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ABSTRACT
The growing domain of liquidity in computing extends its bound-
aries to include advancements like liquid artificial intelligence (AI).
Liquid AI leverages liquid software using isomorphic Internet of
Things (IoT) architecture to enhance computation at the edge. This
innovation unveils vast opportunities yet also introduces signifi-
cant challenges, particularly around privacy and trust. We explore
the vulnerabilities that might hinder the progression of this tech-
nological fusion toward achieving trustworthy AI. Through an
intensive examination of the literature, this research highlights
the heightened threats to data integrity and stakeholder trust in
these evolving ecosystems. Four main challenges: Data collection,
Data storage and Access, Data utilization and sharing, and Surveil-
lance and profiling were identified and examined under privacy,
and two, Algorithms and decision-making and Security of IoT in-
frastructure under trust. The concerns are further categorized to
highlight their impact on the development of trustworthy AI. The
study acknowledges the early state of the field. Consequently, this
research navigates through the limited available literature, initiat-
ing a pioneering discourse emphasizing fostering a foundation for
developing secure and trustworthy Liquid AI environments.

CCS CONCEPTS
• Security and privacy→ Social aspects of security and pri-
vacy.
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1 INTRODUCTION
The digital technology world is rapidly evolving, requiring systems
that are flexible and adaptable. Liquid software, which started as
a web-based solution allowing easy transitions between different
platforms and devices, has paved the way for this adaptability
[8, 24]. This concept has grown, especially with the rise of the
Internet of Things (IoT) - a system where everyday objects are
interconnected. With the advancements in computing on the edge
of the network (edge computing) and artificial intelligence (AI), we
now see the emergence of ‘Liquid AI’ [33]. This new development
aims to create AI systems that are both robust and can quickly
adapt to their surroundings [33]. It promises faster responses by
adjusting to changes in real-time, aligning with the main goals of
edge IoT computing to reduce delays and use resources efficiently
[11, 19, 30, 34, 35].

Adaptability is key in modern technology, with systems like Un-
manned Autonomous Systems (UAS) and Intelligent Unmanned Au-
tonomous Systems (IUAS) gaining importance, especially in health-
care [38]. For example, wearable IoT devices for elderly care could
work in tandem with robots for more efficient care. UAS, which fol-
low pre-set algorithms and sensor input, include drones and basic
robots and can significantly benefit from IoT integration, like in
wearable health monitors. IUAS, enhanced with AI, autonomously
learns and makes real-time decisions, a critical capability for edge
computing applications [38].

Isomorphism is key to the ´liquidity’ or adaptability in the liquid
AI paradigm [23, 33]. Isomorphic Software systems are central
to this evolution, enabling a unified IoT infrastructure that can
nurture a fluid AI ecosystem at the edge. This seamless integration
can allow machine learning (ML) models to transition effortlessly
between centralized cloud systems and local edge environments
without structural overhauls. As a result, these AI models evolve
into a ‘liquid’ form, deployable universally across diverse edge
IoT devices without device-specific customizations. Such adaptable
models are poised to make rapid, context-sensitive decisions in real-
time, heralding a transformative phase in edge computing [23].

The emergence of Liquid Edge Intelligence, an intersection of
Liquid AI and isomorphic IoT architectures, promises unparalleled
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efficiency and adaptability [40]. However, it also ushers in chal-
lenges. Among these, ensuring the trustworthiness of AI model
creation and deployment stands out, giving rise to concerns about
data handling, system reliability, and potential misuse—all of which
are deeply intertwined with privacy and trust issues [26, 28, 40]. It’s
crucial, therefore, to advocate AI systems that are transparent, fair,
and rigorously safeguard user privacy. This paper explores these
intricacies, pinpointing vulnerabilities while also spotlighting op-
portunities to steer the future toward more trustworthy AI systems
[34, 37, 40]. Our investigation is guided by the following research
question:
RQ: What potential privacy and trust vulnerabilities are inherent in
Liquid AI environments built on isomorphic architecture, and how do
they impact the development of trustworthy AI?

Through this review, we seek not only to bridge a current gap in
understanding but also to pioneer discourse and exploration in a do-
main that stands as a frontier in technological evolution. The paper
is structured as follows: Section 2 delineates this study’s primary
concepts, providing the necessary background. The methodology
adopted for this research is explained in Section 3. Subsequently,
Section 4 offers a comprehensive discussion of our findings and
limitations. Finally, Section 5 concludes the study, summarizing the
key insights and implications.

