Ahmed Aziz Khalifa

Generics: Ada 95 vs. C++ vs. Java 1.5

Master's Thesis
Computer Science and

Information Systems

1.8.2005

University of Jyvaskyla
Department of Computer Science and Information Systems

Jyvaskyla



ABSTRACT

Khalifa, Ahmed Aziz

Generics: Ada 95 vs. C++ vs. Java 1.5/ Ahmed Khalifa.
Jyvaskyla: University of Jyvaskyld, 2005.

73 p.

Master's Thesis

Generic programming is a widely appreciated and strongly affecting paradigm
in software development. Genericity has become an integral part of most
widely known and used programming languages. Some have just most recently
been extended with generics, as is the case with Java 1.5. Some are known to
have generics from the very beginning and even before they were extended to

support object-oriented programming, as is the case with Ada.

Genericity, templating, parameterized types, or parametric polymorphism refer
to the same technique; basically, instantiating versions of an algorithm using
built-in types, classes, objects, or program units as parameters. This Thesis
work is to provide a comparison between three different language approaches

to generic programming. The languages to be compared are Ada, C++, and Java.

The objective of this study is to understand how and why these languages
employ certain features with generics to provide a degree of support for generic
programming, and to understand the extent to which each language could

support a powerful and flexible version of generic programming.
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1. INTRODUCTION

In spite of its name, today's software is usually not soft enough; adapting it to
new uses turns out in most cases to be a harder endeavor than it should be. It is
thus essential to find ways of enhancing such software quality factors as
extendibility, reusability, and compatibility. (Meyer, 1986.) Genericity has
turned out very useful in the development of reusable software. The fact is that
languages, such as C++ and Java, claim reuse as one of their goals through
object-oriented programming, and therefore the need for generics was
primarily raised for the design of proper container classes, such as lists, vectors,
and queues. Despite that, it is more appropriate to say that the need for generics
was raised to empower the ability to code for reuse, especially when it comes to
a language such as Ada; Ada primarily employs generics to support one of its
strongest claims, which is the ability of writing general-purpose, reusable

software components.

Generic programming can simply be described as a programming paradigm
which makes it possible for an algorithm to be coded for one time, and then be
used when needed, time and again, using data types arbitrarily as parameters.
This is the so-called code reuse or software reuse that generic type definitions
can aid. Typically, generic programming involves type parameters for data
types and functions (Garcia et al., 2003). For example, a possible declaration to
create a queue using generics would be as Queue<Type>; then it could be
instantiated as Queue<int> or Queue<Employee>. So, the queue container could
be handled with whatever type is defined. While it is true that type parameters
are required for generic programming, there is much more to generic
programming than just type parameters (ibid.). There is no one concrete
definition associated with generic programming, definitions vary, and can even

be tailored to specific language capabilities as need be.



David Musser and Alexander Stepanov developed the methodology of generic
programming! in the late 1980’s and applied it to the construction of sequence
and graph algorithms in Scheme, Ada? and C. Since then the methodology has
evolved to meet the needs of new algorithms and problem domains, and to take
advantage of new programming language features, such as templates in C++.

(Siek & Lumsdaine, 2004.)

The degree to which a language could support generic programming is varying
from language to another. Some languages provide sufficient support merely
for implementing type-safe polymorphic containers; some others went beyond
what is actually needed for developing such containers. For example, whereas
C++ class templates are enough for implementing polymorphic containers,
function templates represent generic algorithms in a way by which the scope of

C++ genericity became actually wider.

This thesis work is to provide a comparison between three different language
approaches to generic programming. The languages to be compared are Ada,
C++, and Java. The objective of this study is to expose the true nature of
genericity in these languages, to understand how and why these languages
employ certain features with generics to provide a degree of support for generic
programming, and to find out the extent to which each language could support

a powerful and flexible version of generic programming.

Before Java 1.5, Java had no support for parameterized types; so, this study
focuses on Java 1.5. As for Ada, Ada 83 is not an object-oriented programming
language, by most definitions (Tang, 1992). Although it supports many object-
oriented design principles, such as information hiding, encapsulation and

reusability, it provides only a primitive form of inheritance and it does not

1 Musser & Stepanov (1988).
2 Musser & Stepanov (1987, 1989).



directly support polymorphism and dynamic binding (ibid.). There are a
number of important improvements and extensions to the generic model in Ada
95 (Barnes, 1995). For example, a generic formal parameter can stand for a
value, variable, type, or subprograms in Ada 83, but not for a package (Cohen,
1996). Moreover, there were neither tagged types nor classwide types in Ada 83.
In Ada 95, the extensions are mainly concerned with providing appropriate
new parameter mechanisms to match the additional functionality provided by
tagged and other new types (Barnes, 1995). Because of the above and some
other substantial differences between Ada 83 and Ada 95, this study focuses on

Ada 95.

One can easily understand how such a powerful language as Ada could have
suffered along the years facing an irresistible challenge from C and C++.
Moreover, when Ada 95 gave stronger signs of possible challenge to C++ by
supporting object-oriented programming, it was the time for Java. However,
when it comes to genericity, Ada led and the others are following with less
efficient and even less safe features. The reasons behind that could be

summarized in the following three points:

® Generics, or templates, were considered essential in C++ for the design of
proper container classes, as stated explicitly in Stroustrup (1994). So, the
need for a sufficiently general facility for defining container classes
necessitated the design of template, but it was not considered to be a
defining feature for the language or a contribution to the modern software
design needs as is the case with object-oriented features, although templates
then proved that it could provide unexpected great functionalities or even a

sublanguage, such as template metaprogramming.

e To support a flexible version of generic programming, a language needs to
be less restricted than a mere object-oriented programming language.

Having this in mind, one can guess that Java creators were trying to avoid



genericity by first introducing container classes, which hold only handles to
objects, using wrapper classes and casting before they have finally extended

the language with generics.

¢ Genericity in Ada represents one of the defining features of the language,
by which the ability to code for reuse in Ada is one of its strongest claims.
According to Tang (1992), Ada is carefully designed to meet the software
needs of the 1990s. From the beginning, Ada seemed to be designed to play
a fundamental role in shaping the designers' way of thinking, although it
did not provide support for object-oriented programming. This is because
the value of all object-oriented design principles, such as inheritance and
polymorphism, was not well-known when Ada was designed. However, as
an object-based programming language, generic subprograms and generic
packages were able to take objects, data types, and other subprograms as

parameters.

The aim of this thesis work is not to show that one language is superior to the
others, they are each different and stand on their own merits; however, due to
the design nature of some languages, it might be inevitable that some language

would seem to support more powerful version of generic programming.

For each individual language, each of the next three sections provides the
necessary information about the essential language features required for the
construction of generic components. Using a single simple example
implemented in each of the target languages, section 5 describes the
methodology and terminology of generic programming; also the language
features identified by Garcia et al. (2003) as being necessary for the
development of high quality generic libraries are to be described as well.
Section 6 discuses and evaluates some more genericity related issues. Finally,

section 7 provides the concluding remarks.



2.  ADA GENERIC UNITS

Ada is a general-purpose computer programming language developed by the
United States Department of Defense. It embodies many modern software
development principles, and is carefully designed to meet the software needs of

the 1990s. (Tang, 1992.)

Generic units are templates from which several analogous subprograms and
packages can be produced without duplication of efforts (Cohen, 1996). This
section will provide details about constructing and instantiating generic units,

and about the different categories of generic formal parameters.
21 A Simple Generic Package

First, we consider a package for stacks holding up to 10 integers. The package
declaration might read as follows (usually, such a package is made up of two
parts: the declaration and the body. See example 2.2):

package Stack_Package is
type Stack_Type is private;

procedure Push (Item: in Integer; Stack: in out Stack_Type);
procedure Pop (Item: out Integer; Stack: in out Stack_Type);

private
type Item_List_Type is array (1 .. 10) of Integer;

type Stack_Type is
record
Top : Integer range 0 .. 10 := 0;
Elements : Item_List_Type;
end record;

end Stack_Package;
Example 2.1 (Slightly adapted from Cohen, 1996, p. 28).

So, to create a similar package for stacks that can hold a number of items of

some other data type, one only needs to change the type of the Item parameter



of Push and Pop, the definition of the type Item_List_Type, and maybe the
number 10, which is the stack size, to be as needed. Then, it is clearly a
duplication of efforts. Instead, a generic package could allow the programmer
to turn the algorithm into a general-purpose template for such packages so that
the algorithm would be reused with arbitrary types and arbitrary integer values
for the stack size. The generic package declaration and body might read as
follows:

generic
Stack_Size: in Integer;
type Item_Type is private;
package Generic_Stack_Package is
type Stack_Type is private;
procedure Push (Item: in Item_Type; Stack: in out Stack_Type);
procedure Pop (Item: out Item_Type; Stack: in out Stack_Type);
private
type Item_List_Type is array (1 .. Stack_Size) of Item_Type;

type Stack_Type is
record
Top : Integer range 0 .. Stack_Size := 0;
Elements : Item_List_Type;
end record;

end Generic_Stack_Package;

package body Generic_Stack_Package is

procedure Push (Item: in Item_Type; Stack: in out Stack_Type) is
begin

Stack.Top := Stack.Top +1;

Stack.Elements (Stack.Top) := Item;
end Push;

procedure Pop (Item: out Item_Type; Stack: in out Stack_Type) is
begin

Item := Stack.Elements (Stack.Top);

Stack.Top := Stack.Top - 1;
end Pop;

end Generic_Stack_Package;

Example 2.2 (Cohen, 1996, p. 34, 35).



The word generic in the first line indicates that Generic_Stack_Package is not
really a package, but a template for a package. The next two lines declare
Stack_Size and Item_Type to be generic formal parameters. An instance of a generic
package is a copy of the template with each occurrence of a given generic
formal parameter replaced by specific value, variable, type, subprogram, or
package. In the above example, the generic formal parameters Stack_Size and

Item_Type stand respectively for an integer value and a type. (Cohen, 1996.)

package Character_Stack_Package is
new Generic_ Stack_Package
(Stack_Size => 255, Item_Type => Character);

Example 2.3 (Cohen, 1996, p. 35).

For stacks holding up to 255 items of type Character, the package
Character_Stack_Package in the above example is declared as an instance of the
generic package Generic_Stack_Package. According to some Ada compilers, such
as GNAT, this instantiation would result in a non-generic compilable version of
the generic package with appropriate substitutions of the formals by the
actuals. That is, the instantiation would result in a package whose declaration
has no generic declaration header, and whose declaration and body are named
Character_Stack_Package in place of the generic package name, using the number

255 in place of Stack_Size, and the type Character in place of Item_Type.

In whatever case, whether the semantics permit what is basically a compile-
time macro expansion or not, the name Character_Stack_Package is the static
name to be used to access the visible package components. That is, a procedure
call such as Character_Stack_Package.Push(Ch, S) can be made, or a type such as
Character_Stack_Package.Stack_Type can be assigned to a variable. As stated
above, a generic package is not really a package, but a template for a package.
Therefore, it is not allowed outside a generic package to refer to an entity such

as Generic_Stack_Package.Stack_Type.



