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MIHIC: a multiplex IHC
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classification dataset for
lung cancer immune
microenvironment quantification
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Shan Jin2, Fengyu Cong1,2,4,5, Yong Zhang3*

and Hongming Xu1,2,4*

1Affiliated Cancer Hospital, Dalian University of Technology, Dalian, China, 2School of Biomedical
Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China, 3Department of
Pathology, Liaoning Cancer Hospital and Institute, Shenyang, China, 4Key Laboratory of Integrated
Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, Liaoning, China,
5Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
Background: Immunohistochemistry (IHC) is a widely used laboratory technique

for cancer diagnosis, which selectively binds specific antibodies to target proteins

in tissue samples and then makes the bound proteins visible through chemical

staining. Deep learning approaches have the potential to be employed in

quantifying tumor immune micro-environment (TIME) in digitized IHC

histological slides. However, it lacks of publicly available IHC datasets explicitly

collected for the in-depth TIME analysis.

Method: In this paper, a notable Multiplex IHC Histopathological Image

Classification (MIHIC) dataset is created based on manual annotations by

pathologists, which is publicly available for exploring deep learning models to

quantify variables associated with the TIME in lung cancer. The MIHIC dataset

comprises of totally 309,698 multiplex IHC stained histological image patches,

encompassing seven distinct tissue types: Alveoli, Immune cells, Necrosis,

Stroma, Tumor, Other and Background. By using the MIHIC dataset, we

conduct a series of experiments that utilize both convolutional neural

networks (CNNs) and transformer models to benchmark IHC stained

histological image classifications. We finally quantify lung cancer immune

microenvironment variables by using the top-performing model on tissue

microarray (TMA) cores, which are subsequently used to predict patients’

survival outcomes.

Result: Experiments show that transformer models tend to provide slightly better

performances than CNN models in histological image classifications, although

both types of models provide the highest accuracy of 0.811 on the testing dataset

in MIHIC. The automatically quantified TIME variables, which reflect proportions

of immune cells over stroma and tumor over tissue core, show prognostic value

for overall survival of lung cancer patients.

Conclusion: To the best of our knowledge, MIHIC is the first publicly available

lung cancer IHC histopathological dataset that includes images with 12 different
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IHC stains, meticulously annotated by multiple pathologists across 7 distinct

categories. This dataset holds significant potential for researchers to explore

novel techniques for quantifying the TIME and advancing our understanding of

the interactions between the immune system and tumors.
KEYWORDS

lung cancer, immunohistochemical image, database, image classification,
transformer models
1 Introduction

According to the recent global statistics (1), lung cancer ranks as

the second most common cancer worldwide and continues to be the

leading cause of cancer-related deaths. In particular, it is estimated

to be responsible for approximately 1.8 million deaths worldwide

each year, which accounts for 18% of all cancer-related deaths.

Immunohistochemical biomarkers play a crucial role in tumor

staging and prognostic analysis for non-small cell lung cancer

(NSCLC) (2), as they can offer valuable insights into tumor

characteristics, such as cell proliferation, angiogenesis, invasion,

and immune response. IHC is a method of demonstrating the

distribution and localization of antigens (i.e. proteins) in tissue

slides using antibody-antigen interaction, which is a standard tool

in clinical diagnostics (3). It allows for specific detection of

particular cell types, molecular markers, or disease biomarkers,

enabling accurate identification of tumor types, grading, and

molecular subtypes (4). Therefore, histological quantification in

IHC slides holds paramount importance in unraveling the

intricacies of tumor immune microenvironment (TIME)

development (5), which helps to predict clinical outcomes of lung

cancer patients.

The advent of digital pathology scanners has rendered it feasible

to quantitatively analyze information related to the TIME within

IHC slides. Accurately quantifying molecular subtypes, disease

markers, and other indicators present in IHC slides is crucial in

tailoring appropriate treatment strategies for cancer patients.

However, due to the tissue heterogeneity, traditional machine

learning algorithms often fail to provide satisfactory performance

in IHC image analysis. Deep learning models that have

demonstrated remarkable results in the computer vision domain

are becoming promising solutions for IHC image analysis.

Deep learning models can be broadly categorized into two

groups: convolutional neural networks (CNN) and transformer

models, both of which have demonstrated superior performance

across a multitude of image classification tasks. The first CNN

model, termed as the LeNet (6), was proposed in 1998, while the

explosion of CNN began with the emergence of AlexNet (7) in 2012.

After that, a series of well-known CNN models such as VGG (8),

ResNet (9), and EfficientNet (10) have been introduced to dominate

image classification tasks in computer vision domain. Traditional
02
CNNs progressively reduce the image size through convolution and

pooling operations, extracting features layer by layer. However, this

sequential processing may potentially lead to the loss of essential

global context information. With the recent popularity of

transformer models (11), the self-attention mechanism has

become a central focus in deep learning applications. The self-

attention module computes the response at a given position as a

weighted sum of features across all positions, facilitating the efficient

capture of contextual information and dependencies through

parallel processing (12, 13). Thus, as opposed to CNN models,

one of notable advantages of transformers lies in their capability to

capture global context information in image feature embedding.

The transformer models excel in learning both global and local

information, enabling them to effectively capture long-term

dependencies within an image. Nevertheless, deep learning

models also come with numerous challenges and limitations,

including the requirement for extensive datasets and their limited

capacity to deal with extremely complex tasks (14). The availability

of a substantial amount of accurately labeled data is of paramount

importance for effectively training deep learning models. For

instance, recent studies demonstrated that transformer models

achieve superior results over state-of-the-art (SOTA) CNNs (15,

16). A pivotal factor contributing to this enhanced performance can

be attributed to the utilization of larger model sizes and extensive

training datasets in these studies (17).

