
JYU DISSERTATIONS 765

Xin Zuo

Automatic Detection of Driver’s 
Abnormal State Based on 
Physiological Signals



JYU DISSERTATIONS 765

Xin Zuo

Automatic Detection of Driver’s Abnormal 
State Based on Physiological Signals

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi Mattilanniemen auditoriossa MaA103 

huhtikuun 5. päivänä 2024 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,  

in building Mattilanniemi, auditorium MaA103, on April 5, 2024, at 12 o’clock.

JYVÄSKYLÄ 2024



Editors
Marja-Leena Rantalainen
Faculty of Information Technology, University of Jyväskylä
Päivi Vuorio
Open Science Centre, University of Jyväskylä

Copyright © 2024, by the author and University of Jyväskylä

ISBN 978-952-86-0099-2 (PDF)
URN:ISBN:978-952-86-0099-2
ISSN 2489-9003

Permanent link to this publication: http://urn.fi/URN:ISBN:978-952-86-0099-2



ABSTRACT 

Zuo, Xin 
Automatic detection of driver's abnormal state based on physiological signals 
Jyväskylä: University of Jyväskylä, 2024, 72 p. + included articles 
(JYU Dissertations 
ISSN 2489-9003; 765) 
ISBN 978-952-86-0099-2 (PDF) 

Abnormal driver state affecting environment perception, decision-making, and 
actions is one of the main traffic accidents causes. Physiological signals, reflecting 
drivers’ actual internal state, have been used to detect abnormal status. Time and 
frequency domain features are commonly adopted to study driver state, while 
they are sensitive to residual noise and neglect signals’ complexity. Besides, high 
temporal resolution is necessary to detect and analyze the subtle changes in 
driver status timely at a certain time but increases the sample rate and may 
decrease the computational efficiency. In long-term driving operations, the long-
term temporal dependency is also vital for the automatic detection of the diver’s 
abnormal state. However, difficulties exist in optimizing sample rate considering 
the time complexity of physiological signals and detecting abnormal driver status 
automatically with respect to long-term context information. 

This dissertation focuses on the above challenges and proposes to detect the 
driver’s abnormal state with multiscale entropy of physiological signals and 
bidirectional long short-term memory (BiLSTM) network. Article I explores the 
complexity of electroencephalography (EEG) with multiscale entropy on relative 
time scales (MSE) and the information compensation manner among features in 
detecting distraction. Article II investigates the fluctuation patterns of MSE and 
considers the long-term dependency on features with BiLSTM for distraction 
detection. Article III studies the appropriate sample rate by calculating 
multiscale entropy on absolute time scales (MSaE) and explores the distraction 
information in multiple physiological signals to detect distraction. Articles II and 
III also analyze the behavioral signals to validate the changes in driving 
performance due to distraction. In Article IV, a cross-subject emotion recognition 
framework based on fused entropy features and BiLSTM is proposed to integrate 
the merits of different features and learn the contextual information in EEG. 

In summary, this dissertation investigates the fluctuation patterns of 
physiological signals with multiscale entropy of the optimized sample rate under 
different mental statuses to detect abnormal states with BiLSTM. The proposed 
framework indicates the potential of understanding and detecting a driver’s 
abnormal state with multiple signals. 

Keywords: driver state, distraction, emotion, multiscale entropy, long short-term 
memory, physiological signals, driving performance, multi-modality analysis 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Zuo, Xin 
Automaattinen kuljettajan poikkeavan tilan havaitseminen fysiologisten 
signaalien perusteella 
Jyväskylä: Jyväskylän yliopisto, 2024, 72 s. + artikkelit 
(JYU Dissertations 
ISSN 2489-9003; 765) 
ISBN 978-952-86-0099-2 (PDF) 

Kuljettajan epänormaali tila, joka vaikuttaa hänen ympäristönsä havainnointiin, 
päätöksentekoon ja toimintaan, on yksi suurimmista liikenneonnettomuuksien 
syistä. Fysiologisia signaaleja, jotka heijastavat kuljettajan sisäistä tilaa, käytetään 
poikkeavuuksien havaitsemiseen. Aika- ja taajuusalueen piirteitä käytetään 
yleisesti kuljettajan tilan tutkimiseen, mutta ne ovat herkkiä jälkiäänelle eivätkä 
erota signaalien monimutkaisuutta. Lisäksi korkea ajallinen resoluutio on 
tarpeen kuljettajan tilan muutoksen havaitsemiseksi ja analysoimiseksi tiettynä 
aikana, mutta se lisää näkörataa ja saattaa vähentää laskennallista tehokkuutta. 
Pitkäkestoisen ajon aikana pitkäaikainen ajallinen riippuvuus on myös 
elintärkeää kuljettajan poikkeavan tilan automaattiselle havaitsemiselle. 
Näköradan optimointiin liittyy kuitenkin vaikeuksia, kun otetaan huomioon 
fysiologisten signaalien aikavaativuus ja automaattinen kuljettajan poikkeavan 
tilan havaitseminen suhteessa pitkän aikavälin kontekstitietoon. 

Tämä väitöskirja keskittyy edellä mainittuihin haasteisiin ja ehdottaa 
kuljettajan poikkeavan tilan havaitsemista fysiologisten signaalien 
moniskaalaentropian ja kaksisuuntaisen pitkäaikaisen lyhyen aikavälin muistin 
verkoston avulla. Artikkeli I tutkii elektroenkefalografian (EEG) 
moniskaalaentropian avulla suhteellisia aikaskaaloja käyttäen aivojen 
monimutkaisuutta ja informaatiokorvaustapaa ominaisuuksien välillä häiriön 
havaitsemiseksi. Artikkeli II tutkii moniskaalaentropian vaihtelumalleja ja ottaa 
huomioon pitkäaikaisen riippuvuuden ominaisuuksissa kaksisuuntaisen 
pitkäaikaisen lyhyen aikavälin muistin avulla häiriön havaitsemiseksi. Artikkeli 
III tutkii sopivaa näkörataa laskemalla moniskaalaentropiaa absoluuttisilla 
aikaskaaloilla ja häiriötietoa useissa fysiologisissa signaaleissa häiriön 
havaitsemiseksi. Artikkelit II ja III analysoivat myös käyttäytymissignaaleja 
varmistaakseen häiriön aiheuttamat muutokset ajosuorituksessa. Artikkelissa IV 
esitetään monitieteellinen tunteidentunnistuskehys, joka perustuu sulautettuihin 
entropioihin ja kaksisuuntaiseen pitkäaikaiseen lyhyen aikavälin muistiin, jotta 
voidaan integroida eri piirteiden edut ja oppia EEG:n kontekstitietoa. 

Avainsanat: kuljettajan tila, häiriö, tunne, moniskaalaentropia, pitkäaikainen 
lyhyen aikavälin muisti, fysiologiset signaalit, ajosuoritus, 
monimuotoisuusanalyysi
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15 

1 INTRODUCTION 

Nowadays, the number of cars on road is growing rapidly with the increasing of 
modern economic level, which is usually followed by the more frequent traffic 
accidents. It will result in not only financial loss but also more injuries and deaths. 
According to the U. S. Department of Transportation’s National Highway Traffic 
Safety Administration (NHTSA), an estimated about 2.7 million police-reported 
motor vehicle accidents happen in 2021 (NHTSA, 2022). A more detailed crash 
statistics reported by the Fatality Analysis Reporting System (FARS) in the same 
year shows that there are more than 61 thousand fatal vehicle crashes leading to 
approximately 43 thousand people died nationwide (NHTSA, 2021). As for the 
crash investigation all over the world, around 1.3 million fatalities occur on ac-
count of road traffic crashes in the survey released by the World Health Organi-
zation (WHO) in 2022 (WHO, 2023). The number of people suffering from differ-
ent levels of injuries is even larger that between 20 and 50 million more injuries 
are caused by car accidents. 

It has been reported that the human mistakes and violations induced by 
driver’s abnormal mental status are the main causes of most accidents and have 
apparent effects on road safety (Shahverdy et al., 2020). Since driving is an 
activity of driver-vehicle-environment interaction, drivers play important roles 
in this process. It affects not only making decisions but also taking actions based 
on the driving environment if the driver’s state changes to be deviant with time, 
thus leading to risks of incidents. Therefore, driver’s states have significant 
influence on driving safety so long as they are involved in controlling the vehicle. 
In this case, it is important to detect driver’s abnormal state in time and remind 
the driver to pay attention to driving safely to avoid crashes. 

Driver distraction, one kind of abnormal mental status, is reported as the 
major contributor of car collisions making up 27% of all serious injuries in 2022 
(Pandurov, 2023). Driving requires drivers to concentrate their attention to the 
surroundings and take actions immediately to any unexpected events. Risky 
driving behaviors (i.e., operating electronic devices, eating, talking etc.) can 
divert their attention to activities irrelevant to driving and increase the mental 
workload, thus, bringing about distraction (Hossain et al., 2022). It has been 
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reported that using a cell phone while driving contributes the most for distracted 
driving (W. Zhang & Zhang, 2021). These abnormal behaviors weaken the 
driver’s abilities to perceive information from environment as well as to control 
the vehicle. In addition, the response time can also be augmented when 
encountering upcoming events. Hence, more accidents are generated. 

Besides, the probability of traffic crashes can be greatly increased by about 
10 times when drivers experiencing strong emotions (such as sadness, happiness, 
and anger) while driving (Guettas et al., 2020). It is also reported that road rage 
has been increased several times over the past few years, which can obviously 
increase the risks of accidents (Ramzan et al., 2019). These feelings increase the 
cognitive load and decrease the attention resource in processing information 
related to safe driving and may therefore result in involuntary driving errors 
(Precht et al., 2017). Nowadays, the traffic environment is becoming more and 
more complex with a large number of cars on roads. The pressure of life and 
working is boosted with the hustle and bustle of city life as well. Under the 
circumstances, drivers may suffer from various emotions that bring about 
dangerous driving behaviors. As a result, the possibility of exposing drivers and 
other traffic participants like pedestrians to injuries increases drastically. 

Since driver distraction and emotion have significant influence on driving 
safety, it is necessary to monitor and detect distraction and abnormal emotions 
accurately and timely in order to alert the driver to make appropriate 
adjustments, thereby reducing the potential for car accidents. 

Next, the motivations of the conducted research are introduced. Then, the 
aims and overview of the entire dissertation are described. Finally, the structure 
of the dissertation is illustrated. 

1.1 Research motivation 

Visual signals and vehicle behavioral signals are most widely used to study 
driver state as they are the intuitive responses of driver status and easy to collect 
without interfere with drivers. But as driver’s behaviors usually take place after 
the mental status alteration, there is usually a delay in visual and vehicle behav-
ioral signals. Besides, it has been validated that visual signals can be affected by 
personal driving habits, illumination, wearing glasses, individual purposes and 
so on (B. Zhang et al., 2023; J. Zhang et al., 2020) and that vehicle behavioral sig-
nals are dependent on subjects and sensitive to the weather and road conditions 
(Healey & Picard, 2000). Thus, the validity and availability of these signals need 
to be carefully considered. Nowadays, with the development of less intrusive 
equipment, physiological signals are more and more popular in driver state de-
tection. Generated by the real-time electrical potentials of human body, physio-
logical signals can reflect the actual internal status alterations of drivers in real 
time and cannot be hidden on purpose (Y. Dong et al., 2011). 

Physiological signals are usually analyzed from the perspectives of time 
domain and frequency domain. However, the stability and rhythmicity of these 
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signals change along with the dynamic alterations of physiological status (Z. 
Zhang et al., 2018). So, there is also extensive complexity information. Entropy 
features (like SE, AE, and FE) have been utilized to manifest the complexity of 
physiological signals. But the residual noise will be enrolled in the calculation of 
entropy features, which will increase the computational cost and decrease the 
robustness of the results (J. Urigüen & Zapirain, 2015). Besides, to analyze and 
detect the subtle changes in driver state timely, it is necessary to use signals in 
high temporal resolution. Yet, the data size increases with resolution and may 
decrease the computational efficiency. Under the circumstances, it is important 
to explore the valuable driver status information using the complexity of 
physiological signals under appropriate sample rate. 

Moreover, it is commonly agreed that different modalities signals can 
provide more useful information for studying driver state (He et al., 2019). So, it 
has been a promising area to detect driver state with multi-modality signals. 
What’s more, the ability of characterizing implicit driver status varies from 
feature to feature. In this case, information compensation also occurs among 
different features (Hasan & Kim, 2019). Nevertheless, how it happens among 
various features in driver state detection remains to be further studied. 

As for driver state detection, traditional ML-based and DL-based 
algorithms make decision on each time step based on the current input state, 
which is inconsistent with the actual driving process. Driving is a long-lasting 
and interactive activity. During this process, drivers make decisions based on not 
only the current received information but also the previous information (Liang 
et al., 2007). Hence, it is vital to detect driver state according to the long-time 
context dependency. LSTM has been demonstrated to keep both short-term and 
long-term memory of sequential data (Hochreiter & Schmidhuber, 1997; Masood 
et al., 2024) and can be used to detect driver state. Furthermore, BiLSTM has also 
been utilized to memorize both forward and backward long and short-term 
valuable context information and is successfully applied for text classification 
and sleep apnea detection (G. Liu & Guo, 2019). 

1.2 Aims of the research 

Motivated by the above challenges in previous research, this dissertation aims to 
explore the implicit information of physiological signals changing with driver 
state stimulated by different tasks while driving. Besides, the dissertation also 
aims to detect driver state effectively based on the found fluctuation rules and 
LSTM. 

Article I focuses on mining for the implicit information of EEG signals 
while driver distraction from the viewpoint of complexity and investigating how 
different features compensate for each other when detecting driver distraction 
with fused features. In this study, multiscale entropy on relative time scales (MSE) 
is adopted to manifest the dynamic fluctuations of EEG so as to eliminate the 
influence of residual noise on the results. The distraction detection result of MSE 
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is then compared with other four conventional entropy features. Finally, to 
analyze the principle of feature compensation, RF is employed to detect driver 
distraction with fused features. 

Article II is the improvement and enhancement of Article I, which aims to 
explore and learn the bidirectional distraction information of two modalities 
signals with MSE in sliding windows and BiLSTM to improve the detection 
accuracy. This study also aims to validate the behavioral changes while driver 
distraction by analyzing the vehicle behavioral data. In this study, MSE feature 
is firstly extracted from EEG to determine the most distraction position. Then, the 
statistical features of vehicle behavioral signals are calculated to validate the 
changes of driving performance after distraction. Afterwards, a BiLSTM model 
is established to detect driver distraction. We finally demonstrate the efficiency 
and superiority of the proposed framework by comparing with traditional 
features and classifiers. 

Article III proposes a novel framework to probe into the dynamic 
distraction information contained in multiple modalities physiological signals 
with multiscale entropy on absolute time scales (MSaE) and identify driver 
distraction with LSTM. A resampling approach on the basis of entropy is used to 
determine the proper downsampling frequency of multi-modality physiological 
signals (i.e., EEG, ECG, and EMG). MSaE is then calculated in a sliding window 
to extract the distraction information. Thereafter, ReliefF selected from five 
traditional feature selectors is utilized for determining the optimal features. 
Finally, the selected features are fed into a LSTM classifier to recognize driver 
distraction. The proposed framework is validated and shows its potential in 
effectively detect driver distraction with multiple signals. 

Article IV centers around manifesting the complexity information of EEG 
signals in different emotions with fused entropy features and achieving the goal 
of cross-subject emotion classification in high reliability with BiLSTM. Firstly, 
five entropy features are extracted from EEG signals to excavate the complex 
emotional information. A BiLSTM classifier is then trained with the fused 
features to recognize different emotional states. The results show the feasibility 
of the presented approach. 

1.3 Research design and structure of the dissertation 

The research design proposed in this dissertation is described to address the 
mentioned challenges in driver’s abnormal state detection. In order to analyze 
driver status timely and reduce the effect of residual noise, MSE is employed to 
explore the fluctuations of physiological signals and detect driver’s abnormal 
states robustly. After that, resampling problem arises in multiscale calculation, 
and MSaE of physiological signals is recruited to eliminate the influence of 
resampling. Once the resampling problem is resolved, the next difficulty is to 
find out the appropriate downsampling rate to keep high temporal resolution as 
well as save computational cost. An entropy-based approach is then proposed 
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based on MSaE to determine the proper downsampling frequency of each phys-
iological signals. As for how different features compensate for each other while 
detecting driver state, it is studied with RF. Last but not least, the long-term tem-
poral dependency is also important to automatically detect abnormal driver state. 
Therefore, a novel framework based on BiLSTM is introduced to memorize the 
contextual information in signals for recognizing driver’s abnormal state. Figure 
1 shows the technical flowchart of the dissertation and Figure 2 shows the rela-
tionship between the included articles, mainly used signals, features, classifiers 
and the goals of them in this dissertation. 
 

 

FIGURE 1  The technical flowchart of the dissertation. 

 

FIGURE 2  The used signals, features, classifiers, and goals in the dissertation. 
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The dissertation is organized as follows. The motivations and aims of this 
study are illustrated in Chapter 1. Chapter 2 introduces the background and 
related findings of driver state analysis and detection from the perspectives of 
concepts, data, and feature types as well as detection algorithms. Chapter 3 firstly 
describes the two driver distraction experiments and one emotion dataset 
involved in the dissertation, then the methodologies used in the research are 
detailed introduced. Chapter 4 summarizes the four included articles 
comprehensively and lists the contributions of authors in each article. Chapter 5 
discusses and concludes the findings and limitations of this dissertation, as well 
as the future directions. 
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2 BACKGROUND 

This chapter addresses the relevant research on driver distraction, emotion 
analysis and the classifiers used in the detection tasks. 

2.1 Driver distraction 

There are a variety of definitions for driver distraction in the literature. For in-
stance, Horberry et al. (2006) believe that driver distraction occurs when the at-
tention is shifted away from the task of driving to a triggering event. Stutts et al. 
(2001) hold the view that distraction appears when some reasons inside or out-
side the vehicle delay the information processing of driving safely and prompt 
drivers to shift their attention away from driving. All these definitions correlate 
driver distraction with distributing attention by activities unrelated to driving. 

2.1.1 Categories of driver distraction 

The current research about driver distraction mechanism can be categorized into 
four types: cognitive, manual, visual and audio distraction (Kashevnik et al., 
2021). Cognitive distraction usually means that drivers are deep in meditation 
and that their minds are shifted from driving. Manual distraction happens when 
driver’s hands are taken off from the steering wheel because of eating, drinking, 
operating devices, etc. With regard to visual distraction, looking at anything in-
stead of the road and relevant traffic conditions while driving will induce driver 
distraction. When a driver is distracted by the acoustic events like car radio and 
music, auditory distraction occurs. Distracting secondary tasks are commonly 
used to induce one kind of distraction in order to analyze its mechanism. But in 
fact, secondary tasks can lead to the driver distracted by a combination of more 
than one certain type of distraction, which will generate a higher probability of 
collisions. For example, when drivers are required to talking in situational dia-
logues, they firstly listen to the words and then think about the answers, which 
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involves cognitive distraction and auditory distraction. Since driver distraction 
comes into being by the interaction among the driver, vehicle, and environment, 
different types of distraction usually appear in a concomitant manner in driving 
scenarios (R. Wang et al., 2021). Hence, it is necessary to analyze and detect driver 
distraction without dividing it into different types. 

2.1.2 Sensing techniques in driver distraction analysis 

Various sensing techniques have been utilized to collect signals to explore driver 
states and detect distraction, and they can be roughly divided into two groups, 
i.e., non-intrusive and intrusive sensors. Non-intrusive sensors (including inter-
nal and external video cameras, Global Position System (GPS), and inertial meas-
urement unit) have no effect on drivers and is suitable for large commercial sys-
tems built into vehicles (Marchegiani & Posner, 2018). The visual signals obtained 
by internal video cameras are most commonly used in the literature. Dua et al. 
(2020) proposed an AutoRate system to monitor driver’s attention levels by uti-
lizing various driver’s facial and eye behaviors (such as yawns, facial landmarks, 
eye closure and so on) and compared the consistency of the results with human 
annotators. Al Shalfan et al. established a vision-based architecture to classify 
driver distraction on the basis of the movements of arms and hands and indicated 
the relevance of body behaviors to driver distraction (Alshalfan & Zakariah, 
2021). Visual signals of drivers can be collected conveniently without impacts on 
drivers and the equipment is cheap, but these measures are sensitive to individ-
ual behavioral habits, illumination, and facial occlusion. The behavioral data of 
vehicles (like lateral position, steering wheel angel and grip force, etc.) is also 
widely adopted to study driver distraction. Yadawadkar et al. (2018) focused on 
building a classification system based on the statistical features of various natu-
ralistic driving signals like acceleration and longitudinal distance and succeed to 
detect distraction, attention and drowsiness with the proposed system. The sen-
sors gathering these signals are easily put in different components of the vehicle 
without making drivers feel uncomfortable. However, there is a delay in re-
sponse to driver state with vehicle behavioral signals. Besides, the weather and 
road conditions may have effects on the driving behaviors. 

As for the intrusive sensors, physiological sensors are usually used to 
directly collect physiological signals (like electroencephalography (EEG), 
electromyography (EMG), and electrocardiogram (ECG)) from human body. Fan 
et al. (2022) presented a method to detect distraction based on the energy features 
of EEG signals and validated the stability and feasibility of the proposed method. 
Sahayadhas et al. (2014) probed into the changes of drivers’ hypovigilance states 
like distraction and fatigue with statistical features of EMG signals, and then 
constructed a universal system to detect driver inattention and alert the drivers. 
Physiological signals are the records of the real-time electrical potentials 
generated by the brain, muscles and heart etc., which reflect driver’s real internal 
states in a faster and more accurate way than behaviors. But these sensors are 
usually attached to the skin surface of the driver and may be uncomfortable to 
wear. 



 
 

23 
 

Recently, the sensing technology and portable equipment have been greatly 
developed, which has largely reduced the impact of the physiological sensors on 
drivers. There is research that study distraction with portable equipment in the 
literature. For instance, Yang et al. (2021) collected the ECG signals with 
comfortable flex sensors to classify driver workload and investigated the 
influence of temporal variation and individual differences on it. Moreover, it has 
been demonstrated more sufficient information can be explored with multiple 
signals than that of single signals. Under this circumstance, more and more 
researchers start to study driver distraction adopting multiple kinds of signals. 
Das et al. (2022) introduced a multimodal dataset of driver distraction analysis 
including signals collected from visual, linguistic, near infrared and 
physiological modalities. They extracted features from different modality of 
signals to detect driver distraction and compared their roles in identifying driver 
distraction. Lechner et al. (2019) established a lightweight framework for 
exploring driver distraction with multi-sensor and multi-device and applied it in 
a preliminary driving experiment involving GPS, head movement and heart rate 
data. These studies have demonstrated the possibility of combining different 
modality signals together for the sake of analyzing driver distraction. 

2.1.3 Analysis of driver distraction 

As for how to analyze and detect driver distraction with different signals, it is 
necessary to extract discriminative indicators from signals especially for physio-
logical signals, which are always collected with eye blinks, body movements, 
power line interface and so on. A variety of features have been recruited to ex-
plore the distraction information in different kinds of signals in previous research. 
The features in time domain like standard deviation and mean value are most 
widely used in excavating the changes of vehicle behavioral signals while dis-
traction. The maximum left- and right-side lane departure and the instantaneous 
absolute steering angle were utilized to analyze the relationship between driving 
performance and driver distraction (Pavlidis et al., 2016). Their results illustrate 
that the mean absolute steering as well as the lane departure show increasing 
tendencies after distraction. The speed deviation and lane keeping offset features 
were calculated to find out the changes in vehicle behavioral signals when a 
driver is distracted and then used to detect driver distraction (Aksjonov et al., 
2019). There are studies analyzing driver distraction with the frequency domain 
features of vehicle behavioral signals as well. For example, the cepstral analysis 
of the gas and brake pedal pressure signals and the vehicle velocity signals were 
applied to capture the distraction information (Öztürk & Erzin, 2012). Much re-
search has employed facial landmarks to study driver distraction with reference 
to visual signals. The percentage of eye closed over time, eye or mouth occlusion 
and face orientation were proved to be associated with driver attention and can 
be used to analyze distraction (Smith et al., 2003). Among all facial features, eye 
movements related features are the most popular metrics in distraction analysis 
since they can intuitively reflect what a driver is focusing on (Song et al., 2013). 
The eye glance pattern while using cell phone was compared with that of normal 
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driving process (Flannagan et al., 2012). According to the results, the duration 
and direction of drivers’ glances can be used to recognize distraction. 

When it comes to physiological signals, most of the research has extracted 
the time domain and frequency domain features to explore the distraction 
information in the literature. The energy values of four EEG rhythms were 
calculated in different brain regions to investigate the differences of brain 
activities among brain areas while performing distracting tasks, which provided 
a reference for detecting distraction with EEG (G. Li et al., 2023). Conventional 
statistical features (like median, standard deviation, and skewness etc.) and 
spectral features (like energy and first-order spectral moment, etc.) of ECG and 
EMG signals were employed to classify cognitive and visual distraction 
(Sahayadhas et al., 2015). The changing patterns of physiological signals in time 
domain and frequency domain can be surely manifested by these indicators 
during distraction. However, the physiological states of drivers change all the 
way in the driving process, which are accompanied by alteration of the stability 
and orderliness of physiological signals (Z. Zhang et al., 2018). So, there is not 
only temporal fluctuations and frequency information but also a large amount of 
complexity information in brain, heart, and other physiological activities (Gao et 
al., 2018). 

Physiological signals record the real electrical activities generated by 
nervous system and reflect the actual internal states of human body. Once the 
complexity features are overlooked, a great deal of valuable information about 
the driver’s physiological status may be missed. 

