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1. Introduction

In this paper we apply the techniques used in the setting of terminal regular 
b-groups by Kra [12,13] and Ares [3] to treat a related class of Koebe groups,
namely those that are constructed from hyperbolic triangle groups by AFP and
HNN constructions on maximal cyclic elliptic or parabolic subgroups. The main
result is a construction algorithm that gives a global complex analytic coordinate
on the quasiconformal deformation spaces of these groups and the interpretation
of this coordinate as a collection of "natural" gluing parameters associated with a
maximal partition of the quotient Riemann surface (with elliptic special points).
We also obtain an inside estimate of Teichmiiller space in these coordinates by
finding an embedded punctured polydisk. Finally, we use the construction algo­
rithm and some elementary geometric observations to find points on the boundary
of the punctured polydisks that are also boundary points of the deformation space.
The boundary points represent noded Riemann surfaces of the same topological
type as the points inside the deformation space.

In the following we briefly define the basic concepts used throughout the 
paper. For more details about Kleinian groups we refer the reader to Maskit 's 
monograph [17]. For hyperbolic geometry our main reference is Beardon [5]. 

A subgroup G C !SL(2, q of Mobius transformations is a Kleinian group if 
there is a point z E C that has a neighborhood U with the property that only 
finitely many translates of U by elements of G intersect U. The maximal set of 
points in z E C with this property is the set of discontinuity or the ordinary set

of G denoted by n( G) . 
If D( G) has an invariant component .6. ( a component of D( G) such that 

g ( .6.) = .6. for all elements of G), G is called a function group. A function 
group whose non-invariant components are stabilized by Fuchsian groups is a Koebe

group. We consider a special class of finitely generated Koe be groups such that the 
non-invariant components represent spheres with three special points. By a special

point we mean a puncture on the surface ( the projection of a horodisk in D( G) 
invariant under a parabolic cyclic subgroup of G) or an elliptic special point ( the 
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projection of an elliptic fixed point in the set of discontinuity). G acts without 
fixed points in the set 

S1°(G) = St(G) \ {x I 3A E G elliptic s.t. A(x) = x}. 

For the fixed point-free part of the invariant set we use 

�
0(G) = �(G) n S1°(G). 

Let G be a finitely generated Kleinian group. The ( Teichmiiller) deformation 
space of G is 

T( G) = { w: ic --+ ic quasiconformal I w o go w-1 E PSL(2, q for all g E G} / ~, 

where w1 ~ 1112 if there is a transformation A E PSL(2, q so that 

-1 A -1 A-1 V G W1 o g o w1 = o W2 o g o w2 o g E . 

If G is a Fuchsian group of the first kind representing Riemann surfaces of finite 
analytic type (p, n), then T( G) can be naturally identified with T(p, n) x T(p, n), 
where T(p, n) is the classical Teichmiiller space of Riemann surfaces of type (p, n). 
Teichmiiller space has a natural complex analytic structure induced from the space 
of Beltrami differentials (see .A .... hlfors [2]). In the general t:ase uf a finiLely generaleU 
Kleinian group Ahlfors' finiteness theorem (first proved by Ahlfors in [1], see Bers 
[7] for a different proof) says that the quotient

St(G)/G = LJ Ri

is a finite union of Riemann surfaces of finite analytic type. TT T(Ri ) is the uni­
versal covering space of T( G), so the deformation space T( G) inherits a complex 
analytic manifold structure from the covering 

see Bers [61, Maskit [15], and Kra [11] for details. 
Our aim is to find holomorphic embeddings of deformation spaces of Kleinian 

groups into en , where n is the complex dimension of T( G), such that given a 
point in this embedding we can construct a Kleinian group that it represents in 
T( G). Coordinates like this are often called non-variational. Also, we would like 
to be able to read off some geometric properties of the corresponding Riemann 
surfaces and hyperbolic 3-manifolds from the coordinates. Maskit introduced 
coordinates like this in [16] for the deformation space of terminal b-groups. If G is 
a terminal b-group, T( G) is isomorphic with T(�( G)/G), and T( G) is called the 
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Maskit embedding of Teichmiiller space. Kra ([12], [13]) has described a geometric 
coordinate system of the Maskit embedding and an algorithm showing how to 
reconstruct the b-group from its image under the coordinate map. This work was 
generalized by Ares [3] for terminal b-groups with torsion. These coordinates are 
considered geometric, because they can be interpreted as parameters for the zw = t 

plumbing construction with special "geometrically natural" local coordinates. In 
this paper we extend this method to a larger class of Kleinian groups. Groups 
of this larger class were already considered in [3] in the case that the groups 
represent a Riemann surface of genus O with 4 punctures. Keen and Series [9] have 
introduced a different geometric, real analytic coordinate system for the Maskit 
embedding of T(l, 1). 

In special cases (Sections 3.2 and 8.1) we can find a second geometric inter­
pretation of the coordinates considered in this paper. By adding a new generator 
we can form a Kleinian group G' with no invariant component such that all the 
components of n( G) are equivalent under the group and the component stabilizers 
are conjugates of the original group G. The new group G has a number of elliptic 
axes that have non-cyclic stabilizers in G'. These axes project into the 3-orbifold 
IHl3 / G' as circles, and the coordinates of G give the lengths of these circles and 
the amount of "twisting" along the circles in IHl3 / G' . 

In the first part of the paper (Sections 2-5) we consider a very special class 
of Koebe groups: The quotient of the invariant component is a compact Riemann 
surface with elliptic special points (no punctures). The quotient surface is auto­
matically equipped with a pants decomposition, that is, a partition of n° ( G) / G by 
a collection of simple closed curves corresponding to elliptic elements in the group, 
into parts that are topologically spheres with three holes. These groups can be 
constructed from a collection of triangle groups by a number of AFP and HNN 
constructions involving elliptic cyclic subgroups. The constructions are treated in 
detail in [17]. One of the reasons for this restriction is that we can write down the 
generators of the Koebe groups in this class using algebraic expressions of 

(1) hyperbolic sine and cosine functions of the hyperbolic distances between
elliptic special points on the quotient 2-orbifolds of the triangle groups
used in the construction. The distances are all finite, because the metric
on the spheres with three special points has only "mild singularities",
and

( 2) the gluing parameters that along with combinatorial data ( encoded in
weighted graphs introduced by Ares in [3]) describe how the group is put
together from the original triangle groups.

Also, this is essentially the only case remaining after the work of Kra [13] and 
Ares [3]. Using the results obtained in the first part and those of [13] and [3], we 
define global coordinates in deformation spaces of Koebe groups constructed by 
AFP and HNN constructions from a collection of hyperbolic triangle groups. We 
give an inside estimate of the deformation spaces in these coordinates by finding 
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a non-empty set of the form 

IT Si C T(T(G)),

where Si is a suitably chosen punctured disk or a half plane depending on the type 
of the gluing (Theorem 3). The �ore general case involving also triangle groups

acting discontinuously in C and C will not be treated in this paper. 
The plan of the paper is as follows: In Section 2 we outline the geometric 

properties of hyperbolic triangle groups and the corresponding spheres with three 
special points, some of which can be punctures. Following [13] and [3], we also 
describe a system of "canonical" local coordinates at special points and punctures. 

Section 3 deals with the AFP of two triangle groups and with the HNN ex­
tension of a triangle group by a loxodromic Mi:ibius transformation. These basic 
constructions are interpreted as zw = t plumbing constructions in the local coor­
dinates defined in Section 2. Using methods of [14] we introduce a global complex 
analytic coordinate in the deformation spaces of Koebe groups of types (0, 4) and 
( 1, 1) . We show that the coordinate is geometric in the sense that it is closely 
related with the plumbing parameter of the zw = t plumbing that the group 
realizes. 

In Section 4 we prove an isomorphism theorem (Theorem 1) for one-dimen­
sional deformation spaces. This is the analog of Theorem 1 in [13] in the setting 
of this paper. 

The second parL of the paper starting with Sedion 5 deals with parameters 
of higher dimensional deformation spaces. In Section 5 we outline a construction 
algorithm for the class of Koebe groups without parabolic transformations. This 
algorithm and a version of Maskit's embedding theorem (Theorem 2 in Section 6) 
is used in Section 6 to prove an inside estimate by a product of punctured disks 
for the deformation spaces of Koebe groups constructed from hyperbolic triangle 
groups. The theorem gives an open set embedded in the image of T( G) of the 
form 

II Si C T (T(G))
)

where Si is either a punctured disk or a half plane depending on whether it cor­
responds to an elliptic or a parabolic gluing. 

Section 7 illustrates the use of the construction algorithm. We construct all 
finitely generated Koebe groups of type (2, 0) with a maximal partition and no 
parabolics and only hyperbolic triangle groups as structure subgroups. We also 
give an interpretation of the parameters of Example 1 in terms of the geometry of 
an associated hyperbolic 3-orbifold. 

In Section 8 the examples of the previous section are used to show that the 
estimate of Theorem 3 is sharp in the following sense: If G is a Koebe group of 
type (p, n) with p 2". 1 , then there is a parameter 
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We also note that our methods show that Kra's estimate for the deformation spaces 
of terminal b-groups ([13] Theorem 8.6) is sharp in the same sense. 

The methods used in this paper are for the most part very similar to those 
in Kra's work [12], [13] on horocyclic coordinates of Teichmiiller space, parts of 
the Earle-Marden manuscript [8] and Ares' thesis [3]. The coordinates are defined 
by the stratification method described in detail by Kra and Maskit in [14]. A 
treatment of deformation spaces of Koe be groups from a slightly different point of 
view can be found in [4]. 

Notation 

The signature of a Riemann surface X is given by (p, n; v1, ... , v
n

), where p
is the genus of X , n is the number of special points and the numbers Vi E Nu { oo}
give the order of the special point, the value Vj = oo corresponding to a puncture. 
The pair (p, n) will be called the type of X, and for a sphere S with three 
punctures we call ( v1, v2, v3) the signature of S.

C The extended complex plane (C u { oo} . 
][]) The unit disk {z EC I lzl < 1}. 
][])* The exterior of the unit disk { z E C I lzl > 1}. 
lHI The upper half plane {z E (C I Imz > O}. 
]HI* The lower half plane { z E (C I Im z > 0} . 
JHI3 The upper half space {(z, t) EC x lR It> O}. 

