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Abstract

We study the correlations of pairs of complex logarithms of Z-lattice points in C at
various scalings, proving the existence of pair correlation functions. We prove that at
the linear scaling, the pair correlations exhibit level repulsion, as it sometimes occurs in
statistical physics. We prove total loss of mass phenomena at superlinear scalings, and
Poissonian behaviour at sublinear scalings. The case of Euler weights has applications
to the pair correlation of the lengths of common perpendicular geodesic arcs from the
maximal Margulis cusp neighbourhood to itself in the Bianchi orbifold PSL2(Z[i])\H

3
R
.

Keywords: Pair correlation, Lattice point counting, Complex logarithm, Level
repulsion, Euler function, Imaginary quadratic number field
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1 Introduction
When studying the asymptotic distribution of a sequence of finite subsets of R, finer
information is sometimes given by the statistics of the spacing (or gaps) between pairs or k-
tuples of elements, seen at an appropriate scaling. These problems often arise in quantum
chaos, including energy level spacings or clusterings, and in statistical physics, including
molecular repulsion or interstitial distribution. See for instance [2,3,13–15,18,23,25].
This paper may be seen as a complex version of our paper [22] where we study the
pair correlation of logarithms of pairs of natural integers, though new phenomena occur,
including the necessity to take limits of the underlying spaces, as we now explain.
The general setting for our study may be described as follows. Let E be an abelian

locally compact group. Let A = (AN , ωN )N∈N be a sequence of finite subsets AN of E,
endowed with a weight function ωN : AN → ] 0,+∞ [ (or multiplicity function when
its values are positive integers). When studying the asymptotic distribution of differences
of elements of AN , looking at them at various scalings is often desirable. As explained
by Gromov (see for instance [10]), scaling a metric space sometimes requires to change
the space, especially at the limit (unless this space has a nice family of homotheties, as
the Euclidean space R

n does). We thus introduce a sequence (EN )N∈N of abelian locally
compact groups converging for the pointedHausdorff-Gromov convergence to an abelian
locally compact group E∞ (see for instance [11]). Let HaarE∞ be a Haar measure on E∞.
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Letψ : N �→ ψ(N ) be a scaling function, that is, for everyN ∈ N�{0}, letψ(N ) : E → EN
be any map, typically a dilating homeomorphism for appropriate distances, that we think
of as “scaling” the space E. Let ψ ′ : N � {0} → [1,+∞[ be an appropriately chosen
function, called a renormalising function. The pair correlation measure of A at time N
with scaling ψ(N ) is the measure on EN with finite support

RA ,ψ
N =

∑

x,y∈AN ,x �=y
ωN (x)ωN (y)�ψ(N )(y−x) , (1)

where �z denotes the unit Dirac mass at z in any measurable space. When the sequence
of measures (RA ,ψ

N )N∈N, renormalised by ψ ′(N ), converges for the pointed Hausdorff-
Gromov weak-star convergence (see Sect. 3 for background definitions) to a measure
gA ,ψ HaarE∞ absolutely continuous with respect to HaarE∞ , the Radon-Nikodym deriva-
tive gA ,ψ is called the asymptotic pair correlation function of A for the scaling ψ and
renormalisation ψ ′. When gA ,ψ is a positive constant, we say that A has a Poissonian
behaviour for the scalingψ and renormalisationψ ′. When gA ,ψ vanishes on a neighbour-
hood of 0 in E∞ but is not the constant 0-function, we say that the pair (A ,ψ) exhibits a
strong level repulsion. The standard level repulsion only requires gA ,ψ to vanish at 0.
Recall that a Z-lattice in C is a discrete (free abelian) subgroup of (C,+) generating

C as an R-vector space. Let � be a Z-grid in C (or an affine (Euclidean) lattice in the
terminology of [8,15]), that is, a translate � = a + �� of a Z-lattice �� in the Euclidean
space C for some a ∈ C (well defined modulo ��), see for instance [1]. We denote by
covol �� = Vol(C/ ��) the area of a fundamental parallelogram for ��. We denote by

Sys �� = min
{|z| : z ∈ �� � {0}} > 0

the systole of the Z-lattice ��. Recall that the complex logarithm is an isomorphism of
abelian topological groups log : C

× → E = C/(2π iZ). Given N ∈ N � {0} and a
function ψ : N � {0} → ]0,+∞[, we again denote by ψ(N ) the scaling map from E to
EN = C/(2π iψ(N )Z) defined by z mod 2π iZ �→ ψ(N )z mod 2π iψ(N )Z. In Sects. 2 and
3, we study the pair correlations of the family of the complex logarithms of grid points

L� = (
L�
N = {log z : z ∈ �, 0 < |z| ≤ N }, ωN = 1

)
N∈N

without multiplicities.
In order to simplify the statements in this introduction, we only consider power scalings

ψ : N �→ Nα for α ≥ 0, and we denote them by idα . We use the notation LebA for the
Lebesgue measures on A = C and A = C/(2π iZ).

Theorem 1.1 Let α ≥ 0 and let � be a Z-grid. As N → +∞, the normalised pair
correlation measures 1

N 4−2α RL� , idα

N on the cylinder EN = C/(2π iNα
Z) converge for

the pointed Hausdorff-Gromov weak-star convergence to the measure gL� , idα LebE∞ on
E∞ = C/(2π iZ) if α = 0 and E∞ = C otherwise, with pair correlation function given by

gL� , idα : z �→

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π

2covol2��
e−2 |Re z| if α = 0,

π

2covol2��
if 0 < α < 1,

1
covol �� |z|4

∑

p∈ ��: |p|≤|z|
|p|2 if α = 1,

0 if α > 1.
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The convergence is uniform on � varying in any given compact subset of the set of Z-grids
of C endowed with the Chabauty topology.

The renormalisation by 1
N 4−2α in Theorem 1.1 is naturally chosen in order for the pair

correlation function to be finite. We refer to Theorems 2.2 and 3.1 for more complete
versions of Theorem 1.1, with more general scaling functions, as well as for error terms.
These error terms, as well as the ones in Theorems 5.1 and 6.1, constitute the main
technical parts of this paper.
A standard scaling function in dimension n is the inverse of the n-th root of the average

volume gap, which is the quotient of the volumeof the ball of smallest radius containing FN
by the number of elements inFN . See for instance [3,13,14,18,25], though these references
are in dimension n = 1. For the familyL�, this average volume gap is equivalent to (lnN )2

N 2 ,
up to a positivemultiplicative constant. As we shall see in Theorem 3.1, the corresponding
scaling function ψ : N �→ N

lnN gives, as for ψ : N �→ Nα for 0 < α < 1 in the above
theorem, a Poissonian behaviour (see also [8,28] for a similar behaviour).
There is a phase transition from aPoissonian behaviourwhen 0 < α < 1 to a total loss of

mass when α > 1. In fact, the support of themeasure itself converges to infinity for α > 1.
The transition occurs at the linear scaling (when α = 1 in Theorem 1.1), where an exotic
pair correlation function gL� , id1 appears, which has a discontinuity along every circle

(centered at 0) through a grid point. Since gL� , id1 (z) vanishes when z ∈ ◦
B(0, Sys ��), the

pair (L�, id1) exhibits a strong level repulsion. Hence gL� , id1 has near z = 0 a behaviour
similar to the case α > 1. Note that gL� , id1 (z) converges to

π

2 covol2��
when z goes to ∞,

corresponding to the Poissonian behaviour of 0 < α < 1, see Lemma 2.1 with k = 2.
The figure below gives the graph of the pair correlation function gL� ,ψ of L� for the

Z-grid (which is a Z-lattice) � = �� = Z[i] of the Gaussian integers at the linear scaling
ψ = id1 : N �→ N in the ball of center 0 and radius 5. The blue lines on the bounding box
represent the limit π

2 covol2��
= π

2 at+∞ of gL� ,ψ . We refer to the end of Sect. 3 for further

illustrations, also in the case of the Eisenstein integers.