2 BACKGROUND
We examine the basic concepts of the study.

2.1 Liquid Software
Liquid software is a computing paradigm where applications pro-
vide a seamless user experience across various devices [8]. Liquid
software is characterized by its adaptability and continuous up-
dates, offering seamless experiences for users across multiple plat-
forms, initially primarily on web-based applications. This fluidity
has evolved to include the IoT (liquid IoT) [40], where the constant
adaptability extends to devices operating at the edge of networks,
facilitating a more harmonized interaction between various devices
and systems [35, 40].

2.2 Edge Computing
Edge computing has its roots in distributed computing and network
architecture concepts, with the term ‘edge computing’ gaining
prominence in the late 2010s [9]. This rise was driven by the grow-
ing demand for low-latency, high-bandwidth processing, which
conventional centralized cloud computing couldn’t meet [9]. Facili-
tated by the exponential rise of IoT devices necessitating real-time
data processing, edge computing situates computational resources
close to data origins, such as IoT devices, consequently minimiz-
ing latency and bandwidth usage. This structural shift accentuates
real-time analytics and optimizes the implementation of AI func-
tionalities at the edge, cultivating a more agile and potent system.
This computing paradigm is experiencing further refinement and
sophistication, integrating seamlessly with modern technologies
like Liquid software and IoT, thereby fostering a dynamic, adaptive
computational ecosystem within IoT networks [42]. Liquid IoT, an
emerging concept in the digital technology landscape, epitomizes
the seamless adaptability and fluid functionality of the IoT [40].

Leveraging the capabilities of edge computing, it facilitates an en-
vironment where IoT devices can effortlessly adapt to changing
conditions and technologies, enhancing efficiency and responsive-
ness. This progression is paving the way for the emergence of
Liquid AI [23, 24, 34].

UAS encompasses a broad spectrum of autonomous systems,
from aerial drones to ground vehicles and robots, operating with-
out human pilots. These can be remotely controlled or function
autonomously through predefined algorithms. Edge computing am-
plifies their capabilities by facilitating swift data processing near
the source, ensuring prompt decision-making and efficient band-
width utilization. The evolution towards Intelligent Unmanned
Autonomous Systems (IUAS) integrates advanced AI, equipping
these systems to learn, adapt, andmake informed decisions based on
environmental inputs. When combined with edge computing, IUAS
can optimize real-time reactions in various scenarios, highlighting
the significance of adaptability in local processing to enhance their
capabilities [38].

2.3 Liquid AI
AI has a history dating back to the 1950s, marked bymilestones such
as Alan Turing’s pioneering Turing Test [20]. The central aim of
AI is to equip machines with cognitive abilities resembling human
faculties, including learning, reasoning, and problem-solving. In
the cloud-edge computing landscape context, AI plays a pivotal
role in handling data from IoT devices, such as sensors and cameras
[20]. By locally processing and filtering this data, AI enhances
system efficiency, conserves bandwidth, and minimizes latency
before cloud-based analysis.

In contrast, Liquid AI represents a recent innovation designed to
overcome limitations associated with traditional AI systems [18, 33].
Liquid AI represents a significant paradigm shift that denotes AI’s
convergence with the concepts of liquid software, fostering an
ecosystem where AI models can adapt swiftly, making real-time
decisions based on changing contexts and environments [18, 33].
Additionally, a specialized subset of Liquid AI employs advanced
neural network configurations inspired by the neural architecture
of C. Elegans nematodes [11]. These microscopic worms manifest
complex behaviors with a neuronal setup far less intricate than the
ones employed in human-centric deep learning frameworks [11].
While this focus offers an intriguing direction for Liquid AI, it’s
worth mentioning that our research steers clear of this specializa-
tion. Instead, our work aims to build a versatile foundation that can
adapt to a wide array of requirements, whether that involves inter-
facing with multiple types of technology or adapting to a diverse
set of use cases.

