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Abstract 

In the era of Industry 4.0 and beyond, intelligent and reliable models are vital for processes and assets. Models in smart 
manufacturing involve combining knowledge-based and data-driven methods with discrete and continuous modelling components. 
Formalism choice determines models' strengths and weaknesses in accuracy, efficiency, robustness, and explainability. Hybrid 
models seem to be the only way to address the complexity of modern industrial systems with respect to different and conflicting 
quality criteria. This study focuses on three paradigms: Petri nets, cellular automata, and neural network driven deep learning. We 
create four hybrids: Petri nets controlling deep neural networks, and vice versa; cellular automata controlling deep neural networks, 
and vice versa. These hybrids combine explainable discrete models with continuous black-box models, enhancing either 
explainability with robustness or elevating accuracy with efficiency. The flexibility of these and similar hybrids enable 
enhancement of the scope and quality of modeling and simulation in smart manufacturing.  
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1. Introduction 

Reliable process models for design, control, operation and troubleshooting purposes are a key for efficient Industry 
4.0 and smart manufacturing [1]. Taking into account the emerging “Industry 4.0 to Industry 5.0 transformation” 
challenge with human centricity and resilience in the focus [2], the traditional process modelling approaches, such as 
discrete-event modelling, must be enhanced with more sophisticated ones, including human behavior modelling 
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techniques. The latter require continuous computations and handling uncertainties when dealing with many social, 
cognitive, behavioral, ergonomic, and other human factors [3]. Therefore, the required models will be hybrid in their 
mathematical nature and will combine discrete and continuous modelling components with the autonomous (agent-
based, behavioral, human) factors [4]. 

As mentioned in [5], a data-driven simulation model (e.g., digital twin design) requires machine learning and data 
mining for model extraction from data and its integration into the IoT system. According to [6], different modelling 
formalisms and frameworks have been developed to capture the discrete behavior of manufacturing systems. However, 
a purely discrete model does not capture the continuous variables of machine-level operation. Therefore, [6] suggests 
a framework for modeling and simulating manufacturing systems that captures the relationship between different 
quality indicators, which requires a hybrid model of machine dynamics combining discrete states and continuous 
variables. Continuous modelling frameworks are also either knowledge-based (e.g., physics-based modelling [7]) or 
data-driven, e.g., based on neural networks and deep learning [8], both of which have their strengths and weaknesses. 

To overcome the limitations associated with purely knowledge-based and data-driven modeling frameworks, 
samples of hybrid models have been developed [9] and are still necessary, with improved model transparency, 
interpretability, and efficient analytics. Potential hybrids include: physics-informed machine learning [10], [11]; 
machine-learning-assisted simulation [12]; and explainable artificial intelligence [13]. These are expected to address 
smart manufacturing issues like product design, operation and maintenance, driven by comprehensive decision-
making, while trading off between accuracy and explainability and dealing with both discrete and continuous 
simulations. 

In [14], a hybrid has been defined as the result of merging two or more components of different categories to 
generate something new that combines the characteristics of these components into something more useful. Hybrid 
simulation (defined as a modelling approach that combines two or more of the following methods: discrete-event 
simulation, continuous system dynamics, and agent-driven system behavior) has recently experienced huge popularity 
[15]. According to [16], two (or potentially more) independent models A and B of different categories, being developed 
to address separate aspects of a problem with different formalisms, could be combined as a hybrid in one of these 
ways: 

(a) Sequential: [Output (Model A) → Input (Model B)] ⟹ [Output (Hybrid) = Output (Model B)]; 
(b) Interactive: {[Output (Model A) → Input (Model B)] AND [Output (Model B) → Input (Model A)]} ⟹ 

{Output (Hybrid) = [Output (Model A) OR Output (Model B)}; 
(c) Mixed: {Context I ⟹ [Output (Hybrid) = Output (Model A)]}; {Context II ⟹ [Output (Hybrid) = Output 

(Model B)]}; {Context III ⟹ [Output (Hybrid) = Output (Model A) ⊕ Output (Model B)]}.  

We, however, will add here one important type of missing hybrid as follows:  

 (d) Managed: {[Output (Model A) → Configuration (Model B)] ⟹ [Output (Hybrid) = Output (Model B)]} OR 
{[Output (Model B) → Configuration (Model A)] ⟹ [Output (Hybrid) = Output (Model A)]}. 

The latter (d) means that Model B is actually “does the job” while Model A controls the configuration (structure, 
hyperparameters, etc.) of Model B, or vice versa. Our former studies (summarized in [17]) considered such models as 
“meta-models” (i.e., “homogeneous hybrids” as defined in [18]) when models A and B are of the same category. 
Examples of these include semantic metanetworks [19], Bayesian metanetworks [20], and metapetrinets [21] among 
others. 

In this paper, we are looking for heterogeneous hybrids of type (d). We consider A vs. B in the hybrids to be types 
of different modeling paradigms, either continuous vs. discrete modelling or vice versa. Our particular interest in this 
study focuses on hybrids, where Petri Nets or Cellular Automata represent the discrete modelling component within 
the hybrid (either managing one or being managed) and deep neural networks represent the continuous modelling 
component.  

Petri Nets (PN) [22] are known to be a useful mathematical formalism (supported by various analysis and 
verification methods) for specification, discrete modelling and simulation of manufacturing systems. Consider, for 
example (among many), a PN model of a smart factory, which is proposed in [23] to support decision-making in mass 
customization. In the model, a token net is associated to the product and a system net to the facility. The resulting 
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techniques. The latter require continuous computations and handling uncertainties when dealing with many social, 
cognitive, behavioral, ergonomic, and other human factors [3]. Therefore, the required models will be hybrid in their 
mathematical nature and will combine discrete and continuous modelling components with the autonomous (agent-
based, behavioral, human) factors [4]. 

As mentioned in [5], a data-driven simulation model (e.g., digital twin design) requires machine learning and data 
mining for model extraction from data and its integration into the IoT system. According to [6], different modelling 
formalisms and frameworks have been developed to capture the discrete behavior of manufacturing systems. However, 
a purely discrete model does not capture the continuous variables of machine-level operation. Therefore, [6] suggests 
a framework for modeling and simulating manufacturing systems that captures the relationship between different 
quality indicators, which requires a hybrid model of machine dynamics combining discrete states and continuous 
variables. Continuous modelling frameworks are also either knowledge-based (e.g., physics-based modelling [7]) or 
data-driven, e.g., based on neural networks and deep learning [8], both of which have their strengths and weaknesses. 

To overcome the limitations associated with purely knowledge-based and data-driven modeling frameworks, 
samples of hybrid models have been developed [9] and are still necessary, with improved model transparency, 
interpretability, and efficient analytics. Potential hybrids include: physics-informed machine learning [10], [11]; 
machine-learning-assisted simulation [12]; and explainable artificial intelligence [13]. These are expected to address 
smart manufacturing issues like product design, operation and maintenance, driven by comprehensive decision-
making, while trading off between accuracy and explainability and dealing with both discrete and continuous 
simulations. 

