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Abstract
Design patterns provide a systematic way to convey solutions to recurring modeling
challenges. This paper introduces design patterns for hybrid modeling, an approach
that combines modeling based on first principles with data-driven modeling
techniques. While both approaches have complementary advantages there are often
multiple ways to combine them into a hybrid model, and the appropriate solution
will depend on the problem at hand. In this paper, we provide four base patterns that
can serve as blueprints for combining data-driven components with domain
knowledge into a hybrid approach. In addition, we also present two composition
patterns that govern the combination of the base patterns into more complex hybrid
models. Each design pattern is illustrated by typical use cases from application areas
such as climate modeling, engineering, and physics.

Keywords: Hybrid modeling; Physics-inspired AI; Design patterns

1 Introduction
Models play a crucial role in the scientific process by providing a representation of com-
plex systems, processes, and phenomena. Models help scientists to make predictions, test
hypotheses, and gain a deeper understanding of the behavior of these systems [1, 2]. By
using mathematical models, such as physical, statistical, or simulation models, scientists
can study the relationships between variables, estimate uncertainties, and explore scenar-
ios without having to perform expensive or dangerous experiments [3, Ch. 1]. In this way,
models serve as a powerful tool for advancing our knowledge and understanding of the
world, and for solving real-world problems in fields such as medicine, engineering, and
environmental science.

Traditionally, models are derived from first principles and encode domain knowledge
such as physical laws or physical constraints. Such models emerge from the scientific
process through a combination of observation, experimentation, and theoretical analy-
sis. After careful observation of natural phenomena, scientists form hypotheses and theo-
ries to explain the observed behavior. These theories are then tested through experiments
and compared with existing knowledge and models. If a theory withstands experimental
scrutiny and provides accurate predictions, it may become accepted as a law or constraint.
Models based on first principles are data-efficient, causal, lead to explainable predictions,
are often more reliable than data-driven models since the underlying theory has been val-
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idated, and predictions will generalize to other deployment regimes as long as the under-
lying assumptions of the model still hold.

Data-driven models, on the other hand, are a type of modeling approach that relies on
large data sets to identify patterns and correlations in the data that can be used to make
predictions or classifications [4, 5]. These models are often used in fields where the under-
lying physical processes are too complex to model by first-principles. Data-driven models
are typically developed using machine learning techniques such as neural networks [6].
These models can be trained on large data sets of labeled and in some cases unlabeled
data and can then be used to make predictions or classifications on new data. Data-driven
models have shown promise in a wide range of applications, including image and speech
recognition, natural language processing, and predictive modeling in finance and health-
care.

Hybrid models combine the strengths of both data-driven and first-principle based
models, and can be useful in situations where neither approach alone is sufficient [7–10].
For example, mechanistic models are based on first principles and describe a hypothesized
causal process between variables [11]. While they can provide a deep understanding of the
underlying physics or biology of a system, they may not always capture all of the relevant
details or interactions, leading to inaccuracies. On the other hand, data-driven models
can accurately capture complex relationships in large data sets, but may not be able to ex-
plain the underlying mechanisms or provide insight into how the system behaves under
new conditions. Hybrid models can combine the strengths of both approaches, allowing
for more accurate and interpretable predictions even in complex systems with incomplete
understanding of the underlying mechanisms.

Hybrid modeling is challenging because it requires expertise in both first-principle-
based modeling and data-driven modeling, as well as knowledge of how to integrate the
two approaches effectively. It can be difficult to determine the appropriate level of com-
plexity for each component of the hybrid model and to ensure that the different compo-
nents are compatible with each other. In particular, hybrid modeling requires careful con-
sideration of the trade-offs between accuracy, complexity, interpretability, and scalability,
which can be difficult to optimize.

Validating and verifying a hybrid model presents another challenge. Its data-driven
and physics-based components may contribute different sources of uncertainty and er-
ror which need to be handled with care. For these reasons, designing and implementing
a hybrid model requires careful consideration of the strengths and weaknesses of each
modeling approach and a thorough understanding of the system being modeled.

The applications of hybrid modeling are incredibly diverse, spanning a wide range of
fields and industries. From molecular modeling in drug discovery [12], to simulation tasks
in climate [13] and earth science [14] and engineering, to modeling sensor data, hybrid
modeling is used in many domains to address unique and complex challenges.

This diversity of applications means that there is a need for solutions that can be ap-
plied more broadly, rather than being specific to one particular domain. Developing such
approaches requires a focus on abstraction and generalization, so that solutions can be
formulated at a higher level of abstraction that can be applied across multiple domains.
While literature surveys of hybrid modeling have introduced taxonomies of modeling ap-
proaches [8, 9], the contribution of this paper is to present different design patterns for
composing data-driven and first-principle based models. The design patterns address re-
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curring modeling challenges and distill useful solution approaches that generalize across
applications.

Formalizing solutions to recurring modeling challenges into hybrid modeling design
patterns provides several benefits. First, it allows for the sharing of knowledge and exper-
tise across application domains, which can lead to faster progress and innovation. Second,
it facilitates the development of standardized tools and techniques for hybrid modeling,
which can improve the efficiency and reliability of the modeling process. Third, it can help
identify common challenges and limitations in hybrid modeling, which can guide future
research directions and advance the field as a whole. Overall, the use of hybrid model-
ing design patterns can improve the accessibility, efficiency, and effectiveness of hybrid
modeling across a wide range of applications.

2 Background
In this background section, we introduce modeling and then review both the first-
principles-based as well as the data-driven perspective on modeling.

2.1 Computational models
The goal of hybrid modeling is to build a computational model for a system of interest.
A computational model is a set of computations that are applied to an input to produce
an output. The model of a system can be used to make predictions about how the system
would react to certain inputs or to study how the system behaves under certain conditions.
Alternatively, the model can be used to simulate the system. Models typically approximate
the behavior of the underlying system, which might be too complex to model more accu-
rately.

An computational model is of the form

y = u(x). (1)

The inputs x are manipulated by a function u to produce the outputs y. The functional
form of u will depend on the model type. We distinguish between two different model
types: The first type is models based on first principles, for example from physics. These
are sometimes also called scientific models, and we often call them physical models. The
second type of model is data-driven. Here one uses data to find a model within a class of
functions that best explains the data. This function is then used as a model, e.g. to make
predictions.

2.2 Modeling from first principles
When modeling from first principles, the choice of u is derived using scientific reason-
ing. There is a justification for both the functional form of u and for the choice of its pa-
rameters. For this reason, these models are often called models based on first-principles,
mechanistic models, physics-based models or science-based models.

For example, laws of physics, such as Newton’s laws of motion and the law of conser-
vation of energy, emerged from centuries of observation and experimentation in the field
of mechanics. These laws provide a mathematical framework for understanding and pre-
dicting the behavior of physical systems, and have been tested and confirmed through nu-
merous experiments. Similarly, in chemistry, conservation laws, such as the law of conser-
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vation of mass, emerged from the study of chemical reactions and provide a fundamental
understanding of the behavior of chemical systems.

From a mathematical point of view, scientific models frequently take the form of al-
gebraic models, ordinary differential equations (ODEs), partial differential equations
(PDEs), or a combination of those.

2.2.1 Algebraic models
An algebraic mathematical model is a type of mathematical model that uses algebraic
equations or functions to represent a real-world situation or system. In an algebraic model,
the relationships between the variables are often represented using equations that involve
elementary mathematical operations and functions.

One example is the equation for the trajectory of a stone that is vertically thrown in the
air, where air resistance is neglected. The height u(t) over ground as a function of time
t ≥ 0 is

u(t) = –0.5gt2 + v0t + h0, (2)

where h0 is the initial height, v0 the initial velocity and g the gravitational constant.
From a computational perspective, this model could be utilized to compute – for a given

instance t1 – the height at this instance, h1 = u(t1).

2.2.2 Ordinary differential equations (ODEs)
A more involved model class are differential equations. An ODE is a type of differential
equation that involves only one independent variable, usually time t, and its derivatives.

ODE models are particularly useful for systems that involve dynamic behavior, where
the behavior of the system changes over time in response to internal or external factors.
In an ODE model, the behavior of a system is represented using one or more ODEs that
describe the rates of change of the system’s variables. The ODEs can be used to predict
how the system will evolve over time, based on its initial conditions and the values of its
parameters.

Solving an ODE involves finding a mathematical expression that describes the behavior
of the system as a function of the independent variable, usually as a function of time. This
can be done using various analytical or numerical methods, depending on the complexity
of the system and the accuracy of the desired solution. A closed form solution of an ODE
yields an algebraic model. For example, the algebraic model (2) is a solution to the ODE

d2u(t)
du2 = –g,

subject to given initial conditions. This is just Newton’s law, the first-principle based model
that underlies the mechanistic model (2).

Once a solution has been obtained, it can be used to predict the behavior of the system
under different conditions or to design interventions to achieve a desired outcome.

In the following, we will consider three additional ODE models that will serve as recur-
ring examples throughout the remainder of the paper.

1. Let us start with the ODE of an harmonic oscillator

d2u(t)
dt2 = –u(t), (3)
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where u(t) yields the normalized displacement at normalized time t. The
normalization is with respect to some reference displacement s0 and the oscillatory
period T , respectively. For a spring-mass system with mass m and spring constant k
the oscillatory period is T =

√
m/k. The model gets more interesting if a nonlinear

damping term is added,

d2u(t)
dt2 = –u(t) + μ

du(t)
dt

(
1 – u(t)2), (4)

where the positive real parameter μ determines the amount of nonlinear damping.
Equation (4) is the Van der Pol equation [15, Sect. 5.7], which exhibits a number of
interesting nonlinear phenomena, such as relaxation oscillations [16].