Categorizing tissue regions is fundamental to quantifying

essential information in IHC image analysis. This process enables

a more profound understanding of the specific components within

the tissue and their respective roles, ultimately leading to improved

precision in pathological assessments. Due to the memory

constraints of graphics processing unit (GPU), the tissue

microarray (TMA) core or whole slide image (WSI) is too large

to fit on a GPU all at once. The feasible approach for tissue

classification involves dividing the TMA or WSI into small image

patches for training the deep learning model. From the perspective

of TIME expression, the micro information such as cellular

distribution or tissue composition is generally easier to be

captured by models at the patch level than at the WSI level. Thus,

training a classifier specifically on image patches is expected to yield

superior or comparable performance compared to training a

classifier at the WSI level (18). To be more specific, the large-
frontiersin.org
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scale WSI or TMA core is first divided into a large mount of image

tiles for tile-level subtyping. Tile-level predictions are then stitched

together to form the WSI-level results for quantitative TIME

analysis. However, there is a scarcity of publicly available

multiplex IHC datasets used for lung cancer TIME quantification.

An extensive and comprehensive dataset is highly desired to

facilitate the quantitative analysis of IHC images. The main

contributions of this study are as follows: (1) We build a large

Multiplex IHC Histopathological Image Classification (MIHIC)

dataset for lung cancer TIME quantification, which consists of 12

different IHC stained types (i.e., CD3, CD34, CD38, CD20, CD68,

CDK4, D2-40, Cyclin-D1, Ki67, FAP, P53, SMA), and 7 annotated

tissue categories (i.e., Alveoli, Immune cells, Necrosis, Other,

Stroma, Tumor, Background). (2) We benchmark two

mainstream deep learning architectures including CNNs and

transformer models to evaluate their histological classification

performance on our MIHIC dataset. (3) We show that

automatically quantified TIME variables have prognostic value for

overall survival of lung cancer patients.

The organization of this paper is as follows. Section 2 provides

related works about public datasets used for histological image

classification. We then detail the MIHIC dataset creation,

classification models benchmarking, and TIME quantification and

survival prognosis in Section 3. Section 4 provides histological

image classification results and survival outcome predictions,

followed by discussion in Section 5.
2 Related works

Tissue classification has consistently been a pivotal task in

histopathological image analysis. Analyzing tissue regions via

diversified staining techniques provides various levels of

diagnostic insight, offering valuable information for accurate

pathological assessments. Table 1 summarizes existing

Hematoxylin and Eosin (H&E), and IHC staining histological

image datasets. To identify histological components in colorectal

cancer (CRC) slides, Kather et al. (19) built a large tissue

classification dataset including NCT-CRC-HE-100K and CRC-

VAL-HE-7K, where nine tissue types including adipose tissue,

background, debris, lymphocytes, mucus, smooth muscle, normal

colon mucosa, cancer-associated stroma, and colorectal

adenocarcinoma epithelium were annotated in H&E stained
Frontiers in Immunology 03
slides. Note that H&E staining, a widely utilized method in

paraffin section technology, is used to highlight the presence of

cell nuclei and cytoplasmic inclusions in clinical specimens (27, 28).

Their dataset includes images with the size of 224×224 pixels

(0.5um/pixel) per image, which has been used to train CNN

models for tissue classification. Based on this research (19), Zhao

et al. (29) quantified tumor-stroma ratio, which is shown as an

independent predictor for overall survival in resectable colorectal

cancer. The BreAst Cancer Histology (BACH) (21) dataset offered a

substantial collection of H&E stained histological images for breast

cancer classification, along with a set of WSIs with pixel-wise

annotations for breast tumor segmentation. The primary objective

of releasing this dataset was to facilitate the classification and

precise localization of clinically relevant histopathological classes

in both TMAs and WSIs by leveraging a well-annotated dataset.

Brancati et al. (22) released an open-source BReAst Carcinoma

Subtyping (BRACS) dataset, which is a large annotated cohort of

H&E stained images to advance the automatic characterization of

breast lesions. The BRACS dataset contains 547 WSIs and 4539

ROIs extracted from WSIs. All the ROIs are annotated into three

different lesion types, including benign, malignant and atypical,

which are further subtyped into seven categories. Javed et al. (20)

proposed a large-scale histological image dataset for tissue

phenotyping, which consists of 280K patches extracted from 20

H&E stained WSIs of different CRC patients. They extracted

features reflecting cell-cell interactions and evaluated two

classification tasks, including patch-level separation and patient-

level separation on the dataset. Hosseini et al. (23) introduced a

novel digital pathology dataset termed as the ‘Atlas of Digital

Pathology’ (ADP). The dataset consists of 17,668 patch images

extracted from 100 slides, each annotated with up to 57 hierarchical

Histologic Tissue Types (HTTs). Since it encompasses diverse tissue

types from various organs, this dataset provides a comprehensive

training resource for supervised multi-label learning of HTTs at the

patch level within digitized WSIs. It is worth noting that all of these

public datasets consist of H&E stained histopathological images

rather than IHC histological images.

As illustrated in the Table 1, there are also studies that focus

on histological classification in IHC stained images. Xu et al. (24)

built a colorectal cancer IHC image classification dataset, where

tissues are grouped into nine types: tumor epithelium, tumor

stroma, adipose, background, debris, lymphocytes, mucus,

smooth muscle, and normal mucosa. The training dataset
TABLE 1 Relevant dataset summary.

