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Abstract 

A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 
4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity and quality. The current trend in enhancing 
data-driven models with knowledge-based models promises to enable effective NNs with less data. So-called physics-informed 
NNs use additional knowledge from computational science to improve NN training. Quite much of the knowledge is available as 
logical constraints from domain ontologies, and NNs may benefit from using it. In this paper, we study the concept of Taxonomy-
Informed NN (TINN), which combines data-driven training of NNs with ontological knowledge. We study different patterns of 
NN training with additional knowledge on class-subclass hierarchies and instance-class relationships with potential for federated 
learning. Our experiments show that additional knowledge, which influences TINNs’ training process through the loss function at 
backpropagation, improves the quality of trained models.   
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1. Introduction 

New challenges related to digitalization, automation and intellectualization of industrial processes make Industry 
4.0 (also 5.0) and smart manufacturing the key adopters of recent discoveries in artificial intelligence (AI) in general 
and machine learning (ML) in particular [1], [2]. Current progress in ML is associated with data-driven modelling, 
deep learning and neural networks (NNs). ML, however, may benefit from also exploring other AI assets (knowledge 
and behavior) in addition to data to enable better models. Modern industry has already collected useful knowledge 
formulated in terms of computational science (scientific computing) by combining mathematics with physics and 
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other disciplines into analytical and computational models. The current “big thing” in ML, deep learning and NNs 
training is updating the NNs’ training algorithms with respect to available knowledge. Such “informed” ML [3] trend 
has already made a huge impact on developing efficient physics-informed NNs (PINNs) for a variety of industrial 
applications [4]. 

The majority of emergent informed ML models (particularly PINNs) combine NNs with knowledge in the form of 
differential or integral equations and other typical for scientific computing mathematical constraints. What is missing 
is the knowledge constraints formulated using the conceptual modelling terms (e.g., first-order logic) and available as 
domain ontologies (or particularly taxonomies). Could knowledge from ontologies (taxonomies) be used to guide and 
improve NNs’ training from data? Would potential taxonomy-informed NNs (TINNs) become a reasonable concept 
and architecture for the informed ML? How can TINNs be potentially useful for Industry 4.0 and smart 
manufacturing? We formulated these questions as objectives of our study described in this paper. In the context of 
these objectives, we are going to show the similarities and differences between emergent PINNs and potential TINNs 
suggested in this paper.  

We have contextualized our work within the broader landscape of Industry 4.0 (driven by automation and ML) 
and its evolution towards Industry 5.0 (with enhanced value of human knowledge). Our research converges at the 
juncture of cutting-edge NN methodologies and the imperative for intelligent decision-making in these transformative 
industrial paradigms. By bridging data-driven NNs with knowledge-based models, we empower these industries to 
harness ontological insights for enhanced decision-making even in scenarios with limited data. The concept of TINN 
that we explore finds its resonance in Industry 4.0’s drive for more efficient and effective decision support systems. 
One potential application example could revolve around predictive maintenance within a smart manufacturing 
environment. Imagine a scenario where a manufacturing facility seeks to optimize maintenance schedules for critical 
machinery. By integrating TINNs with domain ontologies and historical sensor data, the facility could create a more 
accurate predictive maintenance model. This model would not only consider the machinery’s data-driven health 
metrics but also leverage ontological knowledge to anticipate potential failure modes based on known relationships 
between component attributes. The resulting model would empower the facility to proactively schedule maintenance 
interventions, minimizing downtime and maximizing operational efficiency. 

The rest of the paper is organized as follows: Section 2 describes a general NN model enhancement mechanism 
used in PINNs and similar informed ML models; Section 3 describes how to use class-subclass hierarchy with multiple 
inheritance in known taxonomies to improve training of NNs from data, i.e., enabling TINNs; Section 4 presents some 
motivation examples (scenarios and experiments) with simple TINNs; In Section 5, we present couple of potential 
industrial scenarios with TINNs, which utilize knowledge on instance-class relationships for diagnostics (both 
individually and group informed) of industrial assets; and we conclude in Section 6. Related work will be cited 
throughout the paper. 

2. From Neural Networks to Physics-Informed Neural Networks 

Habitual opposition of knowledge-based and data-driven modelling frameworks has recently changed to capable 
hybrids.  Among current trends is the transformation of ML in general and NNs, in particular, into physics-informed 
ML and corresponding physics-informed NNs. We will briefly introduce these in this section. 

2.1. A neural network and its general training schema 

A very generic representation of a NN is shown in Fig. 1 (the part within the dashed line). If you consider a NN as 
a black box, then it, actually, represents a complex function 𝑦𝑦 = 𝑓𝑓(�⃗�𝑥, �⃗�𝜃) (aka intended model), which takes a sample 
of data (a vector �⃗�𝑥 of numeric attributes’ values 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 of the sample) as an input and outputs the target numeric 
value (regression case) or a label (classification case). Inside of such a black box, there are hyperparameters [5], which 
determine the structure (complexity) of the function (i.e., the number, the size and the type of hidden layers of the 
NN), and vector �⃗�𝜃 of the parameters 𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑘𝑘 of that function, which are the NN’s weights [6]. Learning NN 
means finding the values for both hyperparameters and parameters of the NN such that the resulting function will fit 
the best to the available (for training) data. Typically, the hyperparameters are chosen and managed semi-
automatically with the support from data scientists and the parameters (weights) are discovered automatically using a 
backpropagation algorithm. Training by backpropagation is an iterative optimization algorithm (with roots from 
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neuroscience [7]), which is searching for a best-fit function (intended model with optimal �⃗�𝜃). The algorithm starts 
with some arbitrary weights (initialization of NN [8]) and continuously updates these weights after processing groups 
(epochs or batches) of training data samples. At each iteration, the training algorithm measures the opposite to the 
(data-model) fitness function value (i.e., “loss”, or “error”, or “cost” function [9] computed by comparing the predicted 
value �̂�𝑦((�⃗�𝑥)𝑖𝑖)  by the NN and the actual known value 𝑦𝑦𝑖𝑖  for each 𝑖𝑖-th training sample from the batch) and computes 
corresponding updates for the parameters (weights) according to the gradient descent schema aiming to get smaller 
loss at the next iteration. Therefore, by training a NN, we seek to minimize the loss function. One may see that such 
training makes NNs biased towards the training data [10] (including natural or adversarial noise within it). Therefore, 
quality and quantity of training data samples (in addition to various regularization tricks used during training to avoid 
overfitting [11]) matters a lot to get well performing (high prediction accuracy) and well generalized (capability to 
address unseen data) NNs. 

