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The full utilization of the potential of software components requires that the
components be stored into a library. When these libraries grow large enough,
finding an appropriate component merely by browsing through the library

becomes too laborious. Therefore, some kind of retrieval tool is needed.

The goal of this study is to evaluate different information retrieval possibilities
and to find the ones most applicable to component search. The study is largely
based on existing literature on different retrieval possibilities. The focus is
further narrowed to CASE tools and particularly metaCASE tools. Studies in
this area are relatively few although the concept is important in modern

software development.

We will propose a practical example of a retrieval tool based on our literature
review and provide advice on how it should be implemented. This retrieval
tool is designed primarily for an existing commercial metaCASE environment
called MetaEdit+ and it utilizes its concepts and features. The nature of the
metaCASE environment raises some challenges on the implementation, and the
main contribution of this thesis is to provide guidelines on how to solve these
unique problems. This will benefit future efforts of building component

retrieval tools in these environments.

KEYWORDS: reuse, component, software component, information retrieval,
retrieval model, search representation, CASE tools, metaCASE tools,

component-based development
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1 Introduction

1.1 Background

It should be clear to everybody by now that the software industry is as
important to the modern way of life as the more traditional areas of industry. It
is quite alarming that there still remain some remarkable insufficiencies
regarding the design, maintenance and quality control of software projects.
Information systems are still often built very arbitrarily, without consistent
utilization of the modern design methods and quality standards. Also the reuse
of existing elements is often minimal. The maintenance of the resulting systems
is difficult and very time-consuming, and therefore the negative effects of bad
design and insufficient documentation may be visible for years. Therefore, the
software industry is far behind traditional engineering areas such as road- or
shipbuilding, where expense estimates and schedules are, if not perfect, at least
much closer to reality. Ships or roads also usually function relatively robustly
after being released to the public and do not suffer from mystical “blue screens”

or annoying bugs.

The remedy to the low quality of software has been searched for since the late
1960s, and some proposals for potential solution have been made. According to
Mili et al. (1995), it has become clear that the only realistic, feasible solution to
increase productivity and quality is systematic reuse. During the last decade,
one of the most promising solutions and also one of the most hyped concepts in
the software industry has been the use of software components that allow
software reuse in a coherent way. Software components promise to improve the
quality and productivity of software projects by enabling the reuse of existing,
well-tested pieces of software. This practice will make the software industry
more like traditional industries, in which engineering products from the

existing parts has been a common practice for a long time. (Persson 1998) For



example, a shipyard building a new cruiser will not fabricate every screw or
steel plate needed in the construction of a ship. Instead, these small parts (or
components) are bought from different vendors and are just brought together at
the shipyard. In this way, the producers of different parts can specialize in the
area to which they are most accustomed and of which they have the best
knowledge. Also, these parts will be tested in many different environments,
because the same screw or bolt may be used as well in a computer as in a
Caribbean cruiser. This practice leads to well tested parts of good quality,

which in turn - at least in theory — leads to end products of better quality.

1.1.1 Reuse in Software Development

Due to the nature of software industry, the reuse of components would be even
more beneficial than in the traditional industry. This is because once a software
component has been designed and implemented it can be duplicated infinitely
practically without any cost. (Persson, 1998) Despite that a major portion of new
software systems are typically constructed from scratch. This is very
unfortunate, because studies show that much of the code in a system is
functionally identical to the previously written code. (Jones, T. 1984).
Nowadays, due to the hegemonic role of certain software companies the

diversity in the software market is lesser.

Whereas in traditional engineering industry reuse means using parts designed
and constructed beforehand, the basic idea of software components lies in
reusing the existing code as much as possible instead of writing everything
from scratch. (Persson, 1998) In theory, reusing code may refer to virtually
anything that enables the use of old code in a new application: From copying
and pasting code from a module to another to integrating a whole application

to another application. Unfortunately, reuse that is based only on duplicating



the source code - especially the cut-and-paste approach — is very inefficient in
the long run, because it is extremely hard to identify reusable parts in poorly
documented code libraries. Also, this kind of reuse benefits only the
implementation phase, whereas the modern view is that any lifecycle product
could be reused (Frakes & Gandel 1989). In practice, research on reuse in other
phases has not emerged until the last few years, and little is known about reuse
of software that is not code. For example, reuse of requirements or software
designs is mostly an unexplored area, although it might benefit the software

development process drastically.

1.1.2 The Emergence of Software Reuse

Modular programming was the first invention that enabled user-definable
reuse between programs (as opposed to internal reuse, which is reuse built
inside the programming language). It allowed functions related to each other to
be packed in the same module apart from the actual program. This module
could be imported into other programs. A good example of this approach is the
standard library for C language, where, for example, mathematic-related
functions are packed in one module and file-manipulation-related in another.
These modules can be integrated to programs relatively effortlessly, providing a
possibility for reuse to at least some degree. The emergence of object-oriented
programming (Smalltalk, Simula and Ada in 1970s and lately languages such as
C++ and Java) and techniques (methods such as UML), have made reuse even
easier to accomplish by introducing classes and objects. Classes encapsulate
similar services in one, cohesive package. Besides the services (functions),
classes also contain the necessary data for these services. These services may be

accessed through the interface that the class defines.



The term software component is commonly used very loosely; for example, in
UML a component may be any “distributable piece of implementation of a
system, including software code” (OMG, 1999). However, we take a more strict
approach to the component concept. Software components borrow the ideology
of object-oriented programming and take it one step further: they encapsulate
services and data, which can be accessed through a defined interface, and they
are designed exclusively for reuse purposes (Korhonen, 2000). Components are
also larger entities than classes. The interface is a fundamental part of a
component because it represents the component to a developer. The interface
should also include some kind of documentation to provide guidelines in usage
and integration of the component (Tracz, 1991). By this definition, where
interface and reuse are the crucial features of a software component, many
object-oriented class libraries like Java’s Swing classes or Microsoft’s MFC can
be seen as component libraries or collections (Korhonen, 2000). In practice, the
use of software components is a constantly growing trend in the software
industry. Still, there are some common problems that complicate accepting

components as a standard means of information system development (ISD).

1.1.3 Problems in Software Reuse

The reason for the lack of reuse in many organizations is that reuse is a very
complex issue to handle, and it requires large initial investments. It assumes
quite radical changes on the organizational and technical levels of a company
(Prieto-Diaz, 1991). In many companies the main reasons are the following.
First, the companies considering the introduction of reuse have to face the
economical and financial challenges. Second, the companies considering the
introduction of reuse have to face a change in the organizational culture that
impacts the software development lifecycle. Third, the companies considering

the introduction of reuse have to face assessment and evaluation of the actual



benefits of reuse in terms of time and cost savings, improvement in the quality
of products, and decreased effort. (Rine & Nada 2000) According to Frakes and
Fox (1995), developers believe that reuse is beneficial to their work and
efficiency, and they claim that they would rather reuse a piece of code than

create it from a scratch. However, the reality suggests the opposite.

According to Prieto-Diaz, one of the fundamental technical problems in
software reuse is organizing collections of the reusable components for efficient
search and retrieval (Prieto-Diaz 1991). Frakes and Gandel (1989) phrase this by
stating “A fundamental problem in software reuse is the lack of tools for
representing, indexing, storing, and retrieving reusable components.” Frakes
and Gandel (1989) have defined this problem as a storage and retrieval
problem: How reusable components should be stored and retrieved efficiently?
This problem is very closely coupled with a representation problem: How the
reusable components should be represented so that they can be found and
understood. These two problems are the main focus of our study, and we will

discuss them both thoroughly in their respective sections.

1.14 Component Distribution

A common solution to component storing and distribution is to store the
components in a software repository that is available for all the software
developers in the organization or company. This kind of repository is usually a
multi-user database that stores the components as binary objects. The
repository is typically integrated with maintenance functionality such as

documentation tools, integrity checking tools etc.

According to Isakowitz and Kauffman (1996. p. 408), “a key ingredient for

promoting software reuse in repository-based environments is providing



support to software developers who wish to search the repository to locate
suitable software objects for reuse.” When the number of components in the
library is large, the developers can no longer afford to examine and inspect each
component individually to check whether it is appropriate or not. We need an
automated method that, at least, can reduce the number of potential
components by some degree. Such a method would match an encoded
description of requirements against encoded descriptions of the components in
the repository (Mili et al, 1995). Unfortunately, repositories very often lack this
kind of versatile querying methods that are available for traditional database
systems (SQL for relational databases, for example). The lack of decent search
tools may reduce the usability of the repository very drastically if the amount of
components is high because developers cannot find the component they are
looking within a reasonable time. To make the repository an acceptable
distribution method and to make efficient reuse possible it is important to find

decent solutions for querying the repository. (Zhang, 2000)

Although components and component search from repositories are a relatively
new research area, there has been a lot of research on different information
search and retrieval methods during the last few decades. Also, some methods
for searching and representing reusable software have proliferated in recent
years. These methods are drawn from three major areas: library and
information science, artificial intelligence (AI) and hypertext (Frakes & Gandel,
1990). To date, Al and hypertext have been used only experimentally. Existing
fielded reuse library systems use library and information science methods
(Frakes & Poole, 1994). In this study we will concentrate on library and
information science methods because we want to concentrate on methods that

are known to be applicable to our own domain.



1.1.5 CASE-tools and Reuse

Since the early 1970’s, one remarkable direction in the‘ search for the cure to
software crisis has been the emphasis and focus on analysis of the early phases
of the ISD process rather than just the implementation. This has resulted in a
huge number of different ISD methods, maybe most notably — at least from the
success point of view ~ Rational Unified Process (RUP) with Unified Modelling
Language (UML) by Jacobson, Rumbaugh and Booch. Along with the new
methods came also plenty of software that allowed utilizing those methods
with exclusive tools — CASE tools (Computer-Aided Software Engineering). A
CASE tool is “a design aid tool that implements automated support for one
prominent task of systems development.” (Koskinen, 2000, p. 44) A closely
related concept is a CASE environment, which is “a collection of CASE tools that
cover several parts of the system development life-cycle. (Koskinen, 2000, p. 44)
A CASE environment enables the definition of different aspects of the target
system with tools that make use of graphical notations, diagrams, rules and
constraints. With these features, the CASE tools should provide task related
support for analysing, designing, versioning, change management and
implementing an information system or their components according to a

method. (Kelly et. al., 1996)

The traditional view of reuse and software components is that only the code
and the executables can be reused efficiently (Frakes & Poole 1994). Despite that
this is still the truth in practice, it would greatly benefit the software
development if components and reuse could also be exploited in the earlier
phases of an ISD process. This can be achieved with the use of the CASE tools.
If the software being developed is designed to be component-based, there
should be no reason to use other than component-based methods also in the
design phases, and possibly even in analysis phase. Therefore, there should

exist decent component and reuse support for the CASE tools as well as the



implementation environments. This development is still in its early phase and

lacks standards and efficient methods.

Although decent commercial CASE tools with good support for popular
methods are already available (for example, Cool:SPEX, Together HOW,
Rational Rose) (Hénninen et al., 2000), the practice of using them has not yet
grown very popular among IS community and most companies still utilize
them only marginally or not at all, and even fewer utilise their full potential
(Lending & Chervany, 1998). The reasons for this are not completely clear, but it
seems that the managers do not always recognise the potential benefits of the
methods. Moreover, the process of adopting new techniques is often quite
complicated and requires commitment on the operational and management
level. A study by Lending and Chervany also shows that system developers do
not appear to be motivated to use the tools, and as Lending and Chervany
(1998, p. 57) state, “Neither intrinsic motivation (the tool is fun to use) nor
extrinsic motivation (the tool is perceived to be useful) is high.” This is a
remarkable problem, because the widespread adoption of CASE tools would
also bring the software industry closer to traditional engineering industries
where careful and thorough design before constructing anything is a generally

accepted and practically applied convention of working.

1.1.6 MetaCASE Tools

The first CASE tools were simple text-based command line tools that allowed
the user to define simple rules and dependencies. Newer methods adopted
graphical representations and interfaces, and CASE tools followed by
increasing the usability of the methods and making them more acceptable to the
wide audience. Soon the CASE tools were outnumbered by methods, forcing

users to adopt their built-in methods rather than to allow them to use the



method fitting best their organization and the development process. (Kelly,

1997)

In (Kelly et. al, 1996), a solution for this “methodology flood” - problem is
proposed in the form of a flexible, fully configurable CASE tool — a metaCASE
tool. The basic idea underlying a metaCASE tool is that instead of being bound
to pre-defined methods provided by a CASE tool, the user can create a method
best applicable to him or her. Methods are implemented as high-level
conceptual models, which define the rules, objects, relationships and other
aspects used in the method. This definition of a method is called metamodel, and
it is a formal description of the characteristics of an ISD method. The activity of
defining and creating metamodels is called metamodeling, whereas the activity of
engineering existing methods to suit particular needs is known as method
engineering (Heym & Osterle, 1993). To be able to formally define this
metamodel, some kind of data model of a higher level is needed to provide
metatypes, of which the actual metamodels are constructed. Method engineering
is carried out by constructing new methods from these metatypes. Logically, the
model that defines concepts of metamodels is called metameta model.
Interestingly, UML starts the meta-hierarchy at the application level and
therefore considers the level that defines elements used in models as a
metameta model. For example, classes are derived from metameta model object
called metaclass. This is probably due to UML'’s lack of possibility to define
your own modelling languages, which is understandable due to the fact that

UML is a model level language itself. (OMG, 1999)
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1.2 Goals

As discussed in the previous sections, there are major problems in adopting
software components and component-based software development (CBD) in
organizations. One of the reasons complicating and reducing the amount of
reuse in organizations is that without the proper search functions finding the
reusable part or component quickly becomes too difficult and time-consuming
when the amount of components in the library increases. This problem is
complicated by the fact that the search situations may vary greatly. In many
occasions, the developer knows that the component he or she is looking for
exists, but does not necessarily know how to look for it in a large repository.
Even more challenging a situation emerges when the developer faces a problem
situation and tries to find a suitable component from the organization’s
component repository. In this kind of situation, there might be no relevant
components in the repository. (Hanninen & Aijinen, 2000) In this thesis, we will
provide some solutions to these kinds of problem situations by proposing
requirements for component search tool that would enable complex queries in

component repositories.

1.2.1 Search Process

The search process can be roughly divided into two main phases. In the first
phase, the query is created using the features provided by the search tool. In the

second phase, the query is executed and a list of results is created.

In the first phase, the user creates the query using the search tool. Query

creation methods vary much: a method may require knowledge of some formal
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language such as SQL, it may be some higher-level query language or it may be
purely visual. Different problem situations may (and probably will) require
different kinds of search capabilities. For example, if the developer is aware of
the component’s existence, he or she probably wants to search for it by free text
such as the component’s name, creator or some words in its documentation. If
the problem alone is known, the search task is more complex. In these situations
it is practical to narrow down the number of components by some other
method than free text search — for example, keyword search or search based on
a classification (enumerated search, for example). However, the main goal in
the first phase of the search process is to express the requirements for the
component as accurately as possible. The expression capabilities are totally

dependent on the search tool.

When a query is formed, it is translated into an internal query language
expression. This expression is then tested with each of the components in the
repository by the matching algorithm, which is the core of the retrieval process.
Implementation possibilities for this algorithm are numerous, from simple
binary Boolean matching to complex fuzzy algorithms that allow also partial
matches to be retrieved. If the algorithm finds a matching component, it adds it
to the candidate component list. When all components in the library are tested
with the algorithm, the candidate component list is presented to the user.