In [14], a hybrid has been defined as the result of merging two or more components of different categories to 
generate something new that combines the characteristics of these components into something more useful. Hybrid 
simulation (defined as a modelling approach that combines two or more of the following methods: discrete-event 
simulation, continuous system dynamics, and agent-driven system behavior) has recently experienced huge popularity 
[15]. According to [16], two (or potentially more) independent models A and B of different categories, being developed 
to address separate aspects of a problem with different formalisms, could be combined as a hybrid in one of these 
ways: 

(a) Sequential: [Output (Model A) → Input (Model B)] ⟹ [Output (Hybrid) = Output (Model B)]; 
(b) Interactive: {[Output (Model A) → Input (Model B)] AND [Output (Model B) → Input (Model A)]} ⟹ 

{Output (Hybrid) = [Output (Model A) OR Output (Model B)}; 
(c) Mixed: {Context I ⟹ [Output (Hybrid) = Output (Model A)]}; {Context II ⟹ [Output (Hybrid) = Output 

(Model B)]}; {Context III ⟹ [Output (Hybrid) = Output (Model A) ⊕ Output (Model B)]}.  

We, however, will add here one important type of missing hybrid as follows:  

 (d) Managed: {[Output (Model A) → Configuration (Model B)] ⟹ [Output (Hybrid) = Output (Model B)]} OR 
{[Output (Model B) → Configuration (Model A)] ⟹ [Output (Hybrid) = Output (Model A)]}. 

The latter (d) means that Model B is actually “does the job” while Model A controls the configuration (structure, 
hyperparameters, etc.) of Model B, or vice versa. Our former studies (summarized in [17]) considered such models as 
“meta-models” (i.e., “homogeneous hybrids” as defined in [18]) when models A and B are of the same category. 
Examples of these include semantic metanetworks [19], Bayesian metanetworks [20], and metapetrinets [21] among 
others. 

In this paper, we are looking for heterogeneous hybrids of type (d). We consider A vs. B in the hybrids to be types 
of different modeling paradigms, either continuous vs. discrete modelling or vice versa. Our particular interest in this 
study focuses on hybrids, where Petri Nets or Cellular Automata represent the discrete modelling component within 
the hybrid (either managing one or being managed) and deep neural networks represent the continuous modelling 
component.  

Petri Nets (PN) [22] are known to be a useful mathematical formalism (supported by various analysis and 
verification methods) for specification, discrete modelling and simulation of manufacturing systems. Consider, for 
example (among many), a PN model of a smart factory, which is proposed in [23] to support decision-making in mass 
customization. In the model, a token net is associated to the product and a system net to the facility. The resulting 
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model could be useful for analysis and performance evaluation, and, therefore, for decision support. A number of 
challenges regarding the PN formalism have been discussed in [24], which is a good review of real case studies within 
Industry 4.0. An important challenge related to the application of PNs for smart manufacturing is dealing with the 
deadlocks. Deadlocks are considered as undesirable states in a manufacturing system, which block its functioning. To 
deal with the deadlocks, either a system should be robust, i.e., constructed in such a way that the deadlocks cannot 
happen; or it should be resilient, i.e., capable of recovering from the deadlocks. These two options correspond to the 
two main approaches to the deadlock problem: their prevention or recovery. Automated manufacturing systems 
capable of deadlock prevention and recovery need special modified or hybrid PNs architectures, which are among the 
concerns of current research and development. Therefore, conclusions in [24] consider structural flexibility 
(reconfigurability) of PN models as an important future trend towards their further robustness, resilience, fault-
tolerance, conflict-resolution, reachability, etc. 

Cellular Automata (CA) [25] is another popular discrete modelling tool with a long history [26], which is used to 
model different and complex real life problems to facilitate their cost-effective physical implementation. CA are 
supposed to evolve over discrete space-time in single or multiple dimensions according to certain neighborhood-driven 
rules. CA are known to be massively parallel, homogeneous models with local interactions, and these models can be 
configured to behave as computationally universal simulators. The most famous CA of all times is Conway’s “Game 
of Life” [27]. It is a two-dimensional CA, consisting of “living” and “non-living” cells. CA simulates artificial life by 
the rules: a living cell stays alive if there are exactly two or three living cells among the eight surrounding cells; fewer 
than two living neighbors will result in death through isolation; more than three living neighbors will cause death by 
overcrowding; and a non-living cell becomes alive if it has precisely three living neighbors. CA appear to be simple 
and efficient discrete simulators for a variety of tasks within industry, from the global to more focused simulations. 
For example, the conceptual model of industrial evolution presented in [28] is based on CA. In evolutionary simulation, 
the proposed model is able to appropriately explain the long-term evolution of industrial economic structures in both 
time and space, where CA representation has been used for land-use patterns and companies’ spatial locations. The 
simulation results explain the competitive spatial organization of production in clusters of smaller companies. In 
another study presented in [29], CA has been used to accelerate the industrial information integration process by 
facilitating Big Data processing at low energy consumption in the Industry 4.0 scenario. Their study optimized the use 
of CA to explore true dynamics of modelled processes towards a cost-effective and “green” model for Industry 4.0. 
There were always attempts to add smartness and learnability to the CA framework, see e.g., learning CA [30]. 

Neural Networks (NN) and the modern Deep Learning framework [31] are the drivers of the technological 
revolution in data-driven continuous simulations for Industry 4.0 [32], [33]. Deep neural networks (and their 
variations) as the basis for simulation models’ architecture show surprisingly high performance in modern industrial 
applications comparably to the former approaches [8]. However, this advantage comes at a high price, which is the 
lack of interpretability of such models and their behavior [34]. 

Objectives of our study presented in this paper include suggesting, designing, and studying potential applications 
for the following hybrid architectures: (1) PN controls configuration of NN; (2) NN controls configuration of PN; (3) 
CA controls configuration of NN; and (4) NN controls configuration of CA. 

Because our focus is on the hybrids with the continuous vs. discrete modelling components, in this study we omit 
such hybrids as CA→PN and PN→CA, but interesting attempts to approach such hybrids are available in [35], [36], 
[37], and [38].  

The following text of the paper is organized as follows: In Section 2, we present PN→NN and NN→PN hybrids; 
In Section 3, we present CA→NN and NN→CA hybrids; In Section 4, we discuss potential applications for hybrids; 
and we conclude in Section 5. Related work will be cited throughout the paper. 

2. Hybrids of Petri Nets and Neural Networks 

In this section, we are going to present two hybrid models where a discrete modelling component (PN) controls the 
configuration of a continuous modelling component (deep NN) and vice versa. 
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2.1. Petri net controls neural network 

The goal of training NNs means finding such NN architecture (configuration, depth, hyperparameters, etc.) that 
being trained will generalize well on the given dataset (i.e., will perform well on training data and then passes tests on 
previously unseen data).  However, while trying too hard to learn different features from the dataset, NNs often overfit, 
i.e., in addition to learning the main concept, they become biased towards possible statistical noise in the dataset. 
Various regularization techniques have been used to address overfitting, among which one of the most common and 
efficient is dropout [39]. Dropout means randomly dropping out (according to defined dropout probability) the neurons 
(usually from hidden layers) in NN so that all the forward and backwards connections of these neurons are also 
removed, thus creating a new (more modest) network configuration from the parent network. Dropout is performed 
during NN training so that NN configuration is different during each training batch. This ensures that the model is 
getting generalized and hence reducing possible overfitting. 

