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1. Introduction

Let (Mn, g) be a complete non-compact Riemannian manifold with dimension n ≥ 2. 
Suppose that the Ricci curvature is bounded from below, that is, Ricg ≥ −κ for some 
κ ≥ 0. For any positive harmonic function w in a domain Ω ⊂ Mn, Cheng-Yau [2]
established the following famous gradient estimate:

|∇ lnw| = |∇w|
w

≤ C(n)1 +
√
κr

r
in B(z, r) ⊂ B(z, 2r) ⊂ Ω. (1.1)

Recall that a harmonic function w in Ω is a weak solution to the Laplace equation

Δw := div(∇w) = 0 in Ω.

We also refer to [17, Theorem 1.3] for a quantitative W 2,2
loc -regularity of harmonic func-

tions.
Motivated by the application in the inverse mean curvature flow (see [11,15]), Cheng-

Yau type gradient estimate was extended by [16,11,21,15] to p-harmonic functions in Ω
for 1 < p < ∞, that is, weak solutions to the p-Laplace equation

Δpw = div(|∇w|p−2∇w) = 0 in Ω.

Precisely, if (Mn, g) is flat (that is, the Euclidean space Rn) or its sectional curvature 
is bounded from below by −κ, via Cheng-Yau’s approach Moser [16] and Kotschwar-Ni 
[11] showed that any positive p-harmonic function w in Ω satisfies

|∇ lnw| ≤ C(n)1 +
√
κr

r
in B(z, r) ⊂ B(z, 2r) ⊂ Ω, (1.2)

where the constant C(n) > 0 is independent of p ∈ (1, ∞). Under the Ricci curvature 
lower bound Ricg ≥ −κ, it was asked in [11] whether (1.2) holds or not. Some progress 
was made as below. Based on Cheng-Yau’s argument, Wang-Zhang [21] proved that

|∇ lnw| p−γ
2 ∈ W 1,2

loc with γ < 0 (1.3)

and the following weaker revision of (1.2):

|∇ lnw| ≤ C(n, p)1 +
√
κr

r
in B(z, r) ⊂ B(z, 2r) ⊂ Ω, (1.4)

where the constant C(n, p) > 0 blows up as p → 1. Recently, with the aid of the 
fake distance coming from capacity, C(n, p) was proved by Mari-Rigoli-Setti [15] to be 
bounded by n−1

p−1 as p → 1. Moreover, (1.3) and (1.4) were generalized to weighted 
manifolds (Mn, g, e−hdvolg). A weighted p-harmonic function w in a domain Ω ⊂ Mn is 
a weak solution to the weighted p-harmonic equation
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Δp,hw := ehdiv(e−h|∇w|p−2∇w) = 0 in Ω.

Under the Bakry-Émery curvature-dimension condition RicNh ≥ −κ for some N ∈ [n, ∞)
and κ ≥ 0 (see Section 2 for details), Dung-Dat [5] showed that if w > 0, then 
|∇ lnw| p−γ

2 ∈ W 1,2
loc with γ < 0 and also

|∇ lnw| ≤ C(n,N, p)1 +
√
κr

r
in B(z, r) ⊂ B(z, 2r) ⊂ Ω. (1.5)

The main aim of this paper is to build up a quantitative second-order Sobolev esti-
mate of lnw for positive p-harmonic functions w in Riemannian manifolds under Ricci 
curvature bounded from below and also for positive weighted p-harmonic functions w
in weighted manifolds under the Bakry-Émery curvature-dimension condition. See The-
orem 1.1 and Theorem 1.2 separately. These improve the corresponding second-order 
Sobolev regularity in [21,5] mentioned above.

To be precise, under the Ricci curvature lower bound, we have the following result. 
For convenience, below we write −́

E
f dm as the average of f in the set E with respect 

to the measure m, that is, −́
E
f dm = 1

m(E)
´
E
f dm. We use C(a1, · · · , am) to denote a 

positive constant depending on absolute constants a1, · · · , am.

Theorem 1.1. Suppose that (Mn, g) satisfies Ricg ≥ −κ for some κ ≥ 0. Let 1 < p < ∞
and γ < 3 + p−1

n−1 . For any positive p-harmonic function w in a domain Ω ⊂ M , we have 

|∇ lnw| p−γ
2 ∇ lnw ∈ W 1,2

loc (Ω) and

−
ˆ

B(z,r)

∣∣∣∇[|∇ lnw| p−γ
2 ∇ lnw]

∣∣∣2 dvolg ≤ C(n, p, γ)
[
1 +

√
κr

r

]p−γ+4

e
√
κr (1.6)

whenever B(z, 4r) � Ω.
In particular, if 1 < p < 3 + 2

n−2 , then ∇2 lnw ∈ L2
loc (Ω) and

−
ˆ

B(z,r)

|∇2 lnw|2 dvolg ≤ C(n, p)
[
1 +

√
κr

r

]4

e
√
κr (1.7)

whenever B(z, 4r) � Ω.

Here and throughout the paper for domains A and B, the notation A � B stands for 
that A is a bounded subdomain of B and its closure A ⊂ B.

Recall that if (Mn, g) is flat, that is, the Euclidean space Rn, p-harmonic functions w in 
a domain Ω ⊂ Rn are proved to satisfy |∇w| p−γ

2 ∇w ∈ W 1,2
loc (Ω) with some quantitative

bound whenever γ < 3 + p−1
n−1 see [13,9,4,14] and also the references therein for some 

earlier partial results. In particular, if 1 < p < 3 + 2
n−2 , noting p < 3 + p−1

n−1 and taking 

γ = p, one has w ∈ W 2,2
loc (Ω). When n ≥ 3 and p ≥ 3 + 2 , it is not clear whether 
n−2
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w ∈ W 2,2
loc (Ω) or not. When n = 2, the range γ < 3 + p−1

n−1 = p +2 is optimal as witnessed 
by some construction in [9].

Moreover, we extend Theorem 1.1 to weighted manifolds satisfying Bakry-Émery 
curvature-dimension condition,

Theorem 1.2. Let (Mn, g, e−hvolg) be a weighted manifold with RicNh ≥ −κ for some 
n ≤ N < ∞ and κ ≥ 0. Let 1 < p < ∞ and γ < 3 + p−1

N−1 . For any positive weighted 

p-harmonic function w in a domain Ω ⊂ M , we have |∇ lnw| p−γ
2 ∇ lnw ∈ W 1,2

loc (Ω) and

−
ˆ

B(z,r)

∣∣∣∇[|∇ lnw| p−γ
2 ∇ lnw]

∣∣∣2 dvolh ≤ C(n,N, p, γ)
[
1 +

√
κr

r

]p−γ+4

e
√
κr (1.8)

whenever B(z, 4r) � Ω.
In particular, if p ∈ (1, 3 + 2

N−2 ), then ∇2 lnw ∈ L2
loc (Ω) and

−
ˆ

B(z,r)

|∇2 lnw|2 dvolh ≤ C(n,N, p)
[
1 +

√
κr

r

]4

e
√
κr (1.9)

whenever B(z, 4r) � Ω.

