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Abstract
We prove solenoidal injectivity for the geodesic X-ray transform of tensor fields on
simple Riemannian manifolds with C1,1 metrics and non-positive sectional curvature.
The proof of the result rests on Pestov energy estimates for a transport equation on the
non-smooth unit sphere bundle of the manifold. Our low regularity setting requires
keeping track of regularity and making use of many functions on the sphere bundle
havingmore vertical than horizontal regularity. Someof themethods, such as boundary
determination up to gauge and regularity estimates for the integral function, have to be
changed substantially from the smooth proof. The natural differential operators such
as covariant derivatives are not smooth.

Keywords Geodesic X-ray tomography · Non-smooth geometry · Tensor
tomography · Integral geometry · Inverse problems

Mathematics Subject Classification 44A12 · 53C22 · 53C65 · 58C99

1 Introduction

What are the minimal smoothness assumptions on a Riemannian metric under
which the geodesic X-ray transform of tensor fields on the Riemannian manifold
is solenoidally injective? Solenoidal injectivity on smooth simple manifolds with neg-
ative curvature was proved in [44]. Since [44], many solenoidal injectivity results have
been shown under different variations of the geometric setup. Solenoidal injectivity is
known for all real analytic simple Riemannian metrics [51] and for all smooth simple
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Riemannian metrics with certain bounds on their terminator values [43]. The study
of the X-ray transform on manifolds with Riemannian metrics of low regularity was
started recently [18], where the authors prove that the X-ray transform of scalar func-
tions is injective on all simplemanifoldswithC1,1 Riemannianmetrics.We extend this
result and prove that the X-ray transform of tensor fields of any order is solenoidally
injective for all simpleC1,1 Riemannian metrics with almost everywhere non-positive
sectional curvature.

X-ray tomography problems of 2-tensor fields naturally arise as linearized problems
of travel time tomography or boundary rigidity [49]. The travel time problem arises
in applications, such as seismological imaging, where one asks whether the sound
speed in a medium can uniquely be determined from the knowledge of the arrival
times of waves on the boundary. Because of the geophysical nature of such problems,
it is relevant to ask how well the studied model corresponds to the real world. From
this point of view, the smoothness assumption of the model manifold is merely a
mathematical convenience, which is why we have set out to relax such assumptions.

Our main objective is to optimize the regularity assumptions imposed on the Rie-
mannian metric g of the manifold. We focus on global and uniform non-smoothness
(as opposed to, say, interfaces with jump discontinuities), and as in [18] the natural
optimality to aim at remains C1,1. If g is only assumed to be in the Hölder space C1,α

for α < 1, the geodesic equation fails to have unique solutions [15, 47] and the
X-ray transform itself becomes ill defined. In this sense,our result is optimal on the
Hölder scale, as we provide a solenoidal injectivity result (theorem 1) for the class
of simple C1,1 Riemannian metrics with almost everywhere non-positive sectional
curvature.

The non-positivity assumption on the curvature is likely unnecessary — milder
assumptions on top of simplicity could suffice. Even in the smooth case relaxing
the curvature assumption causes technical difficulties and solenoidal injectivity for all
simple Riemannian metrics is not understood. Since our setting is complicated enough
as it is, we decided not to include manifolds with possible positive curvature.

A popular method for proving injectivity results relies on interplay between the
X-ray transform and a transport equation. In the smooth case, the transport equation
is studied using the so-called Pestov identity and energy estimates derived from it (see
e.g. [16, 36, 42] and references therein).

We employ a similar approach in our non-smooth setting. Our proof is structurally
the same as those in smooth geometry, so the main content of this article is to ensure
that everything is well defined and behaved in our non-smooth setting: the unit sphere
bundle and operators on it, commutator formulas, function spaces, Santaló’s formula,
and others.

1.1 Main Results

We record as our main result the following kernel description for the geodesic X-ray
transform of tensor fields. In the literature of the geodesic X-ray transform, similar
results are often called solenoidal injectivity results. Throughout the article, M will
be a compact and connected smooth manifold with a smooth boundary ∂M . The
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dimension of M will always be n ≥ 2. The manifold M comes equipped with a C1,1

regular Riemannian metric g. That is, the metric g is continuously differentiable and
the derivative is Lipschitz.

We define what it means for (M, g) to be simple in Sect. 2.1. SimpleC1,1 manifolds
have global coordinates by definition, but for smooth simple manifolds, this is a conse-
quence of the definitions.When g ∈ C∞,the definition ofC1,1 simplicity is equivalent
to the classical definition [18, Theorem 2] and thus assuming existence of global coor-
dinates is not superfluous. We say that g has almost everywhere non-positive sectional
curvature if for almost all x ∈ M we have 〈R(w, v)v,w〉g(x) ≤ 0 where v,w ∈ TxM
are orthogonal. The curvature tensor R is well defined by the familiar formula almost
everywhere in M . The X-ray transform of tensor fields is defined in section 2.1.4.

Theorem 1 Let (M, g) be a simple C1,1 manifold (see Sect. 2.1) with almost every-
where non-positive sectional curvature. Let m ≥ 1 be an integer.

(1) If p ∈ C1,1(M) is a symmetric (m − 1)-tensor field vanishing on ∂M, then the
X-ray transform I (σ∇ p) of its symmetrized covariant derivative vanishes.

(2) If the X-ray transform I f of a symmetric m-tensor field f ∈ C1,1(M) vanishes,
there is a symmetric (m−1)-tensor field p ∈ Lip(M) vanishing on ∂M so that f =
σ∇ p almost everywhere on M.

1.2 Regularity Discussion

Claims 1 and 2 in theorem 1 are not symmetric. The difference is in the regularity of
the potential p and we believe this is only a consequence of our proof techniques.

There are two notions of smoothness of any given order of a tensor field: regularity
with respect to the smooth structure and existence of high-order covariant derivatives.
The covariant concept of smoothness is more natural on a Riemannian manifold. For
a typical tensor field f that is C∞ smooth in the sense of the smooth structure, the
covariant derivative∇ f is typically only Lipschitz when g ∈ C1,1. Themetric tensor g
and its tensor powers are examples of non-vanishing and non-smooth (in the sense
of the smooth structure) tensor fields for which covariant derivatives of all orders
are well defined. Thus neither of the two notions of smoothness implies the other in
general. The two notions of C1,1 and less regular Hölder spaces of tensor fields agree,
but they disagree for higher regularity. Therefore there are, for example, two different
spaces C2,1 and we do not use such confusing spaces at all.

We focus on optimizing the regularity of the Riemannian metric g, but we did
not pursue optimizing regularity of the tensor fields f or p, the boundary ∂M or the
integral function u f of f (see equation (3)).

It is important for our key regularity result (lemma 3 below) that the boundary
values of the tensor field are determined by the data to the extent allowed by gauge
freedom. A boundary determination result for 2-tensor fields in the smooth case,
where g is C∞, can be found in [51, Lemma 4.1]. Their result is based on clever
analysis of equation 2 fi j = pi; j + p j;i in boundary normal coordinates. Although the
argument in [51] works nicely in the smooth case, it does not give the desired result
if g is only C1,1 and f is C1,1. The immediate conclusion of their argument in the
non-smooth case would be that p has derivatives in some directions and is Lipschitz
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continuous, whereas in lemma 2,we find a p in the class C1,1. The other difficulty
in adapting similar arguments to the non-smooth case is the regularity of boundary
normal coordinates.

To avoid these issues,we prove a boundary determination result (lemma 2) by a
more explicit approach. Our construction gives a potential p ∈ C1,1(M) satisfying
σ∇ p|∂M = f |∂M when f ∈ C1,1(M). The cost of our method compared to the
method of [51] is losing control of the 1-jets in any neighbourhood of the boundary,
but leading order boundary determination suffices for our needs.

We lose a derivative in the regularity of p twice in our argument:

(1) We lose a derivative of p in the boundary determination result. Even if the tensor
field f ∈ Cl,1(M) and the Riemannian metric g ∈ Ck,1(M) are assumed to have
any (finite) amounts of derivatives, we only get p ∈ Cmin(k,l),1(M). Particularly, p
is only C1,1, when g and f are C1,1. To our knowledge, our boundary determina-
tion result is optimal in the literature for differentiability of the potential p with
properties σ∇ p = f and p = 0 on the boundary.
One might expect f |∂M = σ∇ p|∂M , where f ∈ C1,1(M) and p ∈ C2,1(M).
The space C2,1(M) is problematic as described above. In order to improve the
regularity of p, one needs to make sense of higher regularity and prove a suitable
ellipticity result, but we will not explore this avenue.

(2) Secondly, we lose a derivative of p in the transition of regularity from the spherical
harmonic components of f to the spherical harmonic components of the integral
function u:=u f of f (see Sect. 2.1). Consider the smooth case, where g ∈ C∞,
and let f = fm + fm−2 + fm−4 +· · · and u = um−1 +um−3 +um−5 +· · · be the
spherical harmonic decompositions of f and u. The geodesic vector field X on the
unit sphere bundle of M splits into the two operators X+ and X− in each spherical
harmonic degree (see Sect. 2.1). Projecting the transport equation Xu = − f into
each spherical harmonic degree gives X+um−1 = − fm and X+uk−1 = − fk −
X−uk+1 for k ≤ m − 2 with k ≡ m (mod 2). The operator X+ is known to be an
elliptic pseudodifferential operator of order one (see,e.g. [43]) and thus by elliptic
regularity, we see that each uk has one more derivative than the corresponding
component fk+1. This argument shows that u has one more derivative than f ,
proving that p is C1,1 when f is Lipschitz.
However, when g ∈ C1,1(M),the phase space SM is not equipped with a smooth

structure and the meaning of ellipticity and its implications,such as existence of a
parametrix, become less clear. The exact formulation and application of ellipticity
in the present low regularity setting would be a considerable task and would still
not give fully matching regularities in the two parts of theorem 1. Therefore,we
take a simpler route and do not pursue a fully symmetric version of our main
theorem.

1.3 Related Results

The study of the X-ray transform via the transport equation and Pestov identity
approach begun with the work of Mukhometov [30, 31, 33], where injectivity results
for the transform of scalar functions were proved. Since Mukhometov’s seminal arti-
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cles, the Pestov identity method has been applied to the case of 1-forms in [2] and to
higher-order tensors in [40, 43]. Besides manifolds with boundaries, Pestov identities
are useful in the study of integral data of functions and tensor fields over closed curves
on closed Anosov manifolds [7, 8, 41, 43, 48]. The method is even applicable in non-
compact geometries. For results on Cartan–Hadamard manifolds, see [26, 27]. There
are plenty of other geometrical variations of the problem, which have been studied
employing a Pestov identity. These include reflecting obstacles inside the manifold
[20, 21], attenuations and Higgs fields [13, 39, 46], manifolds with magnetic flows
[1, 10, 22, 23, 28], and non-Abelian variations [12, 29, 35, 37]. The Pestov identity
approach has been studied in more general geometries than Riemannian. For results
in Finsler geometry, see [3, 19] and for pseudo-Riemannian geometry, [17].

Only few injectivity results exist outside smooth geometry, whether Riemannian
or not. Injectivity of the scalar X-ray transform is known spherically symmetric C1,1

regular manifolds satisfying the Herglotz condition, when the conformal factor of the
metric isC1,1 [11]. The scalar (and 1-form) X-ray transform is (solenoidally) injective
on simple C1,1 manifolds [18]. The proof of injectivity in [18] is based on a Pestov
identity.

The boundary rigidity problem is a geometrization of the travel time tomography
problem and its linearization is the X-ray tomography problem of 2-tensor fields. For
results in boundary rigidity, see [4–6, 14, 24, 32, 34, 45, 50, 52]. For a comprehensive
survey on results in travel time tomography and tensor tomography, see [16, 49].