Nowadays, entropy has been regarded as a measure of complexity and 
adopted to mine the complexity information contained in physiological signals 
in many fields (Dehzangi et al., 2018; Lv et al., 2020; Sharma et al., 2022). Ashok 
et al. (2017) proposed to use the Shannon entropy and approximate entropy (AE) 
of EEG to manifest the complexity difference between normal and epileptic states. 
They found that the value of AE decreases obviously in epileptic process. In a 
study of obstructive sleep apnea (OSA) (Zarei & Asl, 2018), four entropy features 
and other time domain and frequency domain features were calculated from 
ECG signal to detect OSA. The results proved that entropy-based features are 
better than traditional features in exploring the hidden information of ECG. 
Najmeh et al. recruited Shannon entropy to quantify the complexity information 
of EEG and GSR signals while rest and listening to music pieces (Pakniyat & 
Namazi, 2022). The feature value changes with the music significantly and a 
strong correlation is found between the variations of EEG and GSR in different 
conditions. 

Although entropy features have been used to analyze human physiological 
status, challenges still exist in the analysis of physiological signals with these 
complexity-base features. It is known that the noise contamination consisted in 
signals cannot be completely eliminated no matter which approach is selected for 
preprocessing and that they will be partly retained instead (J. Urigüen & Zapirain, 
2015). As a result, the residual noise is involved in the calculation of entropy 
features like AE, SE, and FE, which increases the computation time and weaken 



 
 

25 
 

the robustness of the results. What’s more, high temporal resolution of signals is 
necessary to analyze the subtle fluctuations in driver status and detect them 
timely. But it will result in the increase in the sampling rate and data size and 
then decrease the computational efficiency. For the purposes of keeping high 
temporal resolution and improving the calculation efficiency at the same time, 
most of the researchers adopt the way of resampling ahead of analysis. Yet, the 
work of investigating the effect of sampling frequency on SE had demonstrated 
the correlation between entropy value and sampling rate and indicated that a 
decrease appears in SE value with the increase of sampling frequency (Fallahtafti 
et al., 2021; Raffalt et al., 2019). Hence, the accompanied resampling problem 
occurs when calculating entropy features after downsampling. 

In general, most of the current research on driver distraction is firstly 
dividing it into four categories. Then, select one or several specific types to study 
separately based on the visual-based features or vehicle behavioral features. 
There is also research analyzing and detecting driver distraction with the time 
domain and frequency domain features of physiological signals. Nevertheless, 
the vehicle behavioral signals and visual signals are delayed responses to driver 
states, and the complexity of physiological signals is usually neglected by the 
features in time domain and frequency domain. Under the circumstances, it is 
necessary to further study driver distraction based on complexity features of 
physiological signals. 

2.2 Driver emotion 

Emotion is a complex psychological concept that can be described from different 
perspectives. It is regarded as the tool of evaluating experience and preparing to 
act on specific situations from the viewpoint of behaviors (Niedenthal & Ric, 
2006), while emotion is the response to the changes in physical conditions think-
ing of it physiologically (Phelps, 2004). There is also definition in terms of cogni-
tive theory that considers emotion as the perceptual response to the environment 
and the result of the interaction between human and external environment (Laz-
arus, 1993). Since the derivation of emotion relates to the environment, physical 
conditions and individual cognition, emotion can be concluded that it is the psy-
chological and physiological response induced by perceiving the internal and ex-
ternal stimuli. Current research has pointed that driving behaviors and perfor-
mance can be influenced by driver’s emotion directly, since emotion plays an im-
portant role in the perception, decision-making, learning and memory processes 
(Picard, 2003). In this way, it is bound up with driving safety and driving experi-
ence. Current research about emotion is usually carried out from three dimen-
sions according to its definition that are subjective reports, external performance, 
and physiological responses. 
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2.2.1 Subjective reports 

Subjective reports mainly include questionnaires and interviews, which collect 
individual’s subjective data about their feelings by professional scales and oral 
inquiries (Koslouski et al., 2022). Mesken et al. (2005) utilized the sensation seek-
ing scale to study the effect of anger emotion on cognitive bias in traffic and 
found that driver’s judgement can be interfered by emotional state. The research 
based on subjective evaluation is easy to be conducted with low cost, but it is 
difficult to be reproduced and analyze the data precisely. Moreover, the results 
are largely influenced by the external environment and subjects themselves. 
Hence, it is often used to validate the results of other emotion analysis ap-
proaches. 

2.2.2 External performance 

Methods based on external performance usually adopt facial expressions, voice 
tones, body behaviors, and vehicle behavioral signals to study emotions because 
these signals can reflect human emotions intuitively. Jeong et al. (2020) proposed 
a driver facial expression recognition model to monitor driver emotional status 
with the facial geometric features, which can be embedded into low-power sys-
tems. Kessous et al. (2010) designed a speech interaction experiment to arouse 
different emotions to record the body gesture, facial expression, and speech data. 
A multimodal emotion recognition approach was then promoted with features 
of external behaviors. Although these signals are easy to be collected without ef-
fect on drivers, the applicability and validity need be further considered. Since 
body movements are apparently confined to very limited space, drivers are not 
allowed to act at their willingness. Besides, the audio signals are intermittent dur-
ing driving process, which means that the emotion status cannot be detected 
without a conversation. Additionally, external expressions can be intentionally 
controlled by human to conceal their true feelings. 

2.2.3 Physiological responses 

Different from external performance, physiological signals reflect the real inter-
nal states of human and cannot be hidden deliberately. An emotion recognition 
model was developed based on the physiological changes while listening to emo-
tional music (Kim & André, 2008). The authors extracted various features of EMG, 
ECG, respiration and skin conductivity from different aspects such as geometric 
analysis, time and frequency domains and so on. In another study, the heart rate 
under fear, happiness and anger emotions was investigated by meta-analysis, 
which demonstrated that different emotions are associated with the acceleration 
of heart rate (Cacioppo et al., 2000). The EEG signals of drivers were induced by 
audio and video stimuli to analyze their emotional states (Gamage et al., 2022). 
In this work, the changing patterns of EEG was explored and fed into a support 
vector machine (SVM) to monitor four emotions. These studies prove the possi-
bility to study driver emotion with physiological signals. Unlike EMG and ECG 
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etc., EEG is generated by the neutral nervous system and measures the dynamic 
neuro-electrical activities with higher resolution in real time.  Thus, it has aroused 
much attention to recognize driver emotion with brain activities. 

A variety of features have been used in contemporary research to manifest 
the emotion information from EEG signals including time domain features, 
frequency domain features, non-linear features, and time-frequency features. Fan 
et al. (2018) extracted the statistical features, fractal dimension, power features as 
well as the higher order crossings features from EEG to build an affective states 
and mental workload recognition model in simulated driving environment. 
Gamage et al. (2022) calculated the statistical features, power spectral density 
(PSD), and wavelet coefficients of EEG for identifying the angry, calm, sad and 
fear emotions while driving. EEG signals, as introduced in Chapter 2.1, contain a 
large amount of valuable information of different emotions. Consequently, 
although the traditionally used features can characterize the emotion patterns in 
some aspect, the complexity of EEG in various emotions also need to be explored. 

Features from the perspective of entropy have been validated that they can 
mine for the complexity of physiological signals and have been used in disease 
diagnosis successfully (Ashok et al., 2017; Cao et al., 2015; Zarei & Asl, 2018). 
Researchers in emotion recognition area also attempt to employ entropy features 
to find the dynamic fluctuation patterns of EEG under different emotional states. 
For instance, the SE of EEG and blood volume pulse (BVP) signals were utilized 
to characterizing angry driving in an on-road experiment (Wan et al., 2015). The 
results illustrated that the SE value of EEG is obvious smaller during angry 
driving than normal driving while a contrary phenomenon is observed in SE of 
BVP. The AE feature of EEG was calculated in order to be recruited in probing 
into the dynamic emotional information in EEG and identifying four emotional 
states (T. Chen et al., 2018). Yet, just as the analysis of driver distraction, there is 
challenge in entropy-based emotion recognition caused by the residual noise in 
EEG signals. Besides, which entropy feature is better for detecting driver emotion 
remains unclear. Moreover, information compensation has been observed among 
different features during pattern recognition in previous study (Hasan & Kim, 
2019). So, it needs to be verified whether integrating various entropy features can 
enhance the emotion recognition model. 

Overall, there are a large amount of research on emotion recognition but 
quite a bit of the present driver emotion research focuses on the anger and fear 
emotions. As for the detection of driver emotion, the self-report measures are 
individual dependent and easily influenced by internal and external factors. The 
features based on driver’s external performance are delayed to the internal status 
and can be concealed artificially. Physiological signals have also been used in 
emotion recognition with the advantages of instantaneity and veracity, but the 
traditional features are sensitive to residual noise. In this way, challenge remains 
in driver emotion detection with physiological signals. 
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2.3 Driver’s abnormal state detection 

There are a great number of algorithms in the literature utilized to detect driver’s 
abnormal state, and they can be roughly converged into two groups, i.e., machine 
learning (ML) and deep learning (DL) methods. 

2.3.1 Machine learning-based driver state detection 

Conventional approaches such as K-nearest neighbor (KNN), artificial neural 
networks (ANN) and SVM have been commonly used in driver state identifica-
tion. Murugan et al. proposed to detect different driver states with KNN, SVM 
and ensemble classifiers by collecting the ECG signals in a simulated driving ex-
periment (Murugan et al., 2020). They also compared the results of the three clas-
sifiers utilizing the heart rate and heart rate variability (HRV) features and 
proved that ensemble method performs better in multi-class tasks. Naurois et al. 
introduced two models for driver drowsiness detection and prediction based on 
ANN and multiple sources data including physiological, facial, and behavioral 
signals (Jacobé de Naurois et al., 2019). The results showed the possibility to pre-
dict the dynamics of driver state. Gwak et al. proposed to detect the alertness of 
drivers with physiological signals and behavioral signals based on ML (Gwak et 
al., 2018). They compared the performance of KNN, SVM, random forest (RF), 
and logistic regression and found that RF method is superior to the others in clas-
sifying alertness and drowsiness. 

2.3.2 Deep learning-based driver state detection 

As a branch of ML, DL has the advantage of learning large datasets with deep 
neural networks and has been declared to outperform many traditional ML algo-
rithms in the classification of time series (Ismail Fawaz et al., 2019). Thus, it is 
now widely used to detect human mental states. Li et al. (2016) proposed a men-
tal status recognition method based on nonlinear features of EEG and deep belief 
network (DBN) and showed that the proposed method can distinguish three 
kinds of mental states. Kose et al. (2019) introduced a driver state monitoring 
system utilizing CNN and body movement images. They extracted the temporal 
and spatial information from images to classify driver’s movement decision and 
mental states. Although these classifiers are commonly used in mental status de-
tection, they can just make decision on the basis of the current input sample and 
are not able to learn the contextual information in sequential data (Kouchak & 
Gaffar, 2019). 

Driving is a continuous process with features of lasting long and contextual 
dependency. The current decision is made not only based on the current state but 
also several previous states. Therefore, the long-term time dependency is 
important for detecting driver state. On this occasion, it is necessary to improve 
the performance of algorithms by adding memory to neural networks (Kouchak 
& Gaffar, 2021). Recurrent neural network (RNN) is a method that can memorize 
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the previous input states and then decide the output. Chamishka et al. (2022) 
adopted RNN to capture the context of the emotional conversational audio 
signals and evaluated its capability in real time emotion recognition. However, 
RNN learns the short-term information of time series rather than keeping long-
term memory as the gradient of the loss function either decays or explodes with 
time (Wollmer et al., 2011). For enhancing the ability of RNN, long short-term 
memory (LSTM) network is proposed as a variant of RNN, which learns both 
long and short-term contextual dependency in sequential data (Hochreiter & 
Schmidhuber, 1997). The vanishing gradient problem in RNN is overcame by 
adding four gates in each neural cell. The optimal information related to the 
detection task can then be learnt making it popular in many research fields. 
Masood et al. (2024) proposed to monitor the neurological stress with LSTM 
based on physiological data and demonstrated that it is better than traditional 
ML algorithms in classification tasks. Abbasi et al. (2019) developed a DL 
framework using LSTM to detect epilepsy with EEG signals and compared its 
results with SVM. They found that it generates a higher accuracy than that of 
SVM. Moreover, bidirectional long short-term memory network (BiLSTM) has 
also aroused the interest of researchers recently since it can learn both the 
forward and the backward context information. For example, a BiLSTM model 
was presented to enhance semantic learning and the detection performance in 
text classification problem (G. Liu & Guo, 2019). The performance of the 
proposed approach was measured in seven public datasets and was better than 
those of traditional classifiers. 
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3 MATERIALS AND METHODS 

In this chapter, the data used for driver distraction detection is firstly introduced, 
which is collected from a realistic driving experiment and a simulated driving 
experiment, respectively. The dataset for emotion recognition is then described 
in detail. Thereafter, the methods adopted in the analysis and detection 
procedures are illustrated. 

3.1 Driver distraction datasets 

To obtain the needed data (i.e., physiological signals and vehicle behavioral 
signals) for driver distraction detection, we designed two driving experiments 
including one in real driving environment and the other in driving simulator. 
Article I and Article II share the same dataset that comes from the real road 
driving environment, while the data for Article III is collected in the simulated 
driving experiment. The detailed descriptions of the two experiments are listed 
in this section. 

3.1.1 Experiment design in real environment 

This study was reviewed and approved by the Ethics Committee, Dalian 
University of Technology. 

Participants 

Six experienced drivers with driving license were recruited in the experiment, 
who are physically and mentally in good health. All of them are right-handed 
and have normal or corrected to normal vision and hearing. Besides, it is also a 
basis that the subjects should be skilled in using smartphones and WeChat (a 
popular online chat APP). Additionally, they were told to have a good sleep and 
not to smoke, take medicine, or drink alcohol, tea, and coffee the day before the 
experiment. What’s more, we inspected the qualification of each subject and got 
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the informed consent from them before the experiment. The subjects were also 
given oral and written instructions about the upcoming experiment. After the 
experiment, each participant was paid the reward. 

Apparatus 

A straight road of Dalian University of Technology was selected to conduct the 
real-world experiment. A portable and wearable headband, and a Mangold-10 
multipurpose polygraph with features of portable and wireless were utilized to 
gather the EEG signals from the brain scalp with a sample rate of 256 Hz. Since it 
has been proved that the occipital brain area is correlated with mental status in 
the literature (Kumar et al., 2020), and the adopted headband has little influence 
on drivers, the electrodes inside the headband are placed on O1 and O2 on the 
basis of the International 10-20 System.  

Furthermore, previous research shows that car signals also provide 
valuable information to study driver state and that driving performance changes 
with driver state (Pavlidis et al., 2016). To validate these findings, sensors were 
set up in the experiment car so as to obtain the needed vehicle behavioral data. 
In this experiment, the speed and deceleration data were gathered, and the 
sampling rate was 50 Hz. The experiment scene is shown in Figure 3. 

 

 

FIGURE 3  The distraction experiment in realistic driving environment. 

Procedure 

In this experiment, a task of using cellphone while driving was employed to 
induce driver distraction. The task can be illustrated broadly as: messages were 
sent to the subject’s cellphone while driving on the road, and then the subject was 
required to use cellphone for no less than 3 seconds. 

There were six driving trials in the experiment including one normal 
driving trials (i.e., focusing on the road all the way) and five distracted trials (i.e., 
using cellphone while driving). In normal driving, the trial duration was set as at 
least 6 seconds. As for the distracted driving trials, the duration was about 20 
seconds and the cellphone usage task started on around 12 seconds in each trial. 
A short interval between trials was designed to relax the subjects. 
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An experimenter sat inside the car along with the experiment going on. His 
work was to give hints about cellphone usage task start and end to the subjects 
by sending messages to them in distracted driving trials. The experimenter could 
not do anything except for the above required. Subjects should pay full attention 
to safe driving in normal driving trial, while the distracting task was performed 
in distracted trials. They were asked to drive with full attention at the beginning 
of these trials, messages would then be sent to their cellphone seconds later. After 
that, they needed to check the messages for at least three seconds. What’s more, 
a foam obstacle was finally thrown to the road by another experimenter in the 
end in order to observe the subjects’ reactions. During the whole experiment, 
EEG signals and vehicle behavioral data were acquired. 

3.1.2 Experiment design in simulated environment 

This study was reviewed and approved by the Ethics Committee, Liaoning 
Normal University. 

Participants 

There were sixty experienced and right-handed drivers with driving license 
participating in the study. They are in good health both mentally and physically 
and have normal hearing and visual acuity. Besides, they are experienced in 
using smartphone and online chat APP. In order to avoid the effects of sleep 
rhythm, the experiment was conducted in the morning, and subjects were told to 
get enough sleep the night before the experiment. Moreover, they are not allowed 
to smoke, take medicine, or drink coffee, alcohol and tea the day before the 
experiment. Prior to the experiment, the qualification of each subject was verified 
and written informed consent was obtained from subjects. They were introduced 
the upcoming experiment as well before the start of the experiment. After the 
experiment, each participant was paid the reward. 

Apparatus 

The experiment was performed in the laboratory of Liaoning Normal University, 
which is a simulated driving environment. The driving scenarios were displayed 
using a 120° viewing screen with Xuan Love QJ-3A1 driving simulator that is 
composed of control system, simulated cockpit, interactive visual system, 
exterior accessories and so on (see Figure 4(a)). 

The ANT Data Recording System and the 64-channel electrode cap in 
accordance with the International 10-20 System were adopted to acquire the EEG 
signals in the experiment. Besides, the EMG and ECG signals were also collected 
along with EEG. The EMG electrode was laid on the soleus muscle of the right 
lower limb because it is closely related to the activities of foot and lower leg. The 
brake needs to be controlled by right foot and leg while driving, so the tension of 
soleus muscle can reflect driving state. A chest lead III showed in Figure 4(b) was 
used to obtain the ECG signals. The three electrodes were separately located 
below the left clavicle (positive electrode), below the right clavicle (negative 
electrode), and below the right rib (ground reference). A sample rate of 2000 Hz 
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was set to acquire the physiological signals. Additionally, the vehicle behavioral 
data i.e., the lane position variability (LPV) and velocity (V) was collected with a 
sampling frequency of 1 Hz to evaluate the changing patterns of driving 
performance after distraction. 

 

  
 (a) (b) 

FIGURE 4  The experiment apparatus in simulated driving environment. (a) The Xuan 
Love QJ-3A1 driving simulator and electrode cap. (b) The diagram of ECG, 
EMG and vehicle sensors. 

Procedure 

In this simulated experiment, the answering cellphone task was recruited to 
stimulate driver distraction that subjects should keep talking on the phone while 
distracted driving process. 

Before the formal experiment, all subjects took part in the practice 
procedure for acquainting themselves with the simulator. The formal experiment 
lasted for about 60 minutes consisting of 6 blocks. In each block, the drivers pay 
full attention to driving at the first seven minutes (i.e., normal driving process), 
and then they would be called by an experimenter in the last three minutes (i.e., 
distracted driving process). In this condition, they were supposed to talking with 
the experimenter until the block ends. The protocol of the formal experiment is 
shown in Figure 5. The EEG, ECG, EMG as well as the vehicle behavioral signals 
were obtained after the experiment. 

 

 

FIGURE 5  The protocol of the formal experiment. 
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3.2 Emotion dataset 

To obtain the EEG signals for emotion recognition, we employed the SJTU 
Emotion EEG Dataset (SEED), which is a collection of EEG data for multiple 
purposes emotion study (W. Liu et al., 2022; W.-L. Zheng & Lu, 2015), for analysis 
in Article IV. The detailed descriptions of the dataset are listed in this section. 

Participants and materials 

The experiment was reviewed and approved by the Ethics Committee, Shanghai 
Jiao Tong University. Twenty-three mentally and physically healthy subjects 
consisting of fifteen Chinese and eight French were recruited to gather the EEG 
data while watching different emotional film clips in their native language. All 
the subjects were detailed introduced the experiment to make sure they 
understood it totally prior to the experiment. The written content was obtained 
from each one of them before the experiment. 

The emotional film clips were chosen based on the work of Scharfer et al. so 
as to induce three kinds of emotions (i.e., negative, neutral and positive) in the 
experiment (Schaefer et al., 2010). There were five and seven film excerpts of 
every emotion for Chinese and French subjects separately, and the film duration 
was limited to about two minutes. A 62-channel NeuroScan System was 
employed to collect the EEG data in consistent with International 10-20 System. 
The sampling frequency was kept at 1000 Hz. 

Procedure 

The experiment was conduct in the laboratory environment. The subjects 
watched the successive film excerpts sitting comfortably. Each one participated 
in the experiment once, and there was a total of 15 trials for Chinese subject and 
21 trials for French subjects. Before each film clip, there was a hint picture lasting 
for five seconds to remind the start of the film. After each film segment, the 
subjects were asked to report their emotions stimulated by the film clip in the 45 
seconds self-assessment interval by filling in a questionnaire, which would be 
regarded as the label to validate the results of emotion recognition. The protocol 
of the experiment is shown in Figure 6. 

 

 

FIGURE 6  The protocol of the emotion experiment. 



 
 

35 
 

3.3 Methodology 

This section presents the methods used to analyze and detect driver state with 
the collected physiological signals and vehicle behavioral signals. These methods 
can be categorized into four groups including preprocessing approaches, 
features utilized in the dissertation, feature selectors and classifiers used to detect 
driver state. 

3.3.1 Preprocessing 

The segments of EEG, ECG, EMG and vehicle behavioral signals corresponding 
to the duration of each formal trial were extracted from the continuous dataset, 
which is comprised of signals not only while performing the formal trial but also 
the preparation and rest intervals. The power line is then eliminated with a 
bandstop filter of 50 Hz. Thereafter, we extracted five rhythms from the EEG 
signals using wavelet decomposition, as previous research has pointed out the 
activities of different frequency bands of EEG are related to the mental status (Nie 
et al., 2011). Finally, a method based on wavelet transform (WT) was adopted to 
reject the effects of artifacts in each rhythm. 

WT is a method that analyzing and characterizing non-stationary signals in 
both time domain and frequency domain. Since it can adapt to the requirements 
of time-frequency analysis and focus on the details of signals, it has been widely 
applied to signal processing (Rhif et al., 2019). In order to extract the five rhythms 
from EEG, we should firstly decompose EEG with a mother wavelet 𝜓𝜓(𝑡𝑡). The 
mother wavelet can then be constructed as the family of function 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡)  by 
dyadic shifts and dilations: 

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) = 2
𝑗𝑗
2𝜓𝜓�2−𝑗𝑗𝑡𝑡 − 𝑘𝑘�          𝑘𝑘,𝑗𝑗 ∈ 𝑍𝑍 (1) 

The signal S(t) is then described as 
𝑆𝑆(𝑡𝑡) = �𝑠𝑠𝑗𝑗(𝑘𝑘)𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡)

𝑘𝑘

+ �𝑑𝑑𝑗𝑗(𝑘𝑘)
𝑘𝑘

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) (2) 

where 𝜙𝜙(𝑡𝑡) is the scaling function, sj(k) and dj(k) are the approximate coefficients 
and detailed coefficients at jth level, respectively. 

Since the obtained EEG rhythms were mixed with artifacts like body 
movements and blinks, a WT-based approach was employed to remove them. 
The approximate coefficients and detailed coefficients i.e., sj(k) and dj(k) stand for 
the correlation of the selected mother wavelet and the signal. According to the 
algorithm, a larger coefficient occurs when the artifact appears (C. Zhang et al., 
2018). In this condition, a threshold can then be selected to reduce the abnormal 
large coefficients and reject the influence of artifacts. The threshold is defined as 
follows: 

𝑇𝑇𝑗𝑗 = mean�𝐶𝐶𝑗𝑗� + 2 × std�𝐶𝐶𝑗𝑗� (3) 
where Cj is the coefficient at jth level. The value of coefficient is reduced to half 
of the original value when it is larger than Tj, after which a new set of coefficients 
are used to obtain the signal without artifacts. 
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3.3.2 Feature extraction 

Various features were calculated in this dissertation including entropy features, 
time-domain features as well as frequency-domain features: 

Multiscale entropy 

Multiscale entropy in relative time scales (MSE), firstly proposed by Costa et al. 
(2002), was an extension of SE. It is calculated in different time scales to 
characterize the complexity of signals, which can decrease the effects of residual 
noise retained in physiological signals on the results (Costa et al., 2005). So, it can 
be used to explore the dynamic patterns in physiological signals along with the 
changes of driver state. There are two steps to obtain the MSE feature of the 
physiological signals including the coarse-graining step and SE calculation step. 
The two steps are introduced in detail in the following content: 
Step 1. Considering a signal {x1, …, xi, …, xN}, the consecutive time series {y(τ)} 

after coarse graining at relative time scales τ is supposed to be con-
structed firstly. This can be achieved by dividing the signal into sequen-
tial windows without overlapping every τ data points and calculating the 
average value of these data points within each window (see Figure 7). 
Each element of the constructed time series {y(τ)} is calculated according 
to 

𝑦𝑦𝑗𝑗
(𝜏𝜏) =

1
𝜏𝜏

� 𝑥𝑥𝑖𝑖

𝑗𝑗𝑗𝑗

𝑖𝑖=(𝑗𝑗−1)𝜏𝜏+1

,       1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 𝜏𝜏⁄ , (4) 

where N is the length of the signal, N/τ is the length of each coarse-
grained time series. 