2. The Lotka-Volterra equations [17, Sect. 4.1] are used to model the population
dynamics of two interacting species of a predator and its prey. The population
density of prey is u(t) and the population density of predators is w(t). The population
dynamics is modeled by the nonlinear system of ODEs

du(t)
dt

= αu(t) – βu(t)w(t),
dw(t)

dt
= δu(t)w(t) – γ w(t), (5)

with positive real parameters α, β , γ , and δ determining the self and mutual
interactions of the two species.

3. The simplest standard model for a dynamical system with several degrees of freedom
is a system of ODEs, of the form

du(t)
dt

= f
(
u(t), t; θ

)
, (6)

where u(t) ∈R
n describes the state of the system at time t, a point in an

n-dimensional state space. Herein, θ ∈R
p is a p-dimensional parameter vector that

admits calibrating the model. Given an initial condition u(t0) at time t0, the dynamics
of the system can be obtained by integrating the ODE system. At time t1 > t0 we
obtain

u(t1) = u(t0) +
∫ t1

t0

f
(
u(t), t; θ

)
dt. (7)

This representation clearly demonstrates that the dynamics of the system is entirely
encoded in the function f , which assigns to each state u(t) and time t the rate of
change of this state. The structure of the function f is often dictated to us from
physics, and the values of the parameters can be obtained from domain knowledge.

Moreover, given an actual numerical implementation of the function f there are
several numerical methods, such as Runge-Kutta methods [3, Ch. 4 & 6], to integrate
ODE systems. Only together with an integration method will an ODE system yield a
computational model (Eq. (1)) for predicting future states.

2.2.3 Partial differential equations (PDEs)
A PDE is an equation for a function which depends on more than one independent vari-
able. The equation involves the independent variables, the function, and partial derivatives
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of the function, with respect to the independent variables. PDEs are ubiquitous in math-
ematical physics and foundational in several fields, such as acoustics, elasticity, electro-
dynamics, fluid dynamics, thermodynamics, general relativity, and quantum mechanics.
The independent variables are often space-time coordinates, like (x, y, z, t).

As a simple example, we consider a scalar function u, which depends on the spatial
coordinates (x, y, z), and the PDE

∂2u(x, y, z)
∂x2 +

∂2u(x, y, z)
∂y2 +

∂2u(x, y, z)
∂z2 = 0. (8)

This is the Laplace equation in three dimensions. For example, if u denotes the scalar
electric potential, (8) is the governing equation in electrostatics, for domains that are free
of electrical charges.

To obtain a Computation model (Eq. (1)) for predicting the state of the system over time
the PDE will need to be solved either analytically or numerically. Here the finite element
method (FEM) is a popular choice [18], but many other methods exist [19].

2.3 Data-driven modeling
An alternative path for developing a model is data-centric. Given data in form of observa-
tions, a model is developed to be consistent with the observations, for example, reproduc-
ing the data as accurately as possible. There are many different data-driven approaches.
Unlike the scientific models, which are chosen based on deductive reasoning, data-driven
models are chosen based on their statistical and computational properties and their match
to the requirements of the modeling problem at hand.

2.3.1 Data-driven calibration
Data-driven calibration is a methodological approach that leverages observed data in or-
der to optimize the parameters of a given model. Consider, for example, the Lotka-Volterra
equations, Eq. (5). In the context of data-driven calibration, the goal is to optimize the pa-
rameters α, β , γ , and δ based on observed data, to accurately capture the dynamics of the
predator-prey system.

Traditionally, these parameters might be adjusted by specialists through a process of
trial-and-error until the desired behavior is achieved. However, more systematic and ef-
ficient approaches to parameter identification are available [20]. Data-driven calibration
can employ optimization algorithms, often utilizing a specific loss function (e.g., the mean-
squared error) to guide the optimization process. For straightforward scenarios, standard
least squares approaches can be effective [21], while for complex or non-differentiable
problems, derivative-free optimization methods such as genetic algorithms [22], parti-
cle swarm optimization [23], and Bayesian optimization [24] offer valuable alternatives.
Moreover, data-driven calibration is not limited to refining existing models; it can also
facilitate the identification of physical systems from scratch [25, 26].

When considering uncertainty in the data, more sophisticated techniques, termed as
Bayesian calibration or simulation-based inference, come into play [27, 28]. These meth-
ods do not merely estimate point values for the parameters but learn their posterior dis-
tribution, accounting for both aleatoric (inherent randomness) and epistemic (model un-
certainty) factors. Furthermore, there are specialized methods designed for ordinary dif-
ferential equations (ODEs), which improve algorithmic efficiency by utilizing their math-
ematical structure [29, 30].
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While calibration focuses on refining model parameters to align predictions with ob-
served data, standard machine learning techniques as we will discuss next aim to learn
patterns directly from data without providing any physical interpretation.

2.3.2 Machine learning
Machine learning presents an approach for learning model parameters from data [4, 5].
While non-parametric approaches exist, a machine learning model often consists of a pa-
rameterized function u(·; θ ) with parameters θ , that can predict a response y from inputs
x. Different parameter settings correspond to different functional relationships between
the predictions ŷ = u(x; θ ) and the inputs. The quality of a prediction, i.e. how closely a
prediction ŷ resembles a desired output y, can be measured in a loss function l(x, y, θ ). In
the supervised learning setting [5, Ch. 1.3], given a data set D of examples of x and y pairs,
the optimal parameter setting is found by minimizing the loss, averaged over the training
examples,

θ∗ = min
θ

1
|D|

∑

x,y∈D
l(x, y, θ ). (9)

Machine learning approaches, are also applicable in the unsupervised setting [5, Ch. 1.3]
where the training data only contains input samples x, but no labels. Common unsuper-
vised modeling tasks include clustering, where the target label y would be the cluster as-
signment of an input, or anomaly detection, where the unknown label represents the like-
lihood that the input sample is an anomaly. For an overview of common machine learning
tasks see Ch. 5.1.1 of [6].

2.3.2.1 Probabilistic modeling Probabilistic modeling [4, 5] refers to a class of machine
learning methods where data points are treated as observations of random variables. Mod-
eling consists of making assumptions about the underlying distributions from which these
data points are drawn. The primary aim is to infer the parameters that characterize these
distributions from the available data. Once the model is learned, it can be used to pre-
dict future observations, evaluate the likelihood of observed data, or provide uncertainty
estimates regarding the outcomes.

In probabilistic modeling, the uncertainty inherent in predictions is embraced, allow-
ing for more robust decision-making in many scenarios. There are numerous techniques
and models in this category, including Bayesian networks [4, Ch. 8.1.], Gaussian processes
[31], Markov and Hidden Markov Models [5, Ch. 17], and Markov random fields [5, Ch.
19], among others. Each of these models has its own strengths and applications, depend-
ing on the nature of the data and the problem at hand. One model class is particularly
useful in some hybrid modeling scenarios – Gaussian processes. For this reason, they are
introduced next.

2.3.2.2 Gaussian processes Gaussian processes (GPs) define a distribution over func-
tions. They provide a principled, non-parametric methodology to infer underlying pat-
terns in data [31]. A Gaussian process is defined by its mean function m(x) and its covari-
ance or kernel function k(x, x′). At a high level, the mean function describes the expected
value of the process, and the kernel function dictates how data points influence each other
based on their separation in the input space.



Rudolph et al. Journal of Mathematics in Industry            (2024) 14:3 Page 8 of 36

Formally, a Gaussian process can be represented as:

u(x) ∼ GP
(
m(x), k

(
x, x′)), (10)

where u(x) is the output of the GP for input x, m(x) is the mean function, and k(x, x′) is
the kernel function.

Since GPs provide a distribution over functions, they can capture an infinite number
of possible explanations for the observed data. Any finite set of these observations can be
viewed as being drawn from some multivariate Gaussian distribution defined by the mean
and kernel functions. This is particularly powerful as it not only provides a prediction for
unseen data but also an associated uncertainty, which can be crucial for decision-making
in uncertain environments.

Kernel functions play an integral role in shaping the GP, with the choice of kernel deter-
mining the nature of functions the GP can represent. For instance, the Radial Basis Func-
tion (RBF) kernel assumes that points closer in input space are more correlated, leading to
smooth function approximations. On the other hand, periodic kernels can capture cyclical
patterns in the data.

Training a GP typically involves maximizing the likelihood of the observed data under
the GP prior, leading to the optimization of kernel hyperparameters. Once trained, pre-
dictions with GPs involve conditioning the GP on the observed data to infer values (and
uncertainties) at unseen input points.

However, one should note that while GPs offer many advantages, including providing
uncertainty estimates and flexibility in modeling, they can become computationally ex-
pensive with large data sets. But recent advancements and approximations, like inducing
points or sparse GPs [32–34], allow for more scalable implementations. If GPs are com-
bined with universal kernels, such as the RBF kernel, their data hunger rises very quickly
with the number of input features, an effect also known as the “curse of dimensionality”.
Here, it often helps to build customized kernels that take properties of the data into ac-
count, e.g. convolutional kernels for images [35] or kernels tailored to linear ODE and PDE
systems [36, 37].

Altogether, Gaussian Processes are a versatile tool for machine learning and allow hybrid
modeling at scale [28, 38, 39].

2.3.2.3 Neural networks Neural networks [6] are computational models consisting of
interconnected nodes, or “neurons” (this terminology is borrowed from how the brain
processes information), organized into layers: input, hidden, and output layers. The con-
nections between neurons has an associated weight, which is adjusted during training to
minimize the difference between the predicted and actual output. Each layer of a neural
network can be represented as σ (Wx + b), where W is a matrix of weights, x is the input
vector from the previous layer, b is the bias vector, and σ represents an activation function,
such as the sigmoid or ReLU (Rectified Linear Unit) [40], which is applied element-wise.

The power of neural networks lies in their capacity to approximate complex, non-linear
functions. By stacking multiple layers and using non-linear activation functions, neural
networks can capture intricate patterns and relationships in data. The training process
involves iteratively adjusting the weights using optimization algorithms like gradient de-
scent to reduce the error between the network’s predictions and the ground truth.
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Deep learning, a sub-field of machine learning, refers to neural networks with many
layers, enabling the capture of even more complex representations. For instance, con-
volutional neural networks (CNNs) [6, Ch. 9] are adept at processing image data, while
recurrent neural networks (RNNs) [6, Ch. 10] excel in handling sequential data.

