recognized four concepts as parts of an approach to
computed-aided methodology engineering. (1) Methodology representation model for
representing the knowledge and rules of the methodology. Representation model

consists of (2) several methodology specification diagrams and techniques that specify



39

the knowledge in user-convenient way. As the method is being tested and validated in
different development environments, it is important to build (3) mechanisms for
integrating the participants’ expert knowledge and experiences to the method. In order
to customize methods and techniques for specific projects within an organization a (4)
versioning concept for managing different method versions is needed. Versioning
concept should also support integration of different methods and techniques according

to users’ requirements.

2.24 MetaEdit+

MetaEdit+ is a metaCASE tool supporting a variety of information systems
development methods. Since the NDL modeling method described in section 4.1 is
implemented in MetaEdit+ meta-CASE tool, we discuss here briefly the basic concepts

of MetaEdit+ environment.

MetaEdit+ has a set of predefined methods that can be used separately as individual
methods or simultaneously in user-defined method combinations. Since MetaEdit+ is
based on metamodels the users can tailor the existing models or create additional
modeling techniques and methods by editing the underlying metamodels (Smolander et

al. 1991). This makes MetaEdit+ a powerful tool for method engineering.

The metamodeling tasks in MetaEdit+ are carried out using metamodeling languages.
The methodology specifications can be developed, analyzed and maintained in
MetaEdit+ environment (Smolander et al. 1991). Smolander et al. (1991) present the
concepts of MetaEdit+ and CASE shells as described in Figure 5.



40

{ MetaEdit )
Meta-meta
.. CASE-shell
wﬁ"
Meta-meta
Meta model
5 - Resulting )
Systems specification coosystem:
developmant '
methpdology

phenomensa
Figure 5: Three levels from meta-metamodel to model (after Smolander et al. 1991)

CASE shells consist of three levels. Information systems developers work on the IS
specification level creating representations of the object system. The syntax and the
semantics of these representations are defined in the metamodeling level. Metamodels
are founded on a modeling language and associated concept structure is specified in
meta-metamodel level of the CASE shell. This meta-metamodeling language offers the

flexibility of the CASE shell environment. (Smolander et al. 1991)

These three levels are also present in MetaEdit+ though they operate one level higher
than in CASE shell. The model level of MetaEdit+ defines the structure and
functionality of the modeling language thus corresponding to the metamodel level of a
CASE shell. The metamodel in MetaEdit+ is used to specify the methodology
specification corresponding to the meta-metamodel level of CASE shell. The
multilingual methodology specification support in MetaEdit+ is achieved by utilizing a
meta-metamodel to specify the syntax and semantics of various metamodels that can be

used to specify the methodology specifications. (Smolander et al. 1991)



41

2.2.5 GOPRR metamodeling language

In our metamodeling effort we use GOPRR (Graph-Object-Property-Relationship-Role)
metamodeling language to describe the properties of the developed modeling method.
GOPRR has been developed from the OPRR data model specifically to support the
metamodeling process. The limitations of OPRR initiated the development of GOPRR
language. Lyytinen et al. (1994) report the following limitations of OPRR:

1. No support for recursive structures
2. No support for generalization and specialization hierarchies

3. No support for interconnected methods

The main extension to the OPRR is the graph metatype, which is a collection of all
other GOPRR types. Graph metatype makes it possible to specify connections between
methods and techniques. The GOPRR also offers additional semantic relationship types
between graphs and other non-property types and offers an abstraction mechanism to

generalize and specialize non-properties (i.e. object, relationship and role types).

As the name of the GOPRR implies, the language is used to specify the following

concepts of modeling methods:

1. Graph metatype which is used to manage specifications of different techniques
and specify connections between methods and techniques

Object types (e.g. Class, Process)

Properties of the method components (e.g. Class name)

Relationship types (e.g. Inheritance aggregation)

hANE I A

Role types (e.g. Superclass and Subclass in Inheritance type of relationship)

Due to the changes to OPRR semantics and addition of abstraction features, the GOPRR

language supports also recursive structures. (Tolvanen 1998)



42

2.2.6 Supporting RAD with modeling methods

Graphical modeling methods are not usually utilized in rapid application development
projects since the development method is characterized by ad hoc nature and the
applications are developed in rapid succession. The design phase is often neglected in
evolutionary approaches as the development methodologies usually emphasize the
specification, implementation, testing, and evaluation phases. For example in PDCA
(Plan, Do, Check, Act) methodology presented by Larson-Hughes and Skalle (1995) the
“Plan” phase only contains specifying the objectives and resources for the development.
All the system development activities including design are supposed to be included in

the “Do” phase.

Another reason for the weak role of modeling methods and tools in rapid application
development projects is apparently the seeming ease with which the applications can be
developed. As the applications are developed rapidly and the necessary changes can be
implemented with minor resources the explicit designing of the applications is
considered being time-consuming and burdensome. Even though the advantages of

explicit designing are recognized the necessary methods and tools are rarely utilized.

The inconsistent role of application specifications and the lack of proper application
documentation are also due to the rapidity of the development cycles. New features are
added swiftly and since the application specifications and implemented components are

subject to a lot of changes the documentation process is likely to get omitted.

The lack of precise application specifications and detailed design documentation leads
to the problems specified in Section 3.4. These problems can also considered as RAD

risks as represented in Table 1.



43

Table 1: Risks in rapid application development

RISK SOURCE

Vague application specifications Inconsistent role of specifications and ad
hoc nature of development

Problems in development and utilization of { Lack of systematic design of applications
reusable components

Poor maintainability of developed software [Lack  of  systematic design and
documentation of applications

In this study we examine the role of graphical modeling methods and supporting tools
(e.g. CASE tools) in eliminating and controlling the risks associated with RAD projects.
To be effective in RAD environment the tools must be designed to support rapid
changing of the application and the corresponding models. Also the support for the
development and utilization of reusable software components must be implemented in a
way that the components can be easily manipulated according to the users’

requirements.

2.3 Chapter summary

In this chapter we presented the concepts of software project, software development
methodology, and different software development approaches. Additionally, the basics
of prototype approach and rapid application development were further discussed in

order to support presentation of RAD risk management issues in the following chapters.

As we study the utilization of a graphical modeling method and a CASE tool in RAD
risk management, the basics of graphical modeling, CASE tools, and method
engineering were also presented. The method engineering concepts and the description
of MetaEdit+ meta-CASE tool are aimed to support the NDL method and NotesEdit
CASE tool description in section 4.1.




44

3 SOFTWARE PROJECT RISKS

Despite the recent introduction and widespread use of a plethora of approaches,
techniques, and tools, it seems that software development efforts still suffer from age-
old difficulties of cost overruns, project delays, and unmet user needs (Barki et al.
1993). These difficulties are due to unsuccessful management of the risks related to a

particular software project.

Even though risks have been studied from different approaches in a variety of domains,
many definitions of risk comprise two dimensions: (1) the probability associated with
an undesirable event, and (2) the consequences (usually financial) of the occurence of
this event (Barki et al. 1993). These dimensions specify the relative importance of a
particular risk. Charette (1989) specifies risk more narrowly as the potential for

realization of unwanted negative consequences of an event.

According to Barki et al. (1993) McFarlan states that failure to assess individual project
risk and to adapt management methods accordingly is a major source of the problems in
software development. The software project risk management strategies aim at
identifying the risk factors threatening the project and supporting the selection of

appropriate risk management methods.

3.1 Managing software project risks

Software project risk management is a discipline for identifying and controlling the risk

factors threatening the successful completion of a software project.

The emerging discipline of software project risk management is an attempt to formalize
the risk-oriented correlates of success into a set of readily applicable principles and

practices. The objective is to identify, address, and eliminate risk items before they



45

threaten successful software project operation or become the major sources of software

rework. (Boehm 1991)

Risk management involves two primary steps, risk assessment and risk control. Risk
assessment involves risk identification, risk analysis, and risk prioritization. Risk
control involves risk management planning, risk resolution, and risk monitoring (Figure

6). (Boehm and Ross 1989, Boehm 1991)

—Risk idertification
Risk assesam erd Risk analysis
—Risk priotitization
Risk Management—
——Risk-management plamming
. Risk resolution
Risk control
—Risk monitoring

Figure 6: Software project risk management steps (after Boehm 1991).

Keil et al. (1998) emphasize the importance of risk assessment suggesting that before
meaningful risk management strategies can be developed the risks must be identified,
relative importance of the risks must be established and necessary managerial attention

must be focused on the areas that constitute the biggest threats to the project.

Boehm and Ross (1989) divide risk assessment process into three primary activities:
Risk identification, risk analysis, and risk prioritization. Risk identification produces a
list of risk items that are likely to compromise the project’s success. Risk analysis
attempts to assess the probability and loss magnitude of each risk item and analyze the
interrelations among the identified risk items. Risk prioritization ranks the identified

risk items so that the risk control actions can be concentrated on the critical risk items.



46

We utilize these three risk assessment activities in developing an evaluation framework

for analyzing the effects of CASE tool utilization on RAD project risks in chapter 4.

Many of the actualized software project risks lead to rebuilding parts of the object
system. Boehm and Papaccio (1990) argue that the one of the key insights to improving
software development productivity is that a large fraction of the efforts on software
project is devoted to rework. The rework is needed in order to compensate for
inappropriately defined requirements, or to fix errors in specifications, code, or
documentation. Many software project cost overruns are also due to the assumption that
the product is complete when the development is finished and the system is ready for
use. The errors and modifications that emerge in the real-world user environment lead to

unpredicted costs and delayed delivery times.

The risks related to rework cannot be overemphasized, since according to Boehm and
Papaccio (1990), Jones provides research data indicating that the cost of rework is
typically over 50% of the total costs on very large projects. When planning the
management strategies to deal with risks related to rework costs, a significant insight is
that the cost of fixing or reworking software is much smaller in the earlier phases of the
software life cycle than in the later phases (Boehm and Papaccio 1990). Therefore
additional efforts should be placed in the early phases such as the requirements analysis,

specification, and software design.

3.2 Classification of software project risks

Since there is a wide variety of risks associated with a large software project, the project
managers need tools for parsing the individual risk factors into a comprehensive risk
management strategy. Classifying the individual software project risks in broader
categories facilitates the risk prioritization and the planning of risk mitigation strategies

(Keil et al. 1998).

Boehm and Ross (1989) divide software project risks in two primary classes:



47

1. Generic risks that are common to all projects and are covered by standard
development techniques
2. Project-specific risks, that reflect a particular aspect of a given project, and that

are addressed by project-specific risk management plans.

Whereas the general risks are managed with standard development techniques, the

project manager must deal with the project-specific risks.

Keil et al. (1998) have studied the software project risks by assembling three panels of
experienced software project managers in different parts of the world and asking them
to identify and rank the specific risk factors they considered most important. As a result
Keil et al. (1998) identified eleven risk factors that all the three panels viewed as

important suggesting the existence of a universal set of risks with a global relevance.

According to their study Keil et al. (1998) present a two dimensional framework for
categorizing the risks associated with software development projects. The framework is
based on two dimensions: perceived level of control, and the relative importance of the
risk. By perceived level of control Keil et al. (1998) refer to the level of control the
project manager has on the particular risk category. The relative importance of the risk
refers to the significance of a particular risk considering the probability of the risk

occurrence and the potential loss associated with the risk item.

Keil et al. utilized the framework by mapping the identified risks into a 2 X 2 grid

(Figure 7), which allowed the risk classification into four categories.



48

Perceived 1 2
relative High Customer Mandate Scope and Requirements
importance
of risk
4 3
Moderate Environment Execution
Low High

Perceived level of control

Figure 7: A risk categorization framework (after Keil et al. 1998).

Categorizing the risks enables us to choose the proper risk management strategies for
each type of risks. Keil et al. (1998) suggest that each of the four quadrants of Figure 7
requires a different risk management approach because of the diversifying nature of

risks.

Most of the risks identified by the panelists fell in quadrant 1. Risks in this quadrant
have high relative importance, but the project managers usually have little or no control
over them. As the name of the quadrant implies the risks associated in this category are
derived from the lack of commitment of the senior management and the future users of
the system. Keil et al. (1998) state that without a clear charter, or mandate, the project is
not viable. Risk management strategies required in this quadrant include creating and
maintaining good relationships with customers and promoting the customer’s

commitment to the project. Prototyping is one possible way of controlling these risks.

Risks in quadrant 2 involve the ambiguities and uncertainties that arise in establishing
the project’s scope and requirements. These risks have high relative importance because
misunderstanding the requirements and poor management of changes can lead to
considerable costs and delays in the later phases of the project. Using proper tools and

techniques project managers can achieve relatively high control over these risks.



49

Specifying the exact requirements of the system is not always possible at the beginning
of the development project. The utilization of evolutionary approaches makes it possible
to specify system’s characteristics during the development but emphasizes the risks
related to project’s scope. Project manager must be able to control the system
requirement specification along the development and educate the customer on the

impact of scope changes in terms of project cost and schedule (Keil et al. 1998).

The risks in quadrant 3 concern the execution of the project. As examples of the risks in
this quadrant Keil et al. (1998) present the issues of inappropriate or insufficient
staffing, lack of effective development process methodology, poor estimation, and
improper definition of roles and responsibilities. According to Keil et al. (1998) the
project management has reasonable control over the risks in this quadrant and hence
they are regarded as moderate rather than high-risk items. Risk management strategies
in this quadrant include using disciplined development methodologies, defining roles
and responsibilities, and developing plans to cope with staffing shortfalls and new

technologies.

Risks in quadrant 4 are caused by project environment that exists both inside and
outside the organization. The likelihood of the occurrence of these risks is low and
naturally the project managers have little or no control over them. Even though the risks
in this quadrant are the most difficult to anticipate, the consequences of their occurrence
can be significant and dangerous. According to Keil et al. (1998) contingency planning

is the most sensible strategy for dealing with environmental risks.

In our study we focus on examining the effects of graphical modeling method and a
CASE tool utilization on the risks that fall primarily in scope and requirements (2) and
execution (3) quadrants. Keil et al. (1998) suggest that with proper methods and tools
the project managers can achieve relatively high level of control over the risks in both
these quadrants. This study is conducted to examine the suitability of a CASE tool in

assisting the management of these risks.



50

3.3 Groupware application development risks

Computer applications that are designed to support groups are commonly known as
groupware (Grudin 1990). Groupware application design and development differs from
single user applications in several aspects. Because our CASE study examines the risks
associated with rapid application development in groupware environment (Lotus Notes)

we discuss here some special characteristics of groupware development projects.

Groupware development project risks are typically related to the factors concerning the
technical design of groupware application and the social, political, or motivational

factors following the implementation of the developed system.

Grudin (1990) puts forward four problems that emerge in the development phase of a
groupware project: The user interface design, support for different roles, social factors,

and the study of group processes.

The interface of a groupware application must satisfy a number of individuals within a
group. In case of single-user application the users have possibilities to tailor the user
interface in some level, but in case of groupware the same user-interface must satisfy all

the users.

The users of groupware application must be able to operate with different roles and

privileges depending on the current situation (e.g. reader-author-editor).

The specification and design phase of the groupware application can include various
motivational, political, economic, and social factors that usually play only little role in
single-user applications. Also the number of people involved in specification and design
can be significantly larger. Efficient communication among the users and developers
during the specification and design phases is crucial to the successful implementation of

a groupware application.



51

The group processes are often variable and context-sensitive and span a long period of
time. The studying of group actions is time consuming and also the change results from
introducing new technology can emerge after considerable amount of time. Because
each group is different, the observations about the actions of one group are hard to

generalize to other groups.

The four groupware application development phase problems presented above are only
part of the risks that become apparent in groupware projects. The groupware
implementation and the following social and organizational changes are usually the risk
factors that the development team has only a little experience on, but that can prevent
the application to live up to it’s promise. In the following we briefly discuss the risks

related to groupware implementation.

As the group members have different preferences, experiences, roles, and tasks, the
implementation of a groupware application will never offer every group member the
same benefits (Grudin 1990). Some group members may have to do additional work and
adjust to different work practices more than others. The group activity is guided by
social, motivational, political, and economic factors that are rarely explicit and stable
(Grudin 1990). The implementation of a groupware application can interfere with the

group dynamics in a way that is harmful to the implementation process.

