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Approximation by BV-extension Sets via
Perimeter Minimization in Metric Spaces
Jesse Koivu, Danka Lučić and Tapio Rajala*

University of Jyvaskyla, Department of Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014 University of Jyvaskyla,
Finland
*Corresponding author: tapio.m.rajala@jyu.fi

We show that every bounded domain in a metric measure space can be approximated in measure
from inside by closed BV-extension sets. The extension sets are obtained by minimizing the sum of
the perimeter and the measure of the difference between the domain and the set. By earlier results,
in PI spaces the minimizers have open representatives with locally quasiminimal surface. We give
an example in a PI space showing that the open representative of the minimizer need not be a BV-
extension domain nor locally John.

1 Introduction
In this paper we study the existence of BV-extension sets in complete and separable metric measure
spaces X. By BV-extension sets we mean sets E for which any integrable function with finite total varia-
tion on E can be extended to the whole space X without increasing the BV-norm by more than a constant
factor. BV- and Sobolev-extension sets are useful in analysis because via the extension one can use tools
a priori available only for globally defined functions also for the functions defined only in the extension
set. Not every domain of a space is an extension set, so in cases where one starts with functions defined
on an arbitrary domain � one first approximates � from inside by an extension set, then restricts the
functions to this set and then extends them as global functions. Such process immediately raises the
question: when can we approximate a domain from inside by extension domains (or sets)?

In the Euclidean setting, an answer to this has been known for a long time. For instance, from the
works of Calderón and Stein [7, 21] we know that Lipschitz domains of Rn are W1,p-extension domains
for every p ≥ 1. Any bounded domain in R

n can be easily approximated from inside and outside by
Lipschitz domains. It was later observed that in a more abstract setting of PI spaces (i.e., doubling
metric measure spaces satisfying a local Poincaré inequality [14]; see Section 4), good replacements
of Lipschitz domains are uniform domains. In [4] it was shown that uniform domains in p-PI spaces are
N1,p-extension domains, for 1 ≤ p < ∞, for the Newtonian Sobolev spaces, and in [18] it was shown that
bounded uniform domains in 1-PI spaces are BV-extension domains. Finally, in [20] it was shown that in
doubling quasiconvex metric spaces one can approximate domains from inside and outside by uniform
domains. Since PI spaces are quasiconvex [9, 16], we conclude that in PI spaces one can approximate
domains by extension domains.
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2 | J. Koivu et. al.

Recently there has been increasing interest in analysis in metric measure spaces (X, d,m) without
the PI assumption. However, the extendability of BV-functions seems to have been studied only in some
specific cases, such as infinite dimensional Gaussian case [5]. We continue into the direction of general
metric measure spaces and show in Theorem 3 that even without the PI assumption one can still
approximate domains � from inside by closed BV-extension sets. It is not clear if an approach similar
to the approximation by uniform domains could work in general metric measure spaces. Therefore,
we take a completely different approach and obtain the extension set by minimizing the functional
A �→ Per(A) + λm(� \ A) for a large parameter λ > 0. Section 3 contains the proof of Theorem 3
and remarks on the minimization procedure. Before it, in Section 2 we recall and prove preliminary
results on BV-functions and sets of finite perimeter. In Section 4 we connect the minimization approach
to domains with locally quasiminimal boundary in PI spaces, and also show that in PI spaces the
open representatives of the minimizers of the functional, and consequently domains with locally
quasiminimal boundary need not be BV-extension domains, nor locally John domains. In the final part
of the paper, Section 5 we list open questions raised by our extension result.

2 Preliminaries
We will always assume (X, d,m) to be a metric measure space where (X, d) is a complete and separable
metric space and m is a Borel measure that is finite on bounded sets. The set of all Borel subsets of X is
denoted by B(X). We define the open and the closed ball with center x ∈ X and radius r > 0 by

Br(x) := {y ∈ X : d(x, y) < r} and B̄r(x) := {y ∈ X : d(x, y) ≤ r},
respectively. We shall denote by LIP(X) the space of all Lipschitz functions on X and by Lip(f ) the (global)
Lipschitz constant of f ∈ LIP(X). Given any f ∈ LIP(X) and E ⊂ X we set Lip(f ; E) := Lip(f |E). Having this
notation at our disposal, the asymptotic Lipschitz constant (or the asymptotic slope) of a function f ∈ LIP(X) is
a function lipa(f ) : X → [0, +∞) given by

lipa(f )(x) := inf
r>0

Lip
(
f ; Br(x)

)
for every x ∈ X.

Notice also that lipa(f ) ≤ Lip(f ). Given an open set A ⊂ X we will say that a function f : X → R is locally
Lipschitz on A if for every x ∈ A there exists r > 0 such that Br(x) ⊆ A and f |Br(x) is Lipschitz. We denote
the space of all locally Lipschitz functions on A by LIPloc(A).

Functions of bounded variation. We next recall the definition of the space of functions of bounded
variation (BV-functions, for short), as well as some of the characterizations of the total variation
(measure) associated with a BV-function. The below presentation is based on [11].

Definition 2.1. (Total variation). Let (X, d,m) be a metric measure space. Consider f ∈ L1
loc(m).

Given an open set A ⊂ X, we define

|Df |X(A) := inf
{

lim inf
n→∞

∫
A

lipa(fn) dm : fn ∈ LIPloc(A), fn → f ∈ L1
loc(m|A)

}
.

We extend |Df |X to all Borel sets as follows: given B ∈ B(X), we define

|Df |X := inf
{|Df |X(A), B ⊂ A, A is an open set

}
.