(Baeza-Yates et. al, 1999)

1.2.2 Major Issues in Component Search

According to Frakes and Gandel (1989), the major issues to be faced in

designing a storage and retrieval system for reusable components are,

e How to classify and index the components,
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e How to search for the components,

o How to evaluate the effectiveness of the system.

The main objective of this study is to answer the first two of these questions,
and therefore solve how the searching of software components from a large
component library/repository should be implemented. The third problem
involves developing a universal metrics on component reuse, and therefore it is
out of the scope of this study. We refer to these two problems as classification
and indexing problem and retrieval problem accordingly to Damiani and Fungini
(1995). In this study, we will use the component library of the MetaEdit+
metaCASE environment. It uses the GOPRR model as its meta-metamodel. This
tool currently lacks decent component search capabilities, and this study will
contribute to MetaEdit+’s development. Because of the nature of the metaCASE
tools and the user-definable component model, the search tool should be
flexible rather than fixed to a certain component model. This forms one of the
most significant challenges in this study. Fortunately, MetaEdit+ uses a flexible,

generic component model, which will be introduced in Chapter 4.

1.2.3 Research Problems

Our research problems are formed to reflect the major problems of component
indexing and classifying described in the previous chapter. We will study how
the representation method and retrieval model should be chosen and ultimately
implemented in MetaEdit+ metaCASE tool. These problems and research goals

are expressed with three research problems:

e What are the different possibilities in representing component search to

the user? It is also possible — and even probable — that a single search
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representation cannot satisfy all the querying needs, and therefore

several different search presentations must be considered.

e What possibilities exist in realizing a component search in a GOPRR
based repository? This should take into account the structure of the
repository, how the component model is defined on the meta-metalevel

along with the search representation and the retrieval model.

e How can the component search functionality be implemented in a
metaCASE environment? This problem combines the questions above
and adds the implementation-centric view, including the user interface
design. The user interface design should be based on the chosen
representation. Solving this problem includes the actual implementation
of a search tool prototype in the GOPRR based metaCASE environment
(MetaEdit+) although this part is not discussed in this thesis.

By answering the first two questions, we will create a theoretical basis for a
flexible and efficient component search in a GOPRR based software repository.
In practice this means finding the search representations most suitable for
component search and solving other retrieval-related problems. We will find
answers to the third question by implementing the prototype of the search tool
into the metaCASE environment. However, extensive testing of the prototype
does not fit into the scope of this study, although it is necessary to get some

relevant and credible results on the usability of search tool.

A reasonable component search is naturally impossible if no descriptive data is
stored with the components (Frakes & Gandel 1989). However, because we are
particularly interested in a metaCASE environment instead of conventional
CASE tools with predefined methods, we have to make the definition of the
component model somewhat generic. Therefore, we have to define the

component model generally so that the users can make their own component



14

models that are inherited from the generic model. Because the users of a
metaCASE tool probably wish to build their own more specific component
model (inherited from the generic component model) along with their own
method, it is not necessary to fix the information stored with components —

although we can provide some advisory guidelines for it.

1.3 Methods

According to Nunamaker, Chen and Purdin (1991), information system
research should be carried out by using multi-methodological approach that
integrates four strategies: theory building, system development, observation
and experimentation. These strategies form a research framework where
different research strategies are mutually supportive and therefore may utilise

the outcomes of each other and exchange the data.

From the perspective of Nunamaker’s et al. framework (1991), this study is
mostly placed on the theory building area. As Nunamaker et al. (1991) state, a
theory building strategy includes the development of new ideas and concepts,
construction of conceptual framework, methods and models. Our approach is
mostly theoretical, based on literature and building new theories on the pieces
of existing knowledge. The constructive part is carried out by implementing a
prototype of the query tool described in this study. This study does not involve
experimentation or observation strategies, although they are a fundamental

part in constructive research.

This study is conducted using two main methods. First, we create a theoretical
background for the querying functionality by examining current literature on
components, repositories and information retrieval. We will study the modern
outlook of components, component storages and repositories, reusable software

representation methods such as faceted and enumerated classification and
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information retrieval related techniques such as indexing. Here the research

method is reviewing the existing theories and empirical studies.

At University of Jyviskyld, the RAMSES (Reuse in Advanced Method Support
Environments) project has studied components and has proposed component
requirements for metaCASE environments (Korhonen 2000). These
requirements also include the minimum requirements for a component search
tool, and we will use these requirements as a resource in our study. However,
we do not see these requirements as the end of the evolution, but more as a

basis and a guideline to our extended study on the subject.

After building the theoretical foundation we will implement a prototype of a
querying tool for MetaEdit+ metaCASE tool. The prototype will be
implemented with Smalltalk programming language using theoretical and
practical information gathered in the first and the second parts as a basis. This
prototype will include basic functionality and an interface for simple queries,
and provide all necessary encoding layers for the query types we found most
important. We will exclude more advanced and complex queries such as
recursive and visual queries because they do not fit in the scope of this study.
Some significant querying possibilities such as hypertext will also be left out of
the study. The querying tool will work on the top of MetaEdit+’s GOPRR based
repository. The research method used in the prototype implementation is

making deductions based on the theories and personal experiences.

1.4 Structure

Structurally, the thesis is divided into five chapters and four major structural

parts. Each of these parts is dedicated to one major area of the research. Table 1
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presents how these chapters and structural parts correspond to the research

parts introduced in 1.3.

Table 1. Structure of the thesis

Chapter Structural part Research part
2 Concepts
3 Component search '
Literature review
4 representation & retrieval
5 MetaCASE domain
6 Contribution Prototype construction

The first part consists of the second chapter (the first chapter being the
introduction) and its purpose is to introduce the concepts used in the thesis. We
discuss about components and repositories commonly, and different definitions
for software components and differences between classes and components.
Some organizational aspects related to component-based development are also

discussed.

The second part consists of two chapters, Chapter 3 and Chapter 4. This part
deals with the two main aspects of component search: component
representation and component retrieval. Chapter 2 deals with component
representation, along with indexing and classifying that are closely related to
representation. Here we take a look at the common classifying and indexing
vocabularies used in different fields, including controlled and uncontrolled
vocabularies, and review empirical studies conducted on their appropriateness
on component or reuse representation. In Chapter 3 different retrieval methods
are discussed, and some algorithms are introduced. The idea of binary versus

non-binary search and its implementation possibilities are explained.
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The third part consists of Chapter 5, and it introduces the domain of this
research, metaCASE environment, and concepts associated with it. These
include the GOPRR metameta model, which is the data model used in the
MetaEdit+ environment and an integral part of this research. We will discuss
the nature of model components and how they differ from their binary
counterparts. We will also introduce component model designed exclusively for
GOPRR data model. This component model will be the basis for the component

query requirements represented in Chapter 6.

In the final (fourth) part, which consists of Chapter 6, we present the
contributions of the research. We discuss the implementation of the search tool
based on the theoretical aspects presented in the former parts. Different aspects
of the search tool implementation, the search representation in a metaCASE
environment, retrieval in a metaCASE environment, component browsing and

query result representation. All these aspects are discussed.

Testing the prototype described in this thesis is naturally crucial, but the scope
of this study does not include empirical testing; rather it is a subject for further
research. This kind of testing is already being carried out by the RAMSES

project.
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2 Components And Repositories

In this section, we will discuss the basic concepts of component based software
development. First we will define the concept of component for this study using
references from former component literature. We will examine the differences
between components and OOP (object-oriented programming) classes to
address the fact that the components are more coherent and independent
entities. We will discuss repositories as component libraries and what features
we should expect of one. In the last part of this chapter, we will take a short

look at the organizational aspects involved in component-based development.

2.1 Different Views of Software Components

Generally, when term software component is used it refers to some kind of
binary object that can be integrated into a software project under development.
For example, in UML (Unified Modelling Language) a component is defined as
a “distributable piece of implementation of a system, including source code and
business documents in a human system” (OMG, 1999). These distributable
pieces include modules, class libraries or external executables. Another
common approach (and maybe somewhat more old-fashioned) is the one used
by Frakes and Gandel (1989), who define a component as any piece of reusable
software: examples of this category include OOP classes, function libraries and

UNIX tools like grep or fopen.

How the integration of components is accomplished depends on the type of the

component and the programming environment, in which software is developed
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— different software development environments provide different levels of
abstraction. In the case of traditional programming language, such as ANSI C,
the reusable libraries are included in the program with external declarations —
in ANSI C these declarations are “include”-statements defined in the source
code. This statement allows programmers to use functions and structures from
the libraries defined in these declarations. In modern visual development
environments (also known as integrated development environments or IDEs) such
as Visual Basic by Microsoft or Delphi by Borland the component integration
process is abstracted to a particularly high “no coding required” -level: usually
the components may be integrated in the project by dragging them with the
mouse from some kind of visual component collection and then their services
can be used in program code or sometimes even visually. In an object-oriented
language like Java, the JavaBeans (or similar components) are also imported by
some declaration, and then they can be explicitly created in the program code. It
is important that in all these different kinds of software reuse situations the
modifications made to original code reflect to every occurrence of that code in
different software projects. Under this criterion, the cut and paste — approach is
not component reuse, and probably not reuse at all in its truest sense.

(Korhonen, 2000)

Numerous exact definitions for software components have been proposed in
the literature, many of them somewhat contradictory and emphasizing different
aspects. Allen and Frost (1998) emphasize the service aspect of the component
by defining a component as “an executable unit of code that provides physical
black-box encapsulation of related services. Its services can only be accessed
through a consistent, published interface that includes an interaction standard.
A component must be capable of being connected to other component (through
a communication interface) to form a larger group.” Some definitions do not
explicitly bind the interface concept to the concept of a component. For
example, Rational’s Unified Process uses a broader and more general

component definition by proposing that a component is “a piece of software
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code (source, binary or executable), or a file containing information, (for
example, a start-up file or a reassume file); a component can also be an

aggregate of components.” (Jacobson et al., 1999)

In this study we will take an interface-centric approach to binary software
components. The interface can be seen as a joint or contract between a
component and its clients. It is a formal definition that describes the services the
component provides (or requires) but not how these services are implemented.
One of the key aspects of the interface is to hide the inner implementation of the
component from the user and to show only the information that is necessary to
fully utilize the component. One of the interface-centric component definitions
is proposed by D’Souza (1999, p. 15): “a component is a coherent package of
software that can be independently developed and delivered as a unit, with
defined interfaces by which it can be connected to other components to both
provide and make use of services.” Another good definition that emphasizes
also the replaceable nature of components is made by Booch et al (1999): “A
component is the physical packaging of model elements, such as design classes
in the design model. A component assumes an architectural context defined by
its interfaces. It is also replaceable, meaning that developers can replace one
component with another, maybe better, one, as long as the new one provides
and requests the same interface.” As these definitions clearly demonstrate, in
terms of coherence, encapsulation and ease of integration, function libraries and
software modules (as C programming language understands them) are not
coherent enough. As D’Souza (1999) and Allen and Frost (1998) state, software
components should encapsulate their implementation and offer their services
through a well-defined interface, which complies with some appointed
standard. This is also Persson’s (1998) view, as he states that standardized
interfaces are one of the critical concerns when evaluating component

technology’s possibility of success.
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A component’s interface should be the only visible part of the component, and
therefore it should contain all necessary documentation and information for
users to understand how the component works and how it should be used
(Korhonen, 2000). This kind of component reuse is called black-box reuse
because the developer cannot inspect how the component is implemented
internally. This is the way most current component technologies and
frameworks such as Sun’s JavaBeans and Microsoft’s ActiveX/COM objects
function. These frameworks define the standardized interfaces that each
component must abide at a high level, and therefore they make the components
easily attached to each other. Standardized and universally accepted
frameworks are crucial to the success of component based software
implementation because they make the efficient and fast integration of different

components possible.

Model components used in earlier phases of ISD process are slightly different
than components used in implementation phases, although most guidelines
apply also to them. Special characteristics of model components are discussed

in detail in Section 5.

2.2 Components vs. Classes

While technological solutions underlying the current component models are
new, the basic ideas are not: they can be traced back to when objects originated,
or even to earlier ideas of modules. Therefore, to fully understand the concept
of components, it is necessary to address some distinctions between

components and OOP objects (D’Souza, 1999, p. 15):

e A component is described by a specification of services it provides and

requires from others, one interface at a time, whereas objects have
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traditionally focused only on services provided. The description of an
object does not include a specification of any of the calls coming out of
that object.

¢ Component designs are purely based on interfaces; a component
provides interfaces and it is implemented in terms of the interfaces of
others. Objects may expose their data to other objects using them,
although this is not considered a good practice.

e A component is typically larger grained than an object in OOP. It may be
implemented with several classes, and its interface may be provided by a
single “facade” class or by exposed internal instances. Components do
not have to be implemented with OOP, and very often they are
implemented with some lower-level language such as C, especially if
they are performance-critical.

e Components should be connected at a higher level than API calls, e.g.
pipes, events and replication; just as a component provides a higher-level
part, so a connector provides a higher-level way to connect components.

e Components are units of packaging, and a packaged component can
include the executable, the interface specification, test, default property,
and “plug-ins”. The form of that packaging differs across different
technologies: Sun MicroSystem’s JavaBeans relies on self-describing
compiled representations based on Java's reflection API and
standardized function calls; MicroSoft’'s COM requires separate type-
library information to be explicitly registered; and COM+ moves

towards a self-describing version.

Besides these, there are other less significant differences. Conclusively, it is clear
that there are so many differences between components and classes that the
research results gained in the studies of OOP classes cannot be applied to
components as such. However, in many cases classes may be turned into
components by encapsulating them in a coherent package and creating well-

defined interfaces with some component standard.
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2.3 Component Repositories

The adoption of software components does not benefit an organization
appreciably if the components are not easily available to all the developers that
may want to use them. Even small inconveniences in retrieving components can
reduce the utilization of components very drastically (Banker et al, 1993).
Therefore, it is extremely important to have adequate support for the use of
components inside the organization to make full use and reuse of components
possible. Reuse itself is a complex issue, and needs full support not only from
the technical department but also from the organization’s managing directors
and infrastructure. Some of these infrastructural elements are practices for the
creation, management and maintenance of components, decent usability of the
component library and appointing the persons in charge of component
management. There are positive experiences from the use of component
libraries: when the library is well implemented it can provide remarkable
financial benefits to the organization, and most organizations have fairly good
technical conditions for the implementation of component library. (Prieto-Diaz,
1991) In this section, we will discuss mostly the technical issues of component

libraries, and pay less attention to the organizational aspects.