The randomness of the dropout process [40] makes the job but leaves some uncertainty in the final generalization 
success because it keeps the data scientist out of the NN training process control loop. We would like to suggest a way 
to explicitly control the dropout process by using PN (this subsection) or CA (subsection 4.1). The proposed hybrid 
model for this purpose is shown in Fig. 1.  

 
Fig. 1. A hybrid, which implements a PN-driven drop-out control for a deep NN is illustrated: (a) places of the PN from the upper layer correspond 
to the hidden neurons of the NN from the lower layer; (b) the initial PN marking with the tokens (“keys”) unlocks the corresponding neurons 
from the lower layer NN (i.e., these with corresponding keys will be “unlocked” and become active for training while others will be removed 
from current NN configuration); (c) PN generates its new marking due to fired transitions and, therefore, new neurons will be unlocked by the 
tokens (keys) while others locked (removed); (d) the last cycle of PN marking and corresponding NN configuration; (e) all three configurations 
are making decision independently and their result is integrated into final probability distribution among the classes behind the output neurons. 
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model could be useful for analysis and performance evaluation, and, therefore, for decision support. A number of 
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happen; or it should be resilient, i.e., capable of recovering from the deadlocks. These two options correspond to the 
two main approaches to the deadlock problem: their prevention or recovery. Automated manufacturing systems 
capable of deadlock prevention and recovery need special modified or hybrid PNs architectures, which are among the 
concerns of current research and development. Therefore, conclusions in [24] consider structural flexibility 
(reconfigurability) of PN models as an important future trend towards their further robustness, resilience, fault-
tolerance, conflict-resolution, reachability, etc. 

Cellular Automata (CA) [25] is another popular discrete modelling tool with a long history [26], which is used to 
model different and complex real life problems to facilitate their cost-effective physical implementation. CA are 
supposed to evolve over discrete space-time in single or multiple dimensions according to certain neighborhood-driven 
rules. CA are known to be massively parallel, homogeneous models with local interactions, and these models can be 
configured to behave as computationally universal simulators. The most famous CA of all times is Conway’s “Game 
of Life” [27]. It is a two-dimensional CA, consisting of “living” and “non-living” cells. CA simulates artificial life by 
the rules: a living cell stays alive if there are exactly two or three living cells among the eight surrounding cells; fewer 
than two living neighbors will result in death through isolation; more than three living neighbors will cause death by 
overcrowding; and a non-living cell becomes alive if it has precisely three living neighbors. CA appear to be simple 
and efficient discrete simulators for a variety of tasks within industry, from the global to more focused simulations. 
For example, the conceptual model of industrial evolution presented in [28] is based on CA. In evolutionary simulation, 
the proposed model is able to appropriately explain the long-term evolution of industrial economic structures in both 
time and space, where CA representation has been used for land-use patterns and companies’ spatial locations. The 
simulation results explain the competitive spatial organization of production in clusters of smaller companies. In 
another study presented in [29], CA has been used to accelerate the industrial information integration process by 
facilitating Big Data processing at low energy consumption in the Industry 4.0 scenario. Their study optimized the use 
of CA to explore true dynamics of modelled processes towards a cost-effective and “green” model for Industry 4.0. 
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revolution in data-driven continuous simulations for Industry 4.0 [32], [33]. Deep neural networks (and their 
variations) as the basis for simulation models’ architecture show surprisingly high performance in modern industrial 
applications comparably to the former approaches [8]. However, this advantage comes at a high price, which is the 
lack of interpretability of such models and their behavior [34]. 
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Because our focus is on the hybrids with the continuous vs. discrete modelling components, in this study we omit 
such hybrids as CA→PN and PN→CA, but interesting attempts to approach such hybrids are available in [35], [36], 
[37], and [38].  

The following text of the paper is organized as follows: In Section 2, we present PN→NN and NN→PN hybrids; 
In Section 3, we present CA→NN and NN→CA hybrids; In Section 4, we discuss potential applications for hybrids; 
and we conclude in Section 5. Related work will be cited throughout the paper. 

2. Hybrids of Petri Nets and Neural Networks 

In this section, we are going to present two hybrid models where a discrete modelling component (PN) controls the 
configuration of a continuous modelling component (deep NN) and vice versa. 
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2.1. Petri net controls neural network 

The goal of training NNs means finding such NN architecture (configuration, depth, hyperparameters, etc.) that 
being trained will generalize well on the given dataset (i.e., will perform well on training data and then passes tests on 
previously unseen data).  However, while trying too hard to learn different features from the dataset, NNs often overfit, 
i.e., in addition to learning the main concept, they become biased towards possible statistical noise in the dataset. 
Various regularization techniques have been used to address overfitting, among which one of the most common and 
efficient is dropout [39]. Dropout means randomly dropping out (according to defined dropout probability) the neurons 
(usually from hidden layers) in NN so that all the forward and backwards connections of these neurons are also 
removed, thus creating a new (more modest) network configuration from the parent network. Dropout is performed 
during NN training so that NN configuration is different during each training batch. This ensures that the model is 
getting generalized and hence reducing possible overfitting. 

The randomness of the dropout process [40] makes the job but leaves some uncertainty in the final generalization 
success because it keeps the data scientist out of the NN training process control loop. We would like to suggest a way 
to explicitly control the dropout process by using PN (this subsection) or CA (subsection 4.1). The proposed hybrid 
model for this purpose is shown in Fig. 1.  

 
Fig. 1. A hybrid, which implements a PN-driven drop-out control for a deep NN is illustrated: (a) places of the PN from the upper layer correspond 
to the hidden neurons of the NN from the lower layer; (b) the initial PN marking with the tokens (“keys”) unlocks the corresponding neurons 
from the lower layer NN (i.e., these with corresponding keys will be “unlocked” and become active for training while others will be removed 
from current NN configuration); (c) PN generates its new marking due to fired transitions and, therefore, new neurons will be unlocked by the 
tokens (keys) while others locked (removed); (d) the last cycle of PN marking and corresponding NN configuration; (e) all three configurations 
are making decision independently and their result is integrated into final probability distribution among the classes behind the output neurons. 
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The hybrid model (Fig. 1) has two layers: the upper one or the controlling layer is a PN; and the lower one or the 

controlled layer is a NN. The places of the controlling PN correspond to the hidden neurons of the controlled NN (Fig. 
1a). A neuron from the NN configuration is considered as active (i.e., it is “unlocked” and is taking part in the current 
NN configuration) if there is a token (“key”) in the corresponding place of the PN; otherwise the neuron is “locked” 
or dropped-out from the current configuration (Fig. 1b). PN behaves by changing its marking due to firing its 
transitions (Fig. 1c, d). Accordingly, the NN is changing its configuration because some neurons will be unlocked and 
some locked back (dropped out). Resulting configurations are trained independently with the particular batches of data 
and take part in the final decision as an ensemble (Fig. 1e). This process means that, instead of a random choice of the 
dropped-out neurons for each configuration, we have the controllable (by PN) dropout process. 