With this construction, |Df |X : B(X) → [0, ∞) is a Borel measure, called the total variation measure of f [19,
Thm. 3.4]. It follows from the definition that, given an open set A ⊂ X

fn → f inL1
loc(m|A) ⇒ |Df |X(A) ≤ lim

n→∞
|Dfn|X(A). (1)

Given a Borel set B ⊂ X and f ∈ L1
loc(m|B), we introduce the following notation:

|Df |B := the total variation measure of f computed in the metric measure space(X, d,m|B).
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Definition 2.2. (The spaces
◦

BV(B) and BV(B)). Let (X, d,m) be a metric measure space. Let B ⊂ X be
Borel. We define

◦
BV(B) :={

f ∈ L1
loc(m|B) : |Df |B(B) < +∞}

,

BV(B) :={
f ∈ L1(m|B) : |Df |B(B) < +∞}

.

We endow the space
◦

BV(B) with the seminorm and the space BV(B) with the norm given by

‖f‖ ◦
BV(B)

:= |Df |B(B) and ‖f‖BV(B) := ‖f‖L1(m|B) + |Df |B(B),

respectively.

Remark 1. The following characterization of the total variation measure of the whole space will
be useful for our purposes. By [11, Theorem 4.5.3] we have that

|Df |X(X) = inf
{

lim inf
n→∞

∫
X

lipa(fn) dm : fn ∈ LIP(X), fn → f ∈ L1
loc(m)

}
. (2)

In general, we cannot restrict to globally Lipschitz functions when calculating the total variation
measure: consider A = (0, 1) ∪ (1, 2) ⊂ R and f = χ(0,1).

We will use the following version of Lipschitz extensions where the asymptotic Lipschitz constant is
preserved.

Proposition 2.3. ([12, Theorem 1.1]). Let (X, d) be a metric space, C ⊂ X a subset and g : C → R a
Lipschitz function. Then for every ε > 0 there exists an (Lip(g) + ε)-Lipschitz function f : X →
R whose restriction to C coincides with g and such that

lipa(g)(x) = lipa(f )(x) for every x ∈ C.

Moreover, if g is bounded (resp. with bounded support), then f can be chosen to be bounded (resp.
with bounded support).

By combining Proposition 2.3 with Remark 1 we get the following.

Corollary 2.4. Let (X, d,m) be a metric measure space. Let B ⊂ X be closed and define Y =
(B, d|B×B,m|B). Then BV(B) = BV(Y) and the total variation measures |Df |B and |Df |Y agree on
the Borel subsets of B for every f ∈ BV(B). Moreover,

|Df |B(B) = inf
{

lim inf
n→∞

∫
B

lipa(fn) dm : fn ∈ LIP(X), fn → f ∈ L1
loc(m|B)

}
. (3)

Proof. By Proposition 2.3 every f ∈ LIP(B) can be extended to an element of LIP(X) without changing the
asymptotic Lipschitz constant on B, thus (taking into account Remark 1) we obtain

|Df |B(X) = |Df |Y(Y), (4)

and thus BV(B) = BV(Y) (cf. [12, Theorem 3.1]).
Now, take A ⊂ X open. Since every f ∈ LIPloc(A) can be restricted to an element of LIPloc(B ∩ A), we get

that

|Df |Y(B ∩ A) ≤ |Df |B(A). (5)

By the definition of total variation measure, the inequality (5) extends to all Borel sets A ⊂ X. Finally, by
(4) and recalling that |Df |Z is a finite Borel measure for any metric measure space (Z, dZ,mZ), we have
for all Borel A ⊂ X that

|Df |B(X) ≤ |Df |Y(B) = |Df |Y(A ∩ B) + |Df |Y(B \ A) ≤ |Df |B(A) + |Df |B(X \ A) = |Df |B(X)
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giving the equality

|Df |Y(A ∩ B) = |Df |B(A).

The equality (3) follows by taking A = B in the above equality, combined with Remark 1 and Proposition
2.3. �

We define the notion of sets of finite perimeter on a Borel subset B ⊂ X.

Definition 2.5. (Sets of finite perimeter on a Borel subset B). Let (X, d,m) be a metric measure
space and B, E ∈ B(X). We define the perimeter of E on B as

PerB(E) := |DχE|B(B).

We say that E has finite perimeter on B if the quantity PerB(E) is finite. Moreover, we define for
every F ∈ B(X) the quantity PerB(E; F) := |DχE|B(B ∩ F).

To shorten the notation, whenever B is equal to the whole (base) space X, we will often write
Per(E) instead of PerX(E).

Extension sets and extension properties.

Definition 2.6. (BV-extension set). A set B ∈ B(X) is said to be a BV-extension set if there exist
C > 0 and a map EB : BV(B) → BV(X), such that for every f ∈ BV(B) the following hold:

i) ‖EBf‖BV(X) ≤ C‖f‖BV(B);
ii) EBf |B = f .

Given a BV-extension set B, we define the operator norm of EB as

‖EB‖ := inf
{
c ≥ 0 : ‖EBf‖BV(X) ≤ c ‖f‖BV(B) holds for all f ∈ BV(B)

}
.

Definition 2.7. (Extension property for sets of finite perimeter). Let B ∈ B(X). We say that B has
the extension property for sets of finite perimeter with respect to the full BV-norm if there exists
C > 0 such that for every E ⊂ B with PerB(E) < +∞ there exists Ẽ ∈ B(X) such that the following
two properties hold:

i) m(̃E) + Per(̃E) ≤ C
(
m(E) + PerB(E)

)
ii) m(E�(̃E ∩ B))=0.

3 Approximation by BV-Extension Sets From Inside
In this section we prove the main result of the paper, Theorem 3, according to which we can estimate
a given domain � ⊆ X from inside by closed BV-extension sets. Our strategy for finding such closed
extension sets is based on the minimization of the functional Mλ : B� → [0, +∞] defined on the set
B� of all Borel subsets of � and given, for every λ > 0, by

Mλ(A) := Per(A) + λm(� \ A), for every A ∈ B�. (6)

Before going into the proof of Theorem 3, let us comment on the functional Mλ and on the reasons
why we consider its restriction to closed sets in the proof:

Remark 2.

