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Abstract. In this paper we further develop the ideas from Geometric Function Theory
initially introduced in Avelin et al. (Commun Math Phys 404:401–437, 2023), to derive
capacity estimate in metastability for arbitrary configurations. The novelty of this paper is
twofold. First, the graph theoretical connection enables us to exactly compute the pre-factor
in the capacity. Second, we complete the method from Avelin et al. (Commun Math Phys
404:401–437, 2023) by providing an upper bound usingGeometric Function Theory together
with Thompson’s principle, avoiding explicit constructions of test functions.

1. Introduction

In this paper we continue the study of the capacity estimate from [1], where we
introduce a geometric characterization of the Eyring–Kramers formula. To intro-
duce our setting, we begin by considering the Kolmogorov process

dXt = −∇F(Xt )dt + √
2εdBt

where F is a non-convex potential and ε is a small positive number. A formula for
the expected transition time from one local minimum point to another was proposed
independently by Eyring [7] and Kramers [11] in the context of metastability of
chemical processes, and can be stated as follows. Assume that x and y are quadratic
local minima of F , separated by a unique saddle z which is such that the Hessian
has a single negative eigenvalue λ1(z). Then the expected transition time from x to
y satisfies

E
x [τ ] � 2π

|λ1(z)|

√
| det(∇2F(z))|
det(∇2F(x))

e(F(z)−F(x))/ε,
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where � denotes that the comparison constant tends to 1 as ε → 0. The validity
of the above formula has been studied extensively, references can be found in for
instance [1,4,8,12]. The first rigorous proof of the Eyring–Kramers formula above,
is by Bovier et al. [5] using potential theory and this approach has turned out to be
fruitful.

Our main motivation to study this phenomenon, comes from non-convex opti-
mization, for instance, optimization of neural networks. In this setting, the min-
ima/saddles are in general degenerate and/or non-smooth.

In [1] we use the potential theoretic formulation and extend the results of Bovier
et al. [5] and Berglund and Gentz [2] to more general cases, which in particular
includes non-smooth critical points. As in [5], the main technical issue is to provide
sharp capacity estimates and the main result in [1] is a geometric characterization
of Newtonian capacity w.r.t. the measure e−F(x)/εdx inspired by the corresponding
characterization for conformal capacity originally proved by Gehring [9]. In [1] we
observe that the capacity depends on the configuration of the saddle points which
connect the two local minima, but we computed the capacity only in the simple
cases when the saddles are either parallel or in series, see Fig. 1. However, for an
arbitrary smooth potential the situation can be more complex and the configuration
of the saddle points can be a combination of both parallel and series cases with
essentially arbitrary complexity.

The novelty in [1] was the use of Geometric Function Theory to provide a
lower bound for the capacity. In this paper we complete this method by provid-
ing an upper bound using Geometric Function Theory together with Thompson’s
principle, see the proof of the upper bound in Sect. 3.4, Proof of Theorem1. Our
goal is to extend the capacity estimate from Avelin et al. [1] to the case of arbitrary
configurations of critical points. We do this by discretizing the problem where the
‘valleys’/‘islands’ around the local minimum points are the vertices and the regions
around the saddle points which we call ‘bridges’ are the edges. The local capacity
of a bridge can be geometrically characterized using the results from Avelin et al.
[1] and this defines the weights of the edges, thus turning the problem into a capac-
itary problem on a graph. Connecting problems of this type to graphs is similar
to Michel [14], however, we did not find this particular problem in the literature.
We note that the result in [5] covers only the case of the parallel configuration, see
Fig. 1. Moreover, the framework of geometric function theory (see [1]) makes this
construction straightforward and natural.

The capacitary problem on the graph is equivalent to the notion of an electrical
network, which was originally defined by Kirchhoff in the 1840s in his elegant
solution to the problem of replacement resistance for a network of resistors [10].
For a modern presentation of electrical networks and its connection to Markov
chains and Kirchhoff’s theorem, we refer to Bollobás [3], Levin and Peres [13] and
Wagner [15].

1.1. Assumptions and definitions

In order to state our main results we first need to introduce our assumptions on
the potential F . We remark that our assumptions cover the case where F is a
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Fig. 1. Left picture is the parallel case and the right is the series case, xu , xw are local
minimum points and zi are saddle points

Morse function as defined in [4, Assumption 10.3], i.e. a C2 function in which
all critical points are non-degenerate (non-degenerate Hessian with at most one
negative eigenvalue). We further remark that our assumptions cover the degenerate
case studied in [2], but we also allow for non-smooth (Lipschitz) potentials.

Let us first introduce some general terminology. Recall that a Lipschitz function
h : R → R has a critical point at t , if 0 is in the generalized gradient of h at t in
the following sense,

lim sup
s→t±

f (s) − f (t)

s − t
≥ 0 or lim inf

s→t±
f (s) − f (t)

s − t
≤ 0,

where in the above we mean that both the left and the right limit satisfies the
conditions. We say that a point z of a Lipschitz function f : Rn → R is a critical
point, if for every e ∈ R

n , ‖e‖ = 1, the function he(t) = f (z + te) has a critical
point at 0.

Given a continuous function f : Rn → R, we say that a local minimum of f
at z is proper if there exists a δ̂ > 0 such that for every 0 < δ < δ̂ there is a ρ such
that

f (x) ≥
{
f (z), x ∈ Bρ(z),
f (z) + δ, x ∈ ∂Bρ(z),

where Bρ(z) denotes an open ball with radius ρ centered at z (proper maximum
is defined analogously). When the center is at the origin we use the short notation
Bρ . We say that a critical point z of f is a saddle point if it is not a proper local
minimum nor maximum point.

Let us then proceed to our assumptions on the potential.