Contributors Dataset name Stain type Cancer type Class number

Kather et al. (19)
Kather et al. (19)
Javed et al. (20)

Grand challenge (21)
Brancati et al. (22)
Hosseini et al. (23)

NCT-CRC-HE-100K
CRC-VAL-HE-7K

CRC-TP
BACH
BRACS
ADP

H&E

Colorectal cancer
Colorectal cancer
Colorectal cancer
Breast cancer
Breast cancer

Multiple organs

9
9
7
4
7

Hierarchical

Xu et al. (24)
Sharma et al. (25)

HER2 challenge contest (26)

Anonymous
Anonymous
Anonymous

IHC
Colorectal cancer
Gastric carcinoma
Breast cancer

9
4
4
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includes 154.4K image tiles established from 242 CD3 and CD8

slides of 121 patients, while the test dataset includes 22.5K image

tiles established from 114 slides of 57 patients. Note that CD3 and

CD8 refer to the IHC staining, which highlights T-lymphocytes

expressing CD3 or CD8 proteins, offering valuable insights into

the immune cell composition of tissues. They trained a CNN

model to identify different tissue types in the WSI and then

quantified CD3 and CD8 T-cells within stroma regions as the

biomarker for survival prognosis. Considering the theoretical

significance of HER2 as a key prognostic factor and therapeutic

target in gastric cancer (30), Sharma et al. (25) built a specialized

IHC image classification dataset using gastric carcinoma slides.

Malignancy levels in this dataset are annotated as HER2 positive

(comprising grades 2+ and 3+) or negative (comprising grades 0

and 1+) in 11 WSIs. The IHC annotations were mapped to the

corresponding H&E images which were used to train a CNN

model for cancer classification. HER2 challenge contest (26)

provided a histological image dataset for HER2 scoring which

was reviewed and scored by at least two pathologists. The contest

dataset includes 172 WSIs extracted from 86 cases of invasive

breast carcinomas, encompassing both H&E- and HER2-stained

slides. The majority of teams participating the challenge contest

employed CNN-based approaches to predict HER2 scores from

IHC slides, which was then compared with human assessments.

These studies analyzed datasets that employed a single IHC

staining technique, and hence datasets incorporating three or

more IHC staining methods are relatively scarce. In addition, to

the best of our knowledge, there are no publicly available IHC

datasets specifically focused on NSCLC patients in the field.
3 Materials and methods

Figure 1 shows the flowchart of this study. As observed in

Figure 1, we first build a publicly accessible MIHIC dataset based on

manual annotations by two pathologists, which includes 309,698

multiplex IHC stained histological image patches. 13 SOTA CNN

and transformer models are then evaluated to generate

benchmarking results on IHC image classification. Finally, we

employ the top-performing model identified in the benchmarking

process to quantify TIME variables through entire TMA cores, and
Frontiers in Immunology 04
explore their associations with survival outcomes of NSCLC

patients. The following sections provide details about our study.
3.1 MIHIC dataset creation

A cohort of 47 TMA sections from 114 patients was collected from

Liaoning Cancer Hospital & Institute, where each TMA section has

the size of 188,416×110,080 pixels (i.e., 42660.87um×24924.15um) at

40× magnification. TMA sections contain different number of tissue

cores, ranging from 28 to 48. Each patient has tissue cores with 12

different IHC stains, including CD3, CD20, CD34, CD38, CD68,

CDK4, cyclin-D1, D2-40, Fibroblast Activation Protein (FAP), Ki67,

P53, and Smooth Muscle Actin (SMA). Note that CD3 is the marker

for T-lymphocytes (31), CD20 is the marker for B-lymphocytes (32),

CD34 is the marker for hematopoietic stem cells and endothelial cells

(33), CD38 is the marker for plasma cells and certain immune cells

(34), CD68 is the marker for macrophages andmonocytes (35), CDK4

represents cyclin-dependent kinase 4, involved in cell cycle regulation

(36), cyclin-D1 relates the cell cycle progression (37), D2-40 is the

marker for lymphatic endothelium (38), FAP expresses in activated

fibroblasts (39), Ki67 is themarker for cell proliferation (40), P53 is the

tumor suppressor gene product (41), and SMA is the marker for

smooth muscle cells and myofibroblasts (42). The selection of these

staining slides aims to comprehensively depict the TIME for a more

precise diagnosis and prognosis of NSCLC patients. Two pathologists

have manually labeled identifiable tissue regions (i.e., without

controversy) in TMA sections through visual examination via the

Qupath software (43), where six tissue types including Alveoli,

Immune cells, Necrosis, Other, Stroma, and Tumor were annotated.

Besides the annotated six tissue types, we added onemore Background

type. Figure 2A shows examples of tissue annotations by pathologists,

where different tissue regions are enclosed by different color contours.

Based on manual annotations by pathologists (see Figure 2B),

annotated regions of interest (ROIs) corresponding to different

tissue types are identified in TMA sections. These ROIs are then

divided into a set of non-overlapping image patches (see Figure 2C),

where each patch has 128×128 pixels. Since some image patches

containing a small proportion of annotated tissue regions may

negatively influence image classification if they are selected, the

MIHIC dataset only includes patches with annotated tissue regions
MIHIC
Dataset

CNN Models

Transformer 
Models

MIHIC Dataset Crea on Classifica on Models Benchmarking 

AI

Model

TIME quan fica on & Survival Prognosis 

Annota ons

FIGURE 1

Overview of our study.
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occupying more than 50% of the image patch. In total, 309,698

image patches belonging to 7 different types are generated after

tiling all annotated ROIs. Figure 3 shows examples of 7 histological

image patches included in MIHIC dataset. Table 2 lists the number

of different tissue patches generated from TMA cores across 12

different IHC staining methods.

To build histological classification models, we split 309,698

image patches in the MIHIC dataset into three sets: training,

validation and testing. Note that image patches extracted from

the same annotated tissue region are distributed into the same set,

which avoids data leakage during classification model optimization.