(1) The existence of the closed BV-extension sets approximating given domain � from inside is
obtained by showing that the functional Mλ restricted to the set C� of all closed subsets of � induces
a partial order on C� and that the minimal element with respect to this partial order is a BV-
extension set.
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In the proof, we will need the following two results stated and proved below. The first one connects
the extendability of BV-functions with the extendability of sets of finite perimeter. In the Euclidean
case, such a result was obtained by Burago and Maz’ya [6]. Later it was extended to PI spaces by
Baldi and Montefalcone [3]. The connection of perimeter- and BV-extensions with W1,1-extensions
was studied in detail in [13] in Euclidean spaces, and then in general metric measure spaces in [8].
In [8, Proposition 3.4] the extension result closest to what we need was proven. There a Borel set
was shown to be a BV-extension set if and only if it has the extension property for Borel sets of
finite perimeter with the full norm. We need to make a small modification to this result since in
our proof we need to stay in the class of closed sets and consequently will only use open sets for
testing the perimeter extensions (see Proposition 3.1). The second result we need is Lemma 3.2,
which allows us to show that minimal elements are extension sets. The use of Lemma 3.2 forces
us to stay within the class of closed sets (see Example 3.3).

(2) Using standard lower semicontinuity and compactness arguments, it is not difficult to show that
the functional Mλ admits a minimizer in the class of all Borel subsets of �. One might then wonder
if these minimizers always give rise to BV-extension sets. The approach presented in point (1) shows
that the closed representatives of the minimizers (whenever exist) provide BV-extension sets. Due
to the use of Lemma 3.2, we cannot say much in the case of other Borel sets. However, we provide
two examples, showing that the minimizers might not have open representatives (Example 3.5),
and even if they do, the latter might not be extension sets (Example 4.1).

(3) Due to the above reasons, we opt to consider the functional restricted to the family of closed
subsets of � and look at the minimal elements with respect to the partial order. We leave the
question about the existence of the closed representatives of the minimizers among all Borel sets
open (see Question 7) and provide in Section 4 the related discussion in the case of PI spaces, where
the similar type of functional and the topological properties of its minimizers are well studied.

Proposition 3.1. Let (X, d,m) be a metric measure space. A Borel subset � ⊂ X has the extension
property for BV if and only if it has the extension property for open sets of finite perimeter with
the full norm.

Proof. Having already the equivalence between BV-extension and perimeter extension of Borel sets
given by [8, Proposition 3.4], we only need to show that perimeter extension for open sets implies BV-
extension for functions in BV(�) ∩ L∞(�). Towards this, take f ∈ BV(�) ∩ L∞(�). By the definition of the
total variation, there exists a sequence of open sets Un ⊃ � and functions fn ∈ LIPloc(Un) such that
fn → f in L1

loc(m|�) and

lim inf
n→∞

∫
�

lipa(fn) dm = |Df |�(�).

Now, by assumption we can extend each relatively open set An,t = {x ∈ � : fn(x) > t} to a Borel set
Ãn,t ⊂ X so that

m(Ãn,t) + PerX(Ãn,t) ≤ C
(
m(An,t) + Per�(An,t)

)
,

where C > 0 is the constant given by the assumption on having the extension property for open sets.
As in the proof of [8, Proposition 3.4], this implies that we get an extension f̃n ∈ BV(X) of fn with

‖f̃n‖BV(X) ≤ C‖fn‖BV(�).

By an application of Mazur’s lemma (see again the proof of [8, Proposition 3.4] for details), this implies
that we also get an extension f̃ ∈ BV(X) of f with

‖f̃‖BV(X) ≤ C‖f‖BV(�).

This concludes the proof. �

The next lemma is the reason why our approach works only for closed sets. Later in Example 3.3 we
observe that the claim of the lemma fails for general sets B ⊂ X.
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Lemma 3.2. Let (X, d,m) be a metric measure space. Given a closed set B ⊂ X and a set A ⊂ B of
finite perimeter on B, it holds that

Per(A) + Per(B \ A) ≤ Per(B) + 2PerB(A). (7)

Proof. Let (fi)i ⊆ LIP(X) be such that

fi → χB in L1
loc(m) and lim

i→∞

∫
X

lipa(fi) dm = Per(B). (8)

Since B is closed, by Corollary 2.4 there exists a sequence (gi)i ⊆ LIP(X) such that

gi → χA in L1
loc(m|B) and lim inf

i→∞

∫
B

lipa(gi) dm = PerB(A). (9)

For a fixed i ∈ N we then have that

lim
j→+∞

∫
X\B

fj lipa(gi) dm = 0.

Therefore, up to taking a (relabeled) subsequence of (fi)i, we may assume that

lim
i→+∞

∫
X\B

fi lipa(gi) dm = 0. (10)

Now notice that fi gi → χA and fi(1 − gi) → χB\A in L1
loc(m), and that

∫
X

lipa(fi gi) dm +
∫

X
lipa(fi (1 − gi)) dm

≤
∫

X
(fi lipa(gi) + gi lip(fi)) dm +

∫
X
(fi lipa(1 − gi) + (1 − gi) lipa(fi)) dm

= 2
∫

X
fi lipa(gi) dm +

∫
X

lipa(fi) dm.

Taking into account (10), this gives

Per(A) + Per(B \ A) ≤ lim inf
i→∞

2
∫

X
filipa(gi) dm +

∫
X

lipa(fi) dm

= lim inf
i→∞

2
∫

B
filipa(gi) dm +

∫
X

lipa(fi) dm ≤ 2PerB(A) + Per(B),

where the last inequality follows from (9) and (8). �

Notice that Lemma 3.2 does not hold in general if we replace the closed set B with a general Borel
set. This is seen from the next simple example.

Example 3.3. Let us consider (R, dEucl,L1) as our metric measure space. Let B = (0, 1) ∪ (1, 2) and
A = (0, 1). Then we have that

4 = Per(A) + Per(B \ A) > Per(B) + 2PerB(A) = 2.