We now give some existence results of pair correlation functions of logarithms of lattice
points with weights, restricting to integral lattices with an arithmetic weight motivated by
geometric applications. LetK be an imaginaryquadratic numberfieldK , withdiscriminant
DK , whose ring of integersOK is principal.We fix a nonzero ideal� inOK , and we denote
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by ϕK : OK � {0} → N the Euler function a �→ Card
(
(OK /aOK )×

)
of K . In the products

below, p runs over the prime ideals of OK . The following result describes the asymptotic
behaviour of the pair correlation measures associated with the family

L ϕK
� = (

L�
N = {log z : z ∈ �, 0 < |z| ≤ N }, ωN = ϕK ◦ exp

)
N∈N

. (2)

Theorem 1.2 (1) As N → +∞, the pair correlation measures RL
ϕK
� ,1

N on the constant
cylinder E = C/(2π iZ), renormalised to be probabilitymeasures, weak-star converge to the
probability measure gL ϕK

� ,1 LebE, with pair correlation function independent of � given
by gL ϕK

� ,1 : z
′ �→ 1

π
e− 4 |Re z′|.

(2) As N → +∞, the normalised pair correlation measures 1
N 6 R

L
ϕK
OK

, id1

N on the vary-
ing cylinders EN = C/(2π i N Z) converge for the pointed Hausdorff-Gromov weak-star
convergence to the measure gL ϕK

OK
, id1 LebC, with pair correlation function

gL ϕK
OK

, id1 : z �→ 2
|z|8 √|DK |

∏

p

(
1 − 2

N(p)2

) ∑

k∈OK|k|≤|z|

|k|6
∏

p | kOK

(
1 + 1

N(p)(N(p)2 − 2)

)
.

(3)

We refer to Theorems 5.1 and 6.1 formore complete versions of Theorem 1.2, including
possible congruence restrictions, and for error terms. The proof of Theorem 1.2 (2) uses
Theorems 1.1 and 4.1 of [24] that describe the asymptotic behaviour in angular sectors in
C for the Euler function ofK . For the reader’s convenience, we briefly review these results
in Sect. 4. In order to simplify the treatment, we only consider the constant and linear
scaling in Theorem 1.2.

Thepair correlation functions at the linear scaling are radially symmetric byTheorem1.2
(2). The figure above compares the radial profiles of the pair correlation functions gL ϕK

� , id1

for K = Q(i) and � = OK = Z[i] in blue and K = Q(i
√
3) and � = OK = Z[ 1+i

√
3

2 ] in
orange. The radial profiles of the pair correlation functions converge to a limit

π

|DK |
∏

p

(
1 − 2

N(p)2

)(
1 + 1

N(p)2(N(p)2 − 2)

)

at infinity, where p ranges over the prime ideals of OK , see Proposition 6.5. This limit is
approximately 0.346 for the blue curve and 0.634 for the orange one.
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The radial profiles of thepair correlation functions in theweighted andunweighted cases
are similar to certain radial distribution functions in statistical physics, see for example [29,
Sect. II], [26, Fig. 7], [6, page 199] or [4, page 18]. See also [16]. The unfolding technique
(see for instance [4, p. 14] and [15, §3, §5]), though guiding the very first step of the proofs
of Theorem 1.1 and 1.2, falls short of giving a complete answer, in particular when varying
the scalings and weights and for the error term analysis.
As explained in Sect. 7, our motivation for introducing the weights by the Euler func-

tion comes from hyperbolic geometry. We prove in Proposition 7.1 that the pair correla-
tion measures of the lengths (counted with multiplicity) of the common perpendiculars
between themaximalMargulis cusp neighbourhood and itself in the (one-cusped) Bianchi
orbifold PSL2(OK )\H

3
R
are closely related to the pair correlationmeasures of the weighted

familyL ϕK
OK

. Theorem 1.2 implies a pair correlation result for the lengths of common per-
pendiculars of cusps neighbourhoods in the Bianchi orbifold PSL2(OK )/H

3
R
, see Corollary

7.2 for a precise statement and a version with congruences.
Notation.We introduce here some of the notation used throughout the paper.
All our measures are Borel, positive, regular measures on locally compact spaces. The

pushforward of a measure μ by a mapping f is denoted by f∗μ, and its total mass by ‖μ‖.
We denote by LebB the restriction of Lebesgue’s measure of C to any Borel subset B of C.
For every smooth manifold with boundary Y and every k ∈ N, we denote by Ck

c (Y ) the
set of complex-valued Ck functions with compact support on Y .
We equivariantly identify the space Grid2 of Z-grids in the real Euclidean plane C,

endowed with the Chabauty topology and the affine action of GL2(R) � R
2 with the

homogeneous space (GL2(R) � R
2)/(GL2(Z) � Z

2), which smoothly fibers by the map
a + �� �→ �� over the space of Z-lattices GL2(R)/GL2(Z), with fibers the elliptic curves
C/ ��.
We will use the following indexing sets in Sects. 2, 3 and 5. Given a Z-grid �, for every

N ∈ N � {0}, let

IN = IN,� = {(m, n) ∈ �2 : 0 < |m|, |n| ≤ N, m �= n},
I−N = {(m, n) ∈ IN : |m| ≤ |n|} and I+N = {(m, n) ∈ IN : |n| ≤ |m|}.

Given a subset b of the set of ambient parameters, for every positive function g of a
variable in N � {0}, we will denote by Ob(g) (and O(g) when b is empty) any function f on
N � {0} such that there exists a constant C ′ depending only on the parameters in b and a
constant N0 possibly depending on the all the parameters (including the ones in b) such
that for every N ≥ N0, we have | f (N )| ≤ C |g(N )|.

2 Pair correlation of grid points without weight or scaling
In this section,wework on the constant cylinderE = C/(2π iZ), endowedwith its quotient
Riemann surface structure, with its quotient additive abelian locally compact group struc-
ture, and with its Haar measure d LebE(x′ + iy′) = dx′dy′ where x′ ∈ R and y′ ∈ R/(2πZ).
We endow the multiplicative group C

× with its Riemann surface structure as an open
subset of C and with the restriction of the Lebesgue measure LebC of C. The logarithm
map log : C

× → E defined by ρ eiθ �→ ln ρ + iθ is a biholomorphic group isomorphism,
whose inverse is the exponential map z′ = x′ + iy′ �→ exp(z′) = ex′eiy′ . The real part map
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Re : E → R defined by x′ + iy′ �→ x′ is a smooth (trivial) fibration, and

Re∗ LebE = 2π LebR . (4)

Note that for every z ∈ C � {0}, we have

ln(|z|2) = 2 Re(log z) . (5)

Since d LebC(ρ eiθ ) = ρ dρ dθ , we have

d(log∗ LebC)(z′) = e2Re(z
′) d LebE(z′) . (6)

Let � = a + �� be a Z-grid. We choose a Z-basis (v1, v2) of �� such that the (weak)
fundamental parallelogram

F �� = {
s v1 + t v2 : s, t ∈ [−1

2
,
1
2
]
}

for the action of �� on C has smallest diameter. We then denote by

diam �� = diam(F ��) = max{|v1 + v2|, |v1 − v2|}
the diameter of F ��, which is the length of a longest diagonal of the parallelogram F ��.
We denote by

covol �� = Vol(C/ ��) = Area(F ��) = | det(v1, v2) |
the area of the elliptic curve C/ �� for the measure induced by the Lebesgue measure on C,
or the area of the parallelogramF �� (which does not depend on the choice of the Z-basis
(v1, v2) of ��). We will use several times the following well known result, having a more
precise error term that we won’t need, and we only give a proof in order to make the
dependence on the parameters k and � explicit.