Definition 1.1. Let F ∈ C0,1(Rn) satisfy the following quadratic growth condition

F(x) ≥ |x |2
C0

− C0

for a constant C0 ≥ 1. We assume that every local minimum point z of F is proper.
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Fig. 2. The neighborhood Oz,δ of the saddle point z (bridge) connects the setsUxu andUxw ,
components of {F < F(z) − δ/3}

We say that F is admissible if for every saddle point z ∈ R
n of F there are

convex functions gz : R → R and Gz : Rn−1 → R which have proper minimum
at 0, such that gz(0) = Gz(0) = 0, and an isometry1 Tz : Rn → R

n such that,
denoting x = (x1, x ′) ∈ R × R

n−1, it holds∣∣(F ◦ Tz)(x) − F(z) + gz(x1) − Gz(x
′)
∣∣ ≤ ω(gz(x1)) + ω(Gz(x

′)), (1.1)

where ω : [0,∞) → [0,∞) is a continuous and increasing function with
lims→0

ω(s)
s = 0.

The assumption (1.1) allows the saddle point to be degenerate, but we do not
allow branching saddles, in the sense that { f (x) < f (z)} ∩ Bρ(z) can have at
most two components for small ρ. Note that the convex functions gz,Gz and the
isometry Tz depend on z, while the function ω is the same for all saddle points. As
such, we denote by δ0 the largest number for which ω(δ) ≤ δ

100 for all δ ≤ 4δ0.

Definition 1.2. Let F ∈ C0,1(Rn) be admissible, then for every saddle point z and
δ > 0, we define the bridge at z as

Oz,δ := Tz
(
{x1 ∈ R : gz(x1) < δ} × {x ′ ∈ R

n−1 : Gz(x
′) < δ}

)
,

where Tz is the isometry from Definition1.1. See Fig. 2.

Note that, since the saddle may be flat, we should talk about sets rather than
points. However, we adopt the convention that we always choose a representative
point from each saddle (set) and thus wemay label the saddles by points z1, z2, . . . .
Moreover, we assume that there is a δ1 ≤ δ0 such that for δ < δ1 we have that if z1
and z2 are two different saddle points, then their neighborhoods Oz1,3δ and Oz2,3δ
defined in Definition1.2 are disjoint. Furthermore, we also assume that ε0 is small
enough that for any local minimum point x , the ball Bε0(x) does not intersect any
bridge or any ε0 ball around any other local minimum.

We use the definitions of a geodesic length and a minimal cut originally defined
in [1], inspired by [9].

1 Recall that a mapping T is an isometry if |T (x) − T (y)| = |x − y|. In Rn , this implies
that T (x) = Ax + b, where A is an orthogonal matrix. That is, T consists of translation b
and a rotation A.
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Definition 1.3. Let A, B ⊂ 
 ⊂ R
n where 
 is a domain and A ∩ B = ∅. We

denote the curve family

C(A, B;
) := {γ : γ ∈ C1([0, 1];
), γ (0) ∈ A, γ (1) ∈ B}

and the family of separating sets as S(A, B;
), where a smooth hypersurface
S ⊂ R

n (possibly with boundary) is in S(A, B;
) if every γ ∈ C(A, B;
)

intersects S. We define the geodesic distance between A and B in 
 as

dε(A, B;
) := inf

(ˆ
γ

|γ ′|e F(γ )
ε dt : γ ∈ C(A, B;
)

)

and the minimal cut by

Vε(A, B;
) := inf

(ˆ
S
e− F(x)

ε dHn−1(x) : S ∈ S(A, B;
)

)
.

We define some topological quantities.

Definition 1.4. Let xu, xw be two local minima of an admissible F . The communi-
cation height between xu, xw is defined as

F(xu; xw) = inf
γ∈C(Bε(xu),Bε(xw);Rn)

sup
t∈[0,1]

F(γ (t)).

Fixing δ < δ1, we denote the component of the sub-levelset {F < F(xu; xw)+δ/3}
which contains the points xu and xw by Uδ/3, and we denote

U−δ/3 := {F < F(xu; xw) − δ/3} ∩Uδ/3. (1.2)

Furthermore, we remark that F(xu; xw) does not depend on ε if ε < ε0. We call
the components of U−δ/3 islands. For each island U we select a proper minimum
point x satisfying F(x) = minU F , and we will in the following denote Ux as the
island which contains x , see Fig. 2. We denote all saddle points in Uδ/3\U−δ/3 by
Z .

Finally we recall that the capacity of two disjoint sets A, B is defined as

cap(A, B) = inf

(
ε

ˆ
Rn

|∇h|2e− F
ε dx : h = 1 in A, h ∈ W 1,2

0 (Rn \ B)

)
.

1.2. Construction of the electrical network

Definition 1.5. An electrical network is a pair (G, y), where G = (V, E) is a
graph, where V are the vertices and E are the edges, the vector y ∈ R

|E | is called
the admittances.
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We will now construct an electrical network based on the islands and bridges
from Definitions 1.2 and 1.4. We associate the vertices with the islands and for
every vertex v we denote the corresponding island by Uv . The set of all vertices
is V . Furthermore, we associate the edges with the bridges from Definition1.2,
specifically, for every saddle point z ∈ Z in Definition1.4 we associate the edge ez
with the bridge Oez = Oz,δ . The set of all edges is E , vice versa we associate with
e ∈ E the corresponding saddle point ze ∈ Z . We say that vertices v, v′ ∈ V are
incident with an edge e, and vice versa, if they are the ends of the edge, or in other
words, the associated islands Uv,U ′

v intersect the bridge Oe (there are at most two
since F is admissible). An edge which is incident with only one vertex is called a
loop. We also define a cycle of the graph G to be any non-trivial closed path for
which only the first and last vertices are equal.

We thus have a graph G = (V, E), and we orient it arbitrarily (i.e. we orient
each edge of G arbitrarily by assigning an arrow on it pointing towards one of its
two ends). In order to have an electrical network we need to define admittance ye
for e ∈ E . Now, let e ∈ E , which is not a loop, and let v−, v+ ∈ V be its incident
vertices. Define the connected set 
e = Oze,δ ∪Uv− ∪Uv+ and the admittance

ye := ε
Vε(Bε(xv−), Bε(xv+);
e)

dε(Bε(xv−), Bε(xv+);
e)
e

F(ze)
ε . (1.3)

From the geometric characterization of capacity in [1], we see that the admit-
tance of the edge e is the pre-factor of the capacity of (Bε(xv−), Bε(xv+)) in 
e. If
e is a loop we set ye = 0. We have thus constructed our electrical network (G, y)
which consists of the graph G and the admittance vector y ∈ R

|E |.