Theorem 3. Let (X, d,m) be a metric measure space. Let � ⊂ X be a bounded open set. Then for
every ε > 0 there exists a closed set G ⊂ � such that m(�\G) < ε and so that the zero extension
gives a bounded operator from BV(G) to BV(X).
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Proof. Let us denote C� = {A ⊂ � : A closed}. We consider the following functionals. For λ > 0 define
Mλ : C� → [0, +∞] as Mλ := Mλ|C�

, that is,

Mλ(A) := Per(A) + λm(� \ A), for everyA ∈ C�.

We will show that for λ large enough, a minimal element in a partial order given by Mλ will give the
desired set G. We divide the proof into several steps.
Step 1: For every λ > 0, we have infA∈C�

Mλ(A) < +∞. Moreover, we have

lim
λ→∞ inf

A∈C�

1
λ

Mλ(A) = 0.

Proof of Step 1. For every r > 0 we set

B(∂�, r) := {x ∈ X : dist(∂�, x) < r} and mr := m(� ∩ B(∂�, r)).

Consider the truncated distance function distr(·, ∂�) := dist(·, ∂�) ∧ r. By Coarea formula we have that

|Ddistr(·, ∂�)|(�) =
∫ r

0
Per({distr(·, ∂�) > s}; �) ds =

∫ r

0
Per(� \ B(∂�, s)) ds.

Moreover, |Ddistr(·, ∂�)|(�) = |Ddistr(·, ∂�)|(�∩ B(∂�, r)) ≤ m(�∩ B(∂�, r)) = mr. Together with the above,
this gives the existence of s ∈ [0, r] such that

Per(� \ B(∂�, s)) ≤ mr

r
,

proving the first part of the claim. Let now ε > 0. Take r > 0 so small that mr = m(B(∂�, r)∩�) < ε
2 . Note

that for any λ > 0, we have infA∈C�
Mλ(A) ≤ mr

r + λmr and so, by taking λ > 1
r , we get

inf
A∈C�

1
λ

Mλ(A) ≤ mr

λr
+ mr < 2mr < ε.

This proves the claim of Step 1. �

Next, we shall consider the following (non-empty, due to Step 1) subset of C�:

C�,λ := {A ∈ C� : Mλ(A) < +∞}.
Consider now a partial order A ≺λ B on C�,λ defined as

A ≺λ B if and only if m(A \ B) = 0 and Mλ(A) ≤ Mλ(B).

Step 2: For every λ > 0 and C ∈ C�,λ, the set {A ∈ C�,λ : A ≺λ C} has a minimal element with respect to
the partial order ≺λ.

Proof of Step 2. By Zorn’s Lemma, it suffices to prove that any chain (Aλ
i )i∈I ⊂ {A ∈ C�,λ : A ≺λ

C} contains a lower bound. By selecting inductively elements in the chain so that m(Aλ
i \ Aλ

j ) > 0, we
may assume that I = N. Moreover, we may assume that Aλ

i+1 ⊂ Aλ
i for all i ∈ N. We claim that

Aλ =
∞⋂

i=1

Aλ
i

gives the lower bound. Trivially, Aλ ⊂ Aλ
i for all i ∈ N, so it is enough to prove that Mλ(Aλ) ≤ Mλ(Aλ

i ) for all
i ∈ N. To verify the latter, notice that by the continuity of measure, we have that m(Aλ) = limi→+∞ m(Aλ

i ).
Consequently, χAλ

i
→ χAλ in L1(X) and so by the lower semicontinuity of the perimeter, we have also

Per(Aλ) ≤ lim inf i→+∞ Per(Aλ
i ), proving the claim. �

We now show that for any λ > 0 and a minimal element Gλ ∈ C�,λ with respect to ≺λ we have that
the zero extension from Gλ gives a bounded operator. Given any Borel set B ⊂ X, in what follows we will
denote by EB the zero-extension operator from BV(B) to BV(X).
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Step 3: Fix any λ > 0 and C ∈ C�,λ. Let Gλ,C be a minimal element in {A ∈ C�,λ : A ≺λ C} with respect to
the partial order ≺λ. Then we have that ‖EGλ

‖ < +∞.

Proof of Step 3. By Proposition 3.1, we only need to check that the zero extension is bounded for
characteristic functions of open sets of finite perimeter in Gλ,C. So, let A ⊂ Gλ,C be relatively open with
PerGλ,C (A) < +∞. Then by the minimality of Gλ,C and the fact that m((Gλ,C \ A) \ Gλ,C) = 0 we have that

Per(Gλ,C) + λm(� \ Gλ,C) ≤ Per(Gλ,C \ A) + λm(� \ (Gλ,C \ A)), (11)

and by Lemma 3.2

Per(Gλ,C \ A) + Per(A) ≤ Per(Gλ,C) + 2PerGλ,C (A). (12)

Therefore, combining (11) and (12) we get

Per(A) ≤ 2PerGλ,C (A) + λm(A),

and so ‖EGλ,C ‖ ≤ max{2, λ + 1} for characteristic functions. �

We are now ready to combine the results obtained in the three steps above and get the claim of the
theorem.
Step 4. Fix ε > 0. There exists a closed set G ⊂ � such that

m(� \ G) < ε and ‖EG‖ < +∞.

Proof of Step 4. Let λ (depending on ε) be given by Step 1 so that infA∈C�

1
λ

Mλ(A) < ε and fix any
minimizing sequence (Aλ

i )i∈N for Mλ. Then, for i ∈ N large enough we have that 1
λ
Mλ(Aλ

i ) < ε and thus
Aλ

i ∈ Cλ,�. Let Gλ,Aλ
i

be a minimal element in the set {A ∈ C�,λ : A ≺λ Aλ
i } with respect to the partial order

≺λ, whose existence has been proved in Step 2. By Step 3 we know that Gλ,Aλ
i

is a BV-extension set, thus
it only remains to check that m(� \ Gλ,Aλ

i
) < ε. To verify this, notice that, by the minimality property of

Gλ,Aλ
i
, it holds that

m(� \ Gλ,Aλ
i
) ≤ 1

λ
Mλ(Gλ,Aλ

i
) ≤ 1

λ
Mλ(Aλ

i ) < ε.