According to the number of extracted ROIs, training, validation and

testing sets accounted for 64%, 16%, and 20%, respectively. Table 3

lists the number of training, validation and testing image patches

across 7 histological image types. It is observed in Table 3 that

tumor image patches occupy the largest proportion among all

image types. This is mainly because the majority of TMA cores

are tumor regions, which are relatively easier to be identified. By

contrast, immune cell image patches occupy the smallest proportion

due to their significant expression limited to certain staining

methods. Our MIHIC dataset is publicly accessible at https://

zenodo.org/records/10065510.
3.2 Classification models benchmarking

Convolutional neural networks (CNNs) and transformer-based

deep learning architectures are SOTA image classification models in

computer vision field. In this work, we benchmark a series of SOTA
Frontiers in Immunology 05
CNN and transformer models for histological classification based

on our MIHIC dataset. Since it is difficult to train deep learning

models from the scratch due to the high demands of training data

scale and hardware resources, we adopt the transfer learning

strategy to build histological classification models. The CNN or

transformer models initialized with parameters pre-trained on

ImageNet (44) are fine-tuned by using our MIHIC dataset, which

help to greatly enhance training efficiency and classification

accuracy. The following briefly lists 7 CNN models and 6

transformer models which are benchmarked for histological

classification on our MIHIC dataset. Note that some of these

models have been previously validated, demonstrating strong

performance in tissue classifications for various other cancer

types (24, 29, 45).

3.2.1 CNN models
• VGG16 (8): is a sequence of successive 3×3 convolutional

kernels replacing the larger convolutional kernels in some

earlier architectures such as AlexNet (7). This innovation

increases the network’s depth while maintaining the same

receptive field, ultimately enhancing the model performance.

• GoogleNet (46): is a type of CNN model utilizing Google’s

Inception module, which won the 2014 ImageNet

competition. Inception modules use multiple filter sizes in

parallel to capture information at different scales, allowing

the network to learn both fine-grained and coarse-grained

features. This model improves the utilization of computing

resources inside the network by increasing the depth and
A B

C

FIGURE 2

Illustration of MIHIC dataset creation. (A) Manually annotated tissue cores, (B) different regions of interest (ROIs), (C) image patch extraction.
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Fron
width of the network while keeping the computational

budget constant.

• ResNet50 (9): is a groundbreaking CNN architecture that

was introduced to address the challenge of training very

deep neural networks. The key innovation of ResNet model

lies in the concept of residual learning. In a residual block,

the input to a layer is combined with the output of a

previous layer, creating a residual representation that

helps to address the problem of vanishing gradients and

enable the training of extremely deep networks.

• MobileNetv2 (47): is a lightweight CNN model that has the

innovation of utilizing depthwise separable convolutions,

where the convolution operation is performed by applying

a single filter per input channel (a.k.a., depthwise

convolution) followed by using 1×1 filters for cross-

channel interactions (a.k.a., pointwise convolutions). This

model reduces computational requirements while

maintaining the capacity to capture meaningful features.
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• HRNet_w18 (48): is able to maintain high-resolution

representations through the whole learning process. This

model initiates with a high-resolution subnetwork as the

initial stage. Subsequently, additional high-to-low

resolution subnetworks are incrementally incorporated to

establish multiple stages. These multi-resolution

subnetworks are then connected in parallel. Unlike

ResNet or MobileNet, HRNet combines multi-scale

features and retains high-resolution information to

improve performance in tasks that require fine-

grained details.

• EfficientNet_b0 (10): is an efficient CNN model that uses a

novel approach called “compound scaling” to balance the

network’s depth, width, and resolution. A specialized

building block called “Mobile Inverted Bottleneck

(MBConv)” layer is developed to merge depthwise

separable convolution with inverted residual blocks.

Moreover, this model incorporates the Squeeze-and-
FIGURE 3

Examples of 7 histological image types included in the MIHIC dataset.
TABLE 2 The number of tissue image patches across 12 IHC staining methods in MIHIC dataset.

Tissues P53 Ki67 cyclin-D1 CDK4 CD38 CD68 CD34 CD3 SMA D2-40 CD20 FAP

Alveoli 101 373 189 123 715 514 3179 867 1409 3921 0 398

Immune cells 416 322 549 624 1977 797 455 2926 162 206 1935 471

Necrosis 661 69 874 622 3991 6873 382 5719 757 238 3111 722

Other 7887 4815 5944 4702 3529 3938 6345 4736 4271 4716 4435 6095

Stroma 4012 2885 4866 4839 3163 3214 1871 2377 3182 1959 3439 2170

Tumor 15342 11790 15789 14425 10354 15165 9653 9830 8808 10902 11348 10569
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Fron
Excitation (SE) blocks to further reduce the number of

parameters while maintaining or improving performance.

• ConvNeXt_tiny (17): is designed based on group convolutions,

which divides the input channels into groups and then applies

separate convolutional filters to each group. Grouped

convolutions allow the model to capture features with fewer

parameters and less computational cost compared to standard

convolutional layers, maintaining a balance between model

complexity and computational efficiency.
3.2.2 Transformer models
• ViT_base_16 (49): partitions the image into multiple patches,

typically the size of 16×16 pixels, and subsequently maps each

patch into a fixed-length vector. These fixed-length vectors are

then fed into the Transformer encoder for further processing.

For image classification tasks, a class token is introduced into

the input sequence, and the output associated with this token is

used as the final category prediction. ViT has the advantages to

capture global dependencies between different image regions

in classification tasks.

• Twins-PCPVT_base (50): uses the conditional position

encoding introduced in CPVT (51) to replace the absolute

positional encoding in PVT. Similar to the CPVT approach,

the class token is eliminated, and global average pooling is

applied at the final stage to achieve the image-level

classification. This amalgamation incorporates the

strengths of both PVT and CPVT, resulting in an efficient

and straightforward implementation.

• Twins-SVT_base (50): introduces spatially separable self-

attention (SSSA) which consists of two components:

locally-grouped self-attention (LSA) and global sub-

sampled attention (GSA). LSA captures the fine-grained

and short-distance information, while GSA deals with the

long-distance and global information. Twins-SVT

demonstrates the potential of an innovative paradigm,

emphasizing that SSSA performs exceptionally well when

compared to recent transformer models.