In addition to generic packages, Ada allows the definition of individual generic
subprograms. Generic packages and generic subprograms may be separately
compiled. A separately compiled generic package or subprogram may be
instantiated by any compilation unit naming the generic unit in a context
clause. (ibid.) The following example is a main subprogram that considers
Generic_Stack_Package as a separately compiled package:

with Ada.Integer_Text_IO, Ada.Text_lO, Generic_Stack_Package;
procedure Reverse_Integers is

package Integer_Stack_Package is
new Generic_Stack_Package
(Stack_Size => 10, Item_Type => Interger);

S : Integer_Stack_Package.Stack_Type;
X: Integer;
begin
forlin1.. 10 loop
Ada.Integer_ Text_10O.Get (X);

Integer_Stack_Package.Push (X, S);
end loop;

forlin1.. 10 loop
Integer_Stack_Package.Pop (X, S);
Ada.Integer_ Text_I1O.Put (X);
Ada. Text_10.New_Line;

end loop;

end Reverse_Integers;
Example 2.4 (Cohen, 1996, p. 36).

As is the case with ordinary packages, a generic package is allowed to be made
up of only a package declaration without having to coexist with a package
body. This is only permitted when the package declaration contains types,
subtypes!, objects, or named-number declarations, but no subprogram
declarations. As for generic subprograms, unlike ordinary subprograms, a

generic subprogram must consist of both a declaration and body. That is, an

1 The term subtype in Ada indicates a subset of the elements of a primitive data type. That is, it
does not have the same meaning as in object-oriented terminology.



ordinary subprogram declaration in addition to the generic formal parameters

must be put together in order to form a generic subprogram declaration, which

is not only required to hold the generic formal parameters, but also to facilitate

the ability of separating a generic subprogram declaration and its body from

each other in different compilation units, and more importantly to apply the

required consistency checks to generic instantiations. The generic subprogram

might read as follows:

2.2

-- Generic subprogram declaration:

generic
Variable : in out Integer;
Limit, Reset_Value : in Integer;

procedure Reset_Integer_Template; -- this declaration is a must.

-- Generic subprogram body:
procedure Reset_Integer_Template is

begin
if Variable > Limit then
Variable := Reset_Value;
end if;

end Reset_Integer_Template;

Example 2.5 (Cohen, 1996, p. 684).

Generic Formal Parameters

There are four categories of generic formal parameters:

Generic formal objects represent values and variables.
Generic formal types represent subtypes.
Generic formal subprograms represent procedures and functions.

Generic formal packages represent instances of other generic packages.

This subsection provides details about the differences within these categories

and the way each of them can be declared within the generic declaration.
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2.2.1 Generic Formal Objects

Constant and variable values can be represented through two sorts of generic
formal objects. First, generic formal constants that represent fixed values. Second,
generic formal variables that represent variables external to the generic unit; the
values assigned to these variables can be changed after the instantiation, so each

call on an instance may assign different values to the generic formal variables.

The syntax of a general formal constant declaration is:

identifier, ..., identifier: in subtype-name;

The syntax of a general formal variable declaration is:

identifier,..., identifier: in out subtype-name;

Example 2.5 illustrates both kinds of generic formal objects, so let us assume
that the following declarations are contained in some declarative part:

A : Integer;
B : Integer .= 10;
C: Integer := 0;
procedure Reset_A is
new Reset_Integer_Template
(Variable => A, Limit => B, Reset_Value => C);

Example 2.6 (Cohen, 1996, p. 684).

Because Limit and Reset_Value are generic formal constants, the values 10 and 0
are always used, even if the values of B and C change after the instantiation.
Because Variable is a generic formal variable, it is always the latest value of A

that is examined and replaced. (Cohen, 1996.)

2.2.2 Generic Formal Types

Generic formal types represent subtypes. When a generic formal type is

declared to belong to a certain kind of type, it must be used within the generic
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unit as a type of that kind (Cohen, 1996). The corresponding generic actual
parameter in an instantiation must be some subtype that can be used in at least
the way that a type of that kind can be used (ibid.). Identifiers declared as
generic formal types can be used throughout the respective generic units as

ordinary subtype names.

Generic formal parameters for numeric types. There are five kinds of generic
formal parameters that correspond to numeric types:
1. Generic formal signed integer type. It is declared as follows:
type identifier is range <>;
The angle brackets here, and later on in this section, stand for the
unconstrained information that is expected to be in their place in the
declaration of the corresponding generic actual subtype.
2. Generic formal unsigned (modular) integer type. It is declared as follows:
type identifier is mod <>;
The angle brackets stand for the modulus.
3. Generic formal floating-point type. It is declared as follows:
type identifier is digits <>;
The angle brackets stand for the number of digits of precision.
4. Generic formal ordinary fixed-point type. It is declared as follows:
type identifier is delta <>;
The angle brackets stand for the size of the delta. Range is not needed in
the declaration of the formal.
5. Generic formal decimal fixed-point type. It is declared as follows:
type identifier is delta <> digits <>;
The angle brackets stand for the size of the delta and the number of

digits respectively.
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Generic formal discrete types. They can simply be declared as follows:

type identifier is (<>);
This looks like an enumeration-type declaration with the list of enumeration
literals left unspecified (ibid.). Accordingly, the corresponding actual parameter

could be a subtype of either an enumeration type or an integer type.

Generic formal array types. The obvious beneficial or practical use of such
formal parameters is for the writing of general-purpose array-manipulation
algorithms (e.g., sorting) using generic program units. There are two kinds of
generic formal array types:

1. Unconstrained generic formal array type. It is declared as follows:

type identifier is
array ( subtype-name range <>, ..., subtype-name range <>)
of subtype-name;

2. Constrained generic formal array type. It is declared as follows:

type identifier is
array ( subtype-name , ..., subtype-name) of subtype-name;

No discrete ranges allowed here to specify the index bounds. They

should be subtype names.

The subtype names used to specify the index subtypes and the component
subtype may themselves be generic formal types declared earlier in the same
generic unit. However, any subtype name visible at the point of the generic
declaration may be used in the generic-formal-array-type declaration, including
names of predefined types and subtypes. In an instantiation, a generic actual
parameter corresponding to a generic formal array type must be an array
subtype S that matches the generic formal array type in the following senses:
e If the generic formal array type is unconstrained, S must be
unconstrained; If the generic formal array type is constrained, S must be

constrained.
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* S must have the same number of dimensions as the generic formal array
type.

¢ In each dimension, the index subtype of S must be the same as the index
subtype of the generic formal array type.

e The component subtype of S must be the same as the component subtype

of the generic formal array type. (ibid.)

Generic formal access types. There are five kinds of generic formal access
types. The first three of the following are called access-to-object types. For these
three types, the subtype pointed to by the generic actual subtype must be the
same as that pointed to by the generic formal parameter. That is, the two
subtypes must statically match. (ibid.)
1. Generic formal pool-specific access-to-variable type. It is declared as follows:
type identifier is access subtype-name;
The values of pool-specific access types can only point to dynamically
allocated variables.
2. Generic formal general access-to-variable type. It is declared as follows:
type identifier is access all subtype-name;
The values of general access-to-variable types can only point to variables,
which are either dynamically allocated or declared.
3. Generic formal general access-to-constant type. It is declared as follows:
type identifier is access constant subtype-name;
The values of general access-to-constant types can point to variables or
constants, which are either dynamically allocated or declared.
4. Generic formal access-to-procedure type. It is declared as follows:

type identifier is
access procedure
[ ( parameter-specification ; ... ; parameter-specification ) |;

Square brackets indicate that the in-between are optional.
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5. Generic formal access-to-function type. It is declared as follows:

type identifier is
access function
[ ( parameter-specification ; ... ; parameter-specification ) ]
return subtype-name;

Values of the types declared above in 4 and 5 can be generated within the
generic template by applying 'Access attributes to subprograms with matching
parameter types, parameter modes, and (in the case of functions) result types;
and the subprograms pointed to by these values can be called in a manner
consistent with those types and modes. The generic actual parameter
corresponding to a generic formal access-to-procedure type can be any access-
to-procedure type with the same parameter types and modes, and the generic
actual parameter corresponding to a generic formal access-to-function type can
be any access-to-function type with the same parameter and result types. Only

the parameter and result types have to match, not the subtypes. (ibid.)

Generic formal private types. The simplest form of a generic-formal-private-
type declaration is:
type identifier is private;

This has the same form as a private-type declaration in a package declaration,
but a different meaning. It follows from the principle that a generic formal type
may only be used within its generic unit as a private type. The only operations
available for private types are certain operations available for all types (e.g., the
ability to call subprograms with parameters or results of that type), plus
assignment and predefined comparison for equality. These operations are
available for numeric types, enumeration types, access types, and certain array
types, record types, and private types; it follows from the principle that any
type for which these operations are available may be used as a generic actual

parameter. Thus generic formal private types are quite general. (ibid.)
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Certain private types, array types, and record types (e.g., private types that are
declared with the word limited, array types that have limited components, and
record types that are limited for either of these reasons) are not allowed as
generic actual parameters that correspond to a generic-formal-private-type. A
generic-formal-limited-private-type  provides more freedom in the
correspondence. Its declaration takes the form:

type identifier is limited private;
Since assignment and comparison for equality are not available for limited
types, the freedom in the correspondence necessitates restrictions on the use of

the formals within the generic unit.

There are special forms of generic formal private types for tagged types:

type identifier is tagged private;

type identifier is tagged limited private;
Within the generic template, these generic formal types can be used in the same
ways, respectively, as private and limited private tagged types. In particular,
they can be extended. When the word limited appears in the generic-formal-
type declaration, the corresponding generic actual parameter can be any
definite subtype of a concrete tagged type. When the word limited does not
appear, the corresponding generic actual parameter can be any definite subtype

of a nonlimited concrete tagged type. (ibid.)

2.2.3 Generic Formal Subprograms

This subsection, as well as the following one, will describe the Ada techniques
for constrained genericity. These techniques basically rely on the idea of
encapsulating a type, or a list of functionally dependent types, with the
constraints on them into one entity which is the generic declaration part of the
program unit. The constraints are therefore treated as generic formal

parameters. Syntactically these parameters will be subprogram declarations or
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instances of generic packages preceded by the word with, as in example 5.2. So,
as the with clause is allowed within the generic declaration to declare generic
formal subprograms or generic formal packages, the use clause is also allowed
within the generic declaration so that the visible components of the constraining

subprograms and packages can be expressed concisely.

A generic formal subprogram may be either a generic formal procedure or a
generic formal function. In an instantiation, the generic actual parameter
corresponding to the generic formal subprogram may be the name of any
subprogram that has the same parameter-and-result-type profile and the same
parameter modes, such as in, out, and in out. The subprogram name used as a
generic actual parameter may be an overloaded name, as is the case with the
better function in example 5.2. However, for the instantiation to be legal, there
must be only one version with a matching parameter-and-result-type profile. It

is this version that is used as the generic actual parameter. (Cohen, 1996.)

In example 5.2, the subprogram name better is omitted from the list of actual
parameters to the generic instantiation of the package Comparable. This is
because the name of the actual subprogram matches the name of the
corresponding formal subprogram. This ability to use default actual
subprograms with matching names and types is obtained by specifying is <> in

the declaration of the formal generic subprogram (Meyer 1986).

2.24 Generic Formal packages

A formal package parameter matches any instance of the specified generic
package (Barnes, 1995). The generic declaration of the function Go in example

5.2 illustrates the semantics of declaring such a parameter.