Step 2. Calculate the SE value of the obtained time series {y(τ)}. For a given time 
series {y1, …, yj, …, yn}, the m-dimensional vector Ym(i) can be obtained 
from 

𝑌𝑌𝑚𝑚(𝑖𝑖) = [𝑦𝑦(𝑖𝑖),𝑦𝑦(𝑖𝑖 + 1), … , 𝑦𝑦(𝑖𝑖 + 𝑚𝑚− 1)],   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 −𝑚𝑚. (5) 
Then, d measuring the distance between Ym(i) and Ym(j) can be calculated 
with 

𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚[ |𝑦𝑦(𝑖𝑖 + 𝑘𝑘) − 𝑦𝑦(𝑗𝑗 + 𝑘𝑘)|] ,
0 ≤ 𝑘𝑘 ≤ 𝑚𝑚 − 1, 𝑖𝑖 ≠ 𝑗𝑗, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 −𝑚𝑚 (6) 

After that, 𝐵𝐵𝑖𝑖𝑚𝑚(𝑟𝑟) is calculated with 

𝐵𝐵𝑖𝑖𝑚𝑚(𝑟𝑟) =
{the number of 𝑑𝑑 < 𝑟𝑟, 𝑖𝑖 ≠ 𝑗𝑗}

(𝑛𝑛 −𝑚𝑚 − 1) , (7) 

which represents the number of 𝑑𝑑 < 𝑟𝑟 for each i. Following this, the av-
erage value of 𝐵𝐵𝑖𝑖𝑚𝑚(𝑟𝑟) set can be obtained with 

𝐵𝐵𝑚𝑚(𝑟𝑟) =
1

𝑛𝑛 −𝑚𝑚
� 𝐵𝐵𝑖𝑖𝑚𝑚(𝑟𝑟)
𝑛𝑛−𝑚𝑚

𝑖𝑖=1

, (8) 

Finally, we should calculate the m+1-dimensional vector and repeat this 
process to get Bm+1(r). After all these procedures, the SE can be obtained 
with 
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SE(𝑚𝑚, 𝑟𝑟) = lim
𝑛𝑛→∞

�− ln
𝐵𝐵𝑚𝑚+1(𝑟𝑟)
𝐵𝐵𝑚𝑚(𝑟𝑟) � , (9) 

where r stands for the predefined tolerable distance. When n is finite, SE 
can be obtained according to 

SE(𝑚𝑚, 𝑟𝑟,𝑛𝑛) = − ln �
𝐵𝐵𝑚𝑚+1(𝑟𝑟)
𝐵𝐵𝑚𝑚(𝑟𝑟) � . (10) 

 

 

FIGURE 7  Schematic illustration of the coarse-graining process. 

It has been validated that the entropy value in single time scale can be 
influenced by sampling frequency in the literature (Raffalt et al., 2019).  Besides, 
the stretching and compressing effects will come into being while calculating 
MSE with the resampling of signals (Fallahtafti et al., 2021; J. Zheng et al., 2023). 
Hence, to overcome the challenges, we explored a variation of MSE, which 
calculates multiscale entropy in absolute time scale λ (MSaE) rather than in 
relative time scale. The unit of λ is second, and it can be expressed as 

𝜆𝜆 = 𝜏𝜏 ∙ 𝑇𝑇𝑠𝑠 = 𝜏𝜏 𝑓𝑓𝑠𝑠⁄ (11) 
where Ts is the original sampling period and fs is the original sampling frequency. 

Therefore, the coarse-graining step can be illustrated that the time series {y(τ)} 
is constructed by means of calculating the mean value in each non-overlapping 
time window with a length of λ seconds (see Figure 7). It should be noted that 
the signal’s time duration tD keeps unchanged after resampling, which means 
tD_d=tD. After the coarse-graining step, the same step as MSE (i.e., calculating the 
SE value for {y(τ)}) can be utilized to calculate MSaE. 

After introducing MSE and MSaE, the entropy-based method to find the 
appropriate downsample frequency for a signal can be described as the following 
five steps: 
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Step 1. Plot the fitting curve of entropy-scale (see Figure 8) after calculating the 
SE value in various scale τ to find τpeak where the entropy value arrives its 
maximum value indicating the high relevance of entropy value and time 
scale (Borowiec et al., 2014). 

Step 2. The peak time λpeak when the entropy value is the highest can then be 
obtained with (11). 

Step 3. As λpeak cannot be changed after downsampling, the peak time after 
downsampling can be expressed as 𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑑𝑑 = 𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

Step 4. The frequency after downsampling 𝑓𝑓𝑠𝑠𝑑𝑑  can then be described as 

𝑓𝑓𝑠𝑠𝑑𝑑 =
𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑑𝑑
𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑑𝑑

=
𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑑𝑑
𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(12) 

Step 5. For a given peak time scale after downsampling 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑑𝑑, the correspond-
ing downsampling frequency can be obtained. 
 

 

FIGURE 8  The entropy-scale curve of the original alpha rhythm with fs=2000 Hz. 

Complexity features 

Four traditional entropy features in single time scale were also calculated in this 
dissertation for the purpose of comparison with multiscale entropy. These 
features are briefly introduced in Table 1, which can also refer to (Feutrill & 
Roughan, 2021; Lv et al., 2020; Zarei & Asl, 2018). 
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TABLE 1 The entropy features used for driver state analysis. 

No. Feature Formula Comments 
1 Approximate 

entropy (AE) AE(𝑚𝑚, 𝑟𝑟,𝑁𝑁) =
1

𝑁𝑁 −𝑚𝑚 + 1 � 𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑖𝑖𝑚𝑚 (𝑟𝑟)
𝑁𝑁−𝑚𝑚+1

𝑖𝑖=1

−
1

𝑁𝑁 −𝑚𝑚 � 𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝑖𝑖𝑚𝑚+1 (𝑟𝑟)
𝑁𝑁−𝑚𝑚

𝑖𝑖=1

 

where 

𝐶𝐶𝑖𝑖𝑚𝑚(𝑟𝑟) =
𝐵𝐵𝑖𝑖𝑚𝑚

𝑁𝑁 −𝑚𝑚 + 1 

AE is a measure of the com-
plexity and the statistical 
quantization characteristic of 
the signal. 𝐵𝐵𝑖𝑖𝑚𝑚 is the number of 
matches of dimension m. The 
definitions of m, r, and N are 
the same with SE. 
 

2 Fuzzy entropy 
(FE) FE(𝑚𝑚,𝑛𝑛, 𝑟𝑟,𝑁𝑁) = 𝑙𝑙𝑙𝑙

𝑂𝑂𝑚𝑚(𝑛𝑛, 𝑟𝑟)
𝑂𝑂𝑚𝑚+1(𝑛𝑛, 𝑟𝑟) 

where 
𝑂𝑂𝑚𝑚(𝑛𝑛, 𝑟𝑟)

=
1

𝑁𝑁 −𝑚𝑚
� �

1
𝑁𝑁 −𝑚𝑚 − 1 � 𝐷𝐷𝑖𝑖𝑖𝑖𝑚𝑚

𝑁𝑁−𝑚𝑚

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

�
𝑁𝑁−𝑚𝑚

𝑖𝑖=1

 

In the calculation of FE, the ex-
ponential function is used to 
measure the similarity 𝐷𝐷𝑖𝑖𝑖𝑖𝑚𝑚 of 
two vectors i.e., Xm(i) and 
Xm(j). n is the fuzzy exponent. 

3 Rényi Entropy 
(RE) RE =

1
1 − 𝑞𝑞 𝑙𝑙𝑙𝑙𝑙𝑙

��𝑝𝑝(𝑖𝑖)𝑞𝑞
𝑁𝑁

𝑖𝑖=1

� 

𝑞𝑞 ≥ 0 & 𝑞𝑞 ≠ 1 

For signal X={x1, …, xi, …, xN}, 
p(i) is the probability of choos-
ing xi in X and ∑ 𝑝𝑝(𝑖𝑖)𝑁𝑁

𝑖𝑖=1 = 1.  q 
is the entropic index. 

4 Differential 
Entropy (DE) DE = −� 𝑓𝑓(𝑥𝑥)

𝑏𝑏

𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙�𝑓𝑓(𝑥𝑥)� 𝑑𝑑𝑑𝑑 

DE is the extension of Shannon 
entropy.  f(x) is the probability 
density function of the signal. 
[a,b] is the value interval. 

 

Time-domain features 

The waveforms of signals fluctuate along with experiment going on, which could 
reflect the changes of signals over time. Time-domain features could manifest the 
changing patterns of signals by analyzing the waveforms of signals (G. Zhang et 
al., 2020). In this case, the time-domain features were also extracted from the 
obtain physiological and vehicle behavioral signal. Table 2 shows the used time-
domain features in the dissertation. 
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TABLE 2  The time-domain features for analyzing driver state 

No. Feature Formula 
1 Mean value 

𝜇𝜇 =
1
𝑁𝑁�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

2 Standard deviation 

𝜎𝜎 = �
1
𝑁𝑁�

(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
𝑁𝑁

𝑖𝑖=1

 

3 Skewess 
Skewess =

1
𝑁𝑁�

(𝑥𝑥𝑖𝑖 − 𝜇𝜇)3
𝑁𝑁

𝑖𝑖=1

(
1

𝑁𝑁 − 1�
(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

𝑁𝑁

𝑖𝑖=1

)3 2⁄�  

4 Kurtosis 
Kurtosis =

1
𝑁𝑁�

(𝑥𝑥𝑖𝑖 − 𝜇𝜇)4
𝑁𝑁

𝑖𝑖=1

(
1
𝑁𝑁�

(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
𝑁𝑁

𝑖𝑖=1

)2�  

5 Zero crossing 
ZeroCross = �𝕝𝕝{𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖−1 < 0}

𝑁𝑁−1

𝑖𝑖=1

 

6 Root mean square 

RMS = �
1
𝑁𝑁�𝑥𝑥𝑖𝑖2

𝑁𝑁

𝑖𝑖=1

 

 

Frequency-domain features 

Since the spectrum information of signals varies with the experiment conditions, 
the information related to driver state can be revealed in frequency domain 
(Heathers, 2014; Phinyomark et al., 2012; G. Zhang et al., 2020). Therefore, the 
frequency-domain features were calculated to explore the spectral information 
and compare with multiscale entropy features as listed in Table 3. 

TABLE 3  The frequency-domain features for analyzing driver state 

No. Feature Formula 
1 Amplitude spectrum 

AMP = � 𝑥𝑥(𝑡𝑡)
𝑇𝑇

0
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑, 

𝑥𝑥(𝑡𝑡) is the signal, T is the signal period. 
2 Power spectrum density PSD =

1
𝑇𝑇

|AMP|2 

3 Mean frequency 
FMEAN = � 𝑓𝑓 ∙ PSD(𝑓𝑓)

+∞

0
𝑑𝑑𝑑𝑑 � PSD(𝑓𝑓)

+∞

0
𝑑𝑑𝑑𝑑�  

4 Median frequency 
FMED =

1
2� PSD(𝑓𝑓)

+∞

0
𝑑𝑑𝑑𝑑 

5 Power of frequency band 
[𝑓𝑓1, 𝑓𝑓2] P = � PSD(𝑓𝑓)

𝑓𝑓2

𝑓𝑓1
𝑑𝑑𝑑𝑑 
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3.3.3 Feature selection 

The extracted features were in various numerical ranges that could not be 
compared directly. Thus, min-max normalization was used to normalize each 
feature to the range of [0,1] before inputting the features into classifiers to detect 
driver state. 

𝑦𝑦 =
(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) ∗ (𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
+ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 (13) 

where y is the value after normalization, x is the value before normalization, xmax 
and xmin stand for the maximum and minimum values of x separately, ymax and 
ymin represent the maximum and minimum values after normalization, 
respectively. 

In this dissertation, various features from three perspectives were extracted 
from the gathered signals, which may increase the training time and generate 
overfitting issue at the classification step to some extent. In order to reduce the 
computation cost and find the optimal features for detecting driver state, five 
conventional feature selectors were utilized here. 

ReliefF algorithm 

ReliefF, a robust algorithm, was firstly proposed by Kononenko in 1994 to deal 
with noisy and missing data (Kononenko, 1994). It can distinguish the most 
important features by assigning different weights to features according to how 
important each feature is relevant to each category (Y. Zhang et al., 2019). In order 
to study the correlation between feature and category, the nearest neighbors of 
each feature will be selected from all classes by calculating the Manhattan 
Distance. High weights appear when the feature is highly related to the category. 
In this way, the most discriminative feature can be selected among all features. 

Non-negative matrix factorization (NMF) 

Non-negative matrix factorization (NMF), a widely used method for data 
analysis, deals with high-dimensional matrix by representing it with two low 
dimensional matrices (Lee & Seung, 2000). One of the low-dimensional matrices 
is the non-negative basis, and the other is the weights matrix. After factorization, 
the valuable information in the original matrix can be kept intact. Then, 
discriminative features can then be selected based on the obtained weights matrix 
(Gupta & Xiao, 2011). 

Mutual information 

Mutual information (MI) can be used to quantify the correlation of the feature in 
regard to the corresponding categories by means of calculating the information 
contained in one variable about another variable (Vergara & Estévez, 2014). The 
value of MI is larger when the feature is more related to the corresponding 
category. Thereby, the feature selection step based on MI can be described as to 
find the most relevant feature with largest MI value to the class label. Since it can 
detect the nonlinear relationship between features and classes and analyze 
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multiple-dimensional feature sets, it is commonly used in feature selection 
(Doquire & Verleysen, 2013). 

Neighborhood component analysis 

Neighborhood component analysis (NCA), a supervised learning algorithm, 
selects features according to the distance metric. The vector indicating feature 
weights is obtained by optimizing the leave-one-out classification accuracy to the 
maximum with a regularization term, and the information contained in the 
feature set retains in this process (Raghu & Sriraam, 2018). After that, the 
significance of each feature can then be observed directly with feature ranking. 
The discriminative feature can then be selected. What’s more, the increase of 
irrelevant features has little influence on the results. 

Sequential forward selection 

The process of sequential forward selection (SFS) can be illustrated as a bottom-
up search process (Marcano-Cedeño et al., 2010). It starts with an initial feature 
matrix with empty value, and then add in features one by one with evaluation 
functions based on the principle of minimizing the mean square error. During 
each iteration, one feature is chosen from the rest of the features to add to the 
predefined selected feature set. The selection iteration continues until the 
classification accuracy does not change with the number increase in the feature 
set. Then, the corresponding feature set is determined as the optimal feature set. 
Because of its simplicity and quick calculation, it has been widely used for 
reducing matrix dimension. 

3.3.4 Classification 

To detect driver state and find out how different features compensate for each 
other while detecting driver state with integrate features, RF is firstly adopted in 
this dissertation. It was also used to compare the feature selection results of the 
five feature selectors so that the feature set selected by the most effective feature 
selection methods can be used in the latter detection procedure. In addition, 
LSTM-based classifier was employed to learn the contextual information in the 
signals obtained in driving process and improve the state detection accuracy. The 
details of the two classifiers are described in this section. 

Random forest 

RF is a widely used ensemble learning algorithm to classify various tasks 
developed by Breiman (Breiman, 2001). It outputs the classification results by 
constructing plenty of decision trees and integrating the decisions by most of the 
trees. According to the bagging method utilized in RF, it can deal with large 
number of variables quickly and balance the errors for unbalanced dataset. 
Moreover, the importance of each input variable can be evaluated in classification 
tasks. It nowadays has been recruited in different fields for classification and 
feature selection (R. Zhang et al., 2018). Considering this, it is used not only to 
detect driver state and estimate the importance of each input feature but also to 
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evaluate the most efficient feature selectors among the five feature selection 
algorithms in this dissertation. 

As an ensemble learning approach, RF ensures that the trained model 
performs well by exploring the interdependency between features and avoiding 
overfitting. The principle of random data and variable selection need to be 
followed aiming at the two tasks (W. Chen et al., 2014). The procedure of RF 
algorithm can be illustrated as: firstly, select the bootstrap sample Bs in the 
training set T. Then built the decision trees Trb on Bs. In this step, one-third 
samples are used to estimate the classification error and evaluate the importance 
of each variable, which are defined as the out-of-bag (OOB) data. Thereafter, the 
variable candidate sets with a number of M are chosen at random among the 
holistic variable set in each split. The best way of splitting can then be selected 
from the candidate sets and be carried out at the node. In order to minimize the 
bias, the trees grow to the maximum extent and cannot be pruned. Repeat these 
steps until the minimum classification error is obtained. Thus, the decision tree 
set {𝑇𝑇𝑟𝑟𝑏𝑏}1𝑁𝑁 can be obtained. Finally, evaluate the trained RF model in the test set 
and output most of the trees’ results. Algorithm 1 shows its pseudo-code. 

 
Algorithm 1 
Input: training set T 
N how many decision trees will be built 
M how many variables will be chosen for splitting at each node 
Training: for each i=1:N do 
1. Select the bootstrap sample Bs from T. 
2. Build decision tree Trb on Bs. 
3. Select M variable candidate sets randomly at each node of Trb. 
4. Find the best splitting way among M sets. 
5. Build tree Trb without pruning. 
end for 
Output: {𝑇𝑇𝑟𝑟𝑏𝑏}1𝑁𝑁 the ensemble of trees  
X testing set 
Classification: Assume Cb(X) is the classification result of each tree. The result 
of RF C(X) can then be expressed as: C(X)=majority vote {𝐶𝐶𝑏𝑏(𝑋𝑋)}1𝑁𝑁 

 

LSTM 

LSTM is an extension of RNN, which is proposed to address the vanishing 
gradient problem and learn both long and short-term contextual information in 
signals (Karim et al., 2018). It achieves these aims by four neural networks 
interacting in specific ways in the memory cell as shown in Figure 9. BiLSTM is 
a variation of LSTM that can learn the long-term context both in forward 
direction and backward direction. It works by integrating two LSTM layers that 
consist of memory cells. One layer propagates information from front to back 
while the other is in the opposite direction. 
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There are mainly three steps in the information propagation process and 
each step is implemented with a so-called gate i.e., forget gate, input gate, and 
output gate (P. Liu et al., 2022). After inputting the data, it will be transferred to 
the three gates with a sigmoid activation function. In the first step, the 
information contained in the cell state Ct-1 is checked to decide what kind of 
information should be overwritten, which is fulfilled with the forget gate using 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (14) 
 

 

FIGURE 9  The details of LSTM memory cell. 

Afterwards, the new information learned from the current inputs should be 
explored with input gate. During this process, a sigmoid activation function is 
used to find the updated information with 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (15) 
Then, the new candidate cell state 𝐶𝐶𝑡𝑡�  is created with a tanh layer based on 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝐶𝐶 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶) (16) 
In this way, the old cell state Ct-1 can be replaced by the new cell state Ct with 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡� (17) 
In the last step, the output gate and a tanh activation function are used to 

decide the cell output ht as follows: 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (18) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) (19) 
In equations (14) to (19), σ and tanh stand for the sigmoid and tanh 

activation functions separately, xt is the feature in time t. Besides, W, b and h 
denote the weight, bias and hidden state of each gate, respectively. 
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4 OVERVIEW OF INCLUDED ARTICLES 

This chapter is the overview of the included articles including the objective, 
methods, results, and conclusion. The contributions of authors in each article are 
elucidated as well. 

4.1 Article I: Driver distraction detection based on EEG feature 
fusion using Random Forest 

Xin Zuo, Chi Zhang, Jian Zhao, Timo Hämäläinen, and Fengyu Cong. (2024). 
Driver distraction detection based on EEG feature fusion using Random Forest. 
In 2023 International Conference on Biomedical Imaging, Signal Processing (ICBSP), 
pp. 104-109. ACM. 

Objective 

Driver distraction is reported as one of the primary inducements for road crashes 
(Pandurov, 2023). Under this circumstance, it is important to detect driver 
distraction in time so as to alert them to pay attention to the driving activity and 
keep safe. EEG has been regarded as a reliable indicator to detect driver mental 
state (G. Li et al., 2023). The time domain and frequency domain features of EEG 
have been widely used to explore the distraction information in EEG. However, 
there are still challenges in mining the valuable distraction information in EEG 
because the abundant complexity information is to some extent overlooked in 
realistic driving environment. The residual noise retained in preprocessed EEG 
can also decrease the robustness of the results. Besides, it needs to be further 
studied how different features provide compensation information to each other 
while detecting driver distraction with fused features. Aiming at the challenges, 
a driver distraction detection method is proposed on the basis of RF and the 
entropy feature fusion of EEG in realistic driving scenarios. 
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Methods 

A driving experiment was designed and executed in a real straight road in Dalian 
University of Technology. The distraction task was to use cellphone while 
driving. The EEG data of 6 subjects was gathered from O1 and O2 electrodes with 
sampling frequency of 256 Hz. Firstly, the interested EEG segments 
corresponding to each driving process were extracted from raw data and the 
power line of 50 Hz was filtered. Then, alpha rhythm (8-13 Hz) was roughly 
extracted from EEG segments utilizing wavelet decomposition. EEG was 
decomposed into four levels followed by reconstructing alpha rhythm with the 
detailed coefficients at fourth level. In this process, db6 wavelet was selected to 
decompose the EEG signals because of the similarity between the two waveforms. 
After that, the WT-based method was adopted to remove artifacts in EEG. 

After preprocessing, five entropy features were calculated with a non-
overlapping sliding window to explore the distraction information in alpha 
rhythm including AE, FE, SE, DE, and MSE with time scale of five. Finally, RF 
was adopted not only to detect driver distraction with each single feature but also 
to weigh the importance of the five features when detecting driver distraction 
with fused features. 

Results  

When classifying driver distraction with signal feature, DE with an accuracy of 
72.9% performs better than the other four features. MSE followed by FE and SE 
ranks the second. The accuracies of them are 68.22%,65.42%, and 63.55%, 
respectively. AE shows the lowest detection accuracy that reaches only 58.88%. 
As for detecting driver distraction with fused features, the performance of RF is 
enhanced and achieves about 80% accuracy. Figure 10 shows the importance of 
each feature for detecting driver distraction with the fusion of five feature. It is 
clear that MSE contributes the most among the five entropy features. DE is the 
second important feature for driver distraction detection. AE still ranks the last 
one among all features.  

Conclusion and discussion 

The results illustrate that DE is a better choice to mine the complexity of EEG 
than other features when detecting driver distraction with single type of feature. 
In addition, the classification accuracy of RF can be improved with fused multiple 
features, which validates that different features compensate for each other by 
evaluating the weights of them. What’s more, the weight of MSE is larger than 
that of DE when using fused features to detect driver distraction. This finding is 
inconsistent with the results of detecting driver distraction using single type 
feature. The reason may be that RF classifier cannot learn and memorize the 
contextual information in different time scales while recognizing driver 
distraction with single MSE features. 
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FIGURE 10  The importance of features in distraction detection using fused features. Er-
ror bar shows the standard deviation. 

Contribution 

Xin Zuo conceived the paper, developed the algorithm, analyzed the data, and 
wrote and revised the manuscript. Chi Zhang contributed to the 
conceptualization of the paper, data collection, methodology, writing-editing. 
Jian Zhao, Timo Hämäläinen, and Fengyu Cong supervised the work and edited 
the manuscript. 

4.2 Article II: Driver distraction detection using bidirectional 
long short-term network based on multiscale entropy of EEG 

Xin Zuo, Chi Zhang, Fengyu Cong, Jian Zhao and Timo Hämäläinen. (2022). 
Driver distraction detection using bidirectional long short-term network based 
on multiscale entropy of EEG. IEEE Transactions on Intelligent Transportation 
Systems, 23(10), 19309-19322. 

 

Objective 

Entropy features can be used to reflect the complexity of EEG signals and detect 
driver distraction as proved in Article I. However, challenges still exist in 
detecting driver distraction with entropy features. Driving is a continuous long 
duration activity, the current state of driver is not only affected by the current 
environment but also the previous status (Kouchak & Gaffar, 2021). So, the long-
term contextual information in signals should also be considered. Besides, how 
entropy feature like MSE changes with driver state is remains unknown. 
Additionally, vehicle behavioral data can provide information about driver 
distraction as well. Hence, it is also important to study the driving performance 
while distraction. In this article, a novel framework based on the MSE in a sliding 
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window and BiLSTM is presented to mine the distraction information of EEG 
and to detect driver distraction based on hybrid signals. 

Methods 

The same dataset and preprocessing methods as Article I were used in this paper. 
MSE feature was extracted firstly from EEG to explore the fluctuation patterns 
after distraction and determine the most distraction position (DP). Then, 
statistical analysis was performed on vehicle behavioral data (i.e., speed and 
deceleration) to find out whether changes appear in driving performance before 
and after distraction. Thereafter, BiLSTM and four other classifiers were utilized 
to learn and memorize the long and short-term context in MSE and other 
traditional features to detect driver distraction. The overall architecture of the 
proposed framework is shown in Figure 11. 

 

 

FIGURE 11  Schematic illustration of the BiLSTM framework. 

Results 

The activity of alpha rhythm obviously increases after the distraction task start. 
As for the 5-scale MSE, Figure 12 shows that its waveform fluctuates significantly 
in distracted trials and decreases to the trough soon after the task. The time when 
MSE reaches its minimum value is then defined as DP. As for the statistical 
analysis of vehicle behavioral data, significant difference exists in each trial for 
the speed and deceleration data before and after DP (p˂0.05). The mean value 
and standard deviation were also analyzed, and the results is shown in Figure 13. 
It is clear that the mean speed tends to decrease after distraction while the 
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deceleration increases after distraction. Moreover, the standard deviations of 
speed and deceleration data become greater after distraction. Driver distraction 
was also recognized with different features and classifiers as listed in Table 4. 
The results show that BiLSTM is superior to other classifiers followed by LSTM. 
When single type of feature was used to detect driver distraction, the highest 
accuracy is obtained with MSE reaching at 91.83%, which is apparently better 
than other traditional entropy features of EEG and vehicle statistical features. If 
integrating the features of EEG and vehicle data to detect distraction, the 
performance of BiLSTM can be further enhanced, peaking at 92.48%. 

