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Abstract. In this note, we consider the problem of finding an absolutely minimizing Lipschitz
extension of a given function defined in a subset of an arbitrary metric space. Using a version of
Perron’s method due to Aronsson, we prove the existence under the assumption that the space is
a separable length space.

1. Introduction

Let (X, d) be an arbitrary metric space and let A be any nonempty subset
of X . If we are given a Lipschitz function f : A → R , then it is well known that
there exists a minimal Lipschitz extension (an MLE for short) of f to X , that
is, a function h: X → R such that h|A = f and the Lipschitz constant of h in
X equals to the Lipschitz constant of f in A . Such extensions were explicitly
constructed already by McShane [10] and Whitney [13], and can be written as

f(x) = inf
y∈A
{f(y) + L(f,A) d(x, y)} , f(x) = sup

y∈A
{f(y)− L(f,A) d(x, y)} .

Here, and in what follows, L(g,E) denotes the (smallest) Lipschitz constant of
a function g: E → R . It is easy to verify that both the lower and the upper
extension f and f really are minimal Lipschitz extensions. Moreover, if u is any

minimal Lipschitz extension of f to X then f ≤ u ≤ f pointwise in X .
The notion of a minimal Lipschitz extension is not completely satisfactory.

It involves only the global Lipschitz constant of the extension and ignores what
may happen locally. To illustrate this point, let us consider the following simple
example. Let X = [−2, 2] , equipped with the usual metric of R , and let A =
{−2,−1, 1, 2} . If we define the function f by setting f(±1) = 1, f(±2) = 2, then
h: [−2, 2]→ R is an MLE of f if and only if it can be written as

h(x) =

{ |x|, if 1 < |x| ≤ 2,

ĥ(x), if |x| ≤ 1,
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where ĥ: [−1, 1]→ R is any function such that ĥ(±1) = 1 and L(ĥ, [−1, 1]) ≤ 1.
Yet the most natural, and in a sense the best extension would be max{1, |x|} ,
which is the only MLE that has also locally the smallest possible Lipschitz con-
stant.

With these remarks in mind, it is natural to ask whether it is always possible
to find an MLE which has also locally the optimal Lipschitz constant, and if such an
extension could be unique. These questions have been thoroughly studied in Rn ,
starting from the pioneering work of Aronsson [3]. He introduced the concept of
absolute minimizers (also known as “absolutely minimizing Lipschitz extensions”,
see Definition 2.1 below) and gave an affirmative answer to the existence by using
a nice variant of Perron’s method. Aronsson also proposed another approach to
the problem, based on approximation by p -harmonic functions as p → ∞ . This
method provides an Euler equation for the problem, called the infinity Laplace
equation, and it has turned out to be crucial in the proof of uniqueness; see the
celebrated paper of Jensen [7]. Nowadays there is a fast growing literature on
the various aspects of the problem in Rn , in particular, on the infinity Laplace
equation and its generalizations. See [4], [7], [8], [9], and the references therein.

The objective of this paper is to study the problem in the setting of an ar-
bitrary metric space. Since, in general, there is no theory of PDE’s available,
we try to follow in Aronsson’s footsteps and show the existence of an “absolute
minimizer” by using Perron’s method. Initially, (X, d) can be any metric space,
but later on we have to make some restrictions. Our main result, Theorem 4.3,
states that if the space is a separable length space, then there exists an absolutely
minimizing Lipschitz extension of any given Lipschitz continuous function.

This paper is organized as follows. In Section 2, we give the precise definition
of an absolutely minimizing Lipschitz extension, which is not entirely trivial in this
generality. The classes of subsolutions and supersolutions of the extension problem,
needed for the Perron’s method, are introduced in Section 3. The existence result
is then proved in Section 4, and we conclude with a short appendix on subsolutions
and supersolutions in Rn .

2. Definitions

The first thing we need to do is to precisely formulate what it means for an
MLE to have the smallest possible Lipschitz constant locally also.

2.1. Definition. Let A be any nonempty subset of X and let f : A→ R be
Lipschitz. A function h: X → R is an absolutely minimizing Lipschitz extension
(an AMLE for short) of f to X if

(1) h is an MLE of f to X ;
(2) whenever B ⊂ X and g: X → R is an MLE of f to X such that h = g in

X \B , then

L(h,B) ≤ L(g,B).
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The above definition is quite natural as it requires that no admissible variation
can decrease the local Lipschitz constant. Aronsson’s original (and essentially
equivalent) definition in Rn was formulated in a slightly different way. He assumed
that A is a compact set and required that L(h,D) = L(h, ∂D) for every bounded
open set D in Rn \A . In our situation, this kind of definition would be somewhat
ambiguous because the boundary of an open subset of a metric space may very
well be empty.