2 Proof of theMain Theorem

2.1 Basic Definitions and Notation

In this subsection,we present enough terminology and notation to state and prove
our main theorem. The preliminaries of the non-smooth setting are complemented in
Sect. 3.

Throughout the article, M will be a compact and connected smooth manifold with
a smooth boundary ∂M . The manifold M is equipped with a C1,1 regular Riemannian
metric g.

2.1.1 Bundles

The tangent bundle T M ofM has a subbundle SM called the unit sphere bundle, which
consists of the unit vectors in T M . As the level set F−1(1) of theC1,1 map F : T M →
R defined by F(x, v) = gx (v, v), the unit sphere bundle is aC1,1 submanifold1 of T M .
The boundary

∂(SM):={ (x, v) ∈ SM : x ∈ ∂M } (1)

1 It is easily verified by inspecting the vertical component that the differential dF is non-zero when F = 1.
The smooth regular level set theorem [25] can easily be adapted to our case.
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of SM is divided into inwards and outwards pointing parts ∂in(SM) and ∂out(SM)with
respect to the inner product 〈·, ·〉g and a unit normal vector field ν to the boundary ∂M .
The subset of ∂(SM) consisting of the vectors v such that 〈v, ν〉g = 0 is denoted
by ∂0(SM) and it is disjoint from ∂in(SM) and ∂out(SM).

Let π : SM → M be the standard projection and let π∗(T M) be the pullback
of T M over SM . We denote by N the subbundle of π∗(T M) with the fibre N(x,v)

being the g-orthogonal complement of v in TxM .

2.1.2 Horizontal–Vertical Decomposition

The tangent bundle T (SM) of SM has an orthogonal splitting T (SM) = RX ⊕
H ⊕ V with respect to the so-called Sasaki metric, where H and V are the horizontal
and vertical subbundles,respectively, and X is the geodesic vector field on SM . We
denote RX ⊕H byH and call it the total horizontal subbundle. Elements ofH and V
are, respectively, referred to as horizontal and vertical derivatives or vectors on SM .
The summands H and V are each naturally identified with a copy of the bundle N .
The horizontal–vertical geometry is essentially the same as the smooth one (see [38])
and works fine when g ∈ C1,1.

2.1.3 Geodesic Flow

Since the Christoffel symbols of a C1,1 metric are Lipschitz, there is a unique unit
speed geodesic γz corresponding to a given initial condition z ∈ SM by standard ODE
theory. We define the geodesic flow on the unit sphere bundle to be the collection of
(partially defined)maps φt : SM → SM , φt (z) = (γz(t), γ̇z(t)), where t goes through
all real numbers so that the right-hand side is defined. The infinitesimal generator X
of the flow is called the geodesic vector field on SM . For any z ∈ SM , the geodesic γz
is defined on a maximal interval of existence [−τ−(z), τ+(z)], where τ−(z) and τ+(z)
are positive. We call τ(z):=τ+(z) the travel time function on SM . The geodesic vector
field X acts naturally on functions by differentiation and on sectionsW of the bundle N ,
it acts by

XW (z) = DtW (φt (z))|t=0, (2)

where Dt is the covariant derivative along the curve t → φt (z). The result XW of the
action (2) is again a section of N .

2.1.4 The X-Ray Transform

Any symmetric m-tensor field f on M can be considered as a function on the unit
sphere bundle. Given (x, v) ∈ SM ,we let f (x, v):= fx (v, . . . , v). In lemma 7 and
proposition 11 and their proofs, we denote the induced maps by λx f : SxM → R and
λ f : SM → R with λ f (x, v) = λx f (v). Otherwise, we freely identify f with λ f
since there is no danger of confusion.
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The integral function u f : SM → R of a continuous symmetric m-tensor field f
is defined by

u f (x, v):=
∫ τ(x,v)

0
λ f (φt (x, v)) dt (3)

for all (x, v) ∈ SM . The X-ray transform of f is the restriction of the integral function
to the inward pointing part of the boundary ∂(SM), sowemay declare I f :=u f |∂in(SM).

2.1.5 Differentiability

We exclude the rank of the tensor field from our notations for function spaces. For ten-
sor fields,the derivatives are covariant.We use the subscript 0 to indicate zero boundary
values. Thus, for example, f ∈ C1,α

0 (M) for a tensor field f means that f |∂M = 0
and ∇ f is α-Hölder. We use two kinds of functions on the sphere bundle SM , scalars
(e.g. C1(SM)) and sections of the bundle N (e.g. C1(N )) defined in subsection 2.1.1.

We define Ck,α
h Cl,β

v (SM) as the subset of C(SM) consisting of functions with k
many α-Hölder horizontal derivatives and l many β-Hölder vertical derivatives as well
as any combination of k horizontal and l vertical derivatives, which are assumed to
be ω-Hölder for ω:=min(α, β). We let

Ck,α
h C∞

v (SM):=
∞⋂
l=0

Ck,α
h Cl,1

v (SM). (4)

According to the splitting T (SM) = RX ⊕H⊕V , the gradient of a C1 function u
on SM can be written as

∇u = ((Xu)X ,
h∇u,

v∇u). (5)

This gives rise to two new differential operators; the vertical gradient
h∇ and the hor-

izontal gradient
v∇. Both

h∇u and
v∇u are naturally identified with sections of the

bundle N . The horizontal and vertical divergences are the L2 adjoints of the corre-
sponding gradients. The L2 adjoint of X is −X . The vertical Laplacian on the sphere

bundle is
v
:= − v

div
v∇; see [43, Appendix A] for details on the differential operators.

2.1.6 Curvature

By Rademacher’s theorem, a Lipschitz continuous scalar function on a Euclidean
domain is differentiable almost everywhere and the derivative is in L∞. Using local
coordinates and studying the individual components show that the Riemann curvature
tensor Ri jkl(x) corresponding to a Riemannian metric g ∈ C1,1 has all components
well defined for almost all x ∈ M . Thus we may interpret the curvature tensor R as
an L∞ tensor field. The curvature tensor R : L∞(N ) → L∞(N ) acts on sections of
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the bundle N by R(x, v)W (x, v):=R(W (x, v), v)v producing again L∞ sections of
the bundle N .

We say that the sectional curvature of the manifold M is almost everywhere non-
positive, if for almost all x ∈ M ,it holds that 〈R(w, v)v,w〉g(x) ≤ 0 for all linearly
independent v,w ∈ TxM .

2.1.7 Sobolev Spaces

There are natural L2 spaces for functions on the sphere bundle as well as for sec-
tions of the bundle N , which we will denote by L2(SM) and L2(N ). We define
the Sobolev spaces H1(SM) and H1(N , X),respectively, defined as completions
of C1(SM) and C1(N ) with respect to the norms

‖u‖2H1(SM)
:= ‖u‖2L2(SM)

+ ‖Xu‖2L2(SM)
+

∥∥∥∥
h∇u

∥∥∥∥
2

L2(SM)

+
∥∥∥∥
v∇u

∥∥∥∥
2

L2(SM)

, and

‖W‖2H1(N ,X)
:= ‖W‖2L2(N )

+ ‖XW‖2L2(N )
.

(6)

We denote zero boundary values by a subindex 0. For example, H1
0 (SM) is the sub-

space of H1(SM) with zero boundary values.

2.1.8 Spherical Harmonics

Given x ∈ M , the unit sphere SxM has the Laplace–Beltrami operator
v
x := −

gi j (x)∂vi ∂v j . Letting x ∈ M vary we get a second-order operator
v
 = − v

div
v∇ on the

unit sphere bundle called the vertical Laplacian, where − v
div is the formal L2-adjoint

of
v∇.
Let Sn−1 ⊆ R

n be the Euclidean unit sphere. It is well known that any function f ∈
L2(Sn−1) can be decomposed as an L2-convergent series f = ∑∞

k=0 fk , where fk are
eigenfunctions of the spherical Laplacian on Sn−1 corresponding to the eigenvalues
k(k+n−2). Similarly, any function u ∈ L2(SM) can be decomposed as an L2(SM)-

convergent series u = ∑∞
k=0 uk , where

v
uk = k(k+n−2)uk for all k ∈ N.We call uk

the kth spherical harmonic component of u. For k ∈ {0, 1}, k, l ∈ N and α, β ∈ [0, 1]
we let

�
k,α
h �l,β

v (m):={ u ∈ Ck,α
h Cl,β

v (SM) : v
u = m(m + n − 2)u } (7)

and

�
k,α
h �∞

v (m):=
⋂
l∈N

�
k,α
h �l,1

v (m). (8)
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Furthermore, we denote

�k
h�

l
v(m) = { u ∈ Hk

hH
l
v(SM) : v

u = m(m + n − 2)u }. (9)

For all m ∈ N,there are operators X± : �1
h�

∞
v (m) → �0

h�
∞
v (m ± 1) with the

convention that �0
h�

∞
v (−1) = 0 so that X = X+ + X−. These mapping properties

and validity of this decomposition in low regularity are addressed in proposition 12.

2.1.9 Simple C1,1 Manifolds

The global index form Q of the manifold (M, g) (not of a single geodesic) is the
quadratic form defined for W ∈ H1

0 (N , X) by

Q(W ):= ‖XW‖2L2(N )
− (RW ,W )L2(N ) . (10)

It was proved in [18, Lemma 11] that there are no conjugate points on a Riemannian
manifold (M, g), g ∈ C∞, if the global index form Q of (M, g) is positive definite.

We conclude this subsection by recalling a definition of a simple manifold in the
case g ∈ C1,1. Our definition is equivalent to the definition of traditional simple
manifold when g ∈ C∞ [18]. Let M ⊆ R

n be the closed Euclidean unit ball and
let g be a C1,1 regular Riemannian metric on M . We say that (M, g) is a simple C1,1

Riemannian manifold if the following hold:

A1: There is ε > 0 so that Q(W ) ≥ ε ‖W‖2
L2(N )

for all W ∈ H1
0 (N , X).

A2: Any two points of M can be joined by a unique geodesic in the interior of M ,
whose length depends continuously on its end points.

A3: The squared travel time function τ 2 (see 2.1.3) is Lipschitz on SM .

2.2 Proof of the Theorem

In this subsection, we prove our main result, theorem 1. We state the lemmas required
for the proof of 1, and the proofs of the lemmas are postponed to sections 4, 5, and 6 .

Lemma 2 (Boundary determination) Let (M, g) be a simple C1,1 manifold. If f ∈
C1,1(M) is a symmetric m-tensor field with I f = 0, then there is a symmetric (m−1)-
tensor field p ∈ C1,1(M) so that f |∂M = σ∇ p|∂M and p|∂M = 0.

Lemma 3 (Regularity of spherical harmonic components) Let (M, g) be a simple C1,1

manifold. Let f ∈ Lip0(M) be a symmetric m-tensor field on M with I f = 0 and
let u:=u f be the integral function of f defined by (3). If the spherical harmonic
decomposition of u is u = ∑∞

k=0 uk, then uk ∈ �
0,1
h �∞

v (k) and uk |∂(SM) = 0 for all
k ∈ N.

Lemma 4 Let (M, g) be a simple C1,1 manifold. Let f ∈ Lip0(M) be a symmetric m-
tensor field on M with I f = 0 and let u:=u f be the integral function of f defined
by (3). Then X+u ∈ L2(SM).
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Lemma 4 follows immediately from lemmas 3 and 17 .
Recall that n is the dimension of M . For natural numbers k and l,we define the two

constants

C(n, k):=2k + n − 1

2k + n − 3
and B(n, l, k):=

l∏
p=1

C(n, k + 2p). (11)

Lemma 5 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. Let f ∈ Lip0(M) be a symmetric m-tensor field with I f = 0 and
denote by u:=u f the integral function of f defined by (3). If the spherical harmonic
decomposition of u is u = ∑∞

k=0 uk, then for all k ≥ m and l ∈ N,we have

‖X+uk‖2L2(SM)
≤ B(n, l, k) ‖X+uk+2l‖2L2(SM)

. (12)

Lemma 6 (Injectivity of X+) Let (M, g) be a simple C1,1 manifold with almost every-
where non-positive sectional curvature. Suppose that u ∈ �

0,1
h �∞

v (k) and u|∂(SM) =
0. Then X+u = 0 implies that u = 0.