However, while neural networks have achieved remarkable success in various applica-
tions, they come with challenges. For example, neural networks require an amount of data
that is appropriate for the size of the network to avoid a phenomenon called overfitting.
When the network becomes large and has many parameters but is trained on too little
data, it can use its modeling capacity to model irrelevant details including noise which
leads to overfitting meaning that the predictions will be close to perfect on the training
data but will not work well for new test cases. Since model behavior is determined by the
training data, out-of-sample and out-of-distribution generalization cannot be assumed. In
addition, the “black-box” nature of neural networks usually limits the interpretability of
the model and its predictions. Finally, hyperparameter tuning is another area of concern,
requiring extensive experimentation to find the optimal settings for parameters such as
the learning rate, batch size, and network depth, which can be both time-consuming and
resource-intensive.

2.3.2.4 Regularization of machine learning methods Regularization techniques serve as
foundational tools in machine learning, designed to prevent models from overfitting to
their training data. By introducing a penalty to the model’s complexity, regularization en-
sures that models remain generalizable to unseen data [4]. L1 (Lasso) and L2 (Ridge) reg-
ularization, which penalize the magnitude of model parameters, can be viewed as implicit
modeling methods. They don’t dictate the model’s structure directly but influence it by
penalizing certain parameter configurations. In neural networks, techniques like dropout,
which randomly deactivates certain neurons during training, aid in enhancing generaliza-
tion. Other methods such as early stopping and batch normalization, which normalizes
neuron activations, further contribute to model robustness. While regularization provides
a shield against overfitting, it introduces the challenge of selecting the right regularization
strength, necessitating meticulous tuning and validation.

2.4 Explicit versus implicit models
In Sect. 2.1 we have introduced computational models, and so far avoided the distinc-
tion between explicit models, which directly provide computational representations like
Eq. (1), and implicit models, which on their own are not enough to obtain a computa-
tional model. While an explicit model prescribes a direct mapping from input x to output
y implicit models often require a solver or an optimization procedure to result in a compu-
tational model akin to Eq. (1). Regularization is a fitting example of this distinction. While
it introduces constraints or penalties to the learning process, it doesn’t directly specify the
functional form of the model. Instead, the model emerges as a result of an optimization
process that balances fitting the data with the imposed regularization constraints.

Similarly, differential equations provide the dynamics or laws governing a system but
don’t directly offer a computational model for predicting states. Only when combined
with a solver, often numerical, do they yield a method to predict the state at subsequent
time points. Partial differential equations (PDEs), such as Maxwell’s equations, also epit-
omize this concept. While they describe the fundamental relationships between electric
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and magnetic fields, a computational model that predicts field values at specific spatial
and temporal points necessitates the application of a solver. The allure of implicit models
lies in their ability to capture complex behaviors and constraints. However, they also de-
mand a deeper understanding and careful selection of solvers or optimization techniques
to ensure accurate and meaningful predictions.

2.5 Model composition
A computational model, as defined in Sect. 2.1 can itself be a composition of multiple
sub-models. The generic function u that we have used so far can be composed of other
functions representing the sub-models in various ways. The sub-models can be implicit
or explicit and can be data-driven or first-principles based. The contribution of this paper
is to present different design patterns for composing data-driven and first-principle based
models.

2.5.1 Model composition in machine learning
An example of model composition is deep kernel learning [41]. In deep kernel learning,
the kernel function of a GP is parameterized using a deep neural network. This means that
instead of using a traditional kernel function like the RBF or Matérn kernel, the kernel is
defined by the outputs of a neural network. Formally, given two input vectors x and x′,
the kernel function can be represented as kθk (fθf (x), fθf (x′)), where fθf is the neural network
with parameters θf , and kθk is a base kernel with parameters θk .

This composition allows the model to learn intricate patterns and relationships in the
data that might not be captured by a standard GP kernel. By mapping the input data into
a new representation space using the neural network, the kernel can operate on features
that are potentially more informative and better suited to the problem at hand.

Another illustrative example of model composition is the concept of model stacking or
stacked generalization [42]. Here, individual models, often referred to as base learners,
make predictions which are then used as input features for another model, typically called
the meta-learner or the stacking model. The meta-learner then makes the final prediction.
This composition technique aims to combine the strengths of multiple models, thereby
improving generalization performance.

A different perspective on model composition can be found in ensemble methods like
bagging [43] and boosting [44]. In bagging, multiple models are trained on different sub-
sets of the data and then averaged (for regression) or voted upon (for classification) to
make predictions. Boosting, on the other hand, iteratively trains models by giving more
weight to instances that previous models got wrong, aiming to correct mistakes made by
earlier learners.

2.5.2 Model composition of models based on first principles
Another example of model composition can be found in classical electrodynamics. An
electromagnetic field is defined as a four-tuple of space- and time-dependent vector fields
(�E, �D, �H , �B), the electric field �E, the electric displacement �D, the magnetic field �H , and the
magnetic flux density �B. Electromagnetic fields are governed by Maxwell’s equations, a
set of four PDEs. Two of the equations are dynamic equations, since they contain time
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derivatives. We collect them in a sub-model U1,

∂

∂t

(�D
�B

)

=

(
0 + curl

– curl 0

)( �E
�H

)

–

(
�j
0

)

, (11)

with the electric current density �j . The first equation in (11) is Ampère’s law, the second
Faraday’s law, respectively. The remaining two equations have the form of PDE constraints.
We collect them in the sub-model U2,

(
0
0

)

=

(
div 0
0 div

)(�D
�B

)

–

(
ρ

0

)

, (12)

with the electric charge density ρ . These are the electric and magnetic Gauss’ laws, respec-
tively. Maxwell’s equations (U1, U2) need to be complemented by constitutive relations
that encode the material properties. For simple media at rest, the additional sub-model
U3 takes the algebraic form

(�D
�B

)

=

(
ε 0
0 μ

)( �E
�H

)

, (13)

with the dielectric tensor ε and the permeability tensor μ. All three sub-models can be
written in implicit form Ui(�E, �D, �H , �B) = 0, i = 1, 2, 3, and aggregate to the composed model
U = (U1, U2, U3), which yields a predictive model of electrodynamics.

3 Hybrid modeling design patterns
Hybrid modeling is diverse with applications ranging from molecular modeling in drug
discovery [45], over various simulation tasks in climate science [46] or various engineer-
ing disciplines [47], to modeling sensor data for virtual sensing. Solutions for individual
use cases are usually application-specific. New hybrid modeling challenges often seem
so unique that interdisciplinary teams come together to develop a custom solution from
scratch. While this leads to progress in individual disciplines, solutions are often not ac-
cessible to other application domains.

To make progress in hybrid modeling research, it is necessary to abstract recurring mod-
eling challenges and to distill useful solution approaches that generalize across applica-
tions. The goal of this paper is to introduce hybrid modeling design patterns that formal-
ize these solution approaches at an abstraction level beyond individual applications. We
adopt the following definition of design pattern.

Definition 1 A hybrid modeling design pattern is a reusable blue-print for a building
block of a general solution to recurring hybrid modeling challenges.

Per our definition, a design pattern should address recurring challenges beyond indi-
vidual application domains. For this reason, the solution approach encoded in the design
pattern should be general, meaning that application-specific aspects are abstracted away.
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Further, the hybrid modeling design patterns are modular and solving a modeling chal-
lenge will typically involve the composition of multiple design patterns. Finally, a design
pattern is a blue-print rather than an implementation; blue-prints are reusable and useful
for developing a solution and guiding its implementation.

In this section, we discuss the motivation behind working at this level of abstraction and
list properties of useful design patterns. We then introduce the block diagram notation we
propose to communicate the design patterns. Finally, we provide some guidance on how
the design patterns can be used for new hybrid modeling use cases as well as meta-level
research.

3.1 The block diagram notation for hybrid modeling design patterns
We propose a simple block diagram notation for working with the hybrid modeling design
patterns. The general question in recurring hybrid modeling challenges is typically how
to best combine the available domain knowledge with the available data. The data is pro-
cessed by a data-driven model, which we denote by D, while the chosen first-principles-
based model is denoted by P . Both models D and P are computational blocks, which re-
ceive inputs and perform computations to produce an output. For example, a data-driven
model component will receive observations as an input which it will process to either
produce a prediction, a lower dimensional representation of the input, or another quan-
tity that is needed for the modeling challenge at hand. The inputs to P will depend on the
type of domain knowledge available. In the case of a differential equation for example, the
inputs might consist of the initial conditions and the time interval over which the dynam-
ics are to be integrated. The desired output could be the simulated dynamics, or the final
state.

In the block diagram notation, a computational block (typically P or D) is represented
by a square. Directed arrows indicate the flow of information. For example, a directed
arrow between two blocks indicates that the output (i.e. the result of the computation) of
the first block, is used as one of the inputs to the second block. A computational block can
have multiple incoming arrows, meaning that its inputs come from various sources, and
it can have multiple outgoing arrows, meaning that its computational results are further
processed in different ways.

In summary, a block diagram for describing a design pattern consists of rectangular
boxes representing computational blocks and of directed arrows, which indicate the flow
of inputs and outputs between the boxes. Actual examples of design patterns will be pre-
sented in Sect. 4.

Figure 1 A block diagram for a hybrid modeling design pattern consists of computational blocks (Fig. 1a),
indicating model components that involve computation, and arrows (Fig. 1b) indicating the flow of data and
intermediate computational results. For example, the arrow in Fig. 1c indicates that the result of the
computational block B1 is fed as an input into the computational block B2
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3.2 Properties of useful design patterns
Before diving into the specific design patterns introduced in Sect. 4 and utilizing the block
diagram notation to generate patterns that satisfy Definition 1, it is crucial to discuss the
properties that make a design pattern useful. Some of these properties are essential and
have already been explicitly stated in our definition of hybrid modeling design patterns.