 

 

FIGURE 12  The MSE results of alpha band in distracted driving trial. The black solid line 
shows the onset of using cellphone and the red circle is the distraction posi-
tion of this trial. 

 
 (a) (b) 

FIGURE 13  The statistical results of the vehicle data. (a) The mean value of speed. (b) The 
absolute value of the deceleration mean value. Error bar shows the standard 
deviation. 
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TABLE 4  The accuracies of different classifiers for different features (%) 

Feature AE DE FE SE MSE VS VS+MSE 
BiLSTM 83.29 82.67 76.35 67.01 91.83 89.85 92.48 
LSTM 82.24 81.31 71.03 63.55 89.72 88.79 91.59 
CNN 62.62 73.63 62.01 60.32 73.9 67.29 78.5 
SVM 52.94 54.6 54.27 56.75 66.72 74.85 77.76 
KNN 69.45 71.93 67.12 59.05 65.34 76.84 77.07 

 

Conclusion and discussion 

The proposed framework based on MSE of EEG and BiLSTM classifier has been 
applied in driver distraction in this study. It proves that MSE outperforms other 
traditional features in mining the complexity of EEG and that BiLSTM is better 
in learning the contextual information while driving than other classifiers. 
Besides, the model performance can also be enhanced with features of hybrid 
signals. Additionally, the value of MSE show a decreasing tendency after 
distraction. The phenomenon can be illustrated as the complexity of alpha 
rhythm decrease after distraction. Drivers are more likely to brake and drive in a 
lower speed after distraction to keep safe. Furthermore, distraction also has 
negative effect on their ability to control the vehicle, which can be indicated by 
the increased standard deviation of speed and deceleration data. 

Contribution 

Xin Zuo conceived the paper, developed the algorithm, analyzed the data, and 
wrote and revised the manuscript. Chi Zhang contributed to the 
conceptualization of the paper, data collection, methodology, writing-editing. 
Fengyu Cong, Jian Zhao, and Timo Hämäläinen supervised the work and edited 
the manuscript. 

4.3 Article III: Driver distraction detection based on MSaE of 
multi-modality physiological signals 

Xin Zuo, Chi Zhang, Fengyu Cong, Jian Zhao and Timo Hämäläinen. (2023). 
Driver distraction detection based on MSaE of multi-modality physiological 
signals. IEEE Transactions on Intelligent Transportation Systems. Under review. 

Objective 

According to the work in Article I and Article II, the complex driver distraction 
information in EEG can be explored with MSE and the detection accuracy can be 
improved when utilizing the EEG and vehicle behavioral signals at the same time. 
Nevertheless, previous research has pointed out that traditional features of 
physiological signals are sensitive to the retained residual noise and that 
stretching/compressing effect occurs when extract features at multiple time 
scales (Costa et al., 2005; J. Zheng et al., 2023). Moreover, various physiological 
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signals can be gathered to study driver distraction, but which one is better in 
driver distraction detection and whether different physiological features can 
provide complementary information for each other to improve the detection 
accuracy still need to be studied. In this article, a driver distraction detection 
framework is proposed based on MSaE of multiple modalities physiological 
signals. 

Methods 

A simulated driving experiment was conducted to collect the needed data 
including EEG, ECG, EMG, and vehicle behavioral data. For the EEG signals, 
alpha rhythm was extracted with the commonly used db6 wavelet. Then, the 
entropy-based method was utilized to determine the proper downsampling rate 
of EEG for saving computational cost. Afterwards, the EEG data was 
downsampled to 200 Hz and the WT-based method was adopted to remove the 
artifacts in EEG. As for the preprocessing of ECG, the downsampled frequency 
of 256 Hz was obtained with the same downsampling method as EEG. 
Afterwards, a bandpass filter of 0.7 Hz to 40 Hz was used to reduce the influence 
of the breath and movements induced baseline drift in ECG. When it comes to 
EMG data, a bandpass filter with cutoff frequencies at 20 Hz and 500 Hz was 
employed to obtain the interested EMG signals. Then, a sliding window with 
length of 125 milliseconds was designed to average the data. 

After preprocessing, MSaE and 12 other commonly used features were 
calculated for EEG. 10 features were extracted from ECG including MSaE, MSE, 
and 8 features in time-domain and frequency-domain. As for EMG, a total of 8 
features were used to analyze driver distraction. The vehicle behavioral signals 
were also analyzed by calculating the mean and standard deviation of V and LPV. 

Thereafter, five conventional feature selectors were used to reduce the 
redundancy of the large feature set and save time. Following this step, RF was 
adopted to compare the performance of the five feature selectors to distinguish 
the most discriminative features. Finally, the selected feature sets were fed into a 
LSTM classifier to detect driver distraction. 

Results 

As shown in Figure 14, a minimum value of MSaE occurs soon after the 
distraction task start, which is obviously smaller than the mean value of MSaE. 
In contrast, the MSaE value of ECG shows a rising trend after starting to use 
cellphone. The waveform also fluctuates more apparently after distraction as can 
be seen in Figure 15. As for EMG, the MSaE value slightly descends after 
distraction until reaching the minimum value in Figure 16. The statistical results 
of vehicle behavioral data are similar to that in Article II. The mean V declines 
while the mean LPV increases after distraction. Augments appear in the standard 
deviation of V as well as LPV. The weight of MSaE is obviously larger than other 
features and MSE ranks the second for each physiological signal obtained with 
ReliefF algothrim. Then the selected MSaE feature was used to detect driver 
distraction utilizing LSTM. Its result is also compared with other features (see 
Table 5 and Table 6). It is clear that MSaE outperform MSE in recognizing driver 
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distraction with single type signal. Additionally, the MSaE feature of EEG is 
better than EMG and ECG. Moreover, the performance of the trained model can 
be enhanced with features extracted from multi-modality signals. 

 

 

FIGURE 14  The MSaE results of alpha rhythm. The magenta dash line shows the onset of 
using mobile phone. The red circle is the minimum MSaE value. 

 

FIGURE 15  The MSaE results of ECG. The magenta dash line shows the onset of using 
mobile phone. 
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FIGURE 16  The MSaE results of EMG. The magenta dash line shows the onset of using 
mobile phone. The red circle is the minimum MSaE value. 

TABLE 5  The accuracies of different physiological features using LSTM (%) 

 EEG ECG EMG ALL 
MSaE 74.64 67.09 64.81 78.32 
MSE 72.47 66.25 63.74 74.16 
All features 63.69 66.11 64.85 63.86 

TABLE 6  The accuracies of vehicle and multi-modality features using LSTM (%) 

 Vehicle Multi-modality 
Accuracy 72.61 81.27 

 

Conclusion and discussion 

The results validate the effectiveness and accuracy of the proposed driver 
distraction detection framework. The MSaE feature of EEG, ECG, and EMG 
changes obviously in distracted driving and is better than any other calculated 
physiological features. In addition, the classification results can also be improved 
with multi-modality signals. In the distracted driving process, the complexity of 
EEG declines while the heart rate becomes less stable. Furthermore, driver’s 
ability to control the vehicle and muscle recedes after distraction that is indicated 
with the decreased velocity, increased variability of LPV and V, as well as the 
reductive EMG complexity. 

Contribution 

Xin Zuo conceived the paper, developed the algorithm, analyzed the data, and 
wrote and revised the manuscript. Chi Zhang contributed to the 
conceptualization of the paper, data collection, methodology, writing-editing. 
Fengyu Cong, Jian Zhao, and Timo Hämäläinen supervised the work and edited 
the manuscript. 
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4.4 Article IV: Cross-subject emotion recognition using fused en-
tropy features of EEG 

Xin Zuo, Chi Zhang, Timo Hämäläinen, Hanbing Gao, Yu Fu and Fengyu Cong. 
(2022). Cross-subject emotion recognition using fused entropy features of EEG. 
Entropy. 24(9), 1281. 

Objective 

Previous studies have demonstrated that the emotion state of drivers has effect 
on their performances and behaviors and that it is bound up with driving safety 
(Picard, 2003). EEG is generated by the spontaneous electrical activity of neutral 
nervous system, so high interest has been aroused in classifying emotions with 
it. Various entropy features of EEG have been used in detecting emotion state. 
However, the ability of manifesting the implicit information of EEG varies with 
features. In order to reliably detect different emotions in time and alert drivers to 
keep safe, a framework for cross-subject emotion recognition using the fused 
entropy features of EEG and BiLSTM is proposed. 

Methods 

The SEED dataset was used in this article. 12 electrodes in the lateral temporal 
brain region were selected from the EEG dataset, as previous studies have proved 
that not all electrodes are relevant to emotion and that more active brain activities 
can be found in the lateral temporal region experiencing emotional fluctuations 
(Almahasneh et al., 2014; W.-L. Zheng & Lu, 2015). The selected electrodes were 
FT7, T7, TP7, P7, C5, CP5, FT8, T8, TP8, P8, C6, and CP6. The data was also 
downsampled to 256 Hz to reduce the computation and save time. Then the five 
rhythms including delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), 
and gamma (30-50 Hz) were roughly extracted by decomposing EEG with db6. 
In the end, the WT-based method was used to eliminate the artifacts in five 
frequency bands. 

Then, MSE and four traditional entropy features (i.e., FE, AE, DE, RE) were 
utilized to mine for the dynamic emotion information in EEG. After that, BiLSTM 
classifiers were trained so as to learn the long-term dependency and mutual effect 
of different features. The classifiers were trained not only with each single feature 
but also the fused features to compare the performance of BiLSTM. 

Results 

The activity of gamma rhythm after preprocessing is apparently different under 
different emotions as shown in Figure 17(a). It is much more active than other 
two states while in positive state, followed by negative emotion. The waveform 
of DE shares a similar pattern with FE that largest values appear in positive state 
and that lowest values occur in neutral state. The fluctuations of AE and RD show 
analogous tendency, which are in contrast with those of DE and FE. A slightly 
growing trend can be observed in the MSE feature when the emotion state 
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converts from neutral to positive. As for the results of emotion recognition, MSE 
achieves the best performance with BiLSTM peaking at 67.9% when recognizing 
emotion status with single type feature. If fused features are used to detect 
emotion at the same, the accuracy is further improved to 70.05%. 

 

  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 

FIGURE 17  The results of EEG analysis. “1”, “0”, and “-1” are the positive, neutral, and 
negative emotions, respectively. The magenta dashed lines show the bounda-
ries of different emotions. (a) Preprocessed gamma rhythm. (b) DE. (c) AE. 
(d) FE. (e) RE. (f) MSE. 
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Conclusion and discussion 

This study validates the feasibility to study and recognize various emotions with 
the proposed framework. It shows that the MSE feature is much more effective 
in detecting the emotion status than other conventional entropy features if single 
type of EEG feature is used in emotion recognition. What’s more, different 
features indeed provide complementary information for each other that is 
conducive to the enhancement of the classifier’s performance. 

Contribution 

Xin Zuo conceived the paper, developed the algorithm, analyzed the data, and 
wrote and revised the manuscript. Chi Zhang contributed to the 
conceptualization of the paper, methodology, and writing-editing. Timo 
Hämäläinen and Fengyu Cong supervised the work and edited the manuscript. 
Hanbing Gao and Yu Fu downloaded the data. 
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5 CONCLUSION AND DISCUSSION 

This dissertation aims to explore the complex information contained in 
physiological signals induced by driver state fluctuation using entropy features 
and effectively detect driver state for driving safety. The findings of the 
dissertation are firstly summarized in this chapter. Then, the limitations of the 
current work are discussed. Finally, some prospective future directions based on 
the current research are considered. 

5.1 Summary of the findings 

This dissertation is mainly focused on the detection of abnormal driver state (i.e., 
driver distraction and emotion) with physiological signals because of their 
negative effects on road safety. Articles I, II, and III pay close attention to driver 
distraction detection with ML and DL algorithms. Article IV studies emotion 
recognition based on entropy features and DL algorithm. 

Article I proposes a ML method for driver distraction detection in realistic 
driving environment from the view of complexity of EEG signals. One challenge 
of the proposed method lies in how to reduce the effect of residual noise on 
results. In this article, the MSE feature is adopted to manifest the complexity of 
EEG and reduce the residual noise’s influence by calculating entropy in multiple 
time scales. Then, how different features compensate for each other while 
detecting distraction with fused features is investigated with the RF algorithm. 
The results demonstrate that RF can distribute corresponding weights to 
different features according to their importance in detecting distraction and that 
the contribution of MSE is obviously the most among all features. Thus, it is 
useful to reduce the effect of residual noise with MSE feature. But the 
classification accuracy still needs to be improved. 

Article II designs a framework for driver distraction detection based on the 
MSE feature of EEG and BiLSTM. The fluctuation pattern of alpha rhythm is 
studied with MSE.  The value of MSE declines obviously after distraction and 
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sooner a minimum value appears. Besides, how driver’s behaviors and 
performance change with distraction is also studied with the statistical analysis 
of behavioral data. The result proves that drivers tend to brake and decrease the 
speed after distraction to keep safe and that their vehicle controlling ability is 
significantly influenced in this condition. What’s more, the BiLSTM classifer can 
greatly increase the detection accuracy by means of the long- and short-term 
contextual information in signals compared to other traditional ML algorithms. 

Article III presents a driver distraction detection framework based on the 
MSaE feature of multi-modality physiological signals gathered in a simulated 
driving experiment. The biggest challenge in this work is that the entropy values 
change with sample frequency, thus resampling problem occurs when the signal 
is downsampled for improving calculation efficiency and saving computational 
cost. To overcome this problem, MSaE is recruited to explore the complexity of 
EEG, ECG, and EMG. Next, an entropy-based resampling method is applied to 
find the appropriate downsampling rate for each signal. The MSaE waveform of 
EEG shows a similar pattern with the MSE of EEG in Article II. MSaE of ECG 
increases after distraction, which indicates the heart rate is less stable under this 
circumstance. In addition, driver’s ability to control the muscle and vehicle is also 
greatly affect by distraction. Moreover, it is easy to observe the changes of driver 
state with MSaE of physiological signals, which is beneficial to explore the 
complexity and overcome the resampling problem compared to other features. 
Lastly, more valuable information about driver distraction can be learn with 
LSTM when incorporating multiple modalities signals, thus contributing to the 
increasement of detection accuracy. 

Article IV introduces a cross-subject emotion recognition framework 
utilizing fused entropy features of EEG and BiLSTM. The results show that the 
waveforms of different features fluctuate in various patterns and that MSE is 
superior to other conventional entropy features for investigating the complex 
emotion information in EEG. As for the emotion recognition results, the highest 
accuracy is achieved with MSE while single type of features is used for 
classification. Additionally, the classifier’s performance can be promoted by 
means of integrating various features. This result also demonstrates that 
information compensation takes place between features. 

In conclusion, this dissertation systematically studies the fluctuation 
patterns of physiological signals with multiscale entropy of optimized sampling 
rate in different driver status to eliminate the influence of residual noise and 
resampling. Then, based on the found patterns, it proposes to automatically 
detect abnormal driver state with LSTM. The presented framework shows the 
potential to investigate and detect abnormal mental state with multimodal 
signals. 
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5.2 Research limitations 

Although the dissertation achieves to study how driver state affects driver’s 
responses and behaviors and detect driver’s abnormal state successfully, 
limitations still exist in this study. Firstly, to detect driver distraction, two driving 
experiments are designed and conducted to induce distraction related to 
cellphone usage and gather the needed data. In the first distraction experiment, 
only six subjects were recruited to take part in the experiment, then EEG and 
vehicle behavioral data were collected. Even though high detection accuracy has 
been achieved, the dataset is to some degree kind of small that need to be further 
validated with more subjects and signals. In the second simulated distraction 
experiment, the dataset involves sixty subjects and four kinds of signals to detect 
distraction. But it has been pointed out that realistic driving environment with 
more uncertain factors is more complex than simulated environment. 
Additionally, driver distraction is only induced by cellphone usage task, how the 
proposed framework works in detecting distraction induced by other tasks 
remains uncertain. So, applying the proposed framework to real driving dataset 
with more distraction tasks should be further studied. 

Secondly, the emotion data selected from SEED contains stimuli and 
subjects of two native languages i.e., Chinese and French. The stimuli number of 
the two groups subjects also differs. In Article IV, the emotion recognition 
framework is proposed with the assumption that the differences of stimuli 
number and native language would not influence the results, since the emotion 
of a subject is induced by its native language film clips and the categories of 
stimuli are the same in the two groups subjects. However, there may be effects 
caused by these differences without drawing attention. Besides, only EEG is 
utilized to recognize emotion status in this study. It is meaningful to detect driver 
emotion with more modalities signals so as to integrate their merits. 

Thirdly, the artifacts in EEG were removed with a WT-based approach, 
which requires a threshold to minish the wavelet coefficients. But to what extent 
the coefficients should be reduced is still very subjective. What’s more, the EEG 
signal was analyzed from the perspectives of time-domain, frequency-domain, 
as well as complexity. Yet, the spatial information and the interaction among 
different electrodes is to some extent overlooked. Besides, this dissertation 
focuses on detecting driver’s abnormal state with hand-crafted features, it is 
necessary to compare the results with the up-to-date end-to-end methods. 

Lastly, this dissertation proposes to detect driver’s abnormal state with 
multimodal signals and studies how each kind of signal is influenced by driver’s 
state fluctuation. But how different signals are correlated and whether the 
interrelationship between the central and peripheral nervous systems are related 
to driver’s state still need to be further explored. 
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5.3 Future directions 

According to the above-described limitations in this dissertation, there are 
several promising directions in the future work. 

Firstly, a driving experiment should be designed to induce driver 
distraction in real road with more kinds of tasks (like eating and operating 
devices), subjects and modalities of signals such as blood pressure, respiration, 
skin conductivity and so on. Then, the proposed driver distraction framework 
should be tested not only on the obtained dataset but also on various dataset 
publicly available in order to validate its accuracy and efficiency. 

Next, another driving experiment bringing in emotional fluctuations of 
drivers should be designed in real driving environment. If any words are in the 
stimuli within various categories, The stimuli should be in the same language 
and emotions of subjects are induced by their native language. Additionally, it is 
also a promising direction to analyze driver emotion with multi-modality signals.  

Following this, different modality of signals should not only be used to 
analyze the physiological changes while abnormal driving states independently, 
but also be used to explore the interrelationships among them. For instance, Are 
there correlations between different signals in different driving states? Whether 
and how are the correlations related to driving states? So, it will be an interesting 
topic to study the interrelationships among multiple modalities signals. 

In addition, different objective and interpretable preprocessing methods 
should be used and compared to eliminate the artifacts in physiological signals 
like singular spectrum analysis, which is an approach to remove irrelevant 
artifacts by decomposing signals into interpretable individual components. Then, 
the spatial information of EEG and how to evaluate the interaction between 
electrodes should be further studied with state-of-the-art algorithms. To make 
the proposed framework more reliable, comparison between the current hand-
crafted feature engineering and end-to-end algorithms could be made. 

Finally, there are also other DL algorithms to learn the long-term context 
dependency in time series like Transformers, which have showed superiority in 
natural language processing and computer vision with its multi-head self-
attention and parallel inputting mechanisms. Thus, it is potential to apply 
Transformers and such kinds of DL algorithms to driver’s abnormal state 
detection for exploring the most suitable classifier in this field. Moreover, it is 
believed that DL is a black box when using it to detect driver state. Hence, it is 
interesting and prospective to improve the transparency and interpretability of 
the algorithm in the future as well. 
  



 
 

61 
 

YHTEENVETO (SUMMARY IN FINNISH) 

Tämä väitöskirja keskittyy kuljettajan poikkeavan tilan (eli kuljettajan häiriön ja 
tunnetilan) havaitsemiseen fysiologisten signaalien avulla niiden negatiivisten 
liikenneturvallisuusvaikutusten vuoksi. Artikkelit I, II ja III kiinnittävät erityistä 
huomiota kuljettajan häiriön havaitsemiseen koneoppimisen (Machine Learning, 
ML) ja syvällisen oppimisen (Deep Learning, DL) algoritmeilla. Artikkeli IV tut-
kii tunnetilan tunnistusta entropiapohjaisten piirteiden ja DL-algoritmin avulla. 

Artikkeli I esittää ML-menetelmän kuljettajan häiriön havaitsemiseksi rea-
listisessa ajoympäristössä EEG-signaalien monimutkaisuuden näkökulmasta. 
Ehdotetun menetelmän haasteena on, miten vähentää jäännösäänien vaikutusta 
tuloksiin. Tässä artikkelissa moniskaalaentropiapiirre otetaan käyttöön EEG:n 
monimutkaisuuden ilmentämiseksi ja jäännösäänien vaikutuksen vähentä-
miseksi. Entropia lasketaan useilla aikaskaaloilla. Sitten tutkitaan käsittelemällä 
yhdistettyjä piirteitä Random Forest -algoritmin avulla, miten erilaiset piirteet 
kompensoivat toisiaan häiriön havaitsemisessa. Tulokset osoittavat, että tämä al-
goritmi voi jakaa vastaavat painot eri piirteille niiden tärkeyden perusteella häi-
riön havaitsemisessa ja että moniskaalaentropian osuus on selvästi suurin kai-
kista piirteistä. Siksi on hyödyllistä vähentää jäännösäänien vaikutusta monis-
kaalaentropiapiirteen avulla, mutta luokittelutarkkuutta on vielä parannettava. 

Artikkeli II suunnittelee mallikehyksen kuljettajan häiriön havaitsemiseksi 
EEG:n moniskaalaentropiapiirteen ja kaksisuuntaisen pitkäaikaisen lyhyen aika-
välin muistin perusteella. Alfa-rytmin vaihtelukuvioita tutkitaan moniskaalaen-
tropian avulla. Moniskaalaentropian arvo laskee selvästi häiriön jälkeen, ja mini-
miarvo ilmenee jo aiemmin. Lisäksi kuljettajan käyttäytymistä ja suoritusta tut-
kitaan häiriön yhteydessä käyttäytymisdatan tilastollisen analyysin avulla. Tulos 
osoittaa, että kuljettajat taipuvat jarruttamaan ja vähentämään nopeutta häiriön 
jälkeen pysyäkseen turvassa ja että heidän ajoneuvon ohjauskykynsä on merkit-
tävästi parempi tässä tilassa. Lisäksi kaksisuuntaisen pitkäaikaisen lyhyen aika-
välin muistin luokittelija voi merkittävästi lisätä signaalien havaitsemistark-
kuutta pitkän ja lyhyen aikavälin kontekstin tiedoilla verrattuna muihin perin-
teisiin ML-algoritmeihin. 

Artikkeli III esittää kuljettajan häiriön havaitsemisen mallikehyksen monis-
kaalaentropian absoluuttisten aikaskaalojen perusteella monimuotoisista fysio-
logisista signaaleista, jotka on kerätty simuloidussa ajokokeessa. Suurin haaste 
tässä työssä on se, että entropia-arvot muuttuvat näköradan kanssa. Uudelleen-
näytteistämisongelma ilmenee, kun signaalia alennetaan näytteenottoa varten 
laskennan tehokkuuden parantamiseksi ja laskennallisten kustannusten säästä-
miseksi. Tämän ongelman ratkaisemiseksi otetaan käyttöön moniskaalaentropia 
absoluuttisilla aikaskaaloilla tutkittaessa EEG:n, EKG:n ja elektromyografian 
(EMG) monimutkaisuutta. Seuraavaksi entropiaan perustuvaa uudelleennäyt-
teistämismenetelmää sovelletaan kullekin signaalille sopivan näköradan löytä-
miseksi. EEG:n moniskaalaentropia absoluuttisilla aikaskaaloilla (aaltomuoto) 
näyttää samanlaiselta kuin EEG:n moniskaalaentropia artikkelissa II. Se kasvaa 
häiriön jälkeen, mikä osoittaa sykkeen olevan vähemmän vakaa tällaisessa tilassa. 
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Lisäksi kuljettajan kyky hallita lihaksia ja ajoneuvoa vaikuttaa suuresti häiriöön. 
Kuljettajan tilan muutosten havaitseminen moniskaalaentropian absoluuttisten 
aikaskaalojen avulla fysiologisissa signaaleissa on helppoa, mikä on hyödyllistä 
monimutkaisuuden tutkimiseksi ja uudelleennäytteistämisongelman voitta-
miseksi muihin piirteisiin verrattuna. Pitkäaikaisen lyhyen aikavälin muistin 
avulla voidaan saada arvokasta lisätietoa kuljettajan häiriöstä, kun otetaan käyt-
töön useita modaliteettisignaaleja, mikä edistää havaitsemistarkkuuden paran-
tumista. 

Artikkeli IV esittelee monitieteellisen tunteentunnistuskehyksen, joka hyö-
dyntää EEG:n sulautettuja entropiapiirteitä ja kaksisuuntaista pitkäaikaista ly-
hyen aikavälin muistia. Tulokset osoittavat, että erilaisten piirteiden aaltomuo-
dot vaihtelevat erilaisissa malleissa ja että moniskaalaentropia on muita perintei-
siä entropiapiirteitä parempi monimutkaisen tunneinformaation tutkimisessa 
EEG:ssä. Mitä tunnistustuloksiin tulee, korkein tarkkuus saavutetaan moniskaa-
laentropialla, kun yhtä piirrettä käytetään luokittelussa. Lisäksi luokittelijan suo-
rituskykyä voidaan parantaa eri piirteitä integroimalla. Tämä tulos osoittaa myös, 
että tietojen kompensaatiota tapahtuu piirteiden välillä. 