Lemma 7 Let (M, g) be a simple C1,1 manifold. Let f ∈ Lip(M) be a symmetric m-
tensor field. Suppose that p is a symmetric (m − 1)-tensor field and u = −λp is a
Lipschitz function in SM so that Xu = −λ f everywhere in SM. Then σ∇ p = f
almost everywhere in M.

Proof of theorem 1 Item 1: Suppose that p ∈ C1,1(M) is a symmetric (m − 1)-tensor
field vanishing on ∂(M). Then using the fundamental theorem of calculus along each
geodesic gives I f = I (σ∇ p) = 0 (see [36, Lemma 6.4.2]), which proves item 1.

Item 2: Suppose that the X-ray transform of a symmetric m-tensor field f ∈
C1,1(M) vanishes. We will prove that there is a symmetric (m − 1)-tensor field p
vanishing on ∂M so that f = σ∇ p.

By boundary determination in lemma 2, there is a symmetric (m − 1)-tensor
field p0 ∈ C1,1(M) so that p0|∂M = 0 and f |∂M = σ∇ p0|∂M . Let f̂ := f − σ∇ p0.
Then f̂ ∈ Lip0(M) is a symmetric m-tensor field on M and I f̂ = I f = 0.

Let u = ∑∞
k=0 uk be the spherical harmonic decomposition of u:=u f̂ . Then uk ∈

�
0,1
h �∞

v (k) by lemma 3. First, we prove that uk = 0 for all k for which k ≡ m
(mod 2).

Since for all (x, v) ∈ SM it holds that f̂ (x,−v) = (−1)m f̂ (x, v), we have

u(x,−v) =
∫ τ+(x,−v)

0
f̂ (γx,−v(t), γ̇x,−v(t)) dt

= (−1)m
∫ 0

−τ−(x,v)

f̂ (γx,v(t), γ̇x,v(t)) dt .

(13)

Therefore,

u(x,−v) + (−1)mu(x, v) = (−1)m I f̂ (φ−τ−(x,v)(x, v)) = 0. (14)
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This shows that u(x,−v) = (−1)m+1u(x, v) for all (x, v) ∈ SM and thus uk = 0
whenever k ≡ m (mod 2). Next, we will show that uk = 0 for all k ≥ m.

Let m0 ≥ m and suppose that A1:=
∥∥X+um0

∥∥2
L2(SM)

> 0. For all l ∈ N, lemma 5
yields the estimate

B(n, l,m0)
−1

∥∥X+um0

∥∥2
L2(SM)

≤ ∥∥X+um0+2l
∥∥2
L2(SM)

. (15)

By an elementary estimate (see [20, Lemma 13]), there is a constant A2 > 0 only
depending on m0 and n so that

B(n, l,m0)
−1 ≥

(
1 + 4l

2m0 + n − 3

)−1/2

≥ A2l
−1/2. (16)

Thus the estimate (15) gives

∞∑
l=1

∥∥X+um0+2l
∥∥2
L2(SM)

≥ A1A2

∞∑
l=1

l−1/2 = ∞. (17)

On the other hand, X+u ∈ L2(SM) by lemma 4. Hence orthogonality implies that

∞∑
l=1

∥∥X+um0+2l
∥∥2
L2(SM)

≤
∞∑
k=0

‖X+uk‖2L2(SM)
≤ ‖X+u‖2L2(SM)

< ∞. (18)

This contradiction proves that ‖X+uk‖2L2(SM)
= 0 for all k ≥ m. Since additionally

uk |∂(SM) = 0 for k ≥ m, lemma 6 says uk = 0 for all k ≥ m.
We have shown uk = 0 for k ≥ m and uk = 0 for k ≡ m (mod 2). Thus −u ∈

Lip0(SM) is identified with a symmetric (m − 1)-tensor field p1 ∈ Lip0(M). As u
solves the transport equation Xu = − f̂ everywhere on SM we have σ∇ p1 = f̂
almost everywhere on M by lemma 7. Thus we conclude that f = σ∇ p almost
everywhere in M , where p:=p0 + p1 ∈ Lip(M) is a symmetric (m − 1)-tensor field
with p|∂M = 0. ��

3 Preliminaries

In this article, we consider compact and connected smooth manifolds with smooth
boundaries. We assume that such a manifold M comes equipped with a symmetric
and positive definite 2-tensor field g so that its component functions g jk are C1,1-
functions on M . In this case, we refer to g as a C1,1 Riemannian metric and to (M, g)
as a (non-smooth) Riemannian manifold.
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3.1 Spaces of Tensor Fields

Since g is a C1,1 Riemannian metric, componentwise differentiability and existence
of covariant derivatives are not the same. Even if the components of a tensor field f in
any local coordinates areCk functions for k ≥ 2 (which is possible sinceM is assumed
to have a smooth structure), the covariant derivative∇ f falls into Lip(M). Since most
of our considerations are related to the metric structure and componentwise differen-
tiability is not compatible with the covariant derivative, the correct definition of aC1,1

tensor field is by covariant differentiability. However, with covariant differentiability,
we are restricted to C1,1(M) and higher regularity does not exist on the Hölder scale.

The space L2(M) of L2-tensor fields of orderm onM is defined to be the completion
of the space of continuous m-tensor fields with respect to the norm induced by the
inner product

( f , h)L2(M) :=
∫
M
g j1k1 · · · g jmkm f j1··· jm hk1···km dVg. (19)

Here dVg is the Riemannian volume form of M . The space H1(M) of H1-tensor
fields of order m on M is defined to be the closure of the space of continuously
differentiable m-tensor fields with respect to the norm

‖ f ‖2H1(M)
:= ‖ f ‖2L2(M)

+ ‖∇ f ‖2L2(M)
. (20)

Let p ∈ [1,∞). The spaces L p(M) and W 1,p(M) of L p- and W 1,p-tensor fields
of order m are defined analogously to the spaces L2(M) and H1(M).

We could give definitions of the spaces H2(M) and W 2,p(M) for tensor fields of
any order similar to the definitions of spaces H1(M) and W 1,p(M). Again, since g
is only a C1,1 regular Riemannian metric, there are no spaces H3(M) and W 3,p(M)

compatible with the geometry. A compatible space should be defined using covariant
derivatives in the norms, which would force the spaces Wk,p(M) trivial, when k ≥ 3.

If f ∈ C1(M) is a symmetric m-tensor field on M , its symmetrized covariant
derivative is σ∇ f . The symmetrization σ is defined for allm-tensor fields h on M by

(σh) j1··· jm := 1

m!
∑
π

h jπ(1)··· jπ(m)
(21)

where the summation is over all permutations π of {1, . . . ,m}. Note that since
‖σ∇ f ‖L2 ≤ ‖∇ f ‖L2 , the symmetrized covariant derivative is bounded between
Sobolev spaces.

The trace of a symmetric m-tensor field f on M is denoted by trg( f ). In local
coordinates, trg( f )i1···im−2 = g jk f jki1···im−2 . A symmetric m-tensor field is called
trace-free, if its trace is zero.
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3.2 Vertical and Horizontal Differentiability

Let M be a compact smooth manifold with a smooth boundary and let g be a C1,1

Riemannian metric on M . Let k ∈ N and α ∈ [0, 1] be so that k + α ≤ 2. For l ∈ N

and β ∈ [0, 1], the set Ck,α
h Cl,β

v (SM) consists of all functions u ∈ C(SM) with

H1 · · · Hku ∈ C0,α(SM) and V1 · · · Vlu ∈ C0,β(SM) (22)

for any k vector fields H1, . . . , Hk ∈ H and any l vector fields V1, . . . , Vl ∈ V .
Additionally, we require that for any k + l vector fields Z1, . . . , Zk+l ∈ T (SM) out
of which exactly k are inH and exactly l are in V ,we have

Z1 · · · Zk+lu ∈ C0,ω(SM), where ω:=min(α, β). (23)

We let

Ck,α
h C∞

v (SM):=
⋂
l∈N

Ck,α
h Cl,1

v (SM). (24)

Remark 8 In the definition of Ck,α
h Cl,β

v (SM),the vertical differentiability indices l
and β can surpass the smoothness of charts of SM . It is not necessary for SM to
have C∞ smooth charts, since vertical vector fields operate on a fixed fibre and for a
fixed point x in M , the scaling s(x, v) = (x, v |v|−1

g ) is smooth on TxM\0. The slit
tangent space TxM \ 0 has a smooth structure even if M does not.

Remark 9 Any commutator [H , V ] = HV − V H , where H ∈ H and V ∈ V , can
be defined classically on the space C1

hC
1
v(SM), since for any u ∈ C1

hC
1
v(SM), the

derivatives HVu and V Hu are in C(SM).

The setCk,α
h Cl,β

v (N ) consists of all continuous sectionsW of the bundle N withW j

in Ck,α
h Cl,β

v (SM) when W = W j∂x j . A section W of the bundle N is continuous, if
it is continuous as a map SM → T M .

As one might expect, vertical operators preserve horizontal differentiability and
horizontal operators preserve vertical differentiability. That is

X : Ck,α
h Cl,β

v (SM) → Ck−1,α
h Cl,β

v (SM), (25)

X : Ck,α
h Cl,β

v (N ) → Ck−1,α
h Cl,β

v (N ), (26)
v∇ : Ck,α

h Cl,β
v (SM) → Ck,α

h Cl−1,β
v (N ), (27)

v
div : Ck,α

h Cl,β
v (N ) → Ck,α

h Cl−1,β
v (SM), (28)

h∇ : Ck,α
h Cl,β

v (SM) → Ck−1,α
h Cl,β

v (N ), and (29)
h
div : Ck,α

h Cl,β
v (N ) → Ck−1,α

h Cl,β
v (SM). (30)
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3.3 Sobolev Spaces of Different Vertical and Horizontal Indices

Standard Sobolev spaces on SM are defined in Sect. 2.1.7. Here, we define Sobolev
spaces for scalar functions on SM of different vertical and horizontal indices. If k, l ∈
{0, 1} and u is a scalar function in Ck

hC
l
v(SM), we define the Hk

hH
l
v(SM)-norm of u

to be

‖u‖2
Hk
hH

l
v(SM)

:= ‖u‖2L2(SM)
+ k ‖Xu‖2L2(SM)

+ k

∥∥∥∥
h∇u

∥∥∥∥
2

L2(N )

+ l

∥∥∥∥
v∇u

∥∥∥∥
2

L2(N )

.(31)

The Sobolev space Hk
hH

l
v(SM) for k, l ∈ {0, 1} is defined to be the completion

of Ck
hC

l
v(SM) with respect to the norm ‖·‖Hk

hH
l
v(SM).

Similarly, we define spaces H0
hH

2
v(SM) and H1

hH
2
v(SM) to be the completions

of C0
hC

2
v(SM) and of C1

hC
2
v(SM) with respect to the norms

‖u‖2
H0
hH

2
v (SM)

:= ‖u‖2L2(SM)
+

∥∥∥∥
v
u

∥∥∥∥
2

L2(SM)

, and (32)

‖u‖2
H1
hH

2
v (SM)

:= ‖u‖2
H1
hH

1
v (SM)

+ ‖u‖2
H0
hH

2
v (SM)

(33)

+
∥∥∥∥X

v
u

∥∥∥∥
2

L2(SM)

+
∥∥∥∥
v
Xu

∥∥∥∥
2

L2(SM)

. (34)

Note that the norm on H1
hH

2
v(SM) does not cover all possible combinations of a

horizontal derivative and two vertical derivatives (e.g.
v
divX

v∇). This is intentional,
since the missing combinations will not be needed.