• CrossVit_tiny (52): is a novel dual-branch ViT, which

extracts multi-scale feature representations for image

classification. It processes small-patch and large-patch

tokens with two separate branches of different

computational complexity and these tokens are then fused
tiers in Immunology 07
purely by attention multiple times to complement each other. A

simple yet effective token fusion module based on cross attention

is proposed, which uses a single token for each branch as a query

to exchange information with other branches.

• Swin Transformer_tiny (53): is designed to efficiently process

and understand images by dividing them into patches and

applying hierarchical, multi-head attention mechanisms. It

introduces a hierarchical transformer whose representation is

computed with shifted windows, which brings greater efficiency

by limiting self-attention computation to non-overlapping local

windows while also allowing for cross-window connection. Swin

Transformer has demonstrated SOTA results in various

computer vision tasks.

• CoaT_tiny (54): is capable of acquiring meaningful

representations through a modularized architecture. It

introduces a co-scale mechanism to image transformer by

maintaining encoder branches at separate scales while

engaging attention across scales. The specially designed conv-

attention module is capable of incorporating relative position

information through convolutional operations within the

factorized attention module. This results in a substantial

improvement in computational efficiency compared to

traditional self-attention layers employed in transformers.

3.2.3 Evaluation metrics and settings
To evaluate the patch-level classification performance on the

testing set of the MIHIC dataset, we utilized Accuracy (Acc), Recall,

Precision (or Positive Predictive Value, PPV), F1-score (27, 55),

Negative Predictive Value (NPV), and Area under the Receiver

Operating Characteristic (AUC) (56) as evaluation metrics for

various deep learning models. Note that Acc is computed as the

average accuracy across different classes, whereas recall, precision,

and F1-score are computed independently for each class. Acc

reflects the overall classification accuracy for all tissue

components. Precision signifies the classification accuracy of

different tissue components, while F1-score is a comprehensive

evaluation metric by balancing recall and precision, offering an

overall performance evaluation for each tissue component. NPV

quantifies the proportion of actual negative instances that the model

correctly predicts as negative. AUC values offer a comprehensive

perspective on model performance, aiding in decision-making

regarding the trade-offs between the true positive rate and false

positive rate. Given the multi-class classification nature of our task,

we employ one-vs-rest scheme to compare each class against all
TABLE 3 MIHIC dataset description.

Datasets Alveoli Immune cells Necrosis Other Stroma Tumor Background

Training 7636 6630 14468 37288 25023 91357 12599

Validation 1262 1817 1857 11188 5362 24625 3149

Testing 2891 2393 7694 12937 7592 27993 3937

Total 11789 10840 24019 61413 37977 143975 19685
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others and generate the average ROC curve for each deep learning

model. Our experiments were conducted by using the open-source

PyTorch library 2.0.1, alongside Python 3.8. When training

histological classification models, we implemented various data

augmentations including flipping, color jittering, Gaussian

blurring, and normalization processes, which enriched the

diversity of training data, enhancing the model’s robustness and

generalization capabilities. All the models were trained with the

SGD optimizer, utilizing the Cosine Annealing technique for

dynamic learning rate adjustment.
3.3 TIME quantification and
survival prognosis

In TMAs, the spatial locations of tissue cores typically exhibit

uncertainty due to the randomness of manual operations involved

in creating glass slides. Traditional image processing techniques

such as Otsu’s thresholding (57) may lead to inaccuracies and

introduce significant noise in extracting tissue cores, which can have

detrimental effects on subsequent analyses. To more precisely

extract tissue cores in TMAs, we employ a pre-trained image

segmentation model, called the segment anything model (SAM)

(58), to perform tissue core extraction. Firstly, we downsample the

TMA sections by a factor of 64 to obtain the thumbnail images. By

applying the SAM, tissue cores within thumbnail images are

segmented and stored into a mask. Within the mask, each tissue

core region is labeled and indexed sequentially. We then delineate

the minimum bounding rectangle for each tissue core region based

on its segmented mask. Using the spatial location and scale
Frontiers in Immunology 08
information obtained from the bounding rectangle, we finally

enlarge them by a factor of 64 to obtain the high resolution tissue

core image. Figure 4A shows the process of tissue core extractions,

and Figure 4B shows examples of extracted tissue cores. Due to the

huge size of the tissue core image, it cannot be directly fed into the

classification model. As depicted in Figure 4C, the whole tissue core

is initially tiled as a set of non-overlapping patches, each consisting

of 128×128 pixels. These patches are subsequently normalized

through the Z-score normalization before being input into the

top-performing tissue classification model (e.g. , Swin

Transformer_tiny). The tissue classification model is trained via

transfer learning on our MIHIC dataset, as detailed in Section 3.2.

The patch-level prediction results are stitched together according to

their spatial locations in the tissue core, forming the tissue core level

classification results. Figure 5A shows a CD3 stained tissue core,

while Figure 5B shows the corresponding tissue classification results

using the Swin Transformer_tiny model, where different color

pixels indicate different tissue regions.

Based on tissue core level classification, we quantify the

proportion of different tissue components on CD3 stained TMA

as TIME variables, and then explore their prognostic values to

patients’ clinical outcomes. Our quantified TIME variables include:

Immune cells/Tumor, Immune cells/Stroma, Immune cells/

Necrosis, Tumor/Stroma, Stroma/Tissue core, Immune cells/

Tissue core, and Tumor/Tissue core. Note that Tissue-A/Tissue-B

refers to the ratio of tissue A (e.g., Immune cells) over tissue B (e.g.,

Tumor) in the TMA core. By considering each of these TIME

variables, we employ the correlation function within the R

language’s survival package to determine the optimal cutoff value,

which divides patients into two groups (i.e., high versus low).
A

B

C

FIGURE 4

The comprehensive pipeline of quantitative analysis for TMA sections. (A) Tissue core extraction, (B) extracted tissue core samples, (C) diagram of
TIME quantification and survival analysis.
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Finally, we generate Kaplan-Meier (KM) survival curves for two

groups of patients based on the follow-up overall survival

information, where the log-rank test is performed to statistically

evaluate survival difference.
4 Results

In this section, we first provide comparisons of histological

classification results on our MIHIC dataset by using different SOTA

deep learning models. TIME quantification and survival prognosis

for NSCLC patients are then provided.
4.1 Classification comparisons

Table 4 lists comparative classification results by using CNN

models. It is observed in Table 4 that VGG16 provides the highest

accuracy of 0.811 among all comparative CNNmodels, which is 2.7%

higher than the lowest accuracy provided by the GoogleNet. VGG

tends to provide higher values in terms of recall, precision, and F1-

score metrics across different tissue component classifications,

although other CNN models may provide the best performance in

terms of some evaluation metrics or tissue component classifications.