 
Fig. 1. Illustrating a generic NN schema (the part within the dashed line) and its extension towards KINN. One may see that KINN adds 
an extra summand to the NN’s loss function, which, in addition to the traditional “Data” Loss, takes into account also the “Knowledge” 
Loss related to fitness of the current NN’s predictions regarding the target function with the available knowledge on this function. 

2.2. A knowledge-informed neural network and its training specifics 

The recent trend in updating NN architectures towards better performance and less dependency solely on data is 
related to the so-called “informed ML” in general and “informed NNs” in particular [3]. Different variations of 
informed NNs use available prior knowledge of the target model in addition to training data. Such NNs can be 
integrated into one broad category under the common umbrella term “Knowledge-Informed NN” (KINN).  The very 
generic architecture and training schema of KINN is shown in Fig. 1 as an update of traditional NN architecture. Let 
us assume that we have some prior knowledge of the target function in the form of some constraint ℱ(𝑦𝑦, �⃗�𝑥) from 
which it is impossible (or unfeasible) to directly derive the target function (model) 𝑦𝑦 = 𝑓𝑓(�⃗�𝑥). The objective of KINN 
training will be still discovering the target function from available data in the form 𝑦𝑦 = 𝑓𝑓(�⃗�𝑥, �⃗�𝜃), however, with respect 
to the prior knowledge constraint ℱ(𝑦𝑦, �⃗�𝑥). This can be achieved by making a complex loss function in backpropagation 
training, which sums up (with defined coefficients of importance) the loss related to the training data fitness to the 
target model (“Data” loss) and the loss related to the prior knowledge (“Knowledge” loss) as shown in Fig 1. 

The most popular subcategory of informed ML nowadays is physics-informed ML [12] with a variety of Industry 
4.0 applications (see, e.g., [13], [14], [15]). This subcategory is based on PINNs [4] and it combines scientific 
computing with computational intelligence, aka a hybrid. The prior knowledge constraints in PINNs are usually 
differential or integral equations, which involve a target function. The balance between being “data-driven” and 
“knowledge-based” can be controlled by the corresponding adaptive weights in the loss function [16]. PINNs have 
been quickly adopted by industry (see, e.g., [17], [18]). 

In addition to physics constraints, industrial applications of KINNs may also benefit from knowledge and fuzzy 
analytics on a variety of human factors [19], knowledge from chemistry [20], biology [21], etc. 
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3. Adding Awareness of Class-Subclass Hierarchies to Neural Networks  

The success of current KINNs implementations shows that additional knowledge constraints from computational 
modelling analytics may improve traditional data-driven modelling by NNs (e.g., in PINNs). However, would similar 
effects take place if we use constraints from conceptual modelling frameworks (e.g., ontology engineering [22])? Can 
we augment ML in general and NNs in particular by conceptual models and get benefits from the explainability of 
these models [23]? In this section, we will start with simple taxonomies based on class-subclass hierarchies and 
multiple inheritance [24] to add taxonomy awareness to NNs, i.e., enabling TINNs. 

An approach to adding taxonomy awareness to NNs is demonstrated in Fig.2.  Assume that we have a simple 
taxonomy, which can be defined using conceptual modelling terms from RDF/RDFS (N3 notation; 
https://www.w3.org/TeamSubmission/n3/) language as follows: 
@prefix  rdfs:  <http://www.w3.org/2000/01/rdf-schema#> . 
:DOMAIN  a  rdfs:Class .  :CLASS1  a  rdfs:Class ;  rdfs:subClassOf   :DOMAIN . 

:CLASS2  a  rdfs:Class ;  rdfs:subClassOf   :DOMAIN . 
:CLASS1.1  a  rdfs:Class ;  rdfs:subClassOf   :CLASS1 .  :CLASS1.2  a  rdfs:Class ; rdfs:subClassOf  :CLASS1 . 
:CLASS1.3  a  rdfs:Class ;  rdfs:subClassOf   :CLASS1 . 
:CLASS2.1  a  rdfs:Class ;  rdfs:subClassOf   :CLASS2 .  :CLASS2.2  a  rdfs:Class ; rdfs:subClassOf  :CLASS2 . 
:CLASS2.3  a  rdfs:Class ;  rdfs:subClassOf   :CLASS2 .  :CLASS2.4  a  rdfs:Class ; rdfs:subClassOf  :CLASS2 . … 

Fig. 2a provides a visual representation of this taxonomy.  