As a consequence of Theorem 1.1 and Theorem 1.2, one gets that |∇ lnw| p−γ+2
2 ∈ W 1,2

loc
for γ < 3 + p−1

n−1 or γ < 3 + p−1
N−1 , while in [21,5], one has |∇ lnw| p−γ+2

2 ∈ W 1,2
loc for all 

γ < 2 (see (1.3) and the line above (1.5)). Thus our range for γ obviously improves the 
one obtained in [21,5] respectively.

Now we sketch the ideas to prove Theorem 1.1 and Theorem 1.2. Note that when 
N = n and h ≡ 1, we have RicNh = Ricg, and hence Theorem 1.1 corresponds to the 
special case N = n and h ≡ 1 in Theorem 1.2. We only need to prove Theorem 1.2. 
As usual, we approximate u = −(p − 1) lnw by smooth solution uε to the standard 
approximation/regularized equation (3.3), that is,

ehdiv(e−h[|∇uε|2 + ε]
p−2
2 ∇uε) = [|∇uε|2 + ε]

p−2
2 |∇uε|2.

(i) Using Bochner formula and the approximation equation (3.3), for 0 < η < 1/2 we 
bound the integral of

(1 − η)|∇2uε|2 + (p− γ) |∇
2uε∇uε|2

|∇uε|2 + ε
+ (p− 2)(2 − γ) (Δ∞uε)2

[|∇uε|2 + ε]2 (1.10)

from above by the integral of

Ricg(∇uε,∇uε) + 〈∇2h∇uε,∇uε〉
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and other first order terms, where all integrals are taken against [|∇uε|2 +
ε] p−γ

2 φ2 e−hdvolg where φ ∈ C∞
c (U) is a test function and U � Ω; see Lemma 3.2. 

Here in (1.10) and in what follows, for any C2 function f , Δ∞f := 〈∇2f∇f, ∇f〉.
(ii) If γ < 3 + p−1

N−1 , via a fundamental inequality given in Lemma 2.1 and the approxi-
mation equation (3.3), for sufficiently small η > 0 we bound (1.10) as below

(1.10) ≥ η|∇2uε|2 − 〈∇h,∇uε〉2
N − n

− C
1
η
|∇uε|4 everywhere;

see Lemma 3.4. This is crucial to get Theorem 1.2. Note that the approach in [21,5]
could not give Lemma 3.4; see Remark 3.8 for details.

(iii) Combining (i)&(ii) together, the integral of η|∇2uε|2 is bounded from above by 
the integral of −RicNh (∇uε, ∇uε) and other first order terms, where all integrals are 
taken against [|∇uε|2 + ε] p−γ

2 φ2 e−hdvolg; see Corollary 3.6.
Under the assumption RicNh ≥ −κ, in Lemma 3.7 we obtain an upper L2

loc bound 
for ∇[|∇uε| p−γ

2 ∇uε]φ by the integral of some first order terms, where all integrals 
are against e−hdvolg. A standard argument then leads to the proof of Theorem 1.2.

Finally, we also notice that the Cheng-Yau gradient estimate (1.1) was generalized to 
positive harmonic functions w in Alexandrov spaces with curvature bounded from below 
by Zhang-Zhu in [22], where the authors showed |∇ lnw|2 ∈ W 1,2

loc (Ω) as a key step. 
Furthermore, one could study the regularity of p-harmonic functions in more general 
metric measure spaces. In these spaces, a natural generalization of the (weighted) Ricci 
curvature bound is the curvature-dimension condition RCD(κ, N) in the sense of Bakry-
Émery or Ambrosio-Gigli-Savaré. The two senses turned out to be equivalent by the work 
of Erbar-Kuwada-Sturm [6] (in the finite dimensional case) and Ambrosio-Gigli-Savaré [1]
and the spaces satisfying one of the two equivalent conditions are known as RCD(κ, N)
spaces. Some progress was made in RCD(κ, N) spaces. The Cheng-Yau gradient estimate 
was established by Jiang in [10] for positive harmonic functions w in RCD(κ, N) spaces; 
recently, Gigli-Violo in [7] established |∇ lnw|β/2 ∈ W 1,2

loc (Ω) under RCD(0, N) spaces if 
β > N−2

N−1 . However, when p = 2, it remains open to prove the Cheng-Yau type gradient 
estimates for positive p-harmonic functions in Alexandrov spaces and also RCD(κ, N)
spaces.

2. Preliminaries

Let n ≥ 2 and Mn be a Riemannian manifold, and g be the Riemannian metric. By 
abuse of notation we also write |ξ|2 = g(ξ, ξ) and 〈ξ, η〉 = g(ξ, η) for all ξ, η ∈ TxM

n. 
The corresponding Riemannian volume measure is written as dvolg, and the volume of 
a set E is written as volg(E). Denote by Ricg the Ricci curvature 2-tensor and write 
Ricg ≥ −κ if Ricg(ξ, ξ) ≥ −κ|ξ|2 for all ξ ∈ TxM

n.
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For 1 < p < ∞, the p-Laplace operator Δp in Mn is given by

Δpf = div(|∇f |p−2∇f) ∀f ∈ C2(Mn).

Obviously, Δ2 is exactly the Laplace-Beltrami operator Δ in (Mn, g). A function w
defined in a domain Ω ⊂ Mn is called p-harmonic if w ∈ W 1,p

loc (Ω) is a weak solution to 
the p-Laplace equation Δpw = 0 in Ω, that is,

ˆ

Ω

|∇w|p−2〈∇w,∇φ〉dvolg = 0 ∀φ ∈ C∞
c (Ω).

Note that 2-harmonic functions are the well-known harmonic functions.
Next we recall some basic facts of weighted Riemannian manifolds (Mn, g, e−hdvolg), 

where the weight h is a positive smooth function in Mn. The weighted measure dvolh =
e−hdvolg can be viewed as the volume form of a suitable conformal change of the metric 
g. Denote by volh(E) the weighted volume of a set E. For n ≤ N < ∞, the corresponding 
N -Bakry-Émery curvature tensor is

RicNh = Ricg + ∇2h− ∇h⊗∇h

N − n
,

where when N = n, by convention, h is a constant function and hence RicNh = Ricg. 
We say that (Mn, g, e−hdvolg) satisfies the Bakry-Émery curvature-dimension condition 
RicNh ≥ −κ if

RicNh (ξ, ξ) = Ricg(ξ, ξ) + 〈∇2hξ, ξ〉 − 〈∇h, ξ〉2
N − n

≥ −κ〈ξ, ξ〉 ∀ξ ∈ TxM
n

By [18], under RicNh ≥ −κ, one has the following volume comparison result

volh(B2r(x)) ≤ C(N)e
√
κrvolh(Br(x)) ∀x ∈ M, r > 0. (2.1)

For 1 < p < ∞, the weighted p-Laplacian Δh,p is defined as

Δp,hf = ehdiv(e−h|∇f |p−2∇f) = Δpf − |∇f |p−2〈∇f,∇h〉 ∀f ∈ C2(Mn).

In the case p = 2, one writes Δ2,h as Δh, and hence

Δhf = Δf − 〈∇h,∇f〉.