The development of the Liquid AI framework is a direct response
to the rise in data influx from IoT devices and advancements in
ML data processing, further complemented by growing research in
liquid software and liquid IoT [24, 35, 41]. This structure facilitates
efficient ML model orchestration within interconnected networks,
addressing the need for low latency, instantaneous analytics, and
stringent security mechanisms [33]. Moving away from traditional
monolithic models, it adopts a flexible, modular approach that dis-
sects algorithms into smaller, manageable units and strategically
positions ML models within the IoT edge network. Consequently,
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data is processed incrementally as it transitions from the edge to
the cloud [33], allowing for fluid modifications of algorithmic com-
ponents within the system to accommodate evolving demands and
constraints. It can also facilitate the creation and deployment of
adaptable AI models across various edge devices without need-
ing device-specific adjustments [34], paving the way for potential
revolutions in IoT frameworks within sectors like smart energy sys-
tems. This strategy negates the need for massive data transmissions
to centralized clouds, enhancing response times and bolstering
decision-making effectiveness through edge-based data analysis
[33]. It also encourages dynamic ML model allocation, optimizing
resource utilization. Such adaptability becomes a cornerstone in the
dynamic IoT landscape, especially at the edge, where swift adapta-
tions to fluctuating conditions are critical. Implementing isomor-
phic IoT architecture is argued as a vital component in achieving
this level of adaptability [23].

2.4 Isomorphic IoT Architecture
Isomorphic concepts in software engineering encompass structures,
functions, or components capable of seamless operation across
diverse systems, spanning hardware and software domains. This
concept has evolved into what we now recognize as Isomorphic Sys-
tem Architecture, a pivotal component within the broader ‘liquid
software’ paradigm [34]. Isomorphic elements range from simple
functions to comprehensive libraries, all designed with modularity
[35, 40]. Each component operates as a self-contained entity with a
distinct purpose, making integration into various systems effortless.
This modularity promotes reusability, simplifies the challenges as-
sociated with integration, and is pivotal to the ‘liquid’ approach, as
shown in Figure 1. WebAssembly (Wasm) and JavaScript present
key isomorphic software elements, and augment edge comput-
ing—JavaScript ensures cross-platform uniformity using consistent
programming, while Wasm dynamically scales services, optimizing
IoT device performance by providing a common runtime [35, 40].

This approach stands in sharp contrast to conventional IoT infras-
tructures, like sensors, actuators, gateways, cloud services, and user
apps (Figure 1). Their monolithic and interdependent structures,
coupled with varied programming tools, often hinder smooth func-
tionality migration. These older infrastructures necessitate device-
specific adaptations, restricting scalability and adding complexity.
Primarily utilizing centralized computing, they exhibit higher la-
tency and bandwidth due to centralized data processing and limited
software and data update adaptability, making them less dynamic
and more cumbersome to adjust to diverse contexts and conditions
[23]. This adaptability is crucial in complex, interconnected IoT
networks, facilitating optimizations in energy efficiency, response
speed, and security-critical attributes [28]. Research is advancing
in dynamic isomorphism using Wasm, promising heightened adapt-
ability for the future [16].

2.5 Privacy and Trust Issues
The growing body of literature addressing privacy and trust chal-
lenges in developing trustworthy AI—particularly as it merges with
nascent technologies like edge IoT intelligence underscores the
pressing need for further study in the context of liquid edge in-
telligence leveraging isomorphic IoT infrastructures. Prominent

areas of concern pinpointed in existing studies encompass aspects
such as Consent and Transparency, Data Security and Integrity,
Individual Autonomy and Control, and Data Minimization, among
others [4, 17, 29, 31]. Yet, the literature shows a gap in addressing
privacy and trust within isomorphic IoT frameworks, especially
from a trustworthy AI perspective that can impact liquid AI devel-
opment. Hence as Liquid AI and isomorphic infrastructures evolve,
they present unique challenges for data privacy and trust, making
their examination critical to the advancement of trustworthy AI.

3 METHODOLOGY
The literature on Liquid AI, encompassing concepts such as ‘liquid
software,’ ‘liquid IoT,’ and ‘ìsomorphic IoT architecture,’ is still in its
early stages. Also, the discourse surrounding these topics remains
scarce and relatively underdeveloped compared to established do-
mains like traditional AI or IoT infrastructure [33–35]. As such,
We used an exploratory approach to address our research ques-
tion to help bridge the gap in this fledgling field by scrutinizing
existing literature to identify and categorize prevailing privacy and
trust issues, thus laying a foundation for future empirical studies.
Exploratory methods provide valuable flexibility, especially when
delving into less-explored research areas [32].