1.3. The main result

We begin with some notation and recalling some results from Avelin et al. [1].
For functions f and g, which depend continuously on ε > 0, we adopt the

notation

f (ε) � g(ε)

when there exists a constantC depending only on the data of the problem such that

(1 − C η̂(ε)) f (ε) ≤ g(ε) ≤ (1 + C η̂(ε)) f (ε),

where η̂(·) is an increasing and continuous function η̂(·) : [0,∞) → [0,∞) with
lims→0 η̂(·) = 0. We remark that in the following the function η̂ is the one from
Proposition1.6 and Lemma3.4. For us the explicit form will not be important but
can be found in [1] and we merely note that η̂ is sublinear and depends on the
Lipschitz constant of F inside Uδ , the dimension and the function ω from (1.1).

We need the above notation in order to relate the geodesic distance and the
minimal cut fromDefinition1.3 to the convex functions gz,Gz fromDefinition1.2,
which is stated in the following proposition (for the proof see [1, Proposition 4.1-
−4.2]):
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Proposition 1.6. Let v−, v+ ∈ V be incident vertices connected with edge e ∈ E
and let 0 < ε < ε0. Denote xv− , xv+ the corresponding proper local minimum
points and let ze be the corresponding saddle, then

dε(Bε(xv−), Bε(xv+);
e) � e
F(ze)

ε

ˆ
R

e− gze (y1)

ε dy1,

and

Vε(Bε(xv), Bε(xv′);
e) � e− F(ze)
ε

ˆ
Rn−1

e− Gze (y′)
ε dy′,

where gze ,Gze are the functions in Definition1.2.

We need the definition of a spanning tree for Kirchhoff’s formula.

Definition 1.7. Let G = (V, E) be a graph. We say that G ′ is a spanning subgraph
of G if V (G ′) = V (G) and E(G ′) ⊂ E(G) (i.e. the same vertices but only a subset
of the edges). A tree is a connected graph which does not contain cycles and a
spanning tree of G is a spanning subgraph of G that is a tree. We denote the set of
all spanning trees of G by T (G). Finally, for two vertices v,w ∈ V we let G/vw

denote the graph obtained by merging the vertices v and w together into a single
vertex.

We are now ready to state our main theorem.

Theorem 1. Let F be admissible as in Definition1.1, let xu and xw be local min-
imum points of F and let (G, y) be the electrical network as in Sect.1.2. Let u, w

be the associated vertices in V . Then the capacity is given by

cap(Bε(xu), Bε(xw)) � T (G; y)
T (G/uw; y) ,

where

T (G; y) =
∑

G ′∈T (G)

( ∏
e∈G ′

ye
)
. (1.4)

Theorem1, together with the formula (1.3), provide the characterization of the
capacity in the general case where the critical points may have any configuration.

2. Preliminaries on graph theory and electrical networks

In this section we recall some basic results in graph theory. For an introduction to
the topic we refer to Bollobás [3], Levin and Peres [13] and Wagner [15].

The signed incidencematrix D of the oriented graphG = (V, E) is the |V |×|E |
matrix with entries

Dve =
⎧⎨
⎩

+1 if e points into v but not out
−1 if e points out of v but not in
0 otherwise.
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Let y be a vector of admittances defined in Sect. 1.2. Let Y be the |E | × |E |
diagonal matrix that has y as its entries, i.e., Y = diag( ye : e ∈ E). We also define
the weighted Laplacian matrix as L = DY DT .

We begin by recalling the weighted Matrix-Tree theorem, see [15, Theorem 5],
which relates the quantity (1.4) to the weighted Laplacian matrix.

Proposition 2.1. Let G = (V, E) be an oriented graph and let D,Y and L be as
above. Then, for any v ∈ V

T (G; y) = det L(v | v)

where L(v | v) is L with the row and column corresponding to v removed and
T (G; y) is defined in (1.4).

Let us recall Kirchhoff’s theorem, see [15, Theorem 8], which relates the
right-hand side of the formula in Theorem1 to the solution of a linear system.

Proposition 2.2. Let G = (V, E) be an oriented graph, (G, y) the electrical net-
work, and let L be the corresponding weighted Laplacian matrix. Fix u, w ∈ V
and let the vector ϕ ∈ R

|V |, with the component ϕu = 0, be the solution to the
system

Lϕ = δw − δu,

where δw is a vector with 1 in the position ofw and 0 otherwise. Then the component
ϕw is given by

ϕw = T (G/uw; y)
T (G; y) .

The classical interpretation of Kirchhoff’s theorem is that of a network of resis-
tors (the admittance is the inverse of the resistance), where we have grounded one
end of the network (ϕu = 0) and let 1 Ampere of current flow through it (right-hand
side δw). Then the voltage at the exiting node ϕw is given by the formula above.
This allowed Kirchhoff [10] to solve the problem of replacement resistance which
in this case is just ϕw.

Given an electrical network (G, y) we may define a discrete Dirichlet capacity
between two vertices v1, vm ∈ V as

min
ϕ∈Rm ;ϕ1=1;ϕm=0

〈Lϕ,ϕ〉

where L is theweightedLaplacianmatrix. Then theminimizer of the above problem
is inversely related to Kirchhoff’s theorem, Proposition2.2. For more information,
see [3].

Lemma 2.3. Let (G, y) be the electrical network from Sect.1.2 and let L be the
Laplacian matrix. Then it holds

min
ϕ∈Rm ;ϕ1=1;ϕm=0

〈Lϕ,ϕ〉 = T (G; y)
T (G/v1vm; y) .
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Theminimizer is given by the unique solutionwith the boundary conditionsϕm = 0,
ϕ1 = 1 to the linear system

Lϕ = λ(δ1 − δm)

where δ1 = (1, 0, . . . , 0) and δm = (0, . . . , 0, 1) are vectors of length m and λ is
the value of the minimum problem.