2.2. Neural network controls Petri net 

Here we suggest a hybrid model architecture (see Fig. 2) where some PN simulates a complex logistic process and 
NNs control the PN structure. These NNs are trained to automatically detect (recognize, classify) various items 
appearing in the process, make decisions on corresponding structural changes needed within the PN architecture to 
handle the recognized items and enforce the decided changes in run-time. Fig. 2a illustrates the way NNs interact with 
PN in the hybrid model. Certain transitions in PN can be “lockable”, i.e., when locked (dropped-out) they do not fire. 
The status of such transitions (“locked” or “unlocked”) is defined by the so-called metatransition. Metatransition has 
one input place (metaplace). Tokens, which may appear in the metaplaces, are attributed to particular (physical) items, 
which are defined by a set of measurable parameters (continuous attributes of tabular or image data formats). 
Metatransition works as a NN, i.e., takes the vector of an item’s parameters as an input and outputs the decision as a 
status (“locked”, “unlocked”) for a corresponding PN transition. In this way, depending on what kind of item is 
“travelling” through the PN structure, the particular (unlocked) PNs substructure will be taking care of its further 
logistics. Such a hybrid automates (due to NNs) tagging of items (aka “coloring” them according to the “colored PN” 
terminology) and adapting (personalizing) the PN structure to the particular items. One particular use-case scenario 
(Fig. 2b), where NN controls logistic structure based on the recognition of items observed through the camera, will be 
discussed in Section 4. 

3. Hybrids of Cellular Automata and Neural Networks 

In this section, we are going to present two hybrid models where a discrete modelling component (CA) controls the 
configuration of a continuous modelling component (deep NN) and vice versa. 

3.1.  Cellular automata control neural network 

The hybrid presented here has similar objective to the one from subsection 2.1, i.e., discrete and explainable control 
of the dropout regularization for NNs. However, here we have different instruments for approaching the objective, i.e., 
CA instead of PN. The unique specifics of CA makes the control itself very different from the one applied to PN. Fig. 
3 illustrates the hybrid. The deep NN in the figure performs the main modelling task while the CA is controlling its 
structure to achieve better generalization performance of the NN. The cells in CA correspond to the neurons in NN 
and interact in a way (see Fig. 3a) that: if the cell (aka the “locking key”) is initialized or changed to “alive” status, 
then the corresponding neuron of the NN will be dropped-out (“locked” or “frozen”); if the cell “dies” (the key 
disappears), then the corresponding neuron of the NN will be activated (dropped-back or “awakened”). In this way, 
every new generation of living cells (which appears following the CA rules), defines the currently operating 
substructure of NN. Fig. 3b demonstrates the part of the CA process (four generations) operating according to 
Conway’s “Game of Life” rules [27]. One may see that each generation locks (unlocks) corresponding neurons of the 
NN. Therefore, it implements the dropout process where four different NN sub-architectures (as a kind of ensemble) 
will potentially generalize better than the complete NN can do. CA, in this case, works like an explainable controller, 
i.e., one can consciously change its impact by defining the initial generation of living cells or by changing the rules. 
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Fig. 2. Neural-Network-driven Petri Net process control illustrated: (a) some PN tokens can be attributed to particular physical items described by 
a vector of measurable attributes. Some PN transitions can be locked (dropped-out) or unlocked (dropped-back). Decisions on the transition status 
for lockable transitions are made by NN after processing such tokens’ attributes; (b) example scenario where the camera observes each item and 
NN decides on further logistics to be applied to handle the item (i.e., some parts of PN architecture, which simulates the logistics, will be locked). 
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The hybrid model (Fig. 1) has two layers: the upper one or the controlling layer is a PN; and the lower one or the 
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1a). A neuron from the NN configuration is considered as active (i.e., it is “unlocked” and is taking part in the current 
NN configuration) if there is a token (“key”) in the corresponding place of the PN; otherwise the neuron is “locked” 
or dropped-out from the current configuration (Fig. 1b). PN behaves by changing its marking due to firing its 
transitions (Fig. 1c, d). Accordingly, the NN is changing its configuration because some neurons will be unlocked and 
some locked back (dropped out). Resulting configurations are trained independently with the particular batches of data 
and take part in the final decision as an ensemble (Fig. 1e). This process means that, instead of a random choice of the 
dropped-out neurons for each configuration, we have the controllable (by PN) dropout process. 

2.2. Neural network controls Petri net 

Here we suggest a hybrid model architecture (see Fig. 2) where some PN simulates a complex logistic process and 
NNs control the PN structure. These NNs are trained to automatically detect (recognize, classify) various items 
appearing in the process, make decisions on corresponding structural changes needed within the PN architecture to 
handle the recognized items and enforce the decided changes in run-time. Fig. 2a illustrates the way NNs interact with 
PN in the hybrid model. Certain transitions in PN can be “lockable”, i.e., when locked (dropped-out) they do not fire. 
The status of such transitions (“locked” or “unlocked”) is defined by the so-called metatransition. Metatransition has 
one input place (metaplace). Tokens, which may appear in the metaplaces, are attributed to particular (physical) items, 
which are defined by a set of measurable parameters (continuous attributes of tabular or image data formats). 
Metatransition works as a NN, i.e., takes the vector of an item’s parameters as an input and outputs the decision as a 
status (“locked”, “unlocked”) for a corresponding PN transition. In this way, depending on what kind of item is 
“travelling” through the PN structure, the particular (unlocked) PNs substructure will be taking care of its further 
logistics. Such a hybrid automates (due to NNs) tagging of items (aka “coloring” them according to the “colored PN” 
terminology) and adapting (personalizing) the PN structure to the particular items. One particular use-case scenario 
(Fig. 2b), where NN controls logistic structure based on the recognition of items observed through the camera, will be 
discussed in Section 4. 

3. Hybrids of Cellular Automata and Neural Networks 

In this section, we are going to present two hybrid models where a discrete modelling component (CA) controls the 
configuration of a continuous modelling component (deep NN) and vice versa. 

