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Multi-objective Optimization for Green Delivery Routing 
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aLeiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands; 
bMine Apt, Altay Mah. Sehit A. Taner Ekici Sk, Etimesgut, Ankara, Türkiye; cFaculty of Information 
Technology, University of Jyvaskyla, Jyvaskyla, Finland

ABSTRACT
This paper presents a model and heuristic solution algorithms for 
the Green Vehicle Routing Problem with Flexible Time Windows. 
A scenario of new vehicle routing is analyzed in which customers 
are asked to provide alternative time windows to offer flexibility to 
help route planners find more fuel-efficient routes (“green deliv-
ery”). Customers can rank their preferred time windows as 
first, second, and third. The optimization model aims to reduce 
tour costs, promote electromobility over fossil fuels, such as diesel, 
and meet customer preferences when possible and affordable. The 
study incorporates a multi-objective optimization model with three 
objectives, which are overall cost, use of fossil fuel, and customer 
satisfaction. For the new problem, a set of realistic benchmark 
problems is created and four mainstream solvers are applied for 
the Pareto front approximation: NSGA-II, NSGA-III, MOEA/D, and 
SMS-EMOA. These algorithms are compared in terms of their effec-
tiveness in achieving the objectives of minimizing travel costs, 
promoting electromobility, and meeting customer preferences. 
The study uses five different problems of single-vehicle route 
planning. Two major findings are that the selection of the meta-
heuristic can make a big difference in terms of algorithm perfor-
mance. The resulting 3-D Pareto fronts reveal the nature of this 
new class of problems: Interestingly, in the new model with flexible 
time windows, most users can still be delivered in their most 
preferred time windows with only small concessions to the other 
objectives. However, using only one time window per user can lead 
to an increasingly drastic cost and fossil fuel consumption.
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Introduction

The net-zero emission goal by 2050 in the Paris Agreement requires govern-
ments, companies, and individuals to take actions to reduce the environmental 
impact of human activities. To achieve this goal, global final energy consump-
tion has to be reduced by 40%. However, according to the European 
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Environment Agency, freight transport demand is expected to triple by 2050 
compared to the current demand. Currently, logistics contributes to 24% of 
greenhouse gas emissions, with ground transport accounts for 72% Grubler 
et al. (2018). Therefore, there is an urgent need to reduce gas emissions in 
transportation (Cao et al. 2021). In this paper, we will focus on green logistics 
optimization problems, aiming to reducing emissions while enhancing deliv-
ery efficiency and customer satisfactions in last-mile delivery. Additionally, we 
will analyze the trade-offs between these three different goals.

According to the International Energy Agency (IEA), global electric vehicle 
(EV) sales witnessed a remarkable doubling to 6.6 million units in 2021, as 
reported in a study on the expansion of electric vehicles in Europe 2021 
(Razmjoo et al. 2022). Electric vehicles and hybrid vehicles (featuring both 
an electric and a diesel engine) will be used more extensively in the near future. 
Therefore, we will focus on using hybrid vehicles in this research.

Time windows have a direct impact on customer satisfaction of delivery 
services. They play a crucial role in determining the convenience and reliability 
of the delivery process. This is especially the case for delivery services that 
require customers to be present at home, such as delivery of large furniture 
and groceries. In general, a narrow time window is more preferable than a wide 
one. Delivery after the predefined time window tends to reduce customer 
satisfaction. Delivery companies have been striving to accommodate customers 
within feasible time windows, aiming to optimize customer satisfaction and 
enhance last-mile delivery efficiency. Various of delivery time schemes have 
been employed by delivery companies. For example, Albert Heijn (https://www. 
ah.nl/) and Sainsbury’s (https://www.sainsburys.co.uk/) offer time windows 
with varying widths, allowing customers who select wider time windows to 
pay lower delivery fees. Picnic (https://picnic.app/nl/) clusters customers into 
different regions, offering fixed time windows for those in each respective 
region. Amazon charges an extra fee for faster delivery. In this paper, we 
investigate an innovative delivery time window scheme where customers are 
asked to choose multiple time windows according their order of preferences. 
The delivery will be chosen from among those preferred by the customers. By 
simply requesting customers to select multiple time windows, this approach 
provides greater flexibility to delivery companies, potentially contributing to 
a more efficient delivery service.

This paper contributes by proposing an innovative scheme involving 
multiple time windows and modeling this scheme in a multi-objective 
route planning problem with hybrid vehicles. There are three main goals 
of this paper: First, we want to motivate our flexible time windows 
model and discuss the simplifying assumptions, but also its benefits. 
Second, we would like to understand which solvers can reliably compute 
a good Pareto front approximation for these problems. Finally, we 
would like to gain first insights into the trade-offs and provide an 
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interpretation of the obtained Pareto fronts. Computational results 
demonstrate the feasibility and advantages of implementing this multiple 
time window scheme. The next section will present an extensive litera-
ture review, followed by a problem description that demonstrates the 
background of our model in the subsequent section. The setup of 
computational experiments will be introduced in Section 5, followed 
by the presentation of our main results. Conclusions will be summarized 
based on our computational findings, and future research directions will 
be proposed in the final section.

Literature Review

Vehicle routing problems (VRPs) have been extensively studied by research-
ers. An overview of earlier research up to 1992 on classic VRP models, 
including exact algorithms and heuristic algorithms, is provided in (Laporte  
1992). In recent years, due to the limitations of exact algorithms for solving 
large-scale problems, researchers have developed numerous heuristic algo-
rithms. The article (Konstantakopoulos, Gayialis, and Kechagias 2020) pro-
vides a comprehensive review of various of VRP models and algorithms for 
solving VRP variants from 2010 to 2020. In this paper, we concentrate on 
addressing multiple objectives in the context of hybrid vehicle routing pro-
blems with multiple time windows. Our goal is to achieve eco-friendly, cost- 
efficient, and customer-satisfactory last-mile logistics. In this section, we will 
present an extensive review of relevant literature in the related domain, cover-
ing topics such as green VRPs, VRP with electric vehicles and hybrid vehicles, 
routing problems with time windows, multi-objective routing problems, and 
algorithms for solving VRP variants. Research gaps will be summarized based 
on this comprehensive literature review.

VRP

The Vehicle Routing Problem (VRP) is a classic logistics problem aiming to 
minimize the total distance traveled by vehicles. Vehicle routing problems 
with one vehicle are also called Traveling Salesman Problems. When multiple 
vehicles are involved, optimization algorithms are used to generate route plans 
for a fleet to serve customers, taking into account various constraints such as 
vehicle capacity and customer demand. The problem can be formulated as 
a mathematical optimization problem and solved using various algorithms, 
such as metaheuristics or exact methods. VRP has a wide variety of applica-
tions in many real-world logistics and transportation scenarios, such as deliv-
ery routes and waste collection (Braekers, Ramaekers, and Van Nieuwenhuyse  
2016; Wu et al. 2023).
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Solving the VRP contributes to significant cost savings and efficiency 
improvements in many real-life scenarios. In practice, various VRP variations 
exist. One such variation is the Vehicle Routing Problem with Time Window 
(VRPTW), which is derived from a variation of the classic VRP. In VRPTW, 
each customer has a designated time window for service. VRPTW considers 
both the time constraints of customers and the route and vehicle capacity 
restrictions. In VRPTW, the aim is to minimize the total distance traveled by 
vehicles and to serve all customers within certain time windows. Here, in 
addition to the classic VRP, a specific delivery interval (time window) is 
defined for each customer. For this, it is necessary to find the most suitable 
route and timing for the vehicle fleet. This problem becomes more difficult to 
solve than the standard VRP due to the added time constraints (Brian et al.  
2005; Desrochers, Desrosiers, and Solomon 1992; Van et al. 2024).