Lemma 2.1 For every k ∈ N, there exists a constant Ck > 0 such that for all � ∈ Grid2
and x ≥ 1, we have

∣∣∣
∑

p∈� : |p|≤x
|p|k − 2π

(k + 2) covol ��
xk+2

∣∣∣ ≤ Ck

(
(1 + diam ��)x + diam2

��
covol ��

xk
)

. (7)

Proof The case k = 0 of the lemma is the standard Gauss counting result of lattice
points in discs. With Ax = {p ∈ � : |p| ≤ x} and Bx = ⋃

p∈Ax ( p + F ��), so that
Area(Bx) = Card(Ax) Area(F ��), we have

B
(
0, x − diam ��

) ⊂ Bx ⊂ B
(
0, x + diam ��

)
,

(with the convention that B(0, r) = ∅ if r < 0) so that the result for k = 0 with a slightly

simpler error termO(
x diam ��+diam2

��
covol ��

) follows by computing the area of the two above discs.
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Let now k ≥ 1.We consider the sequence (an = Card{p ∈ � : n − 1 < |p| ≤ n})n≥1 and
the smooth functions f : [1,+∞[ → R defined by t �→ tk or by t �→ (t − 1)k . For every
x ≥ 1, we have the estimate

∑

1≤n≤�x�
an (n − 1)k ≤

∑

p∈� : |p|≤x
|p|k ≤

∑

1≤n≤�x�
an nk . (8)

Using the case k = 0 showing that
∑

1≤n≤t an = π
covol ��

t2 + O
( diam ��(t+diam ��)

covol ��

)
, the

general result follows from Abel’s summation formula

∑

1≤n≤x
an f (n) =

⎛

⎝
∑

1≤n≤x
an

⎞

⎠ f (x) −
∫ x

1

⎛

⎝
∑

1≤n≤t
an

⎞

⎠ f ′(t) dt

applied to the above sequence (an)n≥1 and to the two functions f , the first one for the
majoration in Formula (8), the second one for its minoration. ��

For every N ∈ N � {0}, the (not normalised) pair correlation measure of the logarithms
of nonzero grid points in �, with trivial multiplicities and with trivial scaling function, is
the finite measure on the cylinder E defined by

νN = νN,� = RL� ,1
N =

∑

(m, n)∈IN
�logm−log n .

Note that for every k ∈ N � {0}, we have IkN,k� = IN,� and νkN,k� = νN,�. Let us consider
the function (actually independent on �) on E defined by

gL� ,1 : z′ �→ 1
2π

e−2 |Re(z′)| .

Theorem 2.2 As N → +∞, the measures νN on E, renormalised to be probability mea-
sures, weak-star converge to gL� ,1 LebE. The convergence is uniform for � varying in any
given compact subset of Grid2. Furthermore, for every f ∈ C1

c (E), we have

νN
‖νN‖ ( f ) = 1

2π

∫

E
f (z′) e−2 |Re(z′)| d LebE(z′)

+O
(
diam�

N
(‖ f ‖∞ + ‖e−zdf (z)‖∞)

)
.

This result implies the case α = 0 of Theorem 1.1 in the introduction, since we will
prove in Formula (15) that limN→+∞ ‖νN ‖

N 4 = π2

covol2��
.
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Remark 2.3 Theorem 2.2 is still valid if we allow n = m in the definition of the index set
IN (this correspond to removing the condition p �= q in the definition below of Jq), see
also Remark (2) in [23, §3] for a general argument.We will use this comment in the proofs
of Corollary 2.4 and 2.5.

Proof of Theorem 2.2. For all N ∈ N and q ∈ � with 0 < |q| ≤ N , let

Jq = {p ∈ � : 0 < |p| ≤ |q|, p �= q} and ωq =
∑

p∈Jq
� p

q
, (9)

which is a finitely supported measure on the closed unit disc D of C. Note that the
assumptions 0 < |p| and 0 < |q| are automatic when 0 /∈ �, that is, when � is not a
Z-lattice. As q → +∞, by Equation (7) with k = 0 (and its slightly better error term), its
total mass, which is nonzero since −q ∈ Jq , satisfies

Card Jq = ‖ωq‖ = π

covol ��
|q|2 + O

( diam ��(|q| + diam ��)
covol ��

)
, (10)

for some O(·) uniform in �. Note that we need to remove 0 if 0 ∈ � and q from the
counting of Equation (7), but this is taken care of by the above O(·). In particular, we have

‖ωq‖ = O
(

diam2
��

covol ��

)
uniformly in � if |q| < diam �� and otherwise

‖ωq‖ = π

covol ��
|q|2 + O

( diam ��
covol ��

|q|
)

= O
( |q|2
covol ��

)
.

We hence have, if |q| ≥ diam ��,

1
‖ωq‖ = covol ��

π |q|2 + O
( diam �� covol ��

|q|3
)
,

for some O(·) uniform in �. We denote by ωq = ωq
‖ωq‖ the renormalisation of ωq to a

probability measure on D.
Let f ∈ C1(D). Assume that |q| ≥ diam ��. Let

Cq =
⋃

p∈Jq
( p + F ��) .

Note that the symmetric difference (D �
Cq
q ) ∪ (Cq

q � D) is contained in the union of the

annulusB(0, 1+ diam ��|q| )�B
(
0, 1 − diam ��|q|

)
and (when 0 ∈ �) the parallelogram F ��

q , hence
has area at most

covol ��
|q|2 + π

((
1 + diam ��

|q|
)2

−
(
1 − diam ��

|q|
)2 )

= O
(diam ��

|q|
)
.

Also note that diam �� covol ��
|q|3 |ωq( f )| = O

(diam ��‖ f ‖∞
|q|

)
by Equation (10). Therefore

∣∣∣
1
π

∫

D

f (z) d LebC(z) − ωq( f )
∣∣∣

=
∣∣∣
1
π

∫

Cq
q

f (z) d LebC(z) − covol ��
π |q|2 ωq( f )

∣∣∣ + O
(diam ��‖ f ‖∞

|q|
)

.
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By the mean value inequality, for all p ∈ Jq and z ∈ p+F ��
q , we have

∣∣ f (z) − f (
p
q
)
∣∣ ≤ ‖df ‖∞

∣∣ z − p
q

∣∣ .

Hence

∣∣∣
1
π

∫

Cq
q

f (z) d LebC(z) − covol ��
π |q|2 ωq( f )

∣∣∣

= 1
π

∣∣∣
∑

p∈Jq

∫
p+F ��

q

(
f (z) − f

(
p
q

))
d LebC(z)

∣∣∣

≤ 1
π

∑

p∈Jq
‖df ‖∞ sup

z∈ p+F ��
q

∣∣ z − p
q

∣∣ Area
(p + F ��

q

)

≤ 1
π

Card(Jq)
diam ��

|q|
covol ��

|q|2 ‖df ‖∞ = O
(diam �� ‖df ‖∞

|q|
)

.

Therefore, if |q| ≥ diam ��, then

ωq( f ) = 1
π

∫

D

f (z) d LebC(z) + O
(diam �� (‖ f ‖∞ + ‖df ‖∞)

|q|
)

. (11)

In particular, as q → +∞, we have ωq
∗
⇀ 1

π
LebD.