A function w in a domain Ω ⊂ Mn is called as a weighted p-harmonic function if 
w ∈ W 1,p

loc (Ω) is a weak solution to the weighted p-harmonic equation Δp,hw = 0 in Ω, 
that is,
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ˆ

Ω

|∇w|p−2〈∇w,∇φ〉 e−hdvolg = 0 ∀φ ∈ C∞
c (Ω). (2.2)

By a density argument, we can relax φ ∈ C∞
c (Ω) to φ ∈ W 1,p

0 (Ω) in (2.2).
We also recall the following Bochner formula in (Mn, g, e−hdvolg):

1
2Δh|∇f |2 = |∇2f |2+〈∇f,∇Δhf〉+Ricg(∇f,∇f)+〈∇2h∇f,∇f〉 ∀f ∈ C3(M), (2.3)

which will be used in Section 3.
Finally, we recall the following fundamental inequality; see for example [21,5,14]. For 

the reader’s convenience we include it here. Recall that Δ∞f = 〈∇2f∇f, ∇f〉.

Lemma 2.1. Let n ≥ 2 and Ω be a domain of Mn. For any f ∈ C2(Ω), we have

|∇f |4|∇2f |2 ≥ 2|∇f |2|∇2f∇f |2 + [|∇f |2Δf − Δ∞f ]2

n− 1 − (Δ∞f)2 in Ω, (2.4)

where when n = 2, “≥” becomes “=”.

Proof. It suffices to prove that for any symmetric n × n matrix A one has

|A|2|ξ|4 ≥ 1
n− 1(trA|ξ|2 − 〈Aξ, ξ〉)2 + 2|Aξ|2|ξ|2 − 〈Aξ, ξ〉2 ∀ξ ∈ Rn. (2.5)

Note that if ξ = 0, (2.5) holds obviously. Below assume that ξ = 0. Up to a scaling we may 
assume |ξ| = 1. By a change of coordinates, we may further assume ξ = en = (0, · · · , 0, 1); 
in this case, (2.5) reads as

|A|2 ≥ 1
n− 1(trA− 〈Aen, en〉)2 + 2|Aen|2 − 〈Aen, en〉2.

Denoting by An−1 the (n − 1) order principal submatrix of A, one has

|A|2 = |An−1|2 + 2|Aen|2 − 〈Aen, en〉2.

Noting that

|An−1|2 ≥ 1
n− 1(trAn−1)2 = 1

n− 1(trA− 〈Aen, en〉)2,

where when n = 2, one has |An−1|2 = (trAn−1)2, one concludes (2.4). �
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3. Proof of Theorem 1.2

Let w be a positive weighted p-harmonic function in a domain Ω. Set u = −(p −1) lnw. 
Then u is a weak solution to the equation

Δpu− |∇u|p−2〈∇u,∇h〉 = |∇u|p in Ω, (3.1)

that is,

−
ˆ

Ω

|∇u|p−2〈∇u,∇φ〉e−hdvolg =
ˆ

Ω

|∇u|pφe−hdvolg ∀φ ∈ C∞
c (Ω).

Given any smooth domain U � Ω and ε ∈ (0, 1], consider the approximation/regular-
ized equation defined by

ehdiv(e−h[|∇v|2 + ε]
p−2
2 ∇v) = [|∇v|2 + ε]

p−2
2 |∇v|2 in U ; v = u on ∂U . (3.2)

It is well known that if u is the solution to (3.1), then u ∈ C1,α(Ω) for some α ∈ (0, 1); 
see [3,12,19,20]. Moreover, in the following lemma, we summarize some properties of the 
solution u to (3.1) and uε to (3.3), which result from [3] as a special case. See also [19].

Lemma 3.1. For any ε ∈ (0, 1], there exists a unique solution uε ∈ C∞(U) ∩ C0(U) to 
(3.3), and moreover, uε → u in C0(U) and uε → u in C1,α(V ) uniformly in ε > 0 as 
ε → 0 for all V � U where u is the solution to (3.1).

To show Lemma 3.1, we just need to check that equations (3.1) and (3.3) are special 
cases of those considered in [3]. We put this verification in the appendix.

By Lemma 3.1, the solution uε to (3.2) is C∞, which implies that uε satisfies (3.2)
pointwise. Hence by a direct computation, (3.2) is equivalent to

Δhu
ε + (p− 2) Δ∞uε

|∇uε|2 + ε
= |∇uε|2 in U ; uε = u on ∂U . (3.3)

To prove Theorem 1.2 we first build up the following upper bound.

Lemma 3.2. Let uε be the solution to (3.3). For any γ ∈ R, η > 0 and φ ∈ C∞
c (U), we 

have
ˆ

U

{
(1 − η)|∇2uε|2 + (p− γ) |∇

2uε∇uε|2
|∇uε|2 + ε

+ (p− 2)(2 − γ) (Δ∞uε)2

[|∇uε|2 + ε]2

}

× [|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

≤ −
ˆ

[Ricg(∇uε,∇uε) + 〈∇2h∇uε,∇uε〉][|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

U
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+ C(p, γ) 1
η

ˆ

U

([|∇uε|2 + ε]
p−γ

2 +1|∇φ|2 + [|∇uε|2 + ε]
p−γ

2 +2φ2) e−hdvolg. (3.4)

To prove this, we need the following identity.

Lemma 3.3. For any v ∈ C3(U) and ψ ∈ C∞
c (U), one has

ˆ

U

|∇2v|2ψ e−hdvolg = −
ˆ

U

〈∇2v∇v − Δhv∇v,∇ψ〉 e−hdvolg +
ˆ

U

(Δhv)2ψ e−hdvolg

−
ˆ

U

[Ricg(∇v,∇v) + 〈∇2h∇v,∇v〉]ψ e−hdvolg. (3.5)

Proof. Applying the Bochner formula to v, one has

|∇2v|2 + Ricg(∇v,∇v) = 1
2Δh|∇v|2 − 〈∇v,∇Δhv〉 − 〈∇2h∇v,∇v〉

and hence

|∇2v|2 = [12Δh|∇v|2 − (Δhv)2 − 〈∇v,∇Δhv〉] + (Δhv)2

− [Ricg(∇v,∇v) + 〈∇2h∇v,∇v〉].

By this, to get (3.5), it suffices to show the following identity
ˆ

U

[ 12Δh|∇v|2 − (Δhv)2 − 〈∇v,∇Δhv〉]ψe−hdvolg

= −
ˆ

U

〈∇2v∇v − Δhv∇v,∇ψ〉 e−hdvolg. (3.6)

Note that

−[(Δhv)2 + 〈∇v,∇(Δhv)〉] = −ehdiv(e−h∇v)(Δhv) − eh〈e−h∇v,∇(Δhv)〉
= −ehdiv(e−h∇vΔhv).

Via integration by parts, one has

−
ˆ

U

[(Δhv)2 + 〈∇v,∇(Δhv)〉]ψ e−hdvolg = −
ˆ

U

div(e−h∇vΔhv)ψ dvolg

=
ˆ

U

〈Δhv∇v,∇ψ〉 e−hdvolg.
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Similarly, via integration by parts one also has

1
2

ˆ

U

Δh|∇v|2ψe−h dvolg =
ˆ

U

1
2div(e−h∇|∇v|2)ψ dvolg

= −
ˆ

U

1
2 〈e

−h∇|∇v|2,∇ψ〉 dvolg

= −
ˆ

U

〈∇2v∇v,∇ψ〉 e−hdvolg.