3.1 Data Collection
We adopted a secondary research approach, focusing primarily
on the literature on Google Scholar and unpublished studies or
non-commercial sources such as reports and policy statements due
to scarce resources from other academic databases. The literature
review leveraged keywords including ‘edge computing,’ ‘edge in-
telligence,’ ‘liquid IoT,’ ‘liquid software,’ ‘isomorphic software,’ and
‘isomorphic IoT architecture,’ intertwined with privacy and trust
issues. Our criteria for source selection concentrated on works
that specifically address privacy and trust concerns in the areas
mentioned, published from 2010 onwards. We also used backward
citations from selected resources to broaden our search spectrum.
20 papers were identified that aligned with the study.

3.2 Data Analysis
We utilized content analysis, a methodical technique for examining
qualitative data, facilitating the extraction of dominant themes
and patterns to gain substantial insights [39]. We scrutinized the
papers to ascertain the explored privacy and trust issues, using them
as the central themes. We then coded and interpreted identified
issues under the respective themes [39]. Adopting an interpretive
approach allowed us to emphasize narrative interpretations in the
literature, helping us to discern both the overt messages (manifest
content) and the underlying or subtle meanings (latent content)
encapsulated within the communication [39].

4 EXAMINING PRIVACY AND TRUST ISSUES
IN LIQUID AI

The analysis outcomes are illustrated in Table 1. This table cat-
egorizes the notable privacy and trust issues. We discuss them
further in this section towards steering the development of more
trustworthy AI.
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Figure 1: Isomorphic IoT architecture [23]

Table 1: Privacy and Trust Concerns in a Liquid AI Environment using Isomorphic IoT Architecture

Category Subcategory Concern

Privacy

Data Collection

Informed Consent [1, 3, 13]
Autonomy Violation [1, 3, 13]
Data Aggregation [1, 3, 13]
Data De-identification [27, 41]
Data Re-identification [27, 41]

Data Storage and Access Data Security and Encryption [13, 27]
Data Ownership and Control [13]

Data Utilization and Sharing Data Monetization [7]
Third-party Data Sharing [7]

Surveillance and Profiling Invasive Surveillance [25, 26]
Mass Surveillance [13, 26]

Trust

Algorithms and Decision-making
Processes

Propagation of Existing Biases [3, 25]
Amplification through Integration [26]
Limited Flexibility to Adapt [44]
Interoperability Issues [26]

Security of IoT Infrastructures Security Breaches [1, 26]
Transparency and Accountability [13, 26]

4.1 Trustworthy AI
Trustworthy AI aims to advance individual well-being and com-
munity prosperity by harnessing AI’s wealth generation, value
creation, and resource optimization capabilities. It aspires to pro-
mote a more equitable society by uplifting public health and fa-
cilitating equal economic, social, and political access [12]. This
overarching framework rests on three fundamental pillars pivotal
for our research: adherence to legal standards, commitment to eth-
ical values, and the robustness of safety and security measures
[12]. While the legal dimension ensures strict compliance with
all applicable laws and regulations, our primary focus centers on
the ethical facet of Trustworthy AI rooted in AI ethics and how it
impacts the robustness of safety and security measures, this multi-
faceted domain extends beyond mere legal compliance and explores
a spectrum of ethical principles, including transparency, fairness,
non-maleficence, accountability, privacy, beneficence, individual
freedom, trustworthiness, sustainability, human dignity, and soci-
etal solidarity [2, 12].

4.2 Privacy
Privacy involves safeguarding personal information from unautho-
rized access and closely examines how data is collected, transferred,
and processed [14, 25]. We examine the potential privacy vulnera-
bilities.

4.2.1 Data Collection. Data collection is a pivotal starting point in
the Liquid AI framework using isomorphic IoT architecture. The
dynamic nature of Liquid AI necessitates constant data movement,
potentially increasing vulnerability to unauthorized access and
privacy breaches. Additionally, managing and securing the vast
and diverse data generated within this framework poses inherent
complexities [3]. We explore data collection further.

Informed Consent. Using isomorphic IoT infrastructure for
liquid edge intelligence creates a complex landscape where data
navigates through various layers and modules for aggregation,
analysis, and utilization. This complexity necessitates a profound
understanding of technical nuances, whichmay be beyond the grasp
of average users, thereby posing significant challenges in attaining
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genuine informed consent. The system’s multifaceted processing
of data further complicates users’ ability to fully comprehend the
scope and consequences of the activities they are consenting to.