This proves the statement of Step 4 (and of the theorem itself) for G = Gλ,Aλ
i
. �

By approximating a measurable set from outside by an open set, Theorem 3 gives the following
corollary.

Corollary 3.4. Let (X, d,m) be a metric measure space and let F ⊂ X be a bounded Borel set. Then
for every ε > 0 there exists a closed set G ⊂ X such that m(F�G) < ε and so that the zero
extension gives a bounded operator from BV(G) to BV(X).

Remark 4. A stronger version of Corollary 3.4 where we require in addition that G ⊂ F, does not
hold. A counter example is given by taking F to be a fat Cantor set in R equipped with the
Lebesgue measure.

In the proof of Theorem 3 the set G need not have an open representative. A simple example of this
is the space R

2 with the Euclidean distance and the reference measure m = L+ δ(0,0), where we take as
the domain � = B((0, 0), 1) and as the set G = {(0, 0)}. We end this section with an example where even
the global minimizer of Mλ does not have an open representative.

Example 3.5. Let X = R
2 with the Euclidean distance. We define � = Q ∪ ⋃∞

n=1 Tn, where Q =
(0, 1) × (−1, 0) and Tn are defined as follows. We start by defining a triangle with unit length
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base:

T = {
(x, y) ∈ R

2 : y ≥ 0, y < x < 1 − y
}
.

Notice that T contains the base, but not the other two sides of the triangle. We then define

Tn = (
2−2n+1T + (2−2n+1, 0)

)
and S =

∞⋃
n=1

Tn.

We define the weight w : R2 → [0, 1] by

w(x, y) :=
⎧⎨
⎩min

{
1, dist

(
(x, y),R × {−1, 0})}, (x, y) ∈ (−2, 2) × (−2, 2) with y ∈ [−1, 0]

1, otherwise in(−2, 2) × (−2, 2),

and w(x, y) := 0 for (x, y) ∈ R
2 \ (−2, 2) × (−2, 2). Furthermore, define

m = wL2 +
∞∑

n=1

2−nδ(xn ,0),

where we set xn := 2−2n+1 + 2−2n, so that (xn, 0) is the center point of the base of the triangle Tn.
Step 1: Let us show that we can split the functional Mλ with respect to the cube Q and the triangles

Tn. First notice that for all A ⊂ � we have

m(� \ A) = m(Q \ A) +
∞m∑
n=1

(Tn \ A).

Towards showing that the perimeter part of the functional Mλ also splits, we next show that for
a finite perimeter set A ⊂ � it holds Per(A ∩ R

2+;R2+) = Per(A;R2+), where R
2+ = R × [0, ∞) is the

closed upper half plane. We do this by showing the chain of inequalities

Per(A) = Per(A;R2
+) + Per(A;R2 \ R2

+)

≥ Per(A ∩ R
2
+;R2

+) + Per(A;R2 \ R2
+) ≥ Per(A).

(13)

The equality in the chain (13) follows by subadditivity. We first show the inequality Per(A ∩
R

2+;R2+) ≤ Per(A;R2+). To this end we define

φi((x, y)) = max
{
0, 1 − 2i dist((x, y),R2

+)
}

and call Ui the 1
i -neighborhood of R

2+. This way we obtain φi ∈ LIP(R2) with values in [0, 1] such
that spt(φi) ⊂ Ui, φi → χR

2+ in L1(m) and

∫
R2

lipa(φi) dm → 0.

Further, let fi ∈ LIPloc(Ui) be such that fi → χA and
∫
R2 lipa(fi) dm → Per(A;R2+). We may assume

that fi have values in [0, 1]. Now setting gi = fiφi we have gi → χA∩R2+ and gi is an admissible
sequence of Lipschitz functions for Per(A ∩ R

2+;R2+). By the Leibniz rule we now obtain

∫
R2

lipa(gi) dm ≤
∫
R2

|φi|lipa(fi) dm +
∫
R2

|fi|lipa(φi) dm

≤
∫
R2

lipa(fi) dm +
∫
R2

lipa(φi) dm → Per(A;R2
+).

(14)

Thus, we have Per(A ∩ R
2+;R2+) ≤ Per(A;R2+).
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10 | J. Koivu et. al.

Next we show the second inequality Per(A ∩ R
2+;R2+) + Per(A;R2 \ R

2+) ≥ Per(A). To this end we
let φi be as before. Further, let fi → χA be a sequence of LIPloc(R

2 \ R
2+) functions, such that∫

lipa(fi) dm → Per(A;R2 \ R
2+), and let gi → χA∩R2+ be a sequence of LIPloc(Ui) functions, such

that
∫

lipa(gi) dm → Per(A ∩ R
2+;R2+). We may again assume that fi and gi have values in [0, 1].

Therefore, we can set hi = φigi + (1 − φi)fi, for which it holds hi → χA. Now again by a similar
approximation as before using the Leibniz rule we obtain

∫
R2

lipa(hi) dm ≤
∫

|φi|lipa(gi) dm +
∫

|gi|lipa(φi) dm +
∫

|1 − φi|lipa(fi) dm +
∫

|fi|lipa(1 − φi) dm

≤
∫

lipa(gi) dm + 2
∫

lipa(φi) dm +
∫

lipa(fi) dm

→ Per(A ∩ R
2
+;R2

+) + Per(A;R2 \ R2
+),

(15)

from which the claimed inequality follows. Now Per(A ∩ R
2+;R2+) = Per(A;R2+). Notice that since

R
2 \ R2+ is an open set, we have

Per(A;R2 \ R2
+) = Per(A \ R2

+;R2 \ R2
+).