 
Fig. 2. The training schema of TINN originated from simple taxonomy awareness is illustrated: (a) example of a taxonomy 
(class-subclass hierarchy of classes in the taxonomy); (b) the NN classifier B, which is currently being trained to label 
samples into 7 classes (lower level of the taxonomy) benefits from the NN classifier B trained to label the same instances 
into 2 classes of the upper level of the taxonomy. Classifier A contributes to the performance of classifier B by sharing part 
of its loss regarding the same input sample (e.g., some input training sample with two true labels, CLASS2 and CLASS2.3). 
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Assume that, according to the scenario in Fig. 2b, we want to train NN (“B”) to label DOMAIN instances into 
seven classes {CLASS1.1 – CLASS1.3; CLASS2.1 – CLASS2.4} from Level B of the taxonomy. This could be done 
in a traditional way by feeding training instances into the network and learning (updating weights of) it by 
backpropagation until it converge.  However, in such a case, we will not benefit from complete information provided 
by the taxonomy. It is known that an instance of a subclass is also an instance of its superclass. If, e.g., some data 
sample in our example is labeled with CLASS2.3 (at level B of the taxonomy), then this instance would also have 
another label, CLASS2 (at Level A of the taxonomy). Let us assume that we synchronously train also the classifier 
(NN “A”) to be capable of labeling input samples to two classes {CLASS1; CLASS2} from Level A of the taxonomy. 
Both classifiers (“A” and “B”) will address any training input sample with its own probability distribution (among 
output labels) and, therefore, error (loss). Therefore, when (during training) NN “B” gets an input sample with, e.g., 
the true label CLASS2.3 (explicit) and, therefore, with the label CLASS2 (implicit), then the error (Loss_B) made by 
NN “B” (regarding CLASS2.3) could be updated if to get also the error (Loss_A) from NN “A” regarding the same 
sample and its true label CLASS2. We have here the possibility to train NN “B” in the context of being “informed” 
on the outputs from NN “A” operating on a higher level. A modified loss function in this case would contain actual 
Loss_B plus part (defined by λ) of Loss_A (Fig. 2b). Update of the loss function is expected to have an impact on the 
training (and potentially on testing) performance of NN “B”. Such informed NN “B” is the simplest case of TINN. 

Let us consider a more complex taxonomy (Fig. 3a). Here we can see that some classes of the lowest Level C 
belong to the intersection of some classes from the higher Level B so that, e.g.: 
 …  :CLASS_Ci  rdfs:subClassOf   :CLASS_B1j ;  rdfs:subClassOf   :CLASS_B2k . 

:CLASS_B1j rdfs:subClassOf   :CLASS_A1s .  :CLASS_B2k rdfs:subClassOf   :CLASS_A2t . 
:CLASS_A1s rdfs:subClassOf   :DOMAIN1 .  :CLASS_A2t rdfs:subClassOf   :DOMAIN2 .  … 

Therefore, for the class CLASS_Ci, we have a multiple inheritance case because it happens to be at the intersection 
of two of taxonomy branches (one with the root from DOMAIN1 and another one from DOMAIN2). This means that, 
if you apply the same TINN logic as above for the potential NN, we have two “channels to be additionally informed”. 
In Fig. 3b, we may see how the NN “C”, which is trained to classify instances at the lowest Layer C, may benefit from 
the additional loss information from the classifiers NN “B1” and NN “B2” operating at the Level B, and even deeper 
– from the classifiers NN “A1” and NN “A2” operating at the Level A of the taxonomy. If, for example, during 
backpropagation training, the current training sample has label CLASS_Ci and, additionally (due to taxonomy), we 
know that it also has labels CLASS_B1j; CLASS_B2k; CLASS_A1s; and CLASS_A2t, then the error (loss) Loss_C 
made (after processing this training sample) by the target classifier NN “C” can be updated with the losses (Loss_B1, 
Loss_B2, Loss_A1, and Loss_A2) from the higher layers’ classifiers NNs “B1”, “B2”, “A1”, and “A2” as follows:  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ1 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2) + λ2 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴2).    (1) 
Formula (1) is derived by recursively applying the basic TINNs’ logic from the previous example (across all the 

taxonomy layers) as follows: 
   𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + λ𝐵𝐵 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2) = 

= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ [(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + λ𝐴𝐴 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴1) + (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2 + λ𝐴𝐴 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴2)] = 
= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ [(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2) + λ𝐴𝐴 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴2)] = 
= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2) + λ𝐵𝐵 ∙ λ𝐴𝐴 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴2),  
… which after substitutes λ1 ← λ𝐵𝐵 and λ2 ← λ𝐵𝐵 ∙ λ𝐴𝐴 gives us formula (1). 

One can see that, in such and similar multiple inheritance cases, the losses coming from the same layer of the 
taxonomy are summed up and then each sum is taxed with the appropriate coefficient (different for different layers). 