Green VRP

The Green Vehicle Routing Problem (GVRP) is another variation of the classic 
VRP that takes environmental considerations into account. The GVRP has 
attracted attention in recent years due to the increasing awareness of the 
impact of transportation on the environment. Solving the GVRP holds the 
potential for substantial environmental benefits, such as reducing greenhouse 
gas emissions and improving air quality while maintaining service quality and 
efficiency. The aim of GVRP is to minimize the total fuel consumption and 
emissions of the vehicle fleet while meeting the route and vehicle capacity 
constraints. Various approaches can be used to solve GVRP, such as using 
alternative fuels, electric, or hybrid vehicles, and optimizing vehicle speeds and 
routes to minimize emissions (Chen et al. 2023; Lin et al. 2014; Zheng, Gao, 
and Tong 2023).

Providing multiple time windows for customers is an effective way to 
improve service quality, increase customer satisfaction, and reduce overall 
transportation costs. It can also help improve the efficiency of the transport 
system and reduce the environmental impact of transport by reducing the 
number of unnecessary trips. For example, in some cases, when customers in 
nearby locations choose different times for delivery, vehicles have to come 
back to the same place. This is negative in terms of both economic cost, time, 
and environmental impact (Agatz, Fan, and Stam 2021; Wu and Wu 2022).

Routing Problems of Hybrid Vehicles and Electric Vehicles

In vehicle routing problems (VRPs) involving electric vehicles or hybrid 
vehicles, it is necessary to consider charging stations and battery exchange 
stations, which do not typically considered in classical VRPs (Huang et al.  
2016; Schneider, Stenger, and Goeke 2014). VRP models with hybrid vehicles 
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are studied in existing research aiming to minimize the overall cost or travel 
distance. For example, a VRP model with hybrid vehicles is proposed in 
(Vincent et al. 2017) aiming to minimize total travel cost, while dummy 
refueling and charging stations are considered in this model. In the VRP 
model proposed in (Seyfi et al. 2022), vehicles have four optional travel 
modes: pure combustion, pure electric, charging while driving, and boost 
modes. Charging stations are not considered in the model, assuming charging 
while driving. For solving an electric VRP with recharging stations and time 
windows, Schneider, Stenger, and Goeke (2014) propose a hybrid heuristic 
which is a combination of a neighborhood search algorithm and a tabu search 
heuristic. Similarly, the locations of recharging and refilling stations are 
considered in (Masmoudi, Coelho, and Demir 2022) for the waste collection 
problem aiming to minimize the total routing costs, while all charging stations 
are assumed to be homogeneous. In (Hiermann et al. 2019), a VRP model 
considering a mixture of conventional, electric, and hybrid vehicles is pro-
posed. Hybrid vehicles can switch between fossil fuel and electric engine.

Lian, Lucas, and Sörensen (2023) address the Electric On-Demand Bus 
Routing Problem (EODBRP), an extension of Electric Vehicle Routing 
Problems (EVRPs) to on-demand bus transportation. It involves assigning 
buses to stations, considering passengers with multiple boarding or alighting 
stations to minimize total user ride time (URT). The EODBRP integrates 
realistic features like time windows, a nonlinear charging function, and 
a partial charging policy. The proposed solution includes a “charging first, 
routing second” greedy insertion method and a Large Neighborhood Search 
(LNS) with local search (LS) operators. The algorithm, tested with realistic city 
map data, proves effective in solving the EODBRP.

Hou et al. (2023) introduce a novel approach to tackle the Service-oriented 
Cooperative Vehicle Routing Problem (SoC-VRP) within Cooperative 
Intelligent Transportation Systems (C-ITS). Addressing varying urgency levels 
and traveling constraints, a Deep Reinforcement Learning (DRL)-based prior-
itized route planning mechanism is proposed. The model, utilizing Rainbow 
DQN, categorizes vehicles into High, Medium, and Low urgency degrees, 
prioritizing routes accordingly. Experimental results demonstrate the effec-
tiveness of this hybrid prioritized route planning mechanism in the SoC-ITS 
framework.

Moradi, Sadati, and Çatay (2023) explore the application of Autonomous 
Delivery Vehicles (ADVs) in last-mile delivery, focusing on the Autonomous 
Delivery Vehicle Routing Problem (ADVRP). The goal is to minimize route 
and vehicle usage costs while considering constraints such as load and battery 
capacities, maximum route duration for ADVs, and maximum customer 
walking distance. A mixed-integer linear programming formulation for 
ADVRP is presented, and a two-phase metaheuristic approach is proposed 
to address its NP-hardness. The methodology clusters customers and 
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determines stopping locations in the first phase, followed by optimal route 
determination using hybrid variable neighborhood search and simulated 
annealing. Computational experiments demonstrate the efficiency of this 
approach, providing high-quality solutions for ADVRP instances and out-
performing an exact solver in related Vehicle Routing Problems (VRPs). 
Sensitivity analyses and a case study in Istanbul, Turkey offer managerial 
insights for the implementation of ADVs in urban logistics.

Frey et al. (2023) introduce a variant of the vehicle routing problem: the 
VRP with time windows and flexible delivery locations (VRPTW-FL). Unlike 
traditional VRPs, VRPTW-FL allows each customer to be served at one of 
several potential locations, each with its own capacity. This variant has prac-
tical applications in parcel delivery, routing with limited parking space, and 
hospital-wide scheduling of physical therapists. The paper presents 
a mathematical model and a hybrid adaptive large neighborhood search to 
address the challenge of limited location capacities. The heuristic uses an 
innovative backtracking approach during construction and employs novel 
neighborhoods and dynamic updates of objective violation weights in the 
meta-heuristic phase. Computational analysis using hospital data demon-
strates the utility of flexible delivery locations and various cost functions, 
with considerable improvements in solution quality through the proposed 
algorithmic features.

Amiri, Zolfagharinia, and Amiri, Zolfagharinia, and Hassanzadeh Amin 
(2023) tackle the challenges of integrating Battery Electric Vehicles (BEVs) in 
the Vehicle Routing Problem (VRP), focusing on Heavy-duty Electric Trucks 
with limited range and extended recharging times. A robust mathematical 
model for the Electric Vehicle Routing Problem (EVRP) is proposed, consider-
ing uncertainties in energy consumption for short-haul deliveries. The EVRP is 
formulated as a bi-objective problem, minimizing transportation costs and 
maximizing customer satisfaction through on-time deliveries. Two metaheur-
istic algorithms, Nondominated Sorting Genetic Algorithm II (NSGA-II) and 
Adaptive Large Neighborhood Search (ALNS), are developed. Results highlight 
the superior performance of ALNS combined with the weighted-sum method. 
Additionally, a simulation study analyzes robust solutions under varying uncer-
tainty levels, offering valuable managerial insights for decision-makers.

Tan, Chai, and Li (2023) address the Vehicle Routing Problem with 
Time Windows (VRPTW) under uncertainty, crucial in the logistics 
industry amid the rise of e-commerce. The introduced Robust Multi- 
Objective VRPTW (RMOVRPTW) model aims to simultaneously opti-
mize total distance and the number of required vehicles for transport. The 
proposed Robust Optimization Algorithm, R-MOEAD-VRP, is based on 
MOEA/D. The encoding prioritizes customers’ service, and Order 
Crossover and Exchange mutation operators enhance population diver-
sity. Monte-Carlo tests verify the feasibility of routes considering 
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uncertainty. Feasible routes are assessed for robustness values, and a set 
of highly robust and relatively optimal solutions is generated. Simulation 
experiments on Solomon’s benchmark problems compared with related 
algorithms demonstrate the proposed algorithm’s effectiveness in provid-
ing robust and non-dominated solutions under uncertainty, achieving 
commendable performance.