Combining together we obtain (3.6) and hence, (3.5) as desired. �
We are ready prove Lemma 3.2 as below.

Proof of Lemma 3.2. Taking v = uε and ψ = [|∇uε|2 + ε] p−γ
2 φ2 in (3.5) we get

ˆ

U

|∇2uε|2[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

= −
ˆ

U

〈∇2uε∇uε − Δhu
ε∇uε,∇[[|∇uε|2 + ε]

p−γ
2 φ2]〉 e−hdvolg

+
ˆ

U

(Δhu
ε)2[|∇uε|2 + ε]

p−γ
2 φ2 e−hdvolg

−
ˆ

U

[Ric(∇uε,∇uε) + 〈∇2h∇uε,∇uε〉][|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg. (3.7)

To bound the second term in the right-hand side in (3.7), recalling (3.3), that is,

Δhu
ε = |∇uε|2 − (p− 2) Δ∞uε

|∇uε|2 + ε
, (3.8)

by Cauchy-Schwarz’s inequality one has

(Δhu
ε)2 ≤ (p− 2)2 (Δ∞uε)2

[|∇uε|2 + ε]2 + η

4 |∇
2uε|2 + C(p) 1

η
|∇uε|4,

where 0 < η < 1 is any constant. Thus
ˆ

U

(Δhu
ε)2[|∇uε|2 + ε]

p−γ
2 φ2 e−hdvolg ≤ (p− 2)2

ˆ

U

(Δ∞uε)2[|∇uε|2 + ε]
p−γ

2 −2φ2 e−hdvolg

+ η

4

ˆ
|∇2uε|2[|∇uε|2 + ε]

p−γ
2 φ2 e−hdvolg
U
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+ C(p)
η

ˆ

U

[|∇uε|2 + ε]
p−γ

2 +2φ2 e−hdvolg. (3.9)

The first term in the right-hand side in (3.7) is further written as

−
ˆ

U

〈∇2uε∇uε − Δhu
ε∇uε,∇[[|∇uε|2 + ε]

p−γ
2 φ2]〉 e−hdvolg

= −(p− γ)
ˆ

U

|∇2uε∇uε|2
|∇uε|2 + ε

[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

+ (p− γ)
ˆ

U

Δhu
ε Δ∞uε

|∇uε|2 + ε
[|∇uε|2 + ε]

p−γ
2 φ2 e−hdvolg

−
ˆ

U

〈∇2uε∇uε,∇φ2〉[|∇uε|2 + ε]
p−γ

2 e−hdvolg

+
ˆ

U

〈Δhu
ε∇uε,∇φ2〉[|∇uε|2 + ε]

p−γ
2 e−hdvolg. (3.10)

Using (3.8) and Cauchy-Schwarz’s inequality, we obtain the following upper bound for 
the second term in (3.10):

(p− γ)
ˆ

U

Δhu
ε Δ∞uε

|∇uε|2 + ε
[|∇uε|2 + ε]

p−γ
2 φ2 e−hdvolg

= −(p− γ)(p− 2)
ˆ

U

(Δ∞uε)2[|∇uε|2 + ε]
p−γ

2 −2φ2 e−hdvolg

+ (p− γ)
ˆ

U

Δ∞uε|∇uε|2[|∇uε|2 + ε]
p−γ

2 −1φ2 e−hdvolg

≤ −(p− γ)(p− 2)
ˆ

U

(Δ∞uε)2[|∇uε|2 + ε]
p−γ

2 −2φ2 e−hdvolg

+ η

4

ˆ

U

|∇2uε|2[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

+ C(p)
η

|p− γ|2
ˆ

U

[|∇uε|2 + ε]
p−γ

2 +2φ2 e−hdvolg. (3.11)

For the third term in the right-hand side of (3.10), by Cauchy-Schwarz’s inequality, one 
has
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∣∣∣∣∣∣
ˆ

U

〈∇2uε∇uε,∇φ2〉[|∇uε|2 + ε]
p−γ

2 e−hdvolg

∣∣∣∣∣∣
≤ η

4

ˆ

U

|∇2uε|2[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg + C
1
η

ˆ

U

[|∇uε|2 + ε]
p−γ

2 +1|∇φ|2 e−hdvolg.

(3.12)

For the fourth term in the right-hand side of (3.10), in a similar way, using (3.8), one 
has ∣∣∣∣∣∣

ˆ

U

〈Δhu
ε∇uε,∇φ2〉[|∇uε|2 + ε]

p−γ
2 e−hdvolg

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ˆ

U

〈
|∇uε|2∇uε − (p− 2) Δ∞uε

|∇uε|2 + ε
∇uε,∇φ2

〉
[|∇uε|2 + ε]

p−γ
2 e−hdvolg

∣∣∣∣∣∣
≤ η

4

ˆ

U

|∇2uε|2[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

+ C(p) 1
η

ˆ

U

([|∇uε|2 + ε]
p−γ

2 +1|∇φ|2 + [|∇uε|2 + ε]
p−γ

2 +2φ2) e−hdvolg. (3.13)

From (3.13), (3.12), (3.11) and (3.10) we attain

−
ˆ

U

〈∇2uε∇uε − Δhu
ε∇uε,∇[[|∇uε|2 + ε]

p−γ
2 φ2]〉 e−hdvolg

= 3
4η

ˆ

U

|∇2uε|2[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

− (p− γ)
ˆ

U

|∇2uε∇uε|2
|∇uε|2 + ε

[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

− (p− γ)(p− 2)
ˆ

U

(Δ∞uε)2[|∇uε|2 + ε]
p−γ

2 −2φ2 e−hdvolg

+ C(p)
η

ˆ

U

([|∇uε|2 + ε]
p−γ

2 +1|∇φ|2 + [|∇uε|2 + ε]
p−γ

2 +2φ2) e−hdvolg. (3.14)

Obviously from (3.14), (3.9) and (3.7) we conclude (3.4). �
If γ < 3 + p−1

N−1 , we get the following pointwise lower bound. Recall that when N = n, 
we always assume that h is a constant function and 〈∇uε,∇h〉2 = 0.
N−n
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Lemma 3.4. Let uε be the solution to (3.3). If γ < 3 + p−1
N−1 for some N ≥ n, then for 

sufficiently small η > 0 we have

(1 − η)|∇2uε|2 + (p− γ) |∇
2uε∇uε|2

|∇uε|2 + ε
+ (p− 2)(2 − γ) (Δ∞uε)2

[|∇uε|2 + ε]2

≥ η|∇2uε|2 − 〈∇uε,∇h〉2
N − n

− C(n,N, p, γ) 1
η
|∇uε|4. (3.15)

To prove this, we need the following pointwise lower bound for |∇2uε|2|∇uε|4.

Lemma 3.5. Let uε be the solution to (3.3). If N ≥ n, then for 0 < η < 1 we have

(1 + η)|∇2uε|2|∇uε|4 ≥ 2|∇2uε∇uε|2|∇uε|2

+
(

1
N − 1

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

− 1
)

(Δ∞uε)2

− (1 + η) 〈∇uε,∇h〉2
N − n

|∇uε|4 − C(n,N, p) 1
η
|∇uε|8. (3.16)

Proof. Applying (2.4) to uε one has

|∇2uε|2|∇uε|4 ≥ 2|∇uε|2|∇2uε∇uε|2 + [|∇uε|2Δuε − Δ∞uε]2

n− 1 − (Δ∞uε)2 (3.17)

By (3.8) and Δuε = Δhu
ε + 〈∇h, ∇uε〉, we have

Δuε = |∇uε|2 + 〈∇uε,∇h〉 − (p− 2) Δ∞uε

|∇uε|2 + ε
.