The classification performance of CNN models is influenced by

various factors. A more complicated model does not necessarily

achieve better results in all tasks due to its higher risk of overfitting

(59). The superior performance of VGG16 over other CNNmodels is

likely due to its balanced complexity and generalization on our

MIHIC dataset. Figure 6 shows the corresponding confusion

matrix for different CNN models. As depicted in Figure 6, all CNN

models excel in identifying “Tumor” and “Background” patches, but

exhibit significantly lower performance in identifying “Stroma”

patches. Distinguishing “Stroma” from “Other” patches poses a

challenge, leading to lower performance in these two categories.

Table 5 lists comparative classification results by using

transformer models. Figure 7 shows the corresponding confusion
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matrix for different transformer models. Similar observations occur

in confusion matrices when utilizing transformer models, where

“Tumor” patches are effectively recognized, but distinguishing

“Stroma” patches remains challenging. It is observed in Table 5

and Figure 7 that Swin T_tiny and CoaT_tiny provide the highest

classification accuracy of 0.811 among all comparative transformer

models, which is 2.9% higher than the lowest accuracy provided by

the ViT_base_16. Overall, the Swin T_tiny provides the best

performance across different tissue component classifications,

although the Twins-S_base also provides comparative

performances. The innovative hierarchical design, shifted

windows, and efficient use of parameters make the Swin

Transformer effective at capturing spatial and contextual

information within images, helping it provide a superior

performance on our MIHIC dataset.

Figures 8A, B separately show the average ROC curves for

various CNN models and transformer models. As shown in

Figure 8, deep learning models can provide overall good

performance in histological tissue classifications, with slight

variations in AUC values. By comparing Tables 4 and 5, it is

found that transformer models generally deliver slightly better

performances than CNN models, although both types of models

provide the highest accuracy of 0.811. Among all tissue

components, the “Stroma” exhibits the least favorable

classification result, with the highest precision being 0.656

provided by ViT_base_16. This is mainly attributed to the limited

volume of data available under the “Stroma” category. Furthermore,

it is found that some “Stroma” patches exhibit features similar to

those of the “Other” category, and hence “Stroma” and “Other” are

likely to be misclassified (see Figures 6, 7). Although the “Immune

cells” constitutes the smallest proportion in the MIHIC dataset, its

classification performance is reasonably good across different

models. There are two reasons for this. Firstly, immune cells

exhibit distinct cellular features compared to other classes. For

instance, most of immune cell nuclei have round or oval shapes and

are relatively smaller in size, making them generally easier to

differentiate. Secondly, the presence of the four stains (CD3,
A B

FIGURE 5

Tissue identification in a tissue core. (A) CD3 tissue core, (B) tissue classification result.
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CD20, CD38, CD68), serving as markers for immune cell subtypes,

facilitates a more straightforward differentiation process. This

emphasizes the advantage of generating the IHC dataset for

comprehensive immune cell analysis. Due to the wide abundance

of “Tumor” in our TMA cores, pathologists manually annotated a

substantial number of instances belonging to this class (see Table 3).

As observed in Tables 4 and 5, the Recall, Precision, and F1-score

for the “Tumor” class range from 0.864 to 0.961 among different

models, which are relatively higher compared to metrics for other

categories such as Alveoli, Immune cells, Necrosis, and Stroma.

This suggests that our trained classification models on the MIHIC

dataset deliver superior performance in identifying tumors
Frontiers in Immunology 10
compared to other tissue categories. All deep learning models

provide a high NPV above than 0.89 across various tissue

categories, demonstrating the effectiveness of our trained models

in accurately identifying true negatives during histological

tissue classifications.
4.2 TIME analysis and prognosis

As described in Section 3.3, we quantified 7 TIME variables

based on tissue core level classification. The patients are then

partitioned into two groups (i.e., high versus low) based on the
TABLE 4 Classification results of CNN models on MIHIC dataset.