( b d) (a-c) (d-b) l . f f  . er a, , c, (a-b) (d-c) t 1e cross ratro o our pomts.
PSL(2, q Complex 2 x 2 matrices with determinant 1 and ±A

identified. 
IAI 
fixL A, fixR A
AxA 
Isom(B) 
fl(G) 
�(G) 
T(G) 
T(p, n) 
(G1,••·,Grn) 
R(v1; V2, v3) 
r(v1; v2, v3) 
h(v1,v2) 

The order of a Mobius transformation A.
The left/right fixed point of the elliptic transformation A.
The axis of a Mobius transformation A in JHI3 . 
The isometric circle of B . 
The set of discontinuity of the Kleinian group G.
An invariant component of the Koebe group G.
The Teichmiiller space of the Kleinian group G.
The Teichmiiller space of Riemann surfaces of type (p, n). 
The group generated by G1, ... , Grn .
The maximal radius of a round orbifold disk, see (2.2). 
The radii of pairwise tangent orbifold disks, see (2.6). 
The horocyclic radius of a punctured disk, see Lemma 2.5. 

2. The geometry of hyperbolic triangle groups

In this section we set the notation for normalized Fuchsian triangle groups 
and list some elementary properties of hyperbolic triangles. Let r be a triangle 
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group of signature (v1, v2 , v3) such that 

If A and B are primitive elliptic transformations that generate r and satisfy 

we call them canonical generators of r.

We need to distinguish between the two fixed points of an elliptic transfor­
mation: Let x be a fixed point of an elliptic Mobius transformation M of order 
at least 3. We call x the left fixed point of M , 

x = fixL M, 

if for any point y E C not fixed by M the cross ratio 

cr(x, y, My, M2y) 

has positive imaginary part. The other fixed point is the right fixed point of M ,
denoted by fixR M.

The above definition does not work for order 2 elliptics. To make a consistent 
chuice uf lefL and right fixed points we use the following elementary observation: 

Lemma 2.1. If A and B are el liptics of orders greater than 2 that generate 
a hyperbolic triangle group r with AB an elliptic of order greater than 2, the 
fixed points fixL A, fixL B and fixR AB are in the same component of O(r) . 

In a hyperbolic triangle group, at most one of A, B and AB can have order 
2. We define the left and right fixed points of an elliptic of order 2 ( as a generator
of a fixed hyperbolic triangle group) so that the fixed points of A, B and AB

satisfy the above relation.
A hyperbolic tnangle group r = (A, B) is said to be normalized if 

( 1) r acts in the unit disk ]]]) ,
(2) A and B form a pair of canonical generators, and
(3) fixL "'1 == oo, fixR .,4 == 0 and fixL B, fixR B > 0.

Each hyperbolic triangle group r has a fundamental polygon for its action in
]]]) ( or in ]]])* ) that consists of two copies of a triangle with angles 7f / v1 , 7f / v2 and 
7f / v3 . In the case of normalized triangle groups with A elliptic, the boundary of 
the polygon can be taken to consist of parts of two lines from the origin separated 
by an angle of 27r /v1 and by the isometric circles of B and B- 1. ( If
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with c =/- 0, the isometric circle of T, Isom T is the Euclidean circle with center 
-d/c and radius 1c1-1.) It is easy to see that the quotient 2-orbifold

is the disjoint union of two spheres with three special points Pl, Pl, P/ E Si , of 
orders v1, v2 and v3, respectively. The orbifolds can be thought of as two copies of 
the triangle glued together along the corresponding edges , and the vertices of the 
triangles correspond to special points on the orbifold with less than a full angle . 
The hyperbolic cosine rule ([5], Section 7.12) gives 

(2.1) hd 
cos(1r/vj) cos(1r/vk) + cos(1r/vi) cos i =

sin(1r/vj)sin(1r/vk) 

for the distance di of two special points Pf and Pf on S 1 for { i, j, k} = { 1, 2, 3} .
W ith this notation we can write the canonical generators in a simple form 

(See Ares [3] for more on canonical generators of triangle groups.) 

and 

B = (
isin(1r/v2)

. 
coshd3 - cos(1r/v2) 

i sin( 1r / v2) sinh d3 

-isin(1r/v2)sinhd3
) 

-i sin( 1r / v2) cosh d3 - cos( 1r / v2)

All calculations with matrices in this paper are done in PSL(2, <C): matrices rep­
resenting the same Mobius transformation will be identified. 

and 

The fixed points of the elliptic B(v1, v2, v3) are 

d3 fixR B = tanh 
2 

=

cos(1r/v1 - 1r/v2) + cos(1r/v3) 
cos(1r/v1 + 1r/v2) + cos(1r/v3)' 

cos(1r/v1 + 1r/v2) + cos(1r/v3) 
cos(1r/v1 - 1r/v2) + cos(1r/v3) 

on the positive real line. We have: 

Lemma 2.2. Let r be a hyperbolic triangle group with finite branching in­

dices. Then 
2 d3 

cr(fixR A, fixR B, fixL B, fixL A) = coth 
2

.

The following simple lemmas on hyperbolic triangles or, equivalently, on 
spheres with three special points will prove useful (notation as in Figure 1): 
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Lemma 2.3. Let S be a sphere with three special points with hyperbolic sig­
nature (v1, v2, v3). The maximal radius of a round orbifold disk centered at the 
special point Pi is 

(2.2) R = R(vi; Vj, vk) = arsinh ( sinh (dk) sin�) .

Proof. Let I be the shortest geodesic arc joining the vertex with angle Pi 

to the opposite side. The hyperbolic sine rule gives the hyperbolic length of this
segment: (see Figure 1) 

sinh R = sin (02) sinh d3 . □

We will also need the following Euclidean estimate to estimate gluing param­
eters in Section 3: 

Lemma 2.4. Let K be a hyperbolic triangle with angles 01 , 02 and 03 . If
the vertex with angle 01 is at O in the unit disk ][]), the Euclidean distance from
the origin to the side joining the two other vertices is 

(2.3) 

r 
3 

Figure 1. A hyperbolic triangle with finite angles. Notation as in
Lemma 2.3 with 0i = 1r / vi . 
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There is a unique simple geodesic arc ry on [})/I' joining any two of the three 
special points ( elliptic special points or punctures), Pi and Pj . We can use this 
property to define a nice coordinate in a neighborhood of a special point as follows: 
Let [}),,,i = [})/ (z f---7 e2i1r /v,) be the disk with one special point of order v;. The 
metric on [}),,,i is 

(2.4) 

If P; is an elliptic special point of order v; we say that an injective holomorphic 
map f: U -+ [}),,,i from an open neighborhood U of P; is a natural coordinate at P;

relative to Pj , if f ( P;) = 0 and f maps the geodetic segment ry n U isometrically 
into the positive real line in [}),,,i . 

If P; is a puncture, we say that an injective holomorphic map f: U ----, [}) \ { 0} 
from an open punctured neighborhood U of P; is a natural or horocyclic coordinate

at P; relative to Pj , if f(P;) = 0 and f maps the geodetic segment ry n U 
isometrically into the positive real line in the metric 

(2.5) 

of the punctured disk. 

ds = - ld(I
1(1 log 1(1 

The natural and horocyclic coordinates at elliptic special points and punctures 
are uniquely defined as germs of analytic functions, see Kra [13] and Ares [3]. By 
choosing the normalization of r properly it is easy to find the coordinate maps 
explicitly. The following lemma will be used in Sections 5-7 to give an estimate 
of Teichmiiller space in the coordinates defined in Section 6. It is a trivial fact 
( valid in any geometry) that if T is a hyperbolic triangle with vertices v1, v2, v3 

and angles 1r / v; at vertex v; , then the hyperbolic disks centered at the vertices 
v; with radius r; are all pairwise tangent if and only if 

(2.6) 

where d; is the length of the side opposite the vertex v; given by (2.1) . 
If some of the vertices of T have angle O, the triangle has sides of infinite 

length, and (2.6) does not make sense. In these cases we can use horocyclic 
coordinates at the vertices at infinity ( or equivalently at the punctures of the 
sphere with three special points obtained by gluing two copies of T together) to 
measure the "length" of half-infinite geodesic arcs ending at the punctures. The 
analog of (2.6) for triangles with some of its vertices at infinity is: 
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Lemma 2.6. If a triangle T has vertices at infinity, the following triples 
of hyperbolic or horocyclic radii of disks and horodisks give an arrangement of 
pairwise tangent disks and horodisks: 

(2.7)

(2.8)

(2.0)

( 1) If T has angles 7r / v1 , 7r / v2 and O at the vertices v1 , V2 and V3 , then
the radii are 

and 

sin( 7r /v2)
sin( 7r / v1) '

sin(7r /vi)
sin ( 7r / v2) '

( )-1) .7r.7r 7r . Jf  sm - sm - cos - + sm - .
Z/1 l/2 l/1 l/2 

( 2) If T has angles 7r / v , 0 and O at the vertices V1 , V2 and v3 , then the 
radii are

and 

. 7r 
r(i1 ; oo, oo) - - logsm , 

2v 

(2.10) h2 = h3 = h(oo, v) = exp (- t/ )) .cos 7r 2v 

(3) If all the angles are O, then

(?,.11)

DrAAf r<.--.00 (?.\ ;" trnc.tnrl ;n r1 ?.l Prr.nr,c,;t;r.n 1 " li'r.r thP nrr.r.f r.f (1 l mP 
..I. J.VVJ.• '--..ILA.oUV \t..1/ .l.l.J V.L'---''-"U'-'...__., .1..1..1. I.L<JI .L. .1...__.p._,.._, ... ..,.._.....,..__.. ..._,.._,, ..._ .....,.._ .,.._.._..., _t-",.._,..,,,..,,.._ ,..,,.._ \�/ '''-' 

use the upper half plane model and normalize so that the vertex with angle O is
at oo and the finite vertices are on the unit circle: 

and

7r . . 7r
V1 = COS - + i Sln - , 

l/1 l/1 

7r . . 7r
v2 = - cos - + ism -. 

l/2 l/2 
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For this normalization the horocyclic coordinate at the puncture on the corre­
sponding sphere with a puncture and two special points is 

(• 
' 

)z = exp i1r 

cos(1r/vi) + cos(1r/vi) 

We need to solve the pair of equations 

r1 + r2 = dist(v1,v2), 

r1 + log sin( 1r /vi) = r2 + log sin( 1r /v2), 

where the latter equation is the condition that the points on the circles of hyper­
bolic radii ri at Vi have equal imaginary parts, i.e. are on the same horocycle at 
infinity. 