Autonomy Violation. Obtaining informed consent from users
in a system employing liquid edge intelligence can be challeng-
ing due to the intricate and dynamic data processing. This system
may engage in excessive surveillance, invading personal privacy,
and eroding individuals’ autonomy. Users might be subtly coerced
into disclosing more data than they intended, undermining their
autonomous decision-making rights. Moreover, diverging from ini-
tial consensual purposes, the evolving data landscape introduces
unpredictability and jeopardizes user autonomy in foreseeing and
consenting to future data applications. Additionally, opaque algo-
rithmic decisions in this setting can bypass individual preferences,
limiting users’ control over their data’s fate, leading to legal and
regulatory dilemmas [13, 35, 36, 40].

Data Aggregation: Data aggregation involves collecting and
merging information from various sources, including IoT devices
and online platforms, to create a comprehensive dataset for pattern
analysis. While valuable for data analysis, this practice raises sub-
stantial privacy concerns. It can enable the inference of sensitive
information about individuals that may not be evident in isolated
datasets. Additionally, aggregated data might be repurposed for
objectives beyond the initial intent, potentially without individuals’
consent or awareness, heightening privacy risks [5, 13].

Data De-identification. De-identification involves stripping
or masking personally identifiable information (PII) from datasets
to safeguard individual privacy, including removing or altering ex-
plicit identifiers such as names and addresses. Despite its protective
intent, it harbors the inherent risk of re-identification, where indi-
viduals can be identified through data linkage or statistical analysis
that amalgamate diverse data sources or exploit data patterns, re-
spectively. Consequently, this re-identification risk could nullify the
privacy shields erected through de-identification efforts [14, 27, 36].

Data Re-identification. The risk of re-identifying de-identified
data poses concerns of exposing sensitive information, potentially
leading to misuse, privacy violations, or identity theft. Ethical ques-
tions arise regarding the scope of informed consent when data is
used for undisclosed or unforeseen purposes. Suchmisuse can erode
trust in technology and service providers, potentially resulting in
adverse consequences for individuals, including discrimination or
stigmatization, based on inferred characteristics [36, 41].

4.2.2 Data storage and Access. Data storage and access broadly
refers to how data is stored, managed, and accessed within a system
or network. Within the context of our study, data storage and access
revolve around adaptive, decentralized storage methods paired with
harmonized, real-time data retrieval. This approach, supported
by secure protocols and end-to-end encryption, allows for swift,
seamless, and fast data handling. We discuss some of the potential
concerns in this environment [31].

Data Security and Encryption. In a liquid-edge intelligence
environment, ensuring data security is paramount but intricate. At
its core, security means protecting data from unauthorized access,
alterations, and safeguarding the physical infrastructure and data
transmissions across networks [31]. Edge IoT’s prevalent personal
data collection amplifies this need. Here, encryption serves as a

pivotal defense, ensuring only authorized entities access encoded
data, preserving its confidentiality and integrity [31]. However, iso-
morphic IoT infrastructures propose multifaceted challenges. With
ever-evolving technology comes potential vulnerabilities, demand-
ing adaptive encryption and rigorous security protocols. The dy-
namism of this environment intensifies the threat of data breaches,
emphasizing the necessity for cohesive protective strategies and
strict adherence to cross-border data transfer regulations. Ethically,
this evolving paradigm complicates informed consent, potentially
amplifying privacy breaches and unsolicited profiling. Issues of
data ownership can arise, leading to potential conflicts and misuse.
Algorithmic decisions also risk introducing biases, perpetuating in-
equalities, and driving constant tech upgrades, with environmental
implications [3, 13, 21, 25, 36].

Data Ownership and Control. In liquid-edge intelligence, safe-
guarding data ownership and control is complex [40]. The intercon-
nected ecosystem risks exposing personal information and height-
ens the potential for data tampering at various network points.
Navigating the associated legal and regulatory challenges becomes
intricate as data crosses international borders. Simultaneously, the
blurred lines concerning data ownership can give rise to disputes
over the intellectual property rights of data and analytical products.
The dynamic nature of this system can foster data monopolies, com-
plicating the creation of sustainable governance models. Ethically,
the system might spur intrusive surveillance and unauthorized
data usage, potentially encouraging discriminatory practices and
widening existing social biases. The obscured nature of algorithm-
driven decisions complicates accountability, possibly undermining
individual autonomy and fostering environmental concerns due to
increased device proliferation [13, 36].