As stated before, one of the most important conditions for component reuse is
common component storage, where components are stored and indexed and
where developers can retrieve them with relatively low effort. (Jeng et al. 1993)
According to Maarek, Berry and Kaiser (1991), an adequate component library
must meet the following basic requirements. First, the library has to provide
sufficient amount of components from different domains, which can be reused
either as-is (black-box reuse) or after relatively small modifications (white-box

reuse). Second, the component library or storage has to be organized so that the
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user can find the best component for his or her needs with relatively low effort.
Especially the library should help in finding similar components, which may be
not exactly what the developer was looking for but which can satisfy at least

part of the developer’s needs. (Maarek, Berry & Kaiser 1991)

When components in a library are code components (as opposed to model
components, discussed in Chapter 5), they are stored in binary form — possibly
with their source code. This is not sufficient for reasonable retrieval, because it
is very hard to find right components from the library if queries are based only
on the source code and practically impossible if only binary code is available.
Therefore, some kind of “metadata”, a formal description of a component’s
features and characteristics should be stored in the component’s interface.
Queries carried out in the component library are mostly based on this metadata
rather than the component’s implementation or source code. In a typical
problem situation, the developer does not have accurate knowledge about the
components in the library, and therefore components must be described
accurately enough to make finding the applicable component possible.
(Henninger, 1994) We will use the term repository or component repository

when referring to component storage.

Because of the complex data structures in a component repository, the typical
implementation of the library is object database, which can easily store complex
data such as binary or model components with their corresponding metadata.
Object database is also much more flexible than traditional relational database
when representing complex relationships between components which are
typical for GOPRR' data model and other data models used in CASE tools. For
example, with GOPRR data model it is possible to create recursive data
structures that would be very hard or impossible to represent with a relational

database schema.

' The GOPRR model will be discussed thoroughly in chapter 5.
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Handling data and its structures in a repository is more complex than in
traditional relational database or file-based system. This is due to several
factors, such as hierarchical structure of the repository, complex objects and
different representations available in CASE tools. (Liu, 1996) Therefore,
repositories rarely provide a formal query language (as opposed to SQL in
relational database systems) and querying the repository is done via a
programming language. Complexity issues and how they affect the queries

carried out in the repository are discussed in Chapter 5.

Besides technical aspects, other fundamental concerns when realizing a
component library are: organizing the library, maintenance and describing the
components in adequate accuracy. Some aspects of consideration in a library’s
organization and maintenance are publishing the components, version control,
access control and informing users about changes in the library. An approach
proposed by Hadjami and Ghezala (1995) is to delegate responsibility of most of
these tasks to a person (or people) specialized in the management of the
component library. This person should be responsible for the publishing of the
components. For example, he should take care that the library will not contain
defective, malfunctioning, unfinished or insufficiently documented
components. It is important that only the well-tested and semantically valid
components are stored in the public component library. (Hadjami & Ghezala,
1995) Version control should also be arranged and organized thoroughly,
because arbitrary updates of components may affect projects, in which those
components are used. User access control is naturally needed for controlling

access of certain groups or persons to the components.

Regarding the organizational aspects, one of the most important things is close
interaction between the person in charge for the component library, component
developers and the components’ end users, the software developers utilizing

the components. The person in charge should be aware of the activities and
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operations of the development units so he or she could sensibly control
component publishing and version updates. (Prieto-Diaz, 1991) The component
library should also offer systematic support for informing the library users
about changes in the library structure, new versions of components and new
components published in the library. One possible way to achieve this is an
automatic notifying system, which could inform users about updates and new

components in which they are interested.

24 Summary

The most important contribution of this chapter is the definition of a component
and its interfaces because a component definition is a fundamental part of this
study. It is impossible to discuss aspects of component search if we do not
know exactly what we mean when we talk about components, especially
nowadays when the term component is used very loosely. If we want to find
answers to our research problems, we need a solid foundation to build our view
of representations and retrieval models on. The component definition is

elemental part of this foundation.

Besides defining the component, we discussed some important concepts related
to components, component based software development and component
repositories. We briefly presented some history of software reuse, taking a little
peek at reuse in structural and object oriented languages. We compared
components and objects in OOP and addressed some distinctive differences
between them. Finally, we discussed external requirements for successful
component reuse such as component repositories and organizational aspects of
component reuse. Examples of essential organizational aspects are component

publishing, version control and access control of the component library.
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3 Component Search Representation

In this chapter, we will concentrate on information retrieval technologies
mostly from a user-centred view. We will discuss different ways to represent
components and queries to the users and analyse different search situations that
may call for different kinds of component representation. For this
representation we will use term component search representation as proposed by
Frakes and Gandel (1989). Search representation is dependent on the
classification and indexing of the component library, and we will discuss
different classification and indexing methods. It is notable that our approach to
search representation is based on component search rather than component
storing - these can be seen as the two sides of search representation. For
convenience, we use shorter search representation referring to component search

representation throughout the study.

As a main resource we will use literature and articles about information
retrieval. Ph. D. William Frakes has conducted a lot of research on representing
reusable software, and his work will provide a large part of the basis of this
section. (Frakes & Gandel, 1989, Frakes & Poole, 1994) It is notable that we will
not use the original terminology proposed by Frakes and Gandel (1989) because
their terminology is somewhat confusing and, more importantly, includes

terms overlapping with terms already defined in the metaCASE domain.

3.1 WhatIs a Search Representation?

The terminology concerning component search representation is quite diverse

and unestablished. For example, Zhang (2000) discusses “search techniques”,
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Henninger (1997) sees a representation as a feature of repository’s structure and
Prieto-Diaz uses term “classification scheme”. We will, however use term
search representation proposed by Frakes and Gandel (1991). The reason for
this is the fact that their study is by far the most complete one, and they have a
long chain of articles on the subject, and their classification has the strongest
theoretical ground. Furthermore, the term search technique is somewhat
misleading because it may indicate any aspect of a search, while we are
interested only in how the search should be represented to the user. However,
we have made some modifications to the terminology proposed by Frakes and
Gandel (1991) to make it fit our domain (the metaCASE environment) better

and to avoid overlapping concepts.

A search representation can be defined as a product of classification and
indexing procedures. Classification is the process of assigning a component to a
category and indexing is assigning it to several categories - finding or creating a
record to represent the component. (Frakes & Gandel, 1989) The end result of
these activities, some kind of record or abstraction of a component, can be seen
as a search representation. Because we are interested in how this search
representation should be generated to support component search, we will apply
this representation to the requirements of component search. In this chapter we

are particularly interested in how the user perceives the search task.

A search representation can be seen as a joint between the user and the data the
user is querying. Search representation methods are needed to provide the user
some abstraction of the data and to present essential information about the data
in a compact form. The basic goal of search representation is to make
components that are appropriate to the user also recognizable as appropriate,
and to make it possible to find such components with a procedure that seems
logical and acceptable to the user. Usually, defining a search representation for
a component means assigning data with some descriptive information such as

keywords or a free textual description, or assigning components to some
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classifications. A good example is a traditional library - the one from which you
can borrow books. It would be practically impossible, or at least very
inconvenient and inefficient to thoroughly inspect every book when searching
for books on some subject. Therefore there is always some kind of card index —
nowadays usually a computer database. Every book on the shelves of the
library has a corresponding card in the file that describes some basic
information about the book: author, name of the book, year of publication, some
keywords about the subject etc. These cards are arranged in alphabetical order
by the author’s or the book’s name, so in traditional paper-based indexes it is
necessary to know either of these. Instead, an electronic system provides a

possibility to search for the books by subject by entering some keywords.

When representing component repository to the user, the goal is the same as in
the traditional library: we want to create some kind of card file schema that
includes enough information to decide whether the component is applicable to
the current situation or not. Whilst it is important to let the user see some kind
of abstract about the component, the most important feature of the component
representation is to make it possible to query the repository with different
search criteria. No matter how intelligent the search-matching algorithm, it will
be very difficult to achieve good search and reuse performance if components
are indexed and represented poorly. According to Prieto-Diaz (1991, p. 92), a
good search representation for a collection of reusable components should meet

the following criteria:

e It must accommodate continually expanding collections;

e It must support finding components that are similar, not just exact
matches;

e It must support finding functionally similar components across different
domains;

e It must be precise and have high descriptive power;
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e It must be easy to maintain, that is, add, delete and update the class
structure; and

o It must be amenable to automation.

Existing approaches to component retrieval cover a wide variety of search
representations, and how these requirements are met vary widely. The more of
these requirements are fulfilled, the more complex and costly the representation
is. However, according to Mili, Mili and Mili (1995) there is a practical limit in
how complex queries can be for component reuse and search time to be
worthwhile. Additionally, overly complex search representations are wasteful
unless developers using reusable components are provided with computer

assistance in formulating equally complex queries.

3.1.1 Structure of a Search representation

Using the three-level hierarchy proposed by Frakes and Poole (1994), the search
representation can be divided to the three following levels. We have changed
some of the names to better fit our needs and also to avoid confusion with the
other concepts in our research domain. We have also adapted this hierarchy to

our research. These modifications are noted.

e Search presentation is the interface between the user and the search
method. Search presentation is not the user interface of the system but
rather a way to define how the user sees the system and how he interacts
with it. Some examples of search presentations are: free text search,
keyword search, faceted search and visual query in the form of tree or
other hierarchical structure. In this study our objective is to solve what
search representations are the most efficient in the case of component

search. This must also take into account the psychological dimensions of
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the search such as different ways the user approaches different search

tasks.

Search encoding specifies the logical model of the search at a high level.
Certain encoding methods are more suitable to some search
presentations, but presentation should still be independent of the search
method. Instead, encoding method is dependent of the underlying
metameta model, in this case GOPRR. Search encoding is coupled with a
retrieval model, which specifies how the components are matched to the
query. Because the retrieval model itself is not part of the search
representation hierarchy, different retrieval models are discussed in
Chapter 5. Some examples of different retrieval models are Boolean
retrieval, fuzzy retrieval and vector retrieval. A carefully chosen retrieval
model may also affect the efficiency of the search and what kinds of
query possibilities are available. For example, some retrieval models
such as vector model support partial matches, some do not. Frakes and
Gandel (1989) call this level the representation level, which is quite
confusing because all three levels are parts of the search representation.
Therefore, we have adopted the term search encoding from Mili, Mili
and Mili (1999), which is used in similar context in their work. Frakes
and Poole (1994) take a less activity-based approach to this hierarchy
level, as they are more interested in the structure of data than how the
query is executed. However, when discussing component search it is
necessary to discuss also the retrieval process itself. In addition, the
retrieval process also automatically involves the structure of the data

model being queried.

Implementation is the actual data that the representation abstracts. It is
typically stored in a database or repository, if the data structures are
complex. Implementation must be constructed to fit the meta-metamodel

the data is based on. This research concentrates on different search
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representations and retrieval models, though in the constructive part of
the, research also the knowledge and study of object databases and

implementation level of the representation is necessary.

In the three-level representation hierarchy a lower level constrains the levels
above it. For example, a standard implementation of a Boolean retrieval model
would not support a hypertext search representation (Frakes & Gandel, 1989).
We will try to provide a solution for each of these encoding areas, using the top-
down approach. That is, we will approach the problem from the user’s point of
view, and first solve the search representation problems. Then we will move to
the lower levels of the hierarchy (retrieval model, implementation). This is
necessary due to the nature of encoding hierarchy — we do not want to
constrain higher levels due to implementation decisions. Moreover, we want to

choose the lower levels that support higher levels, not vice versa.

3.1.2 Search Representation Classification

Search representation and indexing methods are classified on a scale, the
endpoints of which are controlled and uncontrolled vocabulary. This scale
refers to the degree of freedom the indexer has in representing an object with
indexing terms or other search elements. (Frakes et al., 1989) Naturally, the
other side of the coin is that the same degree of freedom constrains the queries
that can be conducted in the library. In an uncontrolled vocabulary, the indexer
has complete freedom in representing objects, which may result in more
accurate descriptions of components. On the other hand, accurate queries can
be harder to create if the query system does not control the forming of queries.
Next we will discuss different representation methods with both controlled and

uncontrolled vocabulary.
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Indexing languages that are used for defining search representations consist of
three parts. The first part is the terms — or the elements — that make up the
language. The second part is the syntax of the indexing language — rules for
combining elements and using them together. The third part is the logical
relationship between the terms or the elements — practically speaking, the
semantics of the language. Each part determines some aspects of the behaviour
of the indexing; for example, the first part can provide very tight control over
the elements that can be used in representing components, whereas the second
part can still allow flexible and complex synthesizing of these elements. (Frakes

& Gandel, 1989)

Because information retrieval methods are so diverse, we have chosen to
evaluate only the methods that are found the most promising in former studies.
We have excluded some interesting technologies such as artificial intelligence
(AI) and knowledge based technologies and hypertext, because no sufficient
former research has been conducted in these areas and they have been used
only experimentally. Therefore, we will discuss mostly representation, indexing
and classification methods derived from traditional library and information

science methods.

3.2 Representations with Controlled Vocabulary

As the title says, search representations using controlled vocabulary restrict the
namespace the users can use to define the queries executed in a repository.
They force the components” developers and users to limit their presentation to
predefined index terms. Controlled vocabularies aim at consistency and
simplicity of the representation but at the same time sacrifice much of the
freedom and versatility. There are two commonly used methods to derive these

index terms:
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e Terms are derived from the examination of the subject area. An index
term is used only if it occurs frequently enough in the literature of the
subject area or domain — this is called literary warrant; or

e Index terms are included if it is of interest to the user population - this
method for deriving terms is known as user warrant. Usually, a

combination of these two methods is used. (Frakes & Gandel, 1989)

Controlled vocabularies exist in two main forms: classification-based systems
and keyword-based systems. These two forms are relatively similar to each
other, because both systems are based on assigning classes or terms to objects.
Differences between these two systems come out mostly in the way the
components are arranged. Different systems and some of their applications are

described next.

3.2.1 Classification-based Systems

Classification-based systems are based on classification schema, which is
created for classification and search purposes. (Zhang, 2000) As noted before,
“classification is the process of grouping items or objects with a shared
characteristic or attribute into categories or classes. “(Frakes & Gandel, 1989)
This classification should concern, besides relationships between things, also
relationships between classes of things. Library and information sciences know

two general classification systems: enumerated and faceted.

Enumerated classification is a commonly used classification method, which is
based on placing information in categories usually structured in a hierarchy of
subcategories — eventually forming a tree-structured hierarchy. The greatest

advantage of enumerated classification is the ability to iteratively divide an
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information space into smaller pieces and therefore reducing the amount of
information that needs to be examined. (Henninger, 1997) Modifying and
refining the search is also easy, because the only thing the user has to do is to
move up or down the hierarchy tree. Enumerated classification is easy to use
and understand, and its similarity to the UNIX file system makes it easy to use
for most users familiar with UNIX. (Frakes & Pole, 1994) It is also used in most
existing component repositories, in Select Component Manager for example
(Héanninen et al. 2000). The disadvantages of enumerated classification include
its inherent inflexibility and problems with understanding large hierarchies. It
is very hard to change an enumerated «classification system without
restructuring the entire hierarchy, so the structure of the hierarchy is quite
fixed. Enumerated classification also requires thorough understanding of the
structure and hierarchies for users to be able to effectively retrieve information.

(Henninger, 1997) Enumerated classification is also known as taxonomy.