In case (2) we can use the fact that there is an orientation reversing isometric 
involution of T that exchanges the vertices at infinity. We are looking for an ar­
rangement where the horocycles are tangent at the "midpoint" of their connecting 
geodesic fixed by the involution. We normalize the triangle so that the vertices 
with 0-angles are at oo and O and the finite vertex is v1 = cos 1r /2v + i sin 1r /2v. 
The solution of case (2) is given by the arrangement where the horocycle at oo 
goes through i and the other two are tangent with it. This immediately gives the 
expression of r1 as the hyperbolic distance of v1 from the line {Im z = i}. The 
horocyclic coordinate at oo with respect to O is now 

z = exp (i 1r ( ( / ) ) • □
cos 1r 2v 

3. Elliptic gluing and I-dimensional deformation spaces

In this section we use parameters coming from the zw = t plumbing construc­
tion to define global complex analytic coordinates on deformation spaces of Koe be 
groups of types (0, 4) and (1, 1). This is done by interpreting group theoretical 
constructions on triangle groups as plumbings of Riemann surfaces with special 
points. 

3. 1. The zw = t plumbing construction. In this section we briefly
describe the zw = t plumbing construction and show how it can be used to produce 
"geometric" complex analytic coordinates on a class of I -dimensional deformation 
spaces. The construction is discussed by Kra [13] and Earle and Marden [8] in 
the case of thrice punctured spheres. Ares [3] treats the case of gluing across 
maximal cyclic parabolic subgroups of terminal regular b-groups and the AFP 
of two hyperbolic triangle groups of signature (v, oo, oo) across elliptic maximal 
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cyclic subgroups. In this paper we consider the general case of hyperbolic triangle 
groups. The following construction is, however, quite general. 

Let X be a (possibly disconnected) Riemann surface of finite analytic type. 
Choose two points x1 , x2 in X and local coordinates 

where Ui is a neighborhood of xi and 

Assume there are annuli Ai C Ui and a holomorphic homeomorphism f: A1 ---+ A2 

so that ( see Figure 2) 
z(x)w(f(x)) = t 

for some constant t E <C and f maps the outer boundary of A1 (the component 
of 8A1 closer to the point x1) to the inner boundary of A2 ( the component of 
8A2 farther from x2 ). The outer boundaries bound disks on X. Remove these 
disks to form a new Riemann surface Xtrunc. Define 

where the equivalence is defined 

x ~ y {::::::::} z(x)w(y) = t. 

We say that Xt was obtained from X by the zw = t plumbing const:rnction with 
plumbing or gluing parameter t .  

Lemma 3.1. Let S be a (possibly disconnected) Riemann surface. Let U C 
S and V C S be two disjoint open sets and z: U ---+ <C and 111: V ---+ ([; hP Inc.al 
coordinates with z( P) = 0 = w( Q). Tf ]]J)(O, ri) C z(U) and ]]J)(O, r2) C w(V), 
and t E C satisfies 

ltl < r1 r2, 

then it is possible to do the plumbing construction for the parameter t at P1 and 
Q 1 and the construction is limited ·inside the disks of ·1wfri r1 and r2 at Pi and 
Q 1 respectively. 

Proof The proof is exactly the same as for the case of horocyclic coordinates 
at punctures in Kra [13]. 

We cut off a disk of radius 1t1/r2 at P and a disk of radius ltl/r1 at Q. The 
gluing annuli are non-empty, since we assume that 
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X 

w 

Figure 2. The zw = t-construction. 

and 

ltl/r1 < r2. 

X 

Clearly the annuli are inside disks of radii r1 and r2 (see Figure 3). □

13 

The following trivial observation will be useful in the examples later: If we 
use natural or horocyclic coordinates and do the zw = t plumbing construction at 
the special point or puncture for a t > 0 , points on the geodesic that is mapped 
into ]I]) n IR+ by z are identified only with points that are on the geodesic that is 
mapped into ]I]) n IR+ by w . 

3.2. The AFP construction. We start with two spheres S 1 and S2, with 
three special points of signatures (v1, v2, v3) and (v1, v4, v5) respectively. Let 
f1 = (A, B1 ) and f2 = (A, B2) be normalized triangle groups uniformizing S 1 

and S2. 
Let >. E C be a complex number with l>-1 > 1 and 
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----. c,,.-plane _,,,, � w-plane I 
'� 

Figure 3. The zw = t plumbing construcLion resLricLed to the disksof (2.6) and Lemma 2.5. 
Define 

B2 ,>.2 = T>,B2T;:1 =
( i sin( 1r �v4) cosh d; - cos(1r /v4)

-; sin( 1r /v4) sinh d;
' 1\ 

Obviously 
(;onsid<cr the group 

-i>.2 sin(1r/v4) sinhd; ) -i sin( 1r / v4) cosh d; - cos( 1r / v4)

generated by f 1 and f2(>.2). Maskit's first combination theorem ([17], Theorem VII.C.2) implies that 0 1(>.2) is the amalgamated free product of f 1 and f2(>.2), if we can find a Jordan curve W C ][J)(O, l>-1 2 ) \][J) that is precisely invariant in both
r1 and r2 under the cyclic group (A), that is, (1) the powers of A map W into itself, and(2) W n g(W) = 0 for all I E ri \ (A).
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We will use Lemma 2.4 to find a condition for the existence of a precisely invariant
round annulus Ac ][))(O, l.\1 2) \ ][)), The existence of this annulus guarantees that
the quotient surface is a sphere with four special points. In Section 3.6 we will
show that this estimate is sharp if r 1 = r2 . Let Di be the a fundamental polygon
of ri in ][)) and ][))* obtained by taking the intersection of the sector 

and the common outside of the isometric circles of B and s-1.

Figure 4. The fundamental domains of an AFP of two hyperbolic
triangle groups with a gluing parameter t E (C \ R The fundamental
set extends to infinity in the sector. C1 and C2 are the isometric circles
of B and s-1 . 

Lemma 3.2. Let I'1 = (A, B1 ) and I'2 = (A, B2) be normalized hyperbolic

triangle groups of signatures (v1, v2, v3) and (v1, v4, v5). If

(3.1) 

where R is the maximal radius given by (2.2), then

On the other hand, if 

l.\'l2 ( 
h R(v1; v2, v3) h R(v1; v4, v5)

)< max cot 
2 

, cot 
2 

,
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then G1 (>.'
2

) is not quasiconformally conjugate with G1 (>.2). 

Proof. For r 1 the Euclidean distance from the origin to the isometric circles
of B and B-1 (see Figure 4) is tanh(R(v1; v2, v3)/2), so the points on these
circles with maximal distance from O have modulus coth(R(v1; v2, v3)/2) The
same applies for the conjugated group f2 (>.2) with the radii multiplied by l>-1 2 .
The disk

C \ II) ( O, c:oth 
R(v1;;2, v3)

)

is precisely invariant in I71 with respect to the cyclic subgroup generated by A,

and the disk 
II) ( 0, l>-1 2 tanh 

R(v1;;
4, vs)

)

is precisely invariant in f2 (>.2) with respect to (A). Any circle in the annulus

is precisely invariant under (A) in both groups, so the conditions of Maskit's first
combination theorem are satisfied if

h
R(v1;v2, v3) 

l>-l2 1 
R(v1;v4, vs) 

cot 
2 

< tan 1 
2

.

This proves the sufficient condition for the group to be the AFP of the original
triangle groups.

If G1 (>.'
2) is a quasiconformal conjugate of G1 (>.2) for a parameter >-. sat­

isfying the condition (3.1), then II) is precisely invariant in G1 (>.'
2 ) under f1 .

If l>-'1 2 tanh(R(v1; v4, v5)/2) < 1, then the isometric circles of B2 and B2
1 in­

tersect II). In particular, the points closest to the origin on the isometric circles,
p1 E Isom(B2) and P2 E Isom(B2

1 ) are in II). Obviously B2(P2) = P1 . Thus II)
ic not preciccly invariant under r 1 in G 1 ( ,\' 2) . One obtains the second condition
similarly hy looking at the outside disk C \ >.211). D 

The group G 1 ( >.2) = (r 1, r 2 ( >. 2)) has an infinitely connected invariant compo­
nent 6, representing a sphere with four elliptic special points with indices 112,113,114
and v5. The elliptic element A corresponds to a simple closed curve on .6./r:
Inside the annulus A there is a simple closed curve W that is projected to a
simple closed curve on .6./r. 

All the other components are divided into two infinite families of disks sta­
bilized by conjugates of the triangle groups f1 and f2 , so S1(G1 (>.2))/G1 (>.2) is
the disjoint union of a surface of type (0, 4) and two surfaces of type (0, 3). 

It is now easy to check that we have constructed the surface .6./G1 (>.2) by
a zw = t plumbing: Let p1 : II)* _____, S1 be the canonical projection. The special
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P Qp
-
rrqQ

Qq 
y '\} 

v 
a 

b 
0 -0 

b d 0 

t) 
� 

� 

c. p a ,a 

(yo 
V 

{TO
-U

Q 

D
-0 

6 

0 6 z2/ b _n_S:1 ... ,::::,::t-9' 
Figure 5. The limit set of a Koebe group G 1 (,\ 2) constructed as the 
AFP of two triangle groups, both of signature (6, 6, 6), with ,\ = 1.4.
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points of S1 are projections of the fixed points of elliptic transformations of r1 

in llJJ* . On S 1 the special points are 

The special points on S2 are 

Pi = P2(0) , Pi = P2(fixR B2 ,>-2) and Pf = P2(fixL AB2y ),

where p2 : llJJ(O, [,\[ 2 ) ----+_S2 is the canonical projection.
A neighborhood U of oo is projected to a neighborhood U of the special 

point Pf . We get the expression in U of the natural coordinate z at Pf relative 
to P'f as follows: Choose a branch of p1

1 with values in fJ and define 
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The coordinate can be analytically continued to the complement in S1 of a simple 
curve connecting Pf and Pf . 