Assume that N ≥ diam ��. Let us now define

μ−
N =

∑

(m, n)∈I−N
�m

n
=

∑

q∈�, 0<|q|≤N
ωq,

which is a finitely supported measure on D. By Equations (10) and (7) with k = 2, 1, 0, a
heavy computation since N ≥ diam �� gives that its total mass is equal to

‖μ−
N‖ =

∑

q∈�, 0<|q|≤N
‖ωq‖

=
∑

q∈�, 0<|q|≤N

(
π

covol ��
|q|2 + O

(
diam ��|q| + diam2

��
covol ��

) )

= π2

2 covol2��
N 4 + O

(
1 + diam ��
covol2��

N 3
)

= O
(

N 4

covol2��

)
. (12)

It follows that if N ≥ diam ��, then

1
‖μ−

N‖ = 2 covol2��
π2N 4 + O

(
(1 + diam ��) covol

2
��

N 5

)
= O

(
covol2��
N 4

)
. (13)

Let f ∈ C1(D). By Equations (11), (13), (12) and (7) with k = 1, we have, as N ≥ diam ��
tends to ∞,

μ−
N ( f )

‖μ−
N‖ = 1

‖μ−
N‖

⎛

⎝
∑

q∈�, 0<|q|<diam ��

‖ωq‖ ωq( f ) +
∑

q∈�, diam ��≤|q|≤N
‖ωq‖ ωq( f )

⎞

⎠
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= O
(

1
‖μ−

N‖‖μ−
diam ��

‖ ‖ f ‖∞

)
+

⎛

⎝
‖μ−

N‖ − ‖μ−
diam ��

‖
‖μ−

N‖

⎞

⎠ 1
π

∫

D

f (z) d LebC(z)

+
∑

q∈�, diam ��≤|q|≤N

‖ωq‖
‖μ−

N‖ O
(diam �� (‖ f ‖∞ + ‖df ‖∞)

|q|
)

= O
(
covol2��
N 4

diam4
��

covol2��
‖ f ‖∞

)
+

(
1 + O

(
diam4

��
N 4

))
1
π

∫

D

f (z) d LebC(z)

+ O
( diam ��

N
(‖ f ‖∞ + ‖df ‖∞)

)

= 1
π

∫

D

f (z) d LebC(z) + O
( diam ��

N
(‖ f ‖∞ + ‖df ‖∞)

)
. (14)

Let E± = (±[0,∞[+iR)/(2π iZ) so that E = E− ∪ E+. Note that log : D � {0} → E−

and log : C � D → E+ are homeomorphisms. Let us define a measure with finite support
on E± by

ν±
N =

∑

(m, n)∈I±N
�log m

n
,

so that ν−
N = log∗ μ−

N = νN |E− , and ‖ν−
N‖ = ‖μ−

N‖. For every f ∈ C1
c (E−), we have

f ◦ log ∈ C1
c (D� {0}) (hence f ◦ log may be extended to aC1 function onDwhich vanishes

on a neighbourhood of 0). By Equations (14) and (6), we have

ν−
N ( f )
‖ν−

N‖ = μ−
N ( f ◦ log)
‖μ−

N‖
= 1

π

∫

D

f ◦ log(z) d LebC(z) + O
( diam ��

N
(‖ f ◦ log ‖∞ + ‖d( f ◦ log)‖∞)

)

= 1
π

∫

E−
f e2Re(z

′) d LebE(z′) + O
( diam ��

N
(‖ f ‖∞ + ‖e−zdf (z)‖∞)

)
.

Let sg : E → E be the horizontal change of sign map x′ + iy′ �→ −x′ + iy′, which maps
E− to E+. Then ν+

N = sg∗ ν−
N and νN = ν−

N + ν+
N . Since E

− ∩ E+ has zero measure for the
Haar measure LebE and since ‖ν±

N‖ = 1
2 ‖νN‖ +O(diam ��N 3), the last claim of Theorem

2.2 follows. Note that, as needed just after the statement of Theorem 2.2, as N → +∞,
we have

‖νN‖ ∼ 2‖μ−
N‖ ∼ π2

covol2��
N 4 . (15)

The first claim of Theorem 2.2 follows by approximating continuous functions with
compact support by C1 ones. The uniformity of the convergence on compact subsets of
lattices follows from the uniformity of the functions O(·) and the fact that the constants
covol �� and diam �� vary in a compact subset of ]0,+∞[ when� varies in a compact subset
of Grid2. ��
The following picture illustrates the weak-star convergence statement in Theorem 2.2

when � = �� = Z[i] is the ring of Gaussian integers and N = 20, using as horizontal
coordinates (x′, y′) ∈ E with x′ ∈ R and y′ ∈ [−π ,π [. A smooth histogram scaled to a
probability density is displayed in orange, and the limiting distribution in grey.
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Arithmetic applications. (1) Let K be an imaginary quadratic number field, with dis-
criminant DK , ring of integersOK and Dedekind zeta function ζK . We denote byI +

K the
semigroup of nonzero (integral) ideals of theDedekind ringOK (with unitOK ).We denote
by N(I) = Card(OK /I) the norm of an ideal I ∈ I +

K , which is completely multiplicative.
The norm of a ∈ OK � {0} is

N(a) = N(aOK ) .

It coincides with the (relative) normNK/Q(a) of a (see for instance [20]), and in particular
is equal to |a|2 since K is imaginary quadratic. The norm of a fractional ideal m of OK is
1

|c|2N(cm) for any c ∈ OK � {0} such that cm ⊂ OK .
Let m be a nonzero fractional ideal of OK . Note that m is a Z-lattice in C with

covolm =
√|DK |N(m)

2
and diamm = O(

√|DK |N(m) ) , (16)

for a O(·) uniform in K , since OK = Z +
√
DK
2 Z and diamOK = |1 +

√
DK
2 | if DK ≡ 0

mod 4, and since OK = Z + 1+√
DK

2 Z and diamOK = | 3+
√
DK

2 | if DK ≡ 1 mod 4. In
particular, the Gauss ball counting argument of Equation (7) with k = 0 (with its slightly
simpler error term) and x = √

N ′ gives, as N ′ ≥ N (m) tends to +∞,

(Card{m ∈ m : 0 < N(m) ≤ N ′})2 =
(

π

covolm
N ′ + O

(
diamm

√
N ′ + diam2

m

covolm

))2

= 4π2N ′2

|DK |N(m)2

(
1 + O

(√|DK |N(m)√
N ′

))
.

Hence Theorem 2.2 implies the existence of a pair correlation function (independent of
m) for the family of the complex logarithms of nonzero elements of m

Lm = (
Am
N ′ = {log n : n ∈ m, 0 < N(n) ≤ N ′},ωN ′ = 1

)
N ′∈N

without weights or scaling, as stated in the following result, using Remark 2.3.

Corollary 2.4 For every f ∈ C1
c (E), as N ′ → +∞, we have

|DK |N(m)2

4π2N ′2
∑

m,n∈m : 0<N(m),N(n)≤N ′
f (logm − log n)

= 1
2π

∫

E
f (z′) e−2 |Re(z′)| d LebE(z′) + O

( √|DK |N(m)√
N ′ (‖ f ‖∞ + ‖e−zdf (z)‖∞)

)
. �
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(2) For every positive integer d, let r2,d : N � {0} → N be the arithmetic function where
r2,d(n) = Card{(x, y) ∈ Z

2 : x2 + d y2 = n}
is the number of integral solutions of the Diophantine equation x2 + d y2 = n, for every
n ∈ N. In particular, if d = 1, then r2,d = r2 is the well known function counting the
sum of two squares representatives of a given positive integer (see for instance [7] or [12,
Sect. 16.9]). The following result proves that the map

gR : t �→ 1
2
e−|t|

on R is the pair correlation function for the family
L

r2,d
N

= (
AN = {ln n : 0 < n ≤ N, r2,d(n) �= 0}, ωN = r2,d ◦ exp

)
N∈N

of the logarithms of the nonzero natural integers, without scaling but with weights given
by r2,d (removing the zeroweights). Other weights have been considered in [22] (including
the one given by the Euler function ϕ). Note that the following corollary holds also when
r2,d(n) is replaced by the number of representations ofnby the norm formof any imaginary
quadratic number field, evaluated on any order of their ring of integers (as for instance
the norm form (x, y) �→ x2 − xy + y2 of the Eisenstein integers).

Corollary 2.5 As N → +∞, we have

1
(∑

0<m≤N 2 r2,d(m)
)2

∑

m,n∈N : 0<m,n≤N 2

r2,d(m) r2,d(n) �lnm−ln n
∗
⇀ gR LebR .