Design pattern versus architecture We prefer the term “design pattern” over “architec-
ture” because, in a specific model architecture, several design patterns might be combined
or nested. Additionally, we emphasize that the design patterns were collected by analyz-
ing actual applications. Since there is no comprehensive theory of hybrid modeling from
which these patterns could be derived, our collection is not exhaustive and is intended to
grow as new design patterns are developed or gain importance.

Abstract and general An essential step in creating design patterns is abstracting useful
concepts that are applicable across various applications and formulating them in a way
that makes them easily applicable in a general reusable context. A good design pattern is
not a finished design, but rather a blueprint that can be adapted to specific problems.

Design patterns should be abstract and general rather than application-specific, allowing
them to be applied across a wide range of problems. This flexibility enables researchers and
practitioners to adapt and customize the design pattern for their specific needs, promoting
innovation and problem-solving in diverse fields.

Broad applicability A useful design pattern should have the potential to address vari-
ous challenges and applications, enabling researchers and practitioners to benefit from its
adoption. By offering solutions that can be adapted to different contexts, a design pattern
with broad applicability can contribute to the development and improvement of numerous
models, fostering progress across multiple domains.

Modularity and composability Design patterns should be modular, allowing for easy in-
tegration with other patterns, and promoting composability for constructing more com-
plex models. This property enables the combination of multiple design patterns, leading
to the creation of more sophisticated and powerful hybrid models that can tackle complex
challenges.

Tractability and ease of communication A good design pattern should be tractable, facil-
itating implementation, and easy to communicate, promoting understanding and collab-
oration among researchers and practitioners. Clear and understandable design patterns
encourage adoption and facilitate the sharing of ideas, contributing to the overall growth
and development of hybrid modeling methodologies.

Clear interface between physics-based and data-driven components An effective de-
sign pattern should provide a clear interface between the physics-based and data-driven
components, enabling seamless integration and interaction between the two modeling
paradigms. By defining how these two aspects interact, a design pattern can help create
a cohesive and well-structured model that effectively leverages the strengths of both ap-
proaches.
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4 Examples of design patterns
We now delve into the key design patterns for hybrid modeling. There will be two types of
patterns, base patterns and composition patterns. The base patterns establish systematic
approaches for combining a first-principles-based model P with a data-driven model D,
capitalizing on the strengths of both modeling techniques. In Sect. 4.1, each of the base
design patterns is described in detail, elucidating the principles and methodologies under-
lying their application. Furthermore, we provide illustrative examples to enhance compre-
hension and demonstrate the practical utility of these design patterns in various scenarios.
In Sect. 4.2, we present patterns for the composition of base patterns. These composition
patterns facilitate building more elaborate hybrid modeling solutions for complex model-
ing tasks.

4.1 Base patterns for hybrid modeling
The base patterns are the basic building blocks for the development of hybrid modeling so-
lutions. Each design pattern takes two computational models, typically a first-principles-
based model P and a data-driven model D and combines their computation steps into a
hybrid model. The order in which the computation is executed, and the flow of inputs and
outputs between computational blocks will differ between the design patterns.

In the following sections, we present a total of four base patterns, with the first three
having previously been introduced by von Stosch et al. [48] within the context of process
systems engineering.

4.1.1 The delta model
The delta model serves as a fundamental design pattern in hybrid modeling, providing an
effective method to combine the strengths of both first-principles-based and data-driven
models. This design pattern is particularly useful when the first-principles-based model
captures the primary underlying physical, chemical, or biological processes but may lack
the precision or comprehensiveness required for specific applications. By introducing a
data-driven component that accounts for discrepancies or unmodeled phenomena, the
delta model can significantly enhance the accuracy and predictive capabilities of the over-
all hybrid model.

The delta model is formulated by additively combining a first-principles-based model
P with a data-driven model D, resulting in a hybrid model H as follows:

H(x) = D(x) + P(x). (14)

The block diagram is given in Fig. 2. In the equation, x represents the input variables,
and H(x), P(x), and D(x) are the output predictions for the hybrid, first-principles-based,

Figure 2 The block diagram of the delta model (Sect. 4.1.1).
In this design pattern, the outputs of the data-driven
computationD and the first-principles-based
computation P are combined additively in a
computational block denoted by “+”
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and data-driven models, respectively. The first-principles-based model, P(x), encapsu-
lates the primary knowledge of the underlying processes, while the data-driven model,
D(x), is trained to capture the discrepancies between P(x) and the observed data. The
data-driven component, therefore, accounts for the unmodeled or inaccurately modeled
phenomena, refining the overall predictions made by the hybrid model.

Typical use cases The delta model is applicable in a variety of scenarios, including but
not limited to:

• Thompson and Kramer [49] suggest compensating for the inaccuracies of first
principle based equations, such as mass and component balances by building a hybrid
model which additively combines these simple process models with a neural network.
For a survey of more recent approaches we refer the reader to Zendehboudi et al. [50].

• Ground water modeling in geoscience: Xu and Valocchi [51] showcase that various
data-driven models are effective at correcting the bias of physics-based ground flow
models and can in addition produce well calibrated error bars.

• Computational fluid dynamics: Reynold-averaged Navier Stokes (RANS) equation
solvers are an important computational tool for modeling turbulent flows.
Unfortunately, RANS predictions are often inaccurate due to large discrepancies in
the predicted Reynolds stress. Wang et al. [52] propose to mitigate these discrepancies
with a data-driven correction term.

• Dynamics modeling: Levine and Stuart [53] present a unified framework for learning
the modeling error in dynamical systems, when P is described by differential
equations.

Example To study the delta model in action, we consider data from an accelerometer.
The long-term effects can be described by a harmonic oscillator with non-linear dampling,
while the short-term effects lack a physical interpretation. We will study the delta model
in comparison to just its physical component P or the data-driven component D. We
assume, that the underlying dynamics of the system resemble the Van der Pol equation
(Eq. (4)) and that the short-time behavior can be simulated by a Gaussian process (GP).

We generate data according to the model

y(t) = uvdp(t) + uloc(t) + ε, (15)

where uvdp(t) are the predictions obtained from the Van der Pol equation, uloc(t) ∼
GP(0, k(t, t′)) are simulated local effects according to a GP with squared exponential kernel
with variance 0.2 and length scale 0.5 and ε ∼ N (0,σ 2

n ) is Gaussian noise with variance
σ 2

n = 0.05.
To simulate the Van der Pol equation (Eq. (4)), we define the differential fODE : R2 →

R
2 : (st , vt) → (vt , –st + μvt(1 – s2

t )) in the state-space ht = (st , vt) = (ut , dut
dt

), where for ease
of readability, we denote a function evaluated at time point t with the subindex t, e.g.
ut ≡ u(t). We use a order 5(4) Runge-Kutta method to simulate dht

dt = fODE(ht ;μ) over the
time interval [0, 50] (at a resolution of 0.1 units) with μ = 5, and initial state h0 = (1, 0).

The generated time series data D = (tk , yk)k=1,...,K , where yk is the measured dynamic
response at time tk is depicted in Fig. 3, with training data denoted by blue points and test
data denoted by red points. It can be seen that the generated data follows mostly the Van
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Figure 3 Evaluation of different methods on a toy accelerometer set-up. From top to bottom: Predictions from a
(a) Van der Pol oscillator (P (t)), (b) Gaussian Process (D(t)) and (c) hybrid model combining both approaches
according to the delta model (H(t) =P (t) +D(t)). Training data is shown in blue, test data in red. The
predictions are shown in yellow. The yellow shaded areas in Figure (b) and (c) depict the 95% confidence
interval of the predictions. We can observe that the Van der Pol oscillator cannot capture the local effects of
the data, while the Gaussian Process falls short when training data is scarce. The hybrid model combines the
best of both worlds and performs well under all data scenarios

der Pol equation, which covers the majority of the underlying physical processes, but does
not fully account for certain localized phenomena or short-term dynamics. To make the
modeling task more challenging, we further assume that the measurement system had a
black-out between 5 and 15 time units during which no training data is available.

The results in the figure provide a qualitative comparison of a pure first principles-based
modeling approach based on Eq. (4), fitting a data-based approach (Eq. (10)), and a hybrid
model using the delta approach.

Figure 3a shows the dynamic response according to the Van der Pol equation. While this
model accurately captures the long-term behavior of the system, it falls short in capturing
the finer details and short-term effects.

The GP predictions are shown in Fig. 3b. When abundant training data is available, the
Gaussian Process performs well. However, if training data is scarce (between 5 and 15 time
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units), the predictions fall back to the prior (which is zero) and are accompanied by high
uncertainties.

Finally, we combine the Van der Pol oscillator with the Gaussian Process. The data-
driven model learns the discrepancies between the first-principles-based model’s predic-
tions and the observed data, effectively accounting for unmodeled or inaccurately modeled
phenomena. Results are depicted in Fig. 3c demonstrating that the hybrid model combines
the best of both worlds: when training data is available, the Gaussian Process improves
the predictions compared to the physics-based model significantly, capturing effects not
considered in the Van der Pol equation. When training data is limited, the physics-based
model takes over, as the Gaussian Process predictions revert to the prior.

Employing the delta model combines the first-principles-based and data-driven com-
ponents, resulting in an improved hybrid model. Our results confirm that this model pro-
vides more accurate and reliable predictions by accounting for both the strengths and the
limitations of the individual models in different data scenarios.

Discussion The delta model offers several compelling advantages that underscore its
utility in hybrid modeling. One of its primary strengths is the facilitation of fast proto-
typing. With the availability of a first-principles-based model P , researchers and practi-
tioners can swiftly initiate their modeling efforts. As more data becomes available or as the
need for enhanced precision arises, the data-driven component D can be incrementally
introduced, refining the model without necessitating a complete overhaul.