Generic formal packages are appropriate in two different circumstances. In the

first circumstance, the generic is defining additional operations, or a new
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abstraction, in terms of some preexisting abstraction defined by some
preexisting generic. This kind of "layering" of functionality can be extremely
cumbersome if all of the types and operations defined by the preexisting
generic must be imported into the new generic. The generic formal package
provides a direct way to import all of the types and operations defined in an
instance of the preexisting generic. In other words, generic formal packages
allow generics to be parameterized by other generics, which allows for safer
and simpler composition of generic abstractions. In particular it allows for one
generic to easily extend the abstraction provided by another generic, without
requiring the programmer to enumerate all the operations of the first in the

formal part of the second. (ibid.)

A second circumstance where a generic formal package is appropriate is when
the same abstraction is implemented in several different ways. A generic
package can be used to define a signature, and then a given implementation for
the signature is established by instantiating the signature. Once the signature is
defined, a generic formal package for this signature can be used in a generic
formal part as a short-hand for a type and a set of operations. (ibid.) Example
5.2 illustrates the definition of such a signature as a generic empty package

called Comparable.
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3. C++ TEMPLATES

C++, developed by Bjarne Stroustrup of the AT&T Bell Laboratories, is a
successor of the C language. It enhances C by supporting object-oriented
programming. Almost all features of C are still available in C++. Because of the
popularity of C in software industry, this extension gave C++ the required

success. (Tang, 1992.)

According to Stroustrup (1995), C++ directly supports a variety of programming
styles. In this, C++ deliberately differs from languages designed to support a
single way of writing programs. The support for multiple styles is one of its
major strengths. Key programming styles supported by C++ include: traditional
C-style, concrete classes, abstract classes, traditional class hierarchies, abstract

classes and class hierarchies, and generic programming. (ibid.)

Given classes and class hierarchies, we can elegantly and efficiently represent
individual concepts and also represent concepts that relate to each other in a
hierarchical manner. However, some common and important concepts are
neither independent of each other nor hierarchically organized. For example,
the notions “vector of integers”” and ““vector of complex numbers” are related
through the common concept of a vector and differ in the type of the vector
elements (only). Such abstractions are best represented through
parameterization. For example, the vector should be parameterized by the

element type. (Stroustrup, 1998.)

C++ provides parameterization by type through the notion of a template. It was
a crucial design criterion that templates should be flexible and efficient enough
to be used to define fundamental containers with severe efficiency constraints.
In particular, the aim was to be able to provide a vector template class that did

not impose run-time or space overheads compared to a built-in array. (ibid.)



19

3.1 A Simple Class Template

A class template specifies how individual classes can be constructed much like
the way a class specifies how individual objects can be constructed (Stroustrup,
1994). Here is a declaration of a vector class template:

template<class T> class Vector {
T* v;
int sz;
public:
Vector (int);
T& operator|] (int);
T& elem (int i) { return v[i]; }
/...

Example 3.1 (Stroustrup, 1994, p. 341).

The template<class T> prefix! specifies that a template is being declared and
that an argument T denoting a type will be used in the declaration. After its
introduction, T is used exactly like other type names within the scope of the
template declaration. (ibid.) Vectors can then be used like this:

vector<int>v1(20);
vector<complex> v2(30);

Class templates are no harder to use than classes. When the full name of an
instance of a class template is considered too long, abbreviations can be
introduced using typedef. (ibid.)

typedef vector<int> IntVec; I/ make IntVec a synonym for vector<int>.
IntVec v3(10); // v1 above and v3 are of the same type.

The process of generating a class declaration from a template class and a
template argument is often called template instantiation (Stroustrup, 1997).
Anything preceded by template<...> means the compiler will not allocate

storage for it at that point, but will instead wait until it is told to (by a template

1 The typename keyword can be used instead of class when declaring template parameters. It is
now even preferred to class.
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instantiation), and that somewhere in the compiler and linker there is a
mechanism for removing multiple definitions of an identical template (Eckel,
1995). That is, given a template definition and a use of that template, it is the
implementation's job to generate correct code. From a class template and a set
of template arguments, the compiler needs to generate the definition of a class
and the definitions of those of its member functions that were used. The
generated classes are called specializations. Generated specializations and
specializations explicitly written by the programmer are referred to as generated
specializations and explicit specializations, respectively. (Stroustrup, 1997.) Explicit

or user-defined specialization is described in subsection 3.5.

The way members of a template class are declared and defined does not differ
from that of members of a non-template class. Correspondingly, the bodies of
the member functions are not necessarily required to be defined within their
template classes. If such template members are to be defined outside their
classes, they need to be declared explicitly as templates. For example:
template<class T> T& Vector<T> :: operator[] (int i) { /*...*/ }

So, in such a non-inline member function definition, the compiler needs to see a
template declaration in front of the member function. Also, the class name

needs to be specified with the template argument type:Vector<T>.
3.2 Template Parameters

As might be expected, a template can take values and objects, not only types. In
addition, it can use a template as a template parameter. In this subsection,

templates with several parameters and templates as template parameters are to

be described.
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3.2.1 A Template with Several Parameters

The following example illustrates how a template can take two parameters,
where the first type parameter is used in the definition of the subsequent
parameter. As a rule, objects such as def_val cannot be defined beforehand.

template<class T, T def_val> class Cont { /*...%/ };
Example 3.2 (Stroustrup, 1997, p. 331).

Here is another example:

template<class T, int 1> class Buffer {
T oli];
intsz;
public:
Buffer() : sz (i) { }
/...
1
Buffer<char, 127> cbuf ;
Buffer<Record, 8> rbuf ;

Example 3.3 (Stroustrup, 1997, p. 332).

Simple and constrained containers such as Buffer can be important where run-
time efficiency and compactness are paramount (thus preventing the use of a
more general string or vector). Passing a size as a template argument allows

Buffer's implementer to avoid free store use. (Stroustrup, 1997)

A template argument can be a constant expression, the address of an object or
function with external linkage, or a non-overloaded pointer to member. A
pointer used as a template argument must be of the form &of, where of is the
name of an object or a function, or of the form f, where f is the name of a
function. A pointer to member must be of the form &X : : of, where of is the
name of an member. In particular, a string literal is not acceptable as a template

argument. (ibid.)
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3.2.2 Templates as Template Parameters

On certain occasions, templates have indeed a beneficial and practical use as
template arguments. For example:

template<class T, template<class> class C> class Xrefd {
C<T> mems;
C<T*> refs;
/...
5
Xrefd<Entry, vector> x1; //store cross references for Entries in a vector
Xrefd<Record, map> x1; //store cross references for Records in a map

Example 3.4 (Stroustrup, 1997, p. 855).

To use a template as a template parameter, we specity its required arguments.
The template parameters of the template parameter need to be known in order
to use the template parameter. The point of using a template as a template
parameter is usually that we want to instantiate it with a variety of argument
types (such as T and T* in the previous example). That is, we want to express
the member declarations of a template in terms of another template, but we
want that other template to be a parameter so that it can be specified by users.
The common case in which a template needs a container to hold elements of its
own argument type is often better handled by passing the container type.

(Stroustrup, 1997.)
3.3 Template Class Relationships

Against the immediate apprehension by one's object-oriented sense that a
List<Manager> is a List<Employee>, this is a serious logical error based on the
assumption that Manager is a subtype of Employee. It is logically unacceptable
to treat a list of Managers as a list of Employees, because otherwise users could
add Employees who are not Managers to the list. As far as the C++ language

rules are concerned, there is no relationship between two classes generated
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from a single class template; and therefore, List<Manager> guarantees that the
members of the list are all Managers, so that users can safely and efficiently
apply Manager-specific operations on the members of the list (Stroustrup,

1994).

A class template is usefully understood as a specification of how particular
types are to be created. In other words, the template implementation is a
mechanism that generates types when needed based on the user's specification.
Consequently, a class template is sometimes called a type generator. (Stroustrup,
1997.) That is, according to the following example, set<Shape*> and set<Circle*>
are two different types. There cannot be any default relationship between classes
generated from the same template (Stroustrup, 1994). The following example

explains how the compiler supports such a restrictive rule:

class Shape { /*...*/ };
class Circle : public Shape { /*...*/ };
class Triangle : public Shape { /*...*/ };

void f(set<Shape™>& s)

{
...
s.insert(new Triangle());
...

/

void g(set<Circle*>& s)

{

f(s), Il error, type mismatch: s is a set<Circle*>, not a set<Shape*>

}
Example 3.5 (Stroustrup, 1997, p. 348, 349).

This will not compile because there is no built-in conversion from set<Circle*>&

to set<Shape*>&. Nor should there be. (Stroustrup, 1997.)
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3.4 Function Templates

Templates were added to C++ for the same reason that generics were added to
several other languages: to provide a means for developing type safe
containers. Greater emphasis was placed on clean and consistent design than
restriction and policy. For example, although function templates are not
necessary to develop type-safe polymorphic containers, C++ has always
supported classes and standalone functions equally; supporting function
templates in addition to class templates preserves that design philosophy.

(Garcia et al., 2003.)

According to Stroustrup (1994), function templates were introduced partly
because member functions were clearly needed for class templates and partly
because the template concept seemed incomplete without them. Naturally,
there were also quite a few textbook examples, such as sort() functions. Andrew
Koenig and Alex Stepanov were the main contributors of examples requiring
function templates. Sorting an array was considered the most basic example

(see example 3.6 below). (ibid.)

Function templates proved extremely useful in their own right, and they also
proved essential for supporting class templates when non-member functions

are preferred over member functions (ibid.).

Regarding template instantiation, the compiler treats function templates as well
as it does with class templates. That is, from a template function definition and
the use of that template function, the compiler will generate a function(s) with
the correct code. Different from class templates, whose parameters are never
deduced, the compiler can deduce type and non-type arguments from the
function calls; the compiler handles this with reference to the function

argument list that determines the set of template arguments. Furthermore, only
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class templates can be template arguments; function templates neither are types
nor considered as those non-type objects that are allowed as template
arguments. Lastly, we cannot overload a class template name; specialization is
the means by which we can provide alternative implementations for a template.
Overloading is a facility for functions only. Function template overloading is

described in subsection 3.5.3.

/I declaration of a template function:
template<class T> void sort (vector<T>&);

void f(vector<int>& vi, vector<string>& vs)

{
sort (vi) ; !/ sort(vector<int>& v);
sort (vs) ; / | sort(vector<String>& v);

}

/I definition of a template function:
template<class T> void sort (vector<T>& v)
/>E

Sort the elements into increasing order

Algorithm: bubble sort (inefficient and obvious)
%/

unsigned int n = v.size();

for (int i=0; i<n-1; i++)
for (int j=n-1; i<j; j--)
if (vljl <olj-11) { // swap v[j] and v[j-1]
T temp = v[jl;
vljl =vlj-1];
vlj-1] = temp;
/

Example 3.6 (Stroustrup, 1994, p. 348).
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3.5 User-defined Specialization

As a matter of fact, specialization had to be available in C++ in order to prevent
critical code enlargements that might be experienced with macro expansion and
primitive instantiation mechanisms. Specialization preserves the highest run-
time performance that could be experienced with implementation behaviors
that replicate the code at each call site, and at the same time avoids such code-
bloating behaviors. The compiler only checks the syntax of template definitions
without allocating any storage; then at the points of template instantiations, it
starts to generate code. What is known as template-generated code is also called
generated specializations, relying on the fact that the code will not be replicated

when a template is used with the same template arguments.