Proof Let us consider the Z-lattice � = Z + i
√
d Z in C. Using Remark 2.3, we remove

the assumptionsm �= n in the summations definingRL� ,1
N as well asRL

r2,d
N

,1
N 2 .

By the linearity of (2 Re)∗ and 2Re, and by Equation (5), for every N ∈ N � {0}, we have

(2 Re)∗
(
RL� ,1

N

)
=

∑

p,q∈� : 0<|p|,|q|≤N
�2Re(log p)−2Re(log q)

=
∑

0<m,n≤N 2

∑

p,q∈� : |p|2=m,|q|2=n

�ln(|p|2)−ln(|q|2)

= R
L

r2,d
N

,1
N 2 .

The pushforwardmap (2 Re)∗ preserves the total mass and is continuous for the weak-star
topology, since the map 2Re : E → R is proper. Hence by the weak-star convergence
statement in Theorem 2.2 and by (4), we have

R
L

r2,d
N

,1
N 2

‖RL
r2,d
N

,1
N 2 ‖

= (2 Re)∗

(
RL� ,1

N

‖RL� ,1
N ‖

)
∗
⇀ (2 Re)∗

(
1
2π

e− |2Re(z′)| d LebE(z′)
)

= 1
2
e− |t| d LebR(t) .

Corollary 2.5 follows. ��
As covol

Z+i
√
d Z

= √
d, by Lemma 2.1 with k = 0, we have

∑

ln n≤t
r2,d(n) = Card

(
B(0, et/2) ∩ (Z + i

√
d Z)

)
= π√

d
et (1 + O(et/2)).

Thus, the conclusion of Corollary 2.5 also follows from [23, Theo. 1.1], whose proof only
uses the exponential growth property of the weighted familyL r2,d

N
.
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3 Pair correlation of grid points with scaling without weight
In this section, we study the pair correlations of complex logarithms of grid points at
various scaling. We fix a positive scaling function ψ : N � {0} → ]0,+∞[ such that
lim+∞ ψ = +∞. We consider a normalisation function ψ ′ : N � {0} → ]0,+∞[ depending
on ψ , which will be made precise later on, but which in most cases will not yield the
renormalisation to a probability measure.
We will work on the following family (EN )N∈N�{0} of varying cylinders. For every

N ∈ N � {0}, we consider EN = C/(2π iψ(N )Z), endowed with its quotient Rie-
mann surface structure and its quotient additive abelian locally compact group struc-
ture. Since a real number θ is well defined modulo 2πZ if and only if ψ(N )θ is well
defined modulo 2πψ(N )Z, the scaled logarithm map ψ(N ) log : C

× → EN defined by
ρ eiθ �→ ψ(N ) ln ρ + iψ(N )θ is a biholomorphic group isomorphism, whose inverse is

the rescaled exponential map z′ = x′ + iy′ �→ exp( z′
ψ(N ) ) = e

x′
ψ(N ) ei

y′
ψ(N ) . The real part map

Re : C → R induces a map again denoted by Re : EN → R, which is a trivial smooth
bundle map with fibers iR/(2π iψ(N )Z), such that for every z ∈ E,

Re(ψ(N )z) = ψ(N ) Re(z) . (17)

We consider also EN as a pointed metric space, with distance the quotient of the
Euclidean distance on C and base point its (additive) identity element 0. Note that EN
is a proper metric space. As lim+∞ ψ = +∞, for every R > 0, there existsNR ∈ N� {0} such
that for every N ≥ NR, the closed ball B(0, R) in C injects isometrically by the canonical
projection pN : C → EN . Hence the sequence (EN )N∈N�{0} of proper pointed metric
spaces converges to the proper metric space C pointed at 0 for the pointed Hausdorff-
Gromov convergence (see [11] for background).
Any function f ∈ C0

c (C) defines for all N large enough a function fN ∈ C0
c (EN ) as

follows. Let Rf > 0 be such that the support of f is contained in B(0, Rf ). Then for every
N ≥ NRf , the function fN ∈ C0

c (EN ) is the function which vanishes outside pN (B(0, Rf ))
and coincides with f ◦ (pN |B(0,Rf ))

−1 on pN (B(0, Rf )). Note that fN is C1 if f is C1.
We say that a sequence (μN )N∈N�{0} of measuresμN on EN converges to ameasureμ∞

on C for the pointed Hausdorff-Gromov weak-star convergence if for every f ∈ C0
c (C), the

sequence (μN ( fN ))N≥NRf
converges in C to μ∞( f∞) (see [11, Chap. 31

2 ] for background).

We again use the symbol
∗
⇀ in order to denote this convergence.

Let � be a Z-grid in C. For every N ∈ N � {0}, the (not normalised, empirical) pair
correlationmeasure of the complex logarithms of points in� at timeN with trivial weights
and with scaling ψ(N ) is the measure with finite support in EN defined by

RL� ,ψ
N =

∑

(m, n)∈IN
�ψ(N ) logm−ψ(N ) log n ,

and the normalised one is 1
ψ ′(N ) R

L� ,ψ
N .

Theorem 3.1 Let� = a+ �� be aZ-grid inC. Assume that the scaling functionψ satisfies
lim

N→+∞
ψ(N )
N = λψ ∈ [0,+∞]. As N → +∞, the measures RL� ,ψ

N on EN , normalised by

ψ ′(N ) as given below, converge for the pointedHausdorff-Gromov weak-star convergence to
a measure gL� ,ψ LebC on C, absolutely continuous with respect to the Lebesgue measure
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on C, with Radon-Nikodym derivative the function

gL� ,ψ : z �→

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if λψ = +∞ and ψ ′ = ψ ,
π

2 covol2��
if λψ = 0 and ψ ′(N ) = N 4

ψ(N )2 ,

1
covol �� |z|4

∑
p∈ �� : |p|≤ |z|

λψ

|p|2 if λψ �= 0,+∞ and ψ ′(N ) = ψ(N )2 .

(18)

The convergence

1
ψ ′(N )

RL� ,ψ
N

∗
⇀ gL� ,ψ LebC , (19)

is uniform on every compact subset of Z-grids � in the space Grid2.
Furthermore, if λψ �= 0,+∞, for all A ≥ 1 and f ∈ C1

c (C) with support contained in
B(0, A), we have

1
ψ ′(N )

RL� ,ψ
N ( fN ) =

∫

z∈C

f (z) gL� ,ψ (z) d LebC(z)

+ O
(

A5 ‖ f ‖∞
∣∣ λψ − ψ(N )

N
∣∣

λ9ψ Sys4�� covol2��
+ A4 diam �� ‖df ‖∞

λ4ψ covol2�� Sys �� ψ(N )

+
A2(diam �� + A

λψ
) ‖ f ‖∞

λ3ψ covol2�� ψ(N )

⎞

⎠ .

Note that the pair correlation function gL� ,ψ depends on �� but is independent of a.
The above result shows in particular that renormalizing to probability measures (taking
ψ ′(N ) ∼ π2N 4

covol2��
by Equation (7) with k = 0) is inappropriate, as the limiting measure

would always be 0. We will see during the proof that the above result implies the cases
α > 0 of Theorem 1.1 in the introduction.
The fact that gL� ,ψ vanishes when λψ = +∞ means that the sequence of measures(
1

ψ ′(N ) R
L� ,ψ
N

)

N∈N�{0} on (EN )N∈N�{0} has a total loss of mass at infinity. For error
terms when λψ = +∞ and λψ = 0, see respectively Equation (37) and Equation (40).