Similarly, we choose a branch of p2
1 with values in a neighborhood of 0 and 

find an expression for the natural coordinate w at Pd- relative to P} as 

If ,\2 satisfies the conditions of Maskit's first combination theorem, we clearly have 
the relation 

for all points P in a non-empty precisely (A)-invariant annulus on the invariant 
component Li, and thus on its projection to Li/G1, which is an annulus as well. 

Remarks. (1) The value of the plumbing parameter t depends on the choice 
of natural coordinates at I\1 and I'd-: The natural coordinate z' at I'f relative 
to Pf is given by 

(3.2) 

(2) If v1 = v3 and v2 = v4, there is a second geometric interpretation of the
parameter ,\: The group 

G� = (f1, T;.) 

is a Kleinian group with no invariant components. All its components are equiva­
lent under the action of G� , they are images of the invariant component Li of the 
subgroup G1. The stabilizer of the axis a = (z, t) E IHI3 I z = 0 of T;. is generated 
by T;, and A.; so its projection in the 3-manifold IRI3 /G� is an orbifold locus 
homeomorphic to § 1 

. The length of this circle is 2 log I>- I , and the imaginary part 
of the parameter describes the "twisting" in the 3-orbifold along this circle. This 
construction is similar to the Kleinian group constructions described in [8]. 

3.3. Deformation spaces of type (0, 4). 

Lemma 3.3. Let ,\0 be a complex parameter such that 

and G 1 (,\6) represents a Riemann surface of type (0, 4) on the invariant compo­
nent. Let w E [w] E T( G1 ( ,\�)) be a deformation normalized to fix the limit points 
1, i and -1. Then the map 
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is a holomorphic injection of T(G1(>..5)) into C. 

Proof. ([14]) The triangle group f1 has no moduli, so wAw- 1 
= A and

wB1 w- 1 
= B1 . The group wr2w-1 is a triangle group generated by A and

wB2w-1 . The generator A is known, and we know the orders of B2 and AB2,
and one of the fixed points of B2. The fact that A and B generate a triangle 
group again implies that this is enough to fix B uniquely, and this fixes G1(>..5) 
uniquely as a point of the deformation space. □

To get a coordinate independent of normalization, we note that >.. 2 can be 
written as a cross ratio of fixed points: 

(3.3) 

or 

(3.31)

The constant 
tanh(d�/2) 
tanh(d3/2) 

is completely determined by the geometry of the two spheres that are glued to­
gether, it does not depend on the normalization of the triangle groups. 

Definition 3.1. Let A, B 1 , and B2 be a set of generators for G1 that 
satisfies 

(1) (A,B1) and (A-1,B2) are pairs of canonical generators for triangle
groups of signatures (v1, v2, v3) and (v1, v4, vs),

(2) G1 = (A,B 1 ) *A (A- 1,B2),
(3) the part of 6./G1 corresponding to (A, B1 ) lies to the right of the di­

viding curve a C 6. / G 1 corresponding to A .

Let [w] E T(G1). The gluing coordinate of [w] in T(G1) is 

As a result we get 
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Corollary. ,\2 is a holomorphic non-variational global coordinate in T(G1 ).
Remarks. (1) This definition of a coordinate in deformation space is closely

related to Kra's work on terminal b-groups in [13]. For torsion-free terminal
b-groups the horocyclic coordinate of T(O, 4) is expressed in an invariant form
as the cross ratio of four parabolic fixed points, one of which is the accidental
parabolic corresponding to the "plumbing curve" and the others correspond to
three punctures on the sphere. In the expression above, we have both fixed points
of the elliptic element that plays the role of the accidental parabolic and two elliptic
fixed points that correspond to special points on the quotient 2-orbifold. The
coordinate can be calculated from the cross ratio without ambiguity, as changing
the order of the groups r 1 and r 2 does not change the value of ,\ 2 

. 

(2) The same formula applies even for parabolic Bi, just replace the left and
right fixed points in the expressions by the parabolic fixed point.

3.4. The HNN extension. Let S be a sphere with three special points of
signature (v1, v1, v3). Let r = (A, B) be a normalized triangle group uniformizing
S. In order to extend r to a Kleinian group uniformizing a torus with a special
point of order v3 , we look for a loxodromic element C with the property that the
group generated by r and C is the HNN extension of r:

(r, C) = r *c. 

In order to have the required property

the transformation C must map the fixed points of B to the fixed points of A:

C(fixR B) = fixL A = oo,
and

C(fixL B) - fixn A - 0.
This means that C must be of the form

( rsinh(d3/2) 
GT 

= 
\ �cosh(d3/2)

-rcosh(d3/2) \
l 

) -�sinh( d3/2) 

�) { sinh(d3/2)
� J \ cosh(d3/2)

- cosh(d3/2) \ 
I =:TTH, - sinh(d3/2) /

where r is a complex parameter and H a half-turn conjugating B- 1 and A, and
an isometry between ll) and ll)* . It is clear (see Fip;ure 6) that the requirements of
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----------

Figure 6. A fundamental set of G2(r2) for lrl > coth(d3/4). 
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the second combination theorem ([17],Theorem VII.E.5) are satisfied for lrl big 
enough. 

In fact, we get the following estimate for the parameter T: 

Lemma 3.4. (r, CT ) = r*cT if 

(3.4) 

Proof A disk D of hyperbolic radius r < d3/2 at fix£ B is mapped by 
the canonical projection to an orbifold disk at the special point corresponding to 
fixL B on ]I])* /r. This follows from (2.6), since for triangles with signatures of the 
form (v1,v1,v2), the radii given by (2.6) are (d2 = d3) 

d3 
r1 = r2 = 2

. 

D is mapped by H to a disk of the same hyperbolic radius at O. The Euclidean 
radius of the image is tanh(r /2). This means that the Euclidean radius of the 
disk CT(D) is lrl2 tanh(r /2). The complement of GT (D) is a disk of hyperbolic 
radius 2 artanh(lrl-2 coth(r/2)) at oo. If 

(3.5) 

the disk C \ CT(D) is projected to an orbifold disk disjoint from the projection of 
D ,  and the conditions of the second combination theorem ([17] ,Theorem VII.E.5) 
are satisfied. Clearly we get (3.5) from lrl > coth(d3/4). D 
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The group r*cr has one invariant component representing a torus with anelliptic special point of order v3 . The conjugate elliptic elements A and B corre­

spond to a simple closed curve on 6./G2 in the free homotopy class determined inthe case of the previous lemma by the projections (as point sets) of the boundaries
of D and CT(D). 

Again we can interpret the group theoretic construction as a zw = t gluingusing natural coordinates at the special points of order v1 . The natural coordinate
at P1 = p(fixL B) relative to P2 = p( oo) is

z(P) = (Zo(P-l(P))t1 = (sinh(d3/2)p-1(P) - c�sh(d3/2))
v1,cosh(d3/2)p-1(P) - smh(d3/2) 

where we use a branch of p- 1 having values in a neighborhood of fixL B ,  and the
natural coordinate at P2 relative to P1 is (using a branch of p-1 with values in
a neighborhood of oo)

w(Q)
= 

(p-/(Q)) V1 

If T satisfies the conditions of Maskit's second combination theorem, there is a
non-empty annulus AC 6. around O that projects to an annulus around P1 such
that An C(A) = 0 and

z(P)w(p(C(p-l(P)))) = (Zo(P-1(P))t1 ( T2Zo(:-l(P)))
v1 

= T-2v1 =: t

for PE A.
3.5 Deformation spaces of type (1, 1). For parameters T2 satisfying theconditions of Maskit's second combination theorem we define 

Using techniques similar to those in Section 3.3, we get
Lernma 3.5. Lel ·10 E <C be chosen so lhal

(r, C'TQ) = r*cro '
and let w E [w] E T( G2 ( T5)) be a deformation normalized to fix the limit points1 , i and - l . Then the map

[w] f----+ wcw- 1(fixRwAw-1) = w o C(fixRA)
is a holomorphic injection of T(G2(T5)) into <C.

We can express T2 as a cross ratio of four fixed points of the group G2 ( T2 ) 
as follows:
(3.6) cr(CT(fixRA),fixLA,fixRA,fixLB) = er (T2 coth d; ,oo,O,coth �3) = T2.
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Definition 3.2. Let A ,  B and C be a set of generators of G2 such that
(1) A and B canonically generate a triangle group, and
(2) cB-1c- 1 = A . 

Let [w] E T(G2 ). The gluing coordinate of [w] is

T([w]) = er( wcw-1(fixR wAw-1 )), fixL wAw-1, fixR wAw-1, fixL wBw-1)
= er( wC(fixR A)), w fixL A, w fixR A, w fixL B).

We summarize this in

23

Corollary. T2 is a holomorphic non-variational global complex analytic co­
ordinate in T( G2).

3.6. Boundary points. Let r = (A, B) a normalized hyperbolic triangle
group of signature (v1 , v2 , v3) canonically generated by A and B and let 

and assume for simplicity that A is elliptic. If G1 is an AFP of the two copies of
r, then 

is a loxodromic element dual to A in G1 with trace

(3.7) 

tr C =2 cos2 : + ( 2 cosh2 d3 - ( >? + }
2

) sinh2 d3) sin2 :

=2 + 2sinh2 
R- ( >? + )

2
) sinh2 

R,

where R is the hyperbolic distance between O and the geodesic connecting the
fixed points of B and AB in []) given by (2.2). 

Let 
R 

,\ b = coth 
2

.

It is a straightforward calculation to show that if ,\ = ,\ b , then tr C = -2 and C
is parabolic with fixed point 

fix C = e-1r/2v1 coth(R/2).