Since the groupware implementation is a change process, appropriate change
management methods should be applied. The social change in organization must be
controlled and the management of potential social conflicts must be planned in advance.
Active end-user participation in groupware specification and design phases is one

solution to manage the risks in implementation phase.

The prototype approach is typically utilized in groupware development projects as it
offers tools for active communication between the developers and the end users thus

helping in managing the social risks discussed above.



52

3.4 Rapid application development risks

As discussed before, the prototype approach is a way of managing some of the risks
related to traditional software development methods. However, it also puts forward
some additional risk items. The utilization of prototype approach in a software
development project usually necessitates the implementation of rapid application
development since several different versions of the software must be developed quickly.
Therefore, the risks related to prototype approach also become apparent in prototype-
based RAD projects. Additionally, the RAD itself contains some inherent risk factors

that are discussed below.

The RAD approach requires close cooperation between the system developers and the
experts of the application domain. Without an ongoing dialog and feedback cycles, the
software project starts to live a life of its own. The developers have a tendency of
adding new technical features to the application without feedback from the experts as
well as the experts typically request new functionality to the application, while the
designers implement changes without reflecting the impact to the project itself. This
leads to both unclear requirement specification and problems in requirements’
traceability. By requirement traceability we mean the ability to specify the requirement
changes in a way that makes it possible to later indicate what has actually been changed

and why.

If the communication between the application developers and the experts of the
application domain is not sufficient, the rapid changes in prototype design can lead to a
situation, where software costs soon begin to rise after the system is taken into
operational use and the maintenance costs shoot up due to the unplanned changes. Since
the changes are implemented rapidly, the documentation tends to get neglected resulting
in poor maintainability of the application. Therefore it is important to schedule changes

in an effective and controlled way. (Boehm and Papaccio 1988)

The rapid succession of the development iterations and the remarkable amount of design

changes implemented in a typical RAD project also affects the quality of design



53

documentation developed during the project. The lack of detailed technical
documentation typically leads to additional costs in the later development phases as

well as in the system maintenance and updating activities.

The rapid development cycle also leads to problems in development and utilization of
reusable components. When implementing applications quickly with no further design
and modularization plans, it is difficult and time-consuming to create components that
could be reusable in other development projects. Also the fact that the implemented
module might not be included in the final version of the software does not encourage
the developer to consider the reusability of design. The reuse of components in
prototyping requires that the rapid application development environment is designed to
facilitate the reuse with minimal effort, for example featuring categorization of

components by functionality and clear documentation for each component.

One of the primary risks in RAD projects is the lack of design and modularization in
system development. As the prototype revisions are reviewed with the customer in rapid
prototyping cycles and the development focus is on the system functionality and user
interface, the internal structure of the system tends to become obscure leading to
additional work in later development phases and system maintenance. The lack of
systematic and modular design also makes it more difficult to share the development
work between different development teams. The prototyping risks of vague design
documentation and poor maintainability of the developed software are also emphasized

in RAD projects.

In RAD projects it is important to set milestones for the project in such a manner that
the project progress can be measured and controlled. As a closely related item, clear
objectives for project completion must be placed, so that the project will end when these
objectives are fulfilled. If this is not done properly, it is difficult to draw the line

between original goals and further development goals.



54

3.5 Managing Rapid Application Development Risks

An important objective for risk management in rapid application development is the
improvement of communication between the application designers and the application
domain experts (e.g. the end users), as well as among the development personnel and
different development teams assigned to the same project. This necessitates the
deployment of tools that not only facilitate the feedback between the expert and the
developer, but which also organize the process so that transferring specification

requirements to the prototype being developed is simple, concise, and effective.

One of the most significant factors influencing software costs is the amount of source
code needed to be programmed. Hence, an effective cost-reduction strategy is to employ
reusable components when developing software (Boehm and Papaccio 1988). In order
to use reusable components effectively, proper facilities must be present in the
development environment, for example shared component repositories or libraries and
the necessary metadata assigned to each component. A shared component or object
repository enables all developers to collaboratively share their own components and
utilize the components developed by others. One must remember that the existence of
reusable components and development tools enabling the use of them does not eliminate
the need to adopt and use effective system development methodologies (Wasserman

1980).

However, in order to be able to create and utilize reusable components in software
development, the system must be carefully designed, the possibilities of component
generation and usage must be examined, and the necessary design changes must be

implemented before the actual system implementation phase.

RAD approach to software development also brings additional challenges to the
developers in the form of prototype versioning and configuration control. When
creating several successive versions of a prototype, a need for a comprehensive revision

control becomes apparent. Technical documentation must be updated and revised



55

according to the changes implemented and measures must be taken to guarantee the

integrity of the produced material.

Our study attempts to indicate how the utilization of a graphical modeling method in
RAD projects affects the design and documentation quality, and the resources needed
for the project. As we study the modeling method implementation effects from a risk-
oriented point of view, the actual measurement of the design and documentation quality

is not however the primary objective of this research.

3.6 Chapter summary

In this chapter we introduced the concepts related to software project risks. The
software project risk management strategy by Boehm and Ross (1989) was described in
detail. Boehm and Ross (1989) divide the risk management in two primary functions:
Risk assessment and risk control. We utilize the risk assessment steps by Boehm and
Ross (1989) in identifying, analyzing, and prioritizing the risks of the case projects
described in chapter 4. The NDL modeling method and NotesEdit CASE tool described
in section 4.1 are developed for studying the controllability of the identified risk factors

using graphical models.

A concept of risk categorization was introduced according to Keil et al. (1998) and two
frameworks for categorizing software project risks were presented. The risk
categorization frameworks are utilized in analyzing the general RAD risk items

identified in chapter 4.

Finally, some risks emphasized in groupware application development and RAD

projects were presented, and methods for RAD risk management were suggested.



56

4 EVALUATION CRITERIA

In this chapter we describe NDL modeling method and NotesEdit tool as well as an
evaluation criteria used for analyzing the effects of the method and the CASE tool
utilization on rapid application development risks. The evaluation criteria is are applied

in chapter 5.

The NDL modeling method and NotesEdit CASE tool are described briefly considering
the goals of the method and tool development, the implementation process, and the

proposed usage of the NotesEdit CASE tool.

The evaluation criteria description is divided in three sections. First, we present
essential theories utilized in the evaluation criteria development. These theories are
based on the risk management literature by Boehm (1989), Boehm (1991), Boehm and
Papaccio (1989), Boehm and Ross (1989), Keil et al. (1998), and Cotterell and Hughes
(1995). Second, we describe the three case projects implemented before the CASE tool
development. The experiences acquired from these projects are then utilized in the
evaluation criteria, and the NDL method development. The risks related to the case
projects are identified, analyzed, and prioritized in order to support the identification of
general RAD project risks. Third, the general RAD project risks are identified, analyzed

and prioritized using the results of the two previous sections.

By identifying and analyzing the general RAD project risks we support the analysis of
the effects of a graphical modeling method and a CASE tool implementation on
different types of RAD project risks. This helps us to evaluate the effects of CASE tool

utilization in RAD project risk management.

Outline of the development and application of the evaluation criteria is presented

graphically in Figure 8 below.



57

Risk assessment

Literature
review

General risk
identification

Risk

identification

Risk analysis

Risk

prioritization

Categorization

Evaluation Case and pilot Evaluation
criteria comparison results

f

Case projects

Risk assessment

Risk

identification

Risk analysis

Risk

priaritization

Categorization

NotesEdit
CASE toe!

Pilot projects

Figure 8: Development and application of evaluation criteria

The general RAD risks identified in the case projects and literature are used as the basis
for the NotesEdit CASE too development as well as the development of the evaluation
criteria. The NotesEdit CASE tool development, pilot projects, and the case and pilot

project comparisons presented in Figure 8 are discussed further in later chapters.

4.1 NDL modeling method and NotesEdit CASE tool description

The goal of the NDL modeling method and NotesEdit CASE tool development was to
generate an instrument which can be used to comprehensively model the design of a
Lotus Notes application or an information system consisting of multiple Lotus Notes
applications. By utilizing this instrument an application developer can replenish the
design documentation of the developed system with graphical models describing the
properties, functionality, and dependencies among different design objects. These
models can be utilized in the system design and development activities as well as in

system maintenance.

The NDL method engineering process was implemented by describing the NDL method
using metamodels. In our NDL metamodeling effort we applied the extension of Object-
Property-Role-Relationship (OPRR) metamodeling language called Graph-Object-
Property-Relationship-Role (GOPRR), which has been developed specially for



58

metamodeling (Tolvanen 1998). The GOPRR language was selected due to the
available tool support and the previous experiences of the people involved in

metamodeling and CASE tool implementation effort.

The NotesEdit CASE tool was implemented by importing the generated GOPRR
metamodels to MetaEdit+ meta-CASE tool and describing the notations for the
modeling techniques supported by the method. Additionally, some automatic error and

warning checkings were implemented.

The NDL method consists of two modeling techniques, Application architecture model
and Database model. The techniques are designed to model the object system in

different levels of abstraction.

Application architecture model is used to model the structure of Lotus Notes
applications (which applications consist of which databases) and the connections
between separate Lotus Notes and Open Database Connectivity (ODBC) compliant
databases. Application architecture models can also be used to represent the whole
Lotus Notes application architecture of a particular organization. The databases

represented in Application architecture models can be exploded to Database models.

Application architecture modeling technique is designed for supporting the structuring
of the application consisting of multiple databases. The connections and interfaces
between the separate databases can be modeled and analyzed utilizing the application
architecture models. Thus, the models can be utilized in enhancing communication
among the system developers developing different system modules, as well as in
demonstrating the system structure for the end users. Additionally, the models can be
used in analyzing the effects of design changes on the application level (instead of
database level as in database models). Thereby, the application architecture models can
be utilized in the system maintenance phase when updating or modifying the application

functionality.



59

Database model is a technical description of a particular Lotus Notes Database and thus
cannot be used to model ODBC compliant databases. Database models consist of Lotus
Notes objects (e.g. forms and views) and connections between them. Connection from a
particular object to an external database is also allowed. These connections should be

modeled accordingly in Application architecture models.

Database modeling technique is designed to support the system design activities as well
as the automatic application generation according to database models. The database
models generated during the development can be used in enhancing the application
design documentation and the analysis of the design changes in database level. The
objects, properties and connections presented in Database model are converted to a
semi-functional Lotus Notes application frame by utilizing the CodeGenie application

frame generator.

Both of the presented techniques can be utilized in the requirement specification phase
to formalize the requirement specifications and support the tracking of the specification
changes. Additionally, as the system can be modeled according to the requirement
specifications, we attempt to support the estimation of the resources needed for the

project completion.

4.2 Risk assessment

The main objective of the evaluation framework development is to study the effects of
NotesEdit CASE tool implementation on RAD project risks. In order to evaluate the
impacts of the tool utilization on the RAD risk factors, we need to implement
appropriate risk management strategies to identify, analyze, and prioritize the risks
associated with RAD projects. Bochm and Ross (1989) refer to all these issues with the

term risk assessment.

In our risk assessment effort we utilize the risk assessment steps identified by Boehm
and Ross (1989) and further analyzed by Boehm (1991). According to Boehm (1991)

risk assessment activities include risk identification, risk analysis, and risk



60

prioritization. In addition to these steps, we attempt to categorize the identified risks in
order to analyze the NotesEdit CASE tool implementation effects on different

categories (e.g. RAD risks, risks related to the Lotus Notes environment).

The goal of risk identification is to produce a list of the risk items likely to endanger the
project’s success (Boehm 1991). In order to evaluate the CASE tool effects on RAD
risks we attempt to identify the risk items that become apparent in RAD projects
implemented by using prototype approach. The risk identification process is
implemented by using checklists and risk identification methods presented in the
literature (Boehm and Papaccio 1989, Keil et al. 1998), and by utilizing our own
experiences from risk assessment of the case projects prior to the NotesEdit tool
implementation. As prototype approach and RAD provide means for controlling some
of the risks related to traditional development approaches, we utilize the case project
experiences and the prototyping literature in refining the checklists to adapt to the

research environment.

Risk analysis assesses the probability and magnitude of the loss associated with each of
the identified risk items, and also attempts to identify the compound risks in risk-item
interactions (Boehm 1991). Typical risk analysis techniques include network analysis,

decision trees, cost models, and performance models (Boehm and Ross 1989).

The importance of a particular risk, known as the risk value or risk exposure, depends
upon the probability of the hazard occurring and its potential loss, effect, cost, or
impact. The purpose of risk analysis is to obtain some quantitative measure of both
these factors to support comparison of the identified risk items in a meaningful way.

(Cotterell and Hughes 1995)

By analyzing the interrelations of the identified risk items the overall exposure and cost
of each risk item can be specified. As one of the identified risks may contribute to
several other risk items, and on the other hand, the exposure of some risk items can be

significantly increased due to the realization of several other risks, it is important to



61

carefully analyze the interrelations of the identified risks (Figure 9). The identified

relationships must be considered carefully in the risk prioritization phase.

Riskl Risk2 Risk3 Risk4

Realization of Riskl, Risk2, Risk3, or Risk4
increasas the likelihood of RiskS. Additionally,
the realization of Riskl increases the likelihood
of Risk7.

Realization of RiskD increases the likelihood
of Risk6 and increasesthe costs of Risk? and
Risk8 if they realize.

| Risk3

Figure 9: Risk interrelations

Good examples of interrelated risks are insufficient or inappropriate staffing and lack of
adequate design documentation that both contribute to the probability and scale of the

poor maintainability of the developed software.

In our research the risk analysis is conducted by assigning each risk a probability and
loss ratings (on scale 1 to 10) that are used to calculate the overall exposure of a
particular risk. The probability rating is used to describe the likelihood of the risk
occurrence while the loss rating describes the scale of the costs associated with the risk.
The overall exposure rating is calculated by multiplying the associated probability and

loss ratings thus resulting in values 1 to100.

According to the risk analysis results the identified risk factors must be prioritized so
that managerial attention can be directed to the critical areas of the development project.
The priority of each risk must be assigned according to the risk exposure. However, the
risk probabilities and losses should be calculated considering the interrelations among

the identified risk items.

In order to further refine the framework of analysis for the risk factors surfacing in RAD

projects we categorize the identified risk factors in a way that supports analyzing the



62

NotesEdit implementation effects on different risk categories. Additionally, the risk
categorization aims to help in identifying the external factors affecting the risk items in

the pilot projects.

In our risk categorization we utilize the categorization framework by Keil et al. (1998)
presented in section 3.2. Furthermore, we develop our own categorization framework
designed to support specifically the categorization of the RAD risks in groupware
development (such as Lotus Notes) environment. With the aid of these frameworks, the
identified risk factors are set in a more general domain describing certain problematic
areas of software development in general, rapid application development, as well as in

groupware development.

The first risk categorization framework is presented by Keil et al. (1998). This
framework consists of four quadrants: Customer mandate, scope and requirements,
environment, and execution. The framework is further discussed in section 3.2. As we
place the identified risk factors into the corresponding quadrants with their respective
risk exposure ratings, we can see the risk exposure distribution per quadrant. This offers
us a guideline to which risk areas are predominantly dangerous in rapid application
development projects. Additionally, this allows us to compare the risk exposure to the

level of controllability of the identified risks.

Furthermore, we attempt to categorize the identified risk factors by the cause or reason
leading to the actualization of the risk. We have identified five main categories that can
be considered to describe the reasons for possible realization the identified risk factors.
The problems and risks appearing in RAD projects in groupware development

environment can be divided to the following categories:

General software project risks
Risks related to the prototype approach
Risks related to RAD

Risk related to the product specific environment

A

Risks related to the groupware development



63

By classifying the risk factors by reason we support the identification of the external
factors affecting the risk items in the pilot projects and the evaluation of generality of
the research results. For example, if the effects of CASE tool implementation are
restricted to product specific environment, in this case Lotus Notes, the generality of the

results is poor when considering the RAD project risks in general.

The risk management strategies implemented in this chapter are discussed in more detail
in section 3.1. Next sections describe the three case projects representing each step of
our RAD project risk assessment effort: Risk identification, risk analysis, risk

prioritization, and risk categorization.

4.3 Case projects implemented before NotesEdit development

In this chapter we describe the three case projects implemented before NotesEdit CASE
tool development. The experiences gained from these projects were used as a basis for
the NotesEdit tool and the tool evaluation framework development. The case projects’
risk assessment results are also utilized in chapter 5 in evaluating the CASE tool effects

on the identified risk factors.