C++ allows the programmer to provide specialized implementations, or to write
explicitly alternative definitions of a template for specific arguments, in which
case the specialization is called explicit specialization, user-defined specialization, or
simply, user specialization. This is particularly important when it is necessary to
have an implementation that differs from the default, or to give an error
whenever the template arguments are not expected, given the fact that template
arguments are not constrained in any way. A perfectly predictable build

process is essential to some users (Stroustrup, 1997).

The following couple of subsections explain, with reference to examples from
Stroustrup (ibid.), how containers such as Vectors of pointers can share a single
implementation. Afterwards, template function specialization is to be
explained. Since the specialization should be of an existing template, a general

vector type is to be defined first. It might read as follows:
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template<class T> class Vector { /1 general vector type
T* v,
int sz;
public:
Vector ();
Vector (int);

T& elem (int i) { return v[i];
T& operator[] (int i);

void swap (Vector&);
/..

Example 3.7 (Stroustrup, 1997, p. 341).

3.5.1 Complete Specialization!

Relying on the fact that examples are the best way to convey ideas, we first
define a complete specialization of Vector for pointers to wvoid. That is, a
specialization that has no template parameter to specify or deduce as we use it:

template<> class Vector<void*> {
void™ p;

/...

Void*& operator|] (int);

)

Example 3.8 (Stroustrup, 1997, p. 341).

The template<> prefix says that this is a specialization that can be specified
without a template parameter. The template arguments for which the
specialization is to be used are specified in <> brackets after the name. That is,
the <void*> says that this definition is to be used as the implementation of every
Vector for which T is void*. (Stroustrup, 1997.) In this manner, Vector<void*> v;

is an instance with a definition of its own.

1 This is according to Stroustrup (1997); some authors call it "full specialization".
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The above specialization is to be used in the next example as the common
implementation for all Vectors of pointers, although it is not a prerequisite to

have defined a complete specialization before detining a partial specialization.

3.5.2 Partial Specialization

A specialization is likely to be defined for a wide variety of template arguments.
For example, a specialization for Vector<T*> can be defined for any T; this is
known as partial specialization, while <T*> is the specialization pattern. That is,
for Vector<char*>, T is char not char*. So, to define a specialization that can be
used for every Vector of pointers, we need partial specialization:

template<class T> class Vector<IT*> : private Vector<void™> {
public:
typedef Vector<void*> Base;

Vector() : Base() { |
explicit Vector (int i) : Base(i) { }

T*& elem (int i) { return static_cast<T*&> ( Base :: elem(i) ); }
T*& operator[] (int i) { return static_cast<T*&> ( Base :: operator[] (i) ); }

...

Example 3.9 (Stroustrup, 1997, p. 342).

Given this partial specialization of Vector, we have a shared implementation for
all Vectors of pointers. The Vector<T*> class is simply an interface to
Vector<void*> implemented exclusively through derivation and inline

expansion. (Stroustrup, 1997.)
3.5.3 Template Function Specialization

One can declare several function templates with the same name and even
declare a combination of function templates and ordinary functions with the

same name. When an overloaded function is called, overload resolution is
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necessary to find the right function or template function to invoke. (Stroustrup,
1997.) So, straightforwardly, we can not partially specialize template functions

because they can simply overload; they can only be fully specialized.

/1 A function template
template<class T> bool less(T a, T b) { return a<b; } /] (1)

/1 Different forms of declarations for specializing (1) for const char*
template<> bool less<const char*> (const char* a, const char*b)  //(2)
{

return stremp (a, b ) <0;

/

template<> bool less<> (const char* a, const char*b) { /* ... */} 1/ (3)

template<> bool less(const char* a, const char*b) { /* ... */ } /] (4)
Example 3.10 (Stroustrup, 1997, p. 344).

The template<> prefix as well as the <const char*> after the name in (2) declare
the same as for class template complete specialization. However, the declarations in
(3) and (4) are equivalent to (2) since the template argument can be deduced

from the function argument list.

So, what would be the resolution in the case of defining either a template
function or ordinary function to overload with (1) in the existence of (2)? The
ordinary non-template function which matches the parameter types, has the
highest priority. Template functions will then be compared to select the best
match regardless of any associated specializations. Finally, specialization
declarations will be looked at, if there is any, according to the selected template

function.
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4. JAVA GENERICS

Java is an object-oriented programming language developed primarily by James
Gosling and colleagues at Sun Microsystems. The language, initially called Oak
(named after the oak trees outside Gosling's office), was intended to replace
C++, although the feature set better resembles that of Objective C. As part of the
Green Project, Java was developed in 1991. It was published in 1994.
(wikipedia.org)

Before JDK 1.5 or "Tiger", Java had no support for parameterized types in spite
of the fact that the Collections Framework was introduced in JDK 1.1, and then
redesigned more thoroughly in JDK 1.2. The fact is, for the purpose of making
the Collections Framework a general-purpose tool, collections were designed to
hold handles to objects of type Object, which is the root of all classes (Eckel,
1998). Therefore, since primitive data types (e.g., int) are not references, items of
these types cannot be shoved into a collection. Instead, all primitive data types
have their corresponding wrapper classes (e.g., Integer) in the Java standard
library. As a result, the type information will be lost as soon as an object is
shoved into a collection, since the only thing a collection knows it holds is a
handle to an Object (ibid.). Therefore, it is essential to perform a cast to the
correct type before an object can be used (ibid.). That is, there had been
collections, or containers, as well as the technique to patronize a deceptive
genericity. This could be clarified using an example from Bracha (2004) as
follows:

List myIntList = new LinkedList(); // 1
mylIntList.add(new Integer(0)); // 2
Integer x = (Integer) mylntList.iterator().next(); // 3

Example 4.1 (Bracha, 2004, p. 2)
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The cast on line 3 is essential. The compiler can only guarantee that an Object
will be returned by the iterator. To ensure the assignment to a variable of type
Integer is type safe, the cast is required. (ibid.) However, it is possible that
someone has stored something other than an Integer in this List, in which case

the code above would throw a ClassCastException (Goets, 2004).

According to Goets (ibid.), to eliminate the casts from one's code and, at the
same time, gain an additional layer of type checking that would prevent
someone from storing keys or values of the wrong type in a collection, JDK 1.5
introduces generics as a new extension to Java. It permits a type or method to
function on objects of different types with compile-time type safety. Generics
provide additional compile-time type safety to the Collections Framework and
get rid of the tedious unpleasant work of casting. That is, programmers would
actually be able to express their intent, and mark a list as being restricted to
contain a particular data type (Bracha, 2004). Another version of the above
example using generics follows:

List<Integer> mylntList = new LinkedList<Integer>(); // 1’
mylIntList.add(new Integer(0)); //2’
Integer x = mylIntList.iterator().next(); // 3’

Example 4.2 (Bracha, 2004, p. 2)

The type declaration for the variable mylIntList specifies that this is not just an
arbitrary List, but a List of Integer, written List<Integer>. We say that List is a
generic interface that takes a type parameter - in this case, Integer. We also

specify a type parameter when creating the list object. Also the cast is gone on

line 3'. (ibid.)

It is clear from the above example that the wrapper classes (e.g., Integer) of the
Java standard library are still in service. This is not only because collections,
after they are generified, still can only hold handles to objects of type Object,

but in a general sense, because Java generics are designed to use only classes
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and interfaces as type arguments. That is, the technique is to restrict generics to
take only objects that are, in fact, inherited from the type Object. For certain,
this technique provided Java genericity with one of its defining characteristics,
relative to C++, which is the single compilation of the generic type declaration.
Any generic type declaration will be compiled only once and finally, since the

compiler treats any generic unit as if it were parameterized by the type Object.

4.1 Benefits of Java Generics!

The addition of generics to the Java language is a major enhancement. Not only
were there major changes to the language, type system, and compiler to
support generic types, but the class libraries were overhauled so that many
important classes, such as the Collections framework, have been made generic.
This enables a number of benefits:

o Type safety. The primary goal of generics is to increase the type safety of
Java programs. By knowing the type bounds of a variable that is defined
using a generic type, the compiler can verify type assumptions to a much
greater degree. Without generics, these assumptions exist only in the
programmer's head (or in a code comment). A popular technique in Java
programs is to define collections whose elements or keys are of a
common type, such as "list of String" or "map from String to String." By
capturing that additional type information in a variable's declaration,
generics enable the compiler to enforce those additional type constraints.
Type errors can now be caught at compile time, rather than showing up
as ClassCastExceptions at runtime. Moving type checking from runtime
to compile-time helps programmers to find errors more easily and

improves their programs' reliability.

1 This subsection is entirely cited from Goets (2004) with a few changes.
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o Elimination of casts. A side benefit of generics is that many type casts
can be eliminated from the source code. This makes code more readable
and reduces the chance of error. Although the reduced need for casting
reduces the verbosity of code that uses generic classes, declaring
variables of generic types involves a corresponding increase in verbosity.
Comparing the above two code examples 4.1 and 4.2, the use of a
variable of generic type only once in a simple program does not result in
a net savings in verbosity. But the savings start to add up for larger
programs that use a variable of generic type many times.

o Potential performance gains. Generics create the possibility for greater
optimization. In the initial implementation of generics, the compiler
inserts the same casts into the generated bytecode that the programmer
would have specified without generics. But the fact that more type
information is available to the compiler allows for the possibility of

optimizations in future versions of the JVM. (Goets, 2004.)

Because of the way generics are implemented, (almost) no JVM or classfile
changes were required for the support of generic types. All of the work is done
in the compiler, which generates code similar to what programmers would
write without generics (complete with casts), only with greater confidence in its

type safety. (ibid.)
4.2 Simple Java Generics

Many of the best examples of generic types come from the Collections
framework, because generics let programmers specify type constraints on the
elements stored in collections (Goets, 2004). Here is a small excerpt from the

definitions of the interface List and Iterator in package java.util (Bracha, 2004):
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public interface List<E> {
void add(E x);
Iterator<E> Iterator();

}

public interface Iterator<E> {
E next();
boolean hasNext();

}

Example 4.3 (Bracha, 2004, p. 3)

According to Bracha (ibid.), other than what is in angle brackets is not new to
the Java programming language; it is the declaration of the formal type parameter
of the interfaces List and Iterator. Then, throughout the generic declaration, the
type parameter can be used almost in any place in which class names could be
used. Each of the List and Iterator interfaces are parameterized by one type E.
Methods that would (without generics) accept or return Object now use E in
their signatures instead, indicating additional typing constraints underlying the
specification of List and Iterator (Goets, 2004). Normally, the values of the type
parameters, or the actual type parameters, should be specified at the time of
declaring or instantiating objects of a generic type:

List<Integer> mylntList = new LinkedList<Integer>();
Example 4.4

In this statement, the type parameter had to be specified a couple of times. First,
with the declaration of the type of the variable myInList; and secondly, to
parameterize the LinkedList class so that an instance of the correct type can be
instantiated. The instantiation of a generic in Java is never actually expanded at
compile-time like in this example:

public interface IntegerList {
void add(Integer x);
Iterator<Integer> Iterator();

/

Example 4.5 (Bracha, 2004, p. 3)
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There are not multiple copies of the code: not in source, not in binary, not on
disk and not in memory. This is very different from a C++ template; a generic
type declaration is compiled once and for all, and turned into a single class file,

just like an ordinary class or interface declaration. (Bracha, 2004.)