Proof. Recall that L = DY DT , where D is the signed incidence matrix and Y
is the admittance matrix. Let us first reduce the problem. Note that the constraint
ϕm = 0 implies that wemay remove the last row of D (call it D−) and the last entry
of ϕ (call it ϕ−) and note that DT−ϕ− = DTϕ. Let L− = D−Y DT− = L(vm | vm)

and note that similar reasoning gives that

〈L−ϕ−,ϕ−〉 = 〈Lϕ,ϕ〉.
By the Lagrange multiplier method we get{

L−ϕ− = λδ1
(ϕ−)1 = 1,

where δ1 = (1, 0, . . .). Note that by Proposition2.1 we know that det(L−) =
T (G; y) �= 0 which gives that the above system has a unique solution. From the
above we get that the value of the minimum is given as

〈Lϕ,ϕ〉 = 〈L−ϕ−,ϕ−〉 = λ. (2.1)

Next, we note that ϕ/λ is a solution to the linear system in Proposition2.2, as such
we get

T (G/uw; y)
T (G; y) = ϕ1

λ
= 1

λ
,

which together with (2.1) finishes the proof. ��
We also need the following dual formulation of the minimization problem in

Lemma2.3.

Lemma 2.4. Let G = (V, E) be an oriented graph, where V = (v1, . . . , vm), let D
be the signed incidence matrix, L the Laplacian matrix, and let Y be the admittance
matrix. Then it holds

min
(
〈Y−1 j , j〉 : j ∈ R

|E |, D j = δ1 − δm

)
= 1

λ
, (2.2)

where λ is the value of the minimization problem from Lemma2.3, i.e.,

λ = min
ϕ∈Rm ;ϕ1=1;ϕm=0

〈Lϕ,ϕ〉.

Wepoint out that onemay interpret theminimization problem (2.2) as a discrete
version of Thompson’s principle.
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Proof. Let j ∈ R
|E | be the minimizer of (2.2). The first variation of the min-

imization problem implies that 〈Y−1 j , e〉 = 0 for all e ∈ R
|E | with De = 0,

i.e.,

Y−1 j ∈ Ker⊥(D). (2.3)

Recall that the solution to the minimization problem in Lemma2.3 satisfies

δ1 − δm = λ−1Lϕ = λ−1DY DTϕ = D(λ−1Y DTϕ)

as such j̃ = λ−1Y DTϕ will according to the above satisfy the constraint D j̃ =
δ1 − δm . Then, j̃ − j =: α ∈ Ker(D) and it holds trivially 〈DTϕ, α〉 = 0 since,
DTϕ ∈ Ker⊥(D). Moreover, by (2.3) it holds 〈Y−1 j , α〉 = 0, thus

〈Y−1α, α〉 = 〈λ−1DTϕ, α〉 − 〈Y−1 j , α〉 = 0.

Since Y−1 is positive definite we obtain α = 0, that is

λ−1Y DTϕ = j .

The result then follows from Lemma2.3 as

〈Y−1 j , j〉 = 〈Y−1Y DTϕ,Y DTϕ〉
λ2

= 〈DY DTϕ,ϕ〉
λ2

= 1

λ
.

��

2.1. Simplification of the electrical network

The formula in the statement of Theorem1 given by Kirchhoff’s formula is precise,
but if the graph contains many cycles and loops, it may be unnecessarily cumber-
some to calculate. In the next two lemmas we consider the case when the formula
in Theorem1 can be simplified.

Consider a graphG = (V, E). A cut vertex is a vertex, that when removed from
G will increase the number of components. A biconnected graph is a graph with
no cut vertices. A biconnected component of a graph G is a maximal biconnected
subgraph.

Lemma 2.5. Let G = (V, E) be a graph with a biconnected component G1 =
(V1, E1) and let G2 = (V2, E2) be a subgraph of G such that they intersect in one
cut vertex v ∈ V and G = G1 ∪ G2. Then if y ∈ R

|E | is the admittance vector,
y1 = y|E1 and y2 = y|E2 , it holds

T (G; y) = T (G1; y1)T (G2; y2).
Proof. By the definition of biconnected components, and since G1,G2 intersect
only in v, we can by reordering the vertices write the Laplacian matrix L = DY DT

such that the first rows/columns correspond to the vertices in G1. Then L with the
column and row corresponding to v removed (L(v | v)) has a block diagonal
structure with the blocks L1 = LG1(v | v) and L2 = LG2(v | v). Now, since
det(L) = det(L1) det(L2) the claim follows by applying Proposition2.1 on all
matrices. ��
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Fig. 3. Example of the graph decomposition in Proposition2.6. Here the subgraph corre-
sponding to the blue edges is the biconnected component and the red edges correspond to
the graph G1

Wecan use the above lemma to simplify the computation ofKirchhoff’s theorem
in the presence of irrelevant biconnected components, see Fig. 3.

Proposition 2.6. Consider the graph G = (V, E) and let Y be the admittance
matrix. Assume that G = G1 ∪ G2, where G1 is a biconnected component and
G1,G2 intersect in a cut vertex v ∈ V . Then if u, w ∈ V2, it holds

T (G; y)
T (G/uw; y) = T (G2; y2)

T (G2/uw; y2)
.

The main consequence of Proposition2.6 is that, using the terminology from
[1], only the vertices in V2 are relevant. We also point out that this is related to
the definition of a gate in [5]. In particular, referring to Kirchhoff’s theorem, a
consequence of the above is that the voltage ϕ is constant on the biconnected
components and is thus redundant.

A consequence of Lemma2.3 is that edges with small admittance does not
contribute total capacity unless they significantly alter the topology of the graph:

Lemma 2.7. (Deletion of edge) Let (G, y) be the electrical network as in
Lemma2.3. Let e ∈ E and define G ′ = (V, E\{e}), then it holds

T (G ′; y)
T (G ′/(v1vm); y) ≤ T (G; y)

T (G/(v1vm); y) ≤ T (G ′; y)
T (G ′/(v1vm); y) + ye

Proof. Let Y ′ be the diagonal matrix Y with the entry corresponding to ye replaced
by 0. Then we immediately have

min
ϕ∈Rm ;ϕ1=1;ϕm=0

〈DY ′DTϕ,ϕ〉 ≤ min
ϕ∈Rm ;ϕ1=1;ϕm=0

〈DY DTϕ,ϕ〉

which proves the first inequality. For the second, note that for any edge e ∈ E , let
v−, v+ ∈ V be the incident vertices, then |ϕ(v−) − ϕ(v+)| ≤ 1, hence for any y
having each component bounded by 1 satisfies

〈DY DTϕ,ϕ〉 ≤ 〈DY ′DTϕ,ϕ〉 + ye

which proves the last inequality. ��
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3. Proof of the main theorem

The proof of the main theorem consists of an upper and a lower bound of the
capacity. The lower bound uses the electrical network defined in Sect. 1.2 and the
variational definition of capacity, similar to the proof in [1]. For simple networks
the lower bound follows from the variational characterization of capacity together
with the fundamental theorem of calculus.