Yhteenvetona voidaan todeta, että tämä väitöskirja tutkii järjestelmällisesti 
fysiologisten signaalien vaihtelumalleja moniskaalaentropian avulla opti-
moidulla näköradalla eri kuljettajatiloissa poistaakseen jäännösäänien ja uudel-
leennäytteistämisen vaikutuksen. Tämän perusteella voidaan ehdottaa kuljetta-
jan poikkeavan tilan automaattista havaitsemista pitkäaikaisen lyhyen aikavälin 
muistin avulla. Esitetty mallikehys osoittaa mahdollisuuden multimodaalisia 
signaaleja käyttäen havaita ja tutkia poikkeavaa mielentilaa.  
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Abstract—Driver distraction has been one of the primary causes 

of traffic accidents. Electroencephalography (EEG), a record of 

the electric potential from the scalp, is considered as a reliable 

indicator of brain activities. It has been widely used to detect 

driver distraction. Previous studies have analyzed driver 

distraction based on time and frequency domain features of 

EEG. However, challenges still exist in manifesting the 

distraction information of EEG which contains a large amount 

of complex information about driver distraction in realistic 

driving scenarios from the perspective of complexity. In this 

paper, we propose a driver distraction detection framework 

using Random Forest (RF) based on the complexity feature 

fusion of EEG in real driving environment. Five entropy-based 

features of EEG are firstly extracted with a sliding window. 

Then, an RF classifier is trained with the extracted features to 

detect driver distraction. Our results show that differential 

entropy (DE) with an accuracy of 72.9% achieves the best result 

while single type feature is applied to detect distraction. The 

classifier’s accuracy is further increased by about 7% using 

fused multiple features compared with the highest accuracy 

obtained by single type feature. In terms of feature contribution, 

we found that the feature with the best distraction detection 

result by using single type features may not contribute the most 

when using fused multiple features. 

Keywords—EEG, driver distraction, feature fusion, 

entropy, random forest 

I. INTRODUCTION 

Driver distraction has been considered to be one of the 
main causes of car accidents, as it can reduce drivers’ ability 
to manipulate cars and their awareness of potentially 
dangerous surroundings [1]. The National Highway Traffic 
Safety Administration (NHTSA) reported that about 2,800 
people died and 400,000 were injured in traffic accidents 
involving driver distraction in 2018 while it rose to 3142 
deaths and about 424,000 injuries in 2019 [2], [3]. There is a 
large number of factors diverting drivers’ attention away from 
driving safely and thus leading to driver distraction, such as 
mobile phones, passengers, in-vehicle infotainment facilities, 
and so on. The factor of mobile phone usage ranked even the 
first among all possible factors [4]. 

To avoid potentially high-risk situations and prevent the 
happening of accidents caused by driver distraction, it is 
important to detect whether a driver is distracted or not. Many 

methods have been utilized in the literature to study driver 
distraction. Most of them divide driver distraction into four 
types (i.e., visual distraction, manual distraction, cognitive 
distraction, and audio distraction) and mainly focus on one 
type of distraction [5]-[8]. For example, Le et al. [9] designed 
an n-back digit recall experiment in both simulated and 
naturalistic driving scenarios to induce cognitive workload. 
The result showed that high level of distraction would be 
caused by tasks with high cognitive demand. Although these 
kinds of experiments can to some extent make contributions 
to the study of driver distraction, it is usually a combination of 
two or more distraction types in real driving scenarios. In Le’s 
digit recall experiment, drivers firstly need to hear the voice 
instructions and bear in mind and then give responses when 
the same instruction appears. It actually induces both audio 
distraction and cognitive distraction, which is because driver 
distraction is caused by the interactions among driver, vehicle, 
and environment and it usually appears in a form of mixed 
types in real driving. Hence, challenges still exist in detecting 
driver distraction efficiently in real traffic. 

Many kinds of data have been used to detect driver 
distraction, such as visual data, physiological data, and vehicle 
behavioral data in current research [10]-[12]. Physiological 
signals can provide more reliable information than other data 
types as they are reflections of the driver’s actual internal 
state. Among all the physiological signals, 
electroencephalography (EEG) is used more frequently to 
estimate driver states with the superior performance of 
representing brain information [13]. For instance, Fan et al. 
[14] collected the EEG data in a simulated driving 
environment and proposed a time-series ensemble learning 
method to detect fatigue and distraction based on EEG 
features. Quantities of research have been done analyzing 
EEG data from the perspectives of time domain and frequency 
domain to study driver distraction. Yang et al. [15] extracted 
frequency domain EEG features like power spectral density 
and log-transformed power of four EEG frequency bands and 
used them to detect driver distraction. Wang et al. [16] utilized 
the frequency domain features, time domain features as well 
as time-frequency features to predict the duration of the 
distraction period and reached a satisfying result. However, 
EEG signals record electrical activities in the brain regions 
between pairs of electrodes on the scale. It not only reflects 
the temporal and spatial information of brain activity but also 

This work was supported in part by the National Natural Science 

Foundation of China under Grant 61703069 and 62001312 and in part by 
the Fundamental Research Funds for the Central Universities under Grant 

DUT21GF301. 



contains a large amount of complexity information [17]. The 
traditional most commonly used features may be not enough 
to manifest the useful complexity information to some degree. 
Recently, it has been demonstrated that the entropy based 
methods can explore the complex human state information 
contained in EEG in many research fields (e.g., sleep staging, 
disease detection, and mental stress detection). Su et al. [18] 
presented a sleep stage classification system with log energy 
entropy of EEG and found that the system has high generality 
which is consistent with the polysomnography records. Wang 
et al. [19] proposed a novel algorithm to predict the preictal 
state of seizure based on wavelet packet based entropy 
features of EEG and compared the results with traditional 
statistical features. The result showed that it reaches a higher 
classification rate than traditional features. Azami et al. [20] 
extracted the multi-scale entropy (MSE) feature of EEG to 
observe the dynamic complex brain activity information of 
Alzheimer's patients and found that MSE could mine for the 
dynamic EEG changes in an obvious way. Sharma et al. [21] 
extracted sample entropy (SE) and Renyi entropy (RE) at 
different frequency bands and used them to detect mental 
stress. Their results show the potential for reliable and timed 
detection of stress. Zheng et al. [22] trained a Deep Belief 
Network to recognize different emotions with differential 
entropy (DE) extracted from different brain regions. They 
found that DE can possess the useful information of EEG and 
achieve a high emotion classification accuracy. 

Although entropy based methods have shown advantages 
in detecting human states, there is still a challenge in EEG 
analysis using complexity features. Different features reveal 
the implicit information of EEG from different aspects [23]-
[25]. How the information compensation between different 
features happens in feature fusion step still needs to be studied. 
Hence, it is vital to evaluate the importance of different 
features to improve the classification performance. 

A wide range of machine learning methods has been 
adopted to detect driver distraction in the literature. Random 
Forest (RF) proposed by Breiman [26] in 2001 is widely 
applied to classification tasks. It is an algorithm that integrates 
multiple decision trees according to the idea of ensemble 
learning. With the superior features of running fast on large 
databases and estimating variables' importance in 
classification, it has been used in many fields for 
classification, feature and channel selection, and so on. Zhang 
et al. [27] presented an advanced RF classifier to select 
informative features and classify motor imagery EEG with 
higher accuracy than prevailing approaches. Wang et al. [28] 
proposed an automatic epileptic seizure detection framework 
using an advanced RF model based on the time-frequency 
features of EEG and achieved high accuracy in detecting 
seizures. 

In this paper, we propose a driver distraction detection 
framework based on entropy feature fusion using RF 
classifier. Non-intrusive wearable EEG sensors are firstly 
used to gather EEG signals in real driving scenarios. Then, 
different kinds of entropy based features in a sliding window 
are calculated to extract the complex distraction information 
in EEG. After that, the EEG features are fed into RF classifier 
to detect driver states and to estimate the importance of 
different features. The results of different kinds of features are 
finally compared. 

The remaining part of the paper is structured as follows. 
Section II explains the designed experiment. Section III 

describes the adopted methodologies. The results are shown 
in Section IV and discussed in Section V. Section VI 
concludes the paper. 

II. EXPERIMENT DESIGN 

This study was reviewed and approved by the Ethics 
Committee, Dalian University of Technology. An experiment 
was conducted on a real straight road at Dalian University of 
Technology. The Mangold-10 Bluetooth enabled wireless 
polygraph, a wearable and non-intrusive data acquisition 
headband, was used to collect EEG data. As the occipital brain 
region has been demonstrated to be related to driver mental 
state in previous studies, we put the headband’s electrodes on 
O1 and O2 according to the International 10-20 System. The 
sample rate was set as 256 Hz. 

We recruited six experienced right-handed drivers to 
participate in the experiment. All of them are mental health 
and have normal vision and auditory. Besides, they are also 
required to be experienced in using smartphones. In addition, 
all subjects are banned from smoking, and consuming drinks 
containing caffeine and alcohol the day before the experiment. 
Prior to participating in the experiment, we verified each 
subject’s qualification and obtained the informed consent 
from them. What’s more, written and oral instructions about 
the experiment were illustrated to all subjects. 

The experiment contains one normal driving trail lasting 
for about 6 seconds and five distracted driving trials with a 
duration of about 20 seconds. In the normal trial, the subjects 
were supposed to pay full attention to driving while there were 
distracting factors in the distracted driving trials. In these 
trials, they would firstly focus on driving, then they would 
receive cellphone messages from the experimenter few 
seconds later. After that, subjects were asked to check the 
message for at least three seconds. Finally, they need to react 
to the obstacles that appeared on the road at the end of the trail. 
The EEG data was gathered from the car starting to stopping. 

III. METHODOLOGY 

It can be divided into three steps to analyze the EEG data 
including preprocessing, artifacts removal, and feature 
extraction. 

A. Preprocessing 

The EEG segments of each trial were extracted from the 
raw EEG signals at first. Alpha frequency band was then 
obtained using wavelet decomposition method, since alpha 
rhythm has been proved to be correlated highly with 
distraction [29]. 

Wavelet transform is widely used to extract sub-bands of 
EEG with the character of multi-resolution. To decompose the 

signal, a mother wavelet ( )t  is firstly utilized. Then, the 

signal can be expressed according to scaled and shifted 

versions of ( )t and a corresponding scaling function ( )t  

[30]. The discrete ( )t  can be expressed as 

( ) ( )2
, 2 2 , , Z

j

j

j k t t k k j  −= −                 (1) 

The signal S(t) then is defined as 

( ) ( ) ( ) ( ) ( ), ,j j k j j k

k k

S t s k t d k t = +             (2) 



where sj(k) and dj(k) are the approximate and detailed 
coefficients at level j. 

B. Artifacts Removal 

The obtained alpha frequency band contains artifacts like 
blinks that need to be removed in this step. A wavelet-based 
method was applied in this paper. According to large 
coefficients usually generated at the places where artifacts 
appear, we can decrease these large coefficients by 
thresholding technique [31], [32]. The threshold can be 
defined as 

( ) 2 std( )j j jT mean C C= +                      (3) 

where Cj is the wavelet coefficient at jth level of 
decomposition. If the value of any coefficient is greater than 
the defined threshold, it will be halved. A new set of wavelet 
coefficients are then reconstructed to obtain the artifacts 
removed signal. 

C. Feature Extraction 

We extracted five entropy based features to explore the 
distraction information of alpha frequency band including 
approximate entropy (AE), fuzzy entropy (FE), SE, DE, and 
MSE. As the first three features are more frequently used in 
the literature than the other two features, we mainly introduce 
the algorithm of DE and MSE in this part. 

1) Differential entropy 
DE is an extension of Shannon entropy so that it can be 

used to reflect the complexity of continuous variables [33]. It 
has been validated that DE is more accurate than features like 
energy spectrum and asymmetrical features in recognizing 
different emotion types based on EEG [34]. The calculation 
formula of DE is 

( ) ( )( )DE log d
b

a
f x f x x= −                    (4) 

where f(x) represents the probability density function of the 
continuous variable and [a,b] shows the taking value interval. 
If the variable obeys Gaussian distribution N(μ,σ2) 
approximately, its DE can then be expressed as 

( ) ( )
2 2

2 2 22 2

2 2

1 1 1
DE log d log 2

22 2

x x

e e x e

 
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− −
+

−

 
 = − =
 
 

  

(5) 

2) Multi-scale entropy 
MSE can mine for the complexity information of signals 

in different time scales [20]. It involves two steps in MSE 
feature calculation: the coarse-graining process and SE 
calculation. The algorithm can be detailed as follows: 

In the first step, for EEG signal {x1, …, xi, …, xN}, a 
consecutive coarse-grained time series {y(τ)} should be 
constructed corresponding to the scale factor τ. The coarse-
grained time series {y(τ)} is defined as 

( )

( )1 1

1
, 1

j

j i

i j

y x j N







 = − +

=                     (6) 

In the second step, The SE of time series {y(τ)} is then 
calculated according to the following sub-steps. 

• An m dimension vector Ym(i) can be made up firstly 
for time series {y1, …, yj, …, yn}, 

( ) ( ) ( ) ( )[ , 1 , , 1 ], 1mY i y i y i y i m i n m= + + −   −    (7) 

• Define d as the absolute value of the maximum 
difference between the corresponding elements in 
vectors Ym(i) and Ym(j), 

( ) ( )max[| |],

0 1, ,1

d y i k y j k

k m i j j n m

= + − +

  −    −
             (8) 

• Then count the number of d＜r for each i where r is 

the given threshold and ( )m

iB r  can be expressed as 
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• The set of ( )m

iB r  are then averaged and the average 

value Bm(r) is defined by 
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                   (10) 

• Add the dimension by 1 and repeat the above process, 
then Bm+1(r) is obtained. After all the steps, SE is 
calculated by 

( )
( )

( )

1

SE , lim ln

m

mn

B r
m r

B r

+

→

 
= − 

  
                (11) 

D. Random Forest Classifier 

 

 

RF is a typical bagging model integrating multiple 
decision trees according to the idea of ensemble learning. In 
order to ensure the generalization ability of the model, the 
principles of random data and feature selection are followed 
while building each tree [35]. It works as follows [26]: 
bootstrap sample Bs is selected from the training set T at first, 
and decision trees Trb can then be built on the bootstrap 
samples. During this step, there is one-third of the samples are 
left called out-of-bag (OOB) data to calculate the 
classification error and to get estimates of variable importance 

Algorithm 1 

Input: T the training set  

N the number of decision trees to be built 

M the number of variables chosen for splitting at 

each node 

Training: for each i=1:N do 

1. Draw a bootstrap sample Bs from T. 

2. Build tree Tr
b on bootstrap sample Bs. 

3. Randomly select M candidate sets at each node of 

tree Tr
b 
, and find the best split among M sets. 

4. Build tree Tr
b without pruning. 

end for 

Output: the ensemble of trees  
1

N

bTr  

X the testing set 

Classification: Assume Cb(X) is the classification 

result of each tree. Then the result of RF 

C(X)=majority vote ( ) 
1

N

bC X  



in the classification step. After that, M variable candidate sets 
are randomly selected from the whole variable set at each split. 
Then select the best splitting way from M candidate sets and 
split at the node. To ensure a low bias, each tree is grown to 
the largest extent without pruning. After this step, the RF tree 
will repeat the above steps recursively until it is large enough 
to obtain the minimum classification error and then all 

decision tress  
1

N

bTr  are obtained. Finally, the trained RF 

classifier can be used to classify the testing set by voting for 
all trees’ results. The pseudo-code of RF is shown in 
Algorithm 1. 

IV. RESULTS 

After obtaining the five entropy based features of alpha 
frequency band from all subjects, an RF model was trained 
using Algorithm 1. The data of five subjects was selected as 
the training set and the remained data was used as the testing 
set. RF classifier adopted the feature matrixes and 
corresponding label vectors of the training set to optimize the 
model parameters and then output the binary classification 
results of the testing set. In this paper, to compare the 
performance of RF using single type feature with that of 
multiple features, we trained classifiers for each type of 
feature and fused multiple features, respectively. The results 
of different features are shown in Table I. “ALL” stands for 
all the five entropy features of EEG. 

TABLE I.  THE MEAN ACCURACIES OF DIFFERENT FEATURES (%) 

Features AE DE FE MSE SE ALL 

RF 58.88 72.9 65.42 68.22 63.55 79.51 

As for the results of single type EEG features, it is shown 
in Table I that the mean accuracy of DE reaches 72.9%, which 
is obviously higher than the results of the other four entropy 

features. MSE, followed by FE and SE, ranks second with a 
classification accuracy of 68.22%. The AE feature leads to the 
lowest accuracy of the RF model, which is only 58.88%. The 
model performance increases significantly when using multi-
features to detect driver distraction peaking at 79.51%. 
Furthermore, with RF’s ability to output the importance of 
different features during classification, we also estimated each 
feature’s importance in the feature fusion distraction detection 
process. The results are shown in Fig. 1. 

It is clearly shown in Fig. 1 that there are significant 
differences in the importance of different EEG features for 
detecting driver distraction. MSE shows greater importance 
on the feature fusion distraction detection than the other four 
features. DE following MSE is the second important feature 
to detect distraction. It is not in accordance with the 
classification results based on single type feature in which DE 
display a higher accuracy than MSE. Besides, AE still shows 
the lowest importance among all features and the importance 
of FE and SE lies between the importance of AE and DE. 

V. DISCUSSION 

Driver distraction has drawn a growing concern in recent 
years with the widespread usage of smartphones and advanced 
in-vehicle infotainment facilities [7]. An RF model to detect 
driver distraction is trained using five kinds of complexity 
based EEG features. The results are compared not only among 
single type features but also between fused multiple features 
and single type features. 

The results of driver distraction detection in Table I 
indicate that the mean accuracy of DE achieves the highest 
than other single type entropy based features. It is consistent 
with the results in [22], as DE has been proved to be a better 
feature to recognize human mental states. Moreover, the 
classification accuracy of multiple features, with an accuracy 
of 79.51%, is notably greater than that of any single type 
feature. Since different features can compensate for the 
inadequacy of each other [23], more useful information of 
distraction of several different kinds of EEG features can be 
learn by RF model. Thus, a better performance can be reached 
in detecting driver distraction. The accuracy in our study is 
better than that in the research in [36], who adopted the power 
spectral density and coherence indicators of EEG to detect 
distraction and reached an accuracy of 73.4% with RF. A 
similar accuracy of about 80% was obtained for driver state 
detection in [37] with time domain and frequency domain 
features. By estimating the importance of different features in 
distraction detection using multiple features, we can know 
from Fig. 1 that MSE ranks the first among all features and 
DE is apparently less important than MSE on the classification 
results. The finding is not accordant with the classification 
results utilizing single type features in this paper but it 
corresponds to the results in our previous work. The BiLSTM 
model achieved the highest accuracy based on the MSE 
feature of EEG in [38], which might be because of the 
advantages of BiLSTM to learn the bidirectional long and 
short-term dependency of EEG. In this case, the MSE feature 
of EEG may reveal more contextual information in EEG and 
thus leading to the highest importance in the feature fusion 
distraction detection. Furthermore, the results in Table I and 
Fig. 1 also shows that single type of feature with which the 
best classification result is obtained may be not necessarily the 
feature with the most contribution after feature fusion. 

VI. CONSLUSION 

In this paper, we propose a driver distraction detection 
framework applying the RF classifier based on fused 
complexity features of EEG. It proves that DE feature is the 
best choice to explore the complex distraction information in 
EEG than other entropy features used in the literature while 
detecting driver distraction based on single type feature. 
Besides, the classifier’s performance is greatly enhanced by 
fusing different EEG features, which demonstrates that 
different features can provide complementary distraction 

 

 

Fig. 1. The importance of features in distraction detection using fused 
features. Error bar shows the standard deviation. 



information of EEG. Additionally, MSE contributes the most 
among all features to detect driver distraction by fused 
features. It confirms that a feature achieving the best 
distraction detection result while using single type features 
may not contribute the most for driver distraction detection 
utilizing multiple features. Our work provides a machine 
learning method to detect driver distraction in real driving 
situations from the perspective of complexity features of EEG 
signals. It is useful for mining the complex dynamic brain 
activity information and driver distraction detection systems 
in real traffic. 
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Abstract—Driver distraction diverting drivers’ attention to 

unrelated tasks and decreasing the ability to control vehicles, has 
aroused widespread concern about driving safety. Previous studies 
have found that driving performance decreases after distraction 
and have used vehicle behavioral features to detect distraction. But 
how brain activity changes while distraction remains unknown. 
Electroencephalography (EEG), a reliable indicator of brain 
activities has been widely employed in many fields. However, 
challenges still exist in mining the distraction information of EEG 
in realistic driving scenarios with uncertain information. In this 
paper, we propose a novel framework based on Multi-scale 
entropy (MSE) in a sliding window and Bidirectional Long Short-
term Memory Network (BiLSTM) to explore the distraction 
information of EEG to detect driver distraction based on multi-
modality signals in real traffic. Firstly, MSE with sliding window 
is implemented to extract the EEG features to determine the 
distraction position. Statistical analysis of vehicle behavioral data 
is then performed to validate driving performance indeed changes 
around distraction position. Finally, we use BiLSTM to detect 
driver distraction with MSE and other traditional features. Our 
results show that MSE notably decreases after distraction. 
Consistent with the result of MSE, driving performance 
significantly deviates from the normal state after distraction. 
Besides, BiLSTM performance of MSE outperforms other 
entropy-based methods and is better than behavioral features. 
Additionally, the accuracy is improved again after adding MSE 
feature to behavioral features with a 3% increasement. The 
proposed framework is useful for mining brain activity 
information and driver distraction detection applications in 
realistic driving scenarios. 
 

Index Terms—Driver distraction, EEG, driving performance, 
MSE, BiLSTM 
 

I. INTRODUCTION 
OWADAYS, the traffic system is highly developed with 
the increasing number of cars on road. Unfortunately, 
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traffic accidents have become frequent. The World Health 
Organization reported that over 1.35 million people were killed 
and about 50 million were injured due to traffic accidents all 
over the world in 2018 [1]. According to the National Highway 
Traffic Safety Administration (NHTSA), one of the major 
contributory factors of traffic accidents is driver distraction [2]. 

Driver distraction is a diversion of attention away from 
activities critical for safe driving (i.e., the task of driving) 
toward a competing activity (e.g., using a cell phone) [3]. In a 
survey released by Ford Motor Company and Tsinghua 
University in 2017, almost 39% of respondents caused or nearly 
caused an accident because of distraction [4]. Due to the use of 
cell phones and advanced infotainment systems in cars, drivers’ 
attention is often taken away from roads while driving, thus 
reducing their abilities to control the vehicles and to aware of 
the surroundings causing more accidents [5]-[7]. What’s more, 
it can also increase the reaction time to the upcoming obstacles 
[8]. Using cell phones even topped the list for distracted driving 
reported in 2017 [4]. 

The existing research about driver distraction mechanism 
usually could be divided into four different types: manual 
distraction, audio distraction, visual distraction, and cognitive 
distraction [9]-[12]. In the previous studies, the subjects were 
usually asked to perform a specific secondary task while driving 
for a certain type of distraction to obtain distracted data and then 
to analyze driver distraction. For instance, “operate devices” 
tasks are usually used to get the manual distraction signals. 
Wollmer et al. [13] chose eight tasks (e.g., adjust radio sound 
settings, switch the TV mode and so on) as manual distraction 
conditions to get the vehicle behavioral signals. They found that 
tasks with different levels of difficulty would cause different 
degrees of distraction. As for cognitive distractions, Anh Son et 
al. [14] set an n-back task of digit recall in a simulated situation 
as well as in a naturalistic situation to impose cognitive 
workload. The result showed that tasks accompanied by high 
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cognitive demand had effects on the drivers’ eye involuntary 
movement and would cause a high level of distraction. 
Although these experiment designs of different kinds of 
distraction tasks mainly lead to a specific type of distraction to 
some degree and contribute to the research of distraction 
mechanism, it usually involves more than one type of 
distraction in realistic driving situations. For example, when 
drivers are asked to adjust the radio sound settings for collecting 
the manual distraction signals in a distraction experiment, they 
firstly should find where the button is and then turn it to the 
required place. This process involves not only the manual 
distraction but also the visual distraction. As driver distraction 
is a product of the driver-vehicle-environment interaction, its 
forms are not fixed and usually a combination of different types 
of distraction in real scenarios. Thus, there is still challenge in 
the detection of driver distraction in real driving scenarios. 

In fact, previous studies have explored many kinds of sensing 
technologies to detect driver distraction. A commonly used 
technology is video camera capturing drivers’ facial and body 
behaviors (e.g., gaze movement and head pose) [15]. This kind 
of method can easily collect the visual data and conveniently 
detect distraction. However, the results are sensitive to the 
illumination, facial occlusion, and drivers’ behavioral habits. 
The Controller Area Network-Bus (CAN-Bus) data providing 
the vehicle behavioral information is also widely utilized in the 
field. It mainly includes the speed, lateral position, and steering 
wheel angle, etc. [16]-[19]. The facilities of this kind of method 
are easy to obtain and quite low cost, but the signals are subject-
dependent and influenced by the weather and traffic conditions 
easily [20]. There is also some work that has been done by using 
the microphone to collect the acoustic signals for driver 
distraction detection [21], [22]. The performance of this 
approach is acceptable, but it just works for audio distraction. 
Moreover, wearable sensors have also been employed to get the 
human’s physiological signals such as electroencephalography 
(EEG), electrocardiogram (ECG), and electrooculography 
(EOG) [23]-[25]. EEG is the predominant and most used signal 
among all physiological signals. Although physiological 
signals provide more reliable results for representing drivers’ 
real internal state, the data collecting process is intrusive and 
may to some degree affect drivers’ behaviors. 