3.1.  Cellular automata control neural network 

The hybrid presented here has similar objective to the one from subsection 2.1, i.e., discrete and explainable control 
of the dropout regularization for NNs. However, here we have different instruments for approaching the objective, i.e., 
CA instead of PN. The unique specifics of CA makes the control itself very different from the one applied to PN. Fig. 
3 illustrates the hybrid. The deep NN in the figure performs the main modelling task while the CA is controlling its 
structure to achieve better generalization performance of the NN. The cells in CA correspond to the neurons in NN 
and interact in a way (see Fig. 3a) that: if the cell (aka the “locking key”) is initialized or changed to “alive” status, 
then the corresponding neuron of the NN will be dropped-out (“locked” or “frozen”); if the cell “dies” (the key 
disappears), then the corresponding neuron of the NN will be activated (dropped-back or “awakened”). In this way, 
every new generation of living cells (which appears following the CA rules), defines the currently operating 
substructure of NN. Fig. 3b demonstrates the part of the CA process (four generations) operating according to 
Conway’s “Game of Life” rules [27]. One may see that each generation locks (unlocks) corresponding neurons of the 
NN. Therefore, it implements the dropout process where four different NN sub-architectures (as a kind of ensemble) 
will potentially generalize better than the complete NN can do. CA, in this case, works like an explainable controller, 
i.e., one can consciously change its impact by defining the initial generation of living cells or by changing the rules. 
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Fig. 2. Neural-Network-driven Petri Net process control illustrated: (a) some PN tokens can be attributed to particular physical items described by 
a vector of measurable attributes. Some PN transitions can be locked (dropped-out) or unlocked (dropped-back). Decisions on the transition status 
for lockable transitions are made by NN after processing such tokens’ attributes; (b) example scenario where the camera observes each item and 
NN decides on further logistics to be applied to handle the item (i.e., some parts of PN architecture, which simulates the logistics, will be locked). 
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Fig. 3. Cellular-Automata-driven dropout control in deep NN is illustrated: (a) cells in CA are attributed to the neurons in NN so that 
the status “alive” for each cell (marked with the “key”) means status “locked” (dropped-out) for the corresponding neuron; (b) example 
of CA evolution (with respect to the rules) and corresponding changes enforced in the NN structure. This in fact controls the dropout 
process, making the regularization (for better NN generalization performance) benefit from conscious control instead of randomness.  

3.2. Neural network controls cellular automata 

Here the basic modelling layer of the hybrid architecture is CA, which simulates a dynamic evolutionary process 
by applying the defined set of rules. The NN-driven layer is used on top of CA, aiming to change the rules (to switch 
from one set of rules to another one in the run-time) depending on the observed and changing context. Therefore, CA 
can simulate quite complex dynamics, where the modelling layer is locally simple and explainable and the controlling 
layer is learnable and adaptive to more global context changes. The hybrid architecture is illustrated in Fig. 4. 
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Fig. 4. Neural-Network-driven Cellular-Automata process control illustrated. One may see that CA-driven process simulation is generated 
and evolving according to the set of rules chosen by the NN on top of it. In the figure, the currently active set of rules (#4) is the one from 
Conway’s “Game of Life”.  However, if context changes and the NN gives advantage to another set of rules, then the process dynamics will 
change in the run-time accordingly.  

4. Discussion 

We have presented several possible options for the hybrid modelling architecture, which combines continuous and 
discrete modelling components. We construct the hybrids from two components in a way that one component controls 
the configuration or behavior (evolution dynamics) of another one. In this section, we are going to discuss potential 
application areas and use cases for these hybrids in the context of Industry 4.0 and smart manufacturing. 

Taking into account that chosen components (PNs and CA for discrete modelling) and NNs for continuous 
modelling have their special features (also pros and cons), the hybrids constructed from these components may have 
interesting and useful properties.   

PNs are good for simulating, visualizing, analyzing consistency and optimizing (with expert support) the dynamic 
(logistics) processes. One may easily see how the items are “travelling” through the PN model structure following the 
transitions’ logic. Experts can relatively easily observe the simulations, understand what is ongoing there and make 
needed changes consciously. However, PNs are not capable of learning or making intelligent decisions. They are not 
capable of self-management (particularly self-configuration) for, e.g., automatically recovering from possible 
deadlocks. This may limit their use in Industry 4.0 and smart manufacturing. PNs are good as decision-support tools 
but not as decision-making ones. 

CA is a good tool for modelling evolutionary non-linear (spatially and temporally discrete) dynamics following 
state update functions or transition rules, and they can emulate anything computable like a universal Turing machine 
(i.e., an appropriate selection of initial conditions can ensure that the system carries out arbitrary algorithmic 
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Fig. 3. Cellular-Automata-driven dropout control in deep NN is illustrated: (a) cells in CA are attributed to the neurons in NN so that 
the status “alive” for each cell (marked with the “key”) means status “locked” (dropped-out) for the corresponding neuron; (b) example 
of CA evolution (with respect to the rules) and corresponding changes enforced in the NN structure. This in fact controls the dropout 
process, making the regularization (for better NN generalization performance) benefit from conscious control instead of randomness.  

3.2. Neural network controls cellular automata 

Here the basic modelling layer of the hybrid architecture is CA, which simulates a dynamic evolutionary process 
by applying the defined set of rules. The NN-driven layer is used on top of CA, aiming to change the rules (to switch 
from one set of rules to another one in the run-time) depending on the observed and changing context. Therefore, CA 
can simulate quite complex dynamics, where the modelling layer is locally simple and explainable and the controlling 
layer is learnable and adaptive to more global context changes. The hybrid architecture is illustrated in Fig. 4. 
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and evolving according to the set of rules chosen by the NN on top of it. In the figure, the currently active set of rules (#4) is the one from 
Conway’s “Game of Life”.  However, if context changes and the NN gives advantage to another set of rules, then the process dynamics will 
change in the run-time accordingly.  

4. Discussion 

We have presented several possible options for the hybrid modelling architecture, which combines continuous and 
discrete modelling components. We construct the hybrids from two components in a way that one component controls 
the configuration or behavior (evolution dynamics) of another one. In this section, we are going to discuss potential 
application areas and use cases for these hybrids in the context of Industry 4.0 and smart manufacturing. 

Taking into account that chosen components (PNs and CA for discrete modelling) and NNs for continuous 
modelling have their special features (also pros and cons), the hybrids constructed from these components may have 
interesting and useful properties.   

PNs are good for simulating, visualizing, analyzing consistency and optimizing (with expert support) the dynamic 
(logistics) processes. One may easily see how the items are “travelling” through the PN model structure following the 
transitions’ logic. Experts can relatively easily observe the simulations, understand what is ongoing there and make 
needed changes consciously. However, PNs are not capable of learning or making intelligent decisions. They are not 
capable of self-management (particularly self-configuration) for, e.g., automatically recovering from possible 
deadlocks. This may limit their use in Industry 4.0 and smart manufacturing. PNs are good as decision-support tools 
but not as decision-making ones. 

CA is a good tool for modelling evolutionary non-linear (spatially and temporally discrete) dynamics following 
state update functions or transition rules, and they can emulate anything computable like a universal Turing machine 
(i.e., an appropriate selection of initial conditions can ensure that the system carries out arbitrary algorithmic 
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procedures). It is known that quite simple CA rules can result in quite complex dynamics. However, approaching the 
rules from the observed dynamics of the real industrial systems is not an easy task. Typical industrial use cases include 
physical processes simulation and analysis (such as gas or fluid dynamics, morphological growth of various materials), 
energy consumption, business evolution simulation, secure data flow through advanced cryptography, etc. However, 
CAs themselves cannot yet learn and make decisions on reconfiguration (if and when necessary) of the rule set which 
they follow. CA can simulate complex systems (even intelligent ones) and it can be used as a decision-support tool 
(with informative and explainable visualization). However, it cannot be considered as an intelligent modelling 
framework or automatic decision-making tool yet. CA would definitely benefit from the development of self-
optimization techniques on automatic designing and self-configuration of the local rules in accordance with the 
particular real world industrial phenomena. 