For the upper bound, we provide a novel proof using ideas from Geometric
Function Theory together with Thompson’s principle which is in a sense dual to
the lower bound. In this case, for simple networks the upper bound follows from
Thompson’s principle together with the divergence theorem. For the general case
we need an alternative construction of the electrical network.

3.1. Alternative construction of the electrical network

We will construct the alternative electrical network using the domain Uδ/3 (see
Definition1.4), instead of using the components of U−δ/3 as in Sect. 1.2. To this
aim, for a saddle point z ∈ Z , we define the surface

Sz := Tz
(
{0} × {x ′ ∈ R

n−1 : Gz(x
′) < δ}

)
, (3.1)

where Tz is from Definition1.1. The set Uδ/3 is connected, but the surfaces Sz
in (3.1) divide it into different components, which we will associate with vertices,
see Fig. 5. Define


δ/3 := Uδ/3 \
⋃
z∈Z

Sz . (3.2)

We will now provide two technical lemmas. The first says that any path con-
necting two local minimum points in U−δ/3 necessarily passes through a surface
Sz for some z in the set of saddles Z , where we recall that Z denotes the saddle
points inside Uδ/3 \U−δ/3. The second lemma states that U−δ/3 and 
δ/3 have the
same number of components and 
δ/3 defines exactly the same graph G = (V, E)

as in Sect. 1.2.

Lemma 3.1. Let Uv and Uv′ be two different components of U−δ/3 and let γ ∈
C(Uv,Uv′ ;Uδ/3). Then there is a critical point z ∈ Z such that the intersection
γ ([0, 1]) ∩ Sz is non-empty.

Proof. W.L.O.G. we assume F(xu; xw) = 0. Fix γ0 ∈ C(Uv,Uv′ ;Uδ/3) and denote
γ ∼ γ0 when γ is homotopy equivalent to γ0 in Uδ/3. Define

Fγ0 := inf
γ∼γ0

sup
t∈[0,1]

F(γ (t)).

Then there is a critical point z of F such that F(z) = Fγ0 and a continuous path
γ1 ∼ γ0 such that γ1(t) = z for some t ∈ (0, 1). We may choose the coordinates
in Rn such that z = 0 and Sz = S0 = {0} × {x ′ ∈ R

n−1 : G(x ′) < δ}.
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Note that S0 is a convex hypersurface with boundary ∂S0 = {0}× {x ′ ∈ R
n−1 :

G(x ′) = δ}, and note that ∂S0 is homeomorphic to S
n−2. Since F is admissible

it follows from (1.1) that F(x) ≥ F(0) + 2δ/3 on x ∈ ∂S0 and therefore since
F(0) > −δ/3 we have ∂S0 ⊂ R

n\Uδ/3. In particular, if γ is a path in Uδ/3 then
it does not intersect ∂S0, and if γ ∼ γ0 then γ has to intersect S0. The claim then
follows from γ1 ∼ γ0. ��

Lemma 3.2. The set 
δ/3 defined in (3.2) has the same components as U−δ/3
defined in (1.2). To be more precise, if 
′ is a component of 
δ/3 then there is
exactly one component, say U ′, of U−δ/3 such that U ′ ⊂ 
′.

Proof. W.L.O.G. we assume F(xu; xw) = 0. Let us fix a component 
′ of 
δ/3.
Since F is admissible, then for any z ∈ Z , we see from the definition of Sz in (3.1)
that F(x) ≥ F(z) for all x ∈ Sz , and hence Sz ∩ U−δ/3 = ∅. Thus, there is a
component U ′ of U−δ/3 such that U ′ ⊂ 
′. Let us also note that U ′ is the only
component ofU−δ/3 which is in 
′, since if there was another componentU ′′ then
a curve γ ∈ C(U ′,U ′′;
′) ⊂ C(U ′,U ′′;Uδ/3) necessarily intersects one Sz by
Lemma3.1. ��

We will localize the capacity of the sets A = Bε(xu) and B = Bε(xw) in Uδ/3
by defining

cap(A, B;Uδ/3) := inf

(
ε

ˆ
Uδ/3

|∇h|2e− F
ε dx : h = 1 in A, h ∈ W 1,2

0 (Rn \ B)

)
.

(3.3)

In the above minimization problem we do not have any boundary condition on
∂Uδ/3. Thus, it follows from a classical result of calculus of variations (see [6,
Sect. 2.4]) that the minimizer ĥ A,B of (3.3) satisfies the natural boundary condition,
∇ĥ A,B · n = 0 on the smooth part of ∂Uδ/3.

It is easy to see that for3.3 it holds

cap(A, B) ≥ cap(A, B;Uδ/3) ≥ (1 − C η̂(ε)) cap(A, B), (3.4)

where η̂ is as in Sect. 1.3. Indeed, the first inequality in (3.4) is trivial. For the
second we take ĥ A,B to be the minimizer of 3.3 and we recall the rough capacity
bound from Avelin et al. [1, Lemma 3.2], i.e., there exists constants c1, c2, q1, q2
such that

c1ε
q1e−F(xu;xw)/ε ≤ cap(A, B) ≤ c2ε

q2e−F(xu ;xw)/ε. (3.5)

We choose a cut-off function 0 ≤ ζ ≤ 1 such that ζ = 1 in Uδ/6, ζ = 0 outside
Uδ/3 and |∇ζ | ≤ C , where C depends on δ and on the Lipschitz constant of the
potential F . Then, using Young’s inequality, the maximum principle and (3.5) we
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get

cap(A, B;Uδ/3) ≥ ε

ˆ
Uδ/3

|∇hA,B |2ζ 2e− F
ε dx

≥ ε

1 + ε

ˆ
Uδ/3

|∇(ĥ A,Bζ )|2e− F
ε dx − 2

ε

ˆ
Uδ/3

|∇ζ |2ĥ2A,Be
− F

ε dx

≥ ε(1 − 2ε)
ˆ
Rn

|∇(ĥ A,Bζ )|2e− F
ε dx − C

ε
e− δ

6ε e−F(xu ,xw)/ε

≥ (1 − C η̂(ε)) cap(A, B),

where the last inequality follows from the sub-linearity of η̂.