4. A Couple of Motivating Examples 

Consider the example in Fig. 4. The pictures of black or white squares or circles of different sizes represent the 
DOMAIN in the example. The final task was to train NN “B” to label any of such instances into one of four classes 
{BLACK_SQUARE; BLACK_CIRCLE; WHITE_SQUARE; WHITE_CIRCLE}. Using the terminology of 
taxonomy, we may say that our DOMAIN is a disjoint union of these four classes. Another important taxonomy 
awareness would be the knowledge that DOMAN, on the one hand, is also a disjoint union of BLACK and WHITE 
samples, and, on the other hand, DOMAIN is a disjoint union of SQUARE and CIRCLE samples. To make the task a 
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Assume that, according to the scenario in Fig. 2b, we want to train NN (“B”) to label DOMAIN instances into 
seven classes {CLASS1.1 – CLASS1.3; CLASS2.1 – CLASS2.4} from Level B of the taxonomy. This could be done 
in a traditional way by feeding training instances into the network and learning (updating weights of) it by 
backpropagation until it converge.  However, in such a case, we will not benefit from complete information provided 
by the taxonomy. It is known that an instance of a subclass is also an instance of its superclass. If, e.g., some data 
sample in our example is labeled with CLASS2.3 (at level B of the taxonomy), then this instance would also have 
another label, CLASS2 (at Level A of the taxonomy). Let us assume that we synchronously train also the classifier 
(NN “A”) to be capable of labeling input samples to two classes {CLASS1; CLASS2} from Level A of the taxonomy. 
Both classifiers (“A” and “B”) will address any training input sample with its own probability distribution (among 
output labels) and, therefore, error (loss). Therefore, when (during training) NN “B” gets an input sample with, e.g., 
the true label CLASS2.3 (explicit) and, therefore, with the label CLASS2 (implicit), then the error (Loss_B) made by 
NN “B” (regarding CLASS2.3) could be updated if to get also the error (Loss_A) from NN “A” regarding the same 
sample and its true label CLASS2. We have here the possibility to train NN “B” in the context of being “informed” 
on the outputs from NN “A” operating on a higher level. A modified loss function in this case would contain actual 
Loss_B plus part (defined by λ) of Loss_A (Fig. 2b). Update of the loss function is expected to have an impact on the 
training (and potentially on testing) performance of NN “B”. Such informed NN “B” is the simplest case of TINN. 

Let us consider a more complex taxonomy (Fig. 3a). Here we can see that some classes of the lowest Level C 
belong to the intersection of some classes from the higher Level B so that, e.g.: 
 …  :CLASS_Ci  rdfs:subClassOf   :CLASS_B1j ;  rdfs:subClassOf   :CLASS_B2k . 

:CLASS_B1j rdfs:subClassOf   :CLASS_A1s .  :CLASS_B2k rdfs:subClassOf   :CLASS_A2t . 
:CLASS_A1s rdfs:subClassOf   :DOMAIN1 .  :CLASS_A2t rdfs:subClassOf   :DOMAIN2 .  … 

Therefore, for the class CLASS_Ci, we have a multiple inheritance case because it happens to be at the intersection 
of two of taxonomy branches (one with the root from DOMAIN1 and another one from DOMAIN2). This means that, 
if you apply the same TINN logic as above for the potential NN, we have two “channels to be additionally informed”. 
In Fig. 3b, we may see how the NN “C”, which is trained to classify instances at the lowest Layer C, may benefit from 
the additional loss information from the classifiers NN “B1” and NN “B2” operating at the Level B, and even deeper 
– from the classifiers NN “A1” and NN “A2” operating at the Level A of the taxonomy. If, for example, during 
backpropagation training, the current training sample has label CLASS_Ci and, additionally (due to taxonomy), we 
know that it also has labels CLASS_B1j; CLASS_B2k; CLASS_A1s; and CLASS_A2t, then the error (loss) Loss_C 
made (after processing this training sample) by the target classifier NN “C” can be updated with the losses (Loss_B1, 
Loss_B2, Loss_A1, and Loss_A2) from the higher layers’ classifiers NNs “B1”, “B2”, “A1”, and “A2” as follows:  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ1 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2) + λ2 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴2).    (1) 
Formula (1) is derived by recursively applying the basic TINNs’ logic from the previous example (across all the 

taxonomy layers) as follows: 
   𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + λ𝐵𝐵 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2) = 

= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ [(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + λ𝐴𝐴 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴1) + (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2 + λ𝐴𝐴 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴2)] = 
= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ [(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2) + λ𝐴𝐴 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴2)] = 
= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶 + λ𝐵𝐵 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵2) + λ𝐵𝐵 ∙ λ𝐴𝐴 ∙ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴2),  
… which after substitutes λ1 ← λ𝐵𝐵 and λ2 ← λ𝐵𝐵 ∙ λ𝐴𝐴 gives us formula (1). 

One can see that, in such and similar multiple inheritance cases, the losses coming from the same layer of the 
taxonomy are summed up and then each sum is taxed with the appropriate coefficient (different for different layers). 

4. A Couple of Motivating Examples 

Consider the example in Fig. 4. The pictures of black or white squares or circles of different sizes represent the 
DOMAIN in the example. The final task was to train NN “B” to label any of such instances into one of four classes 
{BLACK_SQUARE; BLACK_CIRCLE; WHITE_SQUARE; WHITE_CIRCLE}. Using the terminology of 
taxonomy, we may say that our DOMAIN is a disjoint union of these four classes. Another important taxonomy 
awareness would be the knowledge that DOMAN, on the one hand, is also a disjoint union of BLACK and WHITE 
samples, and, on the other hand, DOMAIN is a disjoint union of SQUARE and CIRCLE samples. To make the task a 
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bit more challenging for a convolutional NN we added some noise to all the images in the dataset. The classifier after 
training gave us 91.3% accuracy. We repeated the experiment from scratch, but now we try to train NN “B” as a 
TINN. For that, we simultaneously also train two other classifiers: NN “A1” (to label samples to two classes, BLACK 
and WHITE) and NN “A2” (to label samples to two classes, SQUARE and CIRCLE). Therefore, it was possible to 
train NN “B” with additional loss information coming from NN “A1” and NN “A2”. This TINN’s trick has 
surprisingly improved the accuracy of the NN “B” classifier from 91.3% (without taxonomy awareness) to 93.7 (with 
taxonomy awareness). 