NNs are good when the objective is a decision-making model and the model is automatically constructed (by 
learning) based on training data (with mainly continuous attributes). Mathematical fitness to data without real 
understanding of the nature behind it makes NNs, on the one hand, highly performed (good accuracy) in making 
decisions, however, on the other hand, incapable of giving any clue about how and why just these decisions have been 
chosen (lack of interpretability and explainability). Therefore, NNs is a good (also intelligent and learnable) tool for 
automatic decision-making (when appropriate) but not for such responsible decision-support tasks where human 
experts need to see an interpretable simulation model and understand its outcomes.  

Therefore, the expectations regarding the hybrids presented in this paper is that they will inherit the strengths of the 
component architectures, i.e.: intellect and high decision accuracy from NNs; together with simulation effectiveness 
and explainability from PNs and CA).   

The hybrids PN→NN and CA→NN (with the generic slogan “towards improved manageability and explainability 
of the black-box decision models”) are designed to support general decision-making objectives and the NN component 
guarantees that. However, PN or CA (each with its own flavor) add some interpretable (explainable) control option 
(particularly dropout control) to manage the way NN is being trained. This means that the dynamics and evolution of 
some real industrial processes (simulated by PN or CA) can directly influence the processes of finding an optimal NN 
architecture (dropout as a NN’s structure learning and regularization process) to make better decisions within particular 
decision points of these processes. As a summary, we may say that such a couple of hybrids provide some explainable 
control option for human experts (i.e., industrial domain experts rather than data scientists) to manage high-performing 
but “black-box” decision models in smart manufacturing. We believe that hybrid architectures, PN→NN and 
CA→NN, where Petri nets and cellular automata control dropout in neural networks, offer intriguing possibilities for 
improving the performance of dropout techniques. These combinations of different computational paradigms can 
potentially find applications in various Industry 4.0 contexts where advanced data analysis and decision-making are 
crucial. Here there is a couple of industrial applications where such hybrids may work effectively: (a) manufacturing 
process optimization – by integrating real-time data from sensors with the NN’s decision-making process, the system 
could dynamically adjust dropout policies based on the current state of the process (defined by PN or CA), leading to 
higher NN’s accuracy and, therefore, to enhanced process efficiency and reduced defects; (b) similarly in predictive 
maintenance NNs could adapt dropout based on historical maintenance records and sensor data, resulting in more 
precise predictions, etc. 

The hybrids NN→PN and NN→CA (with the generic slogan “bringing more intelligence and learnability into the 
discrete simulation models”) are designed for modelling, simulation and decision-support objectives and either the PN 
component or the CA component guarantee that. However, the NN component on top embeds some learnable 
intelligence into the basic models. These hybrids enable “smarter” self-configurable PNs or CA based on the decisions 
automatically made by NN. This means that additional intelligence (learnable from data as a NN) may enhance the 
decision points within industrial processes previously managed by humans or hardcoded by the fixed rules. In this 
way, the decision-making power of PNs and CA will grow due to the known high decision performance of NNs. 
Therefore, we may say that the hybrids NN→PN and NN→CA enable discrete simulation models (PN or CA) to 
benefit from the intelligence and learnability of neural networks. The combination of the two components allows for 
more adaptive, data-driven decision-making, leading to increased efficiency, reduced costs, and improved performance 
in various industrial processes and decision-making. Here are some concrete industrial application cases where such 
hybrids could be a reasonable option: (a) manufacturing – NNs learn from historical data and make intelligent decisions 
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while the discrete simulation models (PN or CA) can dynamically self-configure and adapt to changing production 
conditions. Such a flexibility enables efficient processes, improved production rate, and reduced operational costs; (b) 
supply chain and logistics – NN component learns from historical supply chain data, allowing the discrete simulation 
models to dynamically adjust parameters and make better-informed decisions related to inventory management, 
demand forecasting, and order fulfillment. This adaptability leads to more efficient and responsive supply chain 
operations; (c) smart grid control – integrating NNs with the discrete simulation models, power distribution networks 
can adaptively adjust their configuration and resource allocation based on real-time data. This enables more efficient 
load balancing, fault detection, and demand prediction, leading to better energy management and reduced energy 
wastage; (d) predictive maintenance of smart assets – NN component can learn from sensor data and historical 
maintenance records to predict equipment failures. The discrete simulation models can then automatically adjust 
maintenance schedules, optimize spare parts inventory, and allocate maintenance resources efficiently, reducing 
corresponding costs. 

We experimented with all the four hybrids within the project IMMUNE: “Cyber-Defence for Intelligent Systems”, 
which is a NATO SPS project (http://recode.bg/natog5511). Various scenarios have been simulated within the special 
laboratory (aka cyber-physical environment), which enables combining digital simulations with a real physical 
environment, including complex item storage and logistics. An interroll cassette conveyor (Fig. 2b) is part of the 
laboratory infrastructure and it is used to simulate various scenes (cassette loads and their further delivery logistics) 
simulated by either PNs or special CA and monitored by cameras. Independently designed PN and CA simulations 
were enhanced with the (convolutional) NN component capable of classifying observed cassette loads and 
automatically reconstructing the delivery plan (PN) or transformation rules (CA) accordingly in a run time.  

It is important to mention that we designed complex experiments to test couples of hybrids simultaneously. For 
example, one of such was the PNb→NN→PNa experiment chain, one of which parts acts as a NN→PNa hybrid and 
implements a self-configurable (driven by NN) logistics simulated by PNa; and the NN itself is also part of another 
hybrid PNb→NN where another PNb controls the dropout regularization of the NN training process. In this way, two 
hybrids have been tested with the same experiment. Other experimental chains were as follows: CAb→NN→CAa; 
PN→NN→CA; CA→NN→PN. 

During the experiments, certain initializations and configurations for PNs (or rules for CA) has been found for the 
PN→NN and CA→NN hybrids, such that NN with controlled dropout performs significantly better than with 
randomness-driven dropout. It also has been observed that NN→PN and NN→CA hybrids (when NN is trained) 
correctly produce PN or CA sub-configurations (or rules) for handling specific cases in a more flexible way if you 
compare it with the complete and fixed configurations. 

These were just preliminary experiments with relatively small numbers of training data (pre-trained models were 
enhanced with an additional 2200 images). We believe, however, that the full hidden potential of the hybrid 
architectures could be much greater within a real industrial environment and with bigger volumes of training data. 