3.2. Thompson’s principle

The construction of the network via (3.2) is suitable for the dual definition of the
capacity via Thompson’s principle. This is done by defining a class of vector fields,
denoted byM, where X ∈ M if X ∈ W 1,∞(Uδ/3\( Ā ∪ B̄);Rn) and satisfies⎧⎨

⎩
divX = 0 in Uδ/3 \ ( Ā ∪ B̄),

X · n = 0 on ∂Uδ/3´
∂A X · n = 1.

(3.6)

We note that the set M is non-empty, since the vector field X = Ce−V/ε∇ĥ A,B ,
where C = (cap(A, B;Uδ/3))

−1, belongs to M. Then we have the following (see
e.g. [12])

1

cap(A, B;Uδ/3)
= inf

(
ε

ˆ
Uδ/3\( Ā∪B̄)

|X |2e F
ε dx : X ∈ M

)
. (3.7)

Let G = (V, E) be the graph constructed as above using the domain 
δ/3
defined in (3.2) and let X ∈ M. We construct a current j : E → R associated
with X as follows. Let us fix a vertex v ∈ V \{u, w} and let Ũv be the associated
component of the domain 
δ/3. Denote the edges incident with v by e ∈ Ev ⊂ E
and the associated surface defined in (3.1) by Se = Sze . The boundary ∂Ũv is
contained in ∂Uδ/3 ∪ (

⋃
e∈Ev

Se). Recall that v �= u, w, therefore divX = 0 in Ũv ,
and we have by the divergence theorem and by X · n = 0 on ∂Uδ/3 that

0 = −
ˆ
Ũv

div(X) dx =
ˆ

∂Ũv

X · n dHn−1 =
∑
e∈Ev

ˆ
Se
X · n dHn−1. (3.8)

We define the value of j at e ∈ Ev as

j (e) :=
{

ε
´
Se
X · n dHn−1, if e points into v,

−ε
´
Se
X · n dHn−1, if e points out of v.

(3.9)
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We define the current similarly also at edges incident with u and w. If we label the
edges as e1, . . . , el we have a vector j ∈ R

|E | which has components j k = j (ek).
By construction and by (3.8) j satisfies the so-called Kirchhoff’s current law, which
means that at every vertex the current flowing in equals the current flowing out. We
may write this simply as (see [15])

D j = δ1 − δm

where we have labeled the vertices as v1, . . . , vm with v1 = u and vm = w, and δ1
and δm are as in Lemma2.3.

3.3. Technical lemmas

Before we prove the main theorem we recall the following lemma from Avelin et
al. [1].

Lemma 3.3. Let F be admissible. Let xu, xw be as in Definition1.4 and assume
that communication height from Definition1.4 is zero, i.e., F(xu; xw) = 0. If Ûv is
a component of U−δ/2 = {F < −δ/2}, then

osc
Ûv

hBε(xu),Bε(xw) ≤ Ce− 3δ
16ε ,

for small enough ε ≤ ε0.

Proof. The proof is almost the same as in [1, Lemma 3.5], but we repeat it for the
reader’s convenience. Let us denote u := hBε(xu),Bε(xw) for short.

Recall that Ûv is a component of U−δ/2 = {F < −δ/2}. Since F is Lipschitz
continuous, we find a Lipschitz domain Dv such that

Ûv ⊂ Dv ⊂ U− 4δ
9

= {F < − 4δ
9 }

and the Poincaré inequality holds in Dv with a constant that depends on ‖F‖C0,1 ,
i.e., ˆ

Dv

|u − uDv |2 dx ≤ C
ˆ
Dv

|∇u|2 dx,

where uDv denotes the average of u in Dv . We use the rough capacity bound (3.5)
and Dv ⊂ U−4δ/9 to deduceˆ

Dv

|∇u|2 dx ≤ e− 4δ
9ε

ˆ
Dv

|∇u|2e− F
ε dx

≤ ε−1e− 4δ
9ε cap(Bε(xu), Bε(xw)) ≤ Cεq−1e− 4δ

9ε .

Fix a point x0 ∈ Ûv . Then by Harnack’s inequality [1, Lemma 2.7] it holds

sup
Bε(x0)

|u − uDv | ≤
( 

2Bε(x0)
|u − uDv |2 dx

)1/2

≤ Cε− n
2

(ˆ
Di

|u − uDv |2 dx
)1/2

.
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In conclusion, we have (since ε ≤ ε0)

sup
Bε(x0)

|u − uDv | ≤ ε
q−1−n

2 e− 2δ
9ε ≤ Ce− 3δ

16ε .

The claim follows from the fact that x0 is arbitrary point in Ûv . ��
We also need the following lemma which relates the function η̂ to ω in the

assumption (1.1). This lemma can be found in [1, Lemma 3.9].

Lemma 3.4. Assume that G : Rk → R is a convex function which has a proper
minimum at the origin and let ω be the increasing function from (1.1). Then for a
fixed δ ≤ δ0 and for any ε ≤ ε0 it holds

(1 − η̂(ε))

ˆ
Rk

e− G(x)
ε dx ≤

ˆ
{G<δ}

e− G(x)
ε e± ω(G(x))

ε dx ≤ (1 + η̂(ε))

ˆ
Rk

e− G(x)
ε dx,

for a continuous an increasing function η̂ with η̂(0) = 0, which depends on ω and
on the dimension.

3.4. Proof of the main theorem

We prove the main theorem by providing sharp lower bounds for the variation
definition of the capacity and for (3.7), which is in some sense the dual of the
argument in [12].