Let us recall that the perimeter measure enjoys the following locality property: given an open set
U ⊂ X and sets of finite perimeter E, F ⊂ X such that m(U ∩ (E�F)) = 0, it holds that

Per(E; U) = Per(F; U). (16)

Taking into account that Tn are pairwise disjoint compact sets together with (16), one can easily
verify that

Per(A ∩ R
2
+;R2

+) =
∞∑

n=1

Per(A ∩ Tn; Tn).

Consequently, we get

Per(A) = Per(A;R2 \ R2
+) + Per(A;R2

+)

= Per(A \ R2
+;R2 \ R2

+) + Per(A ∩ R
2
+;R2

+)

= Per(A \ R2
+;R2 \ R2

+) +
∞∑

n=1

Per(A ∩ Tn; Tn).

(17)

Step 2: Let Gλ be a minimizer of Mλ. We look to show that for large λ > 0 and n > 0, Gλ will contain
one of the points (xn, 0), but nothing of the respective triangle int(Tn), in the measure sense,
that is, m(Gλ ∩ int(Tn)) = 0. This means that Gλ does not have an open representative.

Next we will perform a reflection of the part of Gλ that lies inside the triangles Tn across the line
[0, 1] × {0}. Let G̃λ,n = (Gλ ∩ Tn) ∪ {(x, y) ⊂ R

2 : (x, −y) ∈ Gλ ∩ Tn}. Now we estimate

Per(Gλ ∩ Tn, Tn) ≥ 1
2

Pereuc(G̃λ,n;R2)

≥ CL2(G̃λ,n)
1
2

= C′L2(Gλ ∩ Tn)
1
2 ,

(18)

where Pereuc denotes the Euclidean perimeter. The first inequality follows since an admissible
Lipschitz function for the definition of the perimeter on the left-hand side will define an

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnae048/7632753 by Jyvaskylan yliopisto / Kirjasto - kausijulkaisut user on 02 April 2024



Approximation by BV-Extension Sets via Perimeter Minimization | 11

admissible Lipschitz function for the definition of the Euclidean perimeter on the right hand
side via a reflection. For the second inequality we used the Euclidean isoperimetric inequality.
Now given λ > 0 and as long as n > 0 is large enough that L2(Gλ ∩ Tn)

1
2 ≤ C′

λ
, it holds

Per(Gλ ∩ Tn; Tn) ≥ λL2(Gλ ∩ Tn). Therefore, since Gλ is a minimizer, by Step 1 the set Gλ ∩ Tn is
a minimizer inside Tn. Thus, we conclude that L2(Gλ ∩ Tn) = 0. Since Per({(xn, 0)}, Tn) = 0 and
m({(xn, 0)}) = 2−n, we have Gλ ∩ Tn = {(xn, 0)} up to measure zero sets. This means in specific
that (xn, 0) ∈ ∂Gλ ∩ Gλ. Since m({(xn, 0)}) = 2−n, the minimizer Gλ contains boundary of positive
measure and thus there is no open representative of Gλ.

Notice that in the example above Gλ has a closed representative.

4 Remarks on Quasiminimal Sets in PI Spaces
As noted in the Introduction, in PI spaces we can approximate a domain from inside and outside by
uniform domains, which are extension domains for BV- and Sobolev functions. Therefore, we will focus
here only on connecting our approach of the more general existence result obtained in Section 3 with
other results on the structure of minimizers in PI spaces. Here with a PI space we mean a complete
metric measure space (X, d,m) where the measure is doubling and the space satisfies a local (1, 1)-
Poincaré inequality. Recall that a measure m is doubling on X if there exists a constant C > 0 so that for
every x ∈ X and r > 0 we have

m(B(x, 2r)) ≤ Cm(B(x, r)).

A metric measure space satisfies a local (1, 1)-Poincaré inequality if there exist constants C > 0 and
λ ≥ 1 so that for every function f in X with an upper gradient gf (see [15, Section 6.2] for the definition
of upper gradients), every x ∈ X and r > 0 we have∫

B(x,r)
|f − fBr(x)| dm ≤ Cr

∫
Bλr(x)

gf dm,

where fA denotes the average of f in a set A ⊂ X of positive and finite measure. The proof of Theorem 3
is based on the minimization of the functional

Mλ : B� → [0, +∞] : A �→ Per(A) + λm(� \ A).

If we replace the term λm(� \ A) by λm(��A) we obtain a more studied functional

M̃λ : BX → [0, +∞] : A �→ Per(A) + λm(��A).

A minimization of the functional M̃λ leads to a set which is close in measure to �, but not necessarily
contained in �. Still, the argument in the proof of Theorem 3 for showing that the minimizer is a BV-
extension set works also for the functional M̃λ provided that the minimizer has a closed representative
(in order to use Lemma 3.2). Since in general we do not know if the minimizer of Mλ or M̃λ has a
closed representative, instead of using a global minimizer we took a minimal element in a decreasing
chain of closed sets. Recall that by Example 3.5 we know that the minimizer need not have an open
representative.

In PI spaces we do have a closed representative for the global minimizer of M̃λ in the class of Borel
sets. This can be seen via the regularity results of quasiminimal sets. By [2, Proposition 3.20 and Remark
3.23] we have that in PI spaces the minimizer of the functional M̃λ is locally K-quasiminimal in X. Recall
that a Borel set E ⊂ X is said to be K-quasiminimal, or to have K-quasiminimal boundary in an open set
� ⊂ X, if for all open U � � and every Borel sets F, G � U we have

Per(E, U) ≤ KPer((E ∪ F) \ G; U).

A set E is said to be locally K-quasiminimal in �, if instead of requiring the minimality for all open
U � � we require that for every x ∈ � there exists an open neighbourhood V ⊂ � of x so that for all
U � V the above holds.