Moreover, the delta model inherently promotes higher accuracy and robustness. While
the physical model P provides a foundational understanding, it might occasionally fall
short due to assumption mismatches or its inability to encapsulate the stochasticity in-
herent in many real-world processes. For instance, P might be predicated on idealized
assumptions, such as negligible noise levels or presumed linearity, which might not hold
true in practical scenarios. The data-driven component D serves as a corrective mecha-
nism in such instances, adeptly learning to account for complex non-linearities, stochastic
effects, and other intricate real-world phenomena that the physical model might overlook.

Another salient advantage of the delta model is its data efficiency. Learning the devia-
tions or discrepancies from an existing model P is often more data-efficient than attempt-
ing to learn the entire function from scratch solely through D. This efficiency is particu-
larly pronounced when training data is sparse. By incorporating the physical model, the
delta model introduces a beneficial inductive bias, ensuring that even in low-data regimes,
plausible estimates can be generated.

Lastly, the delta model’s design inherently supports specialization. In many scenarios,
it might be infeasible to obtain training data that spans the entirety of the input domain,
perhaps due to safety concerns, prohibitive measurement costs, or other constraints. The
delta model elegantly addresses this challenge. For test points that lie outside the domain
covered by the training data, the physics-based model P takes precedence, leveraging its
capability to extrapolate reliably. Conversely, for inputs that are well-represented in the
training data, the data-driven model D offers its specialized insights, ensuring predictions
that are both accurate and nuanced.

The advantages described above, make the delta model a popular design pattern for
hybrid modeling. However, it also has its limitations. Due to the additive nature of the
pattern, it has limited modeling flexibility. Specifically, it does not explicitly model higher-
order interactions between the physics-based model and the data-driven component.
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Figure 4 In physics-based preprocessing (Sect. 4.1.2), the inputs to the data-driven modelD are first
transformed based on first-principles in the computational block P

4.1.2 Physics-based preprocessing
Physics-based preprocessing is another crucial design pattern in hybrid modeling that
leverages domain knowledge to enhance the performance of data-driven models. By incor-
porating transformations derived from physical laws or other domain-specific knowledge,
this design pattern preprocesses the input data before feeding it into a data-driven model.
The preprocessing step can introduce useful inductive biases, reduce the dimensionality
of the data, and improve the overall efficiency and interpretability of the resulting model.

In the physics-based preprocessing design pattern, a transformation model P is applied
to the input variables x before they are fed into a data-driven modelD. The transformation
function incorporates domain knowledge, such as physical laws or constraints, to prepro-
cess the data. The output prediction of the hybrid model H(x) can be expressed as:

H(x) = D
(
P(x)

)
. (16)

Here, P(x) represents the preprocessed input variables, and H(x) = D(P(x)) are the out-
put predictions for the hybrid and data-driven models, respectively. The transformation
function, P(x), is designed based on domain knowledge to enhance the data’s represen-
tation or to simplify the data-driven model’s task, leading to improved performance and
interpretability. The block diagram for physics-based preprocessing is in Fig. 4.

Typical use cases Physics-based preprocessing is applicable in various scenarios, includ-
ing:

• Time-series processing with spectrograms: Time-series data is often preprocessed
using short-time Fourier transform (STFT) turning the 1-D time domain signal into a
2-D time-frequency representation. Deep learning based methods are more effective
in the time-frequency domain for many different applications such as time-series
anomaly detection [54], sound classification [55], heart disease diagnosis on
electrocardiograms [56] and object classification on radar sensors [57].

• Fault-detection in mechanical engineering: Rolling-element bearings are an integral
component of many machines and bearing fault detection is an important task in
mechanical engineering [58]. There is a long history of analyzing vibration patterns
and acoustic signals for bearing fault detection. For example, peaks in certain spectra
are known to be predictive of imminent failure. Sadoughi and Hu [59] exploit this
know-how for physics-based preprocessing of vibration and acoustic data which is
then fed into a convolutional neural network (CNN) for bearing fault detection and
localization.

• Demand forecasting: Accurate electricity demand forecasting is an important factor
for efficient planning in industry, healthcare, and urban planning. Bedi and Toshniwal
[60] combine empirical mode decomposition (EMD) with deep learning. In EMD, the
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Figure 5 Audio classification with spectrograms as an example of physics-based preprocessing. The raw audio
data is segmented into overlapping windows which are mapped to Mel spectograms. This representation of
the data in the time-frequency domain is then processed in a data-driven manner

electricity load signals are first decomposed into signals with different time scales,
chosen based on domain-knowledge, as well as a residual term. Each of the signal
components is then used to train a separate long short-term memory (LSTM) network
[61]. These LSTM networks can then be combined to forecast electricity demand.

Example Consider the example of sound classification which is used in many different
application fields such as music categorization based on genres, user identification based
on voice or bird classification based on audio recordings.

The audio data (see Fig. 5a) undergoes an initial transformation into a spectrogram using
physics-based preprocessing denoted as P(x). This involves segmenting the audio into
overlapping windows of a fixed size (refer to Fig. 5b). For each window, a Fourier transform
is applied, resulting in a 2-D representation in the time-frequency domain. Subsequently,
each snapshot can be plotted as a Mel spectrogram [62], where time is represented on the
x-axis, frequency on the y-axis, and the amplitude is depicted using colors (see Fig. 5c).

By obtaining an image representation of the data, we can leverage standard image classi-
fication models, denoted as D(P(x)), such as convolutional neural networks (see Fig. 5d).
These architectures are designed to respect image structures, incorporating features like
translation equivariance and locality. This design choice not only reduces memory re-
quirements but also enhances the model’s ability to generalize effectively.

Discussion Physics-based preprocessing in hybrid modeling can improve data efficiency.
Using the transformation model P can allow the model to compute features directly, re-
ducing the learning burden on the data-driven model D. Especially when P is a type of
dimensionality reduction, the lower-dimensional presentation has often a lower complex-
ity since noise is removed or redudant information is discarded. This makes it simpler for
the learning algorithm to extract meaningful patterns leading to a better trade-off between
performance and training dataset size.
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Note however, that in cases where P does not capture all relevant raw feature infor-
mation, a purely data-driven model might perform better in data-rich scenarios. This is
because D can identify features that outperform human-designed ones, as seen in deep
learning methods applied to speech recognition and computer vision.

Similarly, the design pattern also offers resource efficiency. Using pre-computed features
in P can simplify the data-based model D, potentially removing the need for complex
structures like deep neural networks. With features from P , simpler algorithms might be
adequate for D.

Finally, the pattern can increase robustness by avoiding irrelevant feature learning in
D, that could lead to overfitting or offer an opportunity for adversarial attacks, and it can
increase the explainability of the model, by providing a physical interpretation of the fea-
tures.

4.1.3 Feature learning
The feature learning design pattern combines data-driven feature learning with down-
stream physics-based processing. This design pattern comes into play when the first prin-
ciple based model P , for example a controller or a PDE, has some input features that are
difficult to measure directly or are difficult to compute precisely from first principles.

In the feature learning design pattern, a data-driven model D is employed to estimate
unmeasurable input variables v based on measurable input variables x, v = D(x). These
estimated variables are then used as an input for a first-principles-based model P that
performs downstream physics-based computations. The output prediction of the hybrid
model H can be expressed as:

H(x) = P
(
x,D(x)

)
(17)

Here, x represents the measurable input variables, and v = D(x) are the estimated un-
measurable input variables produced by the data-driven model. H(x) and P(x,D(x)) de-
note the output predictions for the hybrid and first-principles-based models, respectively.
The data-driven model, D(x), is trained to estimate the unmeasurable input variables v us-
ing available data, which is then utilized by the first-principles-based model P(x,D(x)) for
its computations. The block diagram for feature learning is given in Fig. 6. In some applica-
tions, D(x) will be pre-trained and then combined with P(x,D(x)) for hybrid predictions.
In other applications, the feature extractor is learned by directly predicting the outputs of
the combined hybrid model H(x) = P(x,D(x)). This is called end-to-end training.

When P is a physical model, the learned input variables will often have a physical in-
terpretation. The feature learning design pattern is closely related to the design pattern
of physical constraints, which will be discussed in Sect. 4.1.4. Since P is used to process

Figure 6 The block diagram of feature learning (Sect. 4.1.3). In this design pattern, some of the features of P
are computed in a data-driven manner byD
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the predictions of D we can see P as transforming the outputs of D in a meaningful way,
e.g. to fulfill physical constraints.

One nuance to consider for the feature learning design pattern is whether P is only used
during training, e.g. to provide a loss or regularization term to guide the data-driven model
to make physically plausible predictions, or whether P is also used to make predictions.

Typical use cases The feature learning design pattern can be applied in various scenarios,
including:

• Electromagnetic field simulations: The optimization of photonic devices requires
calculating electromagnetic fields. Chen et al. [63] propose a hybrid approach, where a
deep learning model predicts the magnetic near-field distribution. A discrete version
of Ampère’s law is then used to calculate the electric from the predicted magnetic
near field. Eventually, the far field of the outgoing plane wave is computed from the
electric near field, by using a near-to-far-field transformation.

• Solving PDEs: Deep learning methods for approximating PDE solutions also exemplify
the feature learning design pattern. In these approaches deep learning techniques are
employed to learn the differential operators and nonlinear responses of the underlying
(parametric) PDE [64–70]. This results in models that are capable of capturing
complex dynamics while adhering to the physical principles governing the system.

• Virtual sensors: Some first-principle-based systems, for example, controllers, require
input modalities that are impractical or impossible to measure. For example, a
controller for electrical machine torque might require an estimate of rotor
temperature [71]. Virtual sensors are data-driven replacements that predict the input
modalities that cannot be measured directly but are required for downstream
physics-based computations [72].