Faceted classification evolved to overcome the rigidity of an enumerated
classification system. It avoids the enumeration of component definitions by
defining attribute categories (or facets) that can be instantiated with different
terms. A faceted scheme is constructed by analysing a subject area and breaking
it down into elemental classes or facets. Components are then described by
synthesizing these basic facets. (Frakes & Gandel, 1989) Then, each of these
classes is assigned a limited number of consistent terms whose meaning is clear
to both the user and the librarian. Components are searched for by specifying a
term for each of the facets or possibly to some of them. (Prieto-Didz, 1991) Table
2 presents an example of simplified possible faceted schema for different
methods of Java classes from the java.util library of Sun Microsystem’s Java
Software Developer’s Kit 2. This example is a slightly modified version of the
example given by Prieto-Didz (1991). Faceted classification is somewhat similar
to the attribute-value structures used in a number of frame-based retrieval
techniques, except that faceted techniques use a fixed number of attributes

(facets) per domain. (Henninger 1997)
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Table 2: Java methods in faceted classification

Domain: Java methods

By purpose By action By data structure | By return value
collection add stack String
timer remove list int
date manipulation sort set Object
string contains other Iterator
manipulation

map null

A major advantage of a faceted system is the improved flexibility compared to
enumerated schemes, because individual facets can be changed and redesigned
without an impact on other facets. (Henninger, 1997) Therefore, all concepts do
not have to be predetermined at the time of creating the classification system
(Frakes & Gandel 1989). Some problems still remain. While describing
components by selecting terms for facets is easy, it may be difficult for users
searching components to accurately describe the information they are looking
for. Users must also be well aware of the significance of each facet and the
terms that are used in the facets. (Henninger, 1997) Naturally, there will quite
often occur situations, in which current faceted schema is not sufficient to
describe the functionalities of the components. In these situations there has to
be some organization wide standard for extending the faceted schema. If every
developer may edit the faceted schema unilaterally the faceted schema will
soon become cluttered and its usability will deteriorate radically. (Prieto-Diaz,
1991) Therefore, organizations need distinct rules for maintaining the faceted

classification schema.
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Of these two classification-based systems, enumerated classification seems to be
more widely used. For example, ACM’s Computing Reviews Classification System
is based on enumerated classification. However, most studies (e.g. Zhang
(2001), Henninger (1997), Frakes and Gandel (1990) along with Prieto-Diaz
(1991) who “invented” the faceted classification) suggest that faceted
classification would lead to better reuse performance and easier maintenance
because of better or even superior flexibility compared to enumerated systems.
It seems that while an enumerated approach may be sufficient for document
retrieval, the more complex component retrieval probably would benefit from

the flexibility of faceted classification.

3.2.2 Keyword-based Systems

Keyword systems are somewhat similar to classification-based systems,
especially faceted classification. They also classify items in the sense that they
group related items under individual terms or phrases. Therefore, each
individual term could be thought of as a class. The difference between
classification-based systems and keyword-based systems is that in keyword
systems, components or objects are arranged alphabetically rather than by
classes or facets. Keyword search would require the information providers to
provide each piece of information in the repository with appropriate keywords,
which is a manual indexing process requiring skilful personnel. (Zhang, 2000)
Typically, each object can be assigned with as many keywords as necessary,

although systems can also place restrictions on the number of keywords.

Keyword systems exist in several different variations. In Frakes and Gandel’s
(1989) representation classification, keyword-based systems are divided into

three major forms:
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Subject Headings is the simplest form of keyword systems. Subject
headings are mere lists containing acceptable natural language terms and
phrases that can be used in describing components. Subject headings
offer hardly any structure because the terms are arranged alphabetically.
The advantage of subject headings over classed systems is that they are
much easier to create and modify. (Henninger, 1997) The subject domain
does not have to be completely analysed before building lists of terms,
and terms can be added afterwards without a need to modify existing
terms.

Descriptors are closely related to subject headings. Their vocabulary of
terms is also limited, and they do not offer any specific structure besides
alphabetic listing. The difference between subject headings and
descriptors is that whereas subject headings are typically phrases or
complete sentences, descriptors are shorter, usually single words.
Therefore, descriptors are referred in many references as keywords.
However, also subject heading —based systems are sometimes referred to
as keyword systems, and Frakes and Gandel (1989) use the term
descriptor to distinguish these two controlled keyword systems.
Thesaurus is a special form of controlled keyword list. According to
Frakes and Gandel (1989), “Thesaurus is a mechanism for describing the
variety of relationships between terms within an alphabetical listing.” It
provides a classed listing within a framework of an alphabetical
controlled keyword list. Thesaurus is found to be a useful representation
method when dealing with fuzzy retrieval methods because it allows
semantic relationships between index words and therefore it can find
indirect matches more easily than other representation methods
(Damiani & Fungini, 1995). Thesaurus is closely related to the faceted
classification system in that it usually begins with a facet analysis of a
subject area. The difference from a faceted classification is that in a

thesaurus the facets are classified in semantically similar groups.
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3.3 Search Representations with Uncontrolled Vocabulary

The basic nature of an uncontrolled vocabulary is straightforward: it does not
place any restrictions on what terms can be used to describe an item.
Representation consists of the full textual description, which is indexed using a
“stop list” to remove frequently occurring words such as “and” and “the”. The
remaining text is used as an index to the document. (Henninger, 1997) Hence,
the term “free text” or “full text” is usually used for an uncontrolled
vocabulary. Retrieval from these kinds of system is usually done with simple
Boolean search or vector search where weight values can be derived from the
occurring frequencies of the terms. Therefore, relevant keywords are derived
from their statistical and positional properties, thus resulting in what is called

automatic indexing. (Prieto-Diaz, 1991)

The greatest advantage of free text search is the minimal effort required in
indexing: since the terms are often drawn directly from the text of the indexed
objects, the indexing can be highly automated. (Frakes & Gandel, 1989) This
also guarantees that an object is described accurately in a representation
because all documentation contained in the object is analysed in the indexing
process. The downside of uncontrolled vocabulary is that while it is relatively
effective for text-intensive documents such as books and articles, software
products typically have characteristics that make it a less attractive approach.
(Prieto-Diaz, 1991) Some examples of these characteristics are highly
inconsistent documenting styles and motivations of component developers and
the heterogeneity of terminology used in the many domains of information

technology.
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3.4 Other Representation Methods

Although controlled and uncontrolled vocabularies are the main focus of this
thesis, we also take a look at some other representation methods that are less
used in practice, or are too complex to be thoroughly covered in this study. The
most important and promising ones are knowledge-based methods and

hypertext. Next, we give a short description of them.

3.41 Knowledge-based Methods

Knowledge-based methods exist in many forms, and many of them have been
tried for representing reusable components. Their greatest advantage is that the
representation offers a powerful way of expressing the relationships between
system components, which is probably extremely important for helping a user
to understand the function of components. The problem with knowledge-based
methods is that the knowledge needed for knowledge-based methods may be
very expensive and time-consuming to acquire. This has proven to be true in
many other fields of artificial intelligence. (Frakes & Gandel, 1989) Some
knowledge-based methods for reuse are semantic nets, rules and frames. We

will not further discuss them in this thesis.

3.4.2 Hypertext

The basic idea underlying hypertext is decades old, but it has not become
popular until the last few years when, due to the emergence of the World Wide

Web and the hypertext techniques it utilizes, it has gained wider acceptance.



41

Hypertext-based search allows the user to move among hypertext documents
through links. The basic idea of hypertext is to organize information with nodes
and links instead of typical linear structure. Nodes are associated with
information blocks, and links represent different kinds of relationship between
the source node and target nodes. (Zhang, 2000) This approach allows
abandoning the conventional linear browsing of the document, and makes a
free progression between documents and their contents possible. Hypertext is a
complex subject, and discussing it thoroughly is out of the scope of this study.
However, some applications of hypertext in the representation of the
components are discussed in Chapter 5, although our representation solution is

mostly based on the more traditional representation methods.

3.5 Representations in Current CASE-tools

We have carried out an empirical study on component functionalities of
different commercial CASE tools (Héanninen et al, 2000). Five commonly used
tools were chosen, based on their marketing promises and component support.
These tools were HOW, Rational Rose, Select Component Manager, COOL:Spex
and MetaEdit+. Zhang and Lyytinen (2000) have suggested a component
functionality framework consisting of five component functionalities: abstract,
retrieval, specialization, integration and maintenance. This framework was
used as a basis for the study. From retrieval, the functionality in which we are
particularly interested in this study, five features were chosen for further
evaluation. Frakes and Poole (1994) recommend, based on an empirical study,
that at least keyword, enumerated and faceted search should be included in a
search tool if possible. Thus, these search representations were selected as the
key features evaluated in the tools. Also hypertext was defined as a key feature.

Results of the survey are shown in Table 3:
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Table 3: Search representations in commercial CASE tools (Hanninen et al, 2000)

HOW Rational Select CM | COOL:Spex | MetaEdit+
Rose '
Keyword - - X - -
Enumerated - - - - -
Faceted - - - - -
Hypertext - - - - -

As the table shows, commercial CASE tools typically lack most of the important
search features. Commonly, only uncontrolled vocabulary, a.k.a. free text
search, is supported. Only Select Component Manager supports keyword
representation yet it is very simple to implement and easy to use. This is
probably due the fact that Select Component Manager is not a CASE tool in a
real sense, but rather an extension that eases the management of components. It
is also interesting that Rational Software’s Rational Rose, which claims to be a
leading CASE tool, does not support any of the key features chosen for the
evaluation. According to this survey, it is quite clear that search functionalities
of commercial CASE tools are far from decent, and even inadequate when it

comes to managing large amounts of components.

It is notable that some of these tools” manufacturers offer additional programs
for component management. Rational Rose, for example, comes with separate
application called ClearCase, which allows distribution of models and ease the
management of the change process (OMG, 1999). However, this tool cannot
necessarily be called a component tool because it does not distinguish between

models and model components — although its marketing may claim otherwise.

3.6 Different Search Representations in Component Search
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No former research on representation methods of components has been
available for this study. Instead, some studies on representing reusable software
exist, and we will rely on some of their results. These studies will provide us
with some guidelines on how the library of reusable objects should be
implemented. However, because of several significant traits of the metaCASE
environment, these guidelines cannot be applied without several modifications.
These modifications are discussed in Chapter 5, in which the results are

conclusively summed and applied to a metaCASE environment.

3.6.1 Comparison Between Search Representations

In a study conducted by Frakes & Poole (1994), a repository of UNIX tools was
created, and it was represented with four distinct representation methods:
attribute-value (which is a slight variation of faceted classification), enumerated
classification, faceted classification and keyword classification. Some of the
results collected from the study were precision, recall, overlap and search time.
Precision is the number of relevant items retrieved over the total number of
items retrieved, and recall is the number of relevant items retrieved over the
number of relevant items in the repository. Overlap measures the fact that some
methods may retrieve different documents compared to others, and it is defined

as follows:

X=1mlnm2l/Imlum2l

Where m1 is the set of documents retrieved by one method and m?2 is the set of
documents retrieved by other method. Therefore, overlap is the ratio of number
of relevant documents in the intersection of two methods divided by the

number of relevant methods in their union.
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Another important aspect evaluated in the study was how the users
experienced the different methods used. This was evaluated by asking subjects
to rank and rate each representation method they used. Rating was done on 1-7
scale (7 being the best). Besides that, users were asked to rate representation
methods based on how they felt the methods helped in understanding

components.

In the relatively thorough empirical study, several conclusions were made:

e When measured by recall and precision, no significant differences
between the four representation methods were found. No method
performed better than moderately.

e Although methods were not significantly different measured by
effectiveness, they found different documents. Average pair-wise
overlaps for the methods ranged from 72% to 85%.

¢ Users had no clear preference for a representation method. No method
was regarded the best, or even as adequate, by all subjects.

¢ Results of the study were consistent with the findings from document
retrieval experiments. This indicates that findings of document
retrieval studies may well be applicable also in regard to reuse

representation.

3.6.2 Guidelines for Choosing a Search Representation Method

Based on these conclusions and other aspects noted in the study, Frakes and
Poole (1994) offer several guidelines for building reuse libraries. These

guidelines will be considered when implementing the search tool prototype,
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because they are based on an empirical study rather than mere theoretical

discussion.

e Collections of reusable software should be represented in as many ways
as possible, because none of the methods is sufficient for finding all the
components for a given search. Having more representations will
increase the probability of finding relevant items. It is also notable that
individual users prefer different methods.

e If the primary factor when choosing the representation method is the
effectiveness and cost benefit, the free keyword search is probably the
best alternative. It is the least expensive, because the indexing task can be
automated and therefore does not require human indexers.

e If the primary factor is search time, enumerated representation is the best
alternative.

e None of the methods adequately support the understanding of the
components. It is possible that representations based on more esoteric
approaches such as hypertext or knowledge-based methods will be

better in this area, but this subject require more research.

As we can see, nothing really surprising or radical emerged in this empirical
study. Rather, it seems that representation method selection alone does not
dictate the usability of a tool very much. Much more important is the content of
the information represented. According to Frakes and Poole (1994), these
guidelines have been used in various practical situations and they have proven
useful when building a library of reusable assets. Therefore, especially due to a
lack of more thorough studies, we can assume that these guidelines are relevant
when considering component search. How these guidelines should be applied
to component search in a metaCASE environment will be discussed in Chapter
5, in which we will thoroughly discuss the applicability of different search
representations and special traits of the GOPRR model.
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3.7 Summary

In this section we discussed different information representation methods. We
explained the reasons for using search representations and presented the basic
requirements for an adequate search representation proposed by Frakes and
Gandel (1989). We divided different search representations in two main groups,
controlled and uncontrolled vocabularies, and discussed the most used and
field-tested representation methods from both of these groups. We shortly
discussed what component representation capabilities are implemented in
different commercial CASE tools. It seems that most current CASE tools
provide very weak support for query needs, although some of the
manufacturers provide separate tools for component management. Finally, we
discussed a recent study where different search representations were compared
empirically and presented some basic guidelines that were proposed based on

the results of that study.
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4 Component Retrieval Models

Classic models of information retrieval are based on the idea that every
document can be presented with an adequate number of keywords describing
its contents. These keywords are typically called index terms. Index terms are
typically substantives, and they are derived from the representation method
used. So, the search method is somewhat independent of the representation:
any of the traditional representation methods can be expressed with a group of
keywords. Index terms are rarely equal in the way they represent the contents
of a document. Therefore, they can be assigned with the weight value that
expresses how important the index term is to the representation of the
document. (Baeza-Yates et. al, 1999) This feature requires support on the

representation level.

According to Baeza-Yates and Ribeiro-Neto (1999), index terms form a logical
view of the document whether they are generated automatically or manually,
or whether they are derived from controlled or uncontrolled vocabulary. When
this outlook is applied to the concept of the component, we can say that the
logical view of a component consists of information in the component’s
interface and internal implementation because they represent the necessary
facets of the component, forming an abstraction comparable to one created with

index terms. (Hanninen & Aijinen, 2000)

According to Mili, Mili & Mili (1995), the purpose of a component retrieval
method is to match an encoded description of a component’s requirements
against encoded descriptions (the representation) of the components in the
library. They have also presented a model to formalize the retrieval problem.
This formal model divides the problem space into three subspaces: actual

problem space, problem space understood by the developer and query space.
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Query space consists of the need the developer perceives translated into a query

that component retrieval system can understand.