It is easy to find pathological examples where a given Lipschitz function does
not have an absolutely minimizing extension.

2.2. Example. Let X = {x, y, z} and define a metric d on X as follows:

{
d(x, y) = 3

2 ,

d(x, z) = d(y, z) = 1.

Let A = {x, y} and set f(x) = 0, f(y) = 1. If h: X → R is an AMLE of
f to A then h(x) = 0, h(y) = 1, and 1

3 ≤ h(z) ≤ 2
3 , because L(f,A) = 2

3 .
Choose B = {x, z} and let g be the MLE of f for which g(z) = 1

3 . Then
L(g,B) = 1

3 , which implies that L(h,B) = 1
3 , and consequently h(z) = 1

3 . By a
similar argument, this time using the set {y, z} , we see that h(z) = 2

3 , which is
not possible. Hence there does not exist an AMLE of f to X .

One could now argue that Definition 2.1 is not the correct one because we
allow testing with sets B that intersect A . If, however, we weaken the definition
so that B is required to be a subset of X \ A , then in the above example every
MLE is an AMLE. Heuristically, the issue here is to find the right way to interpret
the “boundary condition”. We will not pursue this discussion any further because
the choice between these two versions plays no role in the rest of the paper. Fur-
thermore, it is not hard to see that in any length space the two definitions are
equivalent.

2.3. Remark. In a sufficiently well-behaved space it also makes sense to talk
about local AMLEs without any reference to a function f that is to be extended.
This more intrinsic version of the definition has been favored in most of the recent
papers since it fits better with the PDE theory. In this note, we will not need the
local concept.

3. Subsolutions and supersolutions

Since our proof of existence is based on Perron’s method, we need to introduce
the classes of subsolutions and supersolutions of the extension problem. As in [1],
these are defined via comparison with respect to functions that are, in some sense,
extremal solutions to a local extension problem.
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Let us assume that (X, d) is separable and perfect. We fix f and A ⊂ X , and
from now on refer to MLEs of f to X simply as MLEs. For any MLE u: X → R
and any B ⊂ X let

L (u,B) = inf {L(g,B): g is an MLE, g = u in X \B } .
Using this notation, the condition (2) in Definition 2.1 can be reformulated as

(2′ ) L(u,B) = L (u,B) for all B ⊂ X ,
which is closer to the original definition of Aronsson [3].

3.1. Lemma. If u is an MLE and B ⊂ X , then there exists an MLE g0

such that g0 = u in X \B and L(g0, B) = L (u,B) .

Proof. Let gj be a sequence of MLEs such that gj = u in X \ B and
L(gj , B) ≤ L (u,B) + 1/j . Since the family {gj} is bounded pointwise by the
McShane–Whitney extensions f and f , and (X, d) is separable, Ascoli’s theorem,
see for example [12], provides us with a subsequence gjk converging uniformly on
compact subsets to some function g0 . It is elementary to check that g0 satisfies
the properties stated above.

Next set

Λu,B(x) = inf {g(x) : g is an MLE, g = u in X \B, and L(g,B) = L (u,B)} ,
Υu,B(x) = sup {g(x) : g is an MLE, g = u in X \B, and L(g,B) = L (u,B)}

These functions are clearly well-defined. Moreover, it is easy to check that Λu,B
and Υu,B are MLEs, u = Λu,B = Υu,B in X \B , and

L(Λu,B , B) = L(Υu,B , B) = L (u,B).

Following Aronsson’s idea, we now define sub- and supersolutions using the
local extremal extensions Λu,B and Υu,B .

3.2. Definition. Let u be an MLE of f to X . We say that u is a subsolution
of the extension problem if u ≤ Υu,B in X for every B ⊂ X . Similarly, we say
that u is a supersolution of the extension problem if u ≥ Λu,B in X for every
B ⊂ X .

Note that the set of supersolutions is never empty because the upper McShane–
Whitney extension is a supersolution. This follows immediately from the fact that
f is the largest MLE of f to X . An analogous remark holds for the subsolutions.

3.3. Example. Let (X, d) = (Rn, | · |) . Then L (u,B) = L(u, ∂B) and

Υu,B(x) = inf
y∈∂B

{u(y) + L(u, ∂B)|x− y|}

for all x ∈ B and for all open B ⊂ (X \A) .