All the case projects were implemented in Lotus Notes environment using evolutionary
RAD approach and relatively similar analysis, design, and development methods.
However, the projects were carried out by two different development organizations and

by three different development teams.
The next three chapters describe each of the projects as follows:
Project’s target organization and objectives

Project planning

Project outcome

BowoN =

Project specific risk assessment



64

The project-specific risk assessment is carried out according to the risk assessment
phases and tools by Boehm and Ross (1989). It should be noted that the risk assessment
is carried out by the project manager in each respective project, basing on the subjective
view of the project manager on the most important risk factors in each project. This
approach does not necessarily give us a mathematically and statistically valid basis on
comparing the projects. However, we aim to bring up some of the risk factors
commonly appearing in RAD projects. The risk factors identified and prioritized by the
project managers in each case are then further analyzed in section 4.3, given the

methods suggested by Boehm (1991).

4.3.1 Case project1

In case project 1 the target organization was a large Finnish company manufacturing
machinery mainly for foreign markets. The company’s sales department had previously
collected all technical information on the machines manually by typing the information
on sheets and adding technical diagrams and drawings on them, as supplied by the
development engineers. The sales department needed to automate the system with a
groupware solution that would make it possible to easily share the information to all
sales personnel as well as carry the necessary information with them while visiting the

customers.

The purpose of the application was to enable easy entering of technical specification for
a piece of machinery and to provide this information for those who needed it. The
application should also be able to print the required information with a proper layout.
The research and development department of the company already had a similar
information system, but it did not contain all information the sales department needed.
The application was designed to completely replace the old manual, paper based archive
system, which was problematic to update and share. The sales department had an
information system developed some years earlier by another company, which contained
the basic data for the machinery. However, this information system did not include all
the necessary information about specific machine parts, which was vital for sales

activity.



65

Project planning

The project was scheduled to last for 6 weeks with 2 programmers, a project manager,
and three representatives from the customer. The schedule and personnel resources were
estimated to be sufficient because the requirement specifications were very detailed and
technically complete, indicating little or no need for specification changes during the

project.

The specifications were supplied in the first meeting, containing detailed descriptions of
each document form, complete with field descriptions. A layout proposal was also
included which complied with the company standards on application development with
considerations given to the printable layout of the documents. The specification
included a link to an external application so that when the machine information would
be entered in the database, the application would retrieve the basic information from the
other application. The user then needed to fill in the data for specific parts only. When
the basic information would be changed in the other database, the application was

required to update the information accordingly.

Project outcome

The project was completed sharply on schedule with no timetable slip-ups. This was
due to successful personnel resource assignment and schedule estimation in the
beginning of the project. The customer organization adhered to the schedule and no set
dates were missed or reassigned. After the final review, the sales department felt having
obtained the goals set for the system. The application was taken into operational use

and the use of the old manual system was discontinued.



66

Risk assessment

Despite that the project was successful, the project manager identified the following risk
factors to be the top priority risks deserving attention to ensure a successful project

completion. The risk factors were:

1. The external database connection would be difficult to implement

2. Some of the key personnel in sales department would have vacations during the
project

3. The transition of technical knowledge of the machinery to the developers

4. The selected platform might impose restrictions for the layout setting when

printing the documents

When analyzing the risks, two risk factors seem to be interdependent at some level: The
vacations of the key personnel in sales department during the project and the transition

of technical knowledge to the developers (Figure 10).

3]

Figure 10: Case 1 risk interrelations

According to the project manager, the absence of the key personnel in sales department
during a critical phase of the project can lead to project schedule overrun as the
developers do not receive enough feedback from the customer. This lack of feedback
and technical consultation can lead to unsatisfactory implementation of key features or
misunderstanding in the logical structure of the application. Especially in RAD projects,
it is important to have a constant feedback cycle between the developers and customer
organization experts. When we asked the project manager to analyze and prioritize the
risk items that he had identified above using the risk prioritization by Boehm (1991), we

received the risk exposure ratings summarized in Table 2.



67

Table 2: Case 1 risk analysis

RISK ITEM RISK LOSS WITH RISK
OCCURRENCE RISK EXPOSURE
PROBABILITY | OCCURRENCE
The external database connection 5 3 40

would be difficult to implement

Some of the key personnel in sales
department would have vacations 7 2 14
during the project

The transition of technical
knowledge of the machinery to the 3 8 24
developers

The selected platform might impose
restrictions for the layout setting 6 3 18
when printing the documents

The risk analysis and prioritization conducted by the project manager resulted in the

following risk list sorted in descending order of risk exposure:

1. The external database connection would be difficult to implement

2. The transition of technical knowledge of the machinery to the developers in
order to facilitate as logical application design could not be done sufficiently

3. The selected platform might impose restrictions for the layout setting when
printing the documents

4. Some of the key personnel in sales department would have vacations during the

project

The external database connection was clearly separated as the top risk item most likely
to affect the project outcome. The transition of technical knowledge was set as the
second risk factor deserving attention. The restrictions imposed by the technical
platform and the key personnel vacations were approximately of the same risk exposure

level and therefore set at low priority.

As the requirement specifications were playing a significant role during the project, the

risks related to resource shortfalls and exceeded deadlines were not considered




68

significant in this project. Also the social risks related to target organization personnel
had only a minor role in this project since the personnel were well motivated due to the

successful development projects implemented before this project.

4.3.2 Case project 2

The target organization for case project 2 was a small furniture manufacturer selling its
products primarily for domestic retailers, with some foreign retailers and individual
non-retail customers. The organization consisted of two primary departments:
Combined management and marketing, and production. The developed system was

intended for the use of management and marketing department only.

The project’s primary objective was to develop an extranet system for online product
ordering used by the target organization’s retailers. The specifications also included
integration to the customer’s stock control system that was used for informing the

subcontractors about the current stock situation.

The finalized system was to be installed on a server of an outsourced Internet service
provider. The selected service provider did not offer the required server environment in
the beginning of the project, but had made an agreement with the customer to have the

required services running before the project deadline.

Project planning

The initial project organization was based on the requirement specifications received
from the customer. The specifications described the system to be developed on a very
high abstraction level and contained no technical view since the customer organization
lacked knowledge on systems development. The project budget was determined
according to these specifications since the customer demanded a fixed price for the
project. The project was estimated to last for two calendar months and require

approximately 2 part-time programmers.



69

Since the initial specifications received from the customer did not make it possible to
start the development of a first system prototype, the first RAD iteration was started
from the review phase with a starting meeting together with the customer. The
communication between the developer and the customer still lacked common
understanding of the detailed system functionality. As it later turned out, the customer
was unable to point out all the necessary details affecting the system design and internal
functionality. On the other hand the development team also lacked means for specifying
these details due to the unfamiliarity of the customer organization. As a result of the
meeting a more detailed specification of the system properties and functions was

written. The first prototype review date was also set.

Project outcome

The specified system was implemented in three iteration rounds within the determined
schedule. However, several additional functions and properties not specified in the
initial specifications and the starting meeting were implemented and thus the project
resources were slightly exceeded. The requirement specifications were also subject to a
number of changes in each customer review. Implementation of the additional
properties required several changes in the internal system functionality and external

database connection and thus required significant additional resources.

Even though the system was finalized about a week before the specified deadline, the
system installation and implementation activities were delayed for several weeks due to

the delays in setting up the server environment with the service provider.

Despite the delays in the project schedule the customer was satisfied with the project,
and the developed system completely met up the customer’s demands. In this project,
the prototype approach diminished the risks related to vague application specifications
significantly and the development team was able to complete the project almost within

the specified resources.



70

Risk assessment

As the project can be considered to be partially unsuccessful due to the resource and
deadline overruns, the project manager was able to identify several risk items

threatening the successful project completion:

1. The requirement specifications the project manager uses as a basis for project
budget and schedule may not be specific enough.

2. The requirement specification changes may require additional knowledge and
programming resources.

3. The Lotus Noteé environment can set restrictions for the system implementation
resulting in customer dissatisfaction.

4. Users may require several additional properties to be implemented within the
project budget since no exact specification for the project scope and objectives is
available.

5. The external database connection implementation failure due to network
connections (customer had only an ISDN connection to the Lotus Notes service
provider) or inappropriate development personnel.

6. Delays in the outsourced Internet service provider’s Lotus Notes environment
set up activities can delay the project completion.

7. Strict project schedule and the large number of possible design changes needed

in each iteration can lead to poor maintainability of the system.

As the project manager analyzed the risk factors identified above, the following
interrelations between individual risks were identified. The realization risk 1, vague
requirement specifications, is strongly related to the exposure and cost of risks 2 and 4.
As the inaccurate specifications increase the possibility and scale of design changes
needed in the later development phases and make it difficult to set the project
boundaries, the risks can be considered as interrelated. Additionally, the realization of
risk 2, changing requirement specifications, is related to the risk 7 as the system
maintainability can be reduced due to a lot of design changes implemented in rapid

succession. The realization of risk 4 also increases the possibility of poor



71

maintainability since the additional properties must be implemented within the strict
project schedule. Therefore the risks 4 and 7 are also interrelated to some extent. The
number of necessary design changes is also bound to the project budget and schedule
since the additional changes always strain the project’s resources and delay the project
completion. Risks 4 and 3 can be considered interrelated since the realization of risk 4
increases the possibility of risk 3. Even if Lotus Notes supports all the functionality
specified in the initial requirement specifications, the additional functions innovated
during the project can exceed the possibilities Lotus Notes offers for the system

developers. The interrelations of the identified risk factors are depicted in Figure 11.

I

a5 ]

w |l— =

g

Figure 11: Case 2 risk interrelations

The project manager prioritized the identified risk factors as presented in Table 3. The
prioritization was conducted using the risk prioritization framework identified by
Boehm (1991). Each risk is assigned with a probability and cost rating that is used to
calculate the overall risk exposure. As in the previous case project, the scores are
subjectively rated by the project manager, based on the perceived importance and

controllability of each risk item.



Table 3: Case 2 risk analysis

72

RISK ITEM

RISK
OCCURRENCE
PROBABILITY

LOSS WITH RISK
OCCURRENCE

RISK
EXPOSURE

Requirement specifications the
project manager uses as a basis
for project budget and schedule
may not be specific enough.

72

Requirement specification
changes may require additional
knowledge and programming
resources.

42

Lotus Notes environment can set
restrictions for the system
implementation  leading  to
customer dissatisfaction.

10

Users may require several
additional properties to be
implemented within the project
budget since  no exact
specification for the project
scope and  objectives  is
available.

28

External database connection
implementation failure due to
network connections or
inappropriate development
personnel.

Delays in the outsourced Internet
service provider’s Lotus Notes
environment set up activities can
delay the project completion.

16

Strict project schedule and the
large number of possible design
changes needed in each iteration
can lead to poor maintainability
of the system.

35




73

According to the risk analysis conducted by the project manager, the following

prioritized list of the risk items was developed.

1. The requirement specifications the project manager uses as a basis for project
budget and schedule may not be specific enough.

2. The requirement specification changes may require additional knowledge and
programming resources.

3. Strict project schedule and the large number of possible design changes needed
in each iteration can lead to poor maintainability of the system.

4. Users may require several additional properties to be implemented within the
project budget since no exact specification for the project scope and objectives is
available.

5. Delays in the outsourced Internet service provider’s Lotus Notes environment
set up activities can delay the project completion.

6. The Lotus Notes environment can set restrictions for the system implementation
leading to customer dissatisfaction.

7. The external database connection implementation failure due to network
connections (customer had only ISDN connection to the Lotus Notes service

provider) or inappropriate development personnel.

As we can see the two risks considered as most important are both related to the vague
requirement specification received from the customer in the project beginning. Both
these risks also effect the probability and scale of several other identified risk factors.

The prioritized risk factors presented above are analyzed further in section 4.3.

4.3.3 Case project3

The customer in project 3 was a small Finnish company specializing on corrosion
resistant and stainless steel machinery part manufacturing with approximately 40
employees. The company products were mostly targeted at domestic markets but some
of the products were exported to foreign countries. The company had several

subcontractors that mostly mechanized the semi-built parts made by the company.



74

As the company expanded its subcontractor network and area of expertise, a solution for
controlling the information, and sharing it to the employees was deemed necessary. The
personnel manager also wanted a company-wide e-mail and collaboration environment
for sharing information as a platform for the application. The goals set for the project
were ambitious — a complete removal of paper documentation, company-wide e-mail
and an extensive information system for controlling orders, quality documentation,
reclamations, project documentation, and personnel timetables, as well as installing the
required hardware and software enabling the development and use of the information

system.

Project planning

The project was scheduled to last for 6 months with a project manager and one full-time
programmer. The project started with interviews with representatives from the customer
organization. Seven interviews were arranged with key persons in the company:
Managing director, personnel manager, account manager, subcontractor manager,
production manager, assistant production manager and the production line executive.
After the interviews were complete, a diagonal matrix of information, material, and
product flows was produced in order to support the spotting of bottlenecks and areas
where IS support would be needed. A general system specification was written on an

abstract level in a meeting between the developers and the personnel manager.

The installation of necessary hardware and software started in cooperation with the
company’s network maintenance person. As the network maintenance person had a
busy schedule, the installation of the hardware and software was delayed for some
weeks. After the server installation, the Internet service provider for the company had
trouble opening the TCP/IP —protocol routing for the network causing significant
problems with the e-mail traffic. The problems were resolved after the installation of the
initial prototype after some active correspondence with the ISP customer support

department.



75

The requirement specification consisted of drafts of each form layout and information
content in the application as well as the general concept of the application data flow and
user-interfaces. The current paper forms being used in the company were taken as a
model for the automated forms. The initial prototype was built rapidly with the
document forms being exact copies of the paper-based forms, with no real thought
given how to better automate and arrange them to fit better in a collaborative document
management system. The software was created from the ground up, without using any

previous components as a framework for the development.

The customer representative had a vacation in the middle of the project and the
promised error report and development ideas were delivered several weeks later than
was originally set. The developers realized that the fixed deadline was approaching and
the delivered list of problems in the software was considerable, as the application was
quite complex. The errors in the program were fixed quickly and most of the layout
change proposals were carried out. The fixed prototype was installed for testing and
error reports and development ideas were promised well before the end date of the

project.

As the customer was under a heavy workload with orders coming from several
customers, the development ideas and error reports could not be delivered in time. As
the project deadline was reached, the developer organization saw no other possibility

than to end the project.

Project outcome

After the project was terminated at the preset end date by the developer, the customer
representatives were highly irritated by their actions: The installed software still
contained several unresolved technical problems and the layout of the forms was not
what they had expected. Several automation features were missing from the application
and there were still problems with e-mail routing, as the service provider had not been

able to get their mail server to redirect the company’s e-mails without problems.



76

The customer blamed the developer organization for not fixing the software as
requested and for not carrying out the required changes and modifications they wished
for. The developer organization on the other hand accused the customer organization
not being able to adhere to the set schedule and dates, especially in regard to software
error reports and development ideas. The developers emphasized that the end date was
fixed in the beginning of the project and the customer did not give the developers

enough time to implement the required changes and to correct the errors.

The customer organization did not take the developed information system into
operational use, relying instead on the old manual, paper-based documentation and
workflow management. The software contained too many errors and design
inconsistencies to be used effectively. The project was set on hold to wait for another
company to carry out the required fixes and new requirement implementations to the

software with an additional price.