4.1 Ranking the Results

When retrieving from large software libraries, the query may return hundreds
or even thousands of matches, especially if the defined query is broad. In these
situations it is exhausting to inspect all of the retrieved objects, and sometimes
defining a narrower query may be difficult. Here the retrieval model plays
another significant role: the results must be ranked based on the estimated
relevance to the user. Typically, documents or objects considered more relevant
to the user are shown at the top of the results list. Ranking decisions are usually
dependent on the ranking algorithm that “attempts to establish a simple

ordering of the documents retrieved.” (Baeza-Yates & Ribeiro-Neto, 1999)

A ranking algorithm is founded on some basic premises of document relevance.
Distinct sets of premises constitute a starting point for distinct information
retrieval models. The adopted retrieval model determines what is predicted
relevant and what is not. Different retrieval models may yield radically
different ranking results. Therefore, the retrieval model should be chosen
carefully. For example, no ranking of documents is possible for a Boolean
retrieval model, because it allows only binary weights, and therefore each object
is either relevant or irrelevant to the query. The more advanced models such as
a vector model, an extended Boolean model or a probabilistic model allow
partial matches and therefore also ranking of the results, but the indexing task
in these retrieval models is more complex. With traditional documents the
weight values can be based on relatively simple metrics like word occurrences.
However, when indexing software components, either we have to come up

with new automated methods to set weight values, or the indexing task must be
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conducted manually by component developers. This is probably acceptable

because components are added to the repository rather infrequently.

4.2 Common Retrieval Models

Next, we will discuss four most essential information retrieval models
according to Baeza-Yates and Ribeiro-Neto (1999). These include Boolean
search, extended Boolean search, vector search, probabilistic search and fuzzy
search models. Because these retrieval models are developed particularly for
full text search, we will use the term document rather than component. We will
discuss these search methods and their applicability to component search in

Section 4.3. and their applicability to a metaCASE environment in Chapter 5.

The following is by no means a complete list of the retrieval models in use, and
for example the coverage of Al-based retrieval models is intentionally left quite
brief. Rather, we have concentrated on the models that have proven their

applicability to complex retrieval tasks in the field.

4.2.1 Boolean Model

The Boolean model is based on set theory and Boolean algebra, and it is the
simplest of the common search methods. A Boolean model does not take
account the different weight values but every document is either relevant or not
relevant. In the Boolean model, the query is formed by combining index terms
and using connectivities AND, OR and NOT. The result of the search is the list
of the documents that completely match the query. (Baeza-Yates et. al, 1999)
The advantage of this model is the ease of use, formality and the fact that no

additional information is needed: queries can be formed on the values of facets,
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keywords or free text, whatever the search representation provides. The
disadvantage of the model is that query often results in too many or too few
documents due to the binary nature of the model. (Baeza-Yates et. al, 1999)
Ranking the results is not possible for the same reason, which is probably the

greatest problem with Boolean retrieval model in large libraries.

The Boolean retrieval model is the most common retrieval model in numerous
legacy systems (most library systems, for example), and although more
advanced models such as vector retrieval model are becoming increasingly
popular, the Boolean model is somewhat popular due to ease of
implementation and convenience of use. For example, Wildemuth, Friedman
and Downs (1998) have studied the differences between Boolean search and the
much more advanced hypertext, focusing mostly on efficiency and user
satisfaction. According to their study, there were no statistical differences
between the search methods, but users found the Boolean search more
convenient to use. The Boolean retrieval model seems the simplest to
implement and relatively efficient when the users are well aware of the contents

of the repository.

4.2.2 Vector Model

Vector retrieval was developed to overcome the limitations of the Boolean
model, whose binary values are too strict for the needs of information retrieval.
Instead of using binary values with index terms, the vector model allows also
partial matches to be included in the search results. This can be achieved by
assigning the index terms with non-binary values. Search results are arranged
in descending order based on the degree of similarity, which can be defined as
correlation between vectors dj (document) and Q (query) (see Figure 1). The

degree of similarity is the cosine of the angle of these two vectors. Because
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arranging based on the degree of similarity typically corresponds better to the
user’s needs than Boolean results, it is proper to say that vector search gives

more accurate search results. (Baeza-Yates & Ribeiro-Neto 1999, p. 27-30)

o
Q
Figure 1: Degree of similarity between document dj and query Q

The elemental question in the vector model is how should we define the weight
value of each term. In vector model queries are handled like documents, which
makes matching them to each other easy. Let us assume that we have two sets
of index terms, another representing the document (dj) and another
representing the query (Q). First we must recognize the index terms that best
describe the set Q. Then we must recognize the index terms that distinguish set
Q from set dj. The former case is simple: the index terms can be selected
explicitly (controlled vocabularies typically work this way) or implicitly by
calculating occurrences of term k in document d. This incidence is usually
referred to as a tf-factor (term frequency factor). In the latter case, we can use
the inversion of tf-factor or idf-factor (inverse document frequency factor). The
idf-factor is necessary, because index terms occurring in many different
documents are not very good in distinguishing relevant documents from
irrelevant ones. To put it simply, the vector model works by transforming
documents (including query) into a vector space and comparing them to each

other. (Baeza-Yates and Ribeiro-Neto 1999, p. 27-30)

According to Baeza-Yates and Ribeiro-Neto (1999, p. 30), a vector search model

has the following advantages:
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1. A vector model offers improved efficiency over a Boolean model,
because the index terms may have weight values rather than being just
binary.

2. Partial matches allow also documents that do not exactly match the
query to be included in the result list.

3. Retrieved documents can be arranged by the similarity with the query.

The downside of the vector model (besides extra effort required when defining
the weight values) is the fact that index terms do not have any relations with
each other. However, this does not necessarily affect the search results and
because of its simplicity, the vector model is one of the most popular

information retrieval models. (Baeza-Yates and Ribeiro-Neto 1999, p.30)

42.3 Extended Boolean Model

The greatest disadvantage of the traditional Boolean model is the lack of term
weighting and therefore also the lack of any kind of ranking within the answer
set. This may often result in answer sets that are either too large or too small.
Because of these problems, modern information systems are moving towards
more advanced retrieval models, usually some kind of vector retrieval model.
However, to accommodate the Boolean model to the requirements of modern
information retrieval, various extensions have been proposed. (Baeza-Yates and
Ribeiro-Neto 1999) One of the most promising is known as the extended Boolean
model, which was introduced by Salton, Fox and Wu (1983). It extends the
Boolean model with the functionality of partial matching and term weighting.
This strategy allows one to combine Boolean query formulation with features of

the vector model.
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The extended Boolean model is based on a critique of a basic assumption in
Boolean logic. For example, consider a conjunctive Boolean query q = kx A ky.
According to the traditional Boolean model a document, which contains either
term kx or the term ky is as irrelevant as another document, which contains
neither of them. This binary decision criteria works in a simple query with only
few query terms, but it frequently defies common sense. An analogous problem

occurs when one considers purely disjunctive queries.

The basic idea of the extended Boolean model is to represent documents as
vectors — similarly to the vector model. The model calculates the similarity of a
document to a given query as the normalized distance between the document
values and the query values in n-dimensioned space, where n is the number of
query terms. The query may be parameterised with a parameter that selects the
"order" of normalization. Let us assume this parameter is called p. A p value of
1 gives the average. A p value of 2 gives the Euclidean distance. Furthermore, a
p value of infinity gives the MIN or MAX value of the document. The p =
infinity model is equivalent to a strict "fuzzy Boolean retrieval". A p value of 1

corresponds to vector model retrieval. (Salton et. al, 1983)

4.2.4 Probabilistic Model

A probabilistic retrieval model assumes that every query defined by the user
has a corresponding set of relevant documents. This document set has a
corresponding ideal answer set. Query process can be seen as a process of
describing this ideal answer set as accurately as possible. Because the user
cannot be aware of all details of this ideal answer set, he or she must first
approximate and - ultimately - guess them. The first result list is created from
this first “guess”. After that, the user must select from this result list the

documents he or she considers relevant or irrelevant. Based on this answer, the
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system refines the search. This process continues until the user is content with
the result list, which is typically when it is as close to the ideal answer set as

possible. (Baeza-Yates et. al 1999, p. 30-31)

The problem with probabilistic search is how to make the first guess as good a
starting point as possible. Also, the model does not consider possible weight
values in cognisance. An advantage of the model is that documents can be
arranged based on the probability of relevance. (Baeza-Yates & Ribeiro-Neto

1999, p. 34)

The probabilistic model has many variations, among them the inference network
model and the belief network model. These models use Bayesian networks and are
based on the epistemological interpretation of probabilities. The queries are
modelled as networks, and techniques resembling the ones used in artificial
intelligence field are applied. A more thorough discussion of probabilistic
models is way out of the scope of this study, and since most of these models are
still in their experimental phase and not in commercial use, we can assume that

they are yet not a relevant alternative in the context of component retrieval.

4.2.5 Fuzzy Retrieval Model

It is commonly acknowledged that when retrieving complex objects the
retrieval will be more effective if the retrieval is based also on imprecise queries
(Damiani & Fugini, 1995). The basic idea underlying the fuzzy search model is
to classify objects in a way that borders between sets are fuzzy rather than exact
as in a Boolean search. Objects are classified by assigning each object a value
that represents its membership in the set. These values are real numbers
between [0,1], where 0 means that object is not a member of the set, and 1

means a full membership of the set. The values between 0 and 1 represent
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partial membership, and therefore the membership in the fuzzy search is
gradual. The three most common operations on fuzzy sets are complement,

union and intersection. (Baeza-Yates & Ribeiro-Neto, 1999, p. 35)

The fuzzy model can be applied to information search by building a synonym
dictionary (or thesaurus) from the keywords. This thesaurus contains
relationships between keywords, which are formed using a term-term
correlation matrix. This matrix makes it possible to calculate the correlations
between the document and fuzzy terms. Furthermore, the model enables the
calculation of a document’s membership in a group that the user has specified
with his query. In this way, also partial matches can be retrieved by the query

based on partial memberships. (Baeza-Yates & Ribeiro-Neto, 1999, p. 36-38)

Damiani and Fugini (1995) have proposed a concrete example of how the
thesaurus can be constructed automatically, and how it can be used to support
fuzzy component retrieval. Their study is especially relevant for us because the
scope of the study was primarily ranged to software components. The
thesaurus uses descriptors that are constructed from the code and its
accompanying documentation. Descriptors are stored in an object-oriented
repository, whose descriptors are classes with a class attribute part and an
additional keyword list. These keywords are weighted with fuzzy values to
“describe the behavioural properties of reusable components”. (Damiani &

Fungini, 1995)

The fuzzy model has not gained large popularity for information retrieval
purposes. Existing experiments are conducted on small sets of documents and
this makes it difficult to compare fuzzy search to other search methods. (Baeza-
Yates & Ribeiro-Neto, 1999, p. 38) In component search, the biggest advantage
of a fuzzy method is its ability to retrieve components that match the query

indirectly. However, fuzzy search is probably not a relevant search method
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until fuzzy search is further and more thoroughly experimented in information

retrieval. (Hénninen & Aijénen, 2000)

4.3 Retrieval Models in Component Retrieval

The component search functionalities of different commercial CASE tools were
evaluated in the empirical study by the Combo project (Hanninen et al, 2000).
Most tools provide marginal support for any search methods, and those that
did supported only Boolean retrieval. This works adequately with libraries
consisting of less than a thousand components, but for libraries with thousands
of components it is often too limited (Henninger, 1997). The reason for the
popularity of the Boolean model is undoubtedly its low need for technical
support and the possibility to automate the indexing process (Frakes & Poole,
1994). However, we think that it should be possible to assign also non-binary
weights to the facets of the components. Because the traditional Boolean model
does not allow non-binary weights it may not be the most appropriate model

for the complex queries needed in component search.

In component retrieval — as well as in any kind of information retrieval, we
usually want a close match and possibly might be willing to sacrifice precision
for recall. That is, we might be willing to get some false matches as long as we
do not miss any (or too many) true matches. In determining substitutability, we
do not need the substituting component to have exactly the same behaviour as
the substituted, only the same behaviour relative to the environment that
contains it. (Zaremski, 1997) For this reason, some way of using non-binary

values in component representation is necessary for efficient retrieval.

There are numerous techniques to assign non-binary values to the keywords of

text documents, among them are: a popular model by Salton and Buckley (1988)



57

and one by Damiani and Fungini (1995). These techniques typically count
occurrences of words in the text and use some kind of Feature Weighting
Function to calculate non-binary values (or weights) for keywords. Although
this technique is not perfect, it typically retrieves relevant documents with
adequate accuracy. The performance can be improved by using some form of

thesaurus.

In the case of components, using non-binary weights is not as straightforward
as with traditional documents containing only text and possibly some
information about the structure of the document. It is impossible to provide
universally acceptable guidelines to component representation weighting,
because different representations and retrieval models require different forms
of non-binary values. The simplest way to assign weights is to use component
documentation or its source code — if it is available — to derive the keywords
and their weights. In this case, we simply count the occurrences of words and
find the keywords and their respective weights by using some Feature
Weighting Function. This technique is similar to one used with traditional

document retrieval systems.

Although the technique described above is somewhat attractive because of its
simplicity, it is usually too restricted and simplified for complex queries. This is

due to the following reasons:

e The documentation of components typically varies too much in detail
and formality to be decent sources for an automatically constructed
keyword index.

e Keyword meanings are usually assigned by convention or by
programmer preference.

e Human intervention is typical when describing component functionality,

so at least the source code is too limited. (Prieto-Diaz, 1991, p. 92)
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¢ Components are usually represented in more complex ways than
keyword representation and commonly some form of more controlled
and sophisticated classification such as faceted representation is used.

(Henninger, 1997)

In enumerated, faceted or controlled keyword representations using some non-
binary retrieval model is harder to accomplish and even harder or impractical
to automate. We will discuss some rather limited possibilities to do this in

Chapter 5.

4.4 Summary

In this chapter we concentrated on component retrieval: the process of
matching the components in the repository to the matching algorithm with
given conditions. This process also involves another very significant feature: the
ranking of the query results. We discussed several retrieval models, which
allow different retrieval features and ranking possibilities and varying accuracy
and flexibility. Retrieval models discussed more thoroughly were traditional
Boolean model, vector model, fuzzy retrieval model, probabilistic model and
extended Boolean model. Of these models, Boolean model supports only binary
values for queries whereas other models support non-binary values to different
extents. Finally we discussed these retrieval models in the context of component
retrieval and difficulties encountered when applying non-binary values to the

facets of the components.
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5 Model Components in a MetaCASE Environment

Our previous discussion on search representations and retrieval models is
applicable to components in general, but from this point on we will narrow our
scope and will concentrate on model components in a metaCASE environment.
The purpose of this section is to introduce these concepts. We will propose a
definition of model component and address the differences between code
components and model components. We will also describe GOPRR meta-
metamodel, which serves as a basis for all models in MetaEdit+ metaCASE

environment.

Finally, we will introduce a component metamodel which will serve as a basis
for all component models in MetaEdit+ and which our search tool prototype
will be based on. The component model is mostly similar to the model
proposed by Zhang and Rossi (2000) and it is greatly based on the 3C model by
Tracz (1991) that is also introduced in this section. We have made some
modifications, that we find are necessary, to reflect the requirements of modern
component-based software development and, on the other hand, simplify the

model. These modifications are described and justified in this section.

51 Code Components vs. Model Components

Usually, term ‘component’ is used to refer to a binary-form or to a code
component (as defined in section 2.1.). The concept of code component is rather
straightforward. In this thesis, we defined a software component as a software
building block in binary form, which has a standard interface that other
components or software systems using it understand and which is designed

and built for reuse purposes exclusively. Although code components may ease
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and speed up the implementation phase very radically (in fact, in modern ISD
they are even crucial to the development process), their usability is limited only
to this phase. However, in modern software engineering, more and more
emphasis is placed on the earlier phases of software development process such
as analysis and design. One example of the concrete evidence towards this

tendency is the growing popularity of CASE tools (Laitkorpi & Jaaksi, 1999).