Proposition 10 Let M be a compact smooth manifold with a smooth boundary and
let g be a C1,1 Riemannian metric on M. The following commutator formulas hold
on H1

hH
2
v(SM):

[X ,
v∇] = − h∇, (35)

h
div

v∇ − v
div

h∇ = (n − 1)X , (36)

[X ,
v
] = 2

v
div

h∇ + (n − 1)X . (37)

The following commutator formula holds on H1
hH

1
v(N ):

[X ,
v
div] = − h

div. (38)

Proof Formulas (35), (36) and (37) on C1
hC

2
v(SM) and (38) on C1

hC
1
v(N ) can be

proved by a computation similar to [43, Appendix], since the computations use one
horizontal derivative and two vertical for (35), (36) and (37) and one horizontal and one
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vertical derivative for (38). The same formulas hold on H1
hH

2
v(SM) and H1

hH
1
v(N )

by approximation. ��

3.4 Vertical Fourier Analysis

In this subsection, we recall the identification of trace-free symmetric tensor fields and
spherical harmonics (the vertical Fourier modes).We state and prove proposition 11 in
order to emphasize what changes in these well known results when applied to a case of
non-smooth Riemannian metrics. More details in the case of C∞-smooth Riemannian
metrics can be found for example in [36] and [9].

Proposition 11 Let M be a compact smoothmanifoldwith a smooth boundary and let g
be aC1,1 Riemannianmetric on M.Let k ∈ {0, 1}andα ∈ [0, 1]. Themapλ : f → λ f
is defines a linear isomorphism from the space of symmetric trace-free m-tensor fields
in Ck,α(M) to the space �

k,α
h �∞

v (m). There is a constant Cm,n > 0 so that for all
symmetric trace-free m-tensor fields f ∈ C0(M), we have

‖λ f ‖L2(SM) = Cm,n ‖ f ‖L2(M) . (39)

Furthermore, there are positive constants c,C > 0 so that for any two m-tensor
fields f and h in C0(M), we have

c (λ f , λh)L2(SM) ≤ ( f , h)L2(M) ≤ C (λ f , λh)L2(SM) . (40)

Proof As in the smooth case [9, Lemma 2.5.],the map λx isomorphically maps trace-
freem-tensors to spherical harmonics SxM of degreem. Since the dependence on x is
of the form λ f (x, v) = f j1... jm (x)v j1 · · · v jm , the map λ maps on trace-free m-tensor
fields in Ck,α(M) into �

k,α
h �∞

v (m).
For any symmetric and trace-free m-tensor fields f , h ∈ C0(M), a fibrewise cal-

culation [9, Lemma 2.4.] shows that for all x ∈ M ,we have

∫
Sx M

(λx f )(λxh) dSx = Cm,n 〈 f , h〉g(x) (41)

for someCm,n > 0. Since the computation is fibrewise, it remains validwhen g ∈ C1,1.
Integrating equation (41) over M gives

(λ f , λh)L2(SM) = Cm,n ( f , h)L2(M) , (42)

which proves (39). Furthermore, the last claim (40) follows from (41), since any
symmetric m-tensor field can be decomposed into a sum of symmetric trace-free
tensor fields of orders less than or equal to m [36]. ��
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3.5 Decomposition of the Geodesic Vector Field

In this subsection,we recall the fact that the geodesic vector field maps from spherical
harmonic degree m to spherical harmonic degrees m − 1 and m + 1. This mapping
property induces a decomposition of X into operators X+ and X−. See [36, Section
6.6.] for details of the decomposition when g ∈ C∞. We record in proposition 12 what
changes in the decomposition, when the Riemannian metric g is only C1,1-smooth.

Proposition 12 Let M be a compact smooth manifold with a smooth boundary and
let g be a C1,1 Riemannian metric on M. The geodesic vector field maps

X : �1
h�

∞
v (m) → �0

h�
∞
v (m − 1) ⊕ �0

h�
∞
v (m + 1). (43)

Therefore X decomposes into operators X+ and X− in each spherical harmonic degree
so that

X± : �1
h�

∞
v (m) → �0

h�
∞
v (m ± 1). (44)

Proof Let u ∈ �1
h�

∞
v (m) and pick a point x ∈ M . Then Xu(x, v) = v jδ j u(x, v) for

all v ∈ SxM , where v j is a spherical harmonic of degree 1 on SxM and δ j u(x, ·) is
a spherical harmonic of degree m on SxM . Since any product of spherical harmonics
of degrees 1 and m is a sum of spherical harmonics of degrees m − 1 and m + 1 we
see that

X : �1
h�

∞
v (m) → �0

h�
∞
v (m − 1) ⊕ �0

h�
∞
v (m + 1). (45)

Here the spherical harmonic components of Xu have one horizontal derivative less
than u since X ∈ H. ��
Remark 13 Since X maps continuously with respect to the H1- and L2-norms the
mapping properties from proposition 12 carry over to the Sobolev space. In other
words

X : �1
h�

2
v(m) → �0

h�
2
v(m − 1) ⊕ �0

h�
2
v(m + 1), and

X± : �1
h�

2
v(m) → �0

h�
2
v(m ± 1).

(46)

As stated above, proposition 12 gives degreewise defined operators X− and X+
acting on�1

h�
2
v(SM). If u ∈ H1

hH
2
v(SM) and u = ∑∞

k=0 uk is the spherical harmonic
decomposition of u, we define

X±u =
∞∑
k=0

X±uk . (47)

We prove in lemma 17 that the series in (47) converges (absolutely) in L2(SM).
The following lemma 14 is a low regularity version of [43, Lemma 3.3.], the only

difference being the regularity of u.
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Lemma 14 Let M be a compact smooth manifold with a smooth boundary and let g
be a C1,1 Riemannian metric on M. If u ∈ �1

h�
2
v(m) then

[X+,
v
]u = −(2m + n − 1)X+u, and (48)

[X−,
v
]u = (2m + n − 3)X−u. (49)

Proof By density, it is enough to prove the claimed formulas for u ∈ �1
h�

∞
v (m). By

eigenvalue property of u and by the mapping property of X+, we have

X+
v
u = m(m + n − 2)X+u. (50)

Similarly, by the eigenvalue property of X+u, we have

v
X+u = (m + 1)((m + 1) + n − 2)X+u. (51)

Subtracting (50) from (51) shows that

[X+,
v
]u = −(2m + n − 1)X+u. (52)

The identity (49) can be proved similarly. ��

4 Boundary Determination and Regularity Lemmas

This section is devoted to the study of the integral function u f of a tensor field f with
vanishing X-ray transform. We prove a vital boundary determination result (lemma 2)
that allows us to prove that u f is a Lipschitz function on SM in subsection 4.2. In
subsection 4.3, we exploit the particular form of the identification of trace-free tensor
fields and spherical harmonics to prove our main regularity lemma 3.

4.1 Boundary Determination

The boundary determination lemma 2 is proved in two parts. In lemma 15,we give
an explicit local construction. In more detail, we prove that if I f vanishes for some
tensor field f , then in local coordinates near any boundary point, we construct a tensor
field p so that the symmetrized covariant derivative of p equals f when restricted to
the boundary.We prove that lemma 2 follows from the local construction by a partition
of unity argument.

Lemma 15 Let (M, g) be a simple C1,1 manifold and suppose that f ∈ C1,1(M) is
a symmetric m-tensor field on M so that in I f = 0. For each x ∈ ∂M, there is a
neighbourhood W ⊆ M of x and a symmetric (m − 1)-tensor field p ∈ C1,1(W ) so
that p|W∩∂M = 0 and σ∇ p|W∩∂M = f |W∩∂M.
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Proof Let x0 ∈ ∂M be a boundary point. Choose a neighbourhood W ⊆ M of x0,
where we have C∞ coordinates φ : W → R

n so that

φ(W ∩ ∂M) = {xn = 0} and φ(W ∩ M int ) = {xn > 0}. (53)

The smooth coordinate function φ exists, since M is a smooth manifold with a smooth
boundary. Denote x̂ :=(x1, . . . , xn−1) so that x = (x̂, xn).

In these coordinates,the required tensor field p can be defined in the following way.
Given l ∈ {0, . . . ,m − 1} and j1, . . . , jl ∈ {1, . . . , n − 1},we let the component of p
corresponding to the indices j1 · · · jln · · · n be

p j1··· jl n···n(x̂, xn):= m

m − l
xn f j1··· jl n···n(x̂, 0). (54)

Here the index n appears m − 1− l times in p j1··· jl n···n and m − l times in f j1··· jl n···n .
We can insist that p is symmetric by requiring

p j1··· jm−1(x̂, x
n) = p jπ(1)··· jπ(m−1) (x̂, x

n), (55)

where π is any permutation of {1, . . . ,m − 1} so that jπ(1) ≤ · · · ≤ jπ(m−1). This
causes no contradictions, since f is symmetric. Clearly, it holds that p|xn=0 = 0
and p ∈ C1,1(M) since f ∈ C1,1(M).

It remains to show that σ∇ p|xn=0 = f |xn=0, which follows from two claims:

(1) Weprove f j1··· jm (x̂, 0) = 0 in the coordinates inW when j1, . . . , jm ∈ {1, . . . , n−
1}.

(2) We verify that (σ∇ p) j1... jm |xn=0 = f j1... jm |xn=0 in the coordinates in W .

Both claims are proved in appendix A. The idea is that item 1 follows from the
fact I f = 0, and item 2 can then be verified by a straightforward computation in the
coordinates in W . ��
Proof of lemma 2 Let f ∈ C1,1(M) be a symmetric m-tensor field with I f = 0.
We construct a symmetric (m − 1)-tensor field p ∈ C1,1(M) so that p|∂M = 0
and σ∇ p|∂M = f |∂M .

For each x ∈ ∂M pick a neighbourhood Wx ⊆ M of x and a symmetric (m − 1)-
tensor field px ∈ C1,1(Wx ). Such neighbourhoods Wx and tensor fields px exist by
lemma 15. Since ∂M is compact, there is a finite subcover {Wxi }ki=1 of the open
cover {Wx }x∈∂M of ∂M . Denote Wi :=Wxi and pi :=pxi . We add W0:=M\∂M to get
a finite open cover of M . Choose a partition of unity {ψi }ni=1 ∪ {ψ0} subordinate to
{Wi }ni=1 ∪ {W0}. We let the tensor field p0 corresponding toW0 to be identically zero.
The products ψi pi are C1,1 tensor fields in neighbourhoods Wi and we can extend
them by zero outsideWi to getC1,1 tensor fields on M since eachWi\ suppψi is open.
We define an (m − 1)-tensor field p by

p(x) =
n∑

i=0

ψi (x)pi (x). (56)
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Since ψi pi are zero outside suppψi and pi |∂M∩suppψi = 0 by construction, we see
that p|∂M = 0. The final step is to check that σ∇ p = f on the boundary ∂M . By the
product rule,we have∇(ψi pi ) = ∇ψi ⊗ pi +ψi (∇ pi ) for all i . Since symmetrization
commutes with multiplication by a scalar function and ψi is a scalar, we have

σ∇ p =
n∑

i=0

[σ((∇ψi ) ⊗ pi ) + ψiσ(∇ pi )]. (57)

Since symmetrization and tensor product commute with pointwise evaluations,we
have σ((∇ψi ) ⊗ pi )|∂M = 0. Since ψi = 0 in M\ suppψi we have σ∇ψi = 0 in
the same open set M\ suppψi . Together with pi = 0 on ∂M ∩ suppψi ⊆ ∂M ∩ Wi ,
vanishing of the covariant derivative σ∇ψi in M \ suppψi implies

σ∇ p|∂M =
n∑

i=0

(ψi (σ∇ pi ))|∂M =
n∑

i=0

ψi (σ∇ pi |∂M∩Wi )

=
n∑

i=0

ψi ( f |∂M∩Wi ) =
n∑

i=0

(ψi f )|∂M = f |∂M .