 
Fig. 3. The training schema of the TINN originated from taxonomy (with multiple inheritance) awareness is illustrated: (a) 
example of a taxonomy (class-subclass hierarchy of classes in the taxonomy); (b) the NN classifier C, which is currently being 
trained to label data samples into 3 classes (lower level of the taxonomy) benefits from the NN classifiers B1 and B2 trained to 
label the same instances into two different groups of 3 classes each of the upper level of the taxonomy. In addition, the classifiers 
A1 and A2 from the higher level contribute indirectly to classifier C. The construction of overall loss (LOSS) for C is illustrated.  
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Fig. 4. The experiment of building NN classifier “B” for the DOMAIN, which is a disjoint union of four classes {BLACK_SQUARE; 
BLACK_CIRCLE; WHITE_SQUARE; WHITE_CIRCLE}. Additional knowledge, that DOMAN is also a disjoint union of BLACK and WHITE 
samples and a disjoint union of SQUARE and CIRCLE samples, makes it possible to use TINN architecture for the target classifier “B”. The loss 
of “B” during training is updated with the loss coming from two other synchronously trained classifiers, “A1” (BLACK vs. WHITE) and “A2” 
(SQUARE vs. CIRCLE), which improves the performance of “B” to correctly classify the DOMAIN samples into four classes. 

 
The influence of taxonomy awareness on the accuracy of the convolutional NN classifier in the example is 

understandable. The features (color, shape), which are the basic ones for the class-subclass hierarchy in the taxonomy, 
are actually visually apparent. Therefore, to further check the concept of TINNs, we will try to construct the next 
example in a more provocative way so that the actual features behind the taxonomy are not explicitly visible in the 
pictures (training samples). We take MNIST (handwritten digits; http://yann.lecun.com/exdb/mnist/) image dataset 
and we split it to two disjoint unions of subclasses: (a) EVEN and ODD digits; and (b) “< 5” and “> 4” digits (see 
Fig.5). The features of being even or odd, as well as being “> 4” or “< 5” do not have explicit visual appearance in 
the pictures of the digits. Therefore, we expected TINN to fail to improve NN’s performance in this case.  
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BLACK_CIRCLE; WHITE_SQUARE; WHITE_CIRCLE}. Additional knowledge, that DOMAN is also a disjoint union of BLACK and WHITE 
samples and a disjoint union of SQUARE and CIRCLE samples, makes it possible to use TINN architecture for the target classifier “B”. The loss 
of “B” during training is updated with the loss coming from two other synchronously trained classifiers, “A1” (BLACK vs. WHITE) and “A2” 
(SQUARE vs. CIRCLE), which improves the performance of “B” to correctly classify the DOMAIN samples into four classes. 

 
The influence of taxonomy awareness on the accuracy of the convolutional NN classifier in the example is 

understandable. The features (color, shape), which are the basic ones for the class-subclass hierarchy in the taxonomy, 
are actually visually apparent. Therefore, to further check the concept of TINNs, we will try to construct the next 
example in a more provocative way so that the actual features behind the taxonomy are not explicitly visible in the 
pictures (training samples). We take MNIST (handwritten digits; http://yann.lecun.com/exdb/mnist/) image dataset 
and we split it to two disjoint unions of subclasses: (a) EVEN and ODD digits; and (b) “< 5” and “> 4” digits (see 
Fig.5). The features of being even or odd, as well as being “> 4” or “< 5” do not have explicit visual appearance in 
the pictures of the digits. Therefore, we expected TINN to fail to improve NN’s performance in this case.  
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Fig. 5. The unusual taxonomy awareness effect is explored on top of the MNIST dataset. The target convolutional NN classifier “B” is 
trained synchronously with the two other ones: “A1”, which distinguishes between odd and even digits, and “A2”, which distinguishes 
between “<5” and “>4” digits. For each portion of input training samples, the loss of “B” during backpropagation training is updated 
also with the corresponding losses from “A1” and “A2”, and such a TINN trick has surprisingly improved the performance of “B”.  
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First, we add noise to the MNIST samples to make a challenge (reduce classification accuracy) for all the potential 

classifiers. Then we train the target NN classifier “B” (labelling digits to 10 classes) without taxonomy awareness, 
achieving 87.2% of test accuracy. After that, we start from scratch training of “B” but synchronously with two other 
classifiers: “A1” (labelling among ODD and EVEN) and “A2” (labelling among “<5” and “>4”). According to 
suggested TINN logic, we update the loss calculation for “B” with the awareness of losses from “A1” and “A2” as 
shown in Fig. 5. We were actually surprised to see that the new “taxonomy-informed” classifier “B” after training 
shows better performance comparably to its ignorant version (improved from 87.2 to 88.1%). The effect of taxonomy 
awareness seems to work even in cases when the features hidden behind the taxonomy hierarchy are not explicitly 
visible in the training samples. The presence of noise in training data makes such an awareness impact even bigger. 

5. Instance-Class Relationship Awareness and its (Knowledge-Based and Federated) Effect 

Consider a typical example of industrial assets’ diagnostics. Assume that a batch (aka class) of identical complex 
and smart (with self-monitoring infrastructure) industrial machines has been produced. These assets are sold and used 
in different processes, environments, places and other contexts. Assume that, according to the design features of this 
class of assets, the state (vector �⃗⃗�𝑌) of some particular machine can be derived as some function over the measurable 
(by embedded sensors) vector of parameters �⃗�𝑋. If the function is known or can be learned by ML, then the state 
diagnostics for each asset can be done automatically. In this section, we consider two different options of benefit from 
knowing instance-class relationships (aka taxonomy awareness) among the assets to improve diagnostics by using 
TINN architectures. 