If both v1 > 2 and v2 > 2, the boundary point ,\� E 8 T( G 1) can be
interpreted as giving a degenerated Riemann surface where the dividing geodesic
corresponding to the element C (see Figure 7) is pinched to a point: The set
of discontinuity of G 1 ( ,\�) consists of four non-equivalent families of round disks
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stabilized by Fuchsian subgroups of G 1 ( >-l) . The Fuchsian groups are conjugatesof the original triangle groups r = (A, B1) and r(>.2 ) = (A, B>-.2) of signature
(v1, v2, v3) ,  and two additional triangle groups 

of signatures ( v2, v2, oo) and ( v3, v3, oo) ( with canonical generators). The group
generated by C is a maximal cyclic parabolic subgroup of both r� and r; . Denoteby Lli the disk component of D( G1) stabilized by r:. We can form a new invariant
set 

The quotient Ll + /G1 is the union of two thrice punctured spheres and a point
P which is the projection of the fixed point of C. The neighborhoods of P areprojections of sets of the form R1 l J {fix C} lJ R2 , whPrP Ri is a topological disk inLli precisely invariant under ( C) in r:. Any neighborhood of P is homeomorphicto the set 

{ ( z, w) E c2 1 zw = o}.

The point P is called a node, and Ll + /G1 is a Riemann surface with nodes.If one of v2 = 2 or v3 = 2, r� or r; becomes a finite dihedral group and thequotient space consists of just three spheres with signatures as above. The generalcase of the AFP of two hyperbolic triangle groups of different signatures requires
a more involved treatment, which we will not attempt here. 

Let G2 = (A, B)*cr as in Sections 3.4 and 3.5. Again, it is quite easy to see
that for the parameter 

the generator GT becomes parabolic, whereas for ITI > Th it is loxodromic. Theinvariant component splits into a collection of disks that are all equivalent under
the action of the group. The disks are stabilized by conjugates of the Fuchsian
group 

which is a triangle group of signature ( oo, oo, v3). The two parabolic canonicalgenerators of r' are conjugate in G2 , so G2 represents a noded Riemann surfaceof signature (1, 1; v3). 
3. 7. AFP with dihedral groups. Let Dvi be a v1 -dilwdral gronp gPnPr-

ated by (0 i) and B= i O .
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(a) (b) 

Figure 7. (a) The curves on the sphere � / G 1 ( >. 2) corresponding to
the generators and the word H,.2 -l B.

(b) The curves on the torus �/G2(T2) coming,from the generators A,

Band C.

Lemma 3.6. Let f1 be a hyperbolic triangle group of signature (v1, v2, v3)
and Dv1 

a finite dihedral grn·up ·rwrmul·ized as above. Then 

if 

Proof. The exterior of the disk ][J) ( 0, coth( R(v1; v2, v3) /2)) is precisely invari­
ant under (A) in r. For any >. :/- 0 the set 

D = z E C I lzl < l>-1 2 and - - ::; arg z ::; -
{ � 7r 7r} V1 V1 

is a fundamental domain of Dv1 
(>.2 ), so it is clear that ][J)(O, coth R(v1; v2, v3)/2) is 

precisely invariant under (A) in Dv1 
( >. 2), so the conditions of the first combination

theorem are satisfied if 

Again, using ideas of [14] we have 
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Lemma 3. 7. Let Ao be a complex parameter such that 

and G3(,\5) represents a Riemann surface of type (0, 4 )  on the invariant compo­
nent. Let w E [w] E T(G3(,\5)) be a deformation normalized to fix the limit points 
1, i and -1. Then the map

[w] r-+ fix£ (wB>-.2w-1)

is a holomorphic injection of T(G3(,\5)) into C. 

These results are needed in Section 4 in the proof of Theorem 1 on the iso­
morphisms between 1-dimensional deformation spaces in Section 4. 

Remark. The group G3(,\ 2 ) constructed above is an extension of r 1 *Ar 1 (,\ 2 ) 
by the elliptic 

J,;(>.) = ( i1,\ i;)
representing the hyperelliptic involution on �(G3(,\ 2 ))/G3(,\2 ). 

4. Isomorphisms of I-dimensional deformation spaces 

In this section we prove an isomorphism theorem for 1-dimensional deforma­
tion spaces. The method of proof is an explicit construction using the fact that 
for certain Koebe groups of types (0, 4) and (1, 1), there is a group that contains 
both of them as subgroups of finite index. This group is constructed by studying
the normalizers of these Koebe groups.

Let 
G1(A2 ) = r *A r(,\ 2 ), 

where r = (A, B) is a normalized triangle group of signature (0, 3; v1, 2v2, 2v2). 

Let N(G 1(>.
2 )) be the normalizer in PSL('.2, q of G1(,\ 2 ). The square root of A

is 

A simple calculation shows that 

(4.1) 

so 

Also the half -turn 
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because 

(4.2) 

These elements correspond to conformal automorphisms of the surface fl/G1(>..2 ) 

that either preserve or reverse the dividing curve corresponding to the elliptic 
element A. As a result we know that 

and that G1 C G3 is a subgroup of finite index. 
Using ( 4.1) we get 

(4.3) 

so G3 is the AFP of a triangle group 

with a 2v1 -dihedral group 

across the elliptic cyclic subgroup generated by A½ . We proved in Section 3. 7 
that >..2 is a global complex analytic coordinate of the deformation space T(G3). 
Thus the identity map is an isomorphism between T(G1(>..2)) and T(G3). 

Again, using (4.1) we have 

( 4.4) 

so the subgroup 
r" = (A½,BA½B-1)

is a ( 2v1, 2v1, v2 )-triangle group acting on C \ § 1. Let

( 

>.. sin( 1r / v2) sinh d3 ->.. ( sin( 1r / v2) cosh d3 + i cos( 1r / v2)) 
) . 

½ (sin( 1r /v2) cosh d3 - i cos( 1r /v2)) -½ sin( 1r /v2) sinh d3

We claim that 
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(b) 
2 

2v 

Figure 8. (a) Some of the Mi:ibius transformations involved in the 
construction of the isomorphism of Theorem 1. (b) The sphere v1ith 
four special points and the torus with one special point both cover the 
same sphere with four special points, three of which are of order 2. 

The assumption that G1 is a Koebe group representing a sphere with four special 
points on the invariant component implies that there is a simple closed curve 
W C 6-( G 1) that is precisely invariant under (A) in both r and r (>, 2 ) such that 
each I E r \ (A) maps ext W into int W and each , E r(>.2) \ (A) maps int W
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into ext W. A calculation using ( 4.2) shows that C� conjugates the generators
of r": 

(4.5) C�(BA-½B-1)C'� 1 = E>-.B-1BA-½B-1BE),, = A½,
so we only need to show that r" and C� satisfy the conditions of Maskit 's second
combination theorem. The left fixed point of BA-½B-1 is B(oo) E B(ext W).
Now C�(B(ext W)) = E>-.(ext W) . We can clearly assume that E>-.(W) = W:
For big l>-12 we can choose W to be the circle with center 0 and radius l>-1, for
general ,\2 we can use a quasiconformal image of W.  This proves the claim. 

The gluing parameter of G2 is 

( 4.6) er( C(fixR A½), fix£ A½, fixR A½, fix£ BA½ B-1 ) = er( C(0), oo, 0, B( oo))

( 2 ( 
. cot(1r/v2)

)
. cot(1r/v2)

) 2 = ,\ 
coth d3 + i sinh d3 

, oo, 0, coth d3 + i sinh d3 
= >. ,

so we have a map T(G1 ) _____, T(G2) defined by 
,\2 I---+ 72 = ,\2 ,

To see that this is actually an isomorphism of the deformation spaces, we can
construct the inverse by noting that 

G3 = (G2 , E>-.) c N(G2),

as E>-. = C�B = ( C�B)-1 
conjugates the generators A½ and C� of G2 to the

following elements of G2 

(4.7) 

and

(4.s) E>-.C�E>-. = B-1 c� -1 c�B-1 c� -l = B-2c� -l E G2.

We have proved

Theorem 1. Let G1 be a Koebe group of signature (0, 4; 2v2, 2v2, 2v2, 2v2), 

v2 2". 3, constructed as an AFP of two hyperbolic triangle groups across a maximal

elliptic subgroup of order v1 , and let G2 be a Koebe grmip of signature (l, 1; v2)
constructed as the HNN extension of a hyperbolic triangle group across maximal 

elliptic cyclic subgroups of order 2v1 . Then in gluing coordinates the map

,\2 I---+ 72 = ,\2 

is a complex analytic isomorphism between the deformation spaces T(G1 ) and 

T(G2). 

It can be shown that G3 is actually the normalizer of both G 1 ( ,\ 2) and G2 

in PSL(2, C) . 

Remark. The proof is just a modification of the proof in [13] in the case of
terminal b-groups. 
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5. The construction of Koebe groups

for weighted graphs with finite weights

The previous sections dealt with the Koebe groups produced by one gluing 
operation across an elliptic cyclic group. In this section we will look for conditions 
for the gluing parameters that guarantee that further gluing construction can 
be performed for the (possibly) remaining special points. This is a step toward 
proving Theorems 3 and 4 in Section 6. These theorems generalize Theorem 1 in 
[13]. Kra's result states that given a trivalent graph Q and a d-tuple of gluing 
parameters ( ti , ... , td) satisfying It; I < e-2

7l" for all i, it is possible to perform 
the gluing construction for thrice punctured spheres. The generalization presented 
here has more complicated conditions for the gluing parameters due to the presence 
of elliptic elements of various orders. 

5.1. Tame gluing constructions. The restriction to groups constructed 
from triangle groups allows us to replace the signatures ( as function groups in the 
sense of Maskit [17], Chapter X) of these groups using a simpler combinatorial 
object introduced by Ares in [3]: A weighted graph (see Figure 9) is a connected 
graph such that 

( 1) every vertex S; has 3 edges ( the graph is trivalent), and
(2) every edge a; is assigned a weight w; E {2, 3, ... } U { oo}

If an edge ak does not end at a vertex in the set { S 1, ... , Sv } , ak is called a 
phantom edge. 