(58)

Thus p has the desired properties. ��

4.2 Regularity of the Integral Function

Let (M, g) be a simple C1,1 manifold and let f ∈ C1,1(M) be a symmetric m-tensor
fieldwith I f = 0. Since themain objective is to prove that there is a symmetric (m−1)-
tensor field p on M so that σ∇ p = f and by lemma 2, we can find a tensor field p ∈
C1,1(M) with this property on the boundary ∂M , we can move to studying tensor
fields f ∈ Lip0(M) vanishing on the boundary. The following lemma is a special case
of [18, Lemma 21]. We record it for the convenience of the reader.

Lemma 16 Let (M, g) be a simple C1,1 manifold. Let f ∈ Lip0(M) be a symmetric m-
tensor field on M and let u:=u f be the integral function of f defined by (3). Then u ∈
Lip(SM).

Proof Since f is in Lip0(M) the corresponding function on the sphere bundle is
in Lip0(SM). It was shown in [18, Lemma 21] that the integral function of a function
in Lip0(SM) is again a Lipschitz function on SM . ��

Next we prove lemma 7 which states that if a Lipschitz function u on SM arising
from of tensor field −p satisfies the transport equation Xu = − f , then σ∇ p = f
holds pointwise almost everywhere.

Proof of lemma 7 Let f ∈ Lip(M) is a symmetric m-tensor field. Suppose that p ∈
Lip(M) is a symmetric m-tensor field so that the Lipschitz function u:= − λp solves
the transport equation Xu = − f everywhere in SM . We prove that σ∇ p = f almost
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everywhere on SM by proving that

(σ∇ p − f , η)L2(M) = 0 (59)

for all symmetric m-tensor fields η ∈ C1
0(M). Since by proposition 11, there are

positive constants c,C > 0 so that

c (λh1, λh2)L2(SM) ≤ (h1, h2)L2(M) ≤ C (λh1, λh2)L2(SM) (60)

for all symmetric m-tensor fields h1, h2 ∈ Lip(M) it is enough to prove that

(λσ∇ p − λ f , λη)L2(SM) = 0. (61)

Consider a maximal geodesic γ of M so that γ (0) = x ∈ ∂M and γ̇ (0) =
v ∈ ∂in(SM). We denote z:=(x, v) and write η:=λη and f :=λ f . Furthermore, we
denote θ(t):=φt (z) and η(t):=η(θ(t)). Then we have

∫ τ(z)

0
(λσ∇ p)(θ(t))η(t) dt =

∫ τ(z)

0
(∇ p)γ (t)(γ̇ (t), . . . , γ̇ (t))η(t) dt . (62)

Since γ is a geodesic, it satisfies ∇γ̇ γ̇ = 0. Therefore,the Leibniz rule implies

∫ τ(z)

0
(∇ p)γ (t)(γ̇ (t), . . . , γ̇ (t))η(t) dt =

∫ τ(z)

0
∂t (pγ (t)(γ̇ (t), . . . , γ̇ (t)))η(t) dt

= −
∫ τ(z)

0
pγ (t)(γ̇ (t), . . . , γ̇ (t))∂tη(t) dt .

(63)

By assumption u(θ(t)) = −pγ (t)(γ̇ (t), . . . , γ̇ (t)) for all t ∈ [0, τ (z)] and thus

−
∫ τ(z)

0
pγ (t)(γ̇ (t), . . . , γ̇ (t))∂tη(t) dt =

∫ τ(z)

0
u(θ(t))∂tη(t) dt

= −
∫ τ(z)

0
∂t u(θ(t))η(t) dt

=
∫ τ(z)

0
f (θ(t))η(t) dt,

(64)

where the last equality holds since Xu = − f and X is the infinitesimal generator of
the geodesic flow φt . Together, equations (62), (63) and (64) show that

∫ τ(z)

0
(λσ∇ p)(θ(t))η(t) dt =

∫ τ(z)

0
f (θ(t))η(t) dt . (65)

123



Tensor Tomography on Negatively Curved Page 21 of 42   147 

We integrate (65) over ∂in(SM) and use Santaló’s formula (lemma 24) to see that

∫
SM

(λσ∇ p)η d�g =
∫

∂in(SM)

∫ τ(z)

0
(λσ∇ p)(θ(t))η(t) dt μd� j∗g

=
∫

∂in(SM)

∫ τ(z)

0
f (θ(t))η(t) dt μd� j∗g

=
∫
SM

f η d�g.

(66)

Equation (61) follows immediately from (66), which finishes the proof. ��

4.3 Regularity of the Spherical Harmonic Components

In this subsection,we use the special form of spherical harmonics and the identification
of trace-free tensor fields and spherical harmonics to prove lemma 3. Also, we prove
that the degreewise definition of operators X± acting on functions on SM is reasonable
by proving that series in (47) converge absolutely in L2(SM).

Proof of lemma 3 Let f ∈ Lip0(M) be a symmetric m-tensor field with vanishing
X-ray transform and let u:=u f be the integral function of f defined by (3). The
integral function u is in Lip(SM) by lemma 16. We prove that the spherical harmonic
components uk of u are in �

0,1
h �∞

v (k) and that uk |∂(SM) = 0.
For a fixed x ∈ M ,the fibre SxM is isometric to the Euclidean unit sphere Sn−1 ⊆

R
n via the map

sx : SxM → Sn−1, sx (v) = g(x)1/2v, (67)

where g(x)1/2 is the unique square root of a positive definite matrix g(x). Since u is in
Lip(SM), its restriction ux :=u(x, · ) to SxM is in Lip(SxM). Thus the functions ũx
on Sn−1 corresponding to ux via sx has a decomposition

ũx =
∞∑
k=0

(ũx , φk)L2(Sn−1) φk, (68)

where φk is the eigenfunction of the Laplacian on Sn−1 corresponding to the
eigenvalue k(k + n − 2). Tracing back through sx ,we find a L2(SxM) convergent
decomposition

ux =
∞∑
k=0

(ux , ψk)L2(Sx M) ψk, (69)

where ψk(v) = φk(s−1
x (v)). On the level of the bundle SM , we denote ψk(x, v):=

φk(s−1
x (v)), and thus get the formulauk = (u, ψk)L2(Sx M) ψk . Hereψk is inC1,1(SM),

since φk is in C∞(Sn−1) and the map (x, v) → sx (v) is in C1,1(SM). This proves
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that uk ∈ Lip(SM). We note that by lemma 11 for all k,there is a symmetric and
trace-free k-tensor field hk ∈ Lip(M) so that uk(x, v) = (hk) j1··· jk (x)v j1 · · · v jk . This
proves that uk ∈ �

0,1
h �∞

v (k) for all k, since uk is polynomial in v.
Finally, we prove that uk |∂(SM) = 0. Since the X-ray transform of f is zero, the

restriction of u on the boundary ∂(SM) is zero. Thus for any x ∈ ∂M we have

0 = ‖u(x, ·)‖2L2(Sx M)
=

∞∑
k=0

‖uk(x, ·)‖2L2(Sx M)
. (70)

Therefore, since uk(x, ·) ∈ C∞(SxM), we have uk(x, ·) = 0 pointwise on SxM for
all k, which implies that uk |∂(SM) = 0 for all k. ��
Lemma 17 Let (M, g) be a simple C1,1 manifold. Given u ∈ H1

hH
2
v(SM), if u =∑∞

k=0 uk is the spherical harmonic decomposition of u, then the series
∑∞

k=0 X±uk
converge absolutely in L2(SM). Here we use the convention that X−u0 = 0.

Proof We prove convergence of both of series
∑∞

k=0 X±uk at once by proving that

∞∑
k=0

‖X+uk‖2L2(SM)
+

∞∑
k=1

‖X−uk‖2L2(SM)
≤ ‖u‖2

H1
hH

0
v (SM)

. (71)

The proof of (71) is identical to the proofs of [43, Lemma 4.4] and [26, Lemma 5.1],
where the authors proved that

‖X+u‖2L2(SM)
+ ‖X−u‖2L2(SM)

≤ ‖Xu‖2L2(SM)
+

∥∥∥∥
h∇u

∥∥∥∥
L2(SM)

. (72)

The major difference to the results in [43] and [26] is that we work in non-smooth
geometry instead of a smooth geometry, so the tools in the proof have changed. For
completeness, we repeat the arguments in appendix B to document the fact that all
steps go through in lower regularity with suitably chosen function spaces. ��
Remark 18 For u ∈ H1

hH
2
v(SM),we defined X±u to be the series

∑∞
k=0 X±uk ,

when u = ∑∞
k=0 uk is the spherical harmonic decomposition of u. By lemma 17

both X+u and X−u are well- defined functions in L2(SM) and by orthogonality

‖X±u‖2L2(SM)
=

∞∑
k=0

‖X±uk‖2L2(SM)
. (73)

5 Energy Estimates and a Santaló Formula

In this section, we show that the L2-estimate in lemma 5 follows from the Pestov
identity, and we establish the Santaló’s formula in low regularity in lemma 24.
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5.1 Pestov Energy Identity

Let (M, g) be a simple C1,1 manifold. Recall that the global index form Q of (M, g)
is defined by

Q(W ):= ‖XW‖L2(N ) − (RW ,W )L2(N ) (74)

for W ∈ H1
0 (N , X).

Lemma 19 (Pestov identity) Let (M, g) be a simple C1,1 manifold with almost every-
where non-positive sectional curvature. If u ∈ �

0,1
h �∞

v (k) and u|∂(SM) = 0, then

∥∥∥∥
v∇Xu

∥∥∥∥
2

L2(N )

= Q

(
v∇u

)
+ (n − 1) ‖Xu‖2L2(SM)

. (75)

Proof Since u ∈ �
0,1
h �∞

v (k), we have u ∈ Lip0(SM),
v∇Xu ∈ L2(N ) and X

v∇u ∈
L2(N ). It was proved in [18, Lemma 9] that the Pestov identity (75) holds for this
class of functions on simple C1,1 manifolds. ��

When g ∈ C∞, the estimate in Lemma20was derived in [20, Section 6].We present
a proof compatible with low regularity employing the Pestov identity in Lemma 19.

Lemma 20 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. If u ∈ �

0,1
h �∞

v (k) and u|∂(SM) = 0, then

(
Xu, [X ,

v
]u

)
L2(SM)

≤ 0. (76)

Proof Since the sectional curvature of (M, g) is almost everywhere non-positive,
Q(W ) ≥ ‖XW‖2 for all W ∈ H1

0 (N , X) and we have

∥∥∥∥
v∇Xu

∥∥∥∥
2

L2(N )

≥
∥∥∥∥X

v∇u

∥∥∥∥
2

L2(N )

+ (n − 1) ‖Xu‖2L2(SM)
(77)

by the Pestov identity (lemma 19). On the other hand, using commutator formulas
from proposition 10,we see that

∥∥∥∥X
v∇u

∥∥∥∥
2

=
∥∥∥∥
v∇Xu − h∇u

∥∥∥∥
2

=
∥∥∥∥
v∇Xu

∥∥∥∥
2

− 2

(
v∇Xu,

h∇u

)
+

∥∥∥∥
h∇u

∥∥∥∥
2

=
∥∥∥∥
v∇Xu

∥∥∥∥
2

+
(
Xu, 2

v
div

h∇u

)
+

∥∥∥∥
h∇u

∥∥∥∥
2

.