Such or similar architectures could be useful in the cases where the discrete simulation logic and complex logistics 
is supposed to be combined with automated decision-making aiming reasonable trade-off between decision 
explainability and accuracy. Potential areas include but not limited to: rooting, resource allocation, capacity 
optimization, etc., in telecommunication (optical, wireless, hybrid) networks (see Fig. 5 and 
https://cordis.europa.eu/project/id/101008280); human activity recognition in industrial work processes, as it is shown 
in [41], or for designing digital twins for fault diagnostics and prediction, see, e.g., [42]. 

In addition, in our study, we employed few datasets related to manufacturing process optimization and predictive 
maintenance of smart industrial assets (paper industry and power transmission via smart grids) collected by our former 
industrial projects (http://www.cs.jyu.fi/ai/SmartResource_UBIWARE.html) SmartResource and UBIWARE. We 
used these particularly to check the performance of our hybrid architectures, where CA and PN are employed as 
regularization approaches for the NN in comparison to random dropout. For example, in binary classification case 
(healthy vs failure state) with about 5000 samples and 15 features, we achieved 0.88 (CA→NN) and 0.87 (PN→NN) 
accuracy rates in comparison to 0.85 (random dropout); 0.89 (CA→NN) and 0.88 (PN→NN) precision vs 0.87 
(random dropout); 0.87 (CA→NN) and 0.86 (PN→NN) recall vs 0.83 (random dropout); and 0.88 (CA→NN) and 
0.87 (PN→NN) F1 score vs 0.85 (random dropout). These results demonstrate that utilizing CA and PN as 
regularization mechanisms in neural networks leads to improved performance in the context of Industry 4.0 
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procedures). It is known that quite simple CA rules can result in quite complex dynamics. However, approaching the 
rules from the observed dynamics of the real industrial systems is not an easy task. Typical industrial use cases include 
physical processes simulation and analysis (such as gas or fluid dynamics, morphological growth of various materials), 
energy consumption, business evolution simulation, secure data flow through advanced cryptography, etc. However, 
CAs themselves cannot yet learn and make decisions on reconfiguration (if and when necessary) of the rule set which 
they follow. CA can simulate complex systems (even intelligent ones) and it can be used as a decision-support tool 
(with informative and explainable visualization). However, it cannot be considered as an intelligent modelling 
framework or automatic decision-making tool yet. CA would definitely benefit from the development of self-
optimization techniques on automatic designing and self-configuration of the local rules in accordance with the 
particular real world industrial phenomena. 

NNs are good when the objective is a decision-making model and the model is automatically constructed (by 
learning) based on training data (with mainly continuous attributes). Mathematical fitness to data without real 
understanding of the nature behind it makes NNs, on the one hand, highly performed (good accuracy) in making 
decisions, however, on the other hand, incapable of giving any clue about how and why just these decisions have been 
chosen (lack of interpretability and explainability). Therefore, NNs is a good (also intelligent and learnable) tool for 
automatic decision-making (when appropriate) but not for such responsible decision-support tasks where human 
experts need to see an interpretable simulation model and understand its outcomes.  

Therefore, the expectations regarding the hybrids presented in this paper is that they will inherit the strengths of the 
component architectures, i.e.: intellect and high decision accuracy from NNs; together with simulation effectiveness 
and explainability from PNs and CA).   

The hybrids PN→NN and CA→NN (with the generic slogan “towards improved manageability and explainability 
of the black-box decision models”) are designed to support general decision-making objectives and the NN component 
guarantees that. However, PN or CA (each with its own flavor) add some interpretable (explainable) control option 
(particularly dropout control) to manage the way NN is being trained. This means that the dynamics and evolution of 
some real industrial processes (simulated by PN or CA) can directly influence the processes of finding an optimal NN 
architecture (dropout as a NN’s structure learning and regularization process) to make better decisions within particular 
decision points of these processes. As a summary, we may say that such a couple of hybrids provide some explainable 
control option for human experts (i.e., industrial domain experts rather than data scientists) to manage high-performing 
but “black-box” decision models in smart manufacturing. We believe that hybrid architectures, PN→NN and 
CA→NN, where Petri nets and cellular automata control dropout in neural networks, offer intriguing possibilities for 
improving the performance of dropout techniques. These combinations of different computational paradigms can 
potentially find applications in various Industry 4.0 contexts where advanced data analysis and decision-making are 
crucial. Here there is a couple of industrial applications where such hybrids may work effectively: (a) manufacturing 
process optimization – by integrating real-time data from sensors with the NN’s decision-making process, the system 
could dynamically adjust dropout policies based on the current state of the process (defined by PN or CA), leading to 
higher NN’s accuracy and, therefore, to enhanced process efficiency and reduced defects; (b) similarly in predictive 
maintenance NNs could adapt dropout based on historical maintenance records and sensor data, resulting in more 
precise predictions, etc. 

The hybrids NN→PN and NN→CA (with the generic slogan “bringing more intelligence and learnability into the 
discrete simulation models”) are designed for modelling, simulation and decision-support objectives and either the PN 
component or the CA component guarantee that. However, the NN component on top embeds some learnable 
intelligence into the basic models. These hybrids enable “smarter” self-configurable PNs or CA based on the decisions 
automatically made by NN. This means that additional intelligence (learnable from data as a NN) may enhance the 
decision points within industrial processes previously managed by humans or hardcoded by the fixed rules. In this 
way, the decision-making power of PNs and CA will grow due to the known high decision performance of NNs. 
Therefore, we may say that the hybrids NN→PN and NN→CA enable discrete simulation models (PN or CA) to 
benefit from the intelligence and learnability of neural networks. The combination of the two components allows for 
more adaptive, data-driven decision-making, leading to increased efficiency, reduced costs, and improved performance 
in various industrial processes and decision-making. Here are some concrete industrial application cases where such 
hybrids could be a reasonable option: (a) manufacturing – NNs learn from historical data and make intelligent decisions 
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while the discrete simulation models (PN or CA) can dynamically self-configure and adapt to changing production 
conditions. Such a flexibility enables efficient processes, improved production rate, and reduced operational costs; (b) 
supply chain and logistics – NN component learns from historical supply chain data, allowing the discrete simulation 
models to dynamically adjust parameters and make better-informed decisions related to inventory management, 
demand forecasting, and order fulfillment. This adaptability leads to more efficient and responsive supply chain 
operations; (c) smart grid control – integrating NNs with the discrete simulation models, power distribution networks 
can adaptively adjust their configuration and resource allocation based on real-time data. This enables more efficient 
load balancing, fault detection, and demand prediction, leading to better energy management and reduced energy 
wastage; (d) predictive maintenance of smart assets – NN component can learn from sensor data and historical 
maintenance records to predict equipment failures. The discrete simulation models can then automatically adjust 
maintenance schedules, optimize spare parts inventory, and allocate maintenance resources efficiently, reducing 
corresponding costs. 