Routing Problems with Time-Windows

Delivering within time windows of customer choice is crucial for improving 
the level of customer service. This is especially true for attended home delivery, 
where customers need to be at home to receive packages, such as groceries and 
furniture (Emmerich, Gülmez, and Fan 2023). Researchers have studied the 
Vehicle Routing Problem with Time Windows (VRPTW) in recent years, and 
a systematic review of algorithms for solving VRPTW is provided in (Bräysy 
and Gendreau 2005). From the perspective of demand management, incenti-
vizing customers to choose certain time windows potentially reducing travel 
costs and emissions in last-mile delivery (Agatz, Fan, and Stam 2021; 
Campbell and Savelsbergh 2006). Beyond choosing certain time windows, 
customers choosing wider time windows allows each vehicle to visit more 
customers which would increase the efficiency of last-mile delivery (Ombuki, 
Ross, and Hanshar 2006). Many existing studies on VRPTW only consider 
a single time window for each customer. Alternatively, in some research, 
customers are asked to choose one from a list of time windows (Waßmuth 
et al. 2023). Another strategy is to allow customers to select multiple preferred 
time windows, deliveries will arrive during one of the chosen time windows. 
This offers greater flexibility but also increases computing complexity 
(Hoogeboom et al. 2020).

A multiple time window gases distribution problem is described in (Bell 
et al. 1983). Strategies for transforming single time window problems into 
multiple time window problems by adding constraints are studied in (Pesant 
et al. 1999). In (Favaretto, Moretti, and Pellegrini 2007), a VRP model with 
multiple time windows (VRPMTW) is developed and an Ant Colony-based 
algorithm is proposed and implemented for solving the model. VRP problems 
with multiple time windows are also studied in (Belhaiza et al. 2019; Li et al.  
2020; Wu and Wu 2022). Belhaiza et al. (2019) studied a single-objective 
VRPMTW aiming to minimizing the sum of travel time, waiting time, and 
service time. An evolutionary heuristics combining a genetic algorithm and 
a tabu search was developed to solve the model. Li et al. (2020) developed the 
branch-and-price-and-cut algorithm for solving VRPMTW. They designed 
time intervals as constraints instead of the objective function. A large neigh-
borhood search algorithm is developed for solving VRPMTW in (Schaap et al.  
2022).
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Praxedes et al. (2024) propose a unified Branch-Cut-and-Price (BCP) algo-
rithm to address 10 variants of the Vehicle Routing Problem with 
Simultaneous Pickup and Delivery (VRPSPD). The problem involves deter-
mining cost-efficient routes while meeting pickup and delivery demands with-
out violating vehicle capacity constraints. The unified approach considers 
additional attributes such as a heterogeneous fleet, time windows, route dura-
tion, multiple depots, and location decisions. The generalized problem is 
formulated as a Heterogeneous Location Routing Problem with 
Simultaneous Pickup and Delivery and Time Windows (HLRPSPDTW). 
Computational experiments on 550 benchmark instances showcase the algo-
rithm’s effectiveness, yielding new optimal solutions and improved lower 
bounds for all addressed variants.

Muñoz-Villamizar, Velazquez-Martínez, and Caballero-Caballero (2024) 
introduces a novel approach to address the challenges of last-mile delivery in 
the rapidly growing e-commerce industry. Focusing on home deliveries, the 
proposed consolidation-based model optimizes vehicle utilization while 
accommodating extended delivery windows and future demand expectations. 
The approach utilizes a Mixed Integer Linear Programming model and 
a custom metaheuristic, demonstrating significant improvements in vehicle 
utilization, distance traveled, time, and overall transportation costs. Applied to 
one of Mexico’s largest retailers, the approach outperforms existing transpor-
tation systems, achieving cost savings. The increased vehicle utilization 
enhances operational efficiency, presenting a practical and highly effective 
solution for large-scale last-mile delivery scenarios.

Dubey and Tanksale (2023) address the challenge faced by food banks 
employing a front-end model, focusing on the collection and redistribution 
of surplus food using a fleet of vehicles from various volunteer depots within 
specified time windows. The problem is formulated as a Multi-Depot Vehicle 
Routing Problem with Time Windows, Split Pickup, and Split Delivery 
(MDVRP-TW-SP-SD), a rich variant of the classic VRP. The objective is to 
minimize the total cost of hiring vehicles, routing, and penalties for unmet 
demand. This is the first attempt to formulate MDVRP-TW-SP-SD as 
a mixed-integer programming problem. To solve it efficiently, the study 
proposes both an elitist Genetic Algorithm (GA) and a GA hybridized with 
local search. Computational experiments on 180 benchmark instances 
demonstrate the superiority of the GA hybridized with 3-opt local search. 
The study concludes with a real-world case of the Robin Hood Army 
operating in Lucknow, India, showcasing the practical applicability of the 
proposed model.

Zahedi, Kia, and Khalilzadeh (2023) address VRP with a focus on 
developing a green logistic system for environmental sustainability. It 
introduces a bi-objective mathematical model for the Capacitated Electric 
VRP with Time Windows and Partial Recharge. The first objective 
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minimizes vehicle routing costs, emphasizing reduced route lengths, while 
the second minimizes the delay of arrival vehicles to depots based on soft 
time windows. The proposed solution employs a hybrid metaheuristic 
algorithm, NSGA-II-TLBO, which combines non-dominated sorting 
genetic algorithm (NSGA-II) and teaching-learning-based optimization 
(TLBO). The algorithm’s performance is evaluated and compared to 
NSGA-II and multi-objective simulated annealing (MOSA) using various 
numerical instances. Results indicate the hybrid algorithm’s superiority in 
terms of spacing and Rate of Achievement for two objective: simulta-
neously (RAS) indexes showcasing its efficacy in generating diverse and 
spaced solutions. Sensitivity analysis explores the impacts of changing 
model parameters, contributing valuable insights into environmentally 
friendly transportation systems and algorithm performance for the bi- 
objective VRP.

Ransikarbum, Wattanasaeng, and Chalil Madathil (2023) explore the 
application of renewable energy, specifically biofuel, in the context of 
the biofuel supply chain. The study begins by employing the K-means 
algorithm to identify potential collection site locations upstream in the 
supply chain. Subsequently, a multi-objective vehicle routing problem 
model is proposed, incorporating flexible time windows. The integrated 
model considers both economic and social aspects, evaluating total cost 
as a surrogate criterion for the economic perspective, and lateness for 
delivery and maximum delivery time as surrogate criteria for the social 
perspective. The model is applied to a regional case study based on 
wood-biomass data from the biofuel supply chain in Thailand, with the 
use of geographic information systems. The research aims to provide 
insights into the dynamics of open innovation within the renewable 
energy sector, emphasizing the use of biofuel in sustainable supply 
chains.

Ransikarbum et al. (2023) focus on logistics and supply chain manage-
ment in the healthcare sector, specifically addressing last-mile delivery 
decisions for transporting healthcare products. The study begins by 
developing a Vehicle Routing Problem with Time Window (VRPTW) 
and introduces a minimax objective function to model the driver per-
spective, considering urgent healthcare product deliveries within time 
constraints for temperature control in the healthcare cold chain (HCC). 
A sensitivity analysis evaluates the model’s performance with varying 
numbers of vehicles. The study is validated using a case study from 
a third-party logistics (3PL) company, showing promising results. 
Ongoing development aims to enhance the healthcare cold-chain optimi-
zation model.
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Multi-Objective Routing Problems

Decision makers often confront conflicting goals when enhancing the sustain-
ability of last-mile logistics systems. For example, they strive to minimize costs 
and travel distance (time) while maximizing customer service levels. Multi- 
objective optimization is an extension of single-optimization. Compared to 
single-objective optimization, multi-objective optimization is more suitable 
for solving real-world problems as it provides decision support by revealing 
trade-offs among various objectives. A bi-objective vehicle routing problem 
aiming to minimize the economic cost and maximize customer satisfaction, 
considering multiple time windows for receiving fresh agricultural products 
for each customer is studied in (Wu and Wu 2022).