Risk assessment

The case project 3 failed because of insufficient risk analysis and the resulting project-
critical risk occurrences. The project manager of the development organization

identified eight distinct risk factors:

1. The customer and the developer could not create clear requirement
specifications

2. The scope of the project was too great compared to the available resources
The project schedule was too tight

4. The customer could not present the required feedback on software errors and
development ideas within the required time

5. Insufficient people resources in developer and customer organization

6. The lack of component reuse when building the application

7. The Internet service provider for the customer had problems with rerouting the
e-mail traffic

8. Poor design documentation and maintainability



77

As the project manager analyzed the identified risk factors, several interdependencies
were revealed. The risk item number 5 — insufficient people resources in developer and
customer organization - partially affects the possibility of risk factor 4 realization, the
inability of the customer to produce the necessary reports of the software. As the
customer organization only had one selected representative, being both busy and on
vacation during the project, caused the delay of feedback to the developers. Also, risk
item 5 is interrelated to the risk factor number 3, the tight project schedule. If the
developer organization had more personnel assets, maybe the project schedule would
have been sufficient. With only one programmer and a project manager, the schedule
was clearly too tight. The tight project schedule was also due to risk items 4 (lack of
customer feedback) and the risk item 2 (too large project scope). The absence of clear
requirement specification (item number 1) also prevented the use of reusable
components (item number 6) as well as led to shortage in personnel resources (item 5).
With a project scope being too large (item number 2), it was difficult to create
requirement specifications on a sufficiently detailed level (item 1). The large project
scope also had an effect on item number 5, insufficient people resources. The risk item
8 (poor design documentation and maintainability) is effected by a combination of
several other risk factors: Absence of clear requirement specification (number 1),
project scope being too large (number 2), tight project schedule (number 3), insufficient
people resource (number 5), and the lack of component reuse (item number 6). These
complicated risk factor interrelationships are more clearly illustrated in

Figure 12 below.




Figure 12: Case 3 risk interrelations

78

The project manager was asked to rate the most important risk factors in the project on

terms with risk occurrence probability and loss with risk occurrence, based on his

subjective view. The identified risk factors are prioritized below according to the risk

prioritization framework by Boehm (1991). The risk exposure ratings with probabilities

and losses identified by the project manager are listed in Table 4.

Table 4: Case 3 risk analysis

RISK ITEM RISK LOSS WITH RISK
OCCURRENCE RISK EXPOSURE
PROBABILITY | OCCURRENCE
The customer and the developer
could not create clear requirement 6 8 48
specifications
The scope of the project was too
great compared to available 7 5 35
resources
The project schedule was too tight 6 7 42
The customer could not present the
required feedback on software errors 5 3 40
and development ideas within the
required time
Insufficient people resources in
.. 5 6 30

developer and customer organization
The lack of component reuse when

o 1 o 6 8 48
building the application
The Internet service provider for the
customer had problems in routing 2 5 10
the e-mail traffic
Poor design documentation and 5 9 45

maintainability

When the prioritized risk items are sorted in a descending order of risk exposure, a

following list can be formed:

1. The customer and the developer could not create clear requirement

specifications

2. The lack of component reuse when building the application

3. Poor design documentation and maintainability




79

4. The project schedule was too tight

5. The customer could not present the required feedback on software errors and
development ideas within the required time

6. The scope of the project was too great compared to available resources

7. Insufficient people resources in developer and customer organization

8. The Internet service provider for the customer had problems with rerouting the

e-mail traffic

The risk exposure estimates made by the project manager indicate that there were
several high-priority risk factors affecting the project outcome and warranting
immediate action with a risk management approach. Only the risk item 8, external
service problems, was ranked very low. When analyzing the project outcome and the
identified risk factors, it is easy to find out why the project outcome was a failure. There
was not enough attention being paid to the critical project risk factors, no risk
management techniques were in use, and therefore no measures were taken to control

the probability of risk factors being realized.

4.4 General RAD risks

In this chapter we attempt to generalize the risk items identified in the presented case
projects. By risk item we mean the actual risk identified in the development project and
the terms risk category and risk type refer to the generalization of these risks. The
generalization is conducted by utilizing the general risk identification checklists by Keil
et al. (1998) and Boehm and Ross (1989) and by identifying risk factors corresponding

to the risks identified in case projects.

The general RAD risks are identified by utilizing software development project risk
checklists presented in the literature and the experiences gained by interviewing the
project managers of the case projects described in the previous sections. By contrasting
the list of subjectively important risk items in each case project and the lists presented in
literature, we filter out risks that are not particularly relevant in RAD projects and add

some risk items that are perceived as important by the project managers involved in case



80

projects. Additionally, the general risk factors are analyzed, prioritized and categorized

in order to support the NotesEdit CASE tool evaluation in further chapters.

4.4.1 General project risk identification

The general RAD risks are identified by utilizing software development project risk
checklists presented in the literature and the experiences gained by interviewing the
project managers of the case projects described in the previous sections. Boehm and
Ross (1989) present a checklist of 10 software project risk items. The list is based on the
experiences of several experienced project managers and is aimed at supporting the
identification and resolving the most serious risk items threatening the successful
completion of a software project. Boehm and Ross (1989) also suggest appropriate risk
management techniques for each of the identified risks. The complete checklist of risk

items and the corresponding risk management techniques is presented in Table 5.



81

Table 5: Software risk item checklist 1 (after Boehm and Ross 1989)

RISKITEM

RISK MANAGEMENT TECHNIQUE

Personnel shortfalls

Staffing with top talent, job matching, team building, key
personnel agreements, cross training.

Unrealistic schedules and

budgets

Detailed multisource cost and schedule estimation, design to
cost, incremental development, software reuse, requirements
scrubbing.

Developing the wrong
functions and properties

Organization analysis, mission analysis, operations-concept
formulation, user surveys and user participation,
prototyping, early user’s manuals, off-nominal performance
analysis, quality-factor analysis.

Developing the wrong
user interface

Prototyping, scenarios, task analysis, user participation.

Gold-plating

Requirements scrubbing, prototyping, cost-benefit analysis,
designing to cost.

Continuing stream of
requirements changes

High change threshold, information hiding, incremental
development (deferring changes to later increments).

Shortfalls in externally | Benchmarking, inspections, reference checking,
furnished components compatibility analysis.
Shortfalls in externally | Reference checking, preaward audits, award-fee contracts,

performed tasks

competitive design or prototyping, team-building.

Real-time performance

Simulation, benchmarking, modeling, prototyping,

shortfalls instrumentation, tuning.

Technical analysis, cost-benefit analysis, prototyping,
reference-checking.

Straining computer-
science capabilities

Keil et al. (1998) criticize Boehm and Ross (1989) and Boehm (1991) for the narrow
focus of the checklists as they are primarily built upon their experiences from U.S.
defense industry in the 1980’s and might not be suitable for the needs of typical
business enterprises. Keil et al. (1998) also point out that both the organizational and

technological landscape have changed considerably in the last ten years.

Keil et al. (1998) have re-examined the risk issue by developing an updated checklist to
meet up the demands of today’s business organizations. The list contains 11 risk items
that have been sorted in descending order, from the most important to the least
important, by their relative importance. By relative importance Keil et al. (1998) refer to
the combination of risk probability and the cost of risk realization. The prioritized list of

risk items identified by Keil et al. (1998) is presented below.




82

Lack of top management commitment to the project
Failure to gain user commitment

Misunderstanding the requirements

Lack of adequate user involvement

Failure to manage end user expectations

Changing scope / objections

Lack of required knowledge / skills in the project personnel

Lack of frozen requirements

I R R S I S

Introduction of new technology
10. Insufficient / inappropriate staffing
11. Conflict between user departments

Some of the risk items correspond to the risks identified by Boehm and Ross (1989), but
the updated list also contains several additional items. As we can see, the risks related to
computer technology (Real time performance shortfalls, Straining computer science
capabilities) included in the list identified by Boehm and Ross (1989) have not been
included in the list updated by Keil et al. (1998). Since the information technology has
evolved rapidly in the 1990’s the risks related to the performance and availability of
technology resources are no longer considered relevant. The focus has shifted to the

social factors bound to software projects.

However, several corresponding risk items can be identified from the presented
checklists. Both lists include several items related to the requirement specification and
objectives of the project. Also the risks related to project and target organization

personnel are present in both lists.

In our research we support the risk identification by using a checklist which is a
combination of the lists identified by Boehm and Ross (1989) and Keil et al. (1998). In
addition we have added two risk items (lack of adequate design documentation, poor
maintainability of the developed software) that are emphasized in RAD projects based
on the experiences acquired from the case projects implemented before the NotesEdit

CASE tool implementation (see section 4.3). These two risk items were perceived as



83

important by the project managers in the case projects when estimating the factors
effecting the outcome of the project. On the other hand we have excluded some risks
that can be relevant to the success of an IS development project, but are irrelevant when
studying the effects of a CASE tool implementation on RAD project risks. Our checklist

contains the following risk items.

e Misunderstanding the requirements

e Failure to manage end user expectations

o Continuing stream of requirement changes
e Personnel shortfalls

¢ Unrealistic schedules and budgets

¢ Gold-plating

e Shortfalls in externally performed tasks

e Lack of adequate design documentation

¢ Poor maintainability of the developed software

The reasons for selecting the risks specified are presented below. The risks excluded

from our list and the reasons for exclusion are presented briefly in Table 6.

Table 6: Risks excluded from the evaluation framework

RISK REASON FOR EXCLUSION
— Lack of top management commitment |These risks are of social nature and are on
to the project the responsibility of project manager.

— Conflict between user departments CASE tools offer no significant additional
means for controlling these risks.

— Failure to gain user commitment Prototype approach is a tool for controlling
— Lack of adequate user commitment these risks.
— Developing the wrong user interface
— Introduction of new technology CASE tool implementation offers no
— Real-time performance shortfalls additional means for controlling
— Straining computer-science technology risks.
capabilities

It is worth noticing that most of the risks included in our risk identification checklist can

be located in the Scope and requirements and Execution quadrants of the risk




84

categorization framework identified by Keil et al. (1998). Risks in these quadrants have
high level of controllability and high or moderate relative importance. On the other
hand, most of the excluded risks are located in the Customer mandate and Environment
quadrants of the risk categorization framework by Keil et al. (1998) and thus have low

level of controllability.

The reasons for the inclusion of the selected risk items are described below.

Misunderstanding the requirements

Misunderstanding the requirements is included in both presented lists (Boehm and Ross
(1989): Developing the wrong functions and properties, Keil et al. (1998):
Misunderstanding the requirements). Accordingly Boehm and Papaccio (1988)
emphasize the importance of the early phases of software development since the errors
in requirement specification are likely to cause significant costs in later development

phases.

The risks related to misunderstanding the requirement specifications were identified in

all the case projects described in section 4.3 as presented in Table 7.

Table 7: Identified case risks related to misunderstanding the requirements

CASE |RISK DESCRIPTION RISK RISK
NO. EXPOSURE | PRIORITY
1 |{The transition of technical knowledge of the 24 5

machinery to the developers.

2 | The requirement specifications the project manager

uses as a basis for project budget and schedule may 72 1
not be specific enough.
3 | The customer and the developer could not create 48 1

clear requirement specifications.

However the prototype approach itself provides some means for controlling the risks
related to requirement specification (see Table 5) as the incorrect requirement

specifications can be replenished when the prototypes are reviewed with end users.



85

Nevertheless the end users tend to focus on the issues related to the user interface and
other visible software components, while the logic behind the actions cannot be fully
reviewed without complete piloting material. In our piloting projects we concentrate on
studying the CASE tool utilization in prototyping projects in demonstrating the logical
structure of the prototype and though support the prototype reviewing process.

Another issue related to incorrect requirement specifications is the amount of iterations
needed for completing the desired software product. In our pilot projects we study how
the CASE tool implementation effects to the amount of iterations and how do the

original requirement specifications correspond to the finalized information system.

Failure to manage end user expectations

Failure to manage end user expectations is included in the list by Keil et al. (1998). This
risk is especially emphasized in groupware development projects (Grudin 1990). If the
developed system fails to satisfy the end user expectations the success of the whole
implementation process is threatened. As there are a number of other social factors
affecting the implementation process, the failure to manage end user expectations
during the system development can lead to additional difficulties in the implementation
phase. Most of the other factors threatening the successful implementation tend to be

emphasized if the system does not meet the expectations of the end users.

The risks related to the end user expectations were identified in the case projects

described in section 4.3 as presented in Table 8.

Table 8: Identified case risks related to end user expectations

CASE |RISK DESCRIPTION RISK RISK
NO. EXPOSURE | PRIORITY

1 [ The selected platform might impose restrictions for 18 3
the layout setting when printing the documents.

2 | The Lotus Notes environment can set restrictions
for the system implementation leading to customer 10 6
dissatisfaction




86

The prototype approach is one way of managing the risks related to end user
expectations. When the users review and test the system prototypes, the expectations
can be actualized, but as discussed before, the users typically concentrate on testing and
reviewing the visual part of the system, while the internal logic and the non-visible
properties of the system remain unseen. Comprehensive prototyping of a groupware
system is also problematic since the benefits and drawbacks of the system

implementation can be realized only with an appropriate amount of users.

In our pilot projects we study the CASE tool utilization in end user expectations
management in two ways. First, can the CASE tool support the demonstration of the
system prototype in such a way that the end users can understand the functionality of
the system so that the expectations can be realized before the implementation phase.
Second, can the CASE tool support the demonstration of the design changes needed
when the users demand for changes or additions in the prototype functionality.
Typically, a minor change in the visual part of the prototype can lead to major changes
in the internal design structure of the system. The demonstration of these internal
changes for the end user can be used to realize the expectations of the transformability

of the system prototypes.

Continuing stream of requirement changes

Continuing stream of requirement changes is also included in both presented checklists
(Boehm and Ross (1989): Continuing stream of requirement changes, Keil et al. (1998):
Changing scope and objections, Lack of frozen requirements). This risk is emphasized
particularly in prototyping projects. As the idea of the prototype approach is to rapidly
build software prototypes with only vague requirement specifications, the original
specifications are subject to a lot of changes. Thereby, the resources spent to the project
tend to accumulate on each iteration and since no exact requirement specifications for
the system have been generated in the early phases of development, it is difficult to

decide when the system is finalized.



87

The risks related to the requirement specification changes were identified in the case

projects described in section 4.3 as presented in Table 9.

Table 9: Identified case risks related to requirement changes

CASE |RISK DESCRIPTION RISK RISK
NO. EXPOSURE | PRIORITY
2 | The requirement specification changes may require 42 5

additional knowledge and programming resources.

2 [Users may require several additional properties to
be implemented within the project budget since no
exact specification for the project scope and
objectives is available.

28 4

As the software prototypes are reviewed with end users on each development cycle, the
users typically innovate additional properties and functions. Since no exact requirement
specification is available, it is difficult for the developer to identify the necessary and
“nice to have” properties. This leads to difficulties in stopping to the endless stream of
requirement changes since the properties of the finalized system have not been fixed in

the beginning of the project.

In our research we concentrate on studying the requirement changes from the technical
point of view by analyzing the amount and scale of the change requests and demands
for additional properties. We also compare the project results to the original
specifications and attempt to analyze CASE tool effects on the project controllability in

terms of requirement changes.

Another important issue for study are factors leading to requirement changes in the later
phases of the development project. Through CASE tool utilization we attempt to
increase the role of requirement specification in the early development phases and thus
eliminate part of the requirement changes due to the misunderstandings and
communication problems between users and developers in the requirement specification

phase.



88

Personnel shortfalls

Personnel shortfalls is another risk included in both checklists (Boehm and Ross (1989):
Personnel shortfalls, Keil et al. (1998): Lack of required knowledge and skills in the
project personnel, Insufficient or inappropriate staffing). Also these risks are likely to be
realized in prototyping projects since the project’s scope is typically poorly specified
due to the vague requirement specifications. Because software development is based on
continuous user feedback, resources needed for project completion are difficult to
estimate in the beginning of the project. Also skills required for the system development
are hard to estimate in the beginning of the project since the implementation of
additional properties specified in the later prototyping iterations may require

unpredictable proficiencies.

Risks related to personnel shortfalls were identified in all the case projects described in

section 4.3 as presented in Table 10.

Table 10: Identified case risks related to personnel shortfalls

CASE | RISK DESCRIPTION RISK RISK
NO. EXPOSURE | PRIORITY
1 Some of the key personnel in sales department
would have vacations during the project. 14 4

The external database connection would be

difficult to implement. 40 1
2 | The external database connection implementation
failure due to network connections (customer had 9 7

only ISDN connection to the Lotus Notes service
provider) or inappropriate development personnel.

3 |Insufficient people resources in developer and 30 7
customer organization.

In our research we study the CASE tool support in estimating the personnel and skills
required for the system development. If the system components can be specified in
adequate level of detail in the beginning of the project the risk of personnel shortfalls is
likely to be reduced. We study the CASE tool effects on these risks by specifying the
system in the beginning of the project by using graphical modeling method with a



89

CASE tool support and by estimating the required personnel resources according to the
generated models. This allows us to compare the projects before and after CASE tool

implementation and thus evaluate the role of CASE tool in the estimation process.