By [17, Theorem 4.2] a K-quasiminimal set in a PI space has a representative for which the topological
and measure theoretic boundaries agree. Recall that the measure theoretic boundary of E consists of
those points where the (upper) density of both E and X \ E are positive. By a density point argument, the
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12 | J. Koivu et. al.

measure theoretic boundary has always measure zero. Consequently, a K-quasiminimal set has both
an open and a closed representative. The proof of Theorem 3 then gives that the closed representative
is a BV-extension set. However, as we will see in Example 4.1, being a BV-extension set is not invariant
under taking representatives, so we cannot conclude directly that the open representative is also a BV-
extension set.

Notice also that for the functional Mλ we have the local K-quasiminimality only inside �. Therefore,
via [17, Theorem 4.2] we only know that the topological boundary of the minimizer has measure zero
inside �. However, if we start with a domain � with m(∂�) = 0, we can conclude that also the minimizer
of Mλ has both an open and a closed representative.

The above argumentation leads to natural questions: In a PI space, is every domain with locally
quasiminimal surface a BV-extension set? Is the closure of a domain with locally quasiminimal surface
a BV-extension set? We end this section with an example showing that the answer to the first question
is negative. In fact, the example shows that even the open representative of a minimizer of M̃λ need not
be a BV-extension set in a PI space. The same example also answers a question in [17]: domains with
locally quasiminimal surface need not be local John domains in PI spaces.

Recall that a domain � is a local John domain if there exist constants C, δ > 0 such that for every
x ∈ ∂�, every 0 < r < δ and all y ∈ Br(x) ∩ � there exists a point z ∈ BCr(x) ∩ � with d(y, z) ≥ r/C and a
curve γ ⊂ � such that

�(γy,w) ≤ Cdist(w, ∂�)

for all w ∈ γ , where γy,w is the shortest subcurve of γ joining y and w, and �(α) denotes the length of a
curve α. A motivation for asking about the local John condition comes from the Euclidean setting, where
David and Semmes showed that bounded sets with quasiminimal boundary surfaces are locally John
domains [10].

Example 4.1. Consider the metric measure space X = X1 ∪ X2 ∪ X3 where Xi = {i} × [0, 1]2 and for
every t ∈ [0, 1] the points (i, t, 0), i = {1, 2, 3} are identified. (Later on we will not always write
the first coordinate that was above used only as a label.) Let us write the common part of Xi as
D = X1 ∩ X2 ∩ X3. In other words, X = [0, 1] × T , with T being a tripod with unit length legs. The
distance d on X is the length distance on each Xi given by

dXi (x, y) = |x1 − y1| + |x2 − y2|,
and the reference measure m is the sum of weighted Lebesgue measures on each Xi:

m = 2L2|X1 + L2|X2∪X3 .

The obtained metric measure space (X, d,m) is an Ahlfors 2-regular and satisfies the (1, 1)-
Poincaré inequality. We will consider a domain � ⊂ X as � = �1 ∪�2 ∪�3, where each �i ⊂ Xi is
defined as follows. We start by defining as a basic building block a triangle

T = {
(x1, x2) ∈ R

2 : x2 > 0, x2 < x1 < 1 − x2
}
.

Now, for the set �1 in X1 we simply choose

�1 := (
[0, 1] × (0, 1]

) ∪ J,

the set �2 ⊂ X2 is given by

�2 :=
∞⋃

k=0

(
2−2k−1T + (2−2k−1, 0)

)
∪ J,
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Approximation by BV-Extension Sets via Perimeter Minimization | 13

Fig. 1. The domain � in Example 4.1 lives in three copies of the unit square, X1, X2, and X3, that are glued together
at one edge. The domain minimizes M̃λ and thus has locally quasiminimal surface. One intuitive way to see the
quasiminimality is to observe that with local variations one cannot decrease the perimeter much when trying to
remove the slits appearing at the common edge in the X1 ∪ X2 square. The slits prevent the domain from being
locally John or BV-extension domain.

and the set �3 ⊂ X3 is given by

�3 =
∞⋃

k=0

((
2−4k−3T + (2−2k−1, 0)

)
∪

(
2−4k−3T + (2−2k − 2−4k−3, 0)

))
∪ J.

The common part J ⊂ D for the sets above is defined by

J =
∞⋃

k=0

((
2−2k−1, 2−2k−1 + 2−4k−3

)
∪

(
2−2k − 2−4k−3, 2−2k

))
× {0} .

See Figure 1 for an illustration of the domain �.
Claim 1: For any λ ≥ 2, the domain � is a minimizer of M̃λ among Borel subsets of X. To prove it, we first

show that

M̃λ(�) = Per(�) + λm(���) = Per(�) ≤ 2. (19)

This can be verified by simply taking as a sequence (fn)n of Lipschitz functions approaching to
χ� in L1(m) whose elements fn are given by

fn(x) = 1 − min
(
1, n · dist(x, �)

)
, for everyx ∈ X.

Then, denoting

�n :=
{

x ∈ X : 0 < dist(x, �) <
1
n

}
,

we have that

Per(�) ≤ lim inf
n→+∞

∫
�n

lipa(fn) dm ≤ lim inf
n→+∞ n · m(�n).
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14 | J. Koivu et. al.

Thus, it remains to estimate the measure of �n. Notice that by the choice of the distance d and
the slopes in the triangle T, we have for k ∈ {2, 3} that

�n ∩ Xk =
{
(x, y + a) ∈ Xk : (x, y) ∈ ∂� ∩ Xk, a ∈

(
0,

1
n

)}
.