Type parameters are analogous to the ordinary parameters used in methods or
constructors. Much like a method has formal value parameters that describe the
kinds of values it operates on, a generic declaration has formal type parameters.
When a method is invoked, actual arguments are substituted for the formal
parameters, and the method body is evaluated. When a generic declaration is
invoked, the actual type arguments are substituted for the formal type
parameters. (ibid.) For instance, whenever the compiler finds a variable of type
List<Integer>, mylIntList according to example 4.4, it regards E as constrained
to Integer; as a result, it recognizes the formal parameter x of the method
mylntList.add() as of type Integer. That is, the compiler will ascertain that any

value passed to List.add() on the variable myIntList should be an Integer.

As mentioned above, the technique of restricting generics to take only classes
and interfaces as type arguments led to Java's capability to perform a generic
type declaration's single compilation. However, this will inevitably result in
verbose code. The following example from Garcia et al. (2003) shows the syntax
for setting the weights of a graph edge using the wrapper classes, it is:

weight_map.set(new adj_list_edge(new Integer(3), new Integer(5)),
new Double(3.4))

Example 4.6 (Garcia et al., 2003, p. 128).

Generics interact synergistically with several of the other new language features
in JDK 1.5, including the enhanced for loop (sometimes called the foreach or
for/in loop), enumerations, and autoboxing (Goets, 2004). According to Bracha

and Bloch (2002), the Autoboxing/Unboxing feature, which automates the
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conversion process from primitive data types to their wrapper classes and vice
versa, solves the problem illustrated in example 4.6 so that the syntax can make
as if it permits primitive data types as actual type parameters, and therefore the
code would be simpler as in the following version of example 4.6:

weight_map.set(new adj_list_edge(3, 5), 3.4)
Example 4.7 (Garcia et al., 2003, p. 128).

Any class, except an exception type, an enumeration, or an anonymous inner

class, can have type parameters (Goets, 2004).

4.3 Generic Methods

Methods can also be made generic, whether or not the class in which they are
defined is generic. With reference to example 4.3, Generic classes enforce type
constraints across multiple method signatures. In List<E> and Iterator<E>, the
type parameter E appears in the signatures for add() and next(), respectively.
When a variable of type List<E> is created, a type constraint is asserted across
methods. The values to be passed to add() will be the same type as those
returned by next(). Similarly, a generic method is generally declared to assert a
type constraint across multiple arguments to the method. (Goets, 2004.) For
example, depending on the boolean value of the first argument to the
ifThenElse() method in the following code, it will return either the second or
third argument (ibid.):

public <T> T ifThenElse(boolean b, T first, T second) {
return b ? first : second;

}
Example 4.8 (Goets, 2004).

ifThenElse() can be called without explicitly telling the compiler what value of T
is required. The compiler does not need to be told explicitly what value T will

have; it only knows that they must all be the same. The compiler allows a call,
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such as String s = ifThenElse(b, "a”, "b”); because the compiler can use type
inference to infer that substituting String for T satisfies all type constraints.
Similarly, this is allowed Integer i = ifThenElse(b, new Integer(1), new Integer(2));
However, the compiler doesn't allow String s = ifThenElse(b, "pi”, new Float(3.14));

because no type will satisfy the required type constraints. (ibid.)

Why is a generic method used instead of adding the type T to the class
definition? There are (at least) two cases in which this makes sense:

e When the generic method is static, in which case class type parameters
cannot be used.

o When the type constraints on T really are local to the method, which
means that there is no constraint that the same type T be used in another
method signature of the same class. Making the type parameter for a
generic method local to the method simplifies the signature of the

enclosing class. (ibid.)
44 Generic Types are not Covariant

A common source of confusion with generic types is to assume, for example,
that Collection<Object> is the supertype of all kinds of collections. This is
actually not true. What applies to C++ concerning this issue applies exactly to

Java. See subsection 3.3.

4.5 Subtype-based Constraints

On how a particular programming language (Fiffel) uses a balanced
combination of genericity and inheritance, Meyer (1986) states that the Ada-like
constrained genericity was avoided because it would be redundant with the
inheritance mechanism. To provide the equivalent of a constrained formal
generic parameter, we declare a special class whose features correspond to the

constraints (i.e., the with subprograms in Ada terminology), and declare any
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corresponding actual parameters as descendants of this class (ibid.). This is
exactly what applies to Java; the above-mentioned special constraining class is
best represented in Java through an interface definition, as is the case with the
interface Comparable in examples 4.10 and 5.1; the types Apple and Orange in
example 5.1 represent the actual parameters that are descendants of the

constraining class.

In addition, the Java compiler will not permit a code such as the following;:

class pick {
static<T>T go(T a, Tb) {
if (a.better(b)) return a; else return b;
/
}

Example 4.9

The above example will not compile because T does not stand for an arbitrary
type, as it does in Ada and C++; it rather stands for type Object. Such an
example would compile only if better() is one of the Object methods (e.g.,
equals()). Accordingly, the way to make such a code compile is by defining an
interface that encapsulates the signature of the better method. The following
example will compile:

interface Comparable<T> {
boolean better(T x);
/

class pick {
static<T extends Comparable<T>> T go(T a, T b) {
if (a.better(b)) return a; else return b;

/
/

Example 4.10 (Garcia et al., 2003, p. 118).

In this example, extends does not mean inheritance. The extends keyword is

here used to define the bounds of a type parameter. We can then supply a class
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type that implements the bound. In other words, extends in conjunction with
type parameter bounds does not strictly mean inheritance, but it also includes
the implements-relationship that exists between classes and interfaces (see
example 5.1). In conjunction with type parameter bounds, the extends keyword
refers to an even broader notion of subtyping. It includes relationships that
cannot be expressed in terms of extends or implements as we know them from

non-generic Java. (Langer, 2005.)

Clearly, the subtype-based constraining mechanism proves inevitable because
of the way type parameterization is handled in Java. However, this technique is
somehow representing an obstacle to effective generic programming in Java, as
explained later on in this study, and seems to be the base reason from which

most criticisms about Java's version of generic programming initiate.

4.6 Wildcards with Methods' Formal Parameters

As demonstrated above, while Object is the base class of all classes in Java,
Collection<Object> cannot be a supertype of all kinds of collections. According
to Bracha (2004), the supertype of all kinds of collections is Collection<?> and is
pronounced "collection of unknown", that is, a collection whose element type
matches anything (ibid.). Here is a routine to print all elements in a collection; as
for the new for loop, whose syntax is for (variable : collection), it iterates over
collections to get elements in a sequential manner:

void printCollection(Collection<?>c) {
for (Objecte: c) {
System.out.printin(e);
H

Example 4.11 (Bracha, 2004, p. 5).

Certainly, the types of all elements to be read from c are inherited from Object;

and therefore, they can be read as of type Object. However, we cannot add
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arbitrary objects to a collection of unknown. ? is not a supertype, it symbolizes

an unknown type.

Bounded Wildcards

As said in subsection 3.3, List<Manager> is not a List<Employee>. We should
consider first the following example:

public void viewAlINames(List<Employee> employees) {
for (Person i: employees){
System.out.printin (i.full_name);

4
Example 4.12

We cannot call viewAlINames() on lists of other than Employee; for example,
List<Manager>, although we know that Manager is a subtype of Employee.
According to Bracha (2004), Wildcards can ease the matter of allowing such
methods to accept collections of any subtype of Employee, for example.
Accordingly, the List<Employee> in the above example could be replaced with
a bounded wildcard such as List<? extends Employee> so that viewAlINames()
can accept lists of any subtype of Employee. That is, it is possible now to call
viewAlINames() on a List<Manager>. Furthermore, List<Employee> can also be
replaced with List<? super Employee> so that viewAlINames() can accept lists
of any supertype of Employee; and therefore, it is possible to call
viewAllNames() on a List<Person>, for example. We know that ? symbolizes an
unknown type, which is in fact a subtype (supertype) of Employee. We say that
Employee is the upper bound (lower bound) of the wildcard. The unknown
type could be Employee itself, or some subtype (supertype). Since we do not
know what type it is, we do not know if it is a supertype (subtype) of Manager
(Person); it might or might not be such a supertype (subtype), so it is not safe to
add a Manager (Person) to a List<? extends Employee> (List<? super

Employee>). (Bracha, 2004.)
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The wildcard instantiation (e.g., List<? extends Employee>) is a supertype of
the concrete instantiation on a subtype of the upper bound (e.g.,
List<Manager>). At the same time, a wildcard instantiation with an upper
bound is supertype of all generic subtypes that are instantiated on the same
upper bound wildcard. For instance, List<? extends Employee> is supertype of
LinkedList<? extends Employee> and ArrayList<? extends Employee>. The
upper bound wildcard instantiation is also supertype of other upper bound
wildcard instantiation with an upper bound that is a subtype of the own upper
bound. For instance, List<? extends Employee> is supertype of List<? extends
Manager> and List<? extends Trainer>, because Manager and Trainer are

subtypes of Employee. (Langer, 2005.)

In the same way, the wildcard instantiation (e.g., List<? super Employee>) is a
supertype of the concrete instantiation on a supertype of the lower bound (e.g.,
List<Person>). At the same time, a wildcard instantiation with a lower bound is
supertype of parameterized subtypes that are instantiated on the same lower
bound wildcard. For instance, List<? super Employee> is supertype of
LinkedList<? super Employee> and ArrayList<? super Employee>. The lower
bound wildcard instantiation is also supertype of other lower bound wildcard
instantiation with a lower bound that is a supertype of the own lower bound.
For instance, List<? super Employee> is supertype of List<? super Person>,
because Person is a supertype of Employee. The idea is that if the lower bound
of one wildcard is a subtype of the lower bound of another wildcard then the
type family with the subtype bound includes the type family with the
supertype bound. If one family of types (e.g., ? super Employee) includes the
other (e.g., ? super Person) then the wildcard instantiation on the larger family
(e.g., List<? super Employee>) is supertype of the wildcard instantiation of the

included family (e.g., List<? super Person>). (ibid.)
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5. GENERIC PROGRAMMING

Like most new ideas, generic programming actually has a long history. Some of
the early research papers on generic programming are nearly 25 years old, and
the first experimental generic libraries were written in Ada' and Scheme. The
first example of generic programming to become important outside of research
groups was the STL, the C++ Standard Template Library. The Standard
Template Library, designed by Alexander Stepanov and Meng Lee, was
accepted in 1994 as part of the C++ standard library. (Austern, 1999.)

From an interview conducted by Russo (2001) with Alexander Stepanov, the
following quote summarizes the goals of generic programming:

"Generic programming is a programming method that is based in finding the most
abstract representations of efficient algorithms. That is, you start with an algorithm and
find the most general set of requirements that allows it to perform and to perform
efficiently. The amazing thing is that many different algorithms need the same set of
requirements and there are multiple implementations of these requirements. The
analogous fact in mathematics is that many different theorems depend on the same set of
axioms and there are many different models of the same axioms. Abstraction works!
Generic programming assumes that there are some fundamental laws that govern the
behavior of software components and that it is possible to design interoperable modules
based on these laws. It is also possible to use the laws to guide our software design. STL
is an example of generic programming. C++ is a language in which I was able to

produce a convincing example ”.