Acc Alveoli Immune cells Necrosis Other Stroma Tumor Background

VGG16 (8) 0.811
Recall 0.739 0.762 0.825 0.661 0.520 0.948 0.986

Precision 0.821 0.773 0.883 0.661 0.598 0.891 0.978

Fl-score 0.778 0.767 0.853 0.661 0.556 0.919 0.982

NPV 0.979 0.996 0.972 0.901 0.933 0.968 1.000

GoogleNet (46) 0.784
Recall 0.648 0.722 0.732 0.610 0.508 0.949 0.988

Precision 0.783 0.750 0.854 0.624 0.578 0.864 0.950

Fl-score 0.709 0.735 0.789 0.617 0.541 0.904 0.969

NPV 0.984 0.992 0.965 0.940 0.923 0.941 1.000

ResNet50 (9) 0.789
Recall 0.691 0.650 0.713 0.620 0.577 0.943 0.996

Precision 0.772 0.829 0.887 0.642 0.568 0.872 0.909

Fl-score 0.729 0.729 0.791 0.631 0.573 0.906 0.951

NPV 0.992 0.972 0.987 0.901 0.961 0.908 1.000

MobileNetv2 (47) 0.800
Recall 0.769 0.691 0.736 0.645 0.554 0.946 0.996

Precision 0.775 0.831 0.923 0.634 0.577 0.888 0.940

Fl-score 0.772 0.754 0.819 0.639 0.565 0.916 0.967

NPV 0.988 0.992 0.983 0.922 0.921 0.936 1.000

HRNet_wl8 (48) 0.798
Recall 0.684 0.630 0.763 0.686 0.470 0.951 0.991

Precision 0.808 0.852 0.899 0.620 0.625 0.873 0.935

Fl-score 0.741 0.724 0.825 0.651 0.536 0.911 0.962

NPV 0.984 0.988 0.978 0.902 0.912 0.951 1.000

EffcientNet_b0 (10) 0.795
Recall 0.767 0.718 0.730 0.662 0.506 0.939 0.990

Precision 0.768 0.786 0.916 0.630 0.570 0.882 0.951

Fl-score 0.767 0.750 0.813 0.646 0.536 0.910 0.970

NPV 0.983 0.992 0.951 0.920 0.933 0.961 1.000

ConvNeXt_tiny (17) 0.798
Recall 0.792 0.671 0.747 0.644 0.561 0.936 0.986

Precision 0.737 0.808 0.914 0.623 0.571 0.898 0.958

Fl-score 0.764 0.733 0.822 0.633 0.566 0.917 0.972

NPV 0.996 0.988 0.970 0.916 0.910 0.966 1.000
The bold values highlight the optimal results under different evaluation criteria.
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selected cutoff value for each TIME variable. Note that the optimal

cut-off for each variable is determined using the maximally

selected rank statistic, dividing the patients into two groups with

the most significant statistics between each other (29, 60). Figure 9
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shows box plots of quantified variables for patients divided into

two groups. Due to the relatively concentrated nature of variable

values within the same group, we have applied the natural

logarithm to the raw data when creating the box plots,
FIGURE 6

Confusion matrix of different CNN models.
TABLE 5 Classification results of Transformer models on MIHIC dataset.

Acc Alveoli Immune cells Necrosis Other Stroma Tumor Background

ViT_base_16 (49) 0.782
Recall 0.778 0.665 0.656 0.737 0.381 0.936 0.969

Precision 0.785 0.854 0.878 0.569 0.656 0.882 0.938

F1-score 0.781 0.748 0.751 0.642 0.482 0.908 0.953

NPV 0.996 0.988 0.975 0.905 0.958 0.937 1.000

Twins-P_base (50) 0.810
Recall 0.626 0.689 0.819 0.683 0.510 0.956 0.992

Precision 0.878 0.852 0.901 0.641 0.620 0.884 0.944

F1-score 0.731 0.762 0.858 0.661 0.559 0.918 0.967

NPV 0.992 0.980 0.983 0.900 0.896 0.942 0.996

Twins-S_base (50) 0.805
Recall 0.704 0.633 0.713 0.739 0.523 0.940 0.994

Precision 0.855 0.881 0.935 0.595 0.620 0.911 0.959

F1-score 0.772 0.737 0.809 0.659 0.568 0.925 0.976

NPV 0.964 0.988 0.979 0.915 0.940 0.928 1.000

Crossvit_tiny (52) 0.798
Recall 0.753 0.735 0.767 0.662 0.452 0.951 0.990

Precision 0.787 0.791 0.900 0.636 0.595 0.872 0.947

F1-score 0.770 0.762 0.828 0.649 0.514 0.910 0.968

NPV 0.980 0.988 0.970 0.894 0.937 0.937 1.000

(Continued)
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facilitating more clear observations. As observed in Figure 9, the

high and low groups of patients present statistically significant

difference across different TIME variables, highlighting their

potentially prognostic values.

Based on the partition from TIME variables, we explore survival

difference between high and low groups of patients. After excluding

patients with missing tissue cores or those with poor image

qualities, 110 NSCLC patients with complete clinical information

are used for survival prognosis. By generating the KM survival

curves and computing log rank test p-values, two TIME variables
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that are Immune/Stroma and Tumor/Tissue core are found to

exhibit significant correlations with overall survivals of NSCLC

patients. Figures 10A and D show the data distribution density and

selection of the optimal cutoff values. Figures 10B and E show the

KM survival curves and risk tables based on values of Immune/

Stroma and Tumor/Tissue core, respectively. Figures 10C and F

show the corresponding cumulative hazard curves. As shown in

Figure 10B, the log rank test p-value is 0.0094, which is less than the

significance level of 0.05. This suggests that patients with a high

Immune cells/Stroma score present a significantly better survival
TABLE 5 Continued

Acc Alveoli Immune cells Necrosis Other Stroma Tumor Background

Swin T_tiny (53) 0.811
Recall 0.767 0.714 0.787 0.602 0.609 0.961 0.994

Precision 0.813 0.857 0.922 0.701 0.575 0.870 0.954

F1-score 0.789 0.779 0.849 0.647 0.592 0.913 0.974

NPV 0.987 0.996 0.961 0.895 0.949 0.910 1.000

CoaT_tiny (54) 0.811
Recall 0.779 0.733 0.816 0.611 0.598 0.950 0.981

Precision 0.782 0.792 0.881 0.684 0.586 0.889 0.967

F1-score 0.780 0.761 0.847 0.645 0.592 0.918 0.974

NPV 0.992 0.996 0.978 0.900 0.962 0.923 1.000
Twins-P_base, Twins-S_base and Swin T_tiny represent Twins-PCPVT_base, Twins-SVT_base and Swin Transformer_tiny, respectively.
The bold values highlight the optimal results under different evaluation criteria.
FIGURE 7

Confusion matrix of different Transformer models.
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outcomes (i.e., a relatively low risk of death), compared with

patients with a low Immune cells/Stroma score. Similarly, as

shown in Figure 10E, the log rank test p-value is 0.032, which is

also less than the significance level of 0.05. This suggests that

patients with a high Tumor/Tissue core score present a
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significantly poor survival outcomes (i.e., a relatively high risk of

death), compared to patients with a low Tumor/Tissue core score.