Unrealistic schedules and budgets

Unrealistic schedules and budgets is a risk related to the estimation of the scale of the
project. This risk is included in the checklist by Boehm and Ross (1989). As discussed
in the previous chapters, in prototyping projects the vague requirement specification in
the early development phases, makes it difficult to evaluate the personnel required for
the project completion. This applies also to the schedules and budgets of the project. As
the software to be developed is specified only in relatively high abstraction level, it is
difficult to estimate the actual time and resources needed for the development. The
project budget is typically strongly related to the required resources and as both the
schedule and resources are estimations based on the vague requirement specifications

they result in risks like exceeded deadlines and budget overruns.

The risks related to unrealistic schedules and budgets were identified in two of the case

projects described in section 4.3 as presented in Table 11.

Table 11: Identified case risks related to unrealistic schedules and budgets

CASE [RISK DESCRIPTION RISK RISK
NO. EXPOSURE | PRIORITY
2 | Strict project schedule and the large number of
possible design changes needed in each iteration 35 3

can lead to poor maintainability of the system.

3 | The scope of the project was too great compared to
the available resources. 35 6

The project schedule was too tight. 42 4
The customer could not present the required

feedback on software errors and development ideas
within the required time 40 5




90

Also these risks are studied by comparing the case project schedule and budget
estimations to the pilot projects after CASE tool implementation. We also use two test
groups to compare CASE tool effects on the estimation process as described in the

previous chapters.

Gold-plating

This risk was included in the list by Boehm and Ross (1989). Gold-plating risks can be
divided in three categories: Requirements gold-plating, developer gold-plating, and user
gold-plating. Requirements gold-plating is a term referring to a situation where the
developers overemphasize the performance and complex features of the system while
the users are interested in the overall functionality instead. Some of the features the
developers and the project marketing personnel lay stress on may be even unnecessary

for the end users.

Developer gold-plating refers to the tendency of the developers to try out all the new
technical solutions even if they are not actually needed by the end user. Each additional
feature increases the time required for debugging, testing, and other processes and

though strains the project resources for unnecessary purposes.

By user gold-plating we refer to the situation typical for projects implemented using the
waterfall approach, when the users asked about their requirements would frequently
reason, “I don’t know if I’ll need this feature or not, but I might as well specify it just in
case” (Boehm, 1995). This situation can occur also in prototyping projects if the
prototypes reviewed with users include non-necessary properties or functionality due to
the requirements gold-plating and developer gold-plating. The users may not actually
need these properties, but since they are already partially implemented in the prototype,

the users require them to be implemented also in the finalized system.

The risks related to gold-plating were identified in the case projects described in section

4.3 as presented in Table 12.



91

Table 12: Identified case risks related to gold-plating

CASE |[RISK DESCRIPTION RISK RISK
NO. EXPOSURE | PRIORITY
2 [Users may require several additional properties to
be implemented within the project budget since no 28 4
exact specification for the project scope and
objectives is available.

Prototype approach reduces the gold-plating risks as the prototypes are reviewed with
the end users in rapid succession and the unnecessary features can be eliminated in the
early development phases. However the gold-plating risks must be controlled also
among the systems development personnel so that the user gold-plating risks can be
avoided. Systematic investigation of the system design is required to prevent the
development of unnecessary functionality, and the usage of non-familiar development

techniques and technical solutions.

In our research we study the possibilities to support the controllability of the software
development by a graphical modeling method and a CASE tool. When the properties
and functionality of the system are carefully designed before the implementation,
implemented solutions can be controlled by the project manager. As the developers
complement the design documentation during the development the project managers are

able to observe the development process and stop unnecessary development activities.

We study the CASE tool’s role in supporting these activities by measuring the amount
and scale of the properties and functions that are not required by the end users in the
original specifications, but which, however are implemented in the finalized system.
After reasons for the development of these properties are analyzed we categorize them
into the following categories: necessary properties not included in original specification,
additional “nice to have” properties implemented due to the vague application
specifications, unnecessary properties due to gold-plating. The properties implemented
due to gold-plating are then further analyzed by specifying the type of gold-plating that

led to the implementation of a particular property.



92

Shortfalls in externally performed tasks

Shortfalls in externally performed tasks include the shortfalls in externally furnished
components as well as the shortfalls in other externally performed tasks. These risks are
often due to the lack of communication between the development teams and external
parties, and the lack of adequate design of system components. Even in prototyping
projects the system components are typically developed separately in different teams,
departments, or even in different organizations. The components cannot be linked
together until certain level of development has been reached. As the requirement
specifications of component prototypes are changed due to the user feedback the risk of

overall incompatibility increases.

The risks related to externally performed tasks were identified in the case projects

described in section 4.3 as presented in Table 13.

Table 13: Identified case risks related to externally performed tasks

CASE |RISK DESCRIPTION RISK RISK
NO. EXPOSURE | PRIORITY
2 |Delays in the outsourced Internet service provider's
Lotus Notes environment set up activities can 16 5

delay the project completion.

3 | The Internet service provider for the customer had

problems with rerouting the e-mail traffic 10 8

As the role of designing the components is likely to be increased by an implementation
of a graphical modeling method we study the effects of the method and CASE tool
implementation on the risks related to the externally performed tasks. The
implementation effects are studied by measuring the amount of additional
communication needed among the development team and the amount and scale of the
changes required to the components due to the component incompatibility. The results
of the externally performed tasks are also compared to the results of the tasks

implemented by the actual development team.



93

Lack of adequate design documentation

The lack of adequate design documentation is another typical risk in prototyping
projects. Since the prototypes are developed in rapid succession and the properties and
functions of the system are subject to a lot of changes, the design of the system is
typically left undocumented during the development. If the design is documented during
the early iteration phases, the documentation is likely to expire when the changes and
additions are implemented in the later phases. If the design of the system is not
documented during the development, it is likely to be left poorly documented, if
documented at all, when the project is finished. The rapid succession of prototyping
iterations forces the developers to focus on the system development activities while the

documentation is considered as an additional burden.

However, the lack of adequate design documentation can lead to difficulties in the later
development phases as well as in the system maintenance activities. As the person or
team implementing the design changes is not always the one that originally
implemented the particular design component, it is important to be able to understand
the component functionality as well as to analyze the effects of design chances cause in

other parts of the system.

The risks related design documentation were identified in the case projects described in

section 4.3 as presented in Table 14.

Table 14: Identified case risks related to design documentation

CASE [RISK DESCRIPTION RISK RISK
NO. EXPOSURE | PRIORITY
3 |Poor design documentation and maintainability. 45 3

Since the CASE tool support in documentation activities as well as in analyzing the
system functionality is widely recognized (see section 2.2.1) we study the possibilities
to implement a CASE tool in prototyping projects. The CASE tool implementation is
studied by evaluating the documentation and maintainability of the developed software

and by measuring the time spent to the documentation and design activities. The results



94

of the projects prior to and after CASE tool implementation are compared by means of

documentation quality, development efficiency and software maintainability.

Poor maintainability of the developed software

Poor maintainability of the developed software is another risk related particularly to
prototyping projects. The risks related to the lack of design documentation, gold plating,
inappropriate staffing and vague requirement specifications all contribute negatively to
the system maintainability. Additionally the prototype approach neglects the actual
design of the system and since rapidly implemented and coarse design solutions are

typically difficult to update and maintain.

The risks related to software maintainability were identified in the case projects

described in section 4.3 as presented in Table 15.

Table 15: Identified case risks related to maintainability

CASE |RISK DESCRIPTION RISK RISK
NO. EXPOSURE | PRIORITY
2 | Strict project schedule and the large number of
possible design changes needed in each iteration 35 3
can lead to poor maintainability of the system.
3 |Poor design documentation and maintainability. 45 3

In the pilot projects we study the CASE tool implementation effects on the
maintainability of the developed system by analyzing the system design and evaluating
the implemented design solutions in means of system maintainability. Additionally we
evaluate the effects of the other realized risks on the overall design and maintainability

of the system.



95

4.4.2 General project risk analysis and prioritization

The risks involved in RAD projects have to be analyzed and prioritized to accurately
measure the effects of NotesEdit CASE tool implementation on important risk items.
The risk analysis is accomplished by inspecting the interrelations among the identified
risk factors. The prioritization of the risks is carried out using Boehm’s (1991)
framework presenting an effective method of risk prioritization - risk exposure
calculation. We, however, generalize this technique and prioritize the identified risk
factors for a typical RAD-project carried out in a groupware development environment,
such as Lotus Notes. This approach is somewhat similar to the method presented by
Barki et al. (1993). The risks identified in the previous chapter are on a general level
and applicable to rapid application development projects in a wider context. The
following risk exposure ratings are applicable to RAD-projects without the support of a
graphical modeling method. In a later chapter, we will examine the effects of a

graphical modeling method implementation on these risk factors.

There are some applicable restrictions that we impose on a definition of a typical RAD—
project in order to facilitate the use of Boehm’s (1991) risk prioritization framework.
First, the customer of the project must not exist within the developer organization.
Without this restriction, several of the identified risk factors would lose their
significance. Second, we assume that the software is not dispensable. By this we mean,
that the software has a full lifecycle with a maintenance phase. For example, a
dispensable software would be a registration system for an event, that would be
discarded right after the event has ended. With these restrictions in place, we can create
a generalized prioritization for the common risk items associated with RAD projects.

The interrelations among the identified risk factors are presented in Figure 13.



96

Misunderstanding the
requirements

I

Continuing stream of Shortfalls in externally
requirement changes performed tasksk
y x‘ l
Lack of adequate Unrealistic schedules
design documentation and budgets

I~ 1

Poor maintainability of
developed software

L~

Gold-plating

Personne! shortfalls

Figure 13: General risk interrelations

As we can see in Figure 13, several of the identified risk factors are interrelated. These
interrelations must be considered when assigning the probability and loss values for

each risk.

The risk prioritization is carried out by assigning each risk factor a probability of
unsatisfactory outcome, P(UO) and a loss caused by unsatisfactory outcome, L(UO).
Both probability and loss are scaled from 0 to 10. The resulting risk exposure, RE, is
determined by multiplication: RE = P(UO) * L(UO). The inherent problem with this
risk prioritization approach comes from the difficulty on making accurate estimates of
the probability and loss with an unsatisfactory outcome (Boehm, 1991). When applied
to general risk factors, the possibility of making false or misleading estimates increases
even further. This, however, acts a rough guideline to the priority of risk items in

general and offers a basic agenda for applying risk reduction techniques.

In Table 16 we present the general risk items and the risk exposure ratings of each item.



97

Table 16: Risk exposure for identified risks

Risk RISK EXPOSURE
RE)
Misunderstanding the requirements 48
Failure to manage end user expectations 14
Continuing stream of requirements changes 35
Personnel shortfalls 23
Unrealistic schedules and budgets 38
Gold-plating 28
Shortfalls in externally performed tasks 13
Lack of adequate design documentation 45
Poor maintainability of the developed software 40

The risk exposure rating associated with each risk is an average of the risk exposures
assigned to the case project risk items that were assigned each general risk. The ratings
assigned to the case project risks were estimations made by the project manager of each

project.

The analysis of these risk factors and their corresponding exposure ratings reveal three
top risk items: Misunderstanding the requirements, lack of adequate design
documentation and finally, poor maintainability of the developed software. These are
followed by three medium priority risk factors: Unrealistic schedules and budgets,
continuing stream of requirement changes, and gold-plating. In this study, we focus
closely on these top and medium priority risk factors and how the use of a graphical

modeling method impacts the risk exposure of these risk factors.

It must be noted that the identified and prioritized risk items are not necessary the most
important risks when considering the overall project. Some of the important risk items
have been excluded from this research since they have been considered to be irrelevant
when studying the effects of a graphical modeling method and a CASE tool

implementation. This restricts us to study the risks that are of relatively technical nature.

4.4.3 General project risk categorization

The exposure ratings of the identified general risks summed up within each category of

the framework by Keil et al. (1998) are presented in Table 17.



98

Table 17: Identified risk factors set in the categorization framework by Keil et al. (1998)

1.

CUSTOMER MANDATE
Failure to manage end user
expectations

(total exposure: 14)

2. SCOPE AND REQUIREMENTS

— Misunderstanding the requirements
— Continuing stream of requirement
changes
(total exposure: 83)

4. ENVIRONMENT

Shortfalls in externally performed
tasks

(total exposure: 13)

3. EXECUTION

— Personnel shortfalls
— Unrealistic schedules and budgets

— Gold-plating

— Poor maintainability of the developed
software

— Lack of adequate design
documentation

(total exposure: 174)

As specified above, most of the identified risk items exist in categories 2 (scope and

requirements) and 3 (execution). This is due to the design and development oriented

view of our research. When we attempt to study the effects of a graphical modeling

method utilization on the RAD risks, the customer mandate and environment risks have

only little importance to our study since the method is mostly utilized in design and

development activities. Additionally the risks in quadrants 2 and 3 have high

importance and controllability according to Keil et al. (1998).

As we categorize the identified risk factors by the environmental reasons increasing the

risk exposure the following table can be generated (Table 18).




99

Table 18: General software project risks categorized by reason

RISK CATEGORY RISKS

General software project risks — Misunderstanding the requirements
— Shortfalls in externally performed tasks
— Gold-plating

Risks related to prototype| — Continuing stream of requirement changes
approach — Unrealistic schedules and budgets

— Personnel shortfalls
Risks related to RAD — Poor maintainability of the developed software

— Lack of adequate design documentation

Risks related to product specific | None
environment

Risks related to groupware| — Failure to manage end user expectations
development

In Table 18 each risk is included in only one category even though some risks would
have met the requirements of several categories. Additionally, each risk is included in
the category that mostly emphasizes the risk emergency. For example, though the risk
‘Continuing stream of requirement changes’ could have been included in the general
software project risks, it is included in the prototyping risks instead, since the risk is

emphasized especially in prototyping projects.

Another noteworthy factor that can be perceived when inspecting Table 18 is that none
of the identified risks are actually caused by product specific environment, in this case,
Lotus Notes. Even though some of the project specific risk factors identified in the case
projects can be considered to be due to the Lotus Notes environment, the generalized
risk list contains no risks that are directly due to the project implementation
environment. However some of the risks are further emphasized in Lotus Notes
environment. For example the risk ‘Poor maintainability of the developed software’ is
included in the prototyping risks, but the poor maintainability is also partly due to the
deficiencies of the Lotus Notes environment, due to the lack of shared component
libraries and proper design tools. The lack of product specific environment risks
suggest, that the results can be applied to groupware development environment on a
greater scale, and the results are not necessarily limited by the selection and use of a

certain product.



100

4.5 Chapter summary

In this chapter we constructed an evaluation criteria for evaluating the effects of
graphical modeling method and CASE tool utilization on RAD project risks. The
criteria are based on a list of general RAD project risk items, which was generated by
utilizing the risk management literature and the risks identified by the project managers
of the three case projects described in section 4.3. The identified general risks were
further analyzed by utilizing the risk assessment techniques by Boehm and Ross (1989)
and Boehm (1991).

The evaluation criteria are applied in chapter 5 by comparing the risk assessment results
of the case and pilot projects on the general risk basis. The techniques utilized in the
comparison were described in section 4.3. Furthermore, the identified general risk
factors were categorized using the two categorization frameworks presented in chapter 3
in order to support the analysis of the modeling method utilization effects on different

risk categories.

The identified general risk factors and case project experiences are used as basis for the

NDL modeling method and NotesEdit CASE tool development in the following chapter.



101

S APPLICATION OF THE EVALUATION CRITERIA

In this chapter we evaluate the developed NDL modeling method and the NotesEdit
CASE tool described in section 4.1 by utilizing the evaluation framework described in
chapter 4. The evaluation is conducted by focusing on the perceived effects of the
CASE tool implementation on the identified general RAD risk factors as seen by the
project manager, developers and customer representatives. The risk items identified in
the case projects implemented before using the NotesEdit CASE tool are used as points
of comparison when evaluating the pilot projects. The project manager, developers and
the customer give their subjective view on the effects of using the CASE tool, both
positive and negative. These remarks are then contrasted to the identified list of RAD

project risk factors, and the impact of NotesEdit tool is evaluated and discussed.