Musser (2003) defines generic programming as "programming with concepts,"
where a concept is defined as a family of abstractions that are all related by a

common set of requirements. A large part of the activity of generic

1 Musser & Stepanov (1987, 1989).
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programming, particularly in the design of generic software components,
consists of concept development--identifying sets of requirements that are
general enough to be met by a large family of abstractions but still restrictive
enough that programs can be written that work efficiently with all members of

the family. (ibid.)

Another more inclusive definition by Musser and Stepanov, stated in Jazayeri et
al. (1998), demonstrates the efficiency restrictions necessary for implementing
generic programming:

"Generic programming is a sub-discipline of computer science that deals with finding
abstract representations of efficient algorithms, data structures, and other software
concepts, and with their systematic organization. The goal of generic programming is to
express algorithms and data structures in a broadly adaptable, interoperable form that
allows their direct use in software construction. Key ideas include:

- Expressing algorithms with minimal assumptions about data abstractions, and
vice versa, thus making them as interoperable as possible.

- Lifting of a concrete algorithm to as general a level as possible without losing
efficiency; i.e., the most abstract form such that when specialized back to the
concrete case the result is just as efficient as the original algorithm.

- When the result of lifting is not general enough to cover all uses of an algorithm,
additionally providing a more general form, but ensuring that the most efficient
specialized form is automatically chosen when applicable.

- Providing more than one generic algorithm for the same purpose and at the same
level of abstraction, when none dominates the others in efficiency for all inputs. This
introduces the necessity to provide sufficiently precise characterizations of the
domain for which each algorithm is the most efficient.”

Jazayeri et al (1998) p. 2

So, the notion of abstraction is fundamental to generic programming: generic
algorithms are specified in terms of abstract properties of types, not in terms of
particular types (Siek & Lumsdaine, 2004). Thus, generic algorithms must be
polymorphic (Garcia et al, 2003). According to Garcia et al. (ibid), the
terminology to be used subsequently is of Alexander Stepanov and Matthew

Austern.
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A concept is the formalization of an abstraction as a set of requirements on a
type (or several types). These requirements may be semantic as well as
syntactic. A concept may incorporate the requirements of another concept, in
which case the first concept is said to refine the second. A type (or list of types)
that meets the requirements of a concept are said to model the concept.
Concepts are used to specify interfaces to generic algorithms by constraining
the type parameters of an algorithm. A generic algorithm may only be used
with type arguments that model its constraining concepts. (Siek & Lumsdaine,
2004.) At a high level, the concept/model/refine relationship is analogous to the
class/instance/inherit relationship in object-oriented programming (Mueller &

Jensen, 2004).

Due to the way a concept could be modeled, by whichever concrete type that
satisfies its requirements, algorithms defined with reference to concepts should
be implemented in a way that allows them to function using multiple types. In
languages such as C++ and Java, calling a template function or generic method
is not different from calling a non-template function or non-generic method.
That is, type parameters can be deduced without requiring explicit syntax for
instantiation (Garcia et al., 2003). Thus, a concept could be thought of as a
contract; as long as this contract is kept, one value can take certain type(s); and
therefore, generic algorithms (functions or static methods) are fundamentally
concerned with the capability of an argument (or actual parameter) to satisfy
specific requirements. These requirements can be as simple as being able to be
compared to other values of the same type or as complicated as having to
define many operations and other types that work with the value during the

execution of the algorithm (Mueller & Jensen, 2004).

In the next three subsections, one simple example will be implemented in each
of the target languages to show how the methodology of generic programming

can be applied in these languages. Other supplemental language features that
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contribute in the development of high quality generic libraries are to be

described subsequently in this section.

51 Java

The means to approximate concepts in Java is interfaces. A Java interface is
perfectly what is required to formalize an abstraction as a set of requirements
on types. Example 5.1 shows how the concept comparable could be realized as

an interface and how Apple and Orange! could model the comparable concept.

interface Comparable<T> {
boolean better(T x);
/

class pick {
static <T extends Comparable<T>>
Tgo(Ta, Th){ /I modified?
if (a.better(b)) return a; else return b;
/
/

class Apple implements Comparable<Apple> {
Apple(int r) { rating =r; }
public boolean better(Apple x)
{ return x.rating < rating;}
int rating;

}

class Orange implements Comparable<Orange> {
Orange(String s) { name =s; }
public boolean better(Orange x)
{ return x.name.compareTo(name) > 0;}
String name;

/

1 The class type Orange in example 5.1 was not included in the original example by Garcia et al.
(2003). It was implemented in C++ for some other example.

2 With reference to other examples in Garcia et al. (2003), as well as the method call in this
example, the method name "go" is the correct replacement of the method name "pick" in the
original example.
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public class Main {
public static void main(String[] args) {

Apple al = new Apple(3),
a2 = new Apple(5);

Orange 01 = new Orange("Miller”),
02 = new Orange(”Portokalos”);

Apple a3 = pick.go(al, a2);
Orange 03 = pick.go(01, 02);
/
/

Example 5.1 (Slightly adapted from Garcia et al., 2003, p. 118).

The Generic algorithm in the above example is realized as a static method.
There are two choices for how to parameterize the method: either
parameterized methods in non-parameterized classes or non-parameterized
methods in parameterized classes; the first alternative has the advantage of
implicit instantiation (subsection 5.4.7), while the second alternative requires the
more verbose explicit specification of type arguments (Garcia et al. 2003). In
example 5.1, the generic algorithm is realized as a static parameterized method,

called go, in a non-parameterized class, called pick.

Subtyping is utilized to constrain the type parameters of the generic algorithm
so that the generic method can only be called with arguments of types that
model the constraining concept comparable. In example 5.1, although it is
enough to use only either of the two class types (Apple and Orange) to
demonstrate the modeling relationship, they were both used to demonstrate
implicit instantiation. In a coming C++ example, it would be enough to use type
int to demonstrate the above-mentioned notions as well as implicit instantiation.
In Java, as explained earlier, we must use wrapper classes as type parameters
instead of primitive types. However, wrapper classes are not qualified to

support subtype base constraining.
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5.2 Ada

Ada 95 allows generic packages to be used as generic formal parameters. The
Rationale, Barnes (1995), shows one use—also known as signature—of this
possibility: characteristics of an abstraction are grouped using the formal
parameters of a generic empty package. Signatures are the natural way to
express concepts. (Duret-Lutz, 2001.)

-- define signature for Comparable
generic

type T is private;

with function better( x, y : T ) return Boolean is <>;
package Comparable is end;

-- generic declaration for the generic algorithm
with Comparable;
generic
with package Pick is new Comparable (<>);
use Pick;
function Go (a,b: T) return T;

-- generic algorithm
function Go (a, b : T) return T is
begin
if better(a, b) then
return a; else return b;
end if;
end Go;

with Comparable;
package Comparable_Instances is

"o n

package Pick_Int is new Comparable(Integer, ">");

type Apple is
record
rating : Integer;
end record;
function better(a, b: Apple) return Boolean;
package Pick_Apple is new Comparable(Apple);

end Comparable_Instances;
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package body Comparable_Instances is

function better(a, b: Apple) return Boolean is
begin  return b.rating <a.rating;  end better;

end Comparable_Instances;

with Go ,Comparable_Instances;
use Comparable_Instances;
procedure Main is

i: Integer:= 0;
j: Integer:= 2;

al: Apple:= (rating => 3);
a2: Apple:= (rating =>5);

function Better_Int is new Go (Pick_Int);
k: Integer:= Better_Int(i, j);

function Better_Apple is new Go (Pick_Apple);
a3: Apple:= Better_Apple(al, a2);

begin
end Main;
Example 5.2

In the above example, Pick_Apple and Pick_Int are explicit instances of the
Comparable concept. Pick_Int is parameterized by the operator ">” as the
generic actual function parameter to be used with type Integer. Pick_Apple is
intended to select the generic actual function better according to the type
argument being used, which is Apple, since this function is supposed to
overload as in example 5.7. Thus, the type (or list of types) to be used as a type
argument in an explicit instantiation of a concept is said to model explicitly the
concept. Pick_Apple and Pick_Int are then passed as the constraining actual
parameters of the generic algorithm Go, by instantiating Go explicitly as
Better_Apple and Better_Int. This way, the type T is said to be equipped with

the right better function.
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5.3 C++

One of the interesting things about generic programming in C++ is that the STL
documentation puts into use the term concept to indicate a set of requirements
on types, while concepts are not represented by the syntax. Certainly because
the STL as well as the methodology used were developed by Alexander
Stepanov. So, C++ has no explicit features to support the notion of concepts.
Because of the flexibility of C++ templates, programmers are likely to code in
nearly the way that it would be if the feature were supported. The following
two examples from Garcia et al. (2003) show how a generic algorithm could be
realized as a function template and how template parameters could be named
to identify a concept such as Comparable, which is defined to represent types
that may be used with the generic algorithm pick:

template <class Comparable>

const Comparable&

pick(const Comparable& x, const Comparable& y) {
if (better(x, y)) return x; else return y;

/
Example 5.3 (Garcia et al., 2003, p. 117).

So, for the concept Comparable to say, for example, "if the arguments given to
pick are of type int, use this implementation of the better function; if they are of
type Apple, use that other implementation of the better function", the following

code can be implemented:

bool better(int i, int j) { return j <i; }

struct Apple {

Apple(int r) : rating(r) {}

int rating;

5

bool better(const Apple& a, const Apple& b)
{ return b.rating < a.rating; }
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int main(int, char*[]) {
inti=0,j=2;
Apple al(3), a2(5);

int k = pick(i, j);
Apple a3 = pick(al, a2);

return EXIT_SUCCESS;
/

Example 5.4 (Garcia et al., 2003, p. 117).

Thus, Apple is said to be modeling the Comparable concept implicitly via the

existence of the better function for the Apple type.

Standard practice, in the case of C++, is to express concepts in documentation.
For example:
concept Comparable :

bool better(const Comparableé&, const Comparable&)

54 Supplemental Language Features

In addition to the primary aspects of generic programming, i.e., generic
algorithms, concepts, refinement, modeling, and constraints, Garcia et al. (2003)
came up with the following eight supplemental language features, which are
used to support generic programming. Table 5.1 shows the level of support for
these features in each of the target languages; the C++ and Java columns are of

Garcia et al. (ibid.), while the third column is a finding of this thesis work.
5.4.1 Multi-type Concepts

Indicates whether multiple types can be simultaneously constrained. In Java
generics, concepts are approximated by interfaces. The modeling relation
between a type and a concept is approximated by the subtype relation between
a type and an interface. The refinement relation between two concepts is

approximated by interface extension. (Garcia et al., 2003.) A constraint signifies
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a requirement that a type should satisfy so that a generic type can be
constructed. Constraints based on interfaces and subtyping, however, cannot

correctly express constraints on multiple types (ibid.).

C++ Java Ada
Multi-type concepts - O [ ]
Multiple constraints - ® [ ]
Associated type access o ® [ ]
Retroactive modeling - O ®
Type aliases ® O {
Separate compilation O ® L
Implicit instantiation L L ©)
Concise syntax ® ® O

Table 5.1: The level of support for important properties for generic

programming in C++, Java, and Ada.

® Fully supported.

® Partially supported.

O Not supported.