In addition, to verify the reliability of this association, we quantify

the values of Immune/Stroma and Tumor/Tissue core using all our

trained CNN and transformer models. We then utilize them to
A B D

E F G

C

FIGURE 9

Box plots of quantified TIME variables. (A) ln(Immune cells/Tumor), (B) ln(Immune cells/Stroma), (C) ln(Immune cells/Necrosis), (D) ln(Tumor/
Stroma), (E) ln(Stroma/Tissue core), (F) ln(Immune/Tissue core), (G) ln(Tumor/Tissue core).
A B

FIGURE 8

ROC curves of multi-class classification using various deep learning models. (A) ROC curves for different CNN models, (B) ROC curves for different
Transformer models.
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prognosticate the survival outcomes of NSCLC patients. Table 6

presents the computed log test p-values of the two variables based

on different models. As shown in Table 6, all the log rank test p-

values are less than or equal to 0.05, indicating the reliable

associations between these two variables and overall survival

outcomes. Taken together, TIME variables related to the

proportions of Immune cells/Stroma and Tumor/Tissue core

show potential for predicting survival outcomes for NSCLC

patients. These variables offer valuable insights into the interplay

between immune cells, tumor components, and the surrounding

tissue, which can be indicative of patient prognosis and survival.
5 Discussion

In this paper, we built a multiplex IHC Histopathological Image

Classification (MIHIC) dataset for lung cancer TIME

quantification, which comprises of a total of 309,698 image

patches with 12 different IHC stains, meticulously annotated by

multiple pathologists across 7 distinct categories. To the best of our
Frontiers in Immunology 14
knowledge, it is the first publicly available lung cancer

histopathological image dataset that incorporates a diverse range

of IHC stains. Using the MIHIC dataset, we employed transfer
A B

D E F

C

FIGURE 10

Survival analysis visualization. (A) Immune cells/Stroma distribution density and cutoff point selection, (B) Kaplan-Meier survival curves based on
Immune cells/Stroma, (C) Cumulative hazard based on Immune cells/Stroma, (D) Tumor/Tissue core distribution density and cutoff point selection,
(E) Kaplan-Meier survival curves based on Tumor/Tissue core, (F) Cumulative hazard based on Tumor/Tissue core.
TABLE 6 The log-rank test p-values in survival analysis by using two
variables quantified based on different deep learning models.

Architectures Model Names Immune
cells/Stroma

Tumor/
Tissue
core

CNN models

VGG16 (8)
GoogleNet (46)
ResNet50 (9)

MobileNetv2 (47)
HRNet_w18 (48)

EfficientNet_b0 (10)
ConvNeXt_tiny (17)

0.004
0.007
0.025
0.005
0.013
0.012
0.022

0.029
0.041
0.029
0.029
0.026
0.049
0.028

Transformer models ViT_base_16 (49)
Twins-P_base (50)
Twins-S_base (50)
Crossvit_tiny (52)
Swin T_tiny (53)
CoaT_tiny (54)

0.050
0.022
0.050
0.015
0.009
0.023

0.041
0.032
0.029
0.037
0.032
0.029
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learning techniques and benchmarked 13 SOTA CNN and

transformer models for histological image classification. The

topperforming model was used to identify different histological

components in TMA cores from a cohort of NSCLC patients. The

automatic quantification of TMA cores, which aids pathologists in

accurately interpreting the TIME, is of great significance for

advancing the development of intelligent medicine.

Seven TIME variables were quantified based on tissue core level

classification. Two derived TIME variables, namely Immune cells

over Stroma and Tumor over Tissue core, exhibit significant

correlations with the overall survival of NSCLC patients. The

ratio of Immune cells over Stroma demonstrates a significant

correlation with the overall survival of NSCLC patients, aligning

with prior research. For example, a previous study indicated that

tumor-infiltrating lymphocytes (TILs), especially CD8+ T cells, play

a crucial role in anti-tumor immune responses, and elevated levels

of TILs are linked to a better prognosis in NSCLC (61).

Furthermore, immune checkpoint inhibitors, including anti-PD-1

and PD-L1 antibodies, have emerged as a vital element in NSCLC

treatment. These medications improve patient survival by

reinstating the immune cells’ capability to attack tumors (62).

Inflammation within the stroma has been identified as being

associated with cancer progression and the survival outcomes of

cancer patients. This suggests that chronic inflammation may play a

role in the initiation and development of tumors (63). Furthermore,

the size of the tumor region has been considered a pivotal factor

influencing patient survival, where larger tumors are typically

associated with a poorer prognosis (64). This is also consistent

with our findings based on the tissue core level classification.

Our study also has certain limitations. The focus of our

research is restricted to NSCLC, which limits the generalizability

of our constructed MIHIC data cohort to other cancer types.

However, quantitative indicators, such as the Immune cells over

Stroma score discussed in this paper, have demonstrated

significant correlations with prognosis and survival in other

cancer types (24). Besides, certain TIME components, like

immune cells, are better intricately detected at the cellular level.

Patch-level classification for tissue component identification is a

relatively coarse approach. This may result in the failure to

identify regions where specific immune cells are sparsely

distributed. Although our trained deep learning models exhibit

statistical significance in overall survival prognosis, there remains

significant potential for technical enhancements to accurately

quantify categories like immune cells. The intricacy and

heterogeneity of the TIME suggests that this field is still in a

constant state of evolution. Our present quantitative exploration

of the TIME is not exhaustive, highlighting the necessity for more

comprehensive quantification of various components and

indicators in the future. This serves as a focal point for our

ongoing research. Nevertheless, our open sharing of the MIHIC

dataset and source code provides significant benefits to research

by promoting transparency and reproducibility. More in-depth

TIME analysis to explore tumor heterogeneity and its correlations

with patients’ treatment responses are expected based on

this study.
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