Let Q be a weighted graph. Let S; be a vertex and ( Wj,, wh, wh) the weights 
of the edges at S; (if an edge ends at the same vertex S;, take the weight twice 
in the list). Replace the vertex S; by a sphere with three special points of orders 
Wj,, wh, wh . Suppose that we are given a well-chosen parameter tk E <C for each 
non-phantom edge. Now we do the zw = t plumbing constructions for each non­
phantom edge using natural coordinates if the edge has finite weight and horocyclic 
coordinates if the edge has weight oo. The main objective of this section is to find 
a concrete meaning for the word "well-chosen" used above. 

w1 

� w, 
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Figme 9. A weighted graph corresponding to a Riemann surface of 
type (2, 2). 

w7 

The observations of Section 2 suggest a condition for choosing the disks and 
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the annuli used in the plumbing construction: If the plumbing can be restricted 
to the pairwise disjoint disks of radii ri given by (2. 6) ( that is, if a point P is 
not in any of the disks, then the equivalence class of P in the gluing construction 
consists of one point), it is clear that we can use the remaining special points 
to perform further plumbing operations that are restricted to the corresponding 
orbifold disks. 

Lemma 5.1. Let S and S' be spheres with three special points with signa­
tures (v1, v2, v3) and (v1 , v4, vs). Let Pi E S and Q 1 E S' be the special points
of index v1 and let r1 = r(v1; v2, v3) and r2 = r(v1; v4, vs) be the radii of (2.6). 
If t E <C satisfies

(5.1) ( 
r1 r2) vi 

ltl < tanh 
2 tanh 

2 

then it is possible to do the plumbing construction for the parameter t at the special
points Pi and Q 1 and the constrnction is limited inside the disks of (hyperbolic)
radii r1 and r2 at A and Q 1 respectively.

Proof. The result follows from Lemma 3.1, using natural coordinates at spe­
cial points. □

If all the gluings are restricted to happen inside disjoint disks on the spheres 
S1 the plumbing construction is called tame. Obviously, the conclusion of Lemma 
5.1 holds even for the case S1 = S2 with the restriction A c/- Q1. 

Remarks. ( 1) When we restrict the gluing to take place inside the disks of 
Lemma 5.1, we get the same (sharp) lower bound for the absolute value of the 
gluing parameter in the construction of Koebe groups of type (1, 1). For type 
(0, 4) the bound is considerably larger than the sharp bound of Section 3.2. In 
Section 7 we see that the estimate given by pairwise tangent disks is actually sharp 
if we have more than one gluing. 

(2) The second combination theorem guarantees that for each group G con­
structed by a number of tame plumbings from triangle groups, there is for each 
elliptic fixed point x E b. ( G) a disk that is precisely invariant under Stabc ( x)
in G. This means that the elliptic fixed points can be used for further gluing 
constructions. Section 5.2 outlines an algorithm for this and Section 6 gives an 
estimate for good gluing parameters. 

5.2 A construction algorithm. Let Q be a weighted graph. Assume that 
the non-phantom edges are semicanonically ordered, that is, the k :th subgraph Yk

formed by the non-phantom edges a 1 , ... , ak, and a number of phantom edges, 
is connected for all k . A non-phantom edge ai of Q can be of three different 
types. To construct a Kleinian group corresponding to Q and a gluing parameter 
t E <Cd , where d is the number of non-phantom edges of Q, each type requires 
its own procedure. We present the methods for each type of gluing and refer 
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to Kra [13], Sections 3 and 7.5, for a more detailed description of semicanonical 
ordering and other details needed to devise a nice algorithm for producing Koebe 
groups (terminal regular b-groups in [13]). Let us denote by Gk the Koebe group 
constructed by k gluings. 

Assume that all the vertices of Q are hyperbolic: If w1, w2, w3 are the weights 
of the edges at a vertex, then 

This restriction means that only hyperbolic triangle groups will be allowed in the 
construction. This is done for technical reasons: The remaining cases (groups 
acting on the sphere and on the plane) cannot be treated with methods of 2-
dimensional hyperbolic geometry. 

Type 1. The edge ak disconnects Yk ( edges a2, a3 and a5 in Figure 9). 
This corresponds to the AFP construction presented in Section 3.2. Choose a 
primitive elliptic element A E G k- 1 such that the special point on D,( G k-i) / G k-l 
is the projection of the left fixed point of A in the canonical projection. We can 
assume that A belongs to one of the triangle groups F used to construct Gk-l. 
There is a unique B E Gk-l such that A and B generate F canonically. Let 
T2 be the gluing parameter. The new triangle group corresponding to the vertex 
v E Yk\Yk-l must have A

-1 and a parabolic or an elliptic B2 t/:. Gk-l as canonical
generators. Now solve

for the left fixed point of B2 . Because we already know the fixed points of the 
element A, we get B2 by conjugation from the standard normalization of Section 
2.1. Set 

An alternative way to determine fl2 would be to use Lemma 2.2: We solve 
the equation 

for fixR B. This fixes B2 uniquely: We know both fixed points and the order of 
Bz. 

Type II. The edge ak connects two distinct vertices of Yk but does not 
disconnect the graph (edge a4 in Figure 9). We do an HNN construction to 
produce a subgroup of Gk of type (0,4): The special points on D,(Gk_i)/Gk-l 

that will be used in the gluing construction are the projections of the left fixed 
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points of two elements A1 and A2 . As in Type I we can assume that A 1 and A2 

belong to triangle groups F1 with canonical generators A1 and B1 and F2 with 
canonical generators A2 and B2 used in the construction of Gk-l. We have to 
find a loxodromic C (/. G k that satisfies 

and the group 

has gluing coordinate T. 

This reduces to solving for the Mobius transformation C that satisfies 

fixL A2 f-----7 fixR A1 , 

fixR A2 f-----7 fixL A1 

and 

Set 

Type III. The edge ak connects a vertex S1 of the graph with itself. This 
corresponds to the HNN extension of a triangle group as presented in Section 3.3. 
Find A, B E Gk-l corresponding to the special points involved in the gluing, such 
that they generate canonically a triangle group F c Gk-l and their left fixed 
points are in the invariant component 6.. Solve for a loxodromic C satisfying 

and 

Set 

C(fixL B) = fixR A, 

C(fixR B) = fixL A 

If we drop the requirement that our group must have an invariant component, 
we can reduce Type I to a HNN construction similar to Types II and III in the 
special case when the subgraph of type (0, 4) has equal weights at both ends. In 
the case of parabolic cyclic subgroups similar constructions are used by Earle and 
Marden [8] and Kerckhoff and Thurston [10]. We have 
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Type I'. Find A and B as in case I. Solve for the Mobius transformation 
C that satisfies 

and 

Set 

CA-ln-1 _ A 2 v - 1 

If we use construction I' instead of I we can get the Koebe group by taking the 
stabilizer of a component that projects to the Riemann surface St . 

In the following section we use the simple observations of Sections 2 and 5.1 
in the setting of deformation spaces. 

6. Deformation spaces of Koebe groups

constructed from hyperbolic triangle groups 

In this section we find a condition on the gluing parameters associated to the 
edges of a weighted graph Q that are sufficient to guarantee that the group G

constructed by the algorithm of Section 5, even allowing parabolic gluings, will 
give a Koebe group of the correct analytical type. We start with the observation 
that an analog for Maskit's embedding theorem ([16],[12]) for terminal regular b­
groups can be proved for the class of Koebe groups constructed from hyperbolic 
triangle groups, and that the proof in [12] applies in this case as well. We also 
use the results of the previous section and those of Kra [13] and Ares [3] to find 
a non-empty open set in the deformation space of the groups constructed from a 
collection of hyperbolic triangle groups by AFP and HNN constructions. First we 
review some basic definitions and results on the structure of Koebe groups from 
[17], Chapter X. 

Let G be a finitely generated Koebe group constructed from hyperbolic trian­
gle groups. There is a maximal collection � = {A1 , ... , Ad} of equivalence classes 
of elliptic and parabolic elements in CJ that correspond to simple closed geodesics 
{ o:1 , ... , o:d} on the quotient surface 6,./G. By construction � is a maximal par­
tition of 6,./ G: the components of 6,. 0 

/ G \ (uj O:j) are topologically spheres with
three holes. The connected component of tl/G \ (l_JJiciO'j) rnntaining Cl'i is the 
modular part Ti of o:i . 

The components of the preimage of 6,.0 /G \ (uj o:j) are structure regions.
Each structure region is stabilized by a structure subgroup of G. In the groups 
considered here the structure subgroups are conjugates of the triangle groups used 
in the construction. 

The common boundary of two adjacent structure regions is a component of the 
preimage of one of the curves o:i E �. The preimages of modular parts are modular 
regions, and their stabilizers are modular subgroups of G. If the modular part is 
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of type (1, 1), then the modular group is an HNN extension of a triangle group 
stabilizing a structure region in the modular group. For type (0, 4) the modular 
groups are AFP:s of two structure subgroups across an elliptic or parabolic cyclic 
subgroup generated by a conjugate of Ai . 

We want to define coordinates on the deformation space of a Koebe group G 
of the type described above. The following theorem is a fundamental observation: 

Theorem 2 (The Maskit Embedding Theorem). Let G be a finitely
generated K oebe group constructed from hyperbolic triangle groups. Let G 1, ... , G d 
be a maximal collection of non-conjugate modular subgroups of G. Then the map 

d 

m: T(G) � IJ T(Gi) 
i=l 

defined by 
d 

T(G) 3 [w] r-+ ([w], ... ,[w]) E IJT(Gi) 
i=l 

is injective. 

Proof. The proof given by Kra in [12] for the case of b-groups (the Maskit 
embedding of Teichmiiller space) applies also in this setting. Let A 1 , .. . , Ad E G 
be a maximal collection of non-conjugate primitive elliptic or parabolic elements 
corresponding to simple closed curves on the Riemann surface D. ( G) /G. Now the 
proof in [12] gives the theorem. See Ares [4] for a discussion of the theorem. □

This result means that we can use the coordinates of the 1-dimensional de­
formation spaces to define coordinates on the deformation space of any finitely 
generated Koebe group constructed from hyperbolic triangle groups. For elliptic 
gluing we use the 1-dimensional gluing coordinates (Definitions 3.1 and 3.2). For 
parabolic gluings we recall the definition of horocyclic coordinates of 1-dimensional 
Teichmiiller spaces from [13] and [ 3]: 

6.1. Terminal b-groups. Let G be a Kleinian group. G is a b -group if 
it has a simply connected invariant component D.. G is called terminal if D./ G 
is a Riemann surface of type (p,n) and (D(G) \ 6)/G is the disjoint union of 
2p+n-2 spheres with three special points (some of which must be punctures) with 
hyperbolic signatures. In this subsection we briefly review the parametrization of 
1-dimensional deformation spaces of terminal b-groups following [13] and [ 3].