Therefore, by using Fubini’s theorem, we get for every n ≥ 2 that

m(�n) = m(�n ∩ X2) + m(�n ∩ X3) = 2
n

and accordingly that Per(�) ≤ 2. In order to conclude the proof of the Claim 1, we next show that
for any A ⊂ X of finite perimeter we have

M̃λ(A) ≥ 2. (20)

This follows by showing for any f ∈ LIP(X) we have

∫
X

lipa(f ) + λ|f − χ�| dm ≥ 2. (21)

To show this, fix any x ∈ (0, 1). Then, since λ ≥ 2, we have that

∫
{(1,x1)}×(0,1)

lipa(f ) + λ|f − χ�| dH1 ≥ |f (1, x1, 0) − 1|

and for k ∈ {2, 3},
∫

{(k,x1)}×(0,1)

lipa(f ) + λ|f − χ�| dH1 ≥ |f (k, x1, 0)|.

Combining the above two estimates and using again a Fubini-type argument taking the choice of
our measure into account, we get

∫
X

lipa(f ) + λ|f − χ�| dm ≥ 2|f (1, x1, 0) − 1| + |f (2, x1, 0)| + |f (3, x1, 0)| ≥ 2,

recalling that the points (i, t, 0) for t ∈ (0, 1) and i ∈ {1, 2, 3} are identified. Hence, we obtain (21)
and thus (20). This proves that � is a minimizer of M̃λ.

Claim 2: � is not a BV-extension set nor a
◦

BV-extension set. Towards this, take k ∈ N and define

Ek = 2−2k−1T + (2−2k−1, 0) ⊂ �2.

Then,

Per�(Ek) ≤ 2−4k−2 and m(Ek) = 2−4k−4.
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However, for any Ẽk ⊂ X with Ẽk ∩ � = Ek, by looking at the rectangle X1 ∪ X2, we see that

PerX(Ẽk) ≥ 2−2k−1.

Consequently,

PerX(Ẽk)

Per�(Ek)
≥ 2−2k−1

2−4k−2
= 22k+1 → +∞, ask → +∞

and

PerX(Ẽk) + m(Ẽk)

Per�(Ek) + m(Ek)
≥ 2−2k−1

2−4k−2 + 2−4k−4
≥ 22k → +∞, ask → +∞,

proving the claim that � is not a BV- nor
◦

BV-extension domain. (Notice, however, that � is a BV-
extension set.)

Claim 3: � is not locally John domain. To show this, we take as the center x := (0, 0) ∈ ∂�. Given any
C ≥ 1 and δ > 0 we take k ∈ N large enough so that

rk := √
2 · 2−2k < δ/C and 22k+1 > C.

Now, take r = Crk and select y = (2−2k−1 + 2−2k−2, 2−2k−3) ∈ Ek ⊂ Br(x). Notice that by the selection
of k we have 0 < r < δ. Then

Ek ⊂ Brk (y) = Br/C(y),

so the point z in the John condition is forced to be selected outside Ek. Consequently, any curve
γ joining y and z in � must pass through a point

w ∈
((

2−2k−1, 2−2k−1 + 2−4k−3
)

∪
(
2−2k − 2−4k−3, 2−2k

))
× {0} ⊂ J.

We then have

dist(w, ∂�)

�(γy,w)
≤ 2−4k−4

2−2k−3
= 2−2k−1 <

1
C

,

where in the last inequality we used again the selection of k. This contradicts the John condition
with the given parameters C and δ.

Remark 5. Notice that as a minimizer of M̃λ in a PI space, the domain � of Example 4.1 also has
quasiminimal surface. If we use as the measure m in the example the 2-dimensional Hausdorff
measure, we have that the space (X, d,m) is isotropic. (Let us recall that a metric measure space
is isotropic whenever the density function θE associated with the set of finite perimeter E and
for which it holds that Per(E, ·) = θEH|∂eE is independent on the set E itself. We refer to [1] for
more details about the mentioned density function.) Since the property of being quasiminimal
is invariant under a change of the reference measure to a comparable one, we will thus obtain
a version of the example where the space is isotropic, but the domain only has quasiminimal
surface instead of being a minimizer of M̃λ. Notice also, that changing to a distance d induced
by the Euclidean distances in Xi we also preserve the quasiminimality, since the change in
distance is bi-Lipschitz.
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5 Open Questions
Our extension result leads to several questions that we have not yet been able to answer. In Theorem 3
we proved that we can approximate domains from inside by closed BV-extension sets. For the special
case of PI spaces, in Section 4, we noted that minimizers of M̃λ have also open representatives. However,
Example 4.1 showed that the open representatives need not be BV-extension sets even in PI spaces.
What still remained open is if being a minimizer of M̃λ is really needed or if having just quasiminimal
surface is enough:

Question 6. Let (X, d,m) be a PI space and � ⊂ X a bounded domain with locally K-quasiminimal
surface. Is then � a BV-extension set?

Another question stemming from the proof of Theorem 3 is if we really need to take the partial order
into use to guarantee that the minimal element has a closed representative.

Question 7. Let (X, d,m) be a metirc measure space and � ⊂ X a bounded domain. Let E be a
minimizer of Mλ (or M̃λ) among Borel subsets of � (or X respectively). Does E have a closed
representative?

For PI spaces the answer to Question 7 is positive for M̃λ, see again Section 4.
Independent of the minimization approach, the obvious question still remaining is:

Question 8. Let (X, d,m) be a metric measure space, � ⊂ X a bounded domain and ε > 0. Does
there exist a BV-extension domain A ⊂ � such that m(� \ A) < ε?

None of our approximations is from outside because we argue that the minimizer is an extension
set by comparing the value of the functional to value at a modification of the minimizer where we take
away an open subset.

Question 9. Let (X, d,m) be a metric measure space, � ⊂ X a bounded domain and ε > 0. Does
there exist a BV-extension domain (or just a BV-extension set) A ⊃ � such that m(A \ �) < ε?

In addition to knowing the answer to the above questions, it would be interesting to see if we can
also approximate domains by Sobolev W1,p-extension domains in the absence of the local Poincaré
inequality. In particular, the case p = 1 is intimately connected to the BV and perimeter extensions even
in general metric measure spaces [8].
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