4.2.3 Data Utilization and Sharing. Data utilization and sharing
embody the streamlined management and dissemination of exten-
sive information generated by edge IoT devices. The process aims to
facilitate seamless data exchanges across the network while empha-
sizing robust security measures and upholding privacy standards
[29]. We explore potential emergent concerns.

Data Monetization. Data monetization in this emerging land-
scape brings forth critical issues. The complex data flows heighten
the risk of personal data exploitation and complicate obtaining in-
formed consent from individuals, making the environment a prime
target for cybercriminal activities. These complexities could foster
monopolies, causing market imbalances and hurdles in fair com-
pensation for data generators. Further, the intricate infrastructure
might compromise data integrity, potentially catalyzing malicious
monetization and misinformation spread. Legal complexities can
arise with cross-border data transfers, burdening compliance with
regional data protection laws. Ethically, this setup could violate
privacy rights and control over personal data, potentially foster-
ing exploitation and inequality. It might also accentuate existing
biases and discrimination, mainly through exploitative advertising
strategies, exacerbating social disparities. [7, 36].

Third-party Data Sharing The continuous movement of data
across numerous nodes and external systems escalates the risk of
breaches and unauthorized access, undermining data integrity and
quality. Tracing data origins and pathways, critical for ensuring
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authenticity, become significantly complex, especially when com-
plying with diverse data protection regulations and contractual
obligations in cross-border transfers [40]. Within this environment,
third-party data sharing presents substantial ethical challenges.
The complexity of securing genuine informed consent can infringe
on privacy standards, escalating the risk of sensitive data mishan-
dling by third parties and igniting severe ethical dilemmas. This
setup could inadvertently intensify societal biases and foster unfair
targeting of vulnerable groups. Moreover, failing to address fair
compensation for data creators can exacerbate economic disparities
and induce exploitation [7].

4.2.4 Surveillance and Profiling. Surveillance entails relentlessly
monitoring data streams and user engagements across intercon-
nected platforms and devices. Leveraging the intrinsic properties of
IoT, many devices persistently gather, transmit, and analyze data,
frequently in real-time. On the other hand, profiling involves em-
ploying data analytics to craft intricate profiles of individuals or
groups, utilizing the data amassed from various IoT devices [31, 40].

Invasive surveillance. Invasive surveillance is the unrestrained
monitoring of individuals, often without their consent or knowl-
edge, facilitated by constant data collection and analysis through
interconnected devices [40]. Such activity violates personal privacy
by harvesting data without explicit permission and exposes sen-
sitive information (like health, financial, or locational details) to
potential misuse by unauthorized entities. This can provide a fertile
ground for malicious entities to exploit the information for stalking,
harassment, or manipulation through targeted content. Moreover,
it can transgress legal norms, causing individuals to lose lawful
control over their data, induce psychological distress, and curtail
personal freedom [10]. The atmosphere created by such surveillance
can cultivate a “chilling effect" in society, discouraging individuals
from expressing themselves freely or engaging in open activities
due to fear of continuous monitoring. This scenario also ampli-
fies security concerns, paving the way for criminal exploitation of
data for illicit activities, including identity theft and coordinated
cyber-attacks, escalating the risk of cybercrime [13, 25, 26].

Mass Surveillance. Liquid edge intelligence, facilitated by iso-
morphic IoT infrastructure, intensifies the risk of pervasive surveil-
lance. Interconnected IoT devices, which continuously collect de-
tailed personal data, create a breeding ground for expansive mon-
itoring initiatives, often bypassing individuals’ consent. This net-
work potentially violates privacy rights, with the complex nature
of data flows making acquiring genuine consent challenging. More-
over, this surveillance landscape can facilitate manipulative adver-
tising or even more malicious intentions by profiling individuals in
detail. The societal implications are significant, potentially leading
to a climate of self-censorship and mistrust, where individuals hesi-
tate to express their views openly, fostering a fearful and paranoid
society. Furthermore, it borders on legal gray areas, potentially
conflicting with existing data protection regulations, and raises
complex ethical issues, including ensuring data integrity and pre-
venting unauthorized access in intricate data networks. Hence,
liquid edge intelligence may be on the verge of ushering in an era
of invasive surveillance, threatening personal privacy and societal
harmony [13].