Binary code components can be used in conjunction with traditional software
design methods, but true component based development can be only achieved
if the components are also used in analysis and design phases. This brings in a
new question: because binary components cannot be utilized in earlier phases,
what kinds of components are used and how can they be presented in those
phases? Zhang and Rossi (2000) provide one solution to this problem, and we
will use it as a basis of model components in our study. Because these
components are not binary entities like code components but rather a design
artefact that represents the relevant aspects of the component in analysis and
design phases we will call them model components. These design artefacts are
typically presented in some kind of graphical notation. Whereas code
components are used in the implementation phase in the integrated software
development environment (IDE) such as Visual Basic or Delphi, the model
components are used in analysis and design phases in CASE tools such as

MetaEdit+ and Rational Rose.

Whereas code components already have some strong standards like CORBA,
COM and JavaBeans, model components lack widely accepted standards. It is
very common to every CASE tool to have its own view of model components —
a situation that can be compared to the one with code components ten years
ago. UML defines a component as a “physical, replaceable part of a system that
packages implementation and provides the realization of a set of interfaces.”
(OMG, 1999) This is also the definition used in a large portion of CASE tools.

However, this definition also allows using conventional function libraries and
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files as components, and we find this kind of component use too wide and
therefore weakening the concept of component. Component use and general
reuse in CASE tools are less studied issues, and as Frakes and Fox (1995) state,
CASE tools are not currently effective enough in promoting reuse. (Frakes &
Fox, 1995) However, it should be noted that a current trend in CASE tools
seems to be emphasizing reuse more than earlier, and some tools like Rational
Rose and COOL:Spex provide reuse support to some degree. Unfortunately, the
support for reuse seems to be inadequate in practical situations. (Hédnninen et.

al, 2000)

5.2 GOPRR Metameta Model

The purpose of a meta-metamodel in a metaCASE environment is to be a
generic and universal model that is able to define all aspects of methods
without the need to codify method knowledge into tools. This is because every
hard-coded piece of method knowledge will affect and ultimately reduce the
tool’s flexibility to define completely new, innovative methods. Therefore, the
goal of the meta-metamodel is to define a small set of conceptual elements that
can be combined to form any method. One candidate data model of
metamodelling (for the definition of metamodelling see to Chapter 1), called
GOPRR, is proposed by Smolander (1993). GOPRR stands for Graph, Object,
Property, Relationship, and Role, which constitute its five conceptual elements.
GOPRR model is an evolutionary extension to the OPRR (Smolander, 1991)
model, which in turn has evolved from the well-known ER (Entity-
Relationship) model. (Kelly et al, 1996) The conceptual elements of the GOPRR

meta-metamodel are:

e Object, which represents the independent design element. Objects are

typically represented by graphical symbols in graphs and they present
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different singular entities of the system. Objects may contain Graph
elements via techniques known as decompositions and explosions. These
graphs usually contain more accurate presentation of the object in a
lower level. A typical example of object element is a class type in UML.

e Property, which represents an attribute of object or other non-trivial
GOPRR element (that is, any other than Property itself) and is always
associated with some other element. It typically does not have any
graphical presentation other than simple textual form — and even this is
not mandatory. For example, class name or method name in UML.

e Relationship is an association between two objects. It is presented
typically with a line between objects, and it may have describing
properties. For example, inheritance between classes in UML is a
relationship.

e Role defines how an object participates in a relationship with another
object. Like relationships and objects, also roles may have properties. For
example, superclass in UML inheritance relationship.

e Graph is an aggregate concept, which contains other conceptual
elements — objects and their roles and relationships. Graphs can also
contain objects that contain other graphs, thus providing possibility to
create recursive structures. Some examples of graphs are UML class

diagrams or data flow diagrams in Yourdon’s SA/SD. (Kelly et. al, 1996)

Besides defining conceptual elements, the GOPRR meta-metamodel provides

the following additional features:

e Modelling a unit called project, which can contain several graphs using
different notation techniques and helps the organization and linking of
graphs and methods

¢ Constructs for generalization, specialization and polymorphisms.
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e Method integration constructs such a possibility to reuse all GOPRR
objects in several graphs. Changes made to one object reflect to other
graphs where the same object is used.

e Rules for checking model integrity. These rules can be set by defining
allowed bindings (combinations of roles, relationships and objects) for
different graph types. Properties may have rules or constraints in
addition to normal type restrictions.

e Multiple presentations for same object. These different presentations

include graph, table and matrix presentation.

(Kelly et. al, 1996)

When implementing the search tool for a GOPRR based repository, it is
necessary to take into account the flexibility of the data structures. Because
GOPRR allows users to define new metamodels, the search tool must be flexible

enough to be able to query these custom data structures.

5.3 Component Model for Analysis and Design Phases

One of the reasons why component-based design has not been widely adopted
is that most current CASE tools lack adequate support for components. Most
CASE developers have merely created a new symbol and called it ‘component’,
without further thinking of its characteristics and features. Many tools have also
adopted UML'’s definition for component, which is much too wide to be useful
in many reuse situations. For MetaEdit+, Zhang and Rossi (2000) have
proposed a component model based on the GOPRR data model, which formally
describes how a component should be composed in a CASE tool so that it can

be used in analysis and design phases. Next, we will discuss this component
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model and theoretical foundation it is based on — particularly the 3C model by

Tracz (1991).

5.3.1 3C Model

The model proposed by Zhang and Rossi is based on (Tracz, 1991), which

introduces a framework for software components known as the “3C model”.

This framework views a component as a compound of three different

perspectives: Concept, Content and Context. These three different perspectives

are described as follows:

Concept of the component represents the part of the component that is
visible to the user, that is a description and documentation of the
component.

Content is the implementation of the component, the part that describes
how the component does what it is supposed to do.

Context is the most abstract and quite rarely perceived part of the
component. It represents the environment of the component including
other components and resources the component requires to work
properly. This may also include descriptions of former uses of the
component. Tracz divides the context in three parts: conceptual context,
operational context and implementation context, each presenting

different view on the component’s environment.

The purpose of Tracz’s framework is to provide formal basis for different

aspects of the component. (Tracz, 1991)

Zhang (2000) has used this 3C model as a foundation for her earlier component

specification in a metaCASE environment. In her model the concept is realized
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by interface specification. As we have previously described, an interface
provides abstract information about the component’s functionality and usage.
As stated in Chapter 2, in our opinion it is an elementary part of a software
component. In Zhang’s model, the interface specification is defined as a faceted
schema, which uses predetermined facets and their values to specify a
component interface. The faceted schema with the values that are set to the
facets is typically the part that is queried the most when searching for a
component, and it should include most of the necessary information about the
component and its usage. The content, which may be a chunk of source code or
a binary executable in a code component, is typically provided as a diagram or
graph (or a set of graphs) presenting a component’s functionality in the CASE
environment. The context part of the component is a complementary part that
defines the contextual dependencies between components and, in Zhang's
(2000) words, “domain of applicability”. It “provides enriched contextual
information including definitional dependency, reuse dependency, usage
context and the implementation context”. Zhang (2000) suggests that the
context part could be realized using some kind of hypertext link that she calls

contextual link.

5.3.2 RAMSES Component Model in 3C Framework

The RAMSES-project (Lyytinen et al, 1999) has improved this component
model further. According to Karlsson (1996), a component must include diverse
information such as component classification, information on the functionalities
of the component, information on how to use the component etc. The original
component model does not offer a possibility to present this information
sufficiently, so the model is improved to better correspond with Karlsson’s
requirements. Another important aspect that applies to a metaCASE

environment is the requirement of flexibility. Because in a metaCASE
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environment, designers of the components may want to use their own faceted
schema instead of the one provided with the tool, the component model must

be flexible enough to allow creating new schemas. (Zhang, 2000)

Below is a graphical representation of the metaCASE component model
proposed by the RAMSES project (Figure 2)(Zhang & Rossi, 2000). This model
is more a metatype of components because it is not used “as-is”. Rather, users
of a metaCASE tool will define their own methods and instantiate more specific
component models from this metatype. The purpose of different elements and
how they correspond to the 3C model by Tracz (1991) is explained next. These
definitions are mostly from Zhang & Rossi (2000), although we disagree with

them on some details.
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Figure 2: Component model for metaCASE environment by RAMSES (in UML

class diagram notation)
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Content, the internal implementation of the component, is represented by
content part, which includes one or more design elements. These design
elements can be any GOPRR-elements or their combinations. Thus, the content
part can vary from a single class or property to a complex diagram. In the
RAMSES component model, as seen in Figure 2, the content part is represented
as a content part. This part does not contain the implementation itself but is
rather an aggregate of design elements. These design elements contain the actual
implementation, and they may be any GOPRR element. In practice, the content
part is implemented as a GOPRR object element that contains a graph element
as decomposition. The objects in this graph are the initial content parts, which
naturally may contain other graphs of various types. The reason for this
arrangement is the simplicity of graph element as a concept and that it allows

perfect compatibility with all models formed from GOPRR elements.

Concept, which consists of the interface part of the component, provides the list
of properties of the component, which represents the general information about
component status, functionality and constraints. In the RAMSES component
model, as presented in Figure 2, this part consists of the interface part, which in
turn is an aggregate of interface facets that are interface properties describing the
component’s services, attributes and other traits. In theory these interface facets
can be any GOPRR elements, but it may be necessary to make some restrictions
on how complex structures can be used. This is due to the reason that if the
interface becomes over-complicated its value to the user may deteriorate. The
whole purpose of the interface becomes questionable if it cannot abstract the
contents of the components in a relatively simple structure. Also, forming
sensible queries may become overly challenging if the interface part is overly
complex. We think that the interface should contain all the information that is
necessary to the user of the component. In the case of black-box reuse, the
interface should be the only part visible to the user and the content part should
be revealed only when the developer wants to modify the implementation of

the component.
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Context, describes how the component communicates with its environment. We
are particularly interested in conceptual context as defined by Tracz (1991). The
conceptual context concentrates on the relationships between the component
and other components. Our view of conceptual context is somewhat different
from Zhang’s (2000). Zhang sees the context more as a collection of the
situations and the project’s the component is used in. This involves also the
timeframe of the component’s usage and modifications made to it such as
different versions. Zhang proposes that some kind of hypertext technique could
be utilized in realizing these features. In our opinion, this kind of information
should be provided by component repository rather than contained in the
component itself. Naturally this presumes that the component repository keeps
track of component use and the relationships between them (e.g. version

control).

In our opinion, the context should describe how other components connect to
the component to make use of its services. Some components may also require
some services from other components to function completely, and the context
part also describes these requirements. In the RAMSES component model these
functionalities are implemented via the use of ports, as seen in Figure 2. These
ports provide connection points to the design elements (content) through the
component’s interface. Relationships between ports, interface and design
elements are illustrated in Figure 2. Ports exist in three different forms. The first
form can be thought as a GOPRR relationship, in which one end is left open and
the role is defined only on the other end - the end residing inside the
component. The second form provides only the role; otherwise it is similar to
the first form. The third form is an object that may participate in relationships
that are connected to the component. These ports are a part of the interface, but
because they have a special role in the component’s usage (whereas the concept
part is more a mere description of the component) they are not classified as a

part of the concept but rather a unique feature.
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The library component and reified component on the left side of Figure 2 illustrate
the process of extracting the component from the library. The instance of a
component in a software project is called reified component. The alternative
name for reified component could be instantiated component with the
difference that the reified component may be merely a reference to the
component in the database. In this situation, all the changes made to the
component will be reflected in each reference, whereas the instantiated
component is totally an independent entity. Components in the libraries are

called library components.

5.3.3 Modifications to the Component Model

We argue against this component model in certain details. First, in the original
model, it is possible to define additional facets that are “properties of
component not presented in content or interface” (Korhonen (ed.), 2000). In our
opinion, these kinds of facet are not necessary. All of the information we want
to show to the user of the component in black-box reuse should be contained in
the component’s interface. The reason for this is twofold: First, it is much clearer
to include all the necessary information in one part of the component than to
divide it into separate parts. Second, in white-box reuse all additional
information needed to describe the internal functionality can be presented with
the design elements because as GOPRR elements they are flexible enough to
contain any necessary information. Moreover, if we want to include some
emergent properties in the contents of the component we may add these
properties to the content part, that is the object that contains the design element
via decomposition. Thus, there is no need to separate additional data in the
facets. For these reasons, we will leave the facet part out of the component

model.
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Another modification we propose to this component model concerns the
relationship between a component and its interfaces. In the model proposed by
Zhang & Rossi (2000), each component has always one - and only one -
interface, which contains all necessary interface elements, documentation and
ports. However, we see that this practice may be too constraining in some
applications. We see no good reason to limit the number of interface to one;
instead, many situations may arise, in which allowing multiple interfaces on a
single component may come very handy. For example, some component
models like Microsoft’s Component Object Model (COM) and JavaBeans allow
multiple interfaces, and when modelling software based on one of these models
allowing only one interface would be a severely limiting factor. More generally
speaking, it is probable that interfaces of large components are divided in
several smaller interfaces because of the overwhelming amount of services
(operations) they provide. These interfaces may group the services in logical
sets, and users of the component may ask for one interface at a time. Also, for
example D’Souza (1999) and Laitkorpi and Jaaksi (1999) suggest that
components offering different interfaces for different tasks are one of the key
elements of component based software development. We think it is quite clear
that to be able to model situations emerging in software development using
current technologies, the possibility to use multiple interfaces whenever

necessary is required.

54 Summary

This section laid a theoretical foundation for research on metaCASE
environments using model components. We explained these concepts and
addressed their significance in information system development. We

introduced one meta-metamodel, GOPRR, which is used in the MetaEdit+
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metaCASE environment. This model consists of five basic concepts that are

building blocks for all the methods that can be formed with GOPRR.

The other important purpose of this section was to define a component model
for MetaEdit+. This model is mostly based on the work by Zhang and Rossi
(2000) whose view on components is partially based on Tracz’s theory on
megaprogramming (1991). The basic concept of the model is to construct
components by defining their three key areas: content, concept and context.
Each of these areas provide a different perspective on the component. We
described how these perspectives are reflected in the actual component model
by defining corresponding parts in the model. Mostly we agreed with Zhang
and Rossi, but we have refined some details and modified some parts to better

reflect the practices of modern component based software development.
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6 Component Search in a MetaCASE Environment

This is a conclusive chapter based on the four previous ones. Here we will sum
up previous conclusions and results, and present a model for the search tool in
the metaCASE environment. Concepts discussed in this chapter are mostly
based on the GOPRR meta-metamodel (Smolander, 1991) introduced in the
previous chapter. The reason for this is that GOPRR is the foundation of
MetaEdit+ metaCASE environment’s object-oriented repository, basis for all
objects that may exist in this repository, and serves as a basis for our component
model also introduced in the previous chapter. We try to address special
requirements stemming from the GOPRR based object-oriented repository. The
final goal is to propose a model for component search, which would be flexible
enough to support different component models customized by users, but which
would also provide an adequately robust search system for sufficiently exact
search results. This is difficult, because these two requirements are somewhat
contradictory: When we make the search tool more general and customisable,
we must sacrifice part of the accuracy because the queries must be presented at
a more general level. The other challenge emerges from the nature of GOPRR
and object-oriented databases in general. Although there are some query
languages for object-oriented databases such as OQL (Object Query Language),
many object-oriented databases do not utilize these languages and the only way

to implement queries is with a lower-level programming language.