Discussion The feature learning design pattern offers several distinct advantages in hy-
brid modeling. Firstly, it addresses the challenge of unmeasurable or imprecisely com-
puted input features. By employing a data-driven model D to estimate these features, the
pattern effectively bridges the gap between available data and the requirements of a first-
principles-based model P . This not only enhances the accuracy of the hybrid model but
also broadens its applicability to scenarios where direct measurements or computations
are infeasible.

This enables virtual sensing, where a predictive model replaces an expensive sensor or
enables applications where a required input cannot be measured. In control engineering,
this concept is widespread and known as state observer or state estimate.

One limitation of this design pattern is that end-to-end optimization usually requires
P to be differentiable. Only then can D and P be optimized jointly with gradient-based
methods. Applying feature learning to non-differentiableP requires iterative optimization
schemes or simulation-based inference.

WhenP represents a physical model, the learned input variable often carries a meaning-
ful physical interpretation, adding a layer of interpretability to the hybrid model. Further-
more, the integration of P ensures that the outputs of D are transformed in a manner that
aligns with physical constraints or other domain-specific knowledge (this design pattern is
described next). This not only enhances the reliability of the model but also ensures that
its predictions adhere to known principles, such as the softmax function ensuring out-
puts that can be interpreted as probabilities. Lastly, the versatility of the pattern allows for
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P to be employed both during training, as a guiding mechanism, and during prediction,
ensuring that the model remains grounded in first principles throughout its life cycle.

4.1.4 Physical constraints
Physical constraints is a hybrid modeling design pattern that incorporates domain knowl-
edge, such as conservation laws, priors, invariances, or statistical independence, to inform
the architecture of a data-driven model. The constraints can either affect the structure of
the model, the parameters of the model, or its computational results, including both in-
termediate or final outputs.

In the design pattern of physical constraints, domain knowledge can be tightly interwo-
ven with the structure or parametrization of a data-driven model D. The resulting hybrid
model H is formed by incorporating these constraints into the data-driven model, which
in its most general form we denote by

H(x) = DP (x). (18)

We choose the notationDP to indicate that the data-driven model D is informed by physi-
cal constraints P . The design pattern of physical constraints allows the data-driven model
to adhere to the underlying physical principles while still leveraging the benefits of data-
driven modeling techniques.

In most of the examples we consider below, the physical constraints are incorporated
into model predictions by first doing the data-driven computations (e.g. feature extraction
with the forward pass of a neural network) and then executing some computational steps
derived from first-principles. In this case, the hybrid model can be written as in Eq. (17).
A discussion of how physical constraints relate to feature learning can be found in the end
of this Section. There are many flavors for building hybrid models where a data-driven
block D is followed by computation P derived from first-principles. We roughly distin-
guish three directions: Hard constraints (e.g., [13]), soft constraints (e.g., [73]), and feature
learning which has already been described. In hybrid models with hard constraints, the
constraints are implemented in a way such that the predictions of the hybrid model cannot
possibly violate the constraints. In contrast, soft constraints, which are often implemented
in terms of physics-informed losses for training only approximately guide the predictions
to lie within the desired ranges. Feature learning is closely related to the design pattern
of hard constraints but has a different motivation. It comes into play, when a model P is
missing some input dimensions that cannot be measured and have to be estimated with a
data-driven model instead.

4.1.4.1 Hard constraints The block diagram for hard constraints is depicted in Fig. 7a.

Typical use cases Hard physical constraints can be applied in various scenarios, such as:
• Multi-class classification: In multi-class classification, a neural network or another

data-driven model D is tasked to produce probabilities over the possible class labels.
To ensure that the outputs are in the right range (probabilities are between 0 and 1)
and are properly normalized, the last layer is fed through a softmax activation
function [74]. This constraint cannot be violated and ensures that the outputs can be
interpreted as probabilities. In this example, the constraints affect the output of the
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Figure 7 In the physical constraints design pattern, the computation in the data-driven blockD is informed
by the domain knowledge in P . The constraints can affect the architecture ofD, its parameters, or
computational results both at intermediate levels and at the output. We distinguish between hard constraints
(Fig. 7a) which take effect both during the model fitting stage and inference time and soft constraints (Fig. 7b)
which are typically only applied at training time. After training soft constraints are implicitly encoded inD,
but no longer used explicitly. For this reason, we denote the soft constraints in a dashed manner

model and are part of the model architecture meaning that they take effect both
during training and at test time. Also, the softmax implements a hard constraint; since
it is part of the model architecture final predictions cannot violate the desired
constraint.

• Classical mechanics: Hamiltonian neural networks [75, 76] and Lagrangian neural
networks [77] are another excellent example of this design pattern. In these networks,
the model architecture is structured to ensure that the dynamics adhere to
conservation laws, such as energy conservation, leading to more accurate and
physically meaningful predictions. When modeling the motion of a pendulum, for
example, Greydanus et al. [75] use a neural network to directly predict the
Hamiltonian of the system. Classical mechanics then determines how to predict the
system dynamics, based on the predicted Hamiltonian. Thanks to the Hamiltonian
formulation, the structure of the model guarantees that the predicted dynamics
conserves energy.

• Neural network-based PDE solvers can be modified to achieve exact satisfaction of
boundary conditions, by introduction of length factors [78] or geometry aware trial
functions [79].

• Climate modeling: Beucler et al. [13] propose two ways to incorporate linear
conservation laws into a neural network for emulating a physical model: By
constraining the loss function, or by constraining the architecture itself. Incorporating
physical constraints through a loss function is different than modifying model
structure: The loss will only guide model outputs to be physically plausible during
training. At test time, regularization terms are dropped and while the model might
have learned to obey the physical constraints, there are no guarantees that the outputs
will be correct. Incorporating physics-based loss terms is therefore an example of soft
constraints, which are discussed next.

4.1.4.2 Soft constraints: surrogates and physics-informed losses We have discussed hard
constraints, where physical principles are encoded directly into the model structure. An al-
ternative approach for incorporating physical constraints is based on soft constraints. Here
a data-driven model is guided during training to mimic physically plausible behaviour. At
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inference time, the constraints are usually no longer used explicitly, which is why we use
dotted lines to denote soft constraints in Fig. 7b. A soft constraint is typically achieved by
training a surrogate model, i.e. defining a set of training inputs X and using training pairs
{x,P(x)|x ∈X } for training a data-driven model, usually a neural network, to emulate the
desired behavior. After training, we will have achievedD(x) ≈P(x) for all x ∈X .1 A related
approach for incorporating soft physical constraints is based on physics-based losses. Here
the loss function used to train D will have some term, also called regularization terms, that
will encourage D to make physically plausible predictions. These regularization terms can
either affect intermediate computation or the final output of the model. In the latter case,
the relationship to surrogate modeling becomes clear, as the regularization term will en-
courage D(x) ≈ P(x) for all x ∈ X . For the design pattern of soft physical constraints, the
influence of the physics based model is only explicit during the training phase of model
development. At deployment time, the model structure is indistinguishable from a purely
data-driven approach. The physical constraints are “implicitly” encoded in the parameters
of the model.

Typical use cases Soft physical constraints can be applied in various scenarios, such as:
• In [73], the authors want to train neural networks to help find solutions of PDEs. For

this, they suggest collecting data, where PDEs are solved using the finite element
method (FEM). Using this FEM data, the authors train surrogate models that can
predict solutions directly. Physical constraints, such as knowledge about the form of
the PDE or its boundary values, are incorporated during training via regularization
terms. Since high-fidelity solutions are more accurate but more costly to obtain, the
authors propose a multi-fidelity approach. They train a cheaper low-fidelity surrogate
model and a more expensive high-fidelity surrogate model, as well as a difference-NN
that can be thought of as a correction term for obtaining a high-fidelity solution from
the lower-fidelity one. In this manner, the authors also exploit the delta-model design
pattern, in addition to physical constraints.

• Solving PDEs: Deep learning methods for approximating PDE solutions [64, 65] also
exemplify the physical constraints design pattern. In these approaches, the model is
structured as a PDE, with deep learning techniques employed to learn the differential
operators and nonlinear responses of the underlying PDE. This results in models that
are capable of capturing complex dynamics while adhering to the physical principles
governing the system. Physics-Informed Neural Networks (PINNs) [80] demonstrate
another application of the physical constraints design pattern. In PINNs, the state of
the PDE is parameterized by a neural network, while the structure of the differential
operator depends on the specific application, giving rise to the resulting hybrid model.
The constraint is included in the loss function. A specialized case of this design
pattern is developed by De Bézenac et al. [81] for advection-diffusion PDEs, which are
used for sea surface temperature prediction. A similar approach can be found in Chen
et al. [63], which was also discussed in the context of the feature learning design
pattern (Sect. 4.1.3). A neural network infers the magnetic near-field distribution from
the structure of a photonic device. The proposed loss function for training the

1Note that in some use-cases consistency is favored over accuracy and instead, training achieves D(x) = P(y) for some
x, y ∈ X .
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network contains two additive terms: the usual data-driven loss term and an
additional Maxwell loss term, in the spirit of the PINN approach. The Maxwell loss
measures the failure of the magnetic field to comply with the vector wave equation.
Both loss terms can be balanced by a hyperparameter. The method works most
effectively in a regime where more weight is given to data loss. The Maxwell loss can
be seen as a regularization, “to push the outputted data to be more wavelike”.

• Object detection and tracking: Consider the task of learning to detect and track
objects in a video. A deep learning approach would typically require labeled examples
of input output pairs, such that a neural network (for video typically a CNN) can be
trained to predict the outputs given the inputs. Stewart and Ermon [82] show that the
labeled examples can be replaced by domain knowledge such as physical laws. Instead
of using loss functions such as predictive accuracy, they translate physical laws into
penalty and regularization terms, yielding loss functions that do not require labels.

Example The design pattern of physical constraints can be used for simulating the elec-
trodynamics of an unknown material. The laws of electrodynamics combine the three
sub-models (11)–(13). While Maxwell’s equations (11)–(12), i.e., sub-models U1, U2, are
accepted as first principles, the constitutive relations (13), i.e., sub-model U3, is heuristic.
Typically an overly simplistic (e.g., polynomial) model is fitted to measurements of ma-
terial properties. The resulting modeling error compounds when all sub-models are put
together.