Proof Let � = a + �� be a Z-grid in C. We may assume that a ∈ F ��. Let N ∈ N � {0}.
Let

E±
N = (±[0,∞[+iR)/(2π iψ(N )Z)

(which contains the base point 0) so that EN = E−
N ∪ E+

N . Note that the sequence
(E±

N )N∈N�{0} converges for the pointed Hausdorff-Gromov convergence to the closed
halfplaneC

± = ±[0,∞[+iR and thatC
− ∩C

+ has measure 0 for any measure absolutely
continuous with respect to the Lebesgue measure on C. Note that if f ∈ C1

c (C±), then for
N large enough, we have fN ∈ C1

c (E
±
N ), with the above notation.

Let sgN : EN → EN be the change of sign map z′ �→ −z′, which maps E−
N to E+

N
and converges to the change of sign map sg : z �→ −z on C. The change of variables
(m, n) �→ (n,m) in the index set IN proves that we haveRL� ,ψ

N |E−
N
= (sgN )∗

(
RL� ,ψ

N |E+
N

)
.
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Wewill thus only study the convergence of themeasures 1
ψ ′(N ) R

L� ,ψ
N on E+

N , and deduce
the global result by the symmetry of gL� ,ψ under sg.
For every p ∈ �� � {0}, let

Jp, N = {q ∈ � : 0 < |q| ≤ |p + q| ≤ N } , (20)

and let

ωp, N =
∑

q∈Jp, N
�ψ(N ) pq

and μ+
N =

∑

p∈ ���{0}
ωp, N . (21)

Note that ωp, N is a measure on C with finite support, which vanishes if |p| > 2N by the
triangle inequality, hence μ+

N is also a measure on C with finite support.

Lemma 3.2 As N ≥ diam �� tends to +∞, we have

‖ωp, N‖ = Card Jp, N = πN 2

2 covol ��
+ O

( (|p| + diam ��)N
covol ��

)
.

Proof We may assume that |p| ≤ 2N . Note that Jp, N is the finite set of nonzero grid
points in the intersection

C̃p, N = {z ∈ C : |z| ≤ |p + z| ≤ N } (22)

of the disc B(−p, N ) of radius N centered at −p with the closed halfplane containing 0
with boundary the perpendicular bisector of 0 and −p (see the picture below).

Since C̃p, N is contained in a halfdisc of radius N and contains the complement in
this halfdisc of its intersection with a rectangle of length 2N and height |p|

2 , we have
π
2N

2 − |p|N ≤ Area(C̃p, N ) ≤ π
2N

2, so that

Area(C̃p, N ) = π

2
N 2 + O(|p|N ).

Let

Cp,N =
⋃

q∈Jp, N
(q + F ��) . (23)

By a Gauss counting argument similar to the one in the proof of Equation (7) with k = 0,
we have

‖ωp, N‖ = Card Jp, N = Area(Cp,N )
covol ��

= Area(C̃p, N )
covol ��

+ Area(Cp,N ) − Area(C̃p, N )
covol ��
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= πN 2

2 covol ��
+ O

(
(|p| + diam ��)N + diam2

��
covol ��

)
.

The lemma follows. ��

Lemma 3.3 For every A > 0 and for every f ∈ C1
c (C+) with support contained in B(0, A),

as N → +∞ and uniformly on � varying in a compact subset of Grid2, we have

∣∣ (RL� ,ψ
N )|E+

N
( fN ) − μ+

N ( f )
∣∣ = O

(
A4 ‖df ‖∞ N 4

covol 2�� ψ(N )3

)
.

Proof Let A and f be as in the statement of this lemma. Note that since ψ(N ) > 0 and
by Equation (5), for every (m, n) ∈ IN , we have (m, n) ∈ I+N , that is |n| ≤ |m|, if and only if
ψ(N ) logm − ψ(N ) log n ∈ E+

N . Hence by the change of variable

( p, q) �→ (m = p + q, n = q)

(which is a bijection from �� × � to � × �), we have

(RL� ,ψ
N )|E+

N
( fN ) =

∑

(m, n)∈I+N
fN (ψ(N ) logm − ψ(N ) log n)

=
∑

p∈ ���{0}, q∈�
0<|q|≤|p+q|≤N

fN (ψ(N ) log( p+ q) − ψ(N ) log q) .

By the assumption on the support of f , if an index ( p, q) contributes to the above sum,
then Re(ψ(N ) log( p + q) − ψ(N ) log q) ≤ A. Hence by Equations (17) and (5), we have
ln

∣∣1+ p
q
∣∣ ≤ A

ψ(N ) , which tends to 0 asN → +∞, since lim+∞ ψ = +∞. In particular, using
the assumption on q, we have

|p|
|q| = O

(
A

ψ(N )

)
and |p| = O

(
AN

ψ(N )

)
, (24)

so that
∣∣ p
q
∣∣ < 1 ifN is large enough. This allows to use the principal branch, again denoted

by log, of the complex logarithm in the open ball of center 1 and radius 1. By the analytic
expansion of this branch, we have

∣∣∣ log
(
1 + p

q

)
− p

q

∣∣∣ = O
(∣∣∣

p
q

∣∣∣
2
)

= O
(

A2

ψ(N )2

)
.

The mean value theorem hence implies that

∣∣∣ log
(
1 + p

q

)
− p

q

∣∣∣ = O
(∣∣p

q
∣∣2
)

= O
(

A2

ψ(N )2

)
. (25)

By Lemma 3.2 and Equation (7) with k = 0, we have

Card
{
( p, q) ∈ �� × � : 0 < |q| ≤ |p + q| ≤ N, |p| = O

(
AN

ψ(N )

)}

=
∑

p∈ ���{0} : |p|=O
(

AN
ψ(N )

)
Card Jp, N
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= O
(
Card

{
p ∈ �� � {0} : |p| = O

(
AN

ψ(N )

)}
N 2

covol ��

)

= O
(

A2N 4

ψ(N )2 covol2��

)
. (26)

Similarly, if an index ( p, q) contributes to the sum

μ+
N ( f ) =

∑

p∈ ���{0}, q∈�
0<|q|≤|p+q|≤N

f
(

ψ(N )
p
q

)
,

then Equation (24) holds. By summing Equation (25) on the set of elements ( p, q) ∈ ��×�

such that 0 < |q| ≤ |p+ q| ≤ N and |p| = O
(

AN
ψ(N )

)
, and by using Equation (26), Lemma

3.3 follows. ��

Let us now study the convergence properties (after renormalization) of the measures
ωp, N and of their sums μ+

N asN → +∞. We assume in what follows that |p| < N (which
is possible ifN is large enough sincewewill have |p| = O

(
AN

ψ(N )

)
). Let ι : C

× → C
× be the

involutive diffeomorphism z �→ 1
z , whichmapsC

+
� {0} toC

+
� {0}, whose holomorphic

derivative at z is − 1
z2 , hence whose Jacobian at z is

J ι(z) = 1
|z|4 . (27)

By the equation on the left in Formula (21), we have

ι∗ωp, N =
∑

q ∈Jp, N
� q

ψ(N )p
. (28)

When q varies in Jp, N , as seen in the proof of Lemma 3.2, the above Dirac masses are
exactly at the nonzero points of the Z-grid �p,N = 1

ψ(N )p � that belong to the set

Ỹp,N = 1
ψ(N ) p

C̃p,N .

Note that

covol ��p,N
= Area

(
F ��

ψ(N ) p

)
= covol ��

ψ(N )2 |p|2 . (29)

By Equation (22), the set Ỹp,N is the intersection of the disc B(− 1
ψ(N ) ,

N
ψ(N )|p| ) with the

closed halfplane containing 0 with boundary the perpendicular bisector of 0 and − 1
ψ(N ) .

Let us define

Zp,N =
{
z ∈ C : Re z ≥ 0, |z| ≤ N

ψ(N )|p|
}
.