(78)
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Combining estimate (77) and equation (78) and applying the commutator for-
mula (37),we get

0 ≥
(
Xu, 2

v
div

h∇u

)
+

∥∥∥∥
h∇u

∥∥∥∥
2

+ (n − 1) ‖Xu‖2

≥
(
Xu, 2

v
div

h∇u + (n − 1)Xu

)

=
(
Xu, [X ,

v
]u

)
(79)

as claimed. ��

Lemma 21 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. Suppose that f ∈ Lip0(M) is a symmetric m-tensor field on M
with vanishing X-ray transform I f . Let u:=u f be the integral function of f defined
by (3). If k ≥ m or k ≡ m (mod 2), we have

‖X+uk‖2L2(SM)
= ‖X−uk+2‖2L2(SM)

. (80)

Proof Since f ∈ Lip0(M) and the X-ray transform of f vanishes, we have u ∈
Lip0(SM) by lemma 16. By the fundamental theorem of calculus u solves Xu = − f .
Projecting this transport equation onto spherical harmonic degree k + 1 gives

− fk+1 = X+uk + X−uk+2. (81)

If k ≥ m or k ≡ m (mod 2), then fk+1 = 0 and the claim (80) follows by taking L2-
norms. ��

Recall that the constants C(n, k) and B(n, l, k) in lemma 5 are

C(n, k):=2k + n − 1

2k + n − 3
and B(n, l, k):=

l∏
p=1

C(n, k + 2p). (82)

Lemma 22 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. Suppose that f ∈ Lip0(M) is a symmetric m-tensor field
with I f = 0. Let u:=u f be integral function of f defined by (3). If 2k + n − 3 > 0,
we have

‖X−uk‖2L2(SM)
≤ C(n, k) ‖X+uk‖2L2(SM)

, (83)

where uk are the spherical harmonic components of u.
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Proof Let 2k+n−3 > 0. Since uk ∈ �
0,1
h �∞

v (k) by lemma 3, we can use lemma 20,
which together with commutator formulas in 14 gives

(2k + n − 1) ‖X+uk‖2 ≥ (2k + n − 1) ‖X+uk‖2 +
(
Xuk, [X ,

v
]uk

)

= (2k + n − 1) ‖X+uk‖2 +
(
X+uk, [X+,

v
]uk

)

+
(
X−uk, [X−,

v
]uk

)

= (2k + n − 3) ‖X−uk‖2 .

(84)

Dividing by 2k + n − 3 > 0 proves the claimed estimate (83). ��
Proof of lemma 5 Let f ∈ Lip0(M) be a symmetric m-tensor field so that I f = 0
and denote by u:=u f its integral function defined by (3). Let k ≥ m. By lemma 3,we
have u ∈ �

0,1
h �∞

v (k) and thus lemmas 21 and 22,we get

‖X+uk‖2L2(SM)
= ‖X−uk+2‖2L2(SM)

≤ C(n, k + 2) ‖X+uk+2‖2L2(SM)
. (85)

Iterating lemmas 21 and 22 a total of l ∈ N times yields

‖X+uk‖2 ≤ ‖X+uk+2l‖2
l∏

p=1

C(n, k + 2p) = B(n, l, k) ‖X+uk+2l‖2 (86)

as claimed. ��

5.2 Santaló’s Formula

The proof of Santaló’s formula on a smooth simple manifolds (M, g) is based on
the so-called Liouville’s theorem and can be found e.g. in [36]. We give a similar
proof of the formula on a simple C1,1 manifold based on the following formulation
of Liouville’s theorem.

Lemma 23 Let (M, g) be a simple C1,1 manifold. Denote by LX the Lie derivative
into the direction of the geodesic vector field X on SM. Then for any u ∈ Lip(SM) it
holds that

∫
SM

uLX (d�g) = 0. (87)

The proof of lemma 23 is based on smooth approximation of the Riemannian
metric g and can be found in Appendix C.

If ν is the inner unit normal vector field to ∂M , let μ(x, v):= 〈ν(x), v〉g(x) for
all (x, v) ∈ SM . Ifω is a differential k-formon SM , then denote by iXω the contraction
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ofωwith the geodesic vector field X . That is, for any vector fieldsY1, . . . , Yk−1 on SM ,
we define iXω by letting iXω(Y1, . . . ,Yk−1) = ω(X ,Y1, . . . ,Yk−1).

Lemma 24 (Santaló’s formula) Let (M, g) be a simple C1,1 manifold. For any func-
tion f ∈ Lip0(SM) the integral of f over SM with respect to d�g can be written
as

∫
SM

f d�g =
∫

∂inSM

∫ τ(z)

0
f (φt (z)) dt μ(z)d� j∗g. (88)

Here j : ∂(SM) → SM is the inclusion map and j∗g is the Riemannian metric of ∂M
induced by the inclusion j .

Proof Let f ∈ Lip0(SM) and consider its integral function u:=u f . The integral
function satisfies Xu = − f and u ∈ Lip(SM) by lemma 16. By Cartan’s formula,
we have

∫
SM

LX (u d�) =
∫
SM

iXd(u d�) +
∫
SM

d(iXu d�), (89)

where d is the exterior derivative. Since u d� is a volume form, the first term on the
right in (89) vanishes. By Stoke’s theorem

∫
SM

d(iXu d�g) =
∫

∂(SM)

j∗(uiXd�g). (90)

As in the smooth case ([36, Proposition 3.6.6.]), we compute that

∫
∂(SM)

j∗(uiXd�g) =
∫
SM

( j∗u)( j∗iXd�g)

=
∫
SM

( j∗u) 〈X , ν〉 d� j∗g

=
∫
SM

( j∗u)μ d� j∗g.

(91)

Finally, since j∗u is merely a restriction to the boundary, we invoke the definition of u
and lemma 23 to see that

∫
SM

f d�g =
∫
SM

LX (u) d�

=
∫
SM

LX (u d�) −
∫
SM

uLX (d�)

=
∫
SM

LX (u d�) =
∫

∂(SM)

( j∗u)μ d� j∗g

=
∫

∂(SM)

∫ τ(z)

0
f (φt (z)) dtμ d� j∗g. (92)
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Since τ(z) = 0 for z /∈ ∂in(SM), the claim (88) follows at once from (92). ��

6 Friedrich’s Inequalities

In this section, we prove that L2-norms of scalar functions on SM and sections of the
bundle N are bounded above by constant multiples of L2-norms of their derivatives
along the geodesic flow. We call these estimates Friedrich’s inequalities on SM . We
apply the inequalities to prove lemma 6.

Lemma 25 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. Let d be the diameter of M. Then

d2 ‖Xu‖2L2(SM)
≥ ‖u‖2L2(SM)

and d2 ‖XW‖2L2(N )
≥ ‖W‖2L2(N )

(93)

for any u ∈ H1
0 (SM) and W ∈ H1

0 (N , X).

Proof First, we prove the inequality for functions. By density it is enough to consider
the case u ∈ C1

0(SM). By Santaló’s formula (lemma 24), we can write

‖Xu‖2L2(SM)
=

∫
∂in(SM)

∫ τ(z)

0
|Xu(φt (z)|2 dt μd� j∗g, (94)

where j : ∂(SM) → SM is the inclusion. Let us denote uz(t):=u(φt (z)). Then uz ∈
H1
0 ([0, τ (z)]) and we have

Xu(φt (z)) = d

ds
u(φt+s(z))

∣∣∣∣
s=0

= d

ds
uz(t + s)

∣∣∣∣
s=0

= u̇z(t). (95)

By the usual Friedrich’s inequality of H1
0 ([0, τ (z)]), we see that

d2
∫ τ(z)

0
|u̇z(t)|2 dt ≥ τ(z)2

∫ τ(z)

0
|u̇z(t)|2 dt ≥

∫ τ(z)

0
|uz(t)|2 dt . (96)

Combining equation (95) with inequality (96), we get

d2 ‖Xu‖2L2(SM)
≥ d2

∫
∂in(SM)

∫ τ(z)

0
|u̇z(t)|2 dt μd� j∗g

≥
∫

∂in(SM)

∫ τ(z)

0
|uz(t)|2 dt μd� j∗g

= ‖u‖2L2(SM)
,

(97)

which is the claimed inequality for functions.
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Next, we prove the inequality for sections of the bundle N . LetW ∈ H1
0 (N , X). In

this case, Santaló’s formulas (lemma 24) gives

‖XW‖2L2(SM)
=

∫
∂in(SM)

∫ τ(z)

0
|XW (φt (z))|2g dt μ(z) d�∂(SM). (98)

We let Wz(t):=W (φt (z)). Then Wz(t) is a H1
0 vector field along γz and it holds

that XW (φt (z)) = DtWz(t). Choose a parallel frame (E1, . . . , En) along γz . Then
we have DtWz = Ẇ i

z Ei , when Wz = Wi
z Ei . Since Wz is a H1

0 vector field along γz

we have Wi
z ∈ H1

0 ([0, τ (z)]) for all i . Thus we read from equation (96) that

d2
∫ τ(z)

0

∣∣∣Ẇ i
z

∣∣∣2 dt ≥
∫ τ(z)

0

∣∣∣Wi
z

∣∣∣2 dt . (99)

From equations (98) and (99) we see that

d2 ‖XW‖2L2(N )
= d2

∫
∂in(SM)

∫ τ(z)

0
|DtWz(t)|2g dt μ(z) d�∂(SM)

= d2
n∑

i=1

∫
∂in(SM)

∫ τ(z)

0

∣∣∣Ẇ i
z (t)

∣∣∣2 dt μ(z) d�∂(SM)

≥
n∑

i=1

∫
∂in(SM)

∫ τ(z)

0

∣∣∣Wi
z (t)

∣∣∣2 dt μ(z) d�∂(SM)

= ‖W‖2L2(N )
,

(100)

which is the second claimed inequality. ��
Proof of lemma 6 Let u ∈ �

0,1
h �∞

v (k) be so that u|∂(SM) = 0 and X+u = 0. By
lemma 14,we have

(2k + n − 3) ‖X−u‖2 = −(2k + n − 1) ‖X+u‖2 + (2k + n − 3) ‖X−u‖2

=
(

[X+,
v
]u, X+u

)
+

(
[X−,

v
]u, X−u

)

=
(

[X+,
v
]u, Xu

)
+

(
[X−,

v
]u, Xu

)

=
(

[X ,
v
]u, Xu

)
.

(101)

The last inner product in (101) is non-positive by lemma 20. Thus X−u = 0 almost
everywhere on SM . Let d be the diameter of M . Lemma 25 then provides

‖u‖2L2(SM)
≤ d2 ‖Xu‖2L2(SM)

= d2(‖X+u‖2L2(SM)
+ ‖X−u‖2L2(SM)

) = 0. (102)
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Thus u = 0 almost everywhere on SM , but since u is continuous, we have shown
that u = 0 everywhere on SM . ��

Even though we do not need the result, we next show for completeness that there
are no conjugate points in the sense of the global index form Q when the sectional
curvature is non-positive.

Proposition 26 Let M be the closed Euclidean unit ball inRn. Suppose that M comes
equipped with a C1,1 Riemannian metric g so that the sectional curvature of (M, g)
is almost everywhere non-positive. Then there is ε > 0 so that Q(W ) ≥ ε ‖W‖2

L2(N )

for all W ∈ H1
0 (N , X).