Proof of Theorem 1. Consider two local minima xu, xw, let A = Bε(xu) and
B = Bε(xw), and let hA,B be the capacitary potential for the capacitor (A, B).
By rescaling we may assume that communication height from Definition1.4 is
zero, i.e., F(xu; xw) = 0.
Lower bound: Let (G, y) be the electrical network from Sect. 1.2, and label the
vertices as V = {v1, . . . , vm}, where v1 = u, vm = w. We need to show that

cap(A, B) ≥ (1 − C η̂(ε))
T (G; y)

T (G/uw; y) ,

where η̂ is as in Sect. 1.3.
Let ϕ : V → R be a function such that ϕ(v) = hA,B(xv) where v ∈ V and xv

is the associated minimum point. Let Ûv be the component of {F < −δ/2} which
contains xv . By Lemma3.3 we have

oscÛv
(hA,B) ≤ Ce− 3δ

16ε for all v ∈ V .

Therefore, ϕ satisfies

|hA,B − ϕ(v)| ≤ Ce− 3δ
16ε in Ûv for v ∈ V . (3.10)

Consider an edge e ∈ E , which is not a loop, and let v−, v+ be the two incident
vertices in V . Denote the associated minimum points as x−, x+, the associated
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Fig. 4. The bridge Oe connects the sets Ûv+ and Ûv− . The smaller cylindrical bridge Ôe

has its lateral boundaries inside Ûv+ ∪ Ûv−

islands as U−,U+ respectively and the saddle point as ze. We may assume that
ze = 0 and that the bridge is given by

Oe = Oze,δ = {y1 : g(y1) < δ} × {y′ : G(y′) < δ}.
Let us consider a domain (see Fig. 4)

Ôe := {y1 : g(y1) < δ} × {y′ : G(y′) < δ/100}
and denote for τ ≥ 0 the surface

Sτ := {τ } × {y′ : G(y′) < δ/100}.
We denote the lateral boundary of Ôe by �e := {y1 : g(y1) = δ} × {y′ :

G(y′) < δ/100} and note that �e = Sτ1 ∪ Sτ2 for τ1 < 0 < τ2 which satisfy
g(τ1) = g(τ2) = δ. Recall that we assume F(ze) = F(0) < δ/3 and therefore by
the definition of Ôe and assumption (1.1) it holds for all y ∈ �e that

F(y) ≤
<δ/3︷︸︸︷
F(0)−

=δ︷ ︸︸ ︷
g(y1)+

<δ/100︷ ︸︸ ︷
G(y′) +

<δ/100︷ ︸︸ ︷
ω(g(y1))+

<δ/100︷ ︸︸ ︷
ω(G(y′)) < − δ

2
. (3.11)

In other words, the lateral boundary�e is contained in the sublevel-set {F < −δ/2}
and the inequality in (3.10) holds there.

Let us next prove that it holds

(1 − C η̂(ε))(ϕ(v−) − ϕ(v+))2 ye ≤ ε

ˆ
Oe

|∇hA,B |2e− F(y)
ε dy + Ce− δ

24ε , (3.12)

where the admittance ye is defined in (1.3). To this aim we fix y′ ∈ {y′ : G(y′) <

δ/100}, let τ1 < 0 < τ2 be such that g(τ1) = g(τ2) = δ and notice that (τi , y′) ∈
�e, for i = 1, 2. Using the fundamental theorem of calculus and (3.10) we get

|ϕ(v−) − ϕ(v+)| − Ce− 3δ
16ε ≤ |hA,B(τ2, y

′) − hA,B(τ1, y
′)|
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≤
ˆ

{g<δ}
|∂y1hA,B(y1, y

′)|dy1

=
ˆ

{g<δ}
|∇hA,B(y1, y

′)|e− F(y)
2ε e

F(y)
2ε dy1.

By Cauchy–Schwarz inequality we have

(ϕ(v−) − ϕ(v+))2 − 2Ce− 3δ
8ε ≤

(ˆ
{g<δ}

|∇hA,B(y)|2e− F(y)
ε dy1

)(ˆ
{g<δ}

e
F(y)

ε dy1

)

for (y1, y′) ∈ {g < δ} × {G < δ/100}. The assumption (1.1) implies

F(y) ≤ F(0) − g(y1) + ω(g(y1)) + G(y′) + ω(G(y′)).

Dividing the above estimate by e
G(y′)

ε e
ω(G(y′))

ε and integrating over y′ yields(ˆ
{G<δ/100}

e− G(y′)
ε e− ω(G(y′))

ε dy′
) (

(ϕ(v−) − ϕ(v+))2 − 2Ce− 3δ
8ε

)
≤

(ˆ
Ôe

|∇hA,B(y)|2e− F(y)
ε dy

) (ˆ
{g<δ}

e− g(y1)

ε e
ω(g(y1))

ε dy1

)
e

F(0)
ε .

Using Lemma3.4 and Proposition 1.6 it holds

e
F(0)

ε

ˆ
{g<δ}

e
−g(y1)

ε e
ω(g(y1))

ε dy1 ≤ (1 + η̂(ε))e
F(0)

ε

ˆ
R

e
−g(y1)

ε dy1

≤ (1 + C η̂(ε)) dε(Bε(x−), Bε(x+);
e),

and, trivially
ˆ

{g<δ}
e

−g(y1)

ε e
ω(g(y1))

ε dy1 ≥
ˆ

{g<ε}
e

−ε
2ε dy1 ≥ c|{g < ε}|.

Since g is Lipschitz and g(0) = 0 we have (−cε, cε) ⊂ {g < ε} for some c, and
therefore |{g < ε}| ≥ cε. Again, by Lemma3.4 and Proposition 1.6 we get

e− F(0)
ε

ˆ
{G<δ/100}

e− G(y′)
ε e− ω(G(y′))

ε dy′ ≥ (1 − η̂(ε))e− F(0)
ε

ˆ
Rn−1

e
−G(y′)

ε dy′

≥ (1 − C η̂(ε)) Vε(Bε(x−), Bε(x+);
e),

and trivially we also get
ˆ

{G<δ/100}
e

−G(y′)
ε e

−ω(G(y′))
ε dy′ ≤ |{G < δ}|.

Recalling that F(0) ≤ δ/3, this together with the above estimates and the definition
of the admittance ye (1.3) imply the inequality (3.12).