The terminology used in the above definition is justified by the following
proposition.
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3.4. Proposition. A function u: X → R is an AMLE if and only if u is
both a subsolution and a supersolution.

Proof. Assume first that u is an AMLE. Then L(u,B) = L (u,B) for each
B ⊂ X , and hence Λu,B ≤ u ≤ Υu,B by the definitions. Consequently, u is both
a subsolution and a supersolution.

For the opposite direction, we argue by contradiction and assume that u
fails to be an AMLE. This means that there exist a subset B of X and points
x0, y0 ∈ B such that

M =
u(x0)− u(y0)

d(x0, y0)
> L (u,B).

We may assume, without loss of generality, that both x0 and y0 are interior points
of B . Consider the set B̃ = B \ {y0} . We show first that L (u,B) = L (u, B̃ ) .
In order to do this, let

g(x) = min {Υu,B(x),Λu,B(x) + c} ,

where c = u(y0) − Λu,B(y0) . Then clearly L(g,B) = L (u,B) . Because u is a
subsolution and a supersolution, we have

Λu,B(y0) ≤ u(y0) ≤ Υu,B(y0).

Hence g(y0) = u(y0) . Moreover, since Λu,B and Υu,B agree with u in the com-
plement of B , then so does g . Thus g is an MLE such that g|

X\B̃ = u|
X\B̃ , and

therefore
L (u, B̃ ) ≤ L(g,B) = L (u,B).

Since the opposite inequality is trivial, we obtain that L (u, B̃ ) = L (u,B) .
The rest is now easy. Using the facts that u is a subsolution and (X, d) is

perfect, we have

u(x0) ≤ Υ
u,B̃

(x0) ≤ u(y0) + L (u,B)d(x0, y0) < u(y0) +Md(x0, y0) = u(x0),

which is clearly a contradiction. Hence u is an AMLE, and the proposition is
proved.

3.5. Corollary. Suppose that u is a unique MLE of f to X . Then u is an
AMLE.

Proof. By the uniqueness, u = f = f . In particular, u is both a supersolution
and a subsolution, and hence by the above proposition an AMLE.
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4. Existence of an AMLE

In this section, we prove the existence of an AMLE under the assumption that
(X, d) is a separable length space. Recall that a metric space is a length space if
for all x, y ∈ X

d(x, y) = inf {l(γ) : γ: [0, 1]→ X is continuous, γ(0) = x , and γ(1) = y} .

Here l(γ) denotes the length of the curve γ .
As always with Perron’s method, the idea is to show that the infimum of all

supersolutions is a solution. We have divided the proof into two lemmas.

4.1. Lemma. Let F be a nonempty collection of supersolutions and define

h(x) = inf
u∈F

u(x).

Then h is a supersolution.

Proof. It is clearly enough to show that u ≥ Λh,B for every u ∈ F and every
B ⊂ X . Let us therefore fix B and u , and consider the set

D = {x ∈ X : u(x) < Λh,B(x)}.

Observe that D ⊂ B because Λh,B = h ≤ u in X \B . We define

Λ(x) = min{Λh,B(x),Λu,D(x)} =




h(x) in X \B,
Λh,B(x) in B \D,
Λu,D(x) in D.

If we can show that L(Λ, B) = L (h,B) , then D must be empty. Indeed, otherwise
we would contradict the definition of Λh,B since Λ = Λu,D ≤ u < Λh,B in D .

To this end, consider first the function g = max{u,Λh,B} . Clearly g is an
MLE and g = u outside D . Hence

L (u,D) ≤ L(g,D) = L(Λh,B , D) ≤ L(Λh,B , B) = L (h,B)

by the definitions. In particular,

L(Λ, D) = L(Λu,D, D) = L (u,D) ≤ L (h,B).

On the other hand,

L(Λ, B \D) = L(Λh,B , B \D) ≤ L (h,B).
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In order to conclude that L(Λ, B) = L (h,B) , we invoke the assumption that
(X, d) is a length space. Let x ∈ D and y ∈ B \D , and let γj : [0, 1] → X be a
path joining x to y such that l(γj) ≤ d(x, y) + 1/j . Then there is tj ∈ [0, 1] such
that the point zj = γj(tj) is at the boundary of D . Hence

|Λ(x)− Λ(y)| ≤ |Λu,D(x)− Λu,D(zj)|+ |Λh,B(zj)− Λh,B(y)|
≤ L (h,B)

(
d(x, zj) + d(zj , y)

)
≤ L (h,B)

(
l(γj |[0,tj ]) + l(γj |[tj ,1])

)

= L (h,B)
(
d(x, y) + (1/j)

)

for each j ∈ N . This shows that L(Λ, B) = L (h,B) .