The first scenario is shown in Fig. 6. Here we assume that the (general for the class) function �⃗⃗�𝑌 = 𝐹𝐹(�⃗�𝑋) is known 
just after design and pilot testing and it is supposed to be applied to all the instances of the assets within the class 
during their operation within particular industrial processes. However, each machine may have some small individual 
constructive specifics before use and, definitely, more individual features may be acquired during operation due to 
different operational environments. Therefore, the histories of �⃗�𝑋 and �⃗⃗�𝑌 are collected as training data separately for 
each 𝑖𝑖-th machine and the individual diagnostic functions �⃗⃗�𝑌 = 𝐹𝐹𝑖𝑖(�⃗�𝑋) can be learned using ML (particularly NNs).  

 
Fig. 6. The scenario is shown when each individual asset diagnostics model (NN) is trained based on the data collected from the 
particular asset history including awareness of the model constructed for the whole class of assets. Like in TINNs, we can update 
the loss function of each individual model during its backpropagation training with the loss regarding the overall class model.    
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Naturally, the data collected independently regarding each asset may not be big enough for constructing a reliable 

diagnostic model. Therefore, combining it with the diagnostic knowledge on the class of identical assets will make 
each individual model more trustful. This can be done by applying TINNs’ logic and updating the loss value calculation 
for each individual NN (𝐹𝐹𝑖𝑖) training by the loss related to the known and common-for-the-class function 𝐹𝐹. Taxonomy-
awareness here is simply the known fact that 𝑖𝑖-th asset (with target diagnostic model 𝐹𝐹𝑖𝑖) is an instance of a class of 
similar assets with a general diagnostic model 𝐹𝐹.  

The second scenario is shown in Fig. 7. This scenario is an attempt to combine the TINN approach with federated 
learning. Here we do not have any prior knowledge of the common-for-the-class diagnostic function 𝐹𝐹. We suppose 
that each individual asset will collect its own history as training data, learn individual diagnostic models from the data 
and, in addition, they will benefit from the similar (same class) assets’ model construction experiences. Following the 
TINNs’ logic, we need such a loss function for backpropagation training of each individual model that takes into 
account the loss associated with its own asset as well as the losses associated with other assets.  

 
Fig. 7. The federated learning scenario with TINNs is presented. Several individual NN diagnostic models (one for 
each smart asset) are trained simultaneously, each on its own training data. Each particular batch of training samples 
from the i-th NN goes through all the NNs, then a joint loss is computed from the individual losses as shown, and 
finally backpropagated only through the i-th network. This process repeats for each network. In this way, each 
network updates its weights with the awareness of the reaction of other networks to the same training samples. 
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visible in the training samples. The presence of noise in training data makes such an awareness impact even bigger. 

5. Instance-Class Relationship Awareness and its (Knowledge-Based and Federated) Effect 

Consider a typical example of industrial assets’ diagnostics. Assume that a batch (aka class) of identical complex 
and smart (with self-monitoring infrastructure) industrial machines has been produced. These assets are sold and used 
in different processes, environments, places and other contexts. Assume that, according to the design features of this 
class of assets, the state (vector �⃗⃗�𝑌) of some particular machine can be derived as some function over the measurable 
(by embedded sensors) vector of parameters �⃗�𝑋. If the function is known or can be learned by ML, then the state 
diagnostics for each asset can be done automatically. In this section, we consider two different options of benefit from 
knowing instance-class relationships (aka taxonomy awareness) among the assets to improve diagnostics by using 
TINN architectures. 

The first scenario is shown in Fig. 6. Here we assume that the (general for the class) function �⃗⃗�𝑌 = 𝐹𝐹(�⃗�𝑋) is known 
just after design and pilot testing and it is supposed to be applied to all the instances of the assets within the class 
during their operation within particular industrial processes. However, each machine may have some small individual 
constructive specifics before use and, definitely, more individual features may be acquired during operation due to 
different operational environments. Therefore, the histories of �⃗�𝑋 and �⃗⃗�𝑌 are collected as training data separately for 
each 𝑖𝑖-th machine and the individual diagnostic functions �⃗⃗�𝑌 = 𝐹𝐹𝑖𝑖(�⃗�𝑋) can be learned using ML (particularly NNs).  

 
Fig. 6. The scenario is shown when each individual asset diagnostics model (NN) is trained based on the data collected from the 
particular asset history including awareness of the model constructed for the whole class of assets. Like in TINNs, we can update 
the loss function of each individual model during its backpropagation training with the loss regarding the overall class model.    

10 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 

 
Naturally, the data collected independently regarding each asset may not be big enough for constructing a reliable 

diagnostic model. Therefore, combining it with the diagnostic knowledge on the class of identical assets will make 
each individual model more trustful. This can be done by applying TINNs’ logic and updating the loss value calculation 
for each individual NN (𝐹𝐹𝑖𝑖) training by the loss related to the known and common-for-the-class function 𝐹𝐹. Taxonomy-
awareness here is simply the known fact that 𝑖𝑖-th asset (with target diagnostic model 𝐹𝐹𝑖𝑖) is an instance of a class of 
similar assets with a general diagnostic model 𝐹𝐹.  