Since (3.12) holds for all e ∈ E we can sum the inequalities over e and rephrase
the sum using the signed incidence matrix D and the admittance matrix Y . To this
aim, let ϕ be the vector (ϕ(v1), . . . , ϕ(vm)), where v1 = u and vm = w, and for
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an edge e ∈ E , let ve− , ve+ be the incident vertices. Then since D is the |V | × |E |
signed incidence matrix, we have for the edges (e1, . . . , ek)

DTϕ = (ϕ(ve+
1
) − ϕ(ve−

1
), . . . , ϕ(ve+

k
) − ϕ(ve−

k
)).

Furthermore, by the definition of the admittance matrix Y we have that

Y DTϕ = ((ϕ(ve+
1
) − ϕ(ve−

1
))ye1 , . . . , (ϕ(ve+

k
) − ϕ(ve−

k
))yek ).

Recalling that (3.12) holds for every edge e ∈ E , we get since sets Oei are disjoint,
that

(1 − C η̂(ε))〈DY DTϕ,ϕ〉 ≤ε

ˆ
Rn

|∇hA,B |2e− F(y)
ε dy + Ce− δ

24ε

≤ cap(A, B) + Ce− δ
24ε .

Now note that, the rough capacity bound (3.5) implies that cap(A, B) ≥ c1εq1 . By
construction, it holds ϕ1 = ϕ(u) = 1 and ϕm = ϕ(w) = 0, therefore Lemma2.3
completes the proof of the lower bound.
Upper bound: We prove the upper bound by a similar argument by providing a
lower bound in the dual characterization ((3.7)). Indeed, by the second inequality
in (3.4) this provides an upper bound for the global capacity. Let us fix a vector field
X ∈ M, where M is defined via conditions ((3.6)), and construct the associated
current j ∈ R

|E | as in Sect. 3.1. The construction implies that j satisfiesKirchhoff’s
current law D j = δ1 − δm , and therefore it holds by Lemmas2.3 and 2.4 that

〈Y−1 j , j〉 ≥ T (G/uw; y)
T (G; y) .

In order to conclude the proof, it is enough to show that at every edge e ∈ E it
holds

ε

ˆ
Oe∩Uδ/3

|X |2e F
ε dx ≥ (1 − C η̂(ε))

j2e
ye

, (3.13)

where Oe = Oze,δ denotes the associated bridge. To this aim we may choose the
coordinates in R

n such that

Oe = {x1 : g(x1) < δ} × {x ′ : G(x ′) < δ}.
For every |τ | < δ/100 redefine

Sτ := {τ } × {x ′ : G(x ′) ≤ δ}, (3.14)

and note that by the definition of j in (3.9) it holds

ε

∣∣∣∣
ˆ
S0

X · ê1 dHn−1
∣∣∣∣ = | j e|, (3.15)
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Fig. 5. The set Sze and the domain Ôτ separate the domain Uδ/3 into different components

where ê1 is the first coordinate vector ofRn . Let us fix 0 < τ < δ/100 and consider
the domain (see Fig. 5)

Ôτ = {x1 : 0 < g(x1) < τ } × {x ′ : G(x ′) < δ}
and denote the ‘cylindrical’ boundary by

�τ = {x1 : 0 ≤ g(x1) ≤ τ } × {x ′ : G(x ′) = δ}.
Arguing as in (3.11) we deduce that F > δ/3 on �τ and therefore �τ ⊂

(U δ/3)
c. Note that the ‘lateral’ boundary of Ôτ is the union of S0 and Sτ defined in

(3.14). By (3.6) X is divergence free, and thus we obtain by the divergence theorem
that

0 =
ˆ
Ôe∩Uδ/3

div(X) dx

=
ˆ

∂Uδ/3∩Ôe

X · n dHn−1 +
ˆ
S0

X · n dHn−1 +
ˆ
Sτ

X · n dHn−1.

Again by (3.6) we have X · n = 0 on ∂Uδ/3, and since the normal on the lateral
boundary, S0 and Sτ , points in direction of ê1, we have by (3.15)

ε

∣∣∣∣
ˆ
Sτ

X · ê1 dHn−1
∣∣∣∣ = ε

∣∣∣∣
ˆ
S0

X · ê1 dHn−1
∣∣∣∣ = | j e|.

We may apply the same argument to τ < 0 to deduce the above equality for all
|τ | < δ/100.

We proceed by the Cauchy–Schwarz inequality

| je| = ε

∣∣∣∣
ˆ
Sτ

X · ê1 dHn−1
∣∣∣∣ ≤ ε

(ˆ
Sτ

|X |2e F
ε dHn−1

) 1
2
(ˆ

Sτ

e− F
ε dHn−1

) 1
2

.

By assumption (1.1) we have

F(y) ≥ F(0) − g(y1) − ω(g(y1)) + G(y′) − ω(G(y′))
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thus by Lemma3.4 and Proposition 1.6 it holds

ˆ
Sτ

e− F
ε dHn−1 ≤ e

g(τ )
ε e

ω(g(τ ))
ε e− F(0)

ε

ˆ
{G<δ}

e− G(x ′)
ε e

ω(G(x ′))
ε dx ′

≤ (1 + η̂(ε))e
g(τ )

ε e
ω(g(τ ))

ε e− F(0)
ε

ˆ
Rn−1

e− G(x ′)
ε dx ′

≤ (1 + C η̂(ε))e
g(τ )

ε e
ω(g(τ ))

ε Vε(Bε(x−), Bε(x+);
e).

Hence, by the three previous inequalities we have

j2e
Vε(Bε(x−), Bε(x+);
e)

e− g(τ )
ε e− ω(g(τ ))

ε ≤ (1 + C η̂(ε))ε2
ˆ
Sτ

|X |2e F
ε dHn−1.

Integrating over τ ∈ (−δ/100, δ/100) and using Lemma3.4 and Proposition1.6
we get

j2ee
− F(0)

ε
dε(Bε(x−), Bε(x+);
e)

Vε(Bε(x−), Bε(x+);
e)
≤ (1 + C η̂(ε))ε2

ˆ
Oe

|X |2e F
ε dx .

Inequality (3.13) then follows from the definition of ye in (1.3). ��
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