Note that

ι(Zp,N ) = {
z ∈ C : Re z ≥ 0, |z| ≥ ψ(N )|p|

N
}
. (30)
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The symmetric difference of Ỹp,N and Zp,N , that we denote by ỸZp,N , is contained in the
union of the rectangle

[ − 1
2ψ(N ) , 0

] × [ − N
ψ(N )|p| ,

N
ψ(N )|p|

]
and the half-annulus

{
z ∈ C : Re z ≥ 0,

N
ψ(N )|p| − 1

ψ(N )
≤ |z| ≤ N

ψ(N )|p|
}

(well defined since |p| < N ). In particular, its area satisfies LebC(ỸZp,N ) = O
(

N
ψ(N )2|p|

)
.

Let

Yp,N = 1
ψ(N ) p

Cp,N , (31)

so that, as in the proof of Lemma 3.2, the symmetric difference of Yp,N and Ỹp,N has area
O

( Ndiam ��
ψ(N )2|p|2

)
as N → +∞. The symmetric difference of Yp,N and Zp,N , that we denote

by YZp,N , hence has area LebC(YZp,N ) = O
(N (diam ��+|p|)

ψ(N )2|p|2
)
asN → +∞. In particular, for

every φ ∈ C1
c (C+

� {0}), since Zp,N ⊂ B(0, N
ψ(N )|p| ) and Yp,N ⊂ B(0, N+diam ��

ψ(N )|p| ), we have

∣∣∣
∫

Zp,N

φ(z) d LebC(z) −
∫

Yp,N
φ(z) d LebC(z)

∣∣∣

= O

⎛

⎜⎝
N (diam �� + |p|) ∥∥φ|B(0, N+diam ��

ψ(N )|p| )

∥∥∞

ψ(N )2|p|2

⎞

⎟⎠ . (32)

By Equations (31), (23), (28) and (29), by the mean value theorem and by Lemma 3.2, as
N → +∞, we have

∣∣∣
∫

Yp,N
φ(z) d LebC(z) − covol ��

ψ(N )2 |p|2 ι∗ωp, N (φ)
∣∣∣

=
∣∣∣

∑

q∈Jp,N

∫
q+F ��
ψ(N ) p

(
φ(z) − φ

(
q

ψ(N ) p

))
d LebC(z)

∣∣∣

≤ (Card Jp, N )
covol ��

ψ(N )2 |p|2
∥∥∥dφ|B(0, N+diam ��

ψ(N )|p| )

∥∥∥∞
diam ��

ψ(N ) |p|
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= O

⎛

⎜⎜⎝

diam ��
∥∥∥dφ|B(0, N+diam ��

ψ(N )|p| )

∥∥∥∞ N 2

ψ(N )3 |p|3

⎞

⎟⎟⎠ .

Hence by Equation (32), we have

ι∗ωp, N (φ) = ψ(N )2 |p|2
covol ��

∫

Zp,N

φ(z) d LebC(z)

+ O

⎛

⎜⎜⎜⎝

diam ��

∥∥∥∥dφ|B(0, N+diam ��
ψ(N )|p| )

∥∥∥∥∞
N 2

covol �� ψ(N ) |p| +
(diam �� + |p|)

∥∥∥∥φ|B(0, N+diam ��
ψ(N )|p| )

∥∥∥∥∞
N

covol ��

⎞

⎟⎟⎟⎠ .

(33)

Let f ∈ C1
c (C+

� {0}) with support contained in B(0, A). Note that f ◦ ι ∈ C1
c (C+

� {0}),
that

∥∥∥ f ◦ ι|{|z|≤N+diam ��
ψ(N )|p| }

∥∥∥∞ =
∥∥∥ f|{|z|≥ ψ(N )|p|

N+diam ��
}
∥∥∥∞ and that

∥∥∥ d( f ◦ ι)|{|z|≤N+diam ��
ψ(N )|p| }

∥∥∥∞ ≤ A2 ∥∥ df|{|z|≥ ψ(N )|p|
N+diam ��

}
∥∥∞

since the support of f is contained in B(0, A). The change of variable by ι in the integral of
Equation (33) applied with φ = f ◦ ι, together with Equations (30) and (27), hence give

ωp,N ( f ) = ψ(N )2 |p|2
covol ��

∫

|z|≥ ψ(N )|p|
N

f (z)
1

|z|4 d LebC(z)

+ O

⎛

⎜⎜⎝

A2 diam ��
∥∥∥df|{|z|≥ ψ(N )|p|

N+diam ��
}
∥∥∥∞ N 2

covol �� ψ(N ) |p| +
(diam �� + |p|)

∥∥∥ f|{|z|≥ ψ(N )|p|
N+diam ��

}
∥∥∥∞ N

covol ��

⎞

⎟⎟⎠ .

For every z ∈ C
+

� {0}, let

θN (z) = 1
|z|4

∑

p∈ ���{0}
|p|2 1{|z|≥ ψ(N )|p|

N

}(z) = 1
|z|4

∑

p∈ ���{0} : |p|≤ N |z|
ψ(N )

|p|2 . (34)

Note that if z and N are fixed, then for |p| large enough, we have |z| <
ψ(N )|p|

N , thus the
first sum above has only finitely many nonzero terms. Let θN (0) = 0.
Note that θN (z) vanishes if and only if |z| <

ψ(N ) Sys ��
N , by the definition of the systole of

��.
As seen in the proof of Lemma 3.3, the only elements p ∈ �� that give a nonzero

contribution to the sum
∑

p∈ ���{0} ωp, N ( f ) satisfy p �= 0 and |p| = O
(

AN
ψ(N )

)
. By Equation

(7) with k = 0, as N → +∞, we have

Card
{
p ∈ �� � {0} : |p| = O

(
AN

ψ(N )

)} = O
(

A2N 2

covol �� ψ(N )2

)

if λψ < +∞. Otherwise, if λψ = +∞, we have O
(

AN
ψ(N )

)
≤ Sys �� if N is large enough,

hence if N is large enough, we have

Card
{
p ∈ �� � {0} : |p| = O

(
AN

ψ(N )

)} = 0 . (35)
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Thus, by the right equality in Formula (21), we have

μ+
N ( f )

=
∑

p∈ ���{0}
ωp, N ( f ) = ψ(N )2

covol ��

∫

z∈C+
f (z) θN (z) d LebC(z)

+ O

⎛

⎜⎜⎝

A4 diam ��
∥∥∥df|{|z|≥ ψ(N ) Sys ��

N+diam ��
}

∥∥∥∞ N 4

covol2�� Sys �� ψ(N )3
+

(diam �� + AN
ψ(N ) )

∥∥∥ f|{|z|≥ ψ(N ) Sys ��
N+diam ��

}

∥∥∥∞ A2 N 3

covol2�� ψ(N )2

⎞

⎟⎟⎠ .

(36)

Case 1. Let us first assume that λψ = +∞, that is, lim
N→+∞

N
ψ(N ) = 0.

For every A ≥ 1, if N is large enough (uniformly on � varying in a compact subspace
of Grid2, since then �� varies in a compact subspace of the space of Z-lattices, on which
the systole function �� �→ Sys �� has a positive lower bound), then for every z ∈ B(0, A),
we have θN (z) = 0 by Equation (34), and μ+

N ( f ) = 0 by Formulas (21) and (35), since the
sum definingμ+

N ( f ) is an empty sum. Thus, whatever the ( positive) normalizing function
ψ ′ is, we have a total loss of mass at infinity :

1
ψ ′(N )

μ+
N

∗
⇀ 0.

Assume that the renormalizing functionψ ′ is such that N 4

ψ(N )3ψ ′(N ) tends to 0 asN tends
to ∞, for instance ψ ′ = ψ , as assumed in the first case of Equation (18). Note that if
ψ(N ) = Nα with α > 1, then we indeed have λψ = +∞ and if ψ ′(N ) = N 4−2α as in the
statement of Theorem 1.1, we do have limN→+∞ N 4

ψ(N )3ψ ′(N ) = 0.
With Lemma 3.3, the above centered formula proves Formula (19) when λψ = +∞,

with a convergence which is uniform on every compact subset of � in Grid2, as well as
the case α > 1 in Theorem 1.1. Furthermore, it follows from the error term in Lemma 3.3
that for every f ∈ C1

c (C) with support contained in B(0, A), as N → +∞ and uniformly
on � varying in a compact subset of Grid2, we have

1
ψ ′(N )

RL� ,ψ
N ( fN ) = O

(
A4 ‖df ‖∞ N 4

covol 2�� ψ(N )3ψ ′(N )

)
. (37)

Case 2. Let us now assume that λψ = 0, that is, lim
N→+∞

ψ(N )
N = 0.