Belhaiza, Hansen, and Laporte (2014) studied a multi-time-interval problem 
that takes into account the minimum waiting time and minimum delays. They 
proposed a hybrid variable neighborhood-taboo search algorithm to solve the 
model. Jabir, Panicker, and Sridharan (2015) hybridized the ant colony algo-
rithm with the variable neighbor search algorithm and used this algorithm to 
solve a multi-objective optimization problem aimed at minimizing distance and 
emission. Gupta et al. (2022) aim to minimize travel time and emission rate. 
They used the travel times as fuzzy. They used a genetic algorithm for the results. 
Elgharably et al. (2023) studied a three-objective optimization problem to 
minimize travel time, reduce fuel consumption, and increase customer satisfac-
tion. They used genetic algorithm and local heuristic algorithms.

A bi-objective linear goal programming model with time windows aiming to 
minimize the travel time and customer waiting time is proposed in (Hong and 
Park 1999). A two-stage heuristic algorithm, consisting of an insertion method for 
clustering customers as the first stage and a sequential linear goal programming 
procedure for routing in the second stage, is proposed for solving the model.

He et al. (2023) address the vehicle routing problem (VRP) in industrial 
product delivery to meet high requirements for timeliness and cost- 
effectiveness. The study considers multiple distribution centers and various 
vehicle models, incorporating real-world constraints like vehicle load and time 
windows. A multi-objective optimization model is formulated to minimize 
distribution time and cost while maximizing the loading rate of vehicles. To 
solve this problem, an Improved Life-cycle Swarm Optimization (ILSO) algo-
rithm is proposed based on life cycle theory. The algorithm is applied to order 
data from Yunnan Power Grid Company for a dispatching experiment. 
Results demonstrate that the ILSO algorithm reduces transportation costs.

Yin (2023) focuses on optimizing the routing of distribution vehicles in 
urban logistics to reduce energy consumption and carbon emissions. Using 
the Vehicle Routing Problem (VRP) as a basis, the study aims to flexibly 
plan actual pathing while meeting customer cargo demand and time 
requirements. The Non-dominated Sorting Genetic Algorithm (NSGA-II) 
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is improved for efficiency and convergence by introducing the 
Multifactorial Evolutionary Algorithm (MFEA), resulting in the proposed 
NSGA-II algorithm based on Multifactorial Evolutionary Algorithm 
(M-NSGA-II). In 10 experiments, M-NSGA-II consistently demonstrated 
lower distribution costs compared to three standard algorithms. The algo-
rithm’s solution duration was 85.2 s with an average frontier value of 20, 
showcasing its effectiveness in optimizing distribution routes for reduced 
carbon emissions while satisfying customer requirements. The multi- 
objective path optimization model presented holds significant value in 
enhancing sustainability in urban logistics.

Kuo et al. (2023) address the growing complexity of the global supply chain 
by proposing a mathematical model for a multi-objective Vehicle Routing 
Problem with Time Windows (VRPTW). The model focuses on minimizing 
the total supply chain cost and carbon emissions while considering disruptions 
in the supply chain. The proposed model includes a two-stage VRPTW to 
handle disruptions, with the first stage representing the supply chain in ideal 
conditions and the second stage reflecting disruptions. To solve this problem, 
an improved Multi-Objective Particle Swarm Optimization algorithm 
(MOPSO) is introduced. Computational results show that the improved 
MOPSO outperforms other algorithms in terms of hypervolume and spacing, 
indicating its effectiveness in solving disruptions in the two-stage VRPTW. 
The study highlights the importance of considering disruptions and sustain-
ability in optimizing vehicle routing for real-world applications in the context 
of the complex global supply chain.

Despite extensive research in multi-objective VRPs, there is a lack of general 
model that suitable for various problems, including complex ones.

Methods and Algorithms for Solving Routing Problems

Various methods have been developed for solving VRP variants. An extensive 
reviewing of methods for solving multi-objective TRPs, e.g., scalar techniques 
and Pareto methods, has been developed in (Jozefowiez, Semet, and Talbi  
2008). Weighted linear aggregation, goal programming methods, and ε- 
constraint methods belong to the branch of scalar techniques, while evolu-
tionary algorithms, hybrid algorithms, and Pareto local search are Pareto 
methods. Some researchers study methods for solving a range of problems. 
For instance, Yusuf, Sapiyan Baba, and Iksan (2014) presented a genetic 
algorithm for solving the classical single-objective VRP (without time win-
dows) and various of its variants. Many of the existing algorithms for solving 
multi-objective VRPs perform well only for specific problems or with a limited 
amount of variants. For example, Zacharia et al. (2021) propose a genetic 
algorithm to solve a bi-objective VRP with fuzzy payloads that minimizes 
travel distance and fuel consumption.
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Algorithms for solving general multi-objective optimization problems 
can also be used for solving multi-criterion VRPs. For example, a Non- 
dominated Sorting Genetic Algorithm (NSGA) was proposed by Srinivas 
and Deb (1994) as one of the earliest algorithms for solving multi- 
objective optimization problems. However, the high computational com-
plexity of NSGA makes it expensive to apply to large-scale problems. 
Based on NSGA, Deb et al. (2000) further propose a non-dominated 
sorting based multi-objective evolutionary algorithm, NSGA-II, which 
outperforms other algorithms for multi-objective optimization including 
Knowles and Corne (1999)’s Pareto-archived evolution strategy and 
Zitzler and Thiele (1998)’s strength Pareto evolutionary algorithms. To 
fulfill the need of solving problems with many objectives (four or more), 
a reference-point-based many objective evolutionary algorithm, NSGA-III, 
is proposed in (Deb and Jain 2013; Jain and Deb 2013). By decomposing 
a multi-objective optimization problem into scalar subproblems and sol-
ving these subproblems in parallel, Zhang and Li (2007) propose 
a decomposition-based multi-objective evolutionary algorithm (MOEA/ 
D) which performs as good as or better than NSGA-II on binarial or 
continuous multi-objective optimization problems. As hypervolume is an 
often used indicator for measuring the quality of multiobjective optimiza-
tion algorithms, Beume, Naujoks, and Emmerich (2007) propose a metric 
selection EMOA (SMS-EMOA) with the aim of maximizing the hypervo-
lume combining with the non-dominated sorting strategy. Results show 
that SMS-EMOA outperforms NSGA-II for optimization problems with 
two and three objectives in terms of convergence and the hypervolume. 
Lian, Lucas, and Sörensen (2023) use Large Neighborhood Search and 
local search operators to solve Electric Vehicle Routing Problems. Deep 
reinforcement learning-based route planning algorithm is proposed by 
Hou et al. (2023). Moradi, Sadati, and Çatay (2023) propose mixed integer 
linear programming model for their multi-objective VRP problem. Also 
they use two-phase metaheuristic approach. Hybrid variable neighborhood 
search and simulating annealing. Amiri, Zolfagharinia, and Amiri, 
Zolfagharinia, and Hassanzadeh Amin (2023) propose two metaheuristic 
algorithm NSGA-II and Adaptive Large Neighborhood Search. Tan, Chai, 
and Li (2023) applies MOEA/D-based algorithm and Robust Optimization 
Algorithm to multi-objective problem. Praxedes et al. (2024) used Branch- 
Cut-and-Price method to solve big-sized problems. Muñoz-Villamizar, 
Velazquez-Martínez, and Caballero-Caballero (2024) proposed Mixed 
Integer Linear Programming model and a custom metaheuristic for 
Mexico VRP dataset. Dubey and Tanksale (2023) modeled the problem 
as mixed-integer programming problem. They used Genetic Algorithm 
and GA hybridized with local search algorithm with 3-opt local search.  
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Zahedi, Kia, and Khalilzadeh (2023) offered a hybrid metaheuristic algo-
rithm, NSGA-II-TLBO, which combines a nondominated sorting genetic 
algorithm (NSGA-II) and optimization based on teaching and learning 
(TLBO). Ransikarbum, Wattanasaeng, and Chalil Madathil (2023) 
employed the K-means algorithm. In the literature, there are various 
algorithms and hybrid algorithms.