Terminal b-groups of type (0, 4) can be constructed as AFP's of two triangle 
groups across a common maximal cyclic parabolic subgroup. Let f 1 = (Ao, (Bi )0 ) 
and f2 = (A0

1 , (B2 )0) be triangle groups acting in IHI and IHI* with A0 (z) = z+2 
parabolic. Let 

for T(z) = z + T, Im T > 0. 
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Definition 6.1. Let A, B1 , and B2 be a set of generators for a terminal 
b-group G1 of type (0, 4) that satisfies

(1) (A,B1) and (A-1,B2) are pairs of canonical generators for triangle
groups of signatures ( oo, v2, v3) and ( oo, V4, v5),

(2) G1 = (A,B1) *A (A-1,B2),
(3) the part of t1/G1 corresponding to (A, B1) lies to the right of the divid­

ing curve a C ti/G1 corresponding to A with the orientation induced
by the action of A on C .

Let [w] E T(G1 ). Then the horocyclic coordinate of the deformation space 
T(G1(To)) 1s 

T([w]) = cr(w fixR B2, w fix A, w fixL Bi, w fixR AB1)c1 + c2, 

(6.1) =To([w])c1 + c2, 

where 

and 

The expression To can clearly be used as a coordinate on T(G1), the normal­
ization by c1 and c2 is made to conform with [3]. The constants c1 and c2 are 
determined by the geometry of the spheres. If B1, B2 or AB1 is parabolic, (6.1) 
applies with the left and right fixed points replaced by the parabolic fixed point. 
Also, the coordinate T has a simple relation to the zw = t gluing parameter: The 
horocyclic coordinate on lHI/r 1 at oo is 

and the horocydic coordinate at oo on (lHI� + r) /r 2 ( r) is 

Thus, repeating the argument used in Section 3.2 for elliptic gluing, we see that 
the gluing parameter is 

See Kra [13], Section 6, and Ares [3], Section 3.2, for more details on parabolic 
gluing. 

Terminal b-groups of type ( 1, 1) can be constructed as HNN extensions of 
triangle groups across maximal cyclic parabolic subgroups. 
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Definition 6.2. Let A, B and C be a set of generators of a terminal b­
group G2 of type (1, 1) such that 

(1) A and B canonically generate a triangle group,
(2) the puncture used in the HNN construction lies to the left from the curve

corresponding to A , and
( 3) cB- 1 c- 1 

= A. 
Let [w] E T(G2). The horocyclic coordinate of [w] 1s 

(6.2) T([w]) = cr(wC(fixA),wfixA,wfix B,wfixRAB) fixR(AB)0. 

As in the case of the parabolic AFP construction (Definition 6.1 above), we 
had to introduce a geometric constant fixR AB in order to have the relation 

as in [13] and [3]. 

Remark. The cross ratio expressions used here are different from the ones 
used in [3] to define horocyclic coordinates on 1-dimensional deformation spaces, 
but both define the same coordinates. This difference is not essential: Ares uses his 
parametrization of triangle groups, whereas we prefer to use expressions of cross 
ratios of fixed points and constants that depend on the geometry of the spheres 
( with punctures and elliptic special points) that are glued in the construction. 

6.2. Gluing coordinates of deformation space. We now treat the gen­
eral case of gluing coordinates. The algorithm in the general case is the same as 
in Section 5 appended with parabolic gluing using the parametrization introduced 
in Definitions 6.1 and 6.2. 

Definition 6.3. Let Q be a weighted graph and G = G(Q) a Koebe group 
constructed from triangle groups by the algorithm described above. Let 

be the set of non-phantom edges of Q and d = #QN. The gluing coordinate of 
T( G) is the map 

defined by 

where m: T(G)-----+ IT T(G1) is the Maskit embedding of Theorem 2, and 

d 

Td : IJT(Gi)-----+ c,d 

i=l 
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consists of the appropriate I-dimensional coordinate maps defined in Definitions 
3.1, 3.2, 6.1 and 6.2. 

Formula 2.5 gives us a well-defined choice of maximal radii of non-intersecting 
orbifold disks on a sphere with three special points of finite order. This observation 
along with the results of Section 5 allows us to estimate the set of parameters that 
correspond to a tame plumbing construction. 

Definition 6.4. Let Q be a weighLed graµh anJ. leL h(v, µ) be Lhe horocyclic 
radius of Lemma 2.5. If an edge a with weight w connects two vertices of weights 
( w, v1, v2) and ( w, v3, v4), the safe radius of the edge a is 

(6.3) 

if w < oo and 

(6.4) 

if w = oo. If a connects a vertex with weights ( w, w, v3) to itself, 

(6.5) (g ) h2 
r(w; w, v3) h2 d3 

s , a = cot 
2 

= cot 
4

, 

for w < oo, where d3 is the distance between the elliptic special points of order 
w,  and 

(6.6) 

for w - oo. 

Lemma 5.1 generalizes trivially to the case of horocyclic coordinates. 

Lemma 6.1. Let S and S' be spheres with three special points, with signa­
tures ( oo, v2, v3) and ( oo, v,i, vs). Let P ES and Q E S1

• If t E C satisfies

(6.7) 

then it is possible to do the plumbing construction for the parameter t at the 
punctures P and Q, and the construction is limited inside the p1mcfored disks nf 
horocyclic radii h1 and h2 at P and Q, respectively. 

Now we can state the main result of the section: 
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Theorem 3. Let G be a Koebe group constructed using a weighted graph g. 
Denote by QN the set of non-phantom edges. Then 

IT Sa C T(T(G)),
aEQN 

where 
Sa

= C \][J)(O,s(Q,a)), 

if the weight of the edge a is finite, and 
i 

Sa
= ]H[--logh(Q,a), 

1T 

if a has infinite weight. 
Proof. The condition that the gluing parameters are in TI Sa is exactly the 

criterion of Lemmas 5.1 and 6.1 for the plumbing constructions to be tame. The 
result follows from the calculations in Sections 3.2, 3.4 and 6.1 relating T and t

for each gluing type. 

7. Examples of the use of the construction algorithm

In this section we illustrate the the use of Theorem 4 and the construction 
algorithm of Koebe groups. We also fin<l maximally pinc:he<l groups in the bound­
aries of the deformation spaces of Koebe groups of type (2, 0 ). There are two 
different graph types to consider: 

7.1. Example 1. Let Q be the weighted graph in Figure 10. Start by
forming the AFP of a hyperbolic triangle group r = (A, B) of signature (v1, v2 , v3) 
with a conjugate r(Tr) = (A-1, s-/) of the same group across the generator A

Tl 

of order v1. We have (using the normalization of Section 2) 

B = ( 
i sin( 1r /v2) cosh d3 - cos( n-Jv2 ) 

i sin( 7r / v2) sinh d3 

and 

B,-
2 = (

isin(
_
1r/v2 )

.
coshd3 -

_
cos(1r/v2 ) 

1 
iT1

2 sm(1r /v2 ) smh d3 

-isin(1r/v2 )sinhd3
) 

-i sin( 1r /v2 ) cosh d3 - cos( 1r /v2) ' 

-iTf sin(1r /v2 ) sinhd3
) 

-i sin( 1r /v2 ) cosh d3 - cos( 1r /v2 )
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G 1 = (r, r( rt)) is a ( non-Fuchsian) Koe be group that represents a sphere with 
four special points, two of order 112 and two of order 113 . This is an operation of 
type I. 

Then we perform two operations of type II. First we glue together annuli 
around the special points corresponding to the generators B and B2 = s-/: The 

r, 

structure subgroups F1 and F2 in this case with their canonical generators are 

F, = (B�/' BTf A), 

and 

To realize the gluing, we look for a loxodromic element C1 that satisfies 

C1BC1 1 = BTf

and the cross ratio condition 

For the final gluing, we take 

and 

We then need to solve the set of equations given by 

C2ABC:; 1 = BTf
A 

and 
Tf = er( C:2(fixL A), fixL Br'f A, fixH Br{ 

A, fixH(A)- 1 ).

As a rns11 lt of thPsP r.ak.11 lations wP gPt 

and 

(2 ( -1 - Ti + ( Ti - l) cosh d3) 
2T2 

( 1 - Ti) sinh d3 

2T1 T2 

( 

_
e'_1rf_v_,T_i (1 + T} + (1 - Ti) coshd2)

2T3 

( TJ - l) sinh d2 

2T1T3 

!... ')\ • 1 l T1 \.1 - Ti,) smn a3 

) 
2T2 

-1 - Ti - ( Ti - l) cosh d3
2T1T2 

T1 ( T} - l) sinh d2 

) 

2T3 

e-i1r/u, 1 + T} + (T} - 1) coshd2
2T1T3 
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A 

Figure 10. A weighted graph of genus 2 and a fundamental domain of 
the action of the group of Example 1 in its invariant component. The 
corresponding Riemann surface has a pants decomposition induced by 
the elliptic elements A, B and AB. The boundary point of deforma­
tion space found in Example 1 corresponds to a Kleinian group repre­
senting a noded Riemann surface obtained by pinching the curves C1 , 
AC2 and C1 C2

1 A- 1 to points.

41 

Theorem 3 now gives lower bounds for the absolute values of the parameters 
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rl, r}, rl for which the group 

G = (A., B, B2 , C1, C2 ) 

is a Koebe group of type (2, 0). 