In recent years, with the development of portable and less 
intrusive equipment as well as the multi-sensor collection 
techniques, more and more researchers tend to use hybrid 
signals to study driver distraction, for it is widely agreed that no 
single signal alone could provide sufficient information about 
driver distraction [26],. Li et al. [27] collected data from video 
cameras, microphone arrays and CAN-Bus to model drivers’ 
behavior while executing secondary tasks. Zhang et al. [28] 
utilized vehicle behavioral signal, EMG, acoustic signal as well 
as visual signal for detecting driver distraction. Lechner et al. 
[29] designed a lightweight framework involving signals of 
driver movement and GPS position to recognize driver 
inattentiveness. In addition, Almahasneh et al. [30] conducted 
a simulated driving experiment to study how EEG and driving 
performance changes because of cognitive secondary tasks. 
They found that the effects of driver distraction can be clearly 

seen in the lane keeping ability and accidents occurrence level. 
As EEG provides reliable information of brain activities, and 
vehicle behavioral signals reflect the changes of driving 
performance, it is obvious that the system performance would 
be improved if EEG and vehicle behavioral signals are 
employed at the same time to develop driver distraction 
detection system. In this context, we propose a multi-modality 
driver distraction detection framework in real driving scenarios 
based on EEG and vehicle behavioral signals. 

The paper is organized as follows. Section II lists the related 
works about the literature review. Section III introduces the 
accomplished experiment details and the captured signals used 
in our research. The adopted methodologies are described in 
Section IV. Results of the study are presented in Section V and 
discussed in Section VI. Finally, Section VII concludes the 
paper. 

II. RELATED WORK 
There are two major parts in driver distraction detection 

including the feature extraction part and classification part. 
Various features are adopted to explore distraction information 
existing in different types of data. Many researchers analyzing 
driver distraction based on EEG in the literature, and they 
usually extract the frequency domain, or the time domain 
features of EEG to mine the distraction information. Fan et al. 
[31] calculated the energies of different EEG rhythms and their 
ratios as frequency domain features of EEG and used them for 
distraction detection. Yang et al. [32] extracted the power 
spectral density and log-transformed power of four EEG waves 
to evaluate the distraction detection performance. Barus et al. 
[33] used not only frequency domain features but also time 
domain features of EEG like kurtosis and Hurst Exponent to 
detect drivers’ cognitive load. However, it still only achieved 
about 70% accuracy. As we all know, EEG signals are recorded 
directly on the scalp surface and the reflection of the driver’s 
internal electrical activity originated by the brain [34]. But they 
are also quite complex containing a large amount of information 
[35]. The conventional features can surely represent the 
frequency or time domain features of EEG, but how to manifest 
the complexity of EEG still needs to be further studied. It can 
reflect the non-linear dynamic changes of the brain activities 
and manifest the complex distraction information by analyzing 
the EEG signals of the distracted drivers from the perspective 
of complexity. The complexity-based algorithm is currently 
widely utilized in many other areas (e.g., fatigue analysis, 
emotion classification and sleep staging) and has shown 
advantages. For example, Gao et al. [36] implemented the 
wavelet entropy to investigate the EEG-based fatigue driving 
and found that a significant difference exists between the alert 
and fatigue states. Zheng et al. [37] trained an advanced deep 
learning model with differential entropy. The results showed 
that differential entropy possesses accurate and stable 
information of EEG data for emotion classification. Tang [38] 
applied sample entropy and fuzzy entropy to represent the 
features of the sleeping EEG data. He demonstrated that the two 
kinds of features could effectively improve the accuracy of 
sleep staging. In these studies, the dynamic changes of EEG 
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during fatigue and sleep are reflected through the complexity-
based features.

In spite of the existing advantages, a significant challenge 
still remains in the distracted EEG analyzing procedure based 
on complexity features. Actually, no matter what kinds of 
preprocessing methods are adopted, the artifacts cannot be 
eliminated completely and will still exist to a certain extent [39]. 
In this case, the residual noise will be included in the 
complexity of EEG while calculating the complexity-based 
feature, and the robustness of the obtained result will be
relatively poor. Multi-scale entropy (MSE) can reduce the 
influence of residual noise on the results by calculating 
complexity features in different time scales [40] and has been 
successfully used in many fields. Azami et al. [41] calculated
the MSE feature as well as variate MSE features of the EEG 
signals to observe the dynamical complex properties in the EEG 
signals gathered from Alzheimer’s disease (AD). They found 
that MSE could characterize the EEG changes in a detailed way. 
Luo et al. [42] proposed a method based on MSE to detect 
driver fatigue. The result showed that MSE can obviously 
present the fatigue features and effectively improve the 
accuracy of fatigue detection.

As for how to recognize driver distraction, there are many 
classification techniques utilized in the literature to detect 
whether a driver is distracted or not. Traditional methods like 
support vector machines (SVM) and multiple adaptive 
regression trees (MART) are widely employed in various
research areas. Liao et al. [43] proposed a method to detect
cognitive distraction based on the optimal features extracted by 
SVM and classify driver state based on SVM. It also compared 
the SVM performance between two different driving situations.
Wu et al. [44] used SVM to recognize flight operating patterns 
based on physiological parameters and reached an average 
accuracy of 0.84. Torkkola et al. [45] described an approach 
based on MART to find the inattention duration while driving 
according to the vehicle data. It could detect about 80% of the 
driver inattention time segments. Besides, deep learning 
methods has been applied to recognize mental status in the 
literature. In the work of Wu et al. [46], they proposed a stacked 
contractive sparse antoencoders network to detect the mental 
status of pilots. What’s more, they also designed a gamma deep 
belief network to study the cognitive status of pilots, which 
could learn the EEG features with simplest network structure
[47]. However, traditional deep learning methods usually learn 
the information in a single time point and it has been revealed 
that the time dependencies are critical in predicting human’s 
mental status [48]. Recurrent Neutral Network (RNN) is a 
typical deep learning method with memory that could keep the 
information from the contexts and then make decisions. 
However, the vanishing gradient problem occurs when the input 
data is too long (i.e., to keep long-term memory) [49]. As a 
variant of RNN, Long Short-term Memory Network (LSTM)
has the property of capturing both short and long-term 
dependencies, which has been successfully applied to many 
time-series classification tasks such as driver identification, 
seizure detection and driver behavior classification [50]-[52]. It 
is realized by adding memory blocks in the hidden unit to mine 

for and store critical information for classification over long 
time periods [53]. Kouchak et al. [54] proposed a distraction 
recognition method based on LSTM and validated that it 
outperformed multilayer neural network (MLP) for considering 
dependency between input data. Wollmer et al. [13] used 
LSTM to model the long-term dependency in vehicle 
behavioral data for detecting driver distraction. They also made 
a comparison with SVM and found the classification accuracy 
of LSTM was obviously higher than that of SVM. Recently, the 
Bidirectional Long Short-term Memory Network (BiLSTM),
an improvement of LSTM, has been proved to achieve better 
performance than traditional one directional LSTM in fields of 
sleep apnea detection and text classification [55], [56]. As 
BiLSTM learns long-term dependencies both from former time 
steps to later time steps and from later time steps to former time 
steps, it could learn and store more useful information thus 
improving the performance of the model [57].

In this paper, we propose a framework for driver distraction 
detection based on MSE with a sliding window and vehicle 
features. Our approach, using BiLSTM, is to model the 
bidirectional contextual information in EEG and vehicle 
behavioral data captured in real scenarios. To collect the 
distracted EEG and vehicle behavioral signals, a distracted 
driving experiment is firstly performed in realistic driving 
situations. The MSE in a sliding window is then implemented 
to extract the features of the captured EEG signals. Statistical 
analysis is performed on the vehicle behavioral data to find out 
whether significant differences appear in driving behaviors 
before and after distraction. After that, BiLSTM classifier is
utilized to learn the time dependent relationships in the 
extracted MSE and vehicle statistical features and to detect 
driver states. Finally, the classification accuracy of BiLSTM is 
compared with four different types of traditional classifiers.

III. EXPERIMENT DESIGN
In order to collect the data reflecting the physiological and 

vehicle behavioral changes of the distracted drivers, we 
conducted an experiment in realistic driving scenarios. This 
section is a description of the participants, the data collection 

Fig. 1.  The distraction experiment scene.
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system, and the procedure.

A. Participants
This study was reviewed and approved by Ethics Committee, 

Dalian University of Technology. There were six right-handed 
subjects without mental illness or neurological diseases 
involved in the experiment. All subjects have normal or 
corrected to normal vision and normal auditory. A driving 
license and driving experience are required for each subject. All 
of the subjects owe smartphones and are experienced in using 
WeChat (an online chatting APP in China). What’s more, they 
are banned from consuming coffee, tea, alcohol as well as 
smoking the day before the experiment. The qualification of 
each subject was verified and informed consent from each 
subject was obtained prior to the experiment.

B. Data collection system
The experiment was conducted on a real straight road at 

Dalian University of Technology. The Mangold-10 Bluetooth 
enabled wireless multipurpose polygraph, a portable and non-
intrusive data acquisition headband, was used to collect drivers’ 
EEG signals. It transmitted the EEG data via wireless Bluetooth. 
As the headband is designed to have little effects on drivers’ 
behaviors, and more importantly, previous studies have 
demonstrated that the occipital brain region is related to driver 
mental state [58], [59], we put the electrodes on O1 and O2 in 
accordance with the International 10-20 System. The sampling 
rate was kept at 256 Hz.

As the car signals could provide useful information about the 
vehicle’s behavior, a car equipped with sensors was used as the 
experimental car. The vehicle behavioral data including speed 
and deceleration with a sampling frequency of 50 Hz was 
analyzed in our present study. Fig. 1 shows the experiment 
scene.

C. Procedure
All subjects were given written and oral instructions on the 

driving experiment. To obtain the data of the distracted drivers, 
a “cellphone use” task was set as distracting factor. The 
distracting task could be described simply as: The drivers were 
asked to use WeChat for at least 3 seconds when they drove to 
half of the distance.

Each subject participated in two sessions amounted to six 
trials of the experiment. The first driving session was one 
normal driving trial (i.e., driving without distracting task) which 
lasted for at least 6 seconds. The second session included five 
distracted driving trials (i.e., performing the “cellphone use” 
task while driving), each trial lasted for around 20 seconds and 
the task began at about 12 seconds. There was a short break 
after each trial.

During the experiment, one experimenter was in the car 
together with the subject and gave hints for the start and end of 
the task. In the normal driving process, subjects were asked to 
drive down the road with full attention. However, they were 
supposed to drive normally at first in the distracted driving 
process, few seconds later the experimenter would send 
cellphone messages to them. After receiving messages, they 

had to check the messages for 3 seconds at least. In addition, 
another experimenter would throw a quadrate foam box to the 
road while each trial was going to end, and subjects were 
required to react to the obstacle as soon as possible. The EEG 
signal and the vehicle behavioral signals were recorded all the 
way from the car starting to stopping.

IV. METHODOLOGY

A. Analysis of EEG data
The process of EEG analysis contains three steps: 

preprocessing, artifacts removal and feature extraction.
1) Preprocessing

We first extracted the EEG segments corresponding to the 
duration of each trial in our study. Then, the alpha frequency 
band was obtained applying wavelet decomposition, as 
previous studies have demonstrated that the alpha frequency 
band is highly correlated with distraction [30], [60].

Wavelet transform is a time-frequency analysis method, 
which can reflect the local features of signals both in the time 
and frequency domain. And with the property of multi-
resolution, it is widely used to analyze non-stationary signals 
[61]. A mother wavelet t , in order to decompose the signal, 
is utilized in this method. The signal can be decomposed and 
expressed in terms of scaled and shifted versions of t and 

a corresponding scaling function t in discrete domain [62]. 
The discrete mother wavelet is represented as

2
, 2 2 , , Z

j
j

j k t t k k j                  (1)

The signal S(t) then can be expressed as
, ,j j k j j k

k k
S t s k t d k t                  (2)

where sj(k) and dj(k) are the approximate and detailed 
coefficients at level j.

In this paper, the EEG signal has been decomposed into 4 
levels in which the detailed component at level 4 roughly 

Fig. 2.  Schematic illustration of the coarse graining process.
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represents the alpha band (8-13 Hz). Since db6 (Daubechies 
family) is similar to the EEG signal in our case as shown in Fig. 
3, it is selected as the mother wavelet.

2) Artifacts removal
After preprocessing, the artifacts (e.g., the blinks) in the 

alpha band were then removed using a wavelet-based technique. 
The wavelet coefficients mentioned above represent the 
correlation between the signal and the selected mother wavelet. 
High amplitude coefficients will be generated at places where 
artifacts present. We can eliminate these kinds of coefficients 
utilizing a thresholding technique. It has been proven to be 
effective in the analysis of driver fatigue [63], [64]. The 
threshold can be defined as

( ) 2 std( )j j jT mean C C                  (3)
where Cj represents the wavelet coefficient at the jth level of 
wavelet decomposition. If the value of any coefficient is greater 
than the computed threshold, it is halved. Then the new set of 
wavelet coefficients are reconstructed to obtain the wavelet-
corrected signal.

3) Feature extraction
MSE extends the idea of Sample entropy (SE) to several time 

scales and is an effective method to quantify the complexity of 
a time series over different time scales. Time series with large 
fluctuation will produce a larger MSE value, which is 
considered to have high complexity. Similarly, a highly regular 
time series will generate lower entropy. This method was first 
proposed by Costa et al. in 2002 [65].

There are two steps in MSE analysis: coarse graining and SE 
calculation. Considering the EEG signal {x1, …, xi, …, xN}, we 
should construct a consecutive coarse-grained time series {y(τ)}, 
corresponding to the time scale factor τ: Firstly, the original 
EEG signal is divided into non-overlapping windows of length 
τ, then the data points inside each window are averaged (see Fig. 
2). Each coarse-grained time series can be defined as

1 1

1 , 1
j

j i
i j

y x j N                  (4)

After the coarse graining procedure, SE is calculated for the 
obtained time series {y(τ)}. For a time series {y1, …, yj, …, yn},
it can be made up into an m dimension vector

[ , 1 , , 1 ], 1mY i y i y i y i m i n my,, . And d, the 
distance between Ym(i) and Ym(j) is defined as

max[| |],
0 1, ,1
d y i k y j k

k m i j j n m
                 (5)

Then count the number of d r for each i, and m
iB r can be 

expressed as
the number of

1
m
i

rd
n

j
r

m
i

B                  (6)

where r is the given tolerable distance. The set of m
iB r are 

then averaged and the average value can be calculated by

1

1 n m
m m

i
i

B r B r
n m

                 (7)

Add the dimension by 1 to form an m+1 dimension vector and 
repeat the above process, then we can get Bm+1(r). After all the 
procedures, the basic definition of SE is given by

1

SE , lim ln
m

mn

B r
m r

B r
                 (8)

When n is finite, it can be calculated by the following 

Fig. 4.  The basic topological structure of LSTM.

Fig. 5.  The details of a LSTM cell.

Fig. 3.  Alpha wave and typical mother wavelets.
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expression:
1

SE , , ln
m

m

B r
m r n

B r
                 (9)

In Narayan’s study, it has been revealed that MSE changes 
with time scale and there will be a peak indicating the existence 
of maximum entropy at that time scale, which indicates high 
correlation exists in time scale and MSE value [66]. In this 
paper, the maximum MSE appears when time scale is five, then 
5-scale MSE with a sliding window is calculated for the 
extracted alpha frequency band.

B. Statistical analysis of vehicle behavioral data
The speed data and the deceleration data, corresponding to 

the duration of each trial, were further analyzed after the 
experiment. Statistical analysis was performed in MATLAB. 
To find out whether there were significant differences between 
the vehicle behavioral data before and after distraction, we 
firstly carried out significance tests on the vehicle behavioral 
data. Then the mean value and the standard deviation of the data 
were calculated to investigate the changes before and after 
distraction.

C. BiLSTM
LSTM is a special kind of RNN, capable of addressing the 

vanishing gradient problem. It was firstly introduced by 
Hochreiter et al. [53] in 1997. LSTM has two major features 
compared with RNN [67]. One feature is that it can learn both 
short and long-term dependencies (i.e., keep both short and 
long-term memory). The other is that it cannot only add useful 
information but also remove irrelevant details during the 

learning process. Fig. 4 is the basic topological structure of 
LSTM. It consists of a chain of repeating modules of neural 
networks. The repeating module of LSTM has four neural 
network layers (see Fig. 5) unlike the standard RNN having one, 
and they interact in a specific way.

A LSTM cell can add or remove information through 
structures called “gate”. There are totally three types of gates in 
it: forget gate, input gate and output gate. They work as follows. 
At first, it is to decide what information should be removed 
from the cell state by forget gate (10). Then the input gate 
decides what new information is going to store in the cell state. 
This step can be divided into three parts. The first part is to use 
a sigmoid layer to find what is going to be updated using (11). 
Next is to create a new candidate cell state tCtCt by a tanh layer 
(12). After that, the old cell state Ct-1 can be updated into the 
new cell state Ct by (13). Finally, the output gate is activated to 
decide the output ht of the cell by using (14) and (15).

1,t f t t ff W h x b                  (10)

1,t i t t ii W h x b                  (11)

1tanh ,t C t t CC W h x btC t ht tanhtanhtanh                  (12)

1t t t t tC f C i CtCt                  (13)

1,t o t t oo W h x b                  (14)

tanh( )t t th o C                  (15)
In these equations, σ and tanh are the active functions in the 

Fig. 7.  The time-frequency results of alpha band. (a) Result of normal driving 
trial. (b) Result of distracted driving trial. The white solid line in (b) shows the 
onset of using cellphone.

(a)

(b)

Fig. 6.  Schematic illustration of the BiLSTM framework.
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cell, W, h, and b represent the weight, hidden state, and bias 
separately. xt indicates the EEG feature of time t in Figs. 4-6.

As the traditional the one directional LSTM usually learns
the long-term information only from previous time steps to 
latter time steps, and research has found that the inputs of the 
latter time steps also contain some information about the inputs 
of the previous time steps [68]. BiLSTM, an update of LSTM, 
consists of two layers of LSTM. One layer processes the inputs 
in a forward direction, and the other learns information from the 
inputs in a backward direction. Additionally, it can also 
concatenate the two directions interpretations according to 
long-term dependency in the inputs. In this study, we use both 
LSTM and BiLSTM to learn the dependency among the 
extracted features and compare their performance for driver 
distraction recognition. The BiLSTM model structure diagram 
used here is shown in Fig. 6.

V. RESULTS

A. Analysis of EEG data
Time-frequency analysis of the extracted alpha frequency 

band was firstly performed. Fig. 7(a) shows the time-frequency 
graph of the normal driving trial and Fig. 7(b) is the result of a 
distracted driving trial. We also calculated the mean absolute 
amplitudes of alpha band, the results are shown in Fig. 8. 
During the normal driving process, the activity of alpha band 
showed a trend of decreasing, while it increased after using 
cellphone in the distracted driving process as shown in Fig. 7
and Fig. 8. Then the 5-scale MSE feature was calculated to 

extract the valuable information of the EEG signal. From the 
MSE result, we can see there is an obvious decrease after using 
cellphone. Fig. 9 gives the results of the MSE for both normal 
trial and distracted trial. Fig. 9(a) is the waveform of the normal 
driving trial, and the result of the distracted driving trial is 
shown in Fig. 9(b). It can be seen that the waveform in 
distracted trials fluctuated obviously. The MSE value began to 
decrease notably after the onset of distraction task and reached 
the minimum value a few seconds later after the task. Besides, 
the trough of MSE waveform was obviously lower than the 
average of MSE. However, there were small and gentle 
fluctuations in normal trials as shown in Fig. 9(a). The time that 
MSE reaches its minimum value is defined as the EEG most 
distraction position (DP) of the subject pointed out in Fig. 9(b). 
According to the MSE results, the EEG most distraction 
positions of all subjects could be obtained. The time difference 
between DP and the onset of using cellphone was then 
calculated and listed in Table Ⅰ. Trial 1, which is the normal 
driving process, is excluded from the table.

B. Statistical analysis of vehicle behavioral data
The statistical analysis of the obtained vehicle behavioral 

data (i.e., speed and deceleration data) was performed to 
validate abnormal changes also appear in driving performance 
before and after distraction. This section consists of two parts: 
the first part is to analyze data that before and after the subjects 
start to use cellphone, the other is before and after DP of the 
subjects.

1) Analysis of the vehicle data before and after using 
cellphone

In this part, the speed and deceleration data before and after 
using cellphone was analyzed to investigate the impact of 
distraction task on the driving performance.

TABLE Ⅰ
THE TIME DIFFERENCE BETWEEN DP AND THE ONSET OF USING CELLPHONE OF 

ALL SUBJECTS (s)

Trial
Subject

2 3 4 5 6

1 1 0 0 1 2
2 4 4 1 5 8
3 1 2 4 8 0
4 1 5 5 7 1
5 5 5 7 5 5
6 2 0 3 7 2

At the beginning of the analysis, we performed unpaired t-
test on the vehicle data in each trial to verify whether significant 
differences exist between the data before and after using 
cellphone. The significance level is set as 0.05. The t-test results 
are shown in Table Ⅱ and Table Ⅲ. Trial 2 to Trial 6 are 
distracted driving processes that drivers were asked to use 
cellphone while driving. h indicates if there are significant 
differences between the vehicle data before and after distraction. 
h = 1 means significant differences exist. h = 0 means no 
significant differences. p represents the probability that the data 

Fig. 8.  The mean absolute amplitudes of alpha band. (a) Result of normal 
driving trial. (b) Result of distracted driving trial. The black solid line in (b) 
shows the onset of using cellphone.

(a)

(b)
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before and after distraction is distributed identically.
From the results of the speed data, we can see clearly that 

there are significant differences between the speed before and 
after using cellphone except for Trial 3. All trials show 
significant differences between the two conditions in 
deceleration data shown in Table Ⅲ.

TABLE Ⅱ
THE T-TEST RESULTS OF THE SPEED DATA

Trial 2 3 4 5 6
h 1 0 1 1 1
p 0.05 0.935 0.05 0.05 0.05

TABLE Ⅲ
THE T-TEST RESULTS OF THE DECELERATION DATA

Trial 2 3 4 5 6
h 1 1 1 1 1
p 0.05 0.05 0.05 0.05 0.05

The statistical features (i.e., mean value and standard 
deviation) of speed and deceleration before and after using 
cellphone are calculated and listed in Table Ⅳ - Table Ⅶ
separately. “Before” and “After” represent before and after 
distraction, respectively.

TABLE Ⅳ
THE MEAN VALUE OF SPEED (km/h)

Trial 2 3 4 5 6
Before 5.877 5.397 5.145 5.410 5.496
After 5.406 5.331 4.903 4.775 5.094

TABLE Ⅴ
THE MEAN VALUE OF DECELERATION (m/s2)

Trial 2 3 4 5 6
Before -0.131 -0.121 -0.126 -0.134 -0.114
After 0.234 0.246 0.277 0.229 0.232

All of the mean values of speed before using cellphone are 
greater than those after distraction in Table Ⅳ and Trial 3 has 
the smallest gap between the two conditions. Table Ⅴ shows 
that the mean values of deceleration before using cellphone are 
all negative and that the mean values become positive after 
distraction. When comparing the absolute values of the 
deceleration mean values, it is obvious that the absolute values 
after using cellphone are greater than that of before distraction.

TABLE Ⅵ
THE STANDARD DEVIATION OF SPEED

Trial 2 3 4 5 6
Before 2.343 1.657 1.613 1.720 1.583
After 3.199 2.240 2.294 2.641 2.411

The standard deviations of the speed and deceleration data 
reflect the same trend that all of them becomes greater after 
using cellphone shown in Table Ⅵ and Table Ⅶ. The changing 
patterns of the speed and deceleration data could also be clearly 
shown in the following error bar figures (see Fig. 10) according 
to the statistical results.

Fig. 9.  The MSE results of alpha band. (a) Result of normal driving trial. (b) 
Result of distracted driving trial. The black solid line shows the onset of using 
cellphone and the red circle is the distraction position of this trial in (b).

(a)

(b)

Fig. 10.  Statistical results of the vehicle data. (a) The mean value of speed. (b) 
The absolute value of mean deceleration. Error bar shows the standard
deviation.

(a)

(b)
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TABLE Ⅶ
THE STANDARD DEVIATION OF DECELERATION

Trial 2 3 4 5 6
Before 0.523 0.484 0.508 0.523 0.502
After 0.752 0.832 0.760 0.810 0.915

2) Analysis of the vehicle data before and after the most 
distraction position

The vehicle behavioral data before and after the EEG most 
distraction position (DP) was also analyzed. The analyzing 
procedure in this part was similar to 1). To explore whether 
significant differences exist between the vehicle data before and 
after DP, unpaired t-test was firstly performed with the 
assumption that all subjects are considered as a whole.

The test results are shown in Table Ⅷ and Table Ⅸ. It is
clear that significant differences do exist in all trials for both 
speed and deceleration before and after DP.

TABLE Ⅷ
THE T-TEST RESULTS OF THE SPEED DATA

Trial 2 3 4 5 6
h 1 1 1 1 1
p 0.05 0.05 0.05 0.05 0.05

TABLE Ⅸ
THE T-TEST RESULTS OF THE DECELERATION DATA

Trial 2 3 4 5 6
h 1 1 1 1 1
p 0.05 0.05 0.05 0.05 0.05

Then the mean value and the standard deviation of the data 
before and after DP were calculated separately. Table Ⅹ to 
Table XIII give the results. We can see from Table Ⅹ that all of
the mean values of speed before DP are obviously greater than 
that of after DP. Table Ⅺ shows that the mean values of 
deceleration before DP are negative and that after distraction 
the mean values are positive. Besides, the absolute values of the 
mean deceleration after DP are greater than before DP. As for 
the standard deviation, it becomes greater after DP showed in 
Table Ⅻ and Table XIII.