The model for search and representation, which we will propose in this chapter
is based on the primitives and tools of MetaEdit+ metaCASE environment
implemented in Smalltalk language, thus allowing the same flexibility that the
GOPRR metameta model allows in other design solutions. Also, this model can

be in large part implemented on the top of the existing structures of MetaEdit+
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(particularly the dialog system) so the additional programming required can be
kept to a minimum. This will also make the maintenance and later

modifications easier.

6.1 Characteristics of Search Representations in a MetaCASE

Environment

A metaCASE environment such as MetaEdit+ involves several unique
challenges in representing components. Because users of a metaCASE
environment can create their own methods and respective component models
via method engineering and metamodelling, we should not restrict the ways
users can represent their components. Therefore, in principle a metaCASE
environment should include at least fundamental support for as many
representation methods as possible to be able to satisfy the needs of different
users in different domains. However, implementing all possible representation
methods may be an overwhelming task, and in some repositories far too costly.
For example, it would be quite unwise to spend hundreds of programming
hours to implement some exotic artificial intelligence -based representation
method, when its practical benefits may be very few. It is wiser to offer users a
basic set of well-implemented and well-tested representation methods that can

respond to most representation needs. (Frakes & Poole, 1994)

Another special trait of the metaCASE environment is the different “sizes” of
the components. The attribute representing the variety of component size is
called granularity level. The smallest components are atomic units such as class,
inheritance or property on the meta level and instances of these on the instance
level. Some components are aggregates, which form larger structures tying
smaller entities together semantically. These kinds of structures are graphs such

as class diagrams or data flow diagrams. MetaEdit+ also allows graphs to
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contain other graphs or sub-graphs via explosion or decomposition.
Furthermore, there are larger components that form collections of several
(meta)models to represent a complete methodology or an information system
development project. (Zhang, 2000) The term granularity is used to describe the
“size” of a component. MetaEdit+ divides components into three different
granularity levels: the project level, graph level and unit level. These three
levels correspond to different kinds of components described above, the project
level being the most coarse-grained and the unit level the most fine-grained
one. (Zhang & Lyytinen, 2000) Naturally, when using graphs or even larger
entities as components the concept of interface becomes somewhat faltering.
The solution we will propose for this is to encapsulate a graph into so called
component object, which includes necessary interface facets for the component.
Also parts of the graph may be used in the interface. We will discuss this

approach in more detail later in this chapter.

6.1.1 Representing GOPRR Data Model

MetaEdit+’s data model, GOPRR, restricts its requirements for the
representation methods. In GOPRR, all objects are formed from five basic
elements, and therefore our representation method only needs to be able to
represent these elements. Things are complicated by the fact that arbitrarily
complex recursive data structures can be created from these five elements. The
simplest example of a complex data structure could be something like two
classes - with some properties such as class name and attributes - that are
connected to each other with a relationship and roles. More complex structures
occur when objects in higher-level graphs are represented more accurately in
lower-level graphs. These hierarchical structures are formed in MetaEdit+ by
using techniques of explosion and decomposition. Theoretically, these

structures - as well as their properties - can be recursive, which of course makes
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the query task extremely complicated. MetaEdit+ also supports project-
granularity components that can contain many kinds of graphs even using
different modelling techniques - for example, SA/SD data flow diagrams and

UML class diagrams may exist in the same project.

The final, and very focal trait derives from the fact that in a metaCASE
environment the methods and their data types - including components — are
fully customisable, within the constraints provided by the GOPRR model. We
have introduced a strict yet flexible component model in Chapter 5, and our
representation must adapt to the constraints and limitations it creates. On the
other hand, the representation method should be flexible enough to provide
sufficiently accurate search results in all different custom component models

derived from the model proposed by the RAMSES project.

Because of the arbitrarily complex structures MetaEdit+ allows it is quite
tempting to restrict queries to the component’s interface(s) and hide all the
content from the queries. This is so called black-box reuse. In our opinion, this
should be enough in most reuse situations, because - as stated earlier — the
interface(s) should contain all the necessary data about the component and its
usage. In most cases, the internal implementation of the component is irrelevant
to reuse purposes if the component works as it should work and its

documentation is sufficient.

6.1.2 Representing RAMSES Component Model

The elemental problems involved in defining the component representation in
MetaEdit+ can naturally be solved by defining component representation for
the general component model proposed by the RAMSES project (Zhang &

Rossi, 2000). When we define how to represent different parts of this generic
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component type we can generate a representation to all component models

inherited from the general model.

The first issue to decide when creating representation for components is the
scope of the search. It is possible to include all the aspects of the component in
the search — including content and its design elements. However, this search
approach has some shortcomings. First, the contents usually contain mostly
implementation information that is irrelevant to the user of the component and
this may result in irrelevant matches. (Henninger, 1997) Second, because
arbitrarily complex structures may occur in a metaCASE environment the
retrieval process becomes very complex if the design elements contain recursive
structures. If we choose to allow the query tool to access only the interfaces of
the components, representation issues are simplified radically. In theory, it is
sufficient to allow the query to access interface facets and ports (as defined in
Section 5.1.1) of the component. Of course, because also interface facets can be
any GOPRR-elements, they can also contain complex structures and query must
be able to handle these kinds of situations effectively. Probably some kind of
restrictions in interface facets may be wise, or at least the retrieval process

should be limited.

MetaEdit+ features the MetaTypePainter class (Kelly, 1997), which
automatically generates window specifications of dialog windows for different
GOPRR data types defined in MetaEdit+. This feature is greatly based on
Smalltalk’s ability to associate variables in program code with UI controls in the
dialog. It creates dialog windows based on the type’s properties dynamically.
When the user creates a custom component model, the dialog window based on
the new model is created automatically whenever it is needed. This window is
similar to standard dialogs in window environments and supports the
following controls in presenting the properties of the GOPRR data types such as

diagrams and objects:
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Textbox is used to enter a free text value. These are used for properties,
the values of which are not limited to existing, pre-defined ones. Textfield
is a variation of textbox that allows larger chunks of texts with multi-line
and scrolling support.

Combo box is used to choose one value from a list of pre-defined values.
This control exists in two different variations: one is strictly limited to the
pre-defined values while the other permits adding new values. New
values can be written as free text, and they are added to the list of values
the combo box provides. This should be used with caution because it can
easily lead to overuse of entering capability and too many values in the
list. In the search context, adding new values should be restricted.

Listbox can be utilized in two different ways. First, it can be used
similarly to the combo box, in the sense that it is used to select property
values from a pre-defined set. The difference to combo box is that while
combo box allows only one selected value at time, the listbox allows
multiple selections at a time. Second, it can be used to represent a
property which may have multiple values defined by the user. An
example of this kind of property is the attribute-property of an OOP
class.

Radio buttons always exist in groups of two or more. Their functionality is
similar to combo box, but they are used when there is only a limited
choice of values.

Checkboxes are associated with Boolean values, usually to present

whether some feature exists in an object or not.

Figure 3 shows an example of UML class dialog generated with

MetaTypePainter. It features the following controls:

Textbox is used to represent Class name property.

Combo box is used to represent Concurrency property.
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e List boxes are used to represent Attributes, Operations and Constraints
properties.
e Textfield is used to represent Documentation property.

o Checkboxes are used to represent Persistent and Abstract properties.

The benefit of MetaEdit+’s dialog system allows the user to ignore the details of
dialog creation because these dialogs can be generated automatically straight
from the GOPRR element’s specifications. The dialog system chooses the

controls that are used to represent different properties of element.
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Figure 3: Example of a MetaEdit+ generated property dialog

One possibility is to represent component search using these automatically
generated property dialogs. The great benefits of this approach are, naturally,
the low amount of extra work in implementing the user interface, and the
MetaEdit+’s user’s familiarity with these dialogs. If the user can enter the search
conditions exactly the same way he or she would enter the descriptions of new
components, the problem is probably easier to perceive than with an exclusive
search dialog. There are also downsides for this approach. First, we cannot use
the dialog without any modifications since we can assume that at least the
simplest Boolean operations (AND, OR, NOT) are required for the query.
(Frakes & Poole, 1994) We need some intuitive and user-friendly way to

combine conditions defined in the dialog with these operations, and this
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requires a separate dialog for the component search. However, since these
modifications are probably not very significant the search dialog can be
inherited from the property dialog to alleviate the task of specifying a search
dialog. Naturally, if we choose some more esoteric representation method, we

may find the property dialog too limited.

Understandably, when this dialog is used in a search context the requirements
for the interaction possibilities differ from the data insertion. When adding
objects (e.g. classes, associations, processes) to the project we naturally know
very clearly the values we want to use and this does not address any specific
requirements for the user interface. However, when the user is forming the
query with the dialog the situation is different. The user may know exact values
for some of the properties, may know some alternative values for some
properties and may have a slight but unclear idea about some values. All these
situations require different kinds of querying possibilities from the user

interface.

Other possibilities for representing the component model - and models
inherited from it - naturally exist, but it must always be noticed that it should be
possible to generate a representation automatically from component model
definitions. Probably it is a good idea also to provide users with a possibility to
create representation manually; in fact, this feature (although very limited) is

already implemented in MetaEdit+.

In MetaEdit+ it is very common for a property field to contain another object
rather than an atomic value such as an integer. One example of this kind of
aggregation is Method property of Class type in UML. Methods may not be
presented with atomic types because they contain several properties themselves
such as parameters, return value, protection level etc. Defining search criteria
for these kinds of objects is naturally more complex. Fortunately, MetaEdit+’s

dialog system can manage these situations by opening new subdialogs for each
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part of the aggregate object. There is no theoretical limit for the depth of the
structures, so these parts may have objects as their properties and so on -
without any significant presentation problems. The search conditions for these
aggregate objects may be defined using this nested dialog structure, ultimately
forming a tree of search conditions. It would be reasonable to place some
restriction on how complex this search condition tree may be, e.g. only on two
hierarchical levels. Otherwise the search may grow overly complex. This is
probably more a theoretical possibility because it would be impractical for users
to form very complex queries. This is because defining the query would become
a time-consuming process and perceiving the meaning of the query would
become too hard. A much more simpler approach is to allow user of search tool
select from existing objects, and the query is matched only if the target contains
the same object. This approach is much easier to implement and forming the
query is easier, but it is also more restricting. Naturally, the search tool should

support both methods.

6.1.3 Choosing a Representation Method

Some very rough guidelines on the usability and user satisfaction of different
search representations, based of the empirical tests by Frakes and Poole (1994),
were presented in Chapter 3. Based on these results, it seems that the most
common representation methods - enumerated, faceted and keyword
representation — are quite similar in terms of usability and efficiency. Therefore,
if we limit the representation possibilities of a search tool to one or some of
these methods the choices may be based more on implementation issues rather

than user-centred aspects.

Numerous studies (e.g. Prieto-Diaz, 1991, Zhang, 2000, Henninger, 1997)

suggest a faceted representation method or its variation as a most suitable
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method for component representation. A faceted scheme is easy to maintain
and expand, whereas enumerated and keyword approaches both have their
downsides (described in Chapter 3) in these areas. In faceted representation, it
is easy to add, delete, and update repository components and the facet list in
the classification scheme without reclassification - this is difficult for an
enumerated classification scheme. (Zhang, 2000) Faceted classification is used
successfully in component repositories such as GTE Data Services’ Asset
Management Program (Prieto-Diaz 1991) and ORCA (Object Reuse
Classification Analyser) in ICE (Isakowitz & Kauffman 1996). It is also easy to
implement our component model (Zhang, 2000) using a faceted scheme,
because the interface facet part of the model is relatively easy to convert into a
part of the faceted classification in the models inherited from the RAMSES

model.

6.1.4 Faceted Representation and Boolean Queries

In modern information access systems, the matching process usually employs a
statistical ranking algorithm or a similar system such as domain-specific
heuristics. (Baeza-Yates, 1999) However, in the case of component libraries in
which the amount of data is rarely as massive as in text databases the support
for Boolean queries may be sufficient for most needs. Boolean syntax can be
presented in numerous formats, and it is crucial to present it in an
unambiguous way because there are several common conceptual
misunderstandings related to Boolean logic. However, we can assume that the
metaCASE tool users are somewhat used to Boolean syntax and its concepts.
(Baeza-Yates, 1999) One - and probably the simplest and therefore most limited
- method to include Boolean operators to the faceted representation is to simply

associate a Boolean operator with every facet of the property dialog. If the facet
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is not included in the search (that is, its value is not defined), the operator can

be simply ignored.

One but rather limited possibility is to represent the operator selection in the
user interfaces with a group of radio buttons (selection buttons that are usually
grouped, with only one selected at a time). (Baeza-Yates, 1999) These controls
present three Boolean operators, and the user must select one of them for each
property defined in the search. Alternatively some other interface widget can be
used, the only requirement being the ability to select a single item from the list.

This associates each defined search condition with a Boolean operator.

Using plain property dialogs to form Boolean queries provides only AND and
NOT operations due to the ambiguous nature of the OR operation when
multiple conditions are given. Also, more complicated grouping of Boolean
conditions (particularly nested conditions) are not possible with the method
described because all the conditions are on the same hierarchy level and
therefore evaluated in parallel. Therefore we need some alternative graphical
(or possibly non-graphical) representation if we want to provide more complex
query capabilities to the users. Because the need to use very complex Boolean
queries arises probably quite rarely, this alternative Boolean search can be
provided as an advanced search feature, for example it may be accessed from
the normal search condition dialog. This advanced search tool may represent
Boolean conditions as a tree (each branch presenting one nested structure in a
Boolean query), or a table, or using a simple high-level query language

(naturally, support for multiple representations is possible).

Probably the use of the OR operator in combining different facets (or
properties) of the component in search is relatively rare. We may enlighten this
by an example: let us assume we have a component model with Domain and
Method properties (domain describing the application domain the component

is used in, method describing in which method the component is implemented
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in). It is quite irrelevant to form a query that states, for example, that domain of
the component must be networking OR the method of the component must be
UML. Usage of the AND operator to combine different properties, however, is
perfectly relevant. The use of the OR operator is probably much more practical
when allowing several matching values to single property when forming the
query. This is especially true with properties, the values of which are derived
from uncontrolled vocabulary (that is, values are entered freely by user) while
properties that have a predefined list of possible values probably do not benefit

from this capability that much.

How the search conditions should be evaluated depends on the type of the data
of the facet (property). With strings, use of wildcards (typically “?” for single
character and “* for arbitrary sequence of characters) should be allowed to
make wider queries possible. With numeric data, it should be possible to define
a range or to use operators such as > (greater than) and < (smaller than). If the
facet contains another object, there are two alternatives: the user may define
properties of the inner object or he or she may define that the value of the facet

must be exactly the same object.

6.1.5 Alternative Representation Solutions

Alternative solutions for retrieval using faceted representation with Boolean
logic have been proposed, mainly forms of visual querying (for example, Liu,
1996; Jones, 1998). The most interesting of these are based on the direct
manipulation approach —concept that provides an alternative to a complex
command line or a dialog-based syntax. Direct manipulation systems include

the following common characteristics (Shneiderman, 1997):

e Continuous representation of objects of interest.
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o Physical actions or buttons pressed instead of a complex syntax.
Therefore, visual representation provides a high-level encapsulation of
the underlying retrieval logic.

e Rapid incremental reversible operations, the impact of which on the

object of interest is immediately visible.