The second scenario is shown in Fig. 7. This scenario is an attempt to combine the TINN approach with federated 
learning. Here we do not have any prior knowledge of the common-for-the-class diagnostic function 𝐹𝐹. We suppose 
that each individual asset will collect its own history as training data, learn individual diagnostic models from the data 
and, in addition, they will benefit from the similar (same class) assets’ model construction experiences. Following the 
TINNs’ logic, we need such a loss function for backpropagation training of each individual model that takes into 
account the loss associated with its own asset as well as the losses associated with other assets.  

 
Fig. 7. The federated learning scenario with TINNs is presented. Several individual NN diagnostic models (one for 
each smart asset) are trained simultaneously, each on its own training data. Each particular batch of training samples 
from the i-th NN goes through all the NNs, then a joint loss is computed from the individual losses as shown, and 
finally backpropagated only through the i-th network. This process repeats for each network. In this way, each 
network updates its weights with the awareness of the reaction of other networks to the same training samples. 
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For each 𝑖𝑖-th NN model during its backpropagation training, we suggest constructing the loss by applying the 
weighted Lehmer mean (𝐿𝐿𝐿𝐿) function over the individual losses from other “partner” models according to the general 
schema: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝐿𝐿𝐿𝐿[𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖), 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹1), 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹2), … , 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖−1), 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖+1), … , 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑛𝑛)]. 

The Lehmer mean for some set of positive values {𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑛𝑛}  is known to be a generalized mean function 
controlled by parameter 𝑝𝑝 as follows: 

𝐿𝐿𝐿𝐿𝑝𝑝(𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑛𝑛) =
𝑙𝑙1
𝑝𝑝+1+𝑙𝑙2

𝑝𝑝+1+⋯+𝑙𝑙𝑛𝑛
𝑝𝑝+1

𝑙𝑙1
𝑝𝑝+𝑙𝑙2

𝑝𝑝+⋯+𝑙𝑙𝑛𝑛
𝑝𝑝 = ∑ 𝑙𝑙𝑖𝑖𝑝𝑝+1𝑛𝑛

𝑖𝑖=1
∑ 𝑙𝑙𝑖𝑖𝑝𝑝𝑛𝑛
𝑖𝑖=1

. 

In the target loss function, which is the weighted Lehmer mean, we pay special attention to the 𝜆𝜆 value as follows: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑝𝑝,𝑛𝑛,𝛼𝛼,𝑡𝑡 =
(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖))𝑝𝑝+1+𝜆𝜆(𝑛𝑛,𝛼𝛼,𝑡𝑡)∙∑ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑘𝑘))𝑝𝑝+1𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖))𝑝𝑝+𝜆𝜆(𝑛𝑛,𝛼𝛼,𝑡𝑡)∙∑ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑘𝑘))𝑝𝑝𝑛𝑛
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

, where 𝜆𝜆(𝑛𝑛, 𝛼𝛼, 𝑡𝑡) = 𝑛𝑛−1
𝑛𝑛∙𝑙𝑙𝐿𝐿𝑙𝑙𝛼𝛼(𝛼𝛼+𝑡𝑡−1)

.   (2) 

In formula (2): 𝑖𝑖 indicates a particular model (𝐹𝐹𝑖𝑖) being trained; 𝑛𝑛 – the number of simultaneously trained models 
(i.e., the number of assets in the class); parameter 𝑡𝑡 is the current training epoch number (i.e., the influence of other 
“partner” models on the target model will decrease during the training process, and parameter 𝛼𝛼 can be used to control 
the decrease function); parameter 𝑝𝑝 controls the Lehmer mean itself, i.e., the biases related to the distribution of 
averaged losses.   

We experimented with both of these use-case scenarios for condition monitoring, diagnostics and predictive 
maintenance of industrial assets. For that, we have implemented and embedded both schemas as new additional 
features into our UBIWARE platform [25], which is a semantic (taxonomy-aware) middleware for smart industrial 
assets. Experiments show that “informed” TINNs as diagnostic models in both scenarios outperform the ignorant NNs, 
giving some updates on the accuracy from 0.9% to 5.8% (depending on the type of assets and other settings). 

6. Conclusions 

In this paper, we explored the possibility to adapt the modern “informed ML” [3] approach and emerging informed 
NNs architectures (such as PINNs [12] or causality-aware NNs [26]) to deal with conceptual models 
(ontologies/taxonomies). We show that taxonomy awareness during NNs’ training could be as useful as analytical 
constraints in PINNs. What has been taken from the PINNs’ experience is the structure of the loss function, which 
includes traditional fitness-to-training-data loss and some portion of the loss related to taxonomy awareness. We 
recommended and made preliminary exploration of TINNs as a new subclass of informed NN architectures, which 
can be used in many domains including smart manufacturing.  

We limited our study to the basic taxonomic relationships: (hierarchical) “class-subclass” regarding the structure 
of training data and “instance-class” regarding physical objects from which the training data has been collected. 
Knowledge of complex taxonomies, i.e., with deep class hierarchies and multiple inheritance can be mapped to an 
appropriate structure of loss function applied during backpropagation training of TINNs. 

We experimented with some image datasets and noticed that TINNs improve performance comparably to 
traditional convolutional NNs and this performance difference is more visible when dealing with noisy data. 

A couple of TINN architectures have been explored regarding condition monitoring and diagnostics of smart assets 
in the Industry 4.0 context. Exploring the first architecture, we show that learning diagnostic models for individual 
assets from limited data will benefit from adding available knowledge on the class of identical assets. The second 
architecture can be applied as a kind of federated learning system where each individual diagnostic model (for the 
instance of the class of similar assets) learns from limited available data but benefits from exchanging training loss 
information with the other “partner” models. In both cases, TINN architectures outperformed ignorant NN solutions.   