TABLE Ⅹ
THE MEAN VALUE OF SPEED (km/h)

Trial 2 3 4 5 6
Before 5.795 5.394 5.175 5.495 5.584
After 5.440 4.987 3.938 2.615 4.562

TABLE Ⅺ
THE MEAN VALUE OF DECELERATION (m/s2)

Trial 2 3 4 5 6
Before -0.068 -0.061 -0.070 -0.045 -0.098
After 0.204 0.249 0.447 0.413 0.353

The error bar figures are drawn as Fig. 11 according to the 
statistical results. The changing rules mentioned above could be 
easily seen from the figures. Compared with Fig. 10, the 

statistical differences of the vehicle behavioral data between 
before distraction and after distraction increase in Fig. 11.

TABLE Ⅻ
THE STANDARD DEVIATION OF SPEED

Trial 2 3 4 5 6
Before 2.454 1.631 1.634 1.725 1.475
After 3.286 2.679 2.630 3.134 2.843

TABLE XIII
THE STANDARD DEVIATION OF DECELERATION

Trial 2 3 4 5 6
Before 0.615 0.591 0.534 0.596 0.493
After 0.671 0.780 0.912 1.009 1.067

C. The classification results of BiLSTM
In this paper, we not only analyzed the dynamic brain activity 

changes of distracted driving based on MSE and the changes in 
driving performance but also detected whether a driver is 
distracted or not using BiLSTM. The detection results were 
compared with four different types of traditional classifiers, i.e., 
LSTM, SVM, convolutional neural network (CNN) and k-
nearest neighbor (kNN). In addition, to be more reliable and 
convincing, the results were also compared with the results of 
traditional vehicle behavioral features and another four entropy-
based algorithms i.e., Approximate entropy (AE), Differential 
entropy (DE), Fuzzy entropy (FE) and Sample entropy (SE) of 

Fig. 11.  The statistical results of the vehicle data. (a) The mean value of speed. 
(b) The absolute value of the deceleration mean value. Error bar shows the 
standard deviation.

(a)

(b)



 
 

10 

EEG. 
We built and trained a BiLSTM model, which adopted the 

calculated feature matrixes as inputs and output the category 
vectors. There are 2 categories in the paper: distraction and non-
distraction. The data of five subjects were used for training and 
that of the remained subject was utilized for testing. In the 
training process, different numbers of LSTM layers and training 
iterations were tried to find the best model in the BiLSTM 
classifier. The classification results of different features are 
shown in Table XIV. “VS” means statistical features (i.e., mean 
and standard deviation) of speed and deceleration. 

 
TABLE XIV 

THE MEAN ACCURACIES OF DIFFERENT CLASSIFIERS FOR DIFFERENT FEATURES 
(%) 

Feature AE DE FE SE MSE VS VS+MSE 

BiLSTM 83.29 82.67 76.35 67.01 91.83 89.85 92.48 

LSTM 82.24 81.31 71.03 63.55 89.72 88.79 91.59 

CNN 62.62 73.63 62.01 60.32 73.90 67.29 78.5 

SVM 52.94 54.6 54.27 56.75 66.72 74.85 77.76 

kNN 69.45 71.93 67.12 59.05 65.34 76.84 77.07 

 
Table XIV shows that the performance of BiLSTM and 

LSTM are much better than those of the other three common 
classifiers and that the BiLSTM model is slightly better than the 
conventional LSTM modal. As for the results of different 
features using BiLSTM and LSTM, the mean accuracy of the 
LSTM and BiLSTM using MSE of EEG reaches 89.72% and 
91.83%, respectively, which is clearly higher than the results of 
using vehicle statistical features and other entropy-based 
methods. The SE feature of EEG leads to the lowest 
classification accuracy of 63.55% in LSTM and 67.01% in 
BiLSTM, and the accuracy of the other algorithms lies between 
the accuracy of SE and MSE. When inputting the features of 
EEG and vehicle data at the same time, the performance of 
BiLSTM increases, peaking at 92.48%. The accuracy of LSTM 
also improved under this condition. In sum, when we just use 
the EEG features to train the BiLSTM model, the best result is 
obtained by the MSE feature. Besides, MSE feature of EEG 
also performs better compared with the result of conventional 
vehicle behavioral features in BiLSTM, and the mean accuracy 
is about 3% higher than that of VS when we add MSE feature 
to the vehicle behavioral features. 

VI. DISCUSSION 
The concern for driver distraction is growing in recent years 

with the development of advanced infotainment systems. There 
are many effects and characteristics of driver distraction [9]-
[12]. The distraction information of the dynamic brain activity 
and the changing rules of vehicle behavioral data before and 
after distraction are here discussed. A driver distraction 
classification model using BiLSTM is proposed based on the 
MSE feature, and the results are compared with four kinds of 
traditional classifiers as well as other conventional feature 
extraction methods. 

As shown in Fig. 7 and Fig. 8, the activity of the alpha 

frequency band is related to driver distraction, which increases 
after being distracted. However, it shows a trend of decreasing 
with the process of the normal driving trial. The results are 
consistent with previous studies that the activity of alpha 
rhythm increases in parietal-occipital brain regions if 
attentional lapses occur [69], [70]. The important changes in 
MSE feature of EEG after being distracted can be seen in Fig. 
9. The EEG complexity is clearly illustrated by the fluctuation 
of MSE feature. The MSE value decreases sharply when drivers 
start to use cellphone (see Fig. 9(b)) compared with normal 
driving, which indicates that the complexity of the alpha 
frequency band decreases while distraction. Drivers have to 
keep high alertness to pay attention to the surroundings like the 
pedestrians and other cars so that they can drive safely in the 
normal driving process [71]. In this situation, the brain activity 
is usually active, and it embodies the relatively high complexity 
of the alpha frequency band. Contrary to normal driving, drivers’ 
perceptions of driving and the surroundings decrease while 
using cellphone and then the complexity also decreases, thus 
leading to the decreased MSE value while distraction. The time 
difference for each trial in Table Ⅰ means that it usually takes 
drivers a few seconds to shift their attention to the task related 
work. Hence, DP occurs a few seconds later after drivers start 
to use cellphone. 

Statistical analysis of the vehicle behavioral data before and 
after using cellphone is then performed considering all subjects 
as a whole. From the t-test results [Table Ⅱ and Table Ⅲ] of the 
speed and deceleration data, we confirm that the performance 
of drivers to control cars is highly affected by the “cellphone 
use” task, which has been validated in previous studies [72]-
[74]. 

For the statistical analysis results, drivers tend to drive at a 
lower and much safer speed after beginning to use cellphone 
shown in Table Ⅳ and Fig. 10(a). Many studies have proved 
that drivers attempt to reduce their workload by decreasing 
speed while distracted [75], [76], which explained why the 
mean speed is lower after distraction than that before distraction. 
Besides, Trial 3 shows the smallest gap between before and 
after using cellphone. It is because that the changes between the 
two conditions in this trial are not obvious as listed in Table Ⅱ. 
As shown in Table Ⅴ, the mean deceleration is negative before 
using cellphone due to the stepwise accelerating stage in this 
process. However, it becomes positive after using cellphone. A 
possible reason for the phenomenon is that drivers tend to 
decrease speed for safety while distracted. What’s more, the 
absolute value of the mean deceleration before using cellphone 
is apparently lower than after using cellphone in Fig. 10(b), 
which indicates that distracted drivers often make emergency 
brakes when obstacles appear. When drivers begin to use 
cellphone, they are distracted by the task and their abilities to 
monitor the environment may be reduced, the decision to brake 
would then be consequently delayed. As a result, drivers will 
have to brake harder to avoid accidents. This explanation is in 
accordance with the results of Hancock et al. [77]. Their work 
reported that distracted drivers responded slowly to the traffic 
lights and had to take stronger braking actions to compensate 
for the delay in starting braking. 
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In line with previous driver distraction analysis, the 
variability of the speed and deceleration data increases after 
using cellphone in Table Ⅵ and Table Ⅶ. The change can also 
be seen from the error bar in Fig. 10. The previous study 
reported that variability in velocity increased while drivers 
performing auditory tasks as attention need to be shifted to the 
task processing streams from focusing on driving leading to the 
performance decrements [78]. In our study, drivers pay more 
attention to the task and the brake pedal controlling ability is 
then weakened. Hence, greater variability occurs in speed and 
deceleration, which explains why greater standard deviations 
appear. 

In this paper, vehicle behavioral data analysis is discussed 
not only before and after using cellphone, but also before and 
after DP. Identical to the analyzing process before and after 
using cellphone, the speed and deceleration data are analyzed 
firstly considering all subjects as a whole. Results in Table Ⅷ 
and Table Ⅸ imply that significant changes emerge in driving 
performance between conditions before and after DP as a 
consequence of distraction, which is also consistent with 
previous studies in [72]-[74]. Furthermore, the mean value and 
standard deviation of speed and deceleration are analyzed to 
find out how drivers are affected by the “cellphone use” task. 
As shown in Table Ⅹ and Fig. 11(a), the mean speed in each 
trial after DP is visibly greater than that before DP. The results 
are agreed with the work of Reimer [75] and Mehler [76], 
pointing out that distracted drivers usually try to decrease speed 
to reduce workload and keep safe. As for the results of mean 
deceleration shown in Table Ⅺ, the same inference with Table 
Ⅴ can be made. the mean deceleration is negative in the 
accelerating stage before DP, which becomes positive after DP 
when obstacles abruptly appear in the process. Moreover, 
compared to Table Ⅴ, the difference value of the mean 
deceleration before and after distraction in Table Ⅺ is greater, 
which indicates the performance of controlling the brake pedal 
after DP is even weaker than after beginning to use cellphone. 
The absolute value of the mean deceleration is also compared 
in Fig. 11(b). Note that the ability to monitor the surroundings 
after DP may be reduced and then the decision on when to brake 
is delayed. Therefore, drivers have to make harder brake to 
avoid obstacles [77]. In addition, the variability of speed and 
deceleration also increases after DP in Table Ⅻ and Table XIII, 
which shows the same rules as the same as in Table Ⅵ and 
Table Ⅶ. Previous studies have validated that drivers will shift 
their attention to the task after distraction [78], thus the ability 
to handle the brake pedal is weakened. As a result, 
augmentation variability appears in speed and deceleration. 

After mining the valuable information of driver distraction 
based on MSE feature of EEG and analyzing the changes in 
driving performance, we finally use BiLSTM to show that 
driver distraction can be detected with the MSE features. The 
classification results in Table XIV indicate that the 
classification accuracy of MSE using BiLSTM is better than 
traditional vehicle behavioral features and other entropy-based 
features since it can not only present the complex distraction 
information of EEG but also reduce the influence of the residual 
noise on the results [40]. The classification accuracy of MSE is 

comparable with the research of Li et al. [79], which used the 
temporal and spatial features of the 32-channel EEG signals and 
reached an accuracy of 92%. Besides, Xie et al. [80] also 
collected six kinds of vehicle signals and smartphone sensor 
signals to detect driver distraction. The accuracy of VS using 
BiLSTM in our work is 3% higher than their accuracy obtained 
from traditional classifiers. The performance of the trained 
BiLSTM model is further improved with an accuracy of 92.48% 
when adding MSE features to the statistical features of vehicle 
behavioral data, which suggests that MSE features could 
remedy the inadequacy of traditional vehicle behavioral 
features. It is consistent with the observation in the literature 
that hybrid signals can provide more sufficient information 
about driver distraction than one type of signal alone [28]. In 
addition, the performance of BiLSTM is compared to four 
conventional classifiers in the study. The results in Table XIV 
show that BiLSTM, which could learn the bidirectional long-
term dependency among the extracted features, is slightly better 
than traditional one directional LSTM and significantly better 
than CNN, SVM and kNN. It corresponds to the results in [67] 
that BiLSTM can decrease the model’s train and test error and 
thus improve the classification accuracy. The reliable results of 
the study suggest the potential to mine the distraction 
information in realistic driving environment and to detect driver 
distraction using MSE and BiLSTM. 

The limitation of the study is that only six persons 
participated in the experiment, so the dataset is a little bit small 
to some degree. It is difficult to collect the data with driver 
distraction in realistic driving scenarios. The sample size, while 
acceptable for distraction detection, had limited statistical 
power. 

VII. CONCLUSION 
In this paper, we have applied the BiLSTM model to present 

a driver distraction detection framework based on the 
complexity-based MSE feature of EEG. It demonstrates that it 
is better to use MSE to explore the complex dynamic distraction 
information of EEG than other features used in the previous 
studies. Besides, compared to conventional vehicle behavioral 
features, the model performance is enhanced by adding features 
of EEG to features of vehicle data. It confirms that the MSE 
feature can provide complementary information about 
distracted drivers. For a driver, the MSE value of EEG 
decreases obviously in the distraction process and the ability to 
manipulate the vehicle is also greatly influenced, which is 
manifested in the decreased speed, harder brakes as well as the 
increased variability of speed and deceleration. 

In the future work, an experiment will be designed in driving 
simulator involving more participants and more types of signals 
to study driver distraction applying the proposed method. The 
new dataset containing multi-modality signals provides better 
opportunities for further investigating the effectiveness of 
different kinds of signals in detecting driver distraction. What’s 
more, an improvement of the present algorithm will also be 
explored to detect driver distraction accurately. Another 
particular interest is to study the influence of the left- and right-
handed in the detection performance in the future. 
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Abstract: Emotion recognition based on electroencephalography (EEG) has attracted high interest in
fields such as health care, user experience evaluation, and human–computer interaction (HCI), as it
plays an important role in human daily life. Although various approaches have been proposed to
detect emotion states in previous studies, there is still a need to further study the dynamic changes
of EEG in different emotions to detect emotion states accurately. Entropy-based features have been
proved to be effective in mining the complexity information in EEG in many areas. However, different
entropy features vary in revealing the implicit information of EEG. To improve system reliability, in
this paper, we propose a framework for EEG-based cross-subject emotion recognition using fused
entropy features and a Bidirectional Long Short-term Memory (BiLSTM) network. Features including
approximate entropy (AE), fuzzy entropy (FE), Rényi entropy (RE), differential entropy (DE), and
multi-scale entropy (MSE) are first calculated to study dynamic emotional information. Then, we
train a BiLSTM classifier with the inputs of entropy features to identify different emotions. Our
results show that MSE of EEG is more efficient than other single-entropy features in recognizing
emotions. The performance of BiLSTM is further improved with an accuracy of 70.05% using fused
entropy features compared with that of single-type feature.

Keywords: emotion recognition; EEG; feature fusion; MSE; BiLSTM

1. Introduction

Emotion is a specific psychological and physiological response generated by perceiving
external and inner stimuli. It is a complex state combining thoughts, feelings, and behaviors
and is an important part of daily human life [1]. Previous studies have demonstrated
that emotion plays a vital role not only in the process of perception, decision making,
and communication but also in the learning and memory process [2]. As a result, the
measurement and characterization of different emotion states are of great importance
to emotion recognition-related studies both theoretically and practically. For example,
emotion recognition can be widely used in areas such as health care, distance learning,
and user experience evaluation of products, which are closely related to humans [3].
Furthermore, it contributes to the computer ability of emotion recognition and expression
in the human–computer interaction (HCI) field [4]. As emotion is often accompanied
by high cognitive activities of the brain involving complex psychology and physiology
processes [5], further study on how to recognize different emotions accurately is necessary.

There are many kinds of approaches to recognizing emotion states in existing stud-
ies. According to the data used in emotion recognition, they can be roughly divided into
two categories. One category is based on non-physiological signals, whereas the other
is based on physiological signals. Conventional emotion recognition methods based on
non-physiological signals usually use facial expressions, behaviors, and voice-based sig-
nals, etc.. The features of these signals are more obvious for observation and easier to be
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extracted. Jain et al. proposed deep convolutional neural networks for observing emotion
states based on different facial motions in different image emotions [6]. Meng et al. devel-
oped a speech emotion recognition method using spectrum features of speech signals [7].
There is also emotion recognition research combing different types of non-physiological
signals. For instance, Kessous et al. studied a multimodal automatic emotion recognition
method using the Bayesian classifier based on a mixture of facial expressions, gestures,
and acoustic signals, and they found that fusing the multimodal signals would largely
increase classification accuracy compared with unimodal systems [8]. Although the data
collection process of these methods is easier, their availability and reliability could not be
completely guaranteed, as they are mainly affected by two factors [9]. On the one hand,
effective non-physiological signals are hard to obtain from participants who have trouble
expressing their feelings through body language. On the other hand, participants can
deliberately control their expressions, tone, and postures to hide their real feelings. Con-
trary to the non-physiological measurements, physiological signals are more reliable and
effective, as these signals originate from spontaneous activities of the nervous system which
cannot be controlled intentionally [1]. The mostly frequently used physiological signals
include autonomic nervous system (ANS) signals such as the electrocardiogram (ECG), the
electromyogram (EMG), skin resistance, and blood pressure, and neutral nervous system
signals such as EEG, functional magnetic resonance imaging (fMRI), and so on. Kim et al.
analyzed the multimodal autonomic physiological signals (i.e., ECG, EMG, respiration, and
skin conductivity) induced by music and developed a scheme of emotion-specific classifica-
tion [10]. The brain signals obtained directly from the neutral nervous system can reflect
the dynamic neuro-electrical changes in real-time with high resolution, compared to ANS
signals which often include a time delay [9]. In addition, the activity of EEG signals varies
in different brain regions while emotional processes occur. Particularly, the lateral temporal
brain areas are more active than other areas, and the energy of EEG increases for positive
emotion, whereas lower energy appears in neutral and negative emotions [11]. Therefore,
the emotional changes in different emotion states can be measured by EEG signals in the
lateral temporal region. What is more, the equipment of EEG collection is small in size,
portable, and much cheaper than that of fMRI. EEG-based emotion recognition has become
one of the most prosperous research fields.

To recognize emotion states accurately based on EEG signals, features revealing the
dynamic changes of EEG under different emotions should first be extracted. There are
four main types of features used in EEG-based emotion recognition [12]: time domain
features (e.g., statistical features and auto-regression coefficient), frequency domain features
(e.g., power spectral density and energy spectrum), time-frequency features (e.g., wavelet
coefficients), and non-linear dynamic features (e.g., fractal dimension and entropy features).
The ability of different features varies in reflecting emotion states. Energy-based features in
different brain regions have been commonly adopted in emotion recognition. As different
brain regions are activated in different emotions, the energy of different frequency bands
in these brain regions can be used for emotion recognition [13]. Du et al. selected sound
clips of three affective states (i.e., happy (high arousal), afraid (high arousal), and neutral
(low arousal)) to explore frontal asymmetry [14]. Their research demonstrated that the
right frontal region is more related to high-arousal emotions (i.e., happiness and fear),
whereas the left frontal region correlates with low-arousal emotions (i.e., neutral); thus, the
energy asymmetry between the left and right brain can be used to classify emotion states.
Further, Liu et al. found that there is a correlation between the emotional states and EEG
frequency bands and that high-frequency bands contain more emotional information than
low-frequency bands [15]. EEG signals, which are a direct reflection of brain activities, are
non-stationary signals with a low signal-to-noise ratio, and the activation of EEG and the
information it contains varies in different emotions. It is difficult to analyze EEG signals
using only traditional time- or frequency-domain features. In recent years, entropy-based
features have been proven to manifest more complex dynamic information in EEG than
conventional features, leading to a wide use in many fields [16]. Wang et al. extracted
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the sample entropy (SE) feature of overnight sleeping EEG data utilizing the assisted
sliding box algorithm to show the dynamic changes and a reduction of computation
time [17]. Chen et al. proposed a method using the approximate entropy (AE) feature and
its transformation to identify four human emotions based on EEG with an accuracy of
83.34% [18]. Zheng et al. trained a Deep Belief Network (DBN) to classify three emotions
with the input of the differential entropy (DE) feature [19]. Their results showed that the
DE feature of certain brain regions could reflect the dynamic changes of EEG in different
emotions and can be used for recognizing emotion states. What is more, entropy features
deployed to analyze brain states in other areas may also contribute to emotion recognition.
For instance, multiscale entropy (MSE), calculating entropy in multiple time scales, has
been proven to achieve better robustness of results than conventional features in fields
of disease diagnosis and sleep studies [20]. Hadoush et al. adopted MSE to explore
patterns in children with mild and severe autism spectrum disorders (ASD) and found
that MSE could serve as an effective index for the severity of ASD [21]. Vladimir et al.
explored the changes in brain signal complexity across several distinct global states of
consciousness using MSE [22]. The results indicated that MSE changes throughout the
sleep cycle and is strongly time-scale dependent, which makes it possible to use MSE for
sleep staging. However, a challenge still exists in analyzing EEG signals based on entropy
features. These different features characterize the EEG implicit complexity information
to varying degrees, but it remains unclear which type of entropy feature is more effective
for describing emotional states. Further, previous studies demonstrated that any feature
could add complementary information to the other features [23]. Hence, there is a necessity
to integrate the advantages of different entropy features to enhance the performance of
emotion classification.

To take advantage of the EEG features, researchers have trained a variety of classi-
fiers to recognize different types of emotion states. Traditional classifiers such as SVM,
K-Nearest Neighbor (KNN), and transfer learning are widely used for emotion classifica-
tion. Liu et al. established a real-time EEG-based emotion recognition system using SVM
that could successfully classify positive and negative emotions with acceptable results [24].
Kolodyazhniy et al. extracted features from physiological signals induced by different
emotional film clips and proposed an affective computing approach based on the KNN
classifier [25]. Lan et al. [26] utilized the DE feature of EEG and the transfer learning
technique to detect three emotions reaching an accuracy of 72.47% in the SEED dataset.
Although traditional classifiers have achieved different recognition performance in simple
tasks (e.g., 86.43% accuracy for three positive emotions in [24], 83.34% accuracy for four
different emotions in [18], 77.5% accuracy via different types of signals in [25]), they are not
efficient enough to learn the contextual dependency in a time series and do not perform
well in cross-subject emotion recognition [27]. As we all know, human emotions are a con-
tinuous time series, and the current emotion state is influenced by both the current stimulus
and previous emotions. In this case, it is difficult for traditional classifiers to recognize
human emotion only based on the current feature. The Bidirectional Long Short-term Mem-
ory (BiLSTM) network has the ability to learn long- and short-term dependency between
time steps and to memorize both forward and backward contextual information in a time
series, compared with the one-directional Long Short-term Memory (LSTM) network [28]
that is widely used in speech synthesis, pathological voice detection, and motion predic-
tion [29–31]. It has been proven to perform effectively in pattern recognition and has been
successfully deployed in sequence-to-sequence classification tasks in many fields [32–35].
Mahmud et al. trained an automated BiLSTM model to detect sleep apnea based on EEG
and reached a high accuracy on different publicly available datasets [36]. Chang et al.
proposed a depression assessment framework based on the spatiotemporal network of
EEG and BiLSTM and achieved more than 70% accuracy in the SEED dataset [37].

Two emotional models widely used in the existing research are the circumplex model
of affects (CMA) and the discrete emotion model (DEM). CMA defines emotions in a two-
dimensional space with arousal and valence. In the work of Posner et al. about CMA, the
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authors presented that emotion states occur from the cognitive interpretations of core neural
sensations and that CMA is a useful tool to study the development of emotion disorders
and cognitive underpinnings of affective processing [38]. DEM conversely supposes each
discrete emotional state is a different state. In the study of Kılıç et al., the authors proposed
that assigning each emotion as a separate discrete state based on DEM is important in
recognizing different emotional states and particularly in neuropsychiatric diseases [39].

Motivated by the fact that discrete emotions are vital for emotion recognition and
that different entropy features represent implicit EEG complexity in different degrees, we
focus on finding out which entropy feature is the best for characterizing three discrete
emotional states (i.e., positive, neutral, and negative) and whether integrating different
entropy features can enhance the performance of emotion classification by utilizing BiLSTM
in the present study. In this paper, we propose a novel framework for cross-subject emotion
recognition based on fused entropy features of EEG and BiLSTM. Our approach is to model
a BiLSTM classifier based on the fusion of entropy features in EEG induced by different
emotional film clips. We first calculate the MSE feature and four other entropy features of
EEG to mine the dynamic changes of EEG in different emotion statuses. Then, a BiLSTM
classifier is trained to learn the bidirectional time dependency in the extracted EEG features
and to realize emotion recognition.

This paper is organized as follows. Section 2 addresses the EEG dataset used in our
work. Section 3 details the adopted methodologies. The results of the research are presented
in Section 4 and discussed in Section 5. Finally, Section 6 concludes the paper.