Research Gaps

We summarize existing research related to our paper according to the type of 
VRP models in Table 1. We add our paper at the end for comparison. From 
Table 1, we can see that this is the first research considering multi-objective 
vRP with hybrid vehicles and multiple time windows.

Our paper aims to address two limitations in the current research: First, the 
existing methods do not take into account the trade-offs between customer 
flexibility, environmental impact, and economic costs in a multi-objective 
manner, considering flexible time windows with ranked preferences. Second, 
previous studies have focused either on flexible time windows or electro 
mobility, but not both simultaneously.

While previous studies have touched on sustainability in the context of last- 
mile logistics, there is also still a significant gap in the widespread adoption of 
sustainable strategies. To promote more sustainable last mile logistics, it is neces-
sary to build optimization and simulation models that accurately capture real- 
world challenges and account for the use of sustainable vehicles such as electric 
vehicles, hybrid vehicles, and autonomous vehicles (Cunneen, Mullins, and 
Murphy 2019; Taniguchi, Thompson, and Qureshi 2020). In addition, innovative 
approaches are required to better align the interests of the delivery companies, the 
delivery personnel, the customers, the society, and the natural environment in 
terms of profitability.

In this paper, we bridge the gap by proposing a hybrid vehicle routing 
model with three objectives, including minimizing costs, minimizing diesel oil 
usage, and minimizing customer dissatisfaction levels. In our model, each 
customer provides three preferred time windows. The aim is to make deliv-
eries during one of the customer’s preferred time windows as frequently as 
possible. To highlight our contribution:

● Three time windows alternatives are provided for the customers, which 
differ from previous studies in the literature.

● A novel mathematical model is created related to the novel problem type.
● Minimizing cost, decreasing fossil fuel usage, and minimizing customer 

dissatisfaction are considered as objectives.
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Table 1. Summary of literature.
Article VTa TWb OFc Objectives

(Elgharably et al. 2023) Fuel oil 1 3 Minimize total cost, minimize fuel consumption, 
and maximize customer satisfaction

(Ransikarbum et al. 2023) - 1 3 Minimize total cost, minimize lateness time, 
minimize the maximum time the last time

(Amiri, Zolfagharinia, and 
Hassanzadeh Amin 2023)

Electric 1 2 Minimize cost, minimize delay

(Hong and Park 1999) - 1 2 Minimize travel time, minimize customer waiting 
time

(Kuo et al. 2023) - 1 2 Minimize total cost, minimize emission
(Ombuki, Ross, and Hanshar  

2006)
- 1 2 Minimize the number of vehicles, minimize total 

travel time
(Tan, Chai, and Li 2023) - 1 2 Minimize total distance, minimize the number of 

vehicles
(Zahedi, Kia, and Khalilzadeh  

2023)
Electric 1 2 Minimize total cost, minimize total delay

(Dubey and Tanksale 2023) - 1 1 Minimize total cost
(Frey et al. 2023) - 1 1 Minimize total cost
(Muñoz-Villamizar, Velazquez- 

Martínez, and Caballero- 
Caballero 2024)

- 1 1 Minimize total cost

(Praxedes et al. 2024) - 1 1 Minimize total cost
(Schneider, Stenger, and Goeke  

2014)
Electric 1 1 Minimize total cost

(Chen et al. 2023) Electric, 
diesel, 

gasoline

1 1 Minimize total cost

(Agatz, Fan, and Stam 2021) - Multiple 3 Minimize routing distance, minimize cost, 
maximize per-customer revenue

(Wu and Wu 2022) - Multiple 2 Minimize total cost, maximize average customer 
satisfaction

(Belhaiza, Hansen, and Laporte  
2014)

- Multiple 1 Minimize total travel time

(Belhaiza et al. 2019) - Multiple 1 Minimize total cost
(Hoogeboom et al. 2020) - Multiple 1 Minimize total cost
(Li et al. 2020) - Multiple 1 Minimize total cost
(Schaap et al. 2022) - Multiple 1 Minimize total cost
(He et al. 2023) - - 3 Minimize distribution cost, minimize delivery 

time, maximize loading rate of vehicles
(Huang et al. 2016) Electric - 3 Minimize the lowest charging cost, minimize the 

shortest charging waiting time, minimize the 
shortest distance between an EV and the 
optimal charging location

(Jozefowiez, Semet, and Talbi  
2008)

- - 3 Minimize the number of vehicles, minimize 
traveling distance, minimize the total length of 
the tour

(Yin 2023) Electric, 
diesel, 

gasoline, 
hybrid

- 3 Minimize cost, maximize customer satisfaction, 
minimize carbon emissions

(Yusuf, Sapiyan Baba, and Iksan  
2014)

- - 3 Minimize total fuel consumption, maximize ports 
of call, maximize load factor

(Gupta et al. 2022) Fuel oil - 2 Minimize travel time, minimize fuel emission
(Jabir, Panicker, and Sridharan  

2015)
- - 2 Minimize total cost, minimize emission

(Zacharia et al. 2021) Fuel oil - 2 Minimize travel distance, minimize fuel 
consumption

(Hiermann et al. 2019) Hybrid, 
electric

- 1 Minimize total cost

(Lian, Lucas, and Sörensen  
2023)

Electric - 1 Minimize total charging time

(Masmoudi, Coelho, and Demir  
2022)

Hybrid - 1 Minimize total distance

(Continued)
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Problem Description

In this paper, we consider hybrid vehicles equipped with both an electric engine 
and a diesel engine. Driving on electric engine offers advantages over using 
a diesel engine in urban environment due to zero emission and reduced noise 
levels. The electric engine is more Eco-friendly than the diesel engine when the 
vehicle is idling, such as at traffic lights or in heavy traffic. Electric engines are 
more efficient than diesel engines at low speeds and during stop-and-go driving. 
Moreover, electric engines are quieter than diesel engines; this can reduce noise 
pollution in urban areas and provide a more comfortable ride for the driver and 
passengers. Additionally, the lower noise pollution of electric engines can 
benefit urban areas with significant noise pollution. Overall, electric engines 
are well suited for short-distance and city driving due to their efficient power 
distribution, regenerative braking, and low pollution.

However, electric engines have limited capacity and require recharging 
(which takes time) or switching to another engine (if available) after driving 
a certain distance on them. Electric-powered hybrid vehicles require charging 
infrastructure that is not commonly available or inaccessible in some regions. 
This may limit the practicality of electric-powered hybrid trucks in certain 
applications. When electric engines run out of energy, the truck will need to 
rely solely on the diesel engine or recharge, which can take time and limit the 
vehicle’s range. Also, the charging times are long. In addition, the driver loses 
time for charging, and the paid salary is spent ineffectively.

Diesel engines are generally more suitable for long-distance and long-distance 
driving. Diesel engines typically have a longer range than electric engines and can 
be refueled quickly and easily at existing gas stations. This makes them well-suited 
for long-haul trucking, where range and fuel infrastructure are key factors.

An electric engine and a diesel engine complement each other in urban last- 
mile logistics, which is why we consider hybrid vehicles in our model. We aim 
to use electric engines for stop-and-go driving in heavy traffic, as it provides 
additional power during acceleration and recover energy during braking. For 
long-distance driving in rural areas, or when the electric engine is powered off, 
switching to the diesel engine helps increase delivery efficiency.

Table 1. (Continued).
Article VTa TWb OFc Objectives

(Moradi, Sadati, and Çatay  
2023)

Electric - 1 Minimize total cost

(Seyfi et al. 2022) Hybrid - 1 Minimize total cost
(Vincent et al. 2017) Hybrid - 1 Minimize total cost
This paper Hybrid 3 3 Minimize total cost, minimize emission, minimize 

customer dissatisfaction
aThe engine type of vehicles 
bThe number of time windows 
cThe number of objectives
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For attended home delivery, customers are usually asked to choose one time 
window from a menu to receive their goods. In this paper, we assume that each 
customer chooses multiple time windows when they are available to receive 
goods and prioritize these time windows. Deliverers would then attempt to 
make deliveries within higher-priority time windows chosen by each custo-
mer. This strategy allows customers to select time windows according to their 
own availability, without being limited by a menu. However, considering 
multiple time windows for each customer does increase the computing 
complexity.