In [10, 83, 84] an alternative approach for magnetostatic problems is presented, where
the sub-model U3 is discarded altogether. Instead, the authors develop a hybrid solver that
acts directly on the material data to find the best fitting model within all models that are
consistent with Maxwell’s equations (U1 and U2 in (11)–(12)). This line of research goes
back to the seminal paper [85]. In the magnetostatic case, Maxwell’s equations reduce to
the PDE constraints

curl �H – �j = 0, div �B = 0. (19)

We denote by P the space of physics-conforming magnetostatic fields. These are vector
fields z = ( �H , �B) that exhibit sufficient regularity and are constrained by (19).

The measurement data consist of data points z∗
i = ( �H∗

i , �B∗
i ), i = 1, . . . , N , that are col-

lected in a set D̃. These data are lifted to the space D of piece-wise constant vector fields
z∗ = ( �H , �B) with respect to a computational grid, such that ( �H(x), �B(x)) ∈ D̃ almost every-
where. Obviously, the data-induced space D characterizes the magnetic material proper-
ties only imperfectly, since it is based on a finite number of measurement points and a
spatial discretization by the underlying grid.

The solution is formally given by S = P ∩D. These are fields that fulfill Maxwell’s equa-
tions, while being compatible with the measurement data. However, for a finite number
of data points, this set is very likely to be empty. Even for an infinite data set, the noise
that is always inherent to measurements may lead to an empty set. Therefore, we define
the solution by the relaxed condition

S = arg min
z∈P

(
min
z∗∈D

∥∥z – z∗∥∥
)

, (20)
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Figure 8 Iterative hybrid solver. The fixed point iteration alternates between discrete optimization problems
(1) with solutions in the data-induced spaceD (red triangles), and variational problems (2) with solutions in
the physics-conforming space P (blue circles), the latter being accomplished by a modified finite element
solver. [Adapted from [10], Fig. 3.] The algorithm is an instance of the hard constraints design pattern, see
paragraph 4.1.4.1, in particular Fig. 7a

where ‖·‖ is a suitable norm which serves as loss function. We accept a solution z that con-
forms to Maxwell’s equations, while minimizing the loss function, hence being “closest”
to the available measurement data.

The hybrid solver is organized as a fixed point iteration, see Fig. 8. Under convexity
assumptions this algorithm converges to the solution of (20). Furthermore, it can be shown
that the conventional solution is recovered with measurement data sets of increasing size.

Note that even the conventional approach could be interpreted in terms of design pat-
terns. If a spline curve is learned from measured material data and then used in a finite
element solver, this could be understood as feature learning, in the sense of Sect. 4.1.3.
A more sophisticated model, e.g., explicitly accounting for the Rayleigh region (low field
magnetic behavior of ferromagnetic materials), could be seen as a hierarchical setup be-
cause physics knowledge is leveraged already in the learning process.

Discussion The physical constraints design pattern provides an intuitive interface for
incorporating desired behavior grounded in first-principles into a data-driven model. Es-
pecially when using hard constraints at the output level, one is guaranteed that model
outputs lie within a plausible range. Depending on how they are implemented, hard con-
straints can introduce non-differentiable nonlinearities which can make gradient-based
optimization challenging. In those cases, soft constraints might produce a favorable opti-
mization landscape. However, while soft constraints are usually easier to work with during
the modeling stage, they provide no guarantee that the desired constraint is implemented
exactly. In addition, it is not always straightforward to fit a hybrid model that incorporates
multiple physical constraints.

An important advantage of the physical constraints design pattern is the potential for
increased data efficiency. By integrating physical constraints, the complexity (e.g. dimen-
sionality) of the problem can be reduced, potentially diminishing the volume of required
training data. This pre-structuring of the search space accelerates the training of data-
based models. Moreover, when P provides a training signal, such as a physically informed
self-supervised loss, it can obviate the need for the often expensive labeling process, and
instead the training of the data-driven component can benefit from available unlabeled
data.

The design pattern of physical constraints results in hybrid models that benefit from
prior knowledge. Priors related to geometry, shapes, invariances, and equivariances, as



Rudolph et al. Journal of Mathematics in Industry            (2024) 14:3 Page 27 of 36

seen in geometric deep learning [86, 87], enable the selection of optimal models, bolstering
their accuracy and robustness. Furthermore, the explainability of the model is heightened.
By grounding the model in physical principles, its topologies become more interpretable,
facilitating a clearer understanding of its data-driven components and their interactions
with the physical constraints.

The relationship between physical constraints and feature learning There are use cases
that fit both the physical constraints and the feature learning design pattern, so we de-
scribe their relationship here. Unlike hard constraints, soft constraints are only used dur-
ing the training phase. At deployment time, there is no more computation derived from
first principles; instead, the data-driven model has learned to emulate the desired behav-
ior. In contrast, a hard constraint is not removed at deployment time. In [63], there are
hard and soft constraints: a neural network, i.e. a data-driven model is used to predict the
magnetic near field distribution. A soft constraint based on Maxwell’s equations, ensures
that the predictions adhere with the laws of physics. These predictions are then processed
by a computational block P that implements a discrete version of Ampère’s law, followed
by a near-to-far field transformation. P can be interpreted as imposing a hard constraint
since it is guaranteed to produce a prediction of the electric field that is consistent with
the magnetic field prediction of D. The constraint is used both during training and at test
time. In this example, the soft constraint is on an intermediate output of the model, while
the hard constraint affects the final output of the model. In general, constraints can either
affect intermediate of final computation, or parameter values of the model, or the struc-
ture of the model. Note that a hybrid modeling solution, where a computational block D
is followed by a hard constraint, i.e. a constraint that is not removed after training and
that affects the final computational output, is consistent with Eq. (17) and therefore also
fits the feature learning design pattern. In fact, [63] was presented as an example of the
feature learning design pattern in Sect. 4.1.3 for that reason.

It is quite common for hybrid modeling solutions to combine multiple design patterns.
In the next section, we describe design patterns for pattern composition.

4.2 Composition patterns for hybrid modeling
Next, we describe composition patterns. They provide patterns for composing the base
patterns from Sect. 4.1 into more elaborate hybrid modeling solutions.

4.2.1 Recurrent composition
An important design pattern, especially when dealing with sequential data, is recurrent
composition. The recurrence design pattern encompasses a wide range of models involv-
ing an internal state that is updated sequentially. This pattern is observed in recurrent
neural networks and numerical integration schemes for differential equations. The main

Figure 9 The design pattern of recurrent composition
(Sect. 4.2.1) has a computational block that is repeatedly
applied to sequential inputs. Typically, it has an internal
state that is updated sequentially with each execution of
the computational block
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principle is to compute the dynamics of a system through a recursive update rule as de-
picted in the block diagram in Fig. 9. The computational block H for the update rule can
either be data-driven, or based on first principles, or consist of a hybrid computational
block that relies on one or more of the design patterns presented above.

The recurrence design pattern features an internal state s which is updated sequentially
over time. The state at time t is computed from a previous state:

st = H(st–1, . . .). (21)

The function H(·) can have additional inputs, such as observations from a sequence
x1, x2, . . . , xT , the time t, and the time difference �t between st–1 and st . In control or sig-
nal processing applications, there might also be a control input. Whether H is data-driven,
physics-based, or hybrid, depends on the use-case. Some typical use cases are described
next.

Typical use cases
• Recurrent neural networks in deep learning: Recurrent neural networks (RNNs) are

powerful sequence models. When trained on sequences of observations x1, x2, . . . , xT ,
they have the capacity to leverage st as a hidden state to summarize all the relevant
information in the sequence up until time t. At each time step the hidden state is
updated based on the current observation and the previous hidden state
st = H(st–1, xt). To obtain a prediction, the hidden state can then be mapped to the
desired output. For a vanilla RNN, H(st–1, xt) will be an affine transformation followed
by a non-linearity, but other choices exist, such as gated recurrent units (GRUs) [88]
and LSTMs [61]. For most RNNs, H is data-driven, meaning that the parameters are
learned by fitting to training data [6].

• Numerical integration: A dynamical system is often described by an ODE as in Eq. (6).
Some ordinary differential equations (ODEs) allow recovering the system state using
analytic solutions but in many interesting cases numerical integration schemes have
to be employed to compute the state of the system as a function of time. In a
numerical integration scheme, the system state is approximated by st , which can also
be thought of as the intermediate integration results at time t. Typically, there is a
recursive update rule where st is computed based on a previous state st–1 as well as the
step size and the vector field f . In the backward Euler method for example
st = H(st–1,�t , st , t) = st–1 + �t f (st , t; θ ), with f and θ as defined in Eq. (6).

• Neural ODEs: Neural ODEs [89] are a model class at the intersection of deep learning
and differential equations. The vector field f in Eq. (6) is parameterized by a neural
network. The result is a flexible dynamics model whose parameters are fitted in a
data-driven way. Neural ODEs rely heavily on numerical integration: The system has
to be integrated to form a prediction, and back-propagation through the ODE solver
can be handled efficiently by numerically integrating an auxiliary (adjoint state) ODE
backward in time [90].

• State estimation: State estimation is a crucial process in control theory and signal
processing that aims to accurately determine the state of a dynamic system based on
noisy and potentially incomplete measurements over time [91]. The relationship
between the inputs and the outputs of the dynamical system is often described by
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Figure 10 The CRU [94] can help infer the pendulum angle from images observed at irregular time intervals

ODEs. In addition to predicting the system state by (numerical) integration of the
dynamics, state estimation also entails accounting for the influence of control inputs,
and for measurement noise, thereby systematically improving the accuracy of the
system state’s prediction. One notable example of an algorithm used for state
estimation is the Kálmán filter [92], which provides the optimal solution to estimate
the state of a linear dynamic system perturbed by Gaussian noise. For state estimation
in non-linear systems, variations such as the Extended Kálmán Filter (EKF) or
Unscented Kálmán Filter (UKF) are often used [93].