4.3 Trust
Trust is cultivated through steady, secure, and expected perfor-
mances that safeguard user interests without manipulative intents.
Trust helps foster a reliable relationship between users and systems,
facilitating smoother interaction and collaboration [36]. It is built
upon consistent, predictable, and secure performance [36].

4.3.1 Algorithms and decision-making. AI algorithms and decision-
making processes are central to fostering user trust in liquid edge
intelligence systems. Establishing user trust in liquid edge intelli-
gence systems fundamentally hinges on the impartiality and relia-
bility of AI algorithms during decision-making processes. However,
algorithmic bias, stemming from flawed training data or design,
can foster unjustly biased decisions, posing a severe trust concern.
Algorithmic bias refers to the tendency of an AI system to make
decisions that are unfairly skewed or prejudiced due to underlying
issues in the data it was trained on or the algorithms’ design. It can
manifest in various forms and potentially lead to significant trust
issues [26]. This bias can appear in multiple forms and significantly
undermine user trust.

Propagation of Existing Biases Pre-trained models can perpet-
uate existing biases in an isomorphic IoT infrastructure, particularly
when adjusting to real-world circumstances. Often originating from
the initial training data, these biases can hinder the models’ adapta-
tion to diverse or changing contexts, manifesting as predictive bias.
Federated learning emerges as a promising strategy in such setups,
offering opportunities and challenges to enhance trust and reduce
biases. Also, processing data on individual devices promises a richer
and more representative dataset to curb certain biases, fostering
a more reliable and responsive AI system attuned to real-world
nuances. However, this approach also brings potential new biases
and vulnerabilities, including data skewness and varied data quality,
possibly introducing inaccurate data into the system which may
prove challenging to identify and correct. Also, issues like aggrega-
tion difficulties and increased vulnerability to adversarial attacks
underscore the necessity for solid frameworks to supervise ongoing
monitoring and bias reduction, highlighting federated learning’s
role as a pathway, albeit requiring careful governance to nurture
an ethically sound and trustworthy AI environment [26].

Amplification through Integration. The concept of amplifi-
cation through integration highlights the potential escalation of
existing biases during the merger of various data sources or systems.
This process can exacerbate biases found in individual datasets, pos-
sibly fostering more significant biases or unveiling new ones in
the combined system. Techniques like federated learning, which
can bolster Liquid AI, seek to build a diversified learning base.
However, it can inadvertently cultivate heightened biases sourced
from localized datasets, especially in isomorphic IoT infrastructures.
This amplification can occur through numerous channels, such as
intricate data integration and potentially flawed aggregation strate-
gies that may overemphasize certain data types or devices, further
accentuating existing biases. Moreover, the integrated learning en-
vironment might foster feedback loops, where biases from one area
can influence learning in another, creating a network effect that
globally escalates biases [14, 36, 44].

Limited Flexibility to Adapt: Limited Flexibility to Adapt
refers to the potential restriction in the agility of AI systems to
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adjust swiftly to new data trends, demands, or challenges. Despite
being designed for adaptability, the intricacies and complexity of
an isomorphic IoT architecture might occasionally hinder progress.
For instance, in liquid edge intelligence, employing tools like Wasm
modules in deploying pre-trained AI models [16, 22] presents a
double-edged sword.While it fosters stability and efficiency, it could
constrain the system’s capacity to readily adjust to new or complex
scenarios markedly differing from its initial training conditions,
partly due to fixed learning parameters [6]. Moreover, the symbiotic
relationship of various components in a dynamic IoT infrastructure
makes rapid adaptations or adjustments a complex task, potentially
risking system stability. Given the interdependent nature of liquid
edge intelligence, modifications to one part may necessitate parallel
changes in several other components, ensuring system coherence
and functionality. Thus, despite offering seamless data interaction
and real-time processing, dynamic liquid edge intelligence systems
might face challenges in swiftly and efficiently adapting to evolving
scenarios or needs [15, 26, 43]. This limited flexibility can hamper
the timely incorporation of necessary safeguards or updates meant
to enhance user privacy or data security, thus potentially putting
users at risk of data breaches or other forms of exploitation.