The first two sections describe the projects where the tool was piloted and the analysis
is described in the following sections. The benefits and drawbacks of the NotesEdit
method are presented, the implementation effects on the identified risk factors are
analyzed, and the overall usability of the modeling method and the case tool is

evaluated.

The two pilot projects described below were both implemented by the same
organization, but by two different development teams. In both pilot projects, the project
manager was assigned from the developer organization. The work practices and tools
used in both projects were similar to the case projects described in section 4.3.
However, the project customer was different in each case and pilot project. In addition
the pilot project 1 development team was not instructed to the NDL usage, while pilot
project 2 staff was offered complete instructions of how to utilize the method. By not
instructing the pilot project 1 staff to the use of the tool we were able to examine the
project personnel’s view of the NDL utilization benefits. In pilot project 1 the tool was
not utilized in such development phases where the development team considered it as an
additional burden, or the utilization was considered unnecessary, while in pilot project 2

the development team was instructed to utilize the tool in all the development phases.



102

5.1 Pilot project1

The customer in pilot project 1 was a medium-sized Finnish company. The main
production line consisted of high-technology accessories for large mechanical and
hydraulic machines. The company was concentrating on export sales, with a small
percentage of domestic subcontracting for large corporations. The IT manager for the
company wanted to start a new project to enhance the maintainability of the product
information. The current product hierarchy was complicated and each machine part had
its own spare parts, each with own information. The main user group for the
information system was the sales and marketing department. They were in a constant

need of current, updated information of the product line.

The IT department decided to implement the product catalog as an Intranet application,
built on Lotus Notes / Domino architecture. This technology platform allowed the
product catalog to be online, easily reached by everyone with an Internet browser. The
sales organization for the company was very mobile and they preferred a lightweight
solution that could be updated centrally. The updates needed to be easily reachable

without additional effort by the sales personnel.

Project planning

The project was given a strict schedule. The implementation of the graphical modeling
method was estimated to speed up the initial prototype construction so, that the project
could be completed within three weeks. A project manager and two programmers were

assigned for the project.

The corporate supplied general guidelines on how to implement the system but mostly
the designers had free hands on developing the first prototype. The most important
requirement was that the system should present the product hierarchy with a visual and

clear manner. The implementation of the product hierarchy was designed on the basis of



103

the previous system. The customer and the developers agreed on the set specifications
and a model of the application was constructed with the developed modeling method.
The first prototype was implemented in two weeks and two days according to the
model. After this, the prototype was delivered to the customer for evaluation and the
required changes and modifications were documented for the development team. The
revisions were carried within two days and the finalized prototype was then installed for

the customer.

Implementation of the graphical modeling method

Pilot project 1 was implemented with the support of the developed graphical modeling
method. In this pilot, the usage of the method was not instructed or guided in any way.
The developers had the liberty of using the method as they saw fit. The requirement
specifications were modeled using the database modeling technique described in section
4.1. The created model was revised by the developers and then circulated with the
development team. Module implementation was shared in the team based on the created

model of the application.

The developers found it easy to implement required functionality according to the
model as it included all the necessary information normally found on requirement
specifications. The need of communication among the developers was reduced since the
constructed model was complete enough to specify all necessary details of the system.
The information was more structured and easily adapted to technical Lotus Notes design

when compared to a traditional paper-based documentation.

The use of the NotesEdit —tool in pilot project 1 was limited to the requirement
specifications. The developers and the project manager agreed that the method best
supported the specifications phase. However, when updates and error corrections were
implemented and a new version of software was produced, the developers felt that
updating the graphical model of the software was not necessary since the developed

prototype itself could be used as the basis for the communication. Therefore, the use of



104

the modeling method was not seen very productive after the first version of the

software.

Project outcome

The project was completed roughly on time. The only schedule changes were due to
difficulties in finding an appropriate time slot that was suitable for both customer and
the developer. The deadlines were met and the software product itself was produced

according to the set schedule.

The customer was very pleased with the project outcome. The application had been built
according to the given specifications and the product hierarchy had been successfully
incorporated into it. The developers found the use of the NotesEdit tool to be a
significant factor in helping the transformation of requirement specifications into a

technical design.

Effects of the modeling method on project risk factors

The project manager and some of the developers of the first pilot project were
interviewed as how the risk factors were affected by the usage of the modeling method.
The project manager felt that the most significant impact of the method was to control
the transformation of the specifications given by the customer into a technical
architecture for the application. The formalized model of the application also helped the
project manager to assign resources effectively and modularize the application

accordingly in order to increase the performance of the development work.

The developers found the use of the modeling method as a stabilizing factor in the
prototype construction. The developed prototype had exactly the needed features and no
more — thus decreasing unnecessary gold-plating. The developers also appreciated the
modularized view of the specification resulting from the use of the graphical modeling
method. This reduced problems with synchronizing development work and defining

interfaces between modules. The development team also felt that the developed model



105

of the application served as a good base for technical documentation. However, the
complete technical documentation could not be derived solely from the model, as the
developers did not update the model with changed specifications during the

development cycle.

After the project was completed, the project manager pointed out that it would probably
have been more productive to use the modeling method across the development cycle
and update the model when changes were implemented. This would have resulted in
clear technical architecture documentation for both the developer and customer

organization.

5.2 Pilot project 2

In pilot project 2 the customer was a large Finnish company manufacturing large
machinery for mostly foreign markets. The corporation included several factories, each
with a specific product line. The customer organization had a long history of making IT
projects and most of the workflow activities in the company were automated using

groupware solutions, in this case Lotus Notes architecture.

The next step was to automate the measurement reports in each factory, as specified by
the quality standards of the company (ISO 9000). Previously, the measurement data was
collected manually and then fed into a Microsoft Excel report. The IT department now

wanted to start a project that would automate this process with a workflow application.
Project planning

The project was scheduled to last for two months, with two programmers and project
manager assigned to it and a factory representative from the customer as well as a

representative from the customer IT department.

The specifications supplied by the customer were exact, as the factory representative

had designed a first screen prototype of the application. Each phase of the production



106

was represented by a form consisting of all the needed measurement results. This screen
prototype was used by the development team to develop the finalized requirement

specifications.

The project was divided into two distinct phases: the first part of the project consisted of
creating the application for collecting measurement data at each production phase. After
this part was complete, a mechanism for creating the measurement report automatically

would be implemented.

Implementation of the graphical modeling method

In pilot project 2, the use of the modeling method was guided, and it was used
throughout the development cycle. First, the developers created a model of the
application according to the screen prototype supplied by the customer. The developers
found it simple to design the specifications for the application using the supplied screen
prototypes. After the specification was complete and a graphical model of the
application was ready, the team modularized the application according to the graphical
model. Each module was developed and the models were revised as changes were being

done.

After the project was complete, the models, incorporated with comments on technical
design of the product, were given to the customer as a technical diagram of the
developed software. This facilitated the customer organization to develop the

application further if needed and with different software developers, if necessary.

Project outcome

The first part of the project was completed in time, with the customer and the developer
engaging in active discussion about the developed features. Each new version of the
software was delivered to the customer for comments. The results of the first phase of

the project were approved and the second phase was started as scheduled.



107

The measurement report was delayed slightly as the customer and the developer had
difficulties in specifying the information content of the report. Additional problems
surfaced as the customer representatives had vacations and only one of them was
available for comments at a time. The report was completed, with some adjustments to
its content two weeks late of the original schedule. Though using new technology, no
problems were encountered, as the design documentation was kept well up to date with

the aid of the tool.

In the final review, the customer presented some small corrections and additions to be
implemented. The corrections were added into the graphical model and the application
design was modified accordingly. With these changes in place, the results of the project
were approved and the project closed. The customer was very satisfied with the result,
feeling that the necessary functionality was implemented with some extra features the
end users had hoped for. The application was immediately taken into operational use

forming the backbone of the quality documentation for the product line.

Effects of the modeling method on project risk factors

The effects of the modeling method were studied by interviewing the project manager
and the development team, as well as the customer IT representative. The persons were
asked to freely express their view as how they felt the use of the method had affected

any general risk factors they have possibly perceived during the project.

One significant advantage of using the modeling method pointed out by the project
manager was that the strict screen prototype would not cause ineffective design
decisions, as the method allowed the developers to plan the application logic in a
structured, team-based environment, using the supplied graphical notation and share the
development tasks effectively. In addition, the project manager felt that technical
documentation was now much better implemented than in any previous projects, also

helping the later phase to be completed successfully.



108

The project manager also addressed the importance of successful first phase of the
project. The outcome of the second phase, the addition of Excel interface, depended
largely on the quality of the first phase. Using the modeling method to specify the
application logic and interfaces between these two modules greatly lessened the risk of

problems with interfacing the Excel module into the existing application design.

The developers found out that the use of the method allowed them to utilize some
reusable components made in other projects more efficiently than before. This
advantage allowed the software to be developed faster. The clear structure of the
developed software also produced some new reusable components, especially in the

Excel interface.

A good technical documentation was one of the primary concerns of the IT
representative from the customer organization. The updated model of the application
was illustrative for the IT representative and she believed that any future development
to the application would be made easier with a clear representation of the application

design and logic in the form of a graphical model.

5.3 Evaluation of the NotesEdit —tool

In this section, we contrast and evaluate the differences between the three previous case
projects implemented without the NotesEdit —tool and two pilot projects, implemented
using the developed tool. We concentrate on the effects imposed on different types of
risk factors in case projects, as identified by the project managers. The use of
categorization frameworks provides us with a more generalized idea of the results of the
modeling method, as we contrast the generalized risk items with the findings of the

project managers, developers and customer personnel in both pilot projects.

In order to carefully analyze the contribution of the modeling method, we structure the
analysis according to the research problem stated in chapter 1. In the first section, we
identify the primary risk factors threatening RAD projects using the project manager

experiences with the three case projects. In the second section, we contrast the identified



109

risk factors in previous case projects with the risk factors identified in pilot projects
implemented with the NotesEdit —tool and attempt to pinpoint the risk factors affected
by the use of the modeling method. The second section summarizes all the advantages
and disadvantages of using the tool identified during the pilot projects. The final section
concentrates on finding the most efficient ways of using the modeling method in order

to control important risk factors in a RAD project on a more generalized level.

5.3.1 Primary risk factors in RAD projects

The case projects all had a roughly similar amount of scheduled resources and
approximately equal amount of project management experience. Even though each
project has its own specific environment (e.g. target organization, developers), by
examining the generalized risk factors in order of descending risk exposure, we get a
following list (numbers in parenthesis are the average risk exposure for the particular

risk factor):

Misunderstanding the requirements (48)

Lack of adequate design documentation (45)

Poor maintainability of the developed software (40)
Unrealistic schedules and budgets (38)

Continuing stream of requirements changes (35)
Gold-plating (28)

Personnel shortfalls (23)

Failure to manage end user expectations (14)

© X N b D=

Shortfalls in externally performed tasks (13)

As stated in section 4.3.3., most risk factors are located in the execution quadrant in the
framework presented by Keil et al. (1998). In two of the three case projects, most severe
risk factors were clearly associated with insufficient level of detail with requirement

specifications and lack of adequate design documentation.



110

5.3.2 Risk factors affected by the use of the NotesEdit CASE tool

In the previous cases, project managers clearly pointed out that the top risk factors in
these projects were strongly set in both execution and scope and requirements quadrants
in the framework presented by Keil et al. (1998). Both pilot projects demonstrated, that
the use of the modeling method had an effect of decreasing the estimated risk exposure

for these risk factors.

When relating the effects of the modeling method as seen by the developers, the project
manager and the customer representative, three quite notable differences become
apparent between the case and the pilot projects: “Misunderstanding the requirements”,
“lack of adequate design documentation” and “continuing stream of requirements
changes” risk factors were top risk items in rapid application development projects
carried out without the use of a modeling tool. However, in pilot projects exposure to
these risk factors was identified to have been reduced by the use of the modeling
method. Two of these risk factors are located in the scope and requirements and one in
execution quadrant of Keil et al. (1998) model. On the other hand, when looking at the
general software project risk categorization presented in table 19, these risk factors are
placed evenly in general software project risks, risks related to prototype approach and
risks related to RAD categories. These results do not exclude other effects of the
environments specific to each project, but provide an estimate of the effects of a CASE

tool implementation in RAD projects.

5.3.3 Advantages and disadvantages of using the NotesEdit CASE tool

The comparison of previous case projects and pilot projects illustrate the usefulness of
the developed NotesEdit CASE tool in controlling the software project risks associated
with scope and requirements risks and uncontrollable specification changes. According
to the project managers in the pilot projects, the tool offered the development team a
good medium for developing and maintaining the required level of technical

documentation during the project.



111

Project managers also felt that the use of the tool and the modeling method enabled a
more structured form of modularization and division of labor during the programming-
intensive phases of the project. The design of the application was also easier to orient

towards developing reusable components.

The developers in both pilot projects valued the common platform for discussions that
the model offered in team meetings. In previous projects, the amount of technical
documentation during the implementation of the software was usually quite small,
which made effective teamwork somewhat more difficult, in contrast to the pilot

projects.

Representatives of the customer organization also preferred a more visual form of
technical documentation in addition to traditional text documentation. For example,
further development ideas were easier to specify when the developers and the customer

had the same tool for visualizing the design and logic of the software.

Perhaps one of the most important deficiencies of the NotesEdit tool was the lack of
linkage between the software and the developed model. When making rapid changes to
the software, the developers found it an additional burden to update the design of the
model as well and document the changes. The need for an automatic mechanism was

seen necessary.

Another feature that was deemed necessary was the need for a way to create a simple
application frame from the developed model. Much of the routine programming and
laborious testing of basic features could be avoided by using an application frame
generator. In conjunction with application frame generator was the need to deposit
software components that were used in many different projects with a minimum need
for customization in one central location, where they could be easily imported into an
existing application and the represented in the model as well. As the development in

Lotus Notes environment is highly GUI —oriented, the layout properties of a saved



112

component should also be remembered by the tool, eliminating the need of readjusting

the layout of fields and other design elements every time the component is used.

5.3.4 Efficient utilization of the NotesEdit CASE-tool

The advantages and disadvantages summarized in the previous section suggest that a
concise way of implementing the modeling method is needed when utilizing it in RAD
projects. As it stands now, NotesEdit needs some enhancements before it can fully
support RAD development with Lotus Notes. Two important issues need to be
remedied: automatic synchronization between the model and the application design, and
the ability to generate application frames with design element layout capabilities

automatically from models.

These limitations suggest, that the most efficient uses of NotesEdit are, as suggested by
the opinions of the pilot project managers, development team and customer

representatives:

e Supporting customer requirement specification transformation into application
logic

¢ Enabling efficient modularization of application

o Easing the assignment of developer resources for different parts of application

e Providing means of generating good basis for technical documentation of

application

With these considerations in mind, the use of NotesEdit CASE-tool can help control
some of the key risk factors surfacing in many RAD projects. With the limited scope of
two pilot projects and subjective opinions from the project managers, developers and
customer representative, the effects of the modeling method cannot be measured very
accurately. Further pilot studies are needed with a larger scope of applications to be
developed and with more diverse customer environments, before a definitive guide for

using the NotesEdit CASE-tool can be created.



113

6 SUMMARY AND CONCLUSIONS

In the previous chapters, we have examined the risk factors that are prominent in rapid
application development projects. In order to effectively manage some of these risks,
the use of a graphical modeling method is suggested. By first constructing a modeling
method, implementing it in a meta-CASE tool and testing it in two pilot projects, we
have been able to find risk areas that are controllable and risk areas, that are not affected

by the use of the tool.

The comparison of the previous case projects and the pilot projects revealed that the use
of the modeling method mostly influenced general RAD-project risk factors such as
“lack of adequate design documentation” and “continuing stream of requirement
changes”, as hypothesized in this study as well as “misunderstanding the requirements”.
These risk factors are located in the “scope and requirements” and ‘“‘execution”
quadrants in the risk categorization framework presented by Keil et al. (1998). These
risk factors are characterized by the high level of perceived controllability by the project
manager and high level of perceived level of importance, suggesting that the use of the
NotesEdit —tool helps manage the critical risk factors from the project manager’s

viewpoint.

To gain a broader control to the RAD-project risk factors, some issues became apparent
during the study: first, the need for two-way communication and interdependence
between the graphical model of the application and the application design itself. The
project managers found it difficult to revise graphical models while the prototype design
was changed. The changes implemented in the code should be automated in the tool so

that the model would be updated according to made changes and vice versa.