The second lemma provides us with a “weak Poisson modification” of a su-
persolution.

4.2. Lemma. Let u be a supersolution that is not a subsolution. Then there
exists a supersolution û such that

(1) u ≥ û in X ,
(2) supx∈X

(
u(x)− û(x)

)
> 0 .

Proof. Let E ⊂ X be such that

E′ = {x ∈ X : u(x) > Υu,E(x)} ⊂ E
is not empty. Since (X, d) is a length space,

L (u,E′) = L (Υu,E , E
′) ≤ L(Υu,E , E

′) ≤ L (u,E),

and consequently Υu,E′ ≤ Υu,E < u in E′ by the definition of Υu,E . Let us now
define

û(x) = Υu,E′(x).

It is clear that this function satisfies (1) and (2), and thus we only need to prove
that û is a supersolution. To this end, we argue by contradiction and assume that
there is B ⊂ X such that the set B′ = {û < Λû,B} is not empty. By using a similar
reasoning as above, we may in fact assume that B′ = B . Furthermore, B∩E′ 6= ∅ ,
because otherwise we would contradict the fact that u is a supersolution.

To conclude the proof, we consider the set D = {Λû,B > u} ⊂ B . By the
various definitions,

L (u,D) = L (Λû,B , D) ≤ L(Λû,B , D) ≤ L (û, B),

and we obtain that Λu,D ≥ Λû,B in D . Since u is a supersolution, this implies
that u ≥ Λû,B in X , and consequently D = ∅ . Now we can easily deduce that
B ⊂ E′ . Indeed, if x ∈ X \ E′ , then û(x) = u(x) ≥ Λû,B(x) , which means that
X \ E′ ⊂ X \ B . Using once again the assumption that (X, d) is a length space,
we see that L(max{û,Λû,B}, E′) = L (u,E′) . Hence û ≥ Λû,B by the definition
of û , and we finally conclude that B = ∅ .

The existence of an AMLE is a direct consequence of Lemmas 4.1 and 4.2.
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4.3. Theorem. Let (X, d) be a separable length space, and suppose f : A→
R is Lipschitz. Then there exists an absolutely minimizing Lipschitz extension of
f to X .

Proof. Define

h(x) = inf{u(x) : u is a supersolution}.

By Lemma 4.1, h is a supersolution. If it was not a subsolution, we could use
Lemma 4.2 to construct a supersolution ĥ ≤ h such that ĥ(x) < h(x) for some x ∈
X , which obviously contradicts the definition of h . Hence h is both a subsolution
and a supersolution, and it then follows from Proposition 3.4 that it is an AMLE
of f to X .

We do not know how optimal our assumptions on the space (X, d) are. The
separability was needed to guarantee the validity of Ascoli’s theorem, and it was
not used anywhere else. The second assumption, that (X, d) is a length space, in
turn ensures that we can “glue” together two Lipschitz functions without increas-
ing the Lipschitz constant, see the proof of Lemma 4.1. The following somewhat
artificial example shows that this need not be true even if the space is close to
being a length space.

4.4. Example. For α ∈ (0, 1
2π) let

X =
{

(x, y) ∈ R2 : x ∈ R , y = |x| tanα
}
.

Then the space X equipped with the usual Euclidean distance in R2 is quasi-
convex with constant

√
1 + tan2 α , i.e., for all z1, z2 ∈ X there exists a curve γ

in X connecting z1 to z2 such that

l(γ) ≤
√

1 + tan2 α |z1 − z2|.

Moreover, the constant
√

1 + tan2 α is sharp. Let

u(z) =

{
|z|, if z ∈ X+ = X ∩ {x > 0},
−|z|, if z ∈ X \X+.

It is elementary to check that L(u,X) =
√

1 + tan2 α , although L(u,X+) =
L(u,X \X+) = 1.