2. Data Resource

The EEG data in this study came from the 2020 World Robot Competition—BCI
Control Brain Robot Contest. It consisted of two public datasets, namely SEED [11] and
SEED-FRA [40] (the SJTU Emotion EEG Dataset, https://bcmi.sjtu.edu.cn/home/seed/,
accessed on 30 October 2014), collections for various emotion research purposes using EEG
provided by Shanghai Jiao Tong University. Prior to the data collection, the experiment
was approved by the Ethics Committee, Shanghai Jiao Tong University. The data were
gathered from 23 healthy subjects (15 Chinese and 8 French) while they watched different
emotional film clips in their native language. First, 50 cinema managers were asked to fill in
a questionnaire in which they were supposed to describe the emotional valence of at least
three film excerpts for each emotion state (i.e., positive, neutral, and negative). The cinema
managers were selected because they were likely to have significant knowledge about films,
which might contribute to creating a large preliminary list of film scenes [41]. Then, the
listed emotional film excerpts were discussed and viewed by the cinema managers to rate
their valence scale from 1 (sad) to 9 (happy) using the Self-Assessment Manikin (SAM). The
mean and standard values of each film excerpt were calculated to analyze the rating results,
and the initial pool of film clips was established. After this step, a pilot trial was executed
to test whether the selected film clips could elicit the expected emotions. According to the
SAM rating results of subjects, the mean and standard values of each film clip in the pilot
trial could be obtained. Emotional film excerpts from five Chinese films and seven French
films with the largest mean values and similar standard values were finally selected as the
positive stimuli. There were also twelve film excerpts with the smallest mean values and
approximative standard values chosen to be negative stimuli. As for the neutral stimuli,
they consisted of film excerpts whose mean values were close to five (the mean value of
the valence scale), and standard values were similar. Before the experiment, subjects were
asked to finish the Eysenck Personality Questionnaire (EPQ), and only those with stable
moods were selected. There are three types of emotions (i.e., positive, neutral, and negative)
included in the experiment, and each type of emotion had five (for Chinese subjects) or
seven (for French subjects) corresponding film clips. Each emotional film clip lasted for
2 min.

The experiment was performed in a quiet room. Figure 1 shows the experiment scene.
A 62-channel electrode cap arranged according to the international 10–20 system was used
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to collect the EEG data. The sampling rate was set to 1000 Hz. Before starting, all subjects
were given written and oral instructions on the experiment and were asked to stay as
still as possible and refrain from moving. In the experiment, the subjects sat comfortably
and paid attention to watching the forthcoming film clips. Eight of the subjects watched
21 film clips (i.e., 21 trials), with seven film clips corresponding to each emotion. The other
fifteen subjects were shown 15 film clips, and there were five corresponding film clips for
each emotion. The detailed protocol of the experiment is shown in Figure 2. A 5 s picture
hint was set before each clip, and there was a 45 s interval after each clip, allowing the
subjects to report their emotional states concerning the film clips based on their feelings.
The self-reported emotional states were then used to validate the emotion classification
results of the study. The details about the database can be found in [11,37,40].

Figure 1. The emotion experiment scene.

Figure 2. Protocol of the experiment.

3. Methodology

The analysis process of EEG-based emotion recognition includes three steps: data
preprocessing, feature extraction, and emotion recognition. This section describes how we
dealt with the data in detail. The analyzing process was implemented in MATLAB 2019b.

3.1. Preprocessing

As previous studies have demonstrated that some electrodes are irrelevant to emotion
changes [42], and Zheng et al. found that the lateral temporal brain area is activated
more than other brain areas in emotion processing [11], we first selected twelve electrodes
(i.e., FT7, T7, TP7, P7, C5, CP5, FT8, T8, TP8, P8, C6, CP6) in the lateral temporal brain area
for further research in this paper. The EEG data were then down-sampled to 256 Hz to
improve the calculation efficiency. After that, the EEG segments corresponding to each film
clip’s duration were extracted to obtain the entire EEG data from watching all the film clips,
as the raw EEG data contained the EEG signals not only while watching the films but also
in the preparation and self-assessment stages. To reject interference from the power line,
we used a bandstop filter of 50 Hz. Five frequency bands (i.e., delta, theta, alpha, beta, and
gamma) of the EEG signals were then roughly extracted, applying wavelet decomposition.
Finally, a wavelet-based technique was used to remove the artifacts in each band.

Wavelet transform, which is an effective time-frequency analysis method with the
ability for good local representation of signals in the time and frequency domain, is usually
used to analyze EEG signals [43]. By decomposing the signal at each level, the detailed
and approximate component wavelet coefficients can be obtained corresponding to the
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level. The wavelet coefficients could reflect the detailed information of the signal as well as
the correlation with the mother wavelet. In fact, the coefficients of the artifacts are usually
larger than those of a normal EEG signal. Therefore, artifacts were eliminated by setting a
threshold value [44]. This wavelet-based method has been validated to be effective in the
field of driver fatigue assessment [45,46]. We can calculate the threshold by

Tj = mean
(
Cj

)
+ 2 × std(Cj) (1)

where Cj is the wavelet coefficient at the jth level of wavelet decomposition. The value of
any coefficient is larger than Tj; it is considered a coefficient of the artifact and halved to
eliminate its influence. Then, the wavelet-corrected signal can be reconstructed with the
new set of wavelet coefficients. More details about the preprocessing process can be found
in Appendix A.

As usually used to resemble EEG signals in the literature [47], db6 was selected as the
mother wavelet. The EEG signals from all the twelve electrodes were preprocessed in the
same way as mentioned above in this paper. Figure 3 shows the preprocessing results of
the gamma frequency band at the FT8 electrode. Figure 3a is a 10 s duration of the original
EEG signal with various artifacts. Figure 3b gives the gamma frequency band extracted
by wavelet decomposition. The body movements caused large fluctuations in the gamma
band were obviously removed, though artifacts induced by blinks still exist. The result of
the artifact removal is shown in Figure 3c. It is clear that the wavelet-based thresholding
technique can reduce the interference of artifacts in Figure 3b.

Figure 3. EEG signal preprocessing; the units are μV. (a) The original EEG signal; (b) the gamma
wave obtained by wavelet decomposition; (c) the gamma wave after artifact removal.

3.2. Feature Extraction

Five entropy features were calculated to explore the dynamic changes in EEG induced
by different emotional film clips including MSE, AE, FE, DE, and Rényi entropy (RE).

3.2.1. Multi-Scale Entropy

MSE, with the ability to reduce the interfere of residual noise on the results by cal-
culating features in different time scales, was chosen to manifest the dynamic changes
while subjects were viewing emotional films [48]. It was proposed firstly by Coasta et al.
in 2003 [49] that MSE could reflect the complexity of signals in different scale factors by
extending the idea of SE to several time scales. For the EEG signal {x1, . . . , xi, . . . , xN}, it is
first coarse-grained according to a specified scaling factor τ. In this process, the original
signal is divided by sliding windows with a length of τ, and the average value is then
calculated in each window to obtain the coarse-grained time series {y(τ)}. It is defined as

y(τ)j =
1
τ ∑jτ

i=(j−1)τ+1xi, 1 ≤ j ≤ N
τ

, (2)
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Then, the SE of the simplified time series {y(τ)} is calculated at each time scale. For more
information about the calculation of SE and the parameter setting, please see Appendix B.

3.2.2. Approximate Entropy

AE proposed by Pincus in 1991 is a kind of nonlinear dynamics parameter to measure
the complexity and the statistical quantization characteristics of the signal [50]. Due to
its effectiveness in reflecting the structure characteristics and complexity information of
signals with fewer data points, it is widely used in time series classification studies. Its
formula is

AE(m, r, N) =
1

N − m + 1∑N−m+1
i=1 log Cm

i (r)− 1
N − m∑N−m

i=1 log Cm+1
i (r), (3)

where Cm
i (r) can be calculated by

Cm
i (r) =

Bm
i

N − m + 1
, (4)

where Bm
i is the number of matches of dimension m.

The mode dimension m is set as 2, and the tolerance r is equal to the standard deviation
of the signal times 0.2. N is the data length, which is set as 256, equals the data points in a
1 s time window without overlap.

3.2.3. Fuzzy Entropy

FE is also a measure of the complexity of signals like AE. Instead of the Heaviside
Step Function used in AE, the concept of the fuzzy set is introduced into FE to measure
the similarity of two vectors. An exponential function is chosen as the fuzzy function that
enables the FE values to change smoothly and continuously with parameters change [51].
In this case, FE is also calculated in our study to make a comparison with other entropy
features. It can be calculated by

FE(m, n, r, N) = ln
Om(n, r)

Om+1(n, r)
, (5)

where Om(n,r) is the mean value of the fuzzy membership of the time series with length
N in dimension m and tolerance r; n is used to determine the gradient of the similarity
tolerance boundary. More details about the definition of Om(n,r) and the parameters in
Equation (5) are described in detail in Appendix B.

3.2.4. Rényi Entropy

RE is a generalization of Shannon entropy, which reflects the time-frequency features
and randomness of signals. It is widely used in information theory, such as classification
problems. For a given EEG signal X = {x1, . . . , xi, . . . , xN}, its RE can be calculated by

RE =
1

1 − q
log

(
∑N

i=1 p(i)q
)

, q ≥ 0 & q �= 1, (6)

where q is the entropic index, p(i) is the probability of choosing xi in X, and ∑N
i=1 p(i) = 1.

According to Kar et al.’s [52] study, we use q = 2 to calculate the two-order entropy in
a sliding window with a length of one second.

3.2.5. Differential Entropy

As an extension of Shannon entropy, DE can be utilized to reveal the complexity of a
time series [53]. Previous study has proven that DE performs better than energy spectrum
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and asymmetrical features in EEG-based emotion state detection [54]; thus, we calculated
DE to represent the changes in EEG signals in different emotional films. It is defined as

DE = −
∫ b

a
f (x) log( f (x))dx, (7)

where f (x) is the probability density function of the time series and [a, b] is the taking value
interval. If the time series is approximately a Gaussian distribution N(μ,σ2), its DE can then
be calculated by

DE = −
∫ +∞

−∞

1√
2πσ2

e
(x−μ)2

2σ2 log

(
1√

2πσ2
e
(x−μ)2

2σ2

)
dx =

1
2

log 2πeσ2, (8)

where μ and σ2 are the expectation and variance of the time series. In our present work,
DE is extracted from the signals in a sliding window of a length 1 s without overlap.

3.3. BiLSTM

As an update to LSTM, BiLSTM not only possesses the ability to avoid the receding
gradient problem but also memorizes long- and short-term dependency of EEG in a forward
direction as well as in a backward direction [55]. As shown in Figure 4, we can see
that BiLSTM works in a way that integrates two LSTM together composed of LSTM
memory cells.

Figure 4. BiLSTM network architecture. It consists of five layers (input layer, BiLSTM layer, fully
connection layer, softmax layer, and classification layer). xt is the EEG feature of time t. ht is the
hidden state of LSTM cell in time t.

LSTM memory cells contain four neural network layers compared to conventional
RNN cells with only one layer to model the long-term context. The structures called
“gate” consist of neural network layers, and their interactions make it possible for a LSTM
memory cell to add or remove information from the cell state [56]. The details about how
the memory cell works can be found in Appendix C. Figure 5 shows the structure of a
LSTM memory cell.
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Figure 5. The details of a LSTM memory cell. It contains two kinds of activation functions (σ and
tanh). Ct is the LSTM cell state in time t. ft, it, and ot represent the outputs of forget gate, input gate,
and output gate in time t separately.

4. Results

4.1. Feature Extraction

In this paper, the five-scale MSE feature was first extracted from the five frequency
bands for the selected twelve electrodes after preprocessing. Four other kinds of entropy-
based features mentioned in Section 3.2 were also calculated. A non-overlapped sliding
window of 1 s was used in the feature extraction procedure. The dimension of the obtained
MSE feature matrix for each subject is 300 × N, and the other features (i.e., AE, FE, RE, and
DE) share the same dimension as 60 × N, where N stands for the sampling time. Figure 6
shows parts of the preprocessed gamma frequency band and its entropy features in FT8.
The red numbers in Figure 6 are the emotion types of the film clips’ duration, which are
in accordance with the self-reported emotional states. A positive emotion is marked as
“1”, and “0” and “−1” represent neutral and negative emotions, respectively. The interval
between two adjacent purple dashed lines corresponds to the film clip.

It can be seen from Figure 6 that the waveform of the gamma band after preprocessing
varies in different emotional films, and the five entropy-based features change regularly
corresponding to the film clips. In Figure 6a, the amplitudes of watching a positive film are
obviously larger than those of the other two emotional films. The amplitudes of negative
movies rank in second place, followed by those of neutral movies. The fluctuations of
DE and FE are similar, as shown in Figure 6b,d. The highest peak values occur during
positive emotion film clips, and the lowest valleys appear while subjects watch neutral
film clips. The feature values of watching negative film clips are positioned between
these two conditions. Additionally, AE and RE share the same waveforms, as can be
seen in Figure 6c,e, which are contrary to those of DE and FE. As for the result of MSE in
Figure 6f, there is a slightly increasing tendency in the values of MSE when subjects were
watching positive and negative films compared with the neutral films, whereas no obvious
differences can be seen between positive and negative films in MSE.

4.2. The Classification Results of BiLSTM

BiLSTM is applied to classify the emotion states of the subjects in order to explore
the long-term dependency and interplay of the extracted features at different times. We
trained BiLSTM models for each kind of feature and the fused entropy features separately.
Then the performance of BiLSTM utilizing a single-type feature was compared with that of
fused entropy features. Further, the result was also compared with conventional LSTM to
make the results more convincing. The five types of feature matrixes obtained in Section 4.1
were first normalized to (−1, 1) to eliminate the effect of individual differences. Then, the
normalized feature matrixes could be directly fed into the classifier. As for the output
(i.e., the category label vectors), it can be set according to the sequence of the film clips and
the results of the self-assessment. The dimension of the label vectors is 1 × N, where N is
the sampling time. There are in total three categories in this paper: positive, neutral, and
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negative. The training data come from eighteen subjects selected randomly from all, and
the data of the remaining five subjects was set as testing data. The recognition accuracy
was defined as the average accuracy of the five subjects in the testing group. The results of
different entropy features are shown in Table 1. “ALL” means the five entropy features.

Table 1. The mean accuracies of BiLSTM and LSTM for different features (%).

Feature AE FE RE DE MSE ALL

LSTM 61.1 59.47 54.23 65.09 66.12 67.22
BiLSTM 63.43 61.1 57.15 66.34 67.9 70.05

(a) (b)

(c) (d)

(e) (f)

Figure 6. The results of five entropy-based features of EEG. The numbers “1”, “0”, and “−1” represent
positive, neutral, and negative emotions, respectively. The purple dashed lines show the boundaries
of different film clips. (a) Preprocessed gamma frequency band; (b) DE; (c) AE; (d) FE; (e) RE; (f) MSE.

From Table 1, it can be seen that the performance of BiLSTM is clearly better than
that of LSTM. As for the result comparison the two models based on single-feature inputs,
LSTM and BiLSTM with the input of MSE achieves the best result, reaching at 66.12% and
67.9%, respectively, and they are slightly higher than those of DE, which was proven to
be a better feature to classify different emotion states in a previous study [11]. The RE
feature leads to the lowest accuracy of 54.23% in LSTM and 57.15% in BiLSTM, and the
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accuracies of AE and FE lie between RE and AE. Furthermore, the two models’ performance
is apparently enhanced while using fused entropy features to detect emotion states peaking
at 67.22% in LSTM and 70.05% in BiLSTM.

5. Discussion

Different types of entropy features of EEG were calculated to explore the dynamic
changes of EEG while subjects were watching emotional film clips, and the results of the
gamma frequency band in FT8 are shown in Figure 6. It can be seen that the entropy values
are significantly different for different emotional films. The higher peaks appear in positive
and negative films in the results of DE, FE, and MSE, and the lowest valleys occur in neutral
films. Subjects are highly stimulated in emotion when exposed to the positive and negative
films; in these cases, the brain activity is usually active and complex (see Figure 6a), and it
objectifies a high complexity in the gamma band. However, subjects are not as immersed in
the neutral films as during the other two conditions. Thus, there is a decrease in complexity
and the lowest entropy values appear. The results are accordant with previous studies
showing that greater activities of the gamma band can be found in positive states and the
lowest activities are in neutral conditions [15,57]. As for the results of RE, the positive films
induce the largest absolute values followed by negative films, and the smallest absolute
values are caused by neutral films. The results are consistent among DE, FE, and MSE.
RE is a reflection of the amplitude’s distribution; a smaller RE is obtained when the EEG
amplitude concentrates in a certain subsequence, indicating the signal is more ordered and
less complex [58]. Hence, a larger absolute value of RE can be seen in a more active gamma
band when subjects are greatly affected by positive and negative films. Subjects are usually
more engaged in viewing positive film clips than neutral clips, generating more active
brain activities, but the complexity changes in EEG may be not large enough to be detected
by AE. Different from the changing rules of the above four features, AE reaches its highest
value in neutral emotion and its lowest value in positive emotion, as shown in Figure 6c.
As we know, AE was proposed to measure the average logarithmic conditional probability
of the new pattern’s occurrence in a signal with the dimension change [50]. It introduces
self-matches into calculation and will inevitably lead to calculation bias, which can result in
an insensitivity to small changes in complexity [59]. Thus, the small complexity changes in
brain activity during the positive film’s duration may be ignored. It decreases the detected
new patterns and leads to the lower AE value in positive emotion.

The extracted entropy features are used to detect emotion states by training a BiLSTM
model. The classification results in Table 1 illustrate that the mean accuracy of MSE is
slightly higher than that of the other four entropy features using BiLSTM, as it can reveal
the complex information of EEG in film watching as well as reduce the influence of the
residual noise on the results to some extent [60]. Moreover, the performance of BiLSTM is
further improved with multiple entropy features, reaching to 70.05%. Different features can
compensate for each other according to the study in [23]. Then, the more useful information
of EEG features can be learned by BiLSTM, thus contributing to a higher accuracy in
emotion recognition. Additionally, the traditional one-directional LSTM was also trained to
make a comparison with BiLSTM. Table 1 indicates that the trained BiLSTM performs better
than LSTM since it can learn the long- and short-term dependency among EEG features
in a forward direction and in a reverse direction [55]. This finding is consistent with the
finding that utilizing the BiLSTM classifier is an efficient way to decrease the train and test
error and to increase the classification accuracy [61]. The accuracy is comparable with that
in the research in [26], who utilized the DE feature and transfer learning to detect three
emotions and reached an accuracy of 72.47% in the SEED dataset. However, our accuracy
is lower than that in [11] who used the DE feature and DBN to recognize different emotions
in the SEED dataset. This might be because SEED includes only Chinese subjects, and the
data we obtained from the competition include not only Chinese but also French subjects
(i.e., the data used in our study consist of two datasets: SEED and SEED-FRA). Although
the subjects watched their native language films during the experiment to elicit emotional



Entropy 2022, 24, 1281 12 of 17

changes more easily, and the stimulus types of the films are the same, there are differences
between the Chinese and French subjects, which may lead to the lower accuracy in our
study. In a study utilizing the same data as ours, a similar accuracy of about 70% was
obtained in [37] for depression recognition.

This study shows the feasibility of recognizing emotion status by deploying multiple
entropy features. However, as the dataset we used contains subjects and stimuli of two
native languages, and film clips in different emotional categories vary in the degree of
induced emotion, there are still limitations in the present work. First, the used dataset
consisted of two public datasets, which involved both Chinese and French subjects and
stimuli. Each subject watched films in his native language to elicit emotional changes
more easily, but the number of film clips for the two languages was different. Since the
stimulus types of the films were the same, we assume the different number of film clips for
the subjects had no effect on the results in the present work, though influences we do not
realize might exist in the results because of the different native speakers and the number
of film clips. Further, subjective labeling of participant emotional states was adopted to
recognize the emotions in our study, as it is beneficial to the feature analysis for the same
type of emotion states and to ensure the reliability of the results by providing more accurate
feelings of the subjects. Although most of studies about emotions in the literature choose
subjective labeling, there is research that selects objective labeling to label the emotional
states, which can be further studied in our future experiment design. Additionally, the
results obtained in our present work can be further improved by utilizing some new, more
effective algorithms. Electrical Source Imaging (ESI), an emerging algorithm to reconstruct
brain or cardiac electrical activity from electrical potentials measured away from the brain,
can determine the location of current sources from measurements of voltages [62]. This
would be a novel and interesting topic for estimating the cortex brain regions involved in
each video viewing to improve the emotion recognition accuracy in our future work.

6. Conclusions

In this paper, we proposed a cross-subject emotion recognition framework based on
fused EEG entropy features and a BiLSTM classifier. It demonstrates that MSE is more
effective in analyzing the complex emotion information in EEG than the other entropy
features when adopting a single EEG feature. What is more, the classification accuracy
can be apparently increased by combining all entropy features, which proves that there is
information compensation among different types of features.

Future work mainly includes two aspects. One aspect is to extract more features from
different perspectives, such as time-frequency domain features and non-linear dynamic
features, for feature fusion; the other is enhancing the performance of the classifier with a
new feature fusion algorithm or by estimating the cortex brain regions involved in watching
emotional film clips by applying Electrical Source Imaging.
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Appendix A. Preprocessing

In this section, we preprocessed the EEG signals to remove the artifacts and obtain five
frequency bands. We first downsampled the signals from 1000 Hz to 256 Hz to enhance the
calculation efficiency. Then, the EEG segments during film clip watching were extracted.
After that, to obtain different frequency band rhythms, a bandstop Butterworth filter of
order 4 with cutoff frequencies of 0.19 and 0.2 was used to remove the power line, and
wavelet decomposition was applied to roughly obtain the five frequency bands of EEG
signals. A wavelet-based technique was chosen to remove the artifacts in the end.

Wavelet transform is a well-known time-frequency analysis algorithm and has been
widely adopted to deal with non-stationary signals. The original signals are decomposed
and expressed with a scaled and shifted version of the mother wavelet ψ(t) and a scaling
function φ(t) [52]. The discrete mother wavelet can be expressed as

ψj,k(t) = 2
j
2 ψ

(
2−jt − k

)
, j, k ∈ Z, (A1)

The signal S(t) can then be represented as

S(t) = ∑ksj(k)φj,k(t) + ∑kdj(k)ψj,k(t), (A2)

where sj(k) is the approximate coefficient at the jth level, and dj(k) represents the
detailed coefficient.

In this study, the EEG signal was decomposed into seven levels using db6 (Daubechies
family), as the waveform of db6 is similar to the EEG signal and it has been widely used
in decomposing EEG in the literature [47]. The delta (1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) frequency bands were roughly obtained
by reconstructing the detailed components at levels of seven, five, four, three, and two,
respectively.

To eliminate the artifacts’ interference, the five frequency band rhythms are decom-
posed separately into three levels with a 1 s sliding window, and the thresholds of each
level are calculated by Equation (1). The coefficient is halved if its value is larger than the
calculated threshold. In this way, a new set of signals is generated without artifacts.

Appendix B. Feature Extraction

This section lists some details about the well-known formulas and the parameter
setting to extract the entropy features of the five frequency bands, which provides supple-
mentary information for Section 3.2.

After the first coarse graining step in extracting the MSE feature (see Section 3.2.1), the
SE is then calculated for the new time series in different scales by the following formula

SE(m, r, N) = − ln
[

Bm+1(r)
Bm(r)

]
, (A3)

where m is the mode dimension of the data vector, r is the tolerance for similarity matches,
and N is the number of data points. Bm(r) and Bm+1(r) are the numbers of matches for
dimension m and m + 1, respectively.

In this paper, the five-scale of the MSE feature is calculated with a 1 s sliding window
for the five frequency bands. The mode dimension m is set as 2, and the tolerance r is equal
to the standard deviation of the signal times 0.2.
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As for FE in Section 3.2.3, the parameter Om(n,r) in Equation (5) is defined as

Om(n, r) =
1

N − m∑N−m
i=1

(
1

N − m − 1∑N−m
j=1,j �=iD

m
ij

)
, (A4)

Dm
ij = f

(
dm

ij , n, r
)

, (A5)

Xm(i) = [x(i), x(i + 1), . . . , x(i + m − 1)], (A6)

Xm(j) = [x(j), x(j + 1), . . . , x(j + m − 1)], (A7)

where n is the fuzzy exponent, and dm
ij , the distance between vectors Xm(i) and Xm(j),

is defined as the absolute value of the maximum difference between the corresponding
elements in the two vectors. Dm

ij is then calculated by the fuzzy function f (dm
ij ,n,r) to show

the similarity of vectors Xm(i) and Xm(j).
The same parameters of m, r, and N with AE are used. n is set as 2 according to the

research of Chen et al. [51].

Appendix C. BiLSTM Classifier

As mentioned in Section 3.3, BiLSTM is an integration of two opposite-direction LSTM
and consists of LSTM memory cells. A LSTM cell contains an input gate, output gate, and a
forget gate (see Figure 5), which serve to protect and control the cell state Ct. The first step
in a LSTM cell is to select that which should be deleted in Ct−1, and it is realized by the
forget gate:

ft = σ
(

Wf · [ht−1, xt] + b f

)
, (A8)

Then, the input gate consisting of a sigmoid layer chooses what kind of values need
to be updated (Equation (A9)), and a tanh layer creates a new candidate cell state C̃t from
Equation (A10). Following these two steps, the new cell state Ct can be obtained from
Equation (A11):

it = σ(Wi · [ht−1, xt] + bi), (A9)

C̃t = tanh(WC · [ht−1, xt] + bC) (A10)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (A11)

In the end, the output gate and a tanh layer are activated to decide the final output ht,
as expressed in Equations (A12) and (A13):

ot = σ(Wo · [ht−1, xt] + bo), (A12)

ht = ot ∗ tanh(Ct) (A13)

In the equations, σ and tanh represent the activation functions, xt denotes the input of
the cell (the EEG feature of time t), and W, b and h are the weight, bias, and hidden state of
the gates, separately.

In this paper, we trained and tested various BiLSTM and LSTM classifiers with dif-
ferent parameters to find the best parameters for each feature. The Adam optimizer was
utilized as the optimizer of the classifier. We selected the data of 18 subjects as the training
set, and that of the remaining five subjects was the testing set. The average accuracy of the
test set was used to evaluate the classifier’s performance. The details of the parameters
tested are listed in Table A1.
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Table A1. The detailed parameters trained in BiLSTM and LSTM.

Name Value

Hidden units [10:150] with step of 10
Epochs [50:150] with step of 20

Mini batch size [50:100] with step of 10
Learning rate 0.001
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