Thus

|∇uε|2Δuε − Δ∞uε = |∇uε|2
(
|∇uε|2 + 〈∇uε,∇h〉

)
−
[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]
Δ∞uε,

and hence,

[|∇uε|2Δuε − Δ∞uε]2 =
[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

(Δ∞uε)2

+ |∇uε|4
(
|∇uε|2 + 〈∇uε,∇h〉

)2
− 2

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]
|∇uε|4Δ∞uε

− 2
[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]
|∇uε|2Δ∞uε〈∇uε,∇h〉

=: I1 + I2 + I3 + I4. (3.18)
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Note that

∣∣∣∣(p− 2) |∇uε|2
|∇uε|2 + ε

+ 1
∣∣∣∣
2

≤ 4p2, (3.19)

which can be obtained by considering p > 2 and 1 < p < 2 separately. Using this, 
Cauchy-Schwarz inequality, for 0 < η < 1, we have

I3 ≥ −η|∇2uε|2|∇uε|4 − C(p) 1
η
|∇uε|8. (3.20)

If h is a constant function and hence ∇h = 0, I2 ≥ 0 and I4 = 0, dividing by n − 1 in 
both sides of (3.18), by (3.20) one has

[|∇uε|2Δuε − Δ∞uε]2

n− 1 ≥ −η|∇2uε|2|∇uε|4

+
[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2 (Δ∞uε)2

n− 1 − C(p)
η

|∇uε|8.

Plugging this in (3.17), noting N = n, and adding η|∇2uε|2|∇uε|4 in both sides, one 
concludes (3.16).

If h is not a constant function, set η1 = N−n
N−1 . Then

1 − η1 = n− 1
N − 1 > 0 and 1 − 1

η1
= − n− 1

N − n
< 0. (3.21)

For any 0 < η < 1 one has

I2 ≥ |∇uε|4〈∇uε,∇h〉2 + 2|∇uε|6〈∇uε,∇h〉

≥ [1 + η(1 − 1
η1

)]|∇uε|4〈∇uε,∇h〉2 − 1
η|1 − 1

η1
|
|∇uε|8. (3.22)

Using Cauchy-Schwarz inequality, we have

I4 ≥ −η1

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

(Δ∞uε)2 − 1
η1

〈∇uε,∇h〉2|∇uε|4 (3.23)

Dividing by n − 1 in both sides of (3.18), by (3.20), (3.22) and (3.23) one has

[|∇uε|2Δuε − Δ∞uε]2

n− 1 ≥ −η|∇2uε|2|∇uε|4 + 1 − η1

n− 1

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

(Δ∞uε)2

+ (1 + η)
1 − 1

η1

n− 1 〈∇uε,∇h〉2|∇uε|4 − C(n,N, p) 1
η
|∇uε|8
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By (3.21),

[|∇uε|2Δuε − Δ∞uε]2

n− 1 ≥ −η|∇2uε|2|∇uε|4 + 1
N − 1

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

(Δ∞uε)2

− (1 + η) 1
N − n

〈∇uε,∇h〉2|∇uε|4 − C(n,N, p) 1
η
|∇uε|8.

Plugging this in (3.17), and adding η|∇2uε|2|∇uε|4 in both sides, we conclude (3.16) as 
desired. �

We now prove Lemma 3.4 by using Lemma 3.5.

Proof of Lemma 3.4. Given any point x ∈ U , if ∇uε(x) = 0, then (3.15) holds trivially. 
Below we assume that ∇uε(x) = 0. At such point x, we already have (3.16) in Lemma 3.5. 
Dividing by |∇uε|4 in both sides of (3.16), for 0 < η < 1/2 we obtain

(1 + η)|∇2uε|2 ≥ 2 |∇
2uε∇uε|2
|∇uε|2 +

(
1

N − 1

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

− 1
)

(Δ∞uε)2

|∇uε|4

− (1 + η) 〈∇uε,∇h〉2
N − n

− C(n,N, p)
η

|∇uε|4.

In both sides, multiplying by 1−2η
1+η > 0 and adding

η|∇2uε|2 + (p− γ) |∇
2uε∇uε|2

|∇uε|2 + ε
+ (p− 2)(2 − γ) (Δ∞uε)2

[|∇uε|2 + ε]2 ,

we get

(1 − η)|∇2uε|2 + (p− γ) |∇
2uε∇uε|2

|∇uε|2 + ε
+ (p− 2)(2 − γ) (Δ∞uε)2

[|∇uε|2 + ε]2

≥ η|∇2uε|2 +
{

1 − 2η
1 + η

2 + (p− γ) |∇uε|2
|∇uε|2 + ε

}
|∇2uε∇uε|2

|∇uε|2

+
{

1 − 2η
1 + η

(
1

N − 1

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

− 1
)

+(p− 2)(2 − γ) |∇uε|4
[|∇uε|2 + ε]2

}
(Δ∞uε)2

|∇uε|4

− (1 − 2η) 〈∇uε,∇h〉2
N − n

− C(n,N, p) 1
η
|∇uε|4

=: I1 + I2 + I3 + I4 + I5. (3.24)
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Recall that if N = n that is, h is a constant function, I4 = 0 by our convention. If 
N > n that is, h is not a constant, then by 1 − 2η < 1, we have

I4 ≥ −〈∇uε,∇h〉2
N − n

. (3.25)

To bound I2 + I3 from below, since γ < 3 + p−1
N−1 and N ≥ 2 implies

p + 2 − γ > p + 2 − 3 − p− 1
N − 1 = (p− 1)(1 − 1

N − 1) ≥ 0,

we can find 0 < η̂(p, γ) < 1/2 such that for 0 < η < η̂, one has p + 21−2η
1+η − γ > 0. Thus 

the coefficient of I2 satisfies

(p− γ) |∇uε|2
|∇uε|2 + ε

+ 21 − 2η
1 + η

≥ (p + 21 − 2η
1 + η

− γ) |∇uε|2
|∇uε|2 + ε

+ 1 − 2η
1 + η

ε

|∇uε|2 + ε
> 0.

Using this and observing

|∇2uε∇uε|2
|∇uε|2 ≥ |Δ∞uε|2

|∇uε|4 ,

one has

I2 + I3

≥
{

(p− γ) |∇uε|2
|∇uε|2 + ε

+ 21 − 2η
1 + η

+1 − 2η
1 + η

(
1

N − 1

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

− 1
)

+(p− 2)(2 − γ) |∇uε|4
[|∇uε|2 + ε]2

}
(Δ∞uε)2

|∇uε|4

=: H(η) (Δ∞uε)2

|∇uε|4

We claim that there exists 0 < η̄(n, N, p, γ) < η̂ such that H(η) > 0 for all 0 < η < η̄. 
Assuming this claim holds for the moment, for any 0 < η < η̄, one has I2 + I3 > 0. From 
this, (3.24) and (3.25) we conclude (3.15) as desired.