Direct manipulation interfaces often evoke enthusiasm from users (Baeza-Yates,
1999), and for this reason alone their use is quite an attractive solution and at
least worth exploring. Two approaches that use graphical interfaces to simplify

specification of Boolean syntax are described below.

Graphical depictions of Venn diagrams have been proposed several times as a
way to improve Boolean query specification. A query term is associated with a
ring or circle and intersections of these rings indicate conjunctions of terms.
Typically, a number of components (documents) matching with the various
conjuncts are displayed in the appropriate segment of the diagram. Several
studies have found such interfaces more effective than their command-
language based syntax. (Baeza-Yates, 1999) Venn diagrams have also some
major drawbacks such as the limitation to Boolean logic, but some

improvements are made to overcome these limitations.

Another innovative direct manipulation interface for Boolean queries is
described by Anick et al. (1990) and uses natural language and blocks arranged
into columns and rows. The user types the queries in natural language, which is
automatically converted into a block representation. If two or more blocks
appear along the same row they are considered to form a conjunction
(equivalent to an AND operator). Two or more blocks within the same column
form a disjunction (equivalent to an OR operator). The benefit of this approach
is that “users can quickly experiment with different combinations of terms
within Boolean queries simply by activating and deactivating blocks.” (Baeza-

Yates, 1999)
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Although some of these visual approaches are very promising and probably
will become more popular in the coming years we will not cover them in depth
in this thesis. The semantics of visual query languages are often somewhat
confusing, and due to the nature of a metaCASE environment — in which every
hard-coded piece should be as generalized as possible - inclusion of exotic
approaches should be considered carefully. Although Liu (1996) has proposed
and implemented a visual query tool for MetaEdit+ it has not been adopted for

practical use.

6.2 Characteristics of Component Retrieval Models in a

MetaCASE Environment

The metaCASE environment does not address very unique features to the
retrieval models introduced in Chapter 4. However, because the structure of a
metaCASE repository is very different from most document databases or
relational databases - and ultimately more complicated - the implementation is
more complex. According to Liu (1996), this complexity can be observed from
three different dimensions: Abstraction, Construction and Representation
complexity. Abstraction and construction dimensions are relevant in
component search while the representation dimension is more relevant to the
basic GOPRR objects. Next, we will discuss abstraction and construction

dimensions of the repository and their influence on component retrieval.

6.2.1 Abstraction Complexity in a Retrieval
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Abstraction complexity refers to the multiple abstraction levels of a metaCASE
repository. In a metaCASE repository, information exists on three levels (Liu,

1996):

e Model level holds models of applications created with the tool, typically
graphs and other descriptions of the target system. Examples of data on
this level are a class diagram of warehouse software, sequence diagram
of a bank transaction and a state diagram of a vending machine,

e Meta model level contains data describing the types of notations and rules
governing how to specify models on the model level. Models on this
level usually represent modelling techniques of and methods. Examples
of these techniques are a specification of class diagram in UML and a
specification of data flow diagram in SA/SD.

e Meta-metamodel level is the highest level describing what elements and
capabilities are available for creating metamodels on the metamodel
level. In MetaEdit+, this abstraction level contains specifications of the
GOPRR data model. This level exists exclusively in metaCASE tools
while in traditional CASE tools the meta model level is the highest level

used.

In addition to these, Liu also mentions an Operational level (also Application
level), which is below the model level and involves data used in daily operations
of the applications. This level is not managed in the repository of the MetaEdit+

metaCASE environment, so it is ignored here.

Components exist on two of these levels: model level and metamodel level.
Model level components are the most common type of components that are
integrated in design (for example, an accounting component for a financial
application) while metamodel level components are components consisting of,

for example, method fragments or other metalevel information. (Liu, 1996)
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Dealing with abstraction complexity in component search should not be made a
very challenging task. It should be possible to define, in a query, whether the
user wants to search model level components, metamodel level components or
both. If the component models differ, this difference should be handled in the
search representation phase and a query should be formed on the chosen
retrieval model. The implementation of the retrieval process itself is similar in
all cases because both the metamodel level and the model level are eventually
based on GOPRR elements and therefore MetaEdit+’s repository uses the same

underlying data structures to handle both of these levels.

6.2.2 Construction Complexity in a Retrieval

Construction complexity refers to the possibility to construct arbitrarily complex
objects. In the simplest form, complex objects are networks of objects bound to
each other with GOPRR relationships and roles, and thereby forming larger
entities. More complicated objects may be hierarchical structures in which a
single object may explode into a graph at a lower hierarchy level. Especially the
latter case is a difficult challenge to the retrieval model because hierarchical
trees of objects may be colossal, and eventually they may form recursive
structures that cannot be handled in traditional manners of a recursively

advancing search.

A component interface is one answer to the problems emerging when handling
queries in repository containing complex objects. If we restrict the retrieval
process purely to the interfaces of components (black-box search) the inner
structures and contents of the component do not have to be included in the
search. This is quite a radical restriction that assumes that all components in the
repository are documented thoroughly and that the interface part of the
component model in use is sufficiently extensive that all the necessary aspects

of the components become covered. However, as we state in Section 5.2., the
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purpose of the component’s interface is to provide enough information about
the component’s functionalities and consequently eliminate the need to

investigate its contents.

In our component model any GOPRR element may be an interface element, and
therefore possibilities for defining the interface are extensive. However, there
may emerge situations where we have to restrict the search tool to include only
objects emerging on the first hierarchical level of the interface to the query.
Naturally the interface elements should be kept simple to maximize their
descriptive power, but we cannot prevent users from creating arbitrarily
complex objects. Therefore, some artificial restriction may be necessary. Ideally,

this restriction could be defined in the metamodel of the component.

6.3 Component Browsing Discussions

Although we do not want to discuss in detail the user interface design needed
to present the search, we would like to address several important issues that
should be considered when implementing a search tool in a component
repository system. These issues mostly deal with browsing the component
candidate list when the preliminary query is conducted, or the whole library if
the number of the components in the library is relatively low. The following

discussion is applicable to both situations.

It is remarkable that complex query operations are beneficial only if the library
is rather large. Users might be willing to invest some time in exploring the
component library looking for potential components. In component libraries
consisting of few hundreds of components this browsing approach is often
much easier than spending time forming often complex queries — which will not

necessarily retrieve all the potential components. (Baeza-Yates, 1999, p. 65) In
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general, the goal of the searching tasks is clearer in the mind of the user than the
goal of a browsing task in which the user might be looking for something less
specific or a “close enough” solution. In smaller libraries, developers also
typically know the contents of the library quite well and therefore tend to
browse the library rather than use a query tool. On the other hand, even in
small libraries situations may emerge, in which finding the component with a
query is faster than by browsing. This is especially true when the developer or
another user of a component repository is aware of the component’s literal
name, author or any other identifying attribute. Also, it is reasonable to prepare
for the possible expansion of the component library. It is elemental for the user
interface of the search tool to support both forms of component search equally.

(Baeza-Yates, 1999)

The most crucial characteristics or facets of the component should be accessible
in a component browsing mode. It should not be necessary for the user to pick
up the whole component from the library to view its attributes. One possibility
to implement this feature is to divide the browser into two areas with one area
showing the list of the candidate components (or initial component list if query
is not yet made) and another area showing the attributes of the active or
selected component. This view of attributes provides a kind of abstract of the
component with most significant information encapsulated in little space.
Which information should included in this component “abstract” is up to the
users’ decisions. Possibly it could be among the issues defined in the
customized component model or it could be defined for each component

individually.

6.4 Summary
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This chapter contained the main contribution of this study. We discussed the
practical issues of component search in the GOPRR -based MetaEdit+
metaCASE environment. We did not concentrate on implementation issues
such as algorithm choices but approached the problem more from a user-
centered perspective. We discussed possibilities of represeﬁting component
model introduced in Chapter 5 and described different techniques MetaEdit+
uses to represent GOPRR objects. Then we discussed how these techniques
might be applied to component search, particularly to component search using
faceted representation with Boolean logic. We also discussed some problems

that emerge with complex objects and multiple abstraction levels of GOPRR.

In this chapter we tried to present some answers to the research problems. Our
coverage on the subject is not exhaustive, but rather described one possible

solution to the problem.
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7 Conclusion

In small organizations that do not rely very much on component technologies
or the component libraries of which are relatively small (no more than a couple
of dozens components) the task of finding an appropriate component is mostly
a matter of browsing through the component library or utilising former
knowledge of the contents of the library. (Frakes & Poole, 1994) In these
environments more advanced component retrieval tools do not benefit the
library’s users very much because defining the right queries is a time-
consuming process and it is often more convenient to browse through the small
library. However, when the size of the library grows, the process of finding the
right components via querying becomes an elemental issue. That is when the
concepts and solutions presented in this thesis become relevant and even

elemental.

In this thesis, we have presented the basic concepts and the main problem areas
concerning the querying techniques concentrating on software components. We
have specialized in components in the CASE and the metaCASE environments
for two reasons. First, recent studies concerning components mostly concentrate
on “binary components” - components that are used in implementation phase
rather than design or analysis phases. We think that also the earlier phases of
ISD should benefit from components and therefore this area should be studied
more thoroughly. Second, a metaCASE environment sets slightly different
requirements to the retrieval process itself. This is due to the reason that we do
not want to make fixes to the component model (or framework, if speaking in
implementation terms) but rather a metamodel that the actual component
models are derived from. The retrieval tool implemented in this kind of

environment should be able to retrieve all components based on models
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inherited from the component’s metamodel, and this is one of the basic goals

we have tried to achieve in this thesis.

7.1 Previous studies

As far as we know no previous studies on component search in CASE tools
have been conducted. Also the studies involving a metaCASE environment in
general are relatively scarce. Studies on component search and searching
reusable assets have been carried out (Frakes & Gandel, 1989; Henninger, 1997,
Mili, Mili & Mili, 1995) but they have concentrated solely on binary components
or files. We found only one study where the component search was studied
empirically, a study by Frakes and Poole (1994). Information retrieval in general
has been a very popular research area, and numerous recent studies on the
subject were utilized in this thesis. However, most studies involving advanced
search techniques concentrate on text document search and therefore their
analogy with our thesis is rather limited. Our study differs from these earlier
studies in two main aspects: first, the study focuses on CASE tools instead of
tools or development environments used in the implementation phase; second,
our study takes a very strict interface-centric approach to the components and

therefore leaves out many reusable assets such as OOP classes.

As stated earlier, model components are rarely discussed in academic literature,
and model components lack standards both structurally and conceptually. With
the latter we mean that the concept of a model component is indefinite and
seems to vary greatly between different methods and CASE tools. For these
reasons it is practically impossible to propose any guidelines for a model
component search that would be applicable to the majority of CASE tools.
Therefore after some theoretical discussion we focused on MetaEdit+

metaCASE environment. Due to its origin as an academic project it provides
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decent theoretical support for research, and its GOPRR data model is in its

completeness and simplicity a good platform for experimental prototypes.

We believe that this study on component search will benefit the further
development of MetaEdit+ metaCASE tool as well as shed light on the complex
and mostly unexplored area of components and their retrieval in CASE tools.
The prototype we implemented can be utilized in MetaEdit+ as is, and although
it probably requires some heavy modifications before becoming a part of the
commercial product it is an important basis that can be used as a foundation or

reference for more advanced search tools.

7.2 Theoretical Background

We covered the theoretical background of the component search in four
chapters, each one discussing a particular aspect of the subject. Chapters were

divided as follows:

The first of these foundational chapters was dedicated to the basic concepts and
issues of component-based software development. These concepts included the
definition of software component (drawing a distinction between binary and
model components), addressing differences between OOP classes and
components, component libraries and requirements for organizational support

for reuse of the components.

The second theoretical section discussed component representation methods.
This section was largely based on research and empirical studies carried out by
Frakes and Poole (1994) as well as numerous other sources. The choice of
representation method is one of the most important issues in search because it

dominates how the components are represented to the users of a component
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library and what kind of queries the users can create for component retrieval.
We discussed the most common representation methods derived from library
and information sciences: enumerated representation, faceted representation,
keyword representation and free text representation. Also, some more esoteric
representation methods such as hypertext and Al-based representations were
discussed briefly. In the end of the chapter, some very rough guidelines to

representing a component library were proposed.

In the third chapter we discussed the possibilities of the internal
implementation of the retrieval process. We presented several retrieval models,
mostly based on Baeza-Yates (1999), and discussed their suitability to
component search. The retrieval models discussed were from the more
traditional side of the field (Boolean and vector model) and more esoteric
models such as Al-based and fuzzy retrieval models were discussed in less
detail. Some suggestions on how to utilize the fuzziness of the retrieval in

component search were also given.

In the fourth chapter, concepts involved in a metaCASE environment were
introduced. One metameta model, GOPRR, was discussed as well as a generic

component model using this model.

These three, mostly theoretical chapters laid down a foundation for the
constructive part of the study, which involved providing guidelines for
implementing a retrieval tool for MetaEdit+ metaCASE environment. Our view
of the search process was mostly derived from Frakes and Gandel (1989) and
Frakes and Poole (1994) and therefore there is a considerable possibility that
some of our views are somewhat outdated or too narrow. The component
search is a complex issue and there are numerous schools suggesting somewhat
different perspectives on it. In this study, our goal was to delve deep into the
subject from one point and this may reflect as a somewhat two-dimensional

approach to the subject matter.
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7.3 Constructive Part

The constructive part of this thesis (Chapter 6) consisted of defining
requirements and guidelines for a retrieval tool. The objectives of this
constructive part were twofold: to introduce a component model metatype to
use in a metaCASE environment and to propose requirements for the
component retrieval tool for the components inherited from the aforementioned
component model. The reference metaCASE environment used in this thesis

was MetaCase Consulting’s MetaEdit+.

The requirements we have defined are not strict in the sense that they leave
many implementation decisions open. A MetaCASE environment is a
challenging and unique platform to work with because solutions proposed
should be as general as possible. This is because they should be applicable to all
metamodels that may be defined with the metameta model of the environment
— GOPRR, in case of MetaEdit+. We have tried to propose solutions for how to
overcome these challenges and to a build search tool that is simple and flexible
yet versatile enough to produce sufficiently accurate query results. However,
the lack of concrete implementation solutions, for example search algorithms
can be seen as one of the major weaknesses of this thesis. We had to make some
tough decisions on our focus between theoretical and practical, and inevitably

this will result in some imperfections.
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7.4 Subjects for Further Research

When a new piece of software is introduced it should never be based merely on
a theoretical discussion. Rather, an empirical study should be carried out before
the new software can be accepted as a viable solution. Because this thesis
focused only on the theoretical part of the development process, the empirical
testing is a logical next step on establishing the search tool proposed here. The
empirical testing should utilize several different metamodels and several

practical situations to gather an adequate amount of data.

As stated earlier we left most of the implementation decisions open. These
include many interesting and fundamental issues such as search algorithms,
usability of the search tool and the integration of the search tool. All these issues
should be studied carefully before a robust and efficient search tool for

managing large component storages may be realized.
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