- While C++ does not support the feature, one can still program as if
the feature were supported due to the flexibility of C++ templates.
(Garcia et al., 2003, p.117.)

The way Ada handles constrained genericity (by allowing subprograms and
packages to be used as generic formal parameters so that constraints on type
parameters can be declared in the generic definition) exhibits the quality
required for a list of types to model simultaneously the constraining concept, or
for supplying the list of types that models the constraining concept with the

right operations simultaneously.

Likewise, multiple types can model simultaneously the documented
constraining concept in C++, even with greater flexibility and reduced code, but
less security, as there is no separate type checking for templates, and therefore

there is no mechanism to constrain type parameters.

5.4.2 Multiple Constraints

Indicates whether more than one constraint can be placed on a type parameter

(Garcia et al., 2003). As mentioned above, C++ has no mechanism to constrain
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type parameters. This is because C++ does not provide separate type checking
for templates. Before a template class or template function is used with specific
arguments, the compiler need not to compile the template code. Presumably,
templates define constraints implicitly, i.e., during the compilation, while the
compiler places the code inline. Only while an instantiation is being compiled,

the values of the generic parameters can be verified to be valid or not.

In Java, type parameters can be constrained using subtyping, including
multiple constraints on one parameter (ibid.). For a given type parameter, any
number of interfaces can be specified as constraints. In the following example,
the T type parameter has two interface constraints:

public class java_multiple_constraints {
public static <T extends I_fac_1 & I_fac_2>
void generic_algorithm(T a) { /* ... */ }

/

Example 5.5.

In Ada, the way to specify that a type is equipped with the right subprograms
or packages is to list the required constraining units within the generic
declaration as formal generic parameters using the with clause. Any number of

with clauses can be used within the generic declaration to specify constraints.

5.4.3 Associated Type Access

Rates the ease in which types can be mapped to other types within the context
of a generic function (Garcia et al.,, 2003). The associated types of a concept
specify mappings from the modeling type to other collaborating types (such as
the mapping from a container to the type of its elements). In practice it is
convenient to separate the data types of a module into two groups: the main
types and the associated types. An example of this is an iterator (the main type)

and its element type (an associated type). Associated type constraints are a
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mechanism to encapsulate constraints on several functionally dependent types
into one entity. C++ can represent associated types as member typedefs or traits

classes! but cannot express constraints on them. (Jarvi et al., 2003.)

#include <vector>
using namespace std;
namespace traits {
template <class T> struct arr_traits{};
template <class T>
struct arr_traits<T*> {
typedef T element_type;
5
template <class T>
struct arr_traits<vector<T> > {
typedef T element_type;
I
}
template <class E>
typename traits::arr_traits<E>::element_type*
copy_portion_to_new_array(E s, int start, int end) {
typedef typename
traits::arr_traits<E>::element_type M;
M* array;
for(int i = 0; i <= end-start; i++)
array[i] = s[start+i];
return array;
/
int main(int, char*[]) {
char* str="literal”;
vector<int> vec;
for(int i=0; i<5; i++)
vec.push_back(i);
char* sub_str = copy_portion_to_new_array(str,1,4);
/] sub_str should contain "iter”
int* sub_vec = copy_portion_to_new_array(vec,1,3);
/] sub_vec should contain {1,2,3}

Example 5.6

1 Introduced in Myers (1995).
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The example above shows how an associated type could be referred to in the
signature and body of the generic function. The return type of this function and
the type of the local variable array are pointers of the type member of the
generic type parameter. arr_traits is used to access this type member (or
element type) so that the types traits:arr_traits<char*>:element_type and
traits::arr_traits<vector<int> >:element_type resolve to char and int

respectively.

According to Siek & Lumsdaine (2004), the use of template specialization inside
of generic function relies on template parameters being transparent: the actual
type must be known to find the matching templates specialization. Thus, the
traits class idiom is not compatible with languages that have separate type
checking and opaque parameters (parameters that do not delay the checking of

dependent expressions, as normal template parameters do). (ibid.)

Java does not provide a way to access and place constraints on type members of
generic type parameters. However, associated types can be emulated using
other language mechanisms. A common idiom used to work around the lack of
support for associated types is to add a new type parameter for each associated
type. The main problem with this technique is that it fails to encapsulate
associated types and constraints on them into a single concept abstraction.
Every reference to a concept, whether it is being refined or used as a constraint
by a generic function, needs to list all of its associated types, and possibly all
constraints on those types. In a concept with several associated types, this

becomes burdensome. (Jarvi et al., 2003.)

It is natural in Ada to encapsulate several functionally dependent types and
constraints on them into the generic declaration of any program unit, or into a

single concept abstraction using a generic empty package.
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5.4.4 Retroactive Modeling

Indicates the ability to add new modeling relationships after a type has been
defined. Type arguments to a generic algorithm must model the concepts that
constrain the algorithm's type parameters. To establish modeling relationships,
Java generics use subtyping at the point of class definition; C++ provides no
language feature for establishing modeling relationships, type arguments are
required only to provide the functionality that is used within a function
template's body. The modeling mechanism used for Java relies on named
conformance. An explicit declaration links a concrete type to the concepts it
models. Once a type is defined, the set of concepts that it models is fixed.
Without modification to the definition, modeling relationships cannot be

altered. (Garcia et al., 2003.)

To establish a modeling relationship in Ada, a concrete type can be linked to the
concept it models by passing it to the constraining generic package or signature
at the point of explicitly instantiating this package. That is, modeling
relationships are not supposed to be established in Ada at the point of type
definition; and therefore, a new modeling relationship can easily be added after
a type has been defined. Accordingly, the package Comparable_Instances of the
example below can replace the corresponding package in example 5.2 so that
the explicit instances of the Comparable concept, Pick_Apple and Pick_Int, will
be parameterized by the appropriate overloaded function better that matches
the type argument being used, Apple or Integer. This is clearly done

independent of data type definitions.
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with Comparable;
package Comparable_Instances is

function better(i, j: Integer) return Boolean;
package Pick_Int is new Comparable(Integer);

type Apple is
record
rating : Integer;
end record;
function better(a, b: Apple) return Boolean;
package Pick_Apple is new Comparable(Apple);

end Comparable_Instances;
package body Comparable_Instances is

function better(i, j: Integer) return Boolean is
begin return j <i; end better;

function better(a, b: Apple) return Boolean is
begin return b.rating < a.rating; end better;

end Comparable_Instances;
Example 5.7

5.4.5 Type Aliases

Indicates whether a mechanism for creating shorter names for types is
provided. Type aliasing is a simple but crucial feature for managing long type
expressions commonly encountered in generic programming. With type
aliasing, a short name could have been given to the type in the following
example and thus reduce clutter in the code. Also, repeating the same type
increases the probability of errors: changes to one copy of a type must be
consistently applied to other copies. In addition to avoiding repetition of long
type names, type aliases are useful for abstracting the actual types without

losing static type accuracy. (Garcia et al., 2003.)
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dijkstra_uvisitor<G,
mutable_queue<Vertex,
indirect_cmp<Vertex, Distance, DistanceMap,
DistanceCompare> >,
WeightMap, PredecessorMap, DistanceMap,
DistanceCombine, DistanceCompare, Vertex, Edge,
Distance> bfs_vis = new dijkstra_visitor<G,
Mutable_queue<Vertex,
Indirect_cmp<Vertex, Distance, DistanceMap,
DistanceCompare> >,
WeightMap, PredecessorMap, DistanceMap,
DistanceCombine, DistanceCompare, Vertex, Edge,
Distance>();

Example 5.8 (Garcia et al., 2003, p. 132).

The example above is taken from the Generic C# version of the graph library
that was developed for the study of Garcia et al. (ibid.). It should be exactly
identical to the Java version. bfs_vis is a reference to a dijkstra_visitor which is
the type of the visitor object used in the Dijkstra algorithm. As in this example,
type arguments are often instantiations of other parameterized components;

such types can be overlong, resulting in cluttered and unreadable code (ibid.).

Java does not support type aliases, such as the typedef statement in C++. Ada is
also a strongly typed language like Java, and maybe the strongest ever.
Therefore, it does not allow type renaming. However, there is some other way
to achieve the same effect; a subtype declaration without a constraint can be
used to establish a new name for an existing subtype (Cohen, 1996). More
importantly, it is still possible to constrain the parent type is some way.
Furthermore, the use clause could also allow a more concise way of referring to

certain types.
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5.4.6 Separate Compilation

Indicates whether generic units are type-checked and compiled independently
from their use. In Java, generic components and their uses can be compiled
separately. A generic algorithm’s implementation is type-checked once, rather
than for each instantiation as in C++. Uses of a generic algorithm are checked to
ensure that the concept requirements are satisfied, independently from the
implementation of the generic algorithm. This allows for faster compilation, as
well as for catching type errors as early as possible, and is a major advantage

relative to C++. (Garcia et al., 2003.)

Ada provides separate compilation for generic components, as well. An Ada
compiler such as GNAT always handles generic instantiations by means of
"macro expansion” in order to produce a non-generic compilable version of the
code, as is the case with C++. However, for consistency and dependency checks,

it is still necessary to compile generic units.

According to Cohen (1996), generic instantiation in Ada seems to be a form of
"macro expansion; however, this model is not quite accurate. A generic unit is
actually compiled, either separately or as part of an enclosing compilation unit,
before it is used in an instantiation. The declaration of a generic formal
parameter describes very specific properties. These properties are used to check
the internal consistency of the generic declaration and generic body when they
are compiled, and the consistency checks are as demanding as for non-generic
units. These same specific properties allow consistency checks to be applied to
generic instantiations. After compiling a generic declaration, it is possible to
compile the generic body and generic instantiations independently, in any
order. If the generic body and an instantiation are each consistent with the
declaration of the generic parameters, the body of the resulting instance is

guaranteed to be legal. (ibid.)
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5.4.7 Implicit Instantiation

Indicates that type parameters can be deduced without requiring explicit syntax
for instantiation (Garcia et al., 2003). That is, the actual type parameters will be
deduced based on the types of the actual arguments. Thus, calling a template
function or generic method is not differing from calling a non-template function

or non-generic method.

In Ada, before a subprogram can be used it should be instantiated explicitly, as
in the following example:

-- Generic subprogram declaration:
generic

type T is private;
procedure Do_Something (X, Y, Z : in out T);

-- Generic instantiation:
procedure Something is new Do_Something (T => Integer);

Something(X => X1, Y=>Y1, Z=>Z71),
Example 5.9

So, the type Integer is supplied explicitly for T, or the actual is supplied for the
formal through an explicit instantiation statement. Then it is possible to call a

procedure such as Something using integer values or variables of type Integer.

5.4.8 Concise Syntax

Indicates whether the syntax required to compose layers of generic components
is independent of the scale of composition (Garcia et al., 2003). Referring to the
examples in subsections 5.1, 5.2, and 5.3, the degree of supporting concise
syntax in each language is obvious. Clearly, C++ is fully capable of supporting
generic programming concisely, while Ada necessitates lengthy and verbose

coding; Java is in between.
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Because of the object oriented based design of the language, Java's version of
generic programming requires a somewhat verbose syntax. An example of a
newly introduced feature for Java generics, which contributes to a more concise
syntax, is Wildcards. Furthermore, utilizing the Autoboxing/Unboxing feature in

JDK 1.5 makes Java seem as if it allows built-in types as type arguments.