Second, the application frame generator (ie. automatic code-generation) is essential for
developing the prototype frame quickly from the specifications. With the tool developed
during this study, the need to code the actual application according to the graphical



114

model was seen as an unnecessary step. For the application frame generator to work
effectively, the need for two-way communication between the model and the application

design was obvious.

Third, a need for an easy-to-use component repository was recognized. Even though the
MetaEdit CASE tool features an object repository in the form of an “repository project”,

the reusable components should be easy to incorporate into application design.

Finally, the lack of layout design capabilities with the model restrict the quick usability
of the method. When components are reused, there should be initial layout settings,

eliminating the need for redesigning the visual layout again.

To summarize the most important qualities needed to achieve higher control of general

risk factors when using a CASE-tool in a RAD-project:

1. Automatic code generation
2. Two-way communication between the model and the application design

3. Component repository with layout design capabilities

The tool used in the two pilot projects offered the development team a way to
effectively share the requirement specifications within the team. Without features
presented above, the use of the graphical modeling method helps in sharing
specifications among developers, helps in clarifying and conceptualizing the
requirement specifications supplied by the customer and aids in understanding complex
interrelationships within the application design. The technicality of the method

restricted its use with communication between the developer and the users.

6.1 Further research

The use of CASE-tools in RAD-projects has not received very much attention,
especially from the viewpoint of risk management. The prototype approach is

traditionally seen as a risk management technique in situations, where the requirement



115

specifications might not be clear or are virtually non-existent. However, when using a
prototype approach with RAD, some risk factors are emphasized and need additional
means of control. In this thesis, the area of using a graphical modeling method with
RAD-projects was examined with a risk management approach in mind. Further
research in this area is warranted for example by examining the developer-user
communication using the modeling method, which proved problematic in this case. In
addition, a broader area of researching i.c. inherent and completely new risk factors
associated with both prototyping approach and the rapid application development would

be areas of great interest.



116

REFERENCES

Aaen, I, Siltanen, A., Sorensen, C., Tahvanainen, V-P., (1992) A Tale of Two
Countries: CASE Experiences and Expectations. In: Proceedings of the IFIP WGS.2
Working Conference on The Impact of Computer Supported Technologies on
Information Systems Development (eds. K. Kendall, K. Lyytinen, J. DeGross), North-
Holland, pp. 61-93

Aaen, I., Sorensen, C., A CASE Of Great Expectations, Scandinavian Journal of

Information Systems, Vol.3, pp.3-23, 1991

Barki, H., Rivard, S., Talbot, J., (1993) Toward an Assessment of Software
Development Risk, Journal of Management Information Systems, Vol. 10, No. 2, pp.
203-225

Barnes, B., Bollinger, T., (1991) Making Reuse Cost-Effective, IEEE Software, Vol. 8,
No. 1, pp. 13-24

Boehm, B., (1988) A Spiral Model of Software Development and Enhancement,
Computer, Vol. 21, No. 5, pp. 61-72

Boehm, B., (1989) Theory-W Software Project Management: Principles and Examples,
IEEE Transactions on Software Engineering, Vol. 15, No. 7, pp. 902-916

Boehm, B., (1991) Software Risk Management: Principles and Practices, IEEE
Software, Vol. 8, No. 1, pp.32-41

Boehm, B., (1995) Anchoring the Software Process, http://sunset.usc.edu/TechRpts/
Papers/usccse95-507/ASP.html (Referred 05/10/1999).



117

Boehm, B., Papaccio, P., (1988) Understanding and Controlling Software Costs, IEEE
Transactions on Software Engineering, Vol. 14, No. 10, pp. 1462-1477

Boehm, B., Ross, R., (1989) Theory-W Software Project Management: Principles and
Examples, IEEFE Transactions on Software Engineering, Vol. 15, No. 7, pp. 902-916

Brinkkemper, S., (1996) Method engineering: engineering of information systems
development methods and tools, Information and Software Technology, Vol. 38, No. 4,
pp. 275-280

Budde, R., Kautz, K., Kuhlenkamp, K., Ziillighoven, H., (1992) Prototyping: an

approach to evolutionary system development, Springer-Verlag, Berlin

Charette, R., (1989) Software Engineering Risk Analysis And Management, McGraw-
Hill, New York

Coad, P., Yourdon, E., (1990) Object-Oriented Analysis, Prentice-Hall, New Jersey

Cotterell M.,Hughes, B., (1995) Software Project Management, An International

Thomson Publishing Company, London

Gibson, M., Snyder, C., Rainer JR., K., (1989) CASE: Clarifying Common
Misconceptions, Journal of Systems Management, Vol. 40, No. 5, pp. 12-19

Grudin, J., (1990) Groupware and Cooperative work: Problems and Prospects. In:
Readings in Groupware and Computer-Supported Cooperative Work Assisting Human-
Human Collaboration (eds. R. Baecker), Morgan Kaufmann Publishers Inc. (1993) pp.
97-105.

Heym, M., Osterle, H., (1993) Computer-aided methodology engineering, Information
and Software Technology, Vol. 35 No. 6/7, pp. 345-354



118

Hillesberg van, J., Kumar, K., Welke, R., J., (1998) Using metamodeling to analyze the
fit of object-oriented methods to languages. In: Proceedings of the 31" Hawaii
International Conference on System Sciences, Volume V, (eds. R. Blanning, D. King)

IEEE Computer Society, pp. 323-332.

Jarke, M., Pohl, K., (1992) Information Systems Quality and Quality Information
Systems. In: Proceedings of the IFIP WG8.2 Working Conference on The Impact of
Computer Supported Technologies on Information Systems Development (eds. K.
Kendall, K. Lyytinen, J. DeGross), North-Holland, pp. 345-375

Jarzabek, S., Huang, J., (1998) The Case for User-Centered CASE Tools,
Communications of the ACM, Vol. 41, No. 8, pp. 93-99

Keil, M., Cule, P., Lyytinen, K., Schmidt, R., (1998) A Framework for identifying
software project risks, Communications of the ACM, Vol. 41, No. 11, pp. 76-83

Khosrowpour, M., (1993) Computer-aided software engineering: Issues and trends for
the 1990s and beyond, Idea Group Publishing

Krief, P., (1996) Prototyping with objects, Prentice Hall, New Jersey

Kumar, K., Welke, R.J., (1992) Methodology engineering: a proposal for situation-
specific methodology construction. In: Challenges and Strategies for Research in
Systems Development (eds. W.W. Cotterman, J.A.Senn), John Wiley & Sons Ltd,
pp-257-269

Larson-Hughes, R., Skalle, H., (1995) Lotus Notes Application Development: Solving

Business Problems and Increasing Competitiveness, Prentice-Hall, New Jersey

Lyytinen, K., Kerola, P., Kaipala, J., Kelly, S., Lehto, J., Liu, H., Marttiin, P., Oinas-

Kukkonen, H., Pirhonen, J., Rossi, M., Smolander, K., Tahvanainen, V-P., Tolvanen, J-



119

P., (1994) MetaPHOR: Metamodeling, Principles, Hypertext, Objects and Repositories,
http://www jyu.fi/~kelly/meta/loppurap/ (Referred 22/11/1999).

Necco, C., Tsai, N., Holgeson, K., (1989) Current Usage of Case Software, Journal of
Systems Management, Vol. 40, No. 5, pp. 6-11

Nierstrasz, O., Gibbs, S., Tsichritzis, D., (1992) Component-Oriented Software
Development, Communications of the ACM, Vol. 35, No. 9, pp. 160-165

Norman, R. J., Nunamaker J.F. Jr., (1988) An empirical study of information systems
professionals’ productivity perceptions of CASE technology. In J. DeGross and M.
Olson, editors, Proceedings of the Ninth International Conference on Information

Systems, pp. 111-118.

Norman, R. J., J.F.Nunamaker Jr., (1989) Integrated development environments:
Technological and behavioral productivity perceptions. In Proceedings of the 22th
Annual Hawaii International Conference on System Sciences, vol II, Software Track,

pp. 996-1003

Nunamaker, R. J., Nunamaker J.F. Jr., (1989) CASE Productivity Perceptions of

Software Engineering Professionals, Communications of the ACM, Vol. 32, Number 9

Olle, T., SolH., Verrijn-Stuart A., (1983) Information systems design methodologies: A
feature analysis, North Holland, Amsterdam.

Orlikowski, W., (1993) CASE Tools as Organizational Change: Investigating
Incremental and Radical Changes in Systems Development, MIS Quarterly, Vol. 17,
No. 3, pp. 309-340

Overmyer, S., (1990) The Impact of DoD-Std-2167A on Iterative Design
Methodologies: Help or Hinder?,



120

http://faculty.cis.drexel.edu/~overmyer/papers/2167a/2167pap.htm (Referred
05/12/1999).

Rossi , M., Brinkkemper, S., (1996) Compexity Metrics For Systems-Development
Methods And Techniques, Information Systems, 21, 2, pp. 209-227

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., (1991) Object
Oriented Modelling and Design. Prentice Hall, Engelwood Cliffs, New Jersey

Smolander, K., Lyytinen, K., Tahvanainen, V-P., Marttiin, P., (1991) MetaEdit - A
Flexible Graphical Environment for Methodology Modelling. In: Proceedings of Third
International Conference on Advanced Information Systems Engineering (CAiSE '91)
(eds. R. Andersen, J. Bubenko jr., A. Solvberg) Springer-Verlag, pp. 168-193

Taylor, M., Wood-Harper, A., (1996) Methodologies and Software Maintenance,
Software Maintenance: Research and Practice, Vol. 8, pp. 295-308

Tolvanen, J-P., (1998) Incremental Method Engineering with Modeling Tools:
Theoretical Principles and Empirical Evidence, (Dissertation). Jyviskyld Studies in

Computer Science, Economics and Statistics, No. 47, University of Jyviskyla

Tolvanen, J-P., Lyytinen, K., (1993) Flexible method adaptation in CASE — the
metamodeling approach. Scandinavian Journal of Information Systems, Vol. 5, pp. 51-

77

Tolvanen, J-P., Rossi, M., Liu, H., (1996) Method Engineering: Current research
directions and implications for future research. In: Proceedings of the IFIP TCS,
WG8.1/8.2 Working Conference on Method Engineering (eds. S. Brinkkemper, K.
Lyytinen, R. Welke), Chapman & Hall, pp. 296-317

Vessey, 1., Sravanapudi, A., (1995) CASE Tools as Collaborative Support
Technologies, Communications of the ACM, Vol. 38, No. 1, pp. 83-95



121

Wasserman, A. (1980) Information System Design Methodology. In: Tutorial on
Software Design Techniques (eds. P. Freeman, A. Wasserman), IEEE Computer
Society, pp. 25-44

Wijers, G. M., v Dort, H.E., (1990).Experiences with the use of CASE tools in The
Netherlands. In Advanced Information Systems Engineering, (eds. B. Steinholz et al.)
pp- 5-20.



APPENDIX 1: DESCRIPTION OF NOTESEDIT CASE TOOL

In this appendix we describe the properties of NotesEdit CASE tool in detail. The tool
was developed during this research and it consists of MetaEdit+ metaCASE tool
supporting the developed Notes Design Language (NDL) method and the GodeGenie
Lotus Notes application frame generator. Application frame generator is a separate
application designed to generate Lotus Notes application frames according to the meta-

language descriptions generated from NDL models in MetaEdit+.
NDL method engineering process

The NDL method engineering process was implemented by describing the NDL method
using metamodels. In our NDL metamodeling effort we applied the Graph-Object-
Property-Relationship-Role (GOPRR), which has been developed specially for
metamodeling (Tolvanen 1998). The GOPRR language was selected due to the
available tool support and the previous experiences of the people involved in

metamodeling and CASE tool implementation effort.

Tolvanen (1998) suggests the following set of tasks that GOPRR related metamodeling

must follow:

. Identification of the techniques in the method
. Identification of the object types
. Determination of properties for each object type

. Determination of relationships

1

2

3

4

5. Determination of roles
6. Allocation of properties to relationship types and roles
7. Determination of metamodels for individual techniques
8. Determination of linkages between separate techniques
9. Determination of the representational part of the method

10. Analysis and evaluation of the method



Since Tolvanen (1998) reports of several successful metamodeling efforts conducted
applying the tasks specified above (cf. Tolvanen and Lyytinen 1993, Rossi and
Brinkkemper 1996, Hillegersberg et al. 1998), we decided to use the list as a guideline

for our metamodeling process. The results of each phase are reported below.

Identification of the techniques in the method

The NDL method consists of two modeling techniques, Application architecture model
and Database model. The techniques are designed to model the object system on

different levels of abstraction.

Application architecture model is used to model the structure of Lotus Notes
applications (which applications consist of which databases) and the connections
between separate Lotus Notes and Open Database Connectivity (ODBC) compliant
databases. Application architecture models can also be used to represent the whole

Lotus Notes application architecture of a particular organization.

By hiding the internal structure of the databases represented in Application architecture
models, the connections among different components of Lotus Notes applications can
be visualized on a higher level of abstraction. The databases represented in Application

architecture models can be exploded to Database models.

Application architecture modeling technique is targeted at supporting the structuring of
the application consisting of multiple databases. The connections and interfaces
between the separate databases can be modeled and analyzed utilizing the application
architecture models. Thus, the models can be utilized in enhancing communication
among the system developers developing different system modules, as well as in
demonstrating the system structure for the end users. Additionally, the models can be
used in analyzing effects of design changes on the application level (instead of database
level as in database models). Thereby, the application architecture models can be
utilized in the system maintenance phase when updating or modifying the application

functionality.



Database model is a technical description of a particular Lotus Notes Database and thus
cannot be used to model ODBC compliant databases. Database models consist of Lotus
Notes objects (e.g. forms and views) and connections between them. Connection from a
particular object to an external database is also allowed. These connections should be

modeled accordingly in Application architecture models.

Database modeling technique is designed to support the system design activities as well
as the automatic application generation according to database models. The database
models generated during the development can be used in enhancing the application
design documentation and the analysis of the design changes in database level. The
objects, properties and connections presented in Database model are converted to a
semi-functional Lotus Notes application frame by utilizing the CodeGenie application

frame generator.

Both of the presented techniques can be utilized in the requirement specification phase
to formalize the requirement specifications and support the tracking of the specification
changes. Additionally, as the system can be modeled according to the requirement
specifications, we attempt to support the estimation of the resources needed for the

project completion.

Identification of the object types

Application architecture modeling technique supports two object types: Application and

Database.

Application object type is an abstract concept representing an application, or an
information system that can be considered as one entity. Application consists of one or

more Lotus Notes or ODBC compliant databases.



Database object type is used to represent Lotus Notes or ODBC compliant databases
that are components of applications. Database object can be exploded to a Database

model representing the technical design of a specific database.

Database modeling technique consists of nine object types. Additionally Database
object type specified in the Application architecture modeling technique can be utilized

in Database models to represent external database connections.

In Database models five of the object types (Form, View, Agent, Navigator, and
Database) have a graphical representation and the rest five (Field, Action, Button,
Column and Code) are not visible entities as they are embedded as properties in the
object types. Hiding the component objects (objects that are properties of other objects)
allows us to represent the design of a whole database in one graph without reducing the

readability of the graphical representation.

Since the Database modeling technique is designed to support automatic application
generation, all the object types represent the physical building blocks of Lotus Notes

databases.

Form is one of the visible object types in Database models. It represents the Form
component in Lotus Notes databases. Form objects can contain (as properties) one or

more Field, Action, Button and Code objects.

View object type is used to represent the View component in Lotus Notes databases.
View objects have a graphical representation in database models and they can contain
one or more Column and Action objects and one Code object representing the document

selection formula for the view.

Agent object type represents the Agent component in Lotus Notes databases. Agents are
visible objects in Database models since they usually tend to have a number of

relationships with other objects. Agent object can contain one Code object.



Navigator object type represents the Navigator component in Lotus Notes databases.
Navigator objects are visible in Database models and they can contain one or more

Button objects.

Code is an object containing one specific program entity written in LotusScript or Lotus
@Formula programming language. There is no actual Lotus Notes component
corresponding to Code object type, since Code objects can be considered as being any
piece of program code in a Lotus Notes application (e.g. field or column formula,
LotusScript program associated to agent). Code is a non-visible object and cannot exist
alone in Database models thus it is always contained in another object as a property.
The purpose of Code object type is to support sharing of program code between other

design components.