Example Modern recurrent neural networks typically assume regular time intervals be-
tween observations. A notable exception is the continuous recurrent unit (CRU) which
can be used to model irregularly sampled time series [94]. It assumes a hidden state that
evolves according to a linear stochastic differential equation (SDE). To model a sequence,
each measurement is first mapped into a latent space by a neural network. The trans-
formed observation is then treated as an observation of the latent state, which can now
be inferred via state estimation, specifically the continuous-discrete formulation of the
Kálmán filter [95].

The recursive update of the CRU is a hybrid block, combining a data-driven block D,
which consists of a neural network and is applied to each measurement xt , and a state
estimation block P consisting of the updates of the continuous-discrete Kálmán Filter,

st = H(st–1, xt ,�t) = P
(
st–1,D(xt),�t

)
. (22)

As an illustrative example, consider the problem of predicting the angle of a pendulum
from noisy images taken at irregular time intervals (Fig. 10). Since some of the images are
very noisy, angle prediction will benefit from a model that takes temporal structure into
account, such as the CRU. While the pendulum dynamics are relatively simple and can be
described by a second-order ODE, inferring them from high-dimensional inputs such as
images is non-trivial. The CRU can accurately predict the angle, optimally accounting for
different sources of noise.

Discussion The concept of recurrence is useful in hybrid modeling and machine learn-
ing for several reasons. First, recurrent models can learn to recognize patterns across time.
For example, they can learn to predict the next word in a sentence based on the context
provided by the preceding words. This is possible, because the model has a way of remem-
bering the previous context, enabling it to learn how the current state is influenced by the
previous states.

Another advantage of this design pattern is parameter sharing. Recurrent models apply
the same set of weights to the inputs at each time step. This means that they are making
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the assumption that the same patterns that are useful to process at one point in time will
be useful to process at other points in time. This significantly reduces the number of pa-
rameters in the model, which can help to avoid overfitting and make the model easier to
train. The main limitations of this design pattern are of computational nature. Dynamical
systems, especially when they are stiff, are difficult to optimize numerically. Similarly, re-
current architectures in machine learning are sometimes difficult to optimize. Numerical
instabilities can lead to exploding or vanishing gradients.

Finally, recurrence provides a natural modeling paradigm to deal with input and output
sequences of variable length. For example, you can use an RNN to process a sentence of
any length and produce a sentiment score. Traditional methods like feed-forward neural
networks cannot handle this variability as they require fixed-size input vectors.

4.2.2 Hierarchical pattern composition
The pattern of pattern composition emphasizes the flexibility and composability of hybrid
modeling design patterns. In this pattern, the concept is that hybrid models themselves can
serve as building blocks for constructing more complex hybrid models. To represent this
idea, we introduce the following notation:

Let H(P ,D) denote a hybrid model that combines a physics-based model P and a data-
driven model D. The pattern of pattern composition suggests that P and D themselves
can be hybrid models. We can represent this idea by considering two hybrid models, H1

and H2, such that:

H(P ,D), where P = H1(P1,D1) and D = H2(P2,D2). (23)

This notation conveys that H1 and H2, each being a combination of physics-based
and data-driven models, are now being combined to form a new, more complex hybrid
model H. This pattern highlights the recursive nature of hybrid modeling, where models
can be built upon one another in a hierarchical manner, leading to increasingly sophisti-
cated representations of the underlying system.

By applying the pattern of pattern composition, practitioners can create multi-layered
hybrid models that address various aspects of the problem at hand, and tackle more com-
plex challenges by leveraging the strengths of multiple modeling paradigms. This ap-
proach also allows researchers to explore novel combinations of the design patterns in-
troduced in this paper, potentially leading to new insights and advances in the field of
hybrid modeling.

Typical use cases
• Lake Temperature Modeling: Daw et al. [96] present a hybrid modeling solution for

lake temperature modeling. The goal is to predict temperature from physical
quantities that are known to drive lake temperature. The authors assume access to
observations and a physics-based simulation of lake temperature P1, which might be
inaccurate due to inadequate calibration or missing physics. The physics-based
pre-processing design pattern is used to first augment the input variables with the
potentially inaccurate but still useful predictions of P1. The original observed features
x are concatenated with these physically preprocessed predictions to [x,P1(x)], which
is then fed into a data-driven model that is further subjected to the design pattern of
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physical constraints. An additional loss term P2 assures that the predictions fulfill
plausible density-depth and density-temperature relations. The combined hybrid
model can be written as H(x) = DP2 ([x,P1(x)]).

• ODEs with missing physics: Another example of hierarchical pattern composition is a
hybrid neural ODE [97] where the vector field f of the ODE in Eq. (6) is
parameterized by multiple terms which are added according to the delta model design
pattern. This can be beneficial when part of the dynamics are explicitly known, while
other missing parts are modeled in a data-driven way, typically with a neural network.
Extensions to stochastic dynamical systems also exist [98].

• Dynamics modeling with unknown unknowns: Long et al. [99] propose a hybrid
model for dynamics modeling with many unknowns. For example, in a fluid dynamics
application, it is known that the dynamics are governed by Navier-Stokes equations,
but they cannot be solved without knowledge of the geometry of the system or access
to physical parameters such as viscosity, material density, or external forces. In such a
setting the authors suggest employing a learnable PDE solver H1 based on cellular
neural networks. This learnable PDE solver can be seen as a hybrid approach: it is a
data-driven approach where missing physical parameters are learned from data, but
its structure is derived from first-principles and adheres to the underlying PDE. To
deal with missing inputs, e.g. with unobserved external perturbations to the inputs,
the authors further employ the feature learning design pattern. A data driven model
D, specifically a convolutional LSTM, predicts the missing inputs, which are then fed
into H1, resulting in the composed hybrid model H2(x) = H1(D(x)).

Example Many time-series algorithms face challenges when attempting to simultane-
ously capture short- and long-term effects. Data-driven models (denoted as D) often excel
at providing detailed short-term predictions. However, even small errors in their short-
term forecasts can accumulate over time, leading to deteriorated long-term performance.
In contrast, models capable of reliable long-term predictions can often be developed by
leveraging physics-based simulations (referred to as P).

The work of [100] addresses this challenge by decomposing predictions into two com-
ponents: one that accurately predicts long-term behavior and another one that excels
at short-term prediction. The long-term predictions are generated by the physics-based
model P , while the short-term predictions are generated by the data-driven model D. To
ensure that each model operates within its domain of competence, the authors introduce
two hard constraints: They apply a low-pass filter (Flow) to the predictions of the physics-
based model P and a high-pass filter (Fhigh) to the predictions of the data-driven model D.
Finally, the two prediction components are combined using the delta pattern resulting in
a complementary filtering approach depicted in Fig. 11:

H(x) = Flow
(
P(x)

)
+ Fhigh

(
D(x)

)
. (24)

The fusion of high and low-frequency information from different signals is a well-
established technique in control engineering and signal processing applications. An il-
lustrative example can be found in robotics, specifically in tilt estimation [101]. In this
context, accelerometer and gyroscope measurements are often recorded simultaneously.
The gyroscope delivers precise short-term position estimates, but due to integration
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Figure 11 The block diagram of the hybrid modeling example presented in Eq. (24) which is taken from
Ensinger et al. [100]. This composed design pattern combines the delta model (Sect. 4.1.1) with the physical
constraints design pattern (Sect. 4.1.4). The predictions of the data-driven model are fed through a high-pass
filter, while the physics-based predictions are processed by a low-pass filter. The overarching delta model
combines the predictions additively. (Note: Since the constraints in the example are at the output level, they
are visualized in a block diagram notation of the feature learning design pattern. See the last section of
Sect. 4.1.4.2 for a discussion of the relationship between physical constraints and feature learning)

at each time step, accumulating errors introduce drift in the long-term. In contrast,
accelerometer-based position estimates are more stable over the long-term but exhibit
substantial noise, making them less reliable for short-term predictions. As a consequence,
the position estimate can be significantly improved by combining both signals after ap-
plying a high-pass filter to the gyroscope measurements and a low-pass filter to the ac-
celerometer measurements.

Discussion Only through composition do the design patterns reach their full potential.
While here we have provided three examples, for how design patterns can be composed,
the possibilities are endless. While each of the design patterns has their own set of ad-
vantages, through composition we can build hybrid models that combine many of these
advantages into a single modeling solution.

5 Conclusion
In conclusion, this paper has presented a systematic exploration of various design patterns
for hybrid modeling, showcasing the potential of combining the strengths of both data-
driven and mechanistic models to address complex problems in diverse domains. These
design patterns provide a unified framework for understanding and organizing the myriad
approaches used in hybrid modeling, and they facilitate the sharing of knowledge and
expertise across application domains.

The identification and formalization of these design patterns serve as a valuable resource
for researchers and practitioners in the field, allowing them to better understand the un-
derlying principles, common challenges, and potential solutions for hybrid modeling. By
providing a higher level of abstraction, these design patterns enable the development of
more generalizable and standardized tools and techniques, leading to improved efficiency
and reliability of the modeling process.

Furthermore, the use of design patterns can help to identify common limitations and ar-
eas for improvement in hybrid modeling, thus guiding future research directions and fos-
tering innovation. As the field of hybrid modeling continues to evolve, we anticipate that
the exploration and refinement of these design patterns will play a crucial role in shaping
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the development of new models, methods, and applications, ultimately contributing to the
advancement of our understanding and the solution of real-world problems.

In summary, the design patterns presented in this paper offer a valuable framework
for organizing and advancing the field of hybrid modeling. By embracing the princi-
ples of abstraction and generalization, researchers and practitioners can better address
the unique challenges and complexities of their domains, while also contributing to the
broader knowledge and understanding of hybrid modeling as a whole.
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