In this paper, we present a three-objective route planning model designed to 
obtain Pareto optimal solutions (including delivery time windows for each 
customer and sequence of customers to visit) to minimize economic cost, 
reduce environmental impact (diesel distance), and maximize customer satis-
faction (or minimize customer dissatisfaction). Based on our solutions, we 
construct 3-D Pareto fronts that show the trade-offs among the different 
objectives which helps route planners to interpret solutions and make the 
right decision. Figure 1 shows an overview, depicting the input, output, the 
three objectives, and the main constraints of our model. First, customers are 
requested choose three preferred time windows based on their preference 
order. Subsequently, Pareto optimal route plans, which minimize the three 
objectives, can be generated and visualized by solving the model.

The following assumptions are made for our model: 1) Customers have 
different preferences on different time windows. Customers are more satisfied 
when a delivery is made within a more preferred time window. 2) Hybrid 
vehicles (with both diesel and electric engines) are used for delivery. The diesel 
engine is only used for long-hauls, and the electric engine is used for short- 
hauls. 3) When electric engine is below the level required for the next delivery, 
the vehicle has to be charged. Drivers receive payment according to working 
time, including the time when a vehicle has to be charged in between. 4) 
Decision-makers not only care about economic costs in last-mile delivery but 
also care about the environmental impact and customer satisfaction level. 
Based on these assumptions, we will develop our model in the next section.

Figure 1. Problem Statement.
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Model

In this section, we will introduce a three-objective three-time window 
optimization model for hybrid vehicle routing in last-mile logistics. In 
the following we will provide a formulation for the ILP solver of 
GUROBI. Before outlining the details of the model, let us address the 
issue of how conditions and disjunctive constraints are handled. In the 
given model, simple if-then-else conditions based on binary decision 
variables can be represented by disjunctive constraints. Let us consider 
a binary decision variable x 2 f0; 1g which represents two alternatives. 
Disjunctive constraints are formulated based on the value of x. When 
x ¼ 0, a set of constraints fC0g becomes active, and when x ¼ 1, 
a different set of constraints fC1g is applied. To activate or deactivate 
constraints the large constant or “large M” technique or is used 
(Diwekar 2020). For each alternative, additional decision variables can 
be introduced, which are connected to x through constraints. The 
objective function, which is to be optimized, is a function of both x 
and these additional variables. This approach proves to be effective in 
scenarios where choices are clearly binary.

Parameters and Variables

The symbols used in the model are seen in Table 2. ts, tij, ts
ij, te

ij, tc, te, and ta
i 

are in minute unit. cs, cd, and ce are in euro unit. dij, bc, and bi are in 
kilometer unit.

Objectives

We have three objectives aiming to minimize the economic cost (see F1 in (1)), 
minimize diesel usage/distance (see F2 in (2)), and minimize customer dis-
satisfaction (see F3 in (3)). In the first objective, F1, drivers’ salaries (depend-
ing working time te) and energy cost (depending on electricity usage per 
kilometer and diesel usage per kilometer) are considered. In the third objec-
tive, F3, penalty costs for not delivering at the customers’ most preferred time 
windows are taken into account. 

min F1 ¼ Te � cs þ
Xn

i¼0

Xn

j¼0
ðdij � cd � Xd

ijÞ þ
Xn

i¼0

Xn

j¼0
ðdij � ce � Xe

ijÞ (1) 

min F2 ¼
Xn

i¼0

Xn

j¼0
dij � Xd

ij

� �
(2) 
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min F3 ¼
Xn

i¼0
cp

1 � Pi1
� �

þ cp
2 � Pi2

� �
þ cp

3 � Pi3
� �

þ cp
4 � Pi4

� �� �
(3) 

Constraints

We use the following two constraints (4) and (5) to ensure that customers are 
only visited once. 

Xn

i¼0
Xij ¼ 1; i�j;"i 2 N (4) 

Xn

j¼0
Xij ¼ 1; i�j;"j 2 N (5) 

To avoid sub-tours, we add auxiliary variables Ui in the constraints below: 

Ui � Uj þ n � Xij � n � 1; "i; j 2 N; j�1; i�1 (6) 

Table 2. Parameters and variables.
Parameters
ts Start time of the delivery
tij Travel time between i and j
cs Cost of deliverer’s salary per minute
cd Cost of diesel per km
ce Cost of electricity per km
cp

i Customer dissatisfaction level when delivery is made during the time window with the preference 
order of i; cp

1 ¼ 0 and cp
i < cp

ðiþ1Þ
ts

ik The beginning of the k-th preferred time window for customer i
te

ik The end of the k-th preferred time window for customer i
dij Distance between point i and j
le Threshold distance for switching an electric engine to a diesel engine, i.e., if the travel distance to 

the next destination is longer than le , the diesel engine is used
tc Fixed time for re-charging
bc The hybrid vehicle’s battery capacity, which is measured in terms of travel distance (kms)
M A large constant
Variables
Xij Binary variable indicating the transportation route, 1 – travel from i to j, 0 – otherwise
Xd

ij Binary variable, 1 – using diesel mode from i to j, 0 – otherwise
Xe

ij Binary variable, 1 – using electric mode from i to j, 0 – otherwise
Te End time of the delivery
Ta

i Arrival time of point i
Ui Auxiliary variables to avoid subtour
Bi Represents the battery level, measured in travel distance (kms), at customer i
Be

ij Auxiliary binary variables, while 1 indicates that the battery is sufficient for the delivery task from i to 
j, and 0 otherwise.

Bee
ij Auxiliary binary variables, while 1 indicates that the electric engine is required and the battery level 

is sufficient for the delivery task from i to j, and 0 otherwise.
Pik Binary variable indicating the preference order of the time windows chosen by each customer, 

where k 2 {1, 2, 3, 4}, with 1, 2, and 3 representing the most, the second most, and the third most 
preferred time windows, respectively, and 4 indicating any other time beyond the three chosen 
time windows
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2 � Ui � n; "i 2 N; n ¼ jNj (7) 

The threshold distance of switch between diesel and electricity is le, we use the 
following two constraints to ensure that electricity is used when the travel 
distance between two subsequent customers is not longer than le; otherwise, 
diesel is utilized. 

Xd
ij ¼ 0jdij � le;"i; j 2 N (8) 

Xe
ij ¼ 0jdij > le;"i; j 2 N (9) 

The following constraint ensures that either diesel or electricity is used for 
a delivery task, but the two cannot be used simultaneously. 

Xd
ij þ Xe

ij ¼ Xij;"i; j 2 N (10) 

Be
ij ¼

1; ifBi � dij
0; Otherwise

�

(11) 

To ensure our model is solvable in Gurobi, we used constraints (12)-(14) as the 
transformation of conditional equation (11). M is a large constant and Bee

ij is an 
auxiliary binary variable. 