Finally we prove the above claim. It suffices to show that

H(0) := (p− γ) |∇uε|2
[|∇uε|2 + ε] + 2 +

(
1

N − 1

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

− 1
)

+ (p− 2)(2 − γ) |∇uε|4
ε 2 2
[|∇u | + ε]
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> δ(N, p, γ), (3.26)

where δ(N, p, γ) > 0 is a constant. Indeed, by (3.19), one has

H(η) ≥ H(0) − 2[1 − 1 − 2η
1 + η

] − [1 − 1 − 2η
1 + η

][ 4p2

N − 1 − 1] ≥ δ(N, p, γ) − 15p2η.

If 0 < η < η̄ =: min{η̂, δ(N, p, γ)/15p2}, one has H(η) > 0 and hence the claim holds as 
desired.

We prove (3.26) as below. Since

[
(p− 2) |∇uε|2

|∇uε|2 + ε
+ 1

]2

= (p− 2)2 |∇uε|4
[|∇uε|2 + ε]2 + 2(p− 2) |∇uε|2

[|∇uε|2 + ε] + 1,

we rewrite

H(0) = (p− 2)[2 − γ + p− 2
N − 1 ] |∇uε|4

[|∇uε|2 + ε]2 + [p− γ + 2(p− 2)
N − 1 ] |∇uε|2

[|∇uε|2 + ε] + N

N − 1 .

Observing

|∇uε|2
[|∇uε|2 + ε] = |∇uε|4

[|∇uε|2 + ε]2 + ε|∇uε|2
[|∇uε|2 + ε]2

and

1 = |∇uε|4
[|∇uε|2 + ε]2 + 2 ε|∇uε|2

[|∇uε|2 + ε]2 + ε2

[|∇uε|2 + ε]2 ,

we further write

H(0) =
{

(p− 2)[2 − γ + p− 2
N − 1 ] + [p− γ + 2(p− 2)

N − 1 ] + N

N − 1

}
|∇uε|4

[|∇uε|2 + ε]2

+
{

[p− γ + 2(p− 2)
N − 1 ] + 2 N

N − 1

}
ε|∇uε|2

[|∇uε|2 + ε]2

+ N

N − 1
ε2

[|∇uε|2 + ε]2 .

By a direct calculation, γ < 3 + p−1
N−1 implies that

[p− γ + 2(p− 2)
N − 1 ] + 2 N

N − 1 > p + 2(p− 2)
N − 1 + 2 N

N − 1 − 3 − p− 1
N − 1

= p− 1 + 2(p− 2) + 2 − (p− 1)
N − 1

= (p− 1) N
N − 1
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> 0.

Moreover, γ < 3 + p−1
N−1 also implies that

(p− 2)[2 − γ + p− 2
N − 1 ] + [p− γ + 2(p− 2)

N − 1 ] + N

N − 1

= 3(p− 1) + (p− 2)2 + 2(p− 2) + 1
N − 1 − (p− 1)γ

= 3(p− 1) + (p− 1)2

N − 1 − (p− 1)γ

= (p− 1)[3 + p− 1
N − 1 − γ]

> 0.

Thus

H(0) > (p− 1)[3 + p− 1
N − 1 − γ] |∇uε|4

[|∇uε|2 + ε]2 + N

N − 1
ε2

[|∇uε|2 + ε]2

≥ 1
2 min

{
(p− 1)[3 + p− 1

N − 1 − γ], N

N − 1

}

=: δ(N, p, γ)

> 0

that is, (3.26) holds. �
Combining (3.15) and (3.4) we have the following. Recall that

RicNh (∇uε,∇uε) = Ricg(∇uε,∇uε) + 〈∇2h∇uε,∇uε〉 − 〈∇uε,∇h〉2
N − n

.

Corollary 3.6. Let uε be the solution to (3.3). If γ < 3 + p−1
N−1 for some N ≥ n, then for 

sufficiently small η > 0 one has

η

ˆ

U

|∇2uε|2[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

≤ −
ˆ

U

RicNh (∇uε,∇uε)[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

+ C(n,N, p, γ, η)
ˆ

U

(
[|∇uε|2 + ε]

p−γ
2 +1|∇φ|2 + [|∇uε|2 + ε]

p−γ
2 +2φ2

)
e−hdvolg

(3.27)
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Under the Bakry-Émery curvature-dimension assumption, we have the following uni-
form upper bound.

Lemma 3.7. Let uε be the solution to (3.3). If γ < 3 + p−1
N−1 and RicNh ≥ −κ, then one 

has
ˆ

U

|∇[[|∇uε|2 + ε]
p−γ

4 ∇uε]|2φ2 e−hdvolg

≤ C(n,N, p, γ)
ˆ

U

κ|∇uε|2[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg

+ C(n,N, p, γ)
ˆ

U

(
[|∇uε|2 + ε]

p−γ
2 +1|∇φ|2 + [|∇uε|2 + ε]

p−γ
2 +2φ2

)
e−hdvolg.(3.28)

Proof. By RicNh ≥ −κ we know that

−RicNh (∇uε,∇uε) ≤ κ|∇uε|2

Thus the first term in the right-hand side of (3.27) is bounded from above by

κ

ˆ

U

|∇uε|2[|∇uε|2 + ε]
p−γ

2 φ2 e−hdvolg.

On the other hand, a direct calculation leads to

|∇[[|∇uε|2 + ε]
p−γ

4 ∇uε]|2

= [|∇uε|2 + ε]
p−γ

2

∣∣∣∣∇2uε + p− γ

2
∇uε ⊗∇2uε∇uε

|∇uε|2 + ε

∣∣∣∣
2

= [|∇uε|2 + ε]
p−γ

2 [|∇2uε|2 + (p− γ) |∇
2uε∇uε|2

|∇uε|2 + ε
+ (p− γ)2

4
|∇uε|2|∇2uε∇uε|2

[|∇uε|2 + ε]2 ]

≤ C(n, p, γ)[|∇uε|2 + ε]
p−γ

2 |∇2uε|2.

Thus, up to a constant multiplier, the left-hand side of (3.27) is bounded by

ˆ

U

|∇[[|∇uε|2 + ε]
p−γ

4 ∇uε]|2e−hdvolg.

We therefore conclude (3.28) from (3.27). �
Now we are able to prove Theorem 1.2.
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Proof of Theorem 1.2. Let w ∈ W 1,p
loc (Ω) be any positive weighted p-harmonic function 

in the domain Ω and u = −(p − 1) lnw. Given any smooth domain U � Ω, for each 
ε ∈ (0, 1], let uε ∈ C∞(U) be the solution to (3.3). By Lemma 3.1, we know that uε →
u ∈ C1,α(U), for some α ∈ (0, 1) uniformly in ε > 0 as ε → 0. Using this and choosing 
suitable test functions φ ∈ C∞

c (U) in (3.28), one concludes [|∇uε|2+ε] p−γ
4 ∇uε ∈ W 1,2

loc (U)
uniformly in ε ∈ (0, 1].