Field, Action, Button and Column object types all represent the corresponding Lotus
Notes objects according to the object type name. They are all contained as a property in
one or more visible objects in Database models and are therefore referred to as

component objects. Component objects can contain only Code objects.

It is worth noticing that even though the component objects do not have graphical
representations they can have relationships with other object types. The issues related to
relationships between object types are discussed further below. The properties and
relationships of the component objects can be examined using the reporting capabilities

(e.g. role and relationship tables) of the CASE tool supporting the NDL method.
Determination of properties for each object type

The object types used in NDL method have two kinds of properties: properties
representing the attributes of Lotus Notes components and properties used to support

the modeling process, documentation and automatic application frame generation.

The Application and Database object types used in Application architecture models
have the properties presented in Table 1.



Table 1: Properties of Application architecture object types

OBJECT TYPE PROPERTIES

Application Name
Type

Database Title
Type
Server
Filename
ReplicalD

None of the Application object type properties exist in the actual Lotus Notes
applications since the object type is an abstract representation for multiple Lotus Notes
databases considered as one application or information system. However, all the

properties of Database object type represent the properties of Lotus Notes databases.

The properties of the object types representing Lotus Notes objects were determined by
selecting properties of corresponding Lotus Notes components needed for application
frame generation. After determining the relevant properties, Comment property was
added for each object type to support object documentation. Comment property is a text

string used to describe an object.

In Table 2 we present the properties of Database modeling technique object types. The
object types representing Lotus Notes objects (i.e. the object types having the same
properties as the corresponding Lotus Notes components) are displayed using italicized
typeface. Comment properties are not included in Table 2 since they are common for all

object types.




Table 2: Properties of Database modeling technique object types

OBJECT TYPE PROPERTIES
Form Name

Alias

Type

Defaults

Fields (list of Field objects)
Actions (list of Action objects)
Buttons (list of Button objects)
WindowTitle (Code object)
QueryOpen (Code object)
WebQueryOpen (Code object)
QuerySave (Code object)
WebQuerySave (Code object)
QueryClose (Code object)
WebQueryClose (Code object)

View Name

Alias

Columns (list of Column objects)
Code (Code object)

Style

Options

Type

RowSpacing

Navigator Name
Buttons (list of Button objects)
Initial ViewOrFolder (View object)

Agent Name
WhenShouldThisAgentRun
Code (Code object)

Field Name

Datatype

ComputingMethod

HelpText

IsShared

Value (Code object)
InputValidation (Code object)
InputTranslation (Code object)
HideWhen (optional Code object)

Action Title

Position

Includeln

Code (Code object)

Button Label
Code (Code object)

Code Name
Comment
Type
Value

Some of the identified properties can actually be considered as events of Lotus Notes
components (e.g. QueryOpen and QuerySave). The NDL modeling technique handles

these events as properties since the Code objects (i.e. executable program code)



associated to the events can be assigned to the particular property to be executed when
the event occurs. Implementation of these programs as individual Code objects allows

us to share program code between different object types.

The variation of the property names referring to same kind of a property (e.g. Title and
Label properties of Action and Button objects) are due to the diversity of Lotus Notes
component property names. All the properties of object types representing Lotus Notes
objects are named after the corresponding Lotus Notes component properties in order to

ease the familiarization of a Lotus Notes developer in using the metamodel.

Determination of relationships

The relationships used in NDL method are used to describe a variety of connections
between different object types. All relationship types can exist in both Application
architecture models and Database models although connecting different object types.
The relationships are used to represent the composition and functionality of applications

and to support the generation of Lotus Notes application frames.

Each relationship type has a direction and a particular set of object types that can exist
in each end of the relationship. Since not all the object types are visible in graphical
models the relationships referring to the hidden component objects must be created by
drawing a relationship by using the container object (i.e. the object having the
component object as a property). When the relationship type and the source and the
destination objects are selected the CASE tool presents the list of the component objects
suitable for the specified type or relation. The identifiers (i.e. names) of associated
objects are displayed in each end of the relation to indicate the hidden objects linked to

the relationship.

All the relationship types supported in NDL method are presented in Table 3.



Table 3: NDL method relationships

SOURCE OBJECT TYPE RELATIONSHIP TYPE DESTINATION OBJECT
TYPE

Application Aggregation Database

Form Aggregation Form

Action Compose Form
Open Database, View, Navigator
Run Agent

Button Compose Form
Open Database, View, Navigator
Run Agent

Field DbLookup Column
DbColumn Column

Column Display Field

Aggregation relationship is used to represent the “consists of” type of relationship, such
as “Application consists of Databases”. The Form — Form aggregation refers to the
subform concept of Lotus Notes environment where one form entity can consist of one

or more other forms referred to as subforms.

Compose relationship type represents the creation of new Lotus Notes document by
using a particular form component in Lotus Notes database. Documents are always
created using a specified form and the name of the form connects the form to the
document. Forms can also be referred to by using the alias property. By representing the
document creation as a relationship in Database models the changes in Name and Alias
properties of the Form objects can be reflected to the referring Action and Button
objects which prevents outdated name references. The Compose relationships can be
automatically transferred to the actual program code implementing document creation

by CodeGenie application frame generator.

Open relationship type is used to describe the opening of a Lotus Notes database or a
particular view or navigator component in a specified Lotus Notes database. As in case
of Compose relationships the changes in relevant properties of the associated objects
can be reflected accordingly. According to the properties of associated objects the
relationship can be transferred to the corresponding program code in CodeGenie

application frame generator.




Run relationship represents the execution of an agent in a specified Lotus Notes
database. The agent is referred to according to its name property. The Run relationships
can also be transferred to the corresponding program code in application frame

generator.

DbLookup and DbColumn relationships represent two different ways of referring to data
in Lotus Notes databases. Both relationship types refer to the corresponding Lotus
Notes @formula language functions (@DbLookup and @DbColumn). The Field object
in the source end of the relationship is used to store the return value of the function and
the Column object specifies the view column where the value or values are retrieved. As
the @DbLookup function needs a search key for looking up the specific value, an
additional Code object is linked as a property to the DbLookup relationship. The Code
object is used to store the search key that can be a text string, a set of program code
returning a text string or name of a particular Field object referring to the value of the
field. The DbLookup and DbColumn relationships are transferred to field formulas in

the application frame generator.

Display relationship type is used to specify the composition of views i.e. which fields of
which forms are displayed in which view columns. The Display relationships can be

transferred to column @formulas in the application frame generator.

Determination of roles

The roles are used to represent the roles of the objects associated in a particular
relationship type. Typical examples of roles are the subclass and superclass roles used

in object oriented methods.

In the NDL method the relationship type and direction are used to describe the purpose
of the relationship and the roles of the associated objects. Since no additional
information can be offered by specifying different role types for each relationship type,

all role types are referred to as Source and Destination according to the direction of the



particular relationship. As some of the object types bound to relationships are not
visible in graphical models, the associated object identifiers (e.g. names) are displayed

in each end of the relationship instead of the role types.

The cardinality of a relationship type defines the minimum and maximum number of
role type instances a relationship type can have. In NDL method the cardinality varies
according to the relationship type. The cardinalities of NDL relationship types are

represented in Table 4.

Table 4: Cardinalities of NDL relationship types

Relationship type CARDINALITY

=

Aggregation

Compose

-

Open

M

Run

DbLookup

-

DbColumn

EEEEE

5
2l == ==

Display

-

The cardinalities of the relationship types are specified according to the possible
relationships between objects in Lotus Notes environment. Lotus Notes environment
also sets some additional restrictions which are not implemented in the modeling
method due to the complexity of the rules associated with these issues (e.g. in a Lotus
Notes application a subform component cannot include another subform, but the NDL
method does not restrict successive form aggregations). These restrictions should be

handled with the reporting facilities of the CASE tool supporting the NDL method.

Allocation of properties to relationship types and role types

Information related to the connections between object types is presented as properties of
relationship types. In the NDL method the DbLookup relationship is the only
relationship type having additional properties. The @DbLookup function in Lotus

@Formula language requires a search key for looking up the data from Lotus Notes



databases. In the NDL method the search key is defined by attaching a Code object as a
property for the DbLookup relationship.

Since all the NDL relationship types have the same role types (Source and Destination),

no additional properties have been allocated for the role types.

Determination of metamodels for individual techniques

The metamodels of the individual techniques represent all the possible connections
between the object, relationship and role types in the specified techniques. Also the

cardinality of the connections can be specified. (Tolvanen 1998)

The NDL metamodels were developed using GOPRR metamodeling language.
Metamodeling was an iterative process in which prototypes of different techniques were
developed, tested and compared. After determining the individual techniques for the
method, the metamodels of selected techniques were replenished according to the test
results and the CASE tool support was implemented to support further testing. To
support the CASE tool implementation some additional information about the
metamodel components (e.g. datatypes of object types) was attached to the metamodels

as free-form descriptions.

Despite the expressive power of the GOPRR metamodeling language, all the
requirements for the methodology could not be described in the metamodels. However
the requirements not specified in metamodels were attached to the method
documentation as a list of error checking rules and warnings that can be utilized when
implementing CASE tool support for the methodology. As most of the typical CASE
tools have capabilities of checking the generated models according to specified rules,
the necessary error checking and generation of warning reports can be managed by the

CASE tool supporting the NDL method.



Determination of linkages between separate techniques

As the Application architecture modeling technique and the Database modeling
technique are used to model the same object system on different abstraction levels, there
must be rules to ensure the integrity of the models generated using different techniques.
These rules are utilized when implementing the model integrity checking in the CASE
tool supporting the method. The model integrity must be checked before application

frames can be successfully generated.

The Database models are used to represent the internal structure of the databases
specified in Application architecture models. As the objects in Database models can
have relationships with objects in external databases (i.e. in different Database models)
these relationships should also exist in the associated Application architecture models as
connections between specific Database objects and in all the relevant Database models

as external database connections.

The object types bound to the external relationships are determined by the relationship
type. For example, if a DbColumn type of relationship is specified between two
database objects in Application architecture model, the external connection in the
Database model representing the source database must be modeled as a DbColumn type
of connection from a Field object to a Database object representing the destination
database. Accordingly the relationship must exist also in the Database model
representing the destination database as a DbColumn type of connection from Database
object to a Column object. This enables the connections between objects in separate

Database models. An example of a DbColumn relationship is presented in Figure 1.



D Application architecture model App.
32}

Order handling

Notes applicetion

T
Order Ustabase

notesiserver
ImarketingtOrderDb.nsf

Customer Database
inotesiserver
Inarketing\Customers nsf
[123456:123456

iAddress book

6768908.038765
[Standard

Database model of Orcler database B
Dstabase model of Customer database
(3 iew
OrderForm = |
1 Alt Custorners
istormer:
pocument | Company U
[Firshame CompanySel  Dbcolumn notesiserver potesiserver CompanySe! Bbcolumn Kortact»
LastName Fedon ™ marketig\Customers.nst Imerketing\CrderDb nst : Sempa Contact perscn
fcompanySelection Al l23456:123455 [678909:098765 ompany address
Subomi order Customers |, vess book [Standard
{Cancel order

Figure 1: Representation of DbColumn relationship to external database

All the relationship types except Display relationships can exist in external connections.
The restriction of the Display relationship use is due to the functionality of column

component in Lotus Notes environment.

Determination of the representational part of the method

Since the NDL method is designed for use with a CASE tool support, the specification
of a graphical notation for the method is necessary. The graphical notation includes the
representation of the object types, relationship types and role types. The representation
aspect in a modeling tool also includes the specification of dialogs, menus, and toolbars,
but since these issues have only little to do with the actual modeling method we decided

not to describe them in this context.

The NDL models are represented as graphical diagrams where each object type has a
unique symbol. The object identifier is displayed at the top edge of each symbol to
distinguish the individual objects. Since all the relationships have a direction, the

relationships are represented as arrows from the source object to the destination object.



The relationship type is displayed above the arrow. If the objects bound to the
relationship are component objects (not visible in graphical representation), the object

identifiers are displayed in each end of the arrow (Figure 3).

iew —
I—‘ OrderForm
All orders

gIIOrders Document

ompany Dbcolumn  Com [FirsName

4 panySel

Elrzsame -—Company ection astiNaime

astName CompanySelection
Submit order
Cancel order

Figure 2: Graphical representation of DbColumn relationship

Aggregation relationship type representation differs from other relationship types since
the common notation of aggregation is used. The aggregation relationship is represented
with a line-triangle combination presented in Figure 3. The presented representation of
aggregation relationship type is used for example in Object Modeling Technique (OMT)
(Rumbaugh et al. 1991) and Object Oriented Analysis / Object Oriented Design
(OOA/OOD) (Coad et al. 1990) methodologies.

Ermail
Document
SendTo
CopyTo
BlindCopyTo
Send mail
OrderForm

Document

—

Firshame

LastName ——<

CompanySelection

[Submit order Header

Cancel order
Document
Caption

Date

Figure 3: Graphical representation of Aggregation relationship



The exclamation mark is used as a symbol for additional textual information embedded

in graphical models.
Analysis and evaluation of the metamodel

In this section we discuss the limitations of the generated metamodels and the GOPRR
metamodeling language. As the selection of the metamodeling language was due to the
available tool support rather than the properties of the language we do not discuss the

alternative language choices in this context.

Majority of the identified limitations become apparent in the Database modeling
technique metamodel being due to the complexity of the Lotus Notes application design
rules. As the Lotus Notes environment has several property-related restrictions (e.g. if
Field.ComputingMethod value is ‘Computed’, you cannot specify Field.InputValidation
property), the description of all possible property-rule combinations would have caused
the metamodels to become too complex. However the property-rule dependent

restrictions can be implemented as error-checking reports in most typical CASE tools.

Another property-related restriction in the generated metamodels is the representation of
unique properties. The Lotus Notes environment emphasizes the need to model unique
properties (e.g. Form cannot have two Field objects with same Name property). The
need of uniqueness rules exists especially in Database modeling technique where the
object property lists are used in several object types. Modeling these situations would

require additional constructs in the metamodeling language.

A major limitation of the whole NDL modeling method is its narrow focus on the
factors concerning the Lotus Notes application development. Even though the main goal
of the NDL development was to support Lotus Notes application development the
method still lacks connections to the real-world environment often modeled using
Business Process Re-engineering (BPR) models, Information flow charts, and Entity
relationship models. As one of the method development objectives was to support the

requirement specification phase of application development, integration to a technique



used to model the organization is necessary. Additionally the method also lacks means
for demonstrating the application functionality as it is completely focused on the
internal design structure of the application. However in RAD projects the demonstration
of the application behavior with a graphical model is not necessary relevant since the

demonstration can be better implemented using an application prototype.

Application frame generator description

The application frame generator is separate application which acts as a “translator”
between the metalanguage produced by MetaEdit and Lotus Notes environment. Within
the scope of this research, the application frame generator was not developed to its full
extent, only a technology demonstration was built which proved the technical feasibility

of the concept. The developed generator was named CodeGenie.

CodeGenie is essentially an application that reads the metafile produced by MetaEdit
and creates the specified design components into a Lotus Notes database. CodeGenie
was developed with Microsoft Visual C++ 6.0 using the Lotus Notes C API version
4.6.2. The technology demonstration that was developed was built as a simple console
application, without a graphical user interface. A simple report was built using the
MetaEdit report generator which produces a metalanguage description of a specified
database in the application architecture model. The demonstration report and application

frame generator only supported form —design components.

In order to support the graphical modeling method in its full potential, the application
frame generator and report engine must support all design elements in the method. The
developer also needs a way to control the dependant changes in the Lotus Notes
database and the corresponding model. The developer should be able to control the
updates per design component basis. This can be accomplished with a graphical
representation of the design structure where the designer can designate components that
are to be updated. The tools for comparing two databases are also a necessary so that the
designer can analyze the differences between two databases, for example two different

versions of a prototype.



The implementation of a component repository is also possible to integrate into the
application frame generator. The lack of layout design within the graphical modeling
method makes this a viable option because in this method, layout information can be
saved with the components saving the designer the work of constructing the layout
again. The developer simply selects the design components he wishes to save into the

repository and supplies necessary information about the use of the component.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