Ada is known to be a language of verbose syntactic constructions. Verbose
syntaxes, in fact, provide more readable and reliable code that is, in certain
cases, more flexible in use. However, in relation to certain statements, the
corresponding concise syntaxes exist. For example, it is possible to use either
positional notation or named notation to specify the actual parameters to
subprograms and generic units, or to specify aggregates to arrays, extensions,
and records. Named notation is verbose, but it provides flexibility in order for
named parameter associations and named aggregates to be listed in any order

regardless of the order in which the formals are specified.

In Ada we can use mathematical notations like “+ “, “-”, “*” “/”, “>" and “e” to
define operators for a user-defined data type. This capability, called operator
overloading, allows computations involving a user-defined data type to be
expressed as concisely and naturally as computations of predefined data types.

(Tang, 1992.) This also applies to C++.

Furthermore, the efficient use of package use clauses and renaming declarations
as well as the wise distribution of separately compiled modules could provide a

more concise way to avoid the use of long expanded names.

So, to a limited extent, Ada could provide concise syntaxes; however, it is in fact
verbose. The obvious reason behind such verbosity is that Ada is a language
that enhances security through some mechanisms, such as explicit instantiation,

static typing, constrained genericity, constrained subtyping, separate
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compilation, etc. Verbosity in Ada is basically meant for the reliability,

readability, maintainability, and extensibility of safety-critical systems.
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6. RELATED ISSUES

This section describes four issues. The first is related to a limitation in the C++
compiler other than that of type checking, although it is a normal consequence
of it. Secondly, the limitations of the type erasure mechanism in Java. The third
subsection is about subtyping, and how it could interact with generics. Finally,

constraints on generic arguments will be described further.
6.1 Templates Link-time Problem

C++ and Java do not demand explicit instantiation operations similar to that of
utilizing the Ada's new keyword. Generic instantiation in C++ and Java is not
directly expressed; it takes place automatically by the event of referencing a
class, or calling a function or method. In C++, the compiler generates no
multiple definitions for the same template, if it is used several times with the
same type. Tang (1992) states: now suppose a program consists of multiple
compilation units, and a template is invoked in different units with the same
actual parameters. Then multiple definitions of the same function (or class) will
be generated, and the compilation will fail at link time (ibid.). That is, the
compiler by itself is not able to know whether the function or variable
definition for a specific template is satisfied by code generated in another object
module (Itzkowitz & Foltan, 1998). The C++ Standard provides facilities for the
user to specify where a template entity should be instantiated (ibid.). When the
user explicitly specifies template instantiation, the wuser then becomes
responsible for ensuring that there is only one instantiation of the template
function or static data member per application; this responsibility can

necessitate a considerable amount of work (ibid.).
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6.2 The Type Erasure Problem in Java

Cabana et al. (2004) demonstrates some problems with Java generics. These
problems emerge basically from the use of the type erasure mechanism that
replaces all type parameters with their bounds, or Object if the type parameter
is not bounded. Moreover, when the compiler finds a parameterized type, i.e.
an instantiation of a generic type, then it removes the type arguments; for
instance, the types List<String>, Set<Long>, and Map<String, ?> are translated
to List , Set and Map respectively (Langer, 2005). This technique allows
violation of the Java type system and turns a type safe language into an unsafe

one (Cabana et al., 2004).

Concisely, the following example will be type checked successfully, but will
cause a ClassCastException at run-time.

import java.util.”;
public class Main {
public static void main(String [] args) {
List<Integer> list = new ArrayList<Integer>();
howCome(list);
Integer i = list.get(0);
/
public static void howCome(List [)
{
l.add(”How come?”);
/
}

Example 6.1

The actual parameter in the call howCome(list) is of type List<Integer>.
However, because of the type erasure, the compiler treats the actual parameter
as of type List. Therefore, it is possible to add instances of type String to the list

list which is of type List<Integer>.
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For the same reason, overloading is not working as well. An example of a
compilation error would read as follows:
name clash: myMethod(java.util.List<java.lang.String>) and

myMethod(java.util.List<java.lang.Integer>) have the same erasure.

6.3 Subtyping

The term subtype in Ada indicates a built-in type with additional constraint;
C++ and Java do not provide such a facility that allows specifying a subset of
the elements of a primitive data type. It is only possible to implement additional
constraints on classes in C++ and Java. Primitive data types in Java represent the
only major facility that is not relying on object orientedness, but they cannot be
used as type parameters. Rather, wrapper classes can substitute them as type
parameters, as a consequence of the object oriented based design of the
language. In spite of that, they are declared final so they are prevented from

being extended or subtyped.

Since template type parameters in C++ do have run-time type representations of
their own, it is possible to inherit from a type parameter. For example:

template<class Type> class subType : public Type { ... };
Example 6.2

This way the parameter Type is the class from which subType inherits. By other
words, subType is a generic subclass that is parameterized by its superclass.
Such a subclass is called a mixin. Bracha and Cooke (1990) demonstrated
delayed inheritance using type parameters, calling the resulting components
mixins or abstract subclasses. Mixin-based inheritance is a very useful alternative

to both single and multiple inheritance.

According to Smaragdakis and Batory (1998), mixins represent a mechanism for

specifying classes that will eventually inherit from a superclass. This superclass,
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however, is not specified at the site of the mixin’s definition. Thus a single
mixin can be instantiated with different superclasses yielding widely varying
classes. This property of mixins makes them appropriate for defining uniform
incremental extensions for a multitude of classes. When the mixin is
instantiated with one of these classes as a superclass, it produces a class
incremented with the additional behavior. Mixins can easily be implemented
using parameterized inheritance. In this case, a mixin is a parameterized class

with the parameter becoming its superclass. (ibid.)

In Java, a type parameter cannot have a run-time type representation of its own.
All type parameters are replaced by their bounds, or Object if the type
parameter is unbounded. Consequently, there is no point to deriving from a
type parameter, because we would be deriving from its bound, not from the
type that the type parameter stands for. In addition, the actual type argument
can be a final class or an enum type, from which we must not derive anyway.

(Langer, 2005.)

Ada 95 can provide mixin inheritance using tagged type extension (single
inheritance) and generic units. The generic template defines the mixin. The type
supplied as generic actual parameter determines the parent. (Barnes, 1995.)
Thus we can write:

generic
type S is abstract tagged private;
package P is
type T is abstract new S with private;
-- operations on T
private
type T is abstract new S with
record
-- additional components
end record;
end P;

Example 6.3 (Barnes, 1995, p. 138).
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Where the body provides the operations and the specification exports the
extended type. We can then use an instantiation of P to add the operations of T
to any existing tagged type and the resulting type will of course still be in the

class of the type passed as actual parameter. (ibid.)

Another interesting interaction between templates and subtyping in C++ is that
of Coplien (1995), and is called Curiously Recurring Template Patterns (CRTPs).
According to Rising (2000), a CRTP refers to a class that is derived from a base
class instantiated from a template. The derived class is passed as a parameter to
the template instantiation. This pattern captures a circular dependency using
inheritance in one direction and templates in the other. In its simplest form, A
CRTP reads as follows:

template<class Type> class baseType { ... };
class subType : public baseType<subType>{ ... };
Example 6.4

Obviously, this is not a parameterized inheritance, as is sometimes mistakenly

thought. A CRTP does not demand subType to be parameterized.
6.4 Constraints on Generic Arguments

In general, the constraining concept on a generic algorithm's type parameter
should be modeled by a type argument to that algorithm. Each of the three
languages in this study employs a distinct mechanism for creating modeling
relationships. While Java utilizes subtyping at the point of type definition, Ada
demands autonomous explicit instance declarations that have no conjunctions
with the process of type definition. On the contrary, C++ provides no
mechanism for setting up such modeling relationships. C++ brings templates
and function overloading into harmonious union in order to enable generic

programming.
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In languages that are designed to facilitate only object orientedness, subtyping
is the natural way to establish modeling relationships and to constrain type
parameters, and this is the case with Java. As far as we are concerned in this
study, subtype-based modeling and constraining make generic programming in
Java suffer from at least two downsides: multiple types cannot be
simultaneously constrained, and new modeling relationships cannot be added
after a type has been defined. So, building abstractions using object-oriented

techniques restricts generics to satisfy limited and specific needs.

In such a language whose highest priority is to enhance security as Ada, it is
natural to have mechanisms such as explicit instantiation and constrained
genericity. But the fact is that modeling a multi-type concept as well as
adjusting modeling relationships have been made easy and straightforward due
to the way constrained genericity is handled in Ada, by encapsulating several
functionally dependent types and constraints on them into the generic
declaration. Using the with clause, the names and signatures of the required
functions and operations for the parameters can be listed within the generic
declaration. This way, the compiler can separately type check the instantiations

as well as the implementations.

A constraining technique akin to that of Ada had been thought of by Stroustrup
and proposed by the C++ community:

/I The operations =, ==, <, and <=
// must be defined for an arqument type T
template <
class T {
T& operator = (const T&);
int operator == (const T&, const T&);
int operator <= (const T&, const T&);
int operator < (const T&, const T&); };
> Class vector { ... };

Example 6.5 (Stroustrup, 1994, p. 343).



68

According to Stroustrup (1994), some people thought that better code could be
generated if template arguments were constrained, and it would be easier to
read and understand parameterized types when the full set of operations on a
type parameter is specified. Stroustrup does not believe that, because such lists
would often be long enough to be unreadable and a higher number of templates
would be needed for many applications. He admits that he initially
underestimated the importance of constraints in readability and early error
detection, but still sticks to the idea that constraining template parameters
weakens the expressive power of templates. If one could agree with him that
requiring the user to provide the set of operations on a type parameter
decreases the flexibility of the parameterization facility without easing the
implementation, it is hard to agree that this decreases the flexibility without
increasing the safety of the facility. However, since we are able to provide
specialized implementations, and to write explicitly alternative definitions for
specific data types, safety can be assured somehow. According to Siek and
Lumsdaine (2000), techniques for checking constraints in C++ can be
implemented as a library. These techniques, however, are distinct from actual
language support and involve insertion of what are essentially compile-time

assertions into the bodies of generic algorithms (Garcia et al. 2003).
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7. CONCLUSION

In this paper, the support for generic programming in Ada 95, C++, and Java 1.5
has been examined; strengths and weaknesses have been identified; the
qualification of the key language features engaged with generics to enable
generic programming has been determined. To that extent, it can be ascertained
that each of these languages provides a completely different approach to
generic programming, and that the paradigm of generic programming
demands flexible and consistent language designs in order to facilitate powerful

versions of that paradigm.

It is not easy to compare programming languages neutrally. To some extent, it
is a matter of subjective concerns based on language orientations, preferred
programming style, programming culture, and so on. Yet we cannot claim
superiority of one language over the other. Instead, we can focus the argument
on one specific area so that our claims would be pragmatic; and this is what has
been done in this study. It has been made clear that Java generics are satisfying
limited and specific needs due to the restrictions imposed by the language
design, which facilitates only object oriented techniques. With the exception of
some considerable capabilities that are available in C++ because of the macro-
like nature of templates (e.g., template metaprogramming), Ada 95 and C++ are
of almost similar power. Apparently, Ada's form of parameterization is safer
and more powerful than that of C++. Nevertheless, we cannot ignore the
flexibility of the C++'s template facility, which is very much affected by the

overall conciseness and consistency of the language.
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