Next, we claim that

|∇u| p−γ
2 ∇u ∈ W 1,2

loc (U), (3.29)

and

∇([|∇uε|2 + ε]
p−γ

4 ∇uε) → ∇(|∇u| p−γ
2 ∇u) weakly in L2

loc (U,Rn×n) as ε → 0. (3.30)

To see this, for any subdomain V � U , by Lemma 3.7, we already have

sup
ε∈(0,1]

‖∇([|∇uε|2 + ε]
p−γ

4 ∇uε)‖L2(V,Rn×n) < C(κ, n,N, p, γ, V ).

For any subsequence {εj}j∈N which converges to 0, by the weak compactness of W 2,2(V ), 
up to some subsequence one has ∇([|∇uεj |2+εj ]

p−γ
4 ∇uεj ) → z weakly in L2(V, Rn×n) for 

some function z ∈ L2(V,Rn×n). Let {e1, · · · , en} ⊂ TxU be a local orthonormal frame 
at each x ∈ U . Notice that the n × n matrix

∇([|∇uεj |2 + εj ]
p−γ

4 ∇uεj ) =
(
∇el([|∇uεj |2 + εj ]

p−γ
4 ∇eku

εj )
)

1≤k,l≤n
.

Recalling from Lemma 3.1 that ∇uε → ∇u in Cα(U) and V � U , for any φ ∈ C∞
c (U)

with φ|V = 1 and 1 ≤ k, l ≤ n, we have

lim
j→0

ˆ

U

∇el([|∇uεj |2 + εj ]
p−γ

4 ∇eku
εj )φ e−hdvolg

= − lim
j→0

ˆ

U

([|∇uεj |2 + εj ]
p−γ

4 ∇eku
εj )∇el(φe−h) dvolg

= −
ˆ

U

(|∇u| p−γ
2 ∇eku)∇el(φe−h) dvolg

=
ˆ

U

∇el(|∇u| p−γ
2 ∇eku)φ e−hdvolg.

This shows that in the distributional sense

∇([|∇uεj |2 + εj ]
p−γ

4 ∇uεj ) → ∇(|∇u| p−γ
2 ∇u).
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Thus z = ∇(|∇u| p−γ
2 ∇u)|V ∈ L2(V, Rn×n) in distributional sense. We therefore have 

|∇u| p−γ
2 ∇u|V ∈ W 1,2(V ), which gives (3.29).

Moreover, by the arbitrariness of subsequence {εj}, we have

∇([|∇uε|2 + ε]
p−γ

4 ∇uε) → ∇(|∇u| p−γ
2 ∇u)

weakly in L2(V, Rn×n) as ε → 0. Hence by the arbitrariness of V � U , (3.30) holds.
Letting ε → 0 in (3.28) and using the convergence in the above verified claim, we 

obtain
ˆ

U

|∇[|∇u| p−γ
2 ∇u]|2φ2 e−hdvolg

≤ C(n,N, p, γ)κ
ˆ

U

|∇u|p−γ+2φ2 e−hdvolg

+ C(n,N, p, γ)
ˆ

U

(
|∇u|p−γ+2|∇φ|2 + |∇u|p−γ+4φ2) e−hdvolg. (3.31)

Let φ ∈ C∞
c (B2r), where B4r ⊂ U , such that φ = 1 in Br and |∇φ| ≤ C

r . Then (3.31)
becomes

ˆ

Br

|∇[|∇u| p−γ
2 ∇u]|2 e−hdvolg

≤ C(n,N, p, γ)
ˆ

B2r

[
( 1
r2 + κ)|∇u|p−γ+2 + |∇u|p−γ+4

]
e−hdvolg.

Recalling from (1.5) the Cheng-Yau type gradient estimate that |∇u| ≤ C(n, N, p)1+
√
κr

r

and noting that γ < 3 + p−1
N−1 guarantees p − γ + 2 > 0, we deduce

|∇u|p−γ+2 ≤ C(n,N, p, γ)[1 +
√
κr

r
]p−γ+2.

Together with 1
r2 + κ ≤ (1+

√
κr

r )2, we conclude

ˆ

Br

|∇[|∇u| p−γ
2 ∇u]|2 e−hdvolg ≤ C(n,N, p, γ)volh(B2r)

[
1 +

√
κr

r

]p−γ+4

.

Dividing both sides by volh(Br), noting volh(B2r) ≤ e
√
κrvolh(Br) from the volume 

comparison (2.1), and recalling u = −(p − 1) lnw, we conclude (1.8).
Note that (1.9) is just the special case γ = p of (1.8), where p < 3 + 2

N−2 guarantees 
p < 3 + p−1 and hence one can take γ = p in (1.8). �
N−1
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Finally, we compare our proof with [21,5], in particular, the crucial pointwise lower 
bound given in Lemma 3.4 and Lemma 3.5.

Remark 3.8. (i) It was well known that a positive (weighted) p-harmonic function w, 
and hence lnw, is always smooth outside of the null set Ew of ∇ lnw. In Ω \ Ew, the 
proof of Lemma 3.5 works for lnw so to get (3.16) with uε replaced by lnw and ε = 0, 
dividing both sides of which by |∇ lnw|4, for 0 < η < 1/2 one gets

(1 + η)|∇2 lnw|2 ≥ 2 |∇
2 lnw∇ lnw|2
|∇ lnw|2 +

(
(p− 1)2

N − 1 − 1
)

(Δ∞ lnw)2

|∇ lnw|4

− (1 + η) 〈∇ lnw,∇h〉2
N − n

− C(n,N, p) 1
η
|∇ lnw|4. (3.32)

If γ < 3 + p−1
N−1 , using (3.32) and noting that the proof of Lemma 3.4 works for lnw, we 

get (3.15) with uε replaced by lnw and ε = 0, that is, for η > 0 sufficiently small,

(1 − η)|∇2 lnw|2 + (p− γ) |∇
2 lnw∇ lnw|2
|∇ lnw|2 + (p− 2)(2 − γ) (Δ∞ lnw)2

|∇ lnw|4

≥ η|∇2 lnw|2 − 〈∇ lnw,∇h〉2
N − n

− C(n,N, p, γ) 1
η
|∇ lnw|4. (3.33)

From the proof, we see that both of the coefficient 2 of |∇
2 lnw∇ lnw|2
|∇ lnw|2 and the coefficient 

(p−1)2
N−1 − 1 of (Δ∞ lnw)2 in (3.32) are critical to guarantee the existence of sufficiently 

small η > 0 in (3.33) when γ < 3 + p−1
N−1 .

On the other hand, instead of (3.32), recall the following lower bound obtained in [5]
by using Lemma 2.1 and the equation (3.1):

|∇2 lnw|2 ≥ |∇2 lnw∇ lnw|2
|∇ lnw|2 −2 p− 1

n− 1Δ∞ lnw+ 1
N − 1 |∇ lnw|2−〈∇ lnw,∇h〉2

N − n
, (3.34)

and also, when N = n and h ≡ 1, recall the following lower bound derived in [21] via 
Lemma 2.1 and (3.1):

|∇2 lnw|2 ≥ [1 + min{ (p− 1)2

n− 1 , 1}] |∇
2 lnw∇ lnw|2
|∇ lnw|2 − 2 p− 1

n− 1Δ∞ lnw + 1
n− 1 |∇ lnw|2.

(3.35)
From (3.34) and (3.35), via a direct check one can conclude |∇ lnw| p−γ+2

2 ∈ W 1,2
loc for 

γ < 2, but NOT for all γ < 3 + p−1
N−1 .