Proof Since the sectional curvature is almost everywhere non-positive,

(RW ,W )L2(N ) =
∫

(x,v)∈SM
〈R(W (x, v), v)v,W (x, v)〉g d�g ≤ 0 (103)

for all W ∈ H1
0 (N , X), since W (x, v) and v are always orthogonal. Thus Q(W ) ≥

‖XW‖2
L2(N )

for all W ∈ H1
0 (N , X). Then it follows from lemma 25 that for all W ∈

H1
0 (N , X),we have

Q(W ) ≥ ‖XW‖2L2(N )
≥ 1

d2
‖W‖2L2(N )

. (104)

We take ε = 1/d2 which finishes the proof. ��
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Appendix A: Completion of the Proof of Boundary Determination

We complete the details in the proof of lemma 15 by proving items 1 and 2. Recall
that we work in local coordinates φ : W → R

n so that

φ(W ∩ ∂M) = {xn = 0}, and φ(W ∩ M int) = {xn > 0}. (105)
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We denote x̂ = (x1, . . . , xn−1). The local tensor field p is defined in these coordinates
by

p j1··· jl n···n(x̂, xn) = m

m − l
xn f j1··· jl n···n(x̂, 0), (106)

where n appears m − 1 − l times in p j1··· jl n···n and m − l times in f j1··· jl n···n .
First we prove item 1. We begin by proving that fx (v, . . . , v) = 0 for all v ∈

Sx (W ∩ ∂M) and x ∈ W ∩ ∂M . Given v ∈ Sx (W ∩ ∂M),we choose a sequence (vk)

of vectors vk ∈ Sx (W ∩ ∂M) so that τ(x, vk) > 0, and τ(x, vk) → 0 and vk → v

when k → ∞. Such a sequence of vectors exists by C1,1 simplicity as proved in
[18, Lemma 23]. Since the lengths of the geodesics corresponding to (x, vk) become
arbitrarily short and I f = 0, we find that

fx (v, . . . , v) = lim
k→∞

1

τ(x, vk)

∫ τ(x,vk )

0
f (φt (x, vk)) dt

= lim
k→∞

I f (x, vk)

τ (x, vk)

= 0.

(107)

We have shown that fx (v, . . . , v) = 0 for all v ∈ Sx (W ∩ ∂M). Next, we prove that
f j1··· jm (x̂, 0) = 0 in W ∩ ∂M for all j1, . . . , jm ∈ {1, . . . , n − 1}.
Let ι : ∂M → M be the inclusion map. The pullback ι∗ f is an m-tensor field on

∂M . Since fx (v, . . . , v) = 0 for all v ∈ Sx (W ∩ ∂M) we have (ι∗ f )x (v, . . . , v) = 0
for all v ∈ Sx (W ∩ ∂M). Then a fibrewise computation [9, Lemma 2.4] shows that

0 =
∫
W∩∂M

(ι∗ f )x (v, . . . , v)2 dSx = Cm,n−1
∣∣ι∗ f ∣∣2g(x) (108)

for all x ∈ W ∩ ∂M . We have shown that ι∗ f |W∩∂M = 0 which written in the
coordinates inW gives f j1··· jm (x̂, 0) = 0 for all j1, . . . , jm ∈ {1, . . . , n−1}. We have
proved item 1.

We proceed to proving item 2. Let l ∈ {0, . . . ,m−1} and j1, . . . , jl ∈ {1, . . . , n−
1}. To compute the restriction to boundary of the component functions of σ∇ p, we
first compute ∇n p j1··· jl n···n(x̂, 0) and ∇ js p j1··· ĵs ··· jl n···n(x̂, 0). We have

∇n p j1··· jl n···n = ∂n p j1··· jl n···n

−
l∑

s=1

�k
njs p j1···k··· jl n···n −

m−1∑
s=l+1

�k
nn p j1··· jl n···k···n . (109)
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Thus by the construction of p,we find that

∇n p j1··· jl n···n(x̂, xn) = m

m − l
f j1··· jl n···nn(x̂, 0)

− m

m − l
xn

l∑
s=1

�k
njs f j1···k··· jl n···nn(x̂, 0) − m

m − l
xn

m−1∑
s=l+1

�k
nn f j1··· jl n···k···nn(x̂, 0).

(110)

On the boundary {xn = 0}, equation (110) reduces to

∇n p j1··· jl n···n(x̂, 0) = m

m − l
f j1··· jl n···nn(x̂, 0). (111)

As in equation (109), we have

∇ js p j1··· ĵs ··· jl n···n = ∂ js p j1··· ĵs ··· jl n···n

−
l−1∑
r=1

�k
js jr p j1···k··· jl n···n

−
m−1∑
r=l

�k
js jr p j1··· jl n···k···n .

(112)

By the construction of p, equation (112) gives

∇ js p j1··· ĵs ··· jl n···n(x̂, x
n) = m

m − l
xn∂ js f j1··· ĵs ··· jl n···nn(x̂, 0)

− m

m − l
xn

l−1∑
r=1

�k
js jr f j1···k··· jl n···nn(x̂, 0)

− m

m − l
xn

m−1∑
r=l

�k
jsn f j1··· jl n···k···nn(x̂, 0).

(113)

Therefore, on the boundary {xn = 0},we get

∇ js p j1··· ĵs ··· jl n···n(x̂, 0) = 0. (114)

Nowweare ready to compute (σ∇ p) j1... jl n···n ,when l ∈ {0, . . . ,m−1}.Denote jl+1 =
· · · = jm = n. There are (m− l)(m−1)! permutations π of {1, . . . ,m} so that jπ(1) =
n, when no restrictions are set on the remaining indices jπ(2), . . . , jπ(m). Thus using
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symmetry of p we find that

(σ∇ p) j1··· jl n···n = (m − l)(m − 1)!
m! ∇n p j1··· jl n···n + (m − 1)!

m!
l∑

s=1

∇ js p j1··· ĵs ··· jl n···n

= m − l

m
∇n p j1··· jl n···n + 1

m

l∑
s=1

∇ js p j1··· ĵs ··· jl n···n .

(115)

Evaluating (115) on the boundary {xn = 0} and substituting (111) and (114) results
in

(σ∇ p) j1... jl n···n(x̂, 0) = f j1··· jl n···n(x̂, 0). (116)

The last step is to prove that

(σ∇ p) j1··· jm (x̂, 0) = f j1··· jm (x̂, 0) (117)

when j1, . . . , jm ∈ {1, . . . , n − 1}. By the definition of the symmetrized covariant
derivative,

(σ∇ p) j1··· jm = 1

m!
∑
π

∇ jπ(1) p jπ(2)··· jπ(m)
(118)

where the summation is over all permutations π of {1, . . . ,m}. Since jπ(k) < n for
all k ∈ {1, . . . ,m}, we can compute as in (113) to see that

∇ jπ(1) p jπ(2)··· jπ(m)
|xn=0 = 0 (119)

for all permutations π of {1, . . . ,m}. Thus

(σ∇ p) j1··· jm |xn=0 = 0 = f j1··· jm |xn=0. (120)

We have finally used item 1 of the proof, where we proved that f j1··· jm (x̂, 0) = 0 for
all j1, . . . , jm ∈ {1, . . . , n − 1}. This concludes the proof item 2 and thus the proof of
lemma 15 is completed.

Appendix B: A Regularity Computation

The following calculation completes the proof of lemma 3. It is based on the proofs
of [43, Lemma 4.4] and [26, Lemma 5.1].
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Let u ∈ H1
hH

2
v(SM) and let wk ∈ �1

h�
∞
v (k) be so that wk |∂(SM) = 0. Then

h∇u ∈
H1
hH

1
v(SM) and thus

(
h∇u,

v∇wk

)
L2(N )

= −
(

v
div

h∇u, wk

)
L2(N )

. (121)

Using proposition 10,the right side can rewritten as

−
(

v
div

h∇u, wk

)
= −1

2

(
[X ,

v
]u, wk

)
+ n − 1

2
(Xu, wk) . (122)

If uk ∈ �1
h�

2
v(k) are the spherical harmonic components of u, then by orthogonality

and lemma 14 we have

(
[X ,

v
]u, wk

)
=

(
[X+,

v
]uk−1 + [X−,

v
]uk+1, wk

)

=
(

−2k + n − 3

2
X+uk−1 + 2k + n − 1

2
X−uk+1, wk

)
.

(123)

Together, equations (121), (122) and (123) show that

(
h∇u,

v∇wk

)
= ((k + n − 2)X+uk−1 − kX−uk+1, wk) . (124)

Then we let w ∈ C1
hC

2
v(SM) so that w|∂(SM) = 0. If we decompose w into

spherical harmonics wk , then wk ∈ �1
h�

∞
v (k). We sum equation (124) over k ∈ N

and use k(k + n − 2)wk = v
wk to get

(
h∇u,

v∇w

)
=

∞∑
k=0

((k + n − 2)X+uk−1 + kX−uk+1, wk)

=
∞∑
k=0

(
1

k
X+uk−1 + 1

k + n − 2
X−uk+1,

v
wk

)

=
( ∞∑
k=0

v∇
[
1

k
X+uk−1 + 1

k + n − 2
X−uk+1

]
,
v∇wk

)
.

(125)

Thus there is W (u) ∈ H0
hH

1
v(N ) so that

v
div(W (u)) = 0 and

h∇u =
∞∑
k=0

v∇
[
1

k
X+uk−1 + 1

k + n − 2
X−uk+1

]
+ W (u). (126)
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It follows from the eigenvalue property that

∥∥∥∥
v∇uk

∥∥∥∥
2

L2(N )

= k(k + n − 2) ‖uk‖2L2(SM)
. (127)

Thus equation (126) yields

∥∥∥∥
h∇u

∥∥∥∥
2

=
∞∑
k=0

k(k + n − 2)

∥∥∥∥1k X+uk−1 + 1

k + n − 2
X−uk+1

∥∥∥∥
2

+ ‖W (u)‖2

=
∞∑
k=0

(
k + n − 2

k
‖X+uk−1‖2 − 2 (X+uk−1, X−uk+1)

+ k

k + n − 2
‖X−uk+1‖2

)
+ ‖W (u)‖2 .

(128)

Again, by orthogonality, we have

‖Xu‖2 =
∞∑
k=0

‖X+uk−1 + X−uk+1‖2

=
∞∑
k=0

(
‖X+uk−1‖2 + 2 (X+uk−1, X−uk+1) + ‖X−uk+1‖2

) (129)

We add equations (128) and (129) to get

‖u‖2
H1
hH

0
v (SM)

= ‖Xu‖2 +
∥∥∥∥
h∇u

∥∥∥∥
2

=
∞∑
k=0

(
1 + k + n − 2

k

)
‖X+uk−1‖2

+
∞∑
k=0

(
1 + k

k + n − 2

)
‖X−uk+1‖2 + ‖W (u)‖2

≥
∞∑
k=0

‖X+uk−1‖2 +
∞∑
k=0

‖X−uk+1‖2 ,

(130)

This is estimate (71).

Appendix C: Proof of Liouville’s Theorem

This appendix is devoted to the proof of lemma 23. We let M be a compact smooth
manifold with a smooth boundary. Suppose that we are given two C1,1 Riemannian
metrics g and h on M . Let the corresponding unit sphere bundles be SgM and ShM .
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There is a natural radial C1,1-diffeomorphism (x, v) → (x, v |v|−1
h ) from SgM

to ShM , the inverse map from ShM to SgM being (x, w) → (x, w |w|−1
g ).

In the proof of lemma 23, we use three types of Riemannian metrics on M . We
will have a C1,1 Riemannian metric g and two types of smooth Riemannian metrics h
and

α
g. We denote the corresponding radial diffeomorphisms by

α
s : ShM → α

SM, s : ShM → SgM, and
α
r : α

SM → SgM . (131)

In the proof of lemma 23, we will use the convention that the unit sphere bundle
related

α
g is denoted

α

SM :=Sα
gM , the operators and differential forms related to

α
g are

decorated with α on top or as a subscript, the sphere bundle, operators and differential
forms related to h are decorated with subscripts h and the bundles and the operators
related to the metric g are written without decorations.