Quite a lot of experimentation is still needed to explore the full potential of TINNs. In addition, other complex 
ontological constraints (regarding taxonomy classes) must be studied to explore other possible options for TINN 
architecture. Robustness of TINN models against noise and adversarial attacks is still the plan for future studies.     
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For each 𝑖𝑖-th NN model during its backpropagation training, we suggest constructing the loss by applying the 
weighted Lehmer mean (𝐿𝐿𝐿𝐿) function over the individual losses from other “partner” models according to the general 
schema: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝐿𝐿𝐿𝐿[𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖), 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹1), 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹2), … , 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖−1), 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖+1), … , 𝜆𝜆 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑛𝑛)]. 

The Lehmer mean for some set of positive values {𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑛𝑛}  is known to be a generalized mean function 
controlled by parameter 𝑝𝑝 as follows: 

𝐿𝐿𝐿𝐿𝑝𝑝(𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑛𝑛) =
𝑙𝑙1
𝑝𝑝+1+𝑙𝑙2

𝑝𝑝+1+⋯+𝑙𝑙𝑛𝑛
𝑝𝑝+1

𝑙𝑙1
𝑝𝑝+𝑙𝑙2

𝑝𝑝+⋯+𝑙𝑙𝑛𝑛
𝑝𝑝 = ∑ 𝑙𝑙𝑖𝑖𝑝𝑝+1𝑛𝑛

𝑖𝑖=1
∑ 𝑙𝑙𝑖𝑖𝑝𝑝𝑛𝑛
𝑖𝑖=1

. 

In the target loss function, which is the weighted Lehmer mean, we pay special attention to the 𝜆𝜆 value as follows: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑝𝑝,𝑛𝑛,𝛼𝛼,𝑡𝑡 =
(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖))𝑝𝑝+1+𝜆𝜆(𝑛𝑛,𝛼𝛼,𝑡𝑡)∙∑ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑘𝑘))𝑝𝑝+1𝑛𝑛

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑖𝑖))𝑝𝑝+𝜆𝜆(𝑛𝑛,𝛼𝛼,𝑡𝑡)∙∑ (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝑘𝑘))𝑝𝑝𝑛𝑛
𝑘𝑘=1
𝑘𝑘≠𝑖𝑖

, where 𝜆𝜆(𝑛𝑛, 𝛼𝛼, 𝑡𝑡) = 𝑛𝑛−1
𝑛𝑛∙𝑙𝑙𝐿𝐿𝑙𝑙𝛼𝛼(𝛼𝛼+𝑡𝑡−1)

.   (2) 

In formula (2): 𝑖𝑖 indicates a particular model (𝐹𝐹𝑖𝑖) being trained; 𝑛𝑛 – the number of simultaneously trained models 
(i.e., the number of assets in the class); parameter 𝑡𝑡 is the current training epoch number (i.e., the influence of other 
“partner” models on the target model will decrease during the training process, and parameter 𝛼𝛼 can be used to control 
the decrease function); parameter 𝑝𝑝 controls the Lehmer mean itself, i.e., the biases related to the distribution of 
averaged losses.   

We experimented with both of these use-case scenarios for condition monitoring, diagnostics and predictive 
maintenance of industrial assets. For that, we have implemented and embedded both schemas as new additional 
features into our UBIWARE platform [25], which is a semantic (taxonomy-aware) middleware for smart industrial 
assets. Experiments show that “informed” TINNs as diagnostic models in both scenarios outperform the ignorant NNs, 
giving some updates on the accuracy from 0.9% to 5.8% (depending on the type of assets and other settings). 

6. Conclusions 

In this paper, we explored the possibility to adapt the modern “informed ML” [3] approach and emerging informed 
NNs architectures (such as PINNs [12] or causality-aware NNs [26]) to deal with conceptual models 
(ontologies/taxonomies). We show that taxonomy awareness during NNs’ training could be as useful as analytical 
constraints in PINNs. What has been taken from the PINNs’ experience is the structure of the loss function, which 
includes traditional fitness-to-training-data loss and some portion of the loss related to taxonomy awareness. We 
recommended and made preliminary exploration of TINNs as a new subclass of informed NN architectures, which 
can be used in many domains including smart manufacturing.  

We limited our study to the basic taxonomic relationships: (hierarchical) “class-subclass” regarding the structure 
of training data and “instance-class” regarding physical objects from which the training data has been collected. 
Knowledge of complex taxonomies, i.e., with deep class hierarchies and multiple inheritance can be mapped to an 
appropriate structure of loss function applied during backpropagation training of TINNs. 

We experimented with some image datasets and noticed that TINNs improve performance comparably to 
traditional convolutional NNs and this performance difference is more visible when dealing with noisy data. 

A couple of TINN architectures have been explored regarding condition monitoring and diagnostics of smart assets 
in the Industry 4.0 context. Exploring the first architecture, we show that learning diagnostic models for individual 
assets from limited data will benefit from adding available knowledge on the class of identical assets. The second 
architecture can be applied as a kind of federated learning system where each individual diagnostic model (for the 
instance of the class of similar assets) learns from limited available data but benefits from exchanging training loss 
information with the other “partner” models. In both cases, TINN architectures outperformed ignorant NN solutions.   

Quite a lot of experimentation is still needed to explore the full potential of TINNs. In addition, other complex 
ontological constraints (regarding taxonomy classes) must be studied to explore other possible options for TINN 
architecture. Robustness of TINN models against noise and adversarial attacks is still the plan for future studies.     
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