M � Bee
ij � Bi � dij;"i; jþ 1 2 N (12) 

M � ð1 � Bee
ij Þ � dij � Bi;"i; jþ 1 2 N (13) 

Be
ij ¼

1; ifBee
ij ¼ 1

0; Otherwise

�

(14) 

If the battery level is insufficient for the delivery task (Be
ij ¼ 0) from i to j, and 

electric engine is required for this trip (Xe
ij ¼ 1), extra charging time, tc, is 

added to the estimated time of arrival at customer j. Otherwise, if diesel engine 
is required or battery level is sufficient, the delivery time for customer j is 
calculated by adding the travel time of this task to the arrival time for customer 
i. These conditions are enforced in the following constraints: 

Ta
j ¼

Ta
i þ tij; ifXd

ij ¼ 1
Ta

i þ tij; ifXe
ij ¼ 1;Be

ij ¼ 1
Ta

i þ tij þ tc; ifXe
ij ¼ 1;Be

ij ¼ 0

8
>><

>>:

"i; jþ 1 2 N (15) 

When the hybrid vehicle has sufficient battery level for the next delivery task 
on electricity (from i to j), the battery level is decreased based on the usage 
during this task upon reaching j. When the battery level falls below the 
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required amount for the next delivery task (from i to j), the deliverer is 
obligated to charge the battery after the completing the delivery to i and 
then continue with the remaining delivering tasks once the hybrid vehicle is 
fully charged, restoring the battery to its upper bound capacity bc. When diesel 
engine is required, the battery level remains at the same level. These conditions 
are enforced in the following constraints: 

Bj ¼

Bi ifXd
ij ¼ 1

Bi � dij ifXe
ij ¼ 1;Be

ij ¼ 1
bc ifXe

ij ¼ 1;Be
ij ¼ 0

8
<

:
"i; jþ 1 2 N (16) 

Similar to the transformation used for (11), auxiliary binary variables and big 
“M” are used to transform (15) and (16) for solving using Gurobi. 

Pik ¼
1; ifts

ik � Ta
i � te

ik
0; Otherwise

�

(17) 

Each customer served within one of the preferred time windows is enforced by 
constraint (18). 

Pi1 þ Pi2 þ Pi3 þ Pi4 ¼ 1;"i 2 N (18) 

Computational Experiments

In our computational experiments, we will generate instances randomly and 
utilize NSGA-II, NSGA-III, MOEA/D, and SMS-EMOA algorithms to solve 
the model. These algorithms are recognized as state-of-the-art metaheuristics 
for approximating Pareto fronts in multiobjective scenarios. For 
a comprehensive review, please refer to (Emmerich and Deutz 2018). Our 
goal is to determine the most effective algorithms for our model by comparing 
computational outcomes. Additionally, we evaluate the results by varying the 
number of time windows requested from customers in our experiments. This 
allows us to assess the benefits of requesting three time windows compared to 
one or two. The computational results will be presented and analyzed in the 
following section.

Instances

We created a small set of new, realistic, benchmark problems for this new 
problem class. The benchmark problems are inspired by an industrial 
optimization case for an office supply company in Germany for which 
one of the authors (ME) worked. The office company is located in a rural 
district in Germany, where they distribute office supplies (paper, printers, 
or furniture) to local clients (small firms, schools, etc.). They have a single 
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delivery car, who needs to deliver ca. 40 items to places located in five 
different small towns of the district. We assume that similar, single driver 
delivery services are quite commonly offered by companies who supply 
single, but large items, such as gardening companies, furniture companies, 
etc., and thus our specific algorithms and models have the potential to 
serve a wider community of practitioners who need to plan daily routes for 
delivery vehicles.

We randomly generated five instances (of which two are small sizes and 
three are big sizes) for testing our model and various solvers. Since this is an 
NP-hard problem, the computing time increases exponentially as the size of 
the instance increases. Given the complexity of the model, in this research, we 
only focus on comparatively small size instances. Large size instances and 
algorithms for solving large instances are not considered in this paper. We first 
randomly generate two small-size instances, with 10 and 11 customers, respec-
tively, to initially test our model and solvers.

Then, we randomly generated three big-sized problems: 

● Instance 3–60: containing 60 customers located in 3 cities
● Instance 4–40: containing 40 customers located in 4 cities
● Instance 5–30: containing 30 customers located in 5 cities

Each instance has one depot. For each instance, a driver drives a hybrid vehicle 
from a depot and travels back to the depot after delivering packages to 
customers located in multiple cities. For each customer, we randomly generate 
three non-overlapping time windows as their preferred time windows. We 
assume that diesel is used when the travel distance between two nodes is longer 
than the le. Otherwise, the electric engine is used.

Solvers and Computational Complexity

The vehicle routing problem and its variations are generally considered to be 
NP-hard problems. This also applies to the traveling salesperson problem 
(TSP), which is a specific case of the problem with a single vehicle (Toth 
and Vigo 2002). As a result, finding an exact solution for the model is only 
feasible for relatively small instances of the problem. For larger instances, we 
often need to rely on metaheuristics or approximate solutions. When the 
problem is made multiobjective, we either have to solve the models multiple 
times with different scalarizations and weightings of the objectives, or we can 
optimize a population of points simultaneously, which is usually faster than 
running a single run for each point in a Pareto front approximation.

The model is built in Python. To solve this model, we used Gurobi, NSGA- 
II, NSGA-III, MOEA/D, and SMS-EMOA. In these algorithms, some special 
type of operators are used, because this problem is permutation problem type. 
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For the initial solutions random permutation sampling is used. For crossover 
process, order crossover is used. Two parent chromosomes (solutions) are 
selected from the current population. These parents represent potential solu-
tions to the optimization problem. Two crossover points are randomly chosen 
along the chromosomes. These points determine the segment that will be 
transferred between the parents. A segment between the two crossover points 
is selected from one parent and copied directly to the offspring. The remaining 
positions in the offspring are filled with the remaining unused elements from 
the second parent, preserving the order of elements as they appear in 
the second parent. To ensure that all elements are unique in the offspring, 
any duplicate elements in the segment copied from the first parent are 
replaced with elements from the second parent, maintaining the order. In 
mutation process, inversion mutation is applied. Two mutation points are 
randomly chosen along the sequence. These points determine the segment that 
will be inverted. The segment between the two mutation points is inverted or 
reversed. This means that the order of elements within this segment is 
reversed.

In the following section, we examine the effectiveness and constraints of an 
advanced exact integer linear programming solver, as well as the time and 
quality achieved by metaheuristics in relation to approximations of the Pareto 
front. To understand the complexity and scalability in practice we also report 
the CPU times required for the computations.

Results

The results are taken using 8 GB RAM, 2.30 GHZ 4 cores CPU laptop. The 
codes are written in Python. For mathematical model Gurobi Solver is used 
using Python library.

Initial Results of Small-Size Instances

We initially solve two small-size instances with 11 nodes (10 customers and 
one depot) or less using Gurobi while fixing the weights of the three objectives. 
Computational results in Table 3 shows that computing time is exceptionally 
long for instances with 11 nodes when the three objectives are considered. 
Therefore, we will not use Gurobi for large-size instances (with 30, 40, and 60 
customers) or generating Pareto fronts in the rest of this paper.

In Figure 2, we visualize the results presented in Table 3. Nodes labeled “0” 
represent depots, and other nodes represent customers. The shapes of routes 
differ when distinct weights are assigned to the three objectives. Particularly, 
when F3 is the dominant objective, detours must be made to satisfy customers 
as much as possible. It implies that the three objectives considered in our 
model are conflicting.
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The results above show routes with fixed weights for the three objectives. Next, 
we use NSGA-II, NSGA-III, MOEA/D, and SMS-EMOA to generate Pareto fronts 
for the two instances. Figure 3 shows 3D Pareto fronts generated using the four 
methods, each with 300 running iterations. Results show that NSGA-II and SMS- 
EMOA generate the highest number of Pareto optimal solutions, while NSGA-III 
provides the least number of Pareto optimal solutions among the four.

Convergence tendencies in Figure 4 show that the four methods help to generate 
Pareto optimal solutions are running 50 iterations or less. However, the conver-
gence tendencies show dependency on instances. For example, NSGA-III and 
MOEA/D for 11-node instances still converge to better solutions after 150 
iterations.