Proof of lemma 23 The proof is based on smooth approximations of the Riemannian
metric g. Let h be a smooth fixed reference Riemannian metric on M . Let

( α
g
)
be a

sequence of smooth Riemannian metrics on M so that

α
g jk → g jk in W 1,∞

h (M) and
α

�i
jk → �i

jk in L∞
h (M). (132)

Existence of such sequence was proved in [18, Lemma 18]. Let u ∈ Lip(SM) and
denote

α
u:=α

r∗u and ũ:=s∗u. We note that ũ = α
s∗ α
u. We will prove that

lim
α→∞

∫
α
SM

α
uL α

X
(d

α

�) =
∫
SM

uLX (d�). (133)

Establishing equation (133) proves the claim, since byLiouville’s theorem [36, Lemma
3.6.4.], we have

L α
X
(d

α

�) = 0 (134)

for all α ∈ N and thus the limit integral in equation (133) is zero.
Recall that ũ = s∗u = α

s∗ α
u. Thus by basic properties of pullback,it is enough prove

that

lim
α→∞

∫
ShM

ũ
α
s∗(L α

X
d

α

�) =
∫
ShM

ũs∗(LXd�) (135)

ThemanifoldM is the Euclidean unit ball inRn andwe let (x1, . . . , xn) be usual Carte-
sian coordinates on M . We consider coordinates (x1, . . . , xn, w1, . . . , wn) on ShM
and corresponding coordinates

(x1, . . . , xn,
α
v1, . . . ,

α
vn) on

α

SM and (x1, . . . , xn, v1, . . . , vn) on SM

so that
α
s(x, w) = (x,

α
v) and s(x, w) = (x, v). We associate to (x, w) the coor-

dinate vector fields ∂x1, . . . , ∂xn , ∂w1 , . . . , ∂wn and similarly to (x,
α
v) we associate
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∂x1 , . . . , ∂xn , ∂α
v1

, . . . , ∂α
vn

and to (x, v) we associate ∂x1 , . . . , ∂xn , ∂v1 , . . . , ∂vn . We
let

dx1, . . . , dxn, dw1, . . . , dwn,

dx1, . . . , dxn, d
α
v1, . . . , d

α
vn, and

dx1, . . . , dxn, dv1, . . . , dvn
(136)

be the dual basis one-forms characterized by

dx j (∂xk ) = δ
j
k , dx j (∂wk ) = 0, dw j (∂xk ) = 0, dw j (∂wk ) = δ

j
k ,

dx j (∂xk ) = δ
j
k , dx j (∂α

vk
) = 0, d

α
v j (∂xk ) = 0, d

α
v j (∂α

vk
) = δ

j
k ,

dx j (∂xk ) = δ
j
k , dx j (∂vk ) = 0, dv j (∂xk ) = 0, dv j (∂vk ) = δ

j
k .

(137)

Next, we will write the integrals in equation (135) in coordinates on ShM and we
will argue that equation (135) follows from (132). We will derive a local coordinate
formula for LX (d�). A similar formula for L α

X
(d

α

�) can be derived analogously. Then
we will compute how the coordinate presentations transform under the pullbacks s∗
and

α
s∗.

We denote by |g| the determinant of g. Since d� is a volume form (differential
form of the highest order), Cartan’s formula implies that

LX (d�) = d(iXd�). (138)

Since

iXdx
i = dxi (X) = dxi (v j∂x j − �l

jkv
jvk∂vl ) = vi (139)

and

iXdv
i = dvi (X) = dvi (v j∂x j − �l

jkv
jvk∂vl ) = −�i

jkv
jvk (140)

we see that

iXd� =
n∑

i=1

vi |g| dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn

+
n∑

i=1

(−�i
jkv

jvk |g|) dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ d̂vi ∧ · · · ∧ dvn,

(141)
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where d̂xi and d̂vi indicate that one-forms dxi and dvi are omitted from the wedge
product. From (141),it follows that

d(iXd�) =
n∑

i=1

(−1)i−1∂xi (v
i |g|) dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn

+
n∑

i=1

(−1)n+i−1∂vi (−�i
jkv

jvk |g|) dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn

=
n∑

i=1

(−1)i−1(∂xi (v
i |g|) + (−1)n+1∂vi (�

i
jkv

jvk |g|))

× dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn . (142)

Similarly, we see that

L α
X
(d

α

�) =
n∑

i=1

(−1)i−1∂xi (
α
vi

∣∣ α
g
∣∣) dx1 ∧ · · · ∧ dxn ∧ d

α
v1 ∧ · · · ∧ d

α
vn

+
n∑

i=1

(−1)n+i−1∂α
vi

(− α

�i
jk

α
v j α

vk
∣∣ α
g
∣∣) dx1 ∧ · · · ∧ dxn ∧ d

α
v1 ∧ · · · ∧ d

α
vn

=
n∑

i=1

(−1)i−1(∂xi (
α
vi

∣∣ α
g
∣∣) + (−1)n+1∂α

vi
(

α

�i
jk

α
v j α

vk
∣∣ α
g
∣∣))

× dx1 ∧ · · · ∧ dxn ∧ d
α
v1 ∧ · · · ∧ d

α
vn . (143)

Next, we pullback formulas (142) and (143) onto ShM . We can compute

s∗dv j = d(s∗v j ) = d(w j |w|−1
g ) = |w|−1

g dw j + w jd(|w|−1
g ). (144)

If we write

d(|w|−1
g ) = μidx

i + λidw
i , (145)

then

μk = μidx
i (∂xk ) = d(|w|−1

g )(∂xk ) = ∂xk |w|−1
g and λk = ∂wk |w|−1

g . (146)

Thus

s∗dv j = w j (∂xk |w|−1
g )dxk + (|w|−1

g δ
j
k + w j∂wk |w|−1

g )dwk . (147)

Similarly, we get

s∗d α
v j = w j (∂xk |w|−1

α )dxk + (|w|−1
α δ

j
k + w j∂wk |w|−1

α )dwk . (148)
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Since s and
α
s act identically on the base point x , we have

s∗(dx1 ∧ · · · ∧ dxn) = dx1 ∧ · · · ∧ dxn and
α
s∗(dx1 ∧ · · · ∧ dxn) = dx1 ∧ · · · ∧ dxn .

(149)

Using the fact that a wedge product vanishes whenever repetition appears,we get

s∗(dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn)

= dx1 ∧ · · · ∧ dxn ∧ (|w|−1
g δ

j
k + w1(∂wk |w|−1

g ))dwk ∧ · · ·
· · · ∧ (|w|−1

g δnk + wn(∂wk |w|−1
g ))dwk

= dx1 ∧ · · · ∧ dxn ∧
n∧
j=1

(|w|−1
g δ

j
k + w j (∂wk |w|−1

g ))dwk .

(150)

By a similar computation

s∗(dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn)

= dx1 ∧ · · · ∧ dxn ∧
n∧
j=1

(|w|−1
g δ

j
k + w j (∂wk |w|−1

α ))dwk .
(151)

To complete formulas for the pullback of (142) and (143)we use the facts that s∗ = s−1∗
and

α
s∗ = α

s−1∗ to compute

s∗∂xi = ∂xi + (∂xi w
j )∂w j and

α
s∗∂xi = ∂xi + (∂xi w

j )∂w j (152)

as well as

s∗∂vi = (∂v jw
j )∂w j and

α
s∗∂α

vi
= (∂α

v j w
j )∂w j . (153)

Thus we get

s∗(∂xi vi |g|) = ∂xi (w
i |w|−1

g |g|) + (∂xi w
j )(∂w j (w

i |w|−1
g |g|)), (154)

α
s∗(∂xi vi

∣∣ α
g
∣∣) = ∂xi (w

i |w|−1
α

∣∣ α
g
∣∣) + (∂xi w

j )(∂w j (w
i |w|−1

α

∣∣ α
g
∣∣)), (155)

and

s∗∂vi (�
i
jkv

jvk |g|) = �i
jk |g| (∂viw

l)∂wl (w
i |w|−1

g wk |w|−1
g ), (156)

α
s∗∂α

vi
(

α

�i
jk

α
v j α

vk
∣∣ α
g
∣∣) = α

�i
jk

∣∣ α
g
∣∣ (∂α

vi
wl)∂wl (w

i |w|−1
α wk |w|−1

α ). (157)
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The formulas we get for the pullbacks of LX (d�) along s and of L α
X
(d

α

�) along
α
s are

s∗LX (d�) =
n∑

i=1

(−1)i−1
(

∂xi (w
i |w|−1

g |g|) + (∂xkw
j )(∂w j (wk |w|−1

g |g|))

+ (−1)n+1�i
jk |g| (∂vmwl)∂wl (w

m |w|−1
g wk |w|−1

g )

)

dx1 ∧ · · · ∧ dxn ∧
n∧
j=1

(|w|−1
g δ

j
k + w j (∂wk |w|−1

g ))dwk

(158)

and

α
s∗L α

X
(d

α

�) =
n∑

i=1

(−1)i−1
(

∂xi (w
i |w|−1

α

∣∣ α
g
∣∣) + (∂xkw

j )(∂w j (w
k |w|−1

α

∣∣ α
g
∣∣))

+ (−1)n+1 α

�i
jk

∣∣ α
g
∣∣ (∂α

vm
wl)∂wl (w

m |w|−1
α wk |w|−1

α )

)

dx1 ∧ · · · ∧ dxn ∧
n∧
j=1

(|w|−1
α δ

j
k + w j (∂wk |w|−1

α ))dwk .

(159)

From formulas (158) and (159) we see that can conclude the equation (135) if the
following holds:

∂xi (w
i |w|−1

α

∣∣ α
g
∣∣) ∏

j∈S
(|w|−1

α δ
j
k )

∏
j∈S′

(w j (∂wk |w|−1
α ))

→ ∂xi (w
i |w|−1

α |g|)
∏
j∈S

(|w|−1
g δ

j
k )

∏
j∈S′

(w j (∂wk |w|−1
g )),

(160)

(∂xi w
j )(∂w j (w

k |w|−1
α

∣∣ α
g
∣∣)) ∏

j∈S
(|w|−1

α δ
j
k )

∏
j∈S′

(w j (∂wk |w|−1
α ))

→ (∂xi w
j )(∂w j (w

k |w|−1
g |g|))

∏
j∈S

(|w|−1
g δ

j
k )

∏
j∈S′

(w j (∂wk |w|−1
g )),

(161)

α

�i
jk

∣∣ α
g
∣∣ (∂α

vm
wl )(∂wl (w

m |w|−1
α wl |w|−1

α ))
∏
j∈S

(|w|−1
α δ

j
k )

∏
j∈S′

(w j (∂wk |w|−1
α ))

→ �i
jk |g| (∂vmwl )(∂wl (w

m |w|−1
g wl |w|−1

g ))
∏
j∈S

(|w|−1
g δ

j
k )

∏
j∈S′

(w j (∂wk |w|−1
g ))

(162)
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in L1(ShM), where S and S′ are any subsets of {1, . . . , n}.We chose the approximating
sequence

( α
g
)
so that

α
g jk → g jk in W 1,∞

h (M) and
α

�i
jk → �i

jk in L∞
h (M). (163)

From (163),we see that

∂xi (w
i |w|−1

α

∣∣ α
g
∣∣) → ∂xi (w

i |w|−1
g |g|),

|w|−1
α δ

j
k → |w|−1

g δ
j
k ,

w j (∂wk |w|−1
α )) → w j (∂wk |w|−1

g )),

∂w j (wk |w|−1
α

∣∣ α
g
∣∣ → ∂w j (wk |w|−1

g |g| ,
α

�i
jk

∣∣ α
g
∣∣ → �i

jk |g| ,
∂α
vm

wl → ∂vmwl ,

∂wl (wm |w|−1
α wl |w|−1

α ) → ∂wl (wm |w|−1
g wl |w|−1

g ) (164)

in L∞(ShM). Thus we can take products and we conclude that (160), (161) and (162)
hold, which finishes the proof. ��
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