4.5. Remarks. (i) An open question in this general setting is the uniqueness
of AMLEs. In the case of Rn , it is known that if Rn \ A is bounded, then for
each Lipschitz function f defined in A there exists a unique AMLE. The proof of
this result uses heavily the Euler equation of the problem, see [7], and the same
method cannot be directly applied here.
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(ii) As mentioned in the introduction, an alternative way to prove the ex-
istence of an AMLE in Rn is via approximation by p -harmonic functions as
p → ∞ . Thanks to the development of the theory of Sobolev spaces on met-
ric measure spaces (see [6] and the references therein), it is nowadays possible to
consider p -harmonic functions in a quite abstract setting, cf. [11], and hence one
might be able to base a general existence result on the same idea. However, in such
an approach a doubling measure and a suitable Poincaré inequality are needed,
whereas the extension problem itself contains no reference to a measure of any
kind.

5. Appendix: Subsolutions and supersolutions in Rn

In Rn (equipped with the usual metric), a theorem of Jensen [7] states that
a continuous function is a (local) AMLE if and only if it is a viscosity solution of
the infinity Laplace equation

(5.1) −∆∞u(x) = 0,

where

∆∞u = 1
2∇
(
|∇u|2

)
· ∇u =

n∑

i,j=1

uxiuxjuxixj .

By definition, being a viscosity solution is equivalent to being both a viscosity
subsolution and a viscosity supersolution (see [5], [7]). Thus, in Rn , there are
two separate concepts of a subsolution (respectively supersolution) that, a priori,
could give two different classes of functions. We show below that this is not the
case. The proof uses the following characterization of the viscosity subsolutions of
the infinity Laplacian due to Crandall, Evans and Gariepy [4].

5.2. Theorem. A continuous function u is a viscosity subsolution of (5.1)
in Ω ⊂ Rn if and only if it enjoys the following comparison with cones from above:
whenever D b Ω is open, x0 ∈ Rn , and

C(x) = a+ b|x− x0|, a, b ∈ R

is such that u(x) ≤ C(x) for every x ∈ ∂(D \ {x0}) , one has u(x) ≤ C(x) for all
x ∈ D .

Recall that we may now use the equivalent definition of subsolutions given by
Aronsson. Thus u is a local subsolution of the extension problem in Ω ⊂ Rn if
and only if

u(x) ≤ inf
y∈∂D

{u(y) + L(u, ∂D)|x− y|}

for every x ∈ D and for every open D b Ω.
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5.3. Proposition. A function u: Ω → R is a local subsolution of the
extension problem if and only if it is a viscosity subsolution of (5.1).

Proof. Assume first that u is a viscosity subsolution of the infinity Laplace
equation. Then u is locally Lipschitz continuous, see [4], [9]. Next notice that, for
each fixed y ∈ ∂D , D b Ω open, the function

x 7→ u(y) + L(u, ∂D)|x− y|
is a classical solution of (5.1) in D . Hence, by the standard theory of viscosity
solutions, see [5], [8],

Υu,D(x) = inf
y∈∂D

{u(y) + L(u, ∂D)|x− y|}

is a viscosity supersolution. Since Υu,D = u on ∂D , the comparison principle, cf.
[7], yields

u ≤ Υu,D in D,

as required.
For the converse implication, we use Theorem 5.2 above. Suppose that the

assertion does not hold. Then there is a subset D b Ω and a cone C(x) =
a+ b|x− x0| such that

C(y) ≥ u(y) for all y ∈ ∂(D \ {x0})
and

C(z) < u(z) for some z ∈ D.
Let D1 be the connected component of

{x ∈ D : C(x) < u(x)}
containing z . This means that C(x) = u(x) on ∂D1 , and, in particular, that
L(u, ∂D1) = L(C, ∂D1) = |b| . Moreover, the vertex x0 cannot be in D1 .

To conclude the proof, we consider separately the cases b ≥ 0 and b < 0.
First, if b ≥ 0, let y∗ ∈ ∂D1 be a point on the line segment between z and x0 .
Then

u(z) ≤ inf
y∈∂D1

{u(y) + L(u, ∂D1)|z − y|} ≤ u(y∗) + L(u, ∂D1)|z − y∗|

= C(y∗) + b|z − y∗| = a+ b|x0 − y∗|+ b|z − y∗| = a+ b|x0 − z| = C(z).

This obviously contradicts the choice of z . On the other hand, if b < 0, we choose
y∗ ∈ ∂D1 so that z lies on the line segment between x0 and y∗ . Then again

u(z) ≤ u(y∗) + L(u, ∂D1)|z − y∗| = C(y∗)− b|z − y∗|
= a+ b|x0 − y∗| − b|z − y∗| = a+ b|x0 − z| = C(z),

and we are done.
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