Results of Big-Size Instances

For our computational experiments with larger size instances, we use NSGA- 
III, NSGA-II, MOEA/D, and SMS-EMOA for generating Pareto optimal 
solutions. We run each algorithm 10 times with 300 iterations per run for 
each instance. The average values of hyper-volumes are presented in Table 4 

Table 3. Gurobi solver results of the small-sized instances.
10-node instance 11-node instance

Obj.Weighta F1 F2 F3 Timeb F1 F2 F3 Time

1, 0, 0 112.488 22 32 728.035 114.236 22 32 3453.449
0, 1, 0 120.085 22 32 25.954 191.932 0 36 0.734
0, 0, 1 165.697 79.007 16 519.441 154.738 73.109 16 2731.551
1
3 ;

1
3 ;

1
3

112.488 22 32 1221.201 194.778 0 21 18259.832
aThe weights assigned to the three objectives, respectively 
bComputing time in seconds

Figure 2. Routes for small instances.
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and Figure 5. The hypervolume metric quantifies the volume of the dominant 
region in the objective space and is particularly valuable due to its strict 
adherence to Pareto optimality (Beume, Naujoks, and Emmerich 2007). We 
see that NSGA-II and SMS-EMOA perform better than the others in terms of 
the hypervolume measure, while MOEA/D has the shortest computing time 
among the four and SMS-EMOA takes the longest computing times among 
the four. NSGA-III takes similar computing time as NSGA-II, while has lower 
hypervolume measure. Results also show that the computing time of the four 
methods linearly increases with customer volume. Overall, there is a trade-off 
in choosing algorithms. NSGA-II and SMS-EMOA gives the best results, but 
they are slower than the others. On the other hand, MOEA/D produces results 
very quickly, the quality of the results seems less favorable.

Figure 3. Pareto fronts of small instances.

Figure 4. Convergence tendencies for NSGA-II, NSGA-III, MOEA/D and SMS-EMOA.
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To analyze and visualize the trade-offs between different objectives, we pre-
sent routes with dominant objectives in Figures 6–8, where the green and orange 
lines represent the use of electric and diesel engines, respectively. The green, 
blue, yellow, and red points represent the preference order of the delivery time. 
Results show that routes with minimum cost have the least number of crossovers 
and detours. In routes with the lowest emissions, diesel (yellow lines) is used less 
frequently, but at the cost of more detours. Routes with the highest customer 
satisfaction levels prioritize serving most customers within their most preferred 
time windows (nodes colored green), resulting in fewer green lines (trips using 
the electric motor) and more crossovers (distances).

Table 4. Hypervolume results.
Hypervolume Time

Algorithm Mean Stdev Mean Stdev

(a) 60-customer instance
NSGA-II 0.305 0.036 1132.646 33.643
NSGA-III 0.291 0.034 1092.858 9.148
MOEA/D 0.294 0.036 415.255 8.962
SMS-EMOA 0.299 0.035 2865.694 428.330

(b) 40-customer instance
NSGA-II 0.427 0.032 879.861 18.293
NSGA-III 0.412 0.034 732.394 15.890
MOEA/D 0.420 0.024 272.534 6.638
SMS-EMOA 0.430 0.030 2173.747 510.884

(c) 30-customer instance
NSGA-II 0.540 0.026 688.565 8.023
NSGA-III 0.529 0.026 589.528 6.260
MOEA/D 0.519 0.020 242.609 4.137
SMS-EMOA 0.534 0.023 3129.497 557.273

Figure 5. Comparison of the algorithms’ hypervolumes for all instances.

Figure 6. Routes for different objectives in 60-customer instance.
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To quantify the trade-offs: Compared to routes with the minimum cost, 
routes with the lowest emissions can potentially reduce emissions by up to 
74%, increasing cost by up 50%, and decreasing customer satisfaction level by 
up to 9%, according to the metric used in our research. Routes with the highest 
satisfaction can potentially increase customer satisfaction by up to 82%, but 
this comes at the cost of up to 53% higher costs and up to 29% more emissions.

Comparison of Time Windows and Managerial Insights

Figure 9–11 show the impact of varying numbers of time windows on the 
objective values of Pareto optimal routes. The values for each instance are 
obtained from 10 runs. The results show that, compared to having only one 
time window for each customer, requesting three alternative time windows from 
customers helps to reduce the cost and improving customer service levels. The 
impact of having multiple time windows also depends on instances. For exam-
ple, in the 40-customer instance, having three time windows clearly reduces cost 
(by about 8%) and improves customer satisfaction (by about 24%), while main-
taining similar emissions (see Figure 10). In 30-customer instance, having three 
time windows results in a 1% cost reduction and a 73% increase in customer 
satisfaction levels. In the 60-customer instance, three time windows bring a 4% 
cost reduction and a 43% improvement in customer satisfaction levels.

In summary, we can conclude that requesting customers to choose three 
preferred time windows, as opposed to just one or two, leads to a reduction in 

Figure 7. Routes for different objectives in 40-customer instance.

Figure 8. Routes for different objectives in 30-customer instance.
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economic costs and an increase in customer satisfaction. Similarly, requesting 
two time windows rather than just one results in higher customer satisfaction 
and, in most cases, leads to lower economic costs. However, in very rare cases, 
requesting two time windows may slightly increase economic costs. 
Requesting different number of time windows does not lead to a decrease in 
the environmental impact of delivery. This is because diesel usage is closely 
tied to the long-haul distance according to the setup of this research, which 
cannot be fully avoided due to customers being located in different cities.

Figure 9. Time windows and objectives in 60-customer instance (Pareto optimal solutions 
generated with NSGA-II).

Figure 10. Time windows and objectives in 40-customer instance (Pareto optimal solutions 
generated with SMS-EMOA).

Figure 11. Time windows and objectives in 30-customer instance (Pareto optimal solutions 
generated with NSGA-II).
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Conclusion

This paper proposes an innovative strategy of requesting multiple time windows 
from customers in last-mile delivery. This approach aims to reduce economic 
cost while simultaneously increasing customer satisfaction level and reducing 
emissions. Our computational results demonstrate that requesting multiple time 
windows from customers provides deliverers with greater flexibility in routing 
planning, facilitating an eco-friendly, cost-efficient, and customer-satisfactory 
solution. Although considering multiple time windows in a route planning 
model increases computational complexity, computational results show that 
evolutionary algorithms (NSGA-II, NSGA-III, MOEA/D, and SMS-EMOA) 
effectively solve these problems within a reasonable computing time. Among 
these algorithms, NSGA-II and SMS-EMOA outperform other algorithms in 
most cases, even though its computing time for 100 iterations is slightly longer 
than that of MOEA/D. In this sense, we can say that this paper not only presents 
an innovative strategy for last-mile delivery but also outlines a practical imple-
mentation path for real-world last-mile delivery scenarios.

For the next step, we will extend our model for large-size problems, e.g., with 
more customers and multiple depots, as well as considering the locations of 
charging stations. Developing algorithms for fast solving large-size instances is 
also within the research scope of our next step. Moreover, given the increasing 
importance of environmental concerns, researchers should prioritize studying 
the reduction of emissions in urban area. In existing research, emissions are 
often assumed to be a linear function of travel distance or travel time. A more 
accurate calculation is needed because emissions are influenced by various 
factors, including drivers’ experience, travel speed, load weight, road conditions, 
traffic conditions, and more. Moreover, addressing dynamics and stochastic 
factors to provide accurate decision support is crucial in vehicle routing pro-
blems, particularly when autonomous vehicles are employed for deliveries. 
Ethical considerations should also be taken into account when autonomous 
vehicles operate on the road. Finally, since heuristic algorithms are unreliable in 
terms of achieving optimality, we propose two directions of improvement: First, 
by reduction of the number of variables, the MILP solver can be applied for 
larger problem sizes. A viable direction would be the introduction of hubs, one 
per cluster, and restrict long-haul distances between clusters to travels between 
hubs and then from the hub to the next client. Second, based on problem 
features, one may use automated algorithm selection to chose the best meta-
heuristic for the given problem instance.
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