7.2. Example 2. For Lhe remaining graph Lype (see Figure 11), we start the 
construction as in Example 1 with a construction of type I and follow it with two 
HNN constructions ( typP. TTT). Sirn:P. WP. arP. f!;Oin[:!; to oo typP. TTT r.onstrnctions, the 
amalgamated groups must have signatures (v1, v2 , v2 ) and (v1, v3, v3) .  Normalize 
A and B as in Example l. We get just as in Example 1 

irfsin(7r/v4)sinhd� \ 

i sin(, /v,) cosh d\ - cos(,/ v4))

Next we glue together annular neighborhoods of the special points determined 
by the left fixed points of (BA )- 1 and B . This is done by adding a loxodromic 
generator C1 that satisties: 

and 
rJ = er( C 1 (fixR(BA)- 1 ), fixL(BA)- 1 , fixR(BA)- 1 , fix£ B). 

To do the final gluing we repeat the procedure of the sPcond gluing for the 
structure subgroup generated by AB 2

1 and B2 . We look for C2 satisfying 

C2B2
1
c 2

1 
= AB:; 1 

and 

We get 

and 
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A 

Figure 11. A weighted graph of genus 2 and the partitions of a genus 
2 surface as in Example 2. 

43 

7.3. A variation of Example 1. In some cases the coordinates (r1, r2, r3) 
have a 3-dimensional geometric interpretation: Let G0 be the group of Example 
1, and 

Mo= ]H[3 /G. 

M0 is a hyperbolic 3-orbifold with three boundary components corresponding to 
D(G0)/G0. The orbifold has a simple topological structure: 

Mo\ (1r(AxA U AxB U AxAB)) � S(2, 0) x (0, 1), 

where 1r: ]H[3 
-+ Mo is the natural projection, Ax E is the axis of the loxodromic 

or elliptic Mobius transformation E in ]H[3
, and S(2, 0) is a surface of genus 2 .  

The two boundary components of type (0, 3) have no moduli, so it is easy to form 
a new orbifold from Mo by a gluing construction: We can cut out the ends of 
type (0, 3) and glue the resulting boundary components of the convex core of Mo 
by an orientation reversing isomorphism of the surfaces. On the level of Kleinian 
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groups this corresponds to adding a new element 

0 _ ('1 vo - O 
0 \ -1)'

'1 

to the group Go. Clearly, Co conjugates r with r ('r) and satisfies the conditions
of Maskit's second combination theorem ([17], Theorem VII.E.5) for G = (Go, Co) 
to be the HNN extension of Go by Co. If F0 is a fundamental polyhedron of G0 

in IHI3 , then 
F0 n {x E IHl3 11 < lxl < ,i}

is a fundamental polyhedron for G. Similarly, if D is a fundamental set for G0 in
n( G0 ), then D n 6.( G0 ) is the fundamental set of G in n( G). Thus M = IHI3 /G
has only one boundary component, rl(G)/G = 6.(G0/G0 ) and G does not have
an invariant component. 

M has three circles in its orbifold locus. These are the projections of the axes
of the three G -equivalence classes of elliptic elements: 

and 

Stab(AxA) = (A , Co), 
Stab(AxB) = (B , C0 1 C 1 ) ,

Stab(AxAB) = (AB,C0 1AC 2 ). 

The complex translation lengths of Co, C0 1 C 1 and C0 1 AC2 are ,1, ,2 and
,3. This means that these axes are projected into IHI3 /G as circles length and
"twisting" determined by the parameters ( ,1, ,2, ,3). 

In the torsion free case the complex translation lengths are replaced by the 
moduli of the three cusp tori. 

8. Boundary points

In this section we find maximally pinched boundary points on the boundaries 
of the deformation spaces of the p;roups treated in Examples 1 and 2. These 
boundary points correspond to the zw = t plumbing construction for degenerated
pairs of pants constructed by cutting away orbifold disks and punctured disks of 
maximal radii given by (2.6) - (2.11) from spheres with three special points. The 
observations made in the case of genus 2 are then used to prove a general theorem 
that gives a "non-trivial" boundary point of the deformation space of any Koebe 
group G constructed from hyperbolic triangle groups with the genus of 6.(G)/G
at least 1 .  

In Example 1 the safe radius for the gluing corresponding to the edge ai in
the graph 9 is 

(" ) tl 2 r(vi;Vj, vk) h2 (dj+dk-di)s '::J, ai = co 1 2 = cot 4 •
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The choice of safe radii is good in the following sense: For parameters inside T( G) , 
the transformations C 1 , AC2, C 1 C2

1 A- 1 and C2AC1
1 are all loxodromics cor­

responding to simple closed curves on ll./G (see Figure 10). It is easy to check 
that all these transformations become parabolic simultaneously for the gluing pa­
rameters 

The invariant component splits into an invariant collection of disks. Each of 
these disks is stabilized by a conjugate of one of the torsion-free triangle groups 

and 
r� = (C2A, C1

1 ).

The groups r� and r; are not conjugate in G(Tf,Ti,Tl). Let ll.(ri) be the 
component of D( G) stabilized by ri . The parabolic cyclic subgroups of r� cor­
responding to the three punctures on ll.(f�)/r� are conjugate to the subgroups 
corresponding to punctures on ll.(r;) ;r;: 

is a parabolic corresponding to a puncture on both b. (r�) /r� and b. (r;) /r; , 
while the other parabolic conjugacy classes of parabolics in r� are conjugate with 
those of r; by different elements of G : 

and 

As in Section 3.6 we can form a new invariant set b.+ from a collection of 
components of the set of discontinuity and the fixed points of these parabolics: 

Thus ( Tf, Ti, T}) can be interpreted as a boundary point of the deformation space 
T( G) corresponding to a noded Riemann surface of genus 2 with three nodes. 

Similarly, in Example 2 we see that the estimate of Theorem 3 is good: If we 
take real gluing parameters 

the generators C1 and C2 become parabolic and a small calculation shows that 
also the element C2

1 AC1 is a parabolic. 



46 Jouni Parkkonen 

We know from the Remark in Section 5.1 and the results of Section 3.6 that
the safe radii are sharp estimates for the gluings of type ( 1, 1) . Again, the invariant
component splits into two non-equivalent families of disks, each disk stabilized by
a conjugate of either 

or
r" = (C2

1 A, C1).

Each puncture on the sphere corresponding to r' is identified by a puncture on
the other sphere: 

(1) C1 = BC1AB-1, 
(2) C2 = B2A-1C2B2

1, and
(3) C2

1 AC1 corresponds to a puncture on both surfaces.
The method used here to find boundary points of the deformation spaces of

Koe be groups without parabolics can ( with the obvious modifications) be used
for the deformation spaces Koebe groups constructed from any weighted graph
with hyperbolic vertices. For G a terminal b-group of the same �raph type as in
Example 1 above, the method shows that the estimate 

(IHI+ 2i)3 C T(T( G))

([13] Theorem 8.6) is the best possible: G can be generated by

G = (A, B, B2, C1, C2),

with A, B, AB parabolic, and where the generators satisfy relations analogous
to those of the generators of the group in Example 1. (See Kra [13], Section 7.5
"Two illustrative examples" for a more detailed description of the example.) The
generators can be normalized as 

B= ( \ 0) 1 '

and

Theorem 4 guarantees that ( T1, T2, T3) E T( G) , if Im Ti � 2 .  It is now easy to
check that for the parameter 

(T1,T2,T3) = (2i,2+2i,2i)



Deformation spaces of Koebe groups 47 

the transformations C1 , AC2 , C1 C2
1 A-1 and C2AC1

1 are parabolic and that
the quotient space consists of four thrice punctured spheres. 

In all these examples of boundary groups, the first AFP construction pro­
duces a non-singular Riemann surface of type (0, 4) and the third gluing operation 
creates two nodes at once. In Example 1 the modular subgroups of the groups 
corresponding to points in Teichmiiller space are all Koebe groups of type (0, 4). 
Let Gb be the boundary group of the graph type of Example 1 constructed above. 
The subgroups of Gb corresponding to the modular subgroups of G are all Koebe 
groups of type (0, 4) although the set of discontinuity of Gb is a disjoint union 
of disks stabilized by triangle groups. In the general case we do not necessari­
ly get maximally pinched boundary groups even for compact Riemann surfaces. 
However, we have the following result: 

Theorem 4. The estimate of Theorem 3 is strict for groups of type (p, n) 
with p 2 1.

Proof. If the graph of the group contains a subgraph of type (1, 1), the state­
ment of the theorem follows from the Remarks in Section 5.1. If this is not the 
case, there is a subgraph of type (1, n) for some n 2 2. This graph corresponds 
to a subgroup constructed by n - 1 operations of type I and an operation of type 
II. 

First we need to fix the local coordinates on the spheres to be glued in the 
construction: Let the special points on the sphere Si be Pl , Pl and P/ , named 
in such a way that P/ will be a special point on the surface resulting from the 
gluing, that is, only Pl and Pl are used in the gluing construction corresponding 
to the subgraph of type ( 1, n) . Let 

be a gluing parameter with 

if the i th gluing is elliptic, and 

if the i th gluing is parabolic. 

i 

Ti = - log h(Q, ai), 
7r 

This parameter defines a singular circular polygon with an identification pat­
tern as in Figure 12. The transformation that realizes the HNN extension in the 
construction of type II fixes the point 

(8.1) 

where Ci is the properly chosen component of the lift of the boundary curve of 
the removed orbifold disk (in the case of elliptic gluing) or punctured disk in the 
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Figure 12. An example of a gluing producing a noded surface repre­
senting a boundary point of a deformation space of type (1, 3). The 
points Pf, P} and Pj project to special points on the quotient surface 
and the point Q projects to a node. The simple closed curve , on a 
Riemann surface of type (1, 3) has degenerated to the points Q on the 
surface with nodes. 
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case of parabolic gluing. The fact that the intersection ( 8.1) consists of a single 
point follows from the observation in Section 3.1 about positive gluing parameters. 

The group has a finite sided fundamental polyhedron in JHI3 that has Q as a 
boundary point at infinity, so the element fixing Q cannot be loxodromic. Also, 
the group is an algebraic limit of Kleinian groups corresponding to parameters 
inside the punctured polydisk given by Theorem 3 and converging to the boundary 
point. The element corresponding to the one fixing Q is known to be loxodromic 
in any of the approximating groups, so the element fixing Q must be parabolic. 
Therefore, it corresponds to a node on the quotient surface and we have found a 
boundary point of the deformation space. □
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