We experimented with all the four hybrids within the project IMMUNE: “Cyber-Defence for Intelligent Systems”, 
which is a NATO SPS project (http://recode.bg/natog5511). Various scenarios have been simulated within the special 
laboratory (aka cyber-physical environment), which enables combining digital simulations with a real physical 
environment, including complex item storage and logistics. An interroll cassette conveyor (Fig. 2b) is part of the 
laboratory infrastructure and it is used to simulate various scenes (cassette loads and their further delivery logistics) 
simulated by either PNs or special CA and monitored by cameras. Independently designed PN and CA simulations 
were enhanced with the (convolutional) NN component capable of classifying observed cassette loads and 
automatically reconstructing the delivery plan (PN) or transformation rules (CA) accordingly in a run time.  

It is important to mention that we designed complex experiments to test couples of hybrids simultaneously. For 
example, one of such was the PNb→NN→PNa experiment chain, one of which parts acts as a NN→PNa hybrid and 
implements a self-configurable (driven by NN) logistics simulated by PNa; and the NN itself is also part of another 
hybrid PNb→NN where another PNb controls the dropout regularization of the NN training process. In this way, two 
hybrids have been tested with the same experiment. Other experimental chains were as follows: CAb→NN→CAa; 
PN→NN→CA; CA→NN→PN. 

During the experiments, certain initializations and configurations for PNs (or rules for CA) has been found for the 
PN→NN and CA→NN hybrids, such that NN with controlled dropout performs significantly better than with 
randomness-driven dropout. It also has been observed that NN→PN and NN→CA hybrids (when NN is trained) 
correctly produce PN or CA sub-configurations (or rules) for handling specific cases in a more flexible way if you 
compare it with the complete and fixed configurations. 

These were just preliminary experiments with relatively small numbers of training data (pre-trained models were 
enhanced with an additional 2200 images). We believe, however, that the full hidden potential of the hybrid 
architectures could be much greater within a real industrial environment and with bigger volumes of training data. 

Such or similar architectures could be useful in the cases where the discrete simulation logic and complex logistics 
is supposed to be combined with automated decision-making aiming reasonable trade-off between decision 
explainability and accuracy. Potential areas include but not limited to: rooting, resource allocation, capacity 
optimization, etc., in telecommunication (optical, wireless, hybrid) networks (see Fig. 5 and 
https://cordis.europa.eu/project/id/101008280); human activity recognition in industrial work processes, as it is shown 
in [41], or for designing digital twins for fault diagnostics and prediction, see, e.g., [42]. 

In addition, in our study, we employed few datasets related to manufacturing process optimization and predictive 
maintenance of smart industrial assets (paper industry and power transmission via smart grids) collected by our former 
industrial projects (http://www.cs.jyu.fi/ai/SmartResource_UBIWARE.html) SmartResource and UBIWARE. We 
used these particularly to check the performance of our hybrid architectures, where CA and PN are employed as 
regularization approaches for the NN in comparison to random dropout. For example, in binary classification case 
(healthy vs failure state) with about 5000 samples and 15 features, we achieved 0.88 (CA→NN) and 0.87 (PN→NN) 
accuracy rates in comparison to 0.85 (random dropout); 0.89 (CA→NN) and 0.88 (PN→NN) precision vs 0.87 
(random dropout); 0.87 (CA→NN) and 0.86 (PN→NN) recall vs 0.83 (random dropout); and 0.88 (CA→NN) and 
0.87 (PN→NN) F1 score vs 0.85 (random dropout). These results demonstrate that utilizing CA and PN as 
regularization mechanisms in neural networks leads to improved performance in the context of Industry 4.0 
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applications. The incorporation of CA and PN enables NN to control dropout adaptively, enhancing the model’s 
generalization and robustness to varying data distributions and complexities. However, the effectiveness of our hybrid 
architectures may vary with different network architectures and dataset characteristics, and further investigations are 
foreseen, which may provide additional insights. 

 
Fig. 5. Generic schema of potential application of the NN →PN hybrids to management of telecommunication networks (e.g., rooting, 
resource allocation, optimization, etc.). Activity in such networks could be simulated with the PN-driven modelling component, while 
a suitable configuration depending on changing context could be automatically decided and controlled by the NN-driven component. 

5. Conclusions 

Hybrid approaches, which aim to (a) either intellectualize traditional discrete simulation models [43]; or (b) make 
intelligent (deep learning driven) models explainable [44], are becoming a trend due to the emergent Industry 4.0 
needs. Hybrid architectures suggested in this paper are layered, assuming that the modelling component from the lower 
layer simulates a particular real-life process and the modelling component from the upper layer controls configuration 
and evolution dynamics of the lower layer. We limit the study by the cases when the components collaborating in this 
way belong to different modelling categories: either a discrete modelling component (PN or CA in this paper) controls 
NN as a learnable and continuous modelling component or vice versa. Therefore, we have considered four types of 
such hybrids, particularly: (a) PN→NN; (b) NN→PN; (c) CA→NN; and (d) NN→CA. Hybrids (a) and (c) apply 
discrete control over the configuration of NN to add some explainability to the NN (i.e., consciously finding optimal 
configuration of the NN for better generalization performance). Hybrids (b) and (d) aim to intellectualize discrete 
simulation models, such as PN or CA. These hybrids apply NN decision-making to reconfigure automatically and in 
run-time either PN (change operational structure) or CA (change operational rules) depending on the context. 
Preliminary experiments (with the four hybrids) show that explainable control over NN or embedded (into PN or CA) 
NN intelligence provide additional performance and simulation flexibility to the modelling components of the hybrids. 

Actually, the considered four hybrid architectures are the classes of many potential hybrids. This is because these 
modelling components (PNs, CA, and NNs) may have very different categories themselves, e.g.: PNs can be 
deterministic, stochastic, colored, high-level, fuzzy, temporal, etc. [45]; CA can be deterministic, probabilistic,  non-
uniform, reversible, higher-order, totalistic, partitioned, etc. [46]; NNs can be feedforward, recurrent, residual, 
convolutional, autoencoder, adversarial, etc. [47]. Each combination of these options gives a valid and specific hybrid, 
which can be used for specific industrial simulations. 

We believe that each of the four hybrid architectures (PN→NN, CA→NN, NN→PN, and NN→CA) represents a 
significant leap beyond the state-of-the-art in the current modelling frameworks. By combining diverse computational 
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paradigms and leveraging the strengths of both discrete simulation models and neural networks, these innovations 
pave the way for more intelligent, adaptable, and data-informed decision-support systems in various industrial 
domains. The ability to integrate learnable intelligence into discrete models enhances their capabilities, leading to 
improved efficiency, accuracy, and performance, and fostering the advancement of Industry 4.0 and beyond. 

The future work for these hybrid architectures holds exciting possibilities to further advancing the field of intelligent 
decision-support systems in various industrial domains. By leveraging the strengths of both discrete simulation models 
and NNs, researchers can unlock novel opportunities for more efficient, adaptable, and data-informed decision-
making, contributing to the advancement of Industry 4.0 and beyond. Particularly, in our future studies, we are going 
to develop a metric capable of evaluating the quality of different hybrids based on conflicting qualitative and 
quantitative criteria. In addition, we plan to transfer our experimental hybrid models built within the industrial 
laboratories to the current industrial processes. 
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