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PHYTOPLANKTON PIGMENT CONCENTRATIONS USING HYPER-
SPECTRAL UNMIXING AND AUTOENCODERS

This study proposes a novel protocol for ef-
ficient Phytoplankton monitoring in inland wa-
ters. It combines a mobile spectral imager
and autoencoder to assess Chlorophyll-a, Fu-
coxanthin, and Phycocyanin pigments. Tested
in 20 Scottish lakes the protocol adapts well to
varied environments. High-performance liquid
chromatography and spectrophotometry meth-
ods are used to extract the ground truth. The
proposed autoencoder is initialized using fixed
endmembers from the literature to improve the
accuracy of abundance estimation. The proto-
col shows a strong correlation between abun-
dance estimates obtained from autoencoders
and the ground truth data.

INTRODUCTION

Phytoplankton, critical to the global carbon cycle and Earth’s

photosynthesis, are vital for ecological monitoring and under-

standing biogeochemical cycles and climate dynamics[1]. Phy-

toplankton are detectable in water bodies’ euphotic layer using

hyperspectral imagers[2]. The remote sensing data analysis of

phytoplankton depends on their optical properties, influenced by

pigment composition, concentration, cell structure, and geome-

try [3, 4].

A hyperspectral image captures a wide spectrum of light for

each pixel. Hyperspectral Unmixing is a method to decompose

the measured pixel spectrum of hyperspectral data into a collec-

tion of endmembers and a set of corresponding fractional abun-

dances. This unmixing is a challenging problem because of low

spatial resolution, particulate mixtures, and multiple light scat-

terings.[5]

Linear (left) and Non-linear(right) spectral unmixing

Traditional methods involve linear and nonlinear unmixing

models and algorithms to extract and estimate component pro-

portions. However, they face limitations from modeling errors

and observational noise [6]. The recent deep learning advance-

ments, particularly autoencoders, are being explored for abun-

dance estimation and nonlinear unmixing, thereby increasing ac-

curacy in identifying endmembers .[7, 8].

METHODS

We acquire hyperspectral images of water samples of 20 different

lake in Scotland using a mobile imager and augment our dataset.

The data for 19 lakes serve for training and validation, leaving

one exclusively for testing. This approach generates 20 sets of

training and testing data, each excluding one lake, ensuring a

thorough evaluation of model performance for robustness and

accuracy.

Schematic Overview of 20 Scottish Lake Sample Analysis:
Mobile Spectral Imaging to Autoencoder-Based Estimation

Step 1 (Autoencoder Initialization and Data Processing):

Methodology employs an autoencoder to process training data,

extracting abundance estimates and endmembers. The au-

toencoder derives abundance estimates from its latent space

and obtains endmembers using its decoder’s weights. The de-

coder’s weights are initialized with fixed endmember data for

Chlorophyll-a, Phycocyanin, and Fucoxanthin from existing lit-

erature.[9]

Step 2 (End Member Identification with Spectral Angle Mapper):

We identify the endmembers for Chlorophyll-a, Fucoxanthin, Phy-

cocyanin pigments using the spectral angle mapper. It compares

the endmembers derived for autoencoder’s decoder weights with

reference spectra for each pigment from the literature[9], ensur-

ing proper identification of endmembers and their related abun-

dance estimates.
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Step 3 (Abundance Estimation and Correlation Analysis): We

apply the encoder to a separate, left-out lake sample to acquire

its abundance estimates linked to each pigment. Finally, we com-

pare these abundance estimates with actual pigment concentra-

tions from the left-out lake using the correlation coefficient.
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RESULTS

For Loch Leven lake, the pigment concentration analysis re-

vealed high accuracy in autoencoder estimates with ground

truth, showing correlation coefficients of 0.98 for Chlorophyll-a,

0.91 for Fucoxanthin, and 0.84 for Phycocyanin.

For other lakes, Chlorophyll-a levels exhibited strong corre-

lations across most sites, including Lomond, Lindores, and

Monikie, with coefficients between 0.89 to 0.99. Fucoxanthin

showed a wider coefficient range from 0.38 to 0.99, but mostly re-

mained above 0.90. Phycocyanin presented the most variability,

with coefficients as low as 0.17 up to 0.97, suggesting location-

dependent distribution.
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CONCLUSIONS

• Hyperspectral unmixing combined with Autoen-

coders effectively resolves phytoplankton pigment

concentrations.

• Initializing the decoder’s weights with fixed end-

member data for Chlorophyll-a, Phycocyanin, and

Fucoxanthin, as sourced from literature, enhances

result accuracy.

• The current results were obtained using laboratory-

based spectrography. Future work will focus on

validating and enhancing the autoencoder model

by applying it to hyperspectral unmixing with

satellite-derived hyperspectral imagery. This will

enable us to test the model’s efficacy and applica-

bility in a broader, real-world context.
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