(ii) Moreover, unlike [21,5] where the authors differentiate the equation (3.1) for lnw, 
we directly derive an upper bound from Bochner formula for the left-hand side of (3.33)
with respect to [|∇uε|2 + ε] p−γ

2 e−hdvolg.
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Appendix A. Proof of Lemma 3.1

In the appendix, we show Lemma 3.1 by checking equations (3.1) and (3.3) are special 
cases considered in [3]. To this end, we recall the result in [3].

Let Ω be a domain of Mn. Consider the equation

−diva(x,∇u) + b(x,∇u) = 0 in Ω (A.1)

where a is a map from Ω ×Rn to Rn and b maps Ω ×Rn to R. Let {e1, · · · , en} ⊂ TxΩ
be a local orthonormal frame at each x ∈ Ω. By a weak solution of (A.1) we mean a 
function u ∈ W 1,p

loc (Ω) such that

ˆ

Ω

[〈a(x,∇u),∇φ〉 + b(x,∇u)φ] dvolg = 0 ∀φ ∈ C∞
c (Ω). (A.2)

Assume the following holds for a = (a1, · · · , an) and b.

n∑
i,j=1

∂aj
∂ηi

(x, η)ξiξj ≥ γ0|η|p−2|ξ|2, ∀ξ ∈ Rn, p > 1, (A1)

∣∣∣∣∂aj∂ηi

∣∣∣∣ ≤ γ1|η|p−2, 1 ≤ i, j ≤ n, (A2)

|∇eiaj(x, η)| ≤ γ1|η|p−1, 1 ≤ i, j ≤ n, (A3)

|b(x, η)| ≤ γ1|η|p, (A4)

and

|∇eib(x, η)| ≤ γ1|η|p,
∣∣∣∣ ∂b∂ηi

(x, η)
∣∣∣∣ ≤ γ1|η|p−1, 1 ≤ i ≤ n, (B)

for all η ∈ Rn, where γi are positive constants, i = 0, 1.
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For any smooth domain U � Ω and ε ∈ (0, 1], consider the regularized equation

−div aε(x,∇uε) + bε(x,∇uε) = 0 in U and uε = u on ∂U (A.3)

where aε is a map from U ×Rn to Rn and bε maps U ×Rn to R such that

lim
ε→0

aε(x, η) = a(x, η) and lim
ε→0

bε(x, η) = b(x, η) ∀(x, η) ∈ Ω ×Rn.

The weak solution of (A.3) is defined similarly as (A.2). Assume the following holds for 
aε = (aε1, · · · , aεn) and bε.

n∑
i,j=1

∂aεj
∂ηi

(x, η)ξiξj ≥ γ0(ε + |η|2) p−2
2 |ξ|2, ξ ∈ Rn, p > 1, (A1,ε)

∣∣∣∣∂aεj∂ηi

∣∣∣∣ ≤ γ1(ε + |η|2) p−2
2 , 1 ≤ i, j ≤ n, (A2,ε)

|∇eia
ε
j(x, η)| ≤ γ1(ε + |η|2) p−1

2 , 1 ≤ i, j ≤ n, (A3,ε)

|bε(x, η)| ≤ γ1(ε + |η|2) p
2 , (A4,ε)

for all η ∈ Rn \ {0}.
We recall the results in [3] as follows.

Theorem A.1. Let ε ∈ (0, 1] and U � Ω. Assume (A1)-(A4), (B) and (A1,ε)-(A4,ε) hold. 
Then there exists a unique solution uε ∈ C∞(U) ∩C0(U) to (A.3), and moreover, uε → u

in C0(U) and uε → u in C1,α(V ) uniformly in ε > 0 as ε → 0 for all V � U where u is 
the solution to (A.1). As a consequence, u ∈ C1,α(Ω).

Theorem A.1 is a combination of Theorem 1 and Theorem 2 in [3] and several interme-
diate results in the proof of these two theorems in [3]. Indeed, the existence, uniqueness 
and C∞-regularity of uε is by elliptic theory in PDE; see for example [8]. Based on these 
facts, in [3], the author first showed that under (A1)-(A4), (B) and (A1,ε)-(A4,ε), uε → u

in W 1,p(U) uniformly in ε > 0 in section 2. Moreover, ‖uε‖L∞(U) ≤ maxx∈∂U{|u(x)|}. 
Thus recalling that uε|∂U = u|∂U , we know uε → u in C0(U). See the discussion around 
(2.7) in [3]. Then the author showed that ‖uε‖C1,α(V ) is uniformly bounded indepen-
dently of ε ∈ (0, 1] and finally showed that uε → u in C1,α(V ) and u ∈ C1,α(U) for all 
V � U . By the arbitrariness of U � Ω, one has u ∈ C1,α(Ω).

Proof of Lemma 3.1. It suffices to check equations (3.1) and (3.2) are special ones 
of (A.1) and (A.3) respectively. To this end, let a(x, η) = e−h(x)|η|p−2η, b(x, η) =
−e−h(x)|η|p, aε(x, η) = e−h(x)(|η|2 + ε) p−2

2 η, and bε(x, η) = −e−h(x)(|η|2 + ε) p−2
2 |η|2

for all x ∈ U and η ∈ Rn. Then in the weak sense, the equations
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ˆ

Ω

[〈a(x,∇u),∇φ〉 + b(x,∇u)φ] dvolg = 0, ∀φ ∈ C∞
c (Ω)

and
ˆ

Ω

[〈aε(x,∇u),∇φ〉 + bε(x,∇u)φ] dvolg = 0, ∀φ ∈ C∞
c (Ω)

are exactly (3.1) and (3.2) respectively.
We show a satisfies (A1). Noting that aj(x, η) = e−h(x)|η|p−2ηj , we compute

∂aj
∂ηi

(x, η) = e−h(x)[(p− 2)|η|p−4ηiηj + δij |η|p−2], ∀1 ≤ i, j ≤ n

where δij = 1 if i = j and δij = 0 if i = j. Thus

n∑
i,j=1

∂aj
∂ηi

(x, η)ξiξj = e−h(x)
n∑

i,j=1
[((p− 2)|η|p−4ηiηj + δij |η|p−2)ξiξj ]

= e−h(x)|η|p−4[(p− 2)(
n∑

i=1
ηiξi)2 + |η|2|ξ|2], ∀ξ ∈ Rn.

If 1 < p < 2, we have

n∑
i,j=1

∂aj
∂ηi

(x, η)ξiξj ≥ e−h(x)(p− 1)|η|p−2|ξ|2, ∀ξ ∈ Rn.

And if p ≥ 2, we have

n∑
i,j=1

∂aj
∂ηi

(x, η)ξiξj ≥ e−h(x)|η|p−2|ξ|2, ∀ξ ∈ Rn.

By taking γ0 := minx∈U{e−h(x)}, we conclude that a satisfies (A1). By direct computa-
tions, one can also check a, aε ∈ C∞(U ×Rn, Rn), b, bε ∈ C∞(U ×Rn) satisfy (A2)-(A4), 
(B) and (A1,ε)-(A4,ε) respectively. We omit the details. Thus by Theorem A.1, we get 
the desired result. �
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