Interoperability Issues: Interoperability challenges in dynamic
liquid edge intelligence environments can stem primarily from dif-
ferent devices and modules’ varied characteristics and operational
standards. These differences can cause data format inconsisten-
cies and communication protocol conflicts, hampering smooth data
flow and complicating real-time analytics. Addressing this requires
careful strategizing to enhance compatibility and streamline sys-
tem functions. Using tools like orchestrators [16] can potentially
mitigate some complexities, facilitating better synchronization be-
tween components. However, the efficacy of an orchestrator hinges
on its design and capabilities. It may struggle to integrate newer
technologies or adapt to unexpected shifts in network dynamics, po-
tentially introducing new vulnerabilities and becoming a target for
cyber-attacks that aim to disrupt network harmony. Ethically, these
issues essentially erode trust in AI algorithms and decision-making
processes. The potential for data breaches and unauthorized access
may cultivate mistrust among users, heightening concerns about
privacy violations and data misuse and thereby increasing user
skepticism and reluctance.

4.3.2 Security of IoT Infrastructures. Trust in IoT infrastructure se-
curity signifies users’ and stakeholders’ confidence in the protective
measures instituted within IoT ecosystems to safeguard data and
facilitate stable device interconnectivity. Trust also encapsulates
the physical safety of individuals, given the frequent management
of critical infrastructure components by these networks [29, 31].

Security breaches: Security breaches, typically unauthorized
intrusions, result in potential data misuse, alteration, or destruc-
tion. Often arising from system vulnerabilities, poor encryption,
or advanced cyber-attacks, these breaches primarily lead to data
theft and tampering [29, 31]. In the developing isomorphic IoT
infrastructures for liquid edge intelligence, where data flows are
decentralized, the risk magnifies. Malware might exploit real-time
data gaps, undermining AI’s capabilities. Advanced AI-powered
phishing schemes can easily deceive users, while open tools like

Wasm could inadvertently permit data interception. The decentral-
ized nature of this infrastructure also makes it a ripe target for
zero-day attacks and internal threats, complicating data ownership
and accountability. Ethically, such breaches stir debates on privacy
and unauthorized data use, introducing manipulative methods and
significant societal concerns [1, 26].

Transparency andAccountability. Transparency and account-
ability denote the clarity and openness surrounding the decision-
making processes of AI systems and the responsibility taken for
the outcomes and actions produced by these systems [14]. Trans-
parency and accountability are pivotal concerns in an isomorphic
IoT infrastructure’s intricate and decentralized nature. The inher-
ent complexity of the algorithms and the continuous evolution
and adaptation of these AI systems pose a significant challenge in
maintaining a transparent operational modality. As these systems
dynamically adapt based on a constant stream of new data, pinpoint-
ing the exact influences and pathways leading to specific decisions
becomes increasingly difficult. This dynamic nature might foster
unpredictability, potentially impeding the clear documentation of
processes, thereby raising substantial hurdles in preserving trans-
parency. Furthermore, the decentralized structure of these systems
diffuses responsibility, complicating the task of attributing errors or
decisions to specific entities. This dispersion of accountability can
muddle the identification of mistakes’ origins and the delineation
of responsibility for rectifications. These issues can potentially
undermine trust and raise legal and ethical concerns, including
violations of privacy rights and the propagation of inequality and
discrimination [13].

4.4 Limitation
This research acknowledges the limitations arising from the limited
number of references available. The inherent limitations due to
scarce resources are acknowledged. Yet, it stimulates innovative ap-
proaches, scholarly discourse, and critical thinking in this emerging
domain.

5 CONCLUSIONS
Innovations like Liquid AI, driven by the rapid advancement of
isomorphic architectures, bring latent privacy and trust vulnera-
bilities to the forefront. This study explores the privacy and trust
challenges these technologies face, emphasizing their impact on
building trustworthy AI. We highlight the heightened risk of se-
curity breaches that can lead to unauthorized data manipulation.
Additionally, maintaining transparency and accountability in these
complex, evolving systems becomes critical, especially given the de-
centralized nature of AI algorithms in isomorphic IoT frameworks.

This research serves as a precursor to more in-depth investi-
gations, illustrating the inherent privacy and trust issues. Future
research will foster empirical studies to scrutinize further and vali-
date the identified vulnerabilities, creating a robust foundation for
developing trustworthy systems. Equally crucial is the initiation
of a profound discourse and research on the ethical dimensions of
these technologies, facilitating the formulation of ethical guidelines
and frameworks adept at safeguarding user rights and privacy.
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