For all z ∈ C
+

� {0}, by Equations (34) and (7) for k = 2, we have

ψ(N )4

N 4 θN (z) =
(

ψ(N )
N |z|

)4 ∑

p∈ ��: |p|≤ N |z|
ψ(N )

|p|2

= π

2 covol ��
+ O

(
(1 + diam ��)ψ(N )

covol �� N |z| + diam2
�� ψ(N )2

covol �� N 2 |z|2
)

. (38)

In particular, if |z| ≥ ψ(N ) Sys ��
N , then ψ(N )4

N 4 θN (z) is uniformly bounded. Since θN (z) van-
ishes if |z| <

ψ(N ) Sys ��
N , this proves that the function ψ(N )4

N 4 θN is uniformly bounded on
C

+
� {0}, and pointwise converges to the constant function π

2 covol ��
. Hence by Equation
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(36) and by the Lebesgue dominated convergence theorem, we have, with a convergence
which is uniform on every compact subset of � in Grid2,

ψ(N )2

N 4 μ+
N

∗
⇀

π

2 covol2��
LebC+ . (39)

More precisely, for every A ≥ 1, for every f ∈ C1
c (C+

� {0}) with support in B(0, A), and
for every � in a compact subset of Grid2, we have the following control. At each point
z ∈ C

+ where θN does not vanish, the second error term in Equation (38) is at most the
first one, as it satisfies

diam2
�� ψ(N )2

covol �� N 2 |z|2 ≤ diam2
�� ψ(N )2

covol �� Sys �� N 2 |z| ≤ (1 + diam ��)ψ(N )
covol �� N |z|

forN large enough since ψ(N )
N tends to 0. By Equations (36) and (38), and sinceψ(N ) ≤ N

for N large enough, using the equality
∫ π/2

−π/2

∫ A

0

1
ρ

ρ dρ dθ = πA in order to integrate

the first error term in Equation (38), we have

ψ(N )2

N 4 μ+
N ( f ) = ψ(N )4

covol �� N 4

∫

z∈C+
f (z) θN (z) d LebC(z)

+ O
(

A4 diam �� ‖df ‖∞
covol2�� Sys �� ψ(N )

+ A2(diam �� + A) ‖ f ‖∞
covol2�� ψ(N )

)

= π

2 covol2��

∫

z∈C+
f (z) d LebC(z) + O

(
A4 diam �� ‖df ‖∞
covol2�� Sys �� ψ(N )

+A2(diam �� + A) ‖ f ‖∞
covol2�� ψ(N )

+ A (1 + diam ��)ψ(N )‖ f ‖∞
covol2�� N

)
.

Ifψ ′(N ) = N 4

ψ(N )2 as assumed in the second case of Equation (18), it follows fromFormula
(39) and Lemma 3.3 by symmetry that

1
ψ ′(N )

RL� ,ψ
N

∗
⇀

π

2 covol2��
LebC .

This proves Formula (19) when λψ = 0, with a convergence which is uniform on every
compact subset of� in Grid2, as well as the case 0 < α < 1 in Theorem 1.1. Furthermore,
for every f ∈ C1

c (C) with support contained in B(0, A), as N → +∞ and uniformly on �

varying in a compact subset of Grid2, using the error term in Lemma 3.3 with the fact that
Sys �� ≤ diam ��, we have

1
ψ ′(N )

RL� ,ψ
N ( fN ) = π

2 covol2��

∫

C

f d LebC +O
(

A4 diam �� ‖df ‖∞
covol2�� Sys �� ψ(N )

+A2(diam �� + A) ‖ f ‖∞
covol2�� ψ(N )

+ A (1 + diam ��)ψ(N ) ‖ f ‖∞
covol2�� N

)
.(40)

Case 3. Let us finally assume that lim
N→+∞

ψ(N )
N = λψ belongs to ]0,+∞[ .

We consider the function θ∞ : C → [0,+∞[ defined by

z �→ 1
|z|4

∑

p∈ ��: |p|≤ |z|
λψ

|p|2,
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where by convention θ∞(0) = 0, and replacing p ∈ �� by p ∈ ��� {0}makes no difference.
Note that θ∞ vanishes on the open disc

◦
B(0, λψ Sys ��), is uniformly bounded and tends

to π

2 covol �� λ4ψ
as |z| → +∞ by Equation (7) with k = 2. Furthermore, θ∞ is piecewise

continuous, with discontinuities along each circle S(0, |p|) centered at 0 passing through
a nonzero lattice point p ∈ ��. See the picture in the introduction representing the graph
of θ∞ when � = �� = Z[i] (so that covol �� = 1) and λψ = 1.
By Equation (34), the sequence of uniformly bounded maps (θN )N∈N converges almost

everywhere to θ∞ (more precisely, it converges at least outside
⋃

p∈ ���{0} S(0, |p|)). Hence
by Equation (36) and by the Lebesgue dominated convergence theorem, we have

1
ψ(N )2

μ+
N

∗
⇀

1
covol ��

θ∞ LebC+ . (41)

Let A ≥ 1. Note that |z| ≤ A implies that |z|
λψ

≤ A
λψ

≤ 2A
λψ

. If N is large enough so that
ψ(N )
N ≥ λψ

2 , then |z| ≤ A implies that N |z|
ψ(N ) ≤ 2A

λψ
. Hence for every z ∈ C

+ ∩ B(0, A), if N
is large enough, we have

| θ∞(z) − θN (z) | ≤ 1
|z|4

∑

p∈ ��: |p|≤ 2A
λψ

|p|2
∣∣∣1|z|≥λψ |p|(z) − 1|z|≥ ψ(N )|p|

N
(z)

∣∣∣ .

Note that if N is large enough, the left term vanishes if |z| <
λψ

2 Sys ��.
Let f ∈ C1

c (C+) with support in B(0, A). By integration on annuli and Equation (7) with
k = 3, we have

∣∣∣∣
∫

C+
f (θ∞ − θN ) d LebC

∣∣∣∣ = O

⎛

⎜⎜⎝
‖ f ‖∞

(λψ Sys ��)4
∑

p∈ �� : |p|≤ 2A
λψ

|p|2 2π
∣∣∣ λψ |p| − ψ(N )|p|

N

∣∣∣

⎞

⎟⎟⎠

= O
(

A5 ‖ f ‖∞
λ9ψ Sys4�� covol ��

∣∣∣ λψ − ψ(N )
N

∣∣∣

)
.

Hence by Equation (36), we have

1
ψ(N )2

μ+
N ( f ) = 1

covol ��

∫

z∈C+
f (z) θ∞(z) d LebC(z) + O

⎛

⎝
A5 ‖ f ‖∞

∣∣∣ λψ − ψ(N )
N

∣∣∣

λ9ψ Sys4�� covol2��

⎞

⎠

+ O
(

A4 diam �� ‖df ‖∞ N 4

covol2�� Sys �� ψ(N )5
+

A2(diam �� + AN
ψ(N ) ) ‖ f ‖∞ N 3

covol2�� ψ(N )4

)

= 1
covol ��

∫

z∈C+
f (z) θ∞(z) d LebC(z) + O

⎛

⎝
A5 ‖ f ‖∞

∣∣∣ λψ − ψ(N )
N

∣∣∣

λ9ψ Sys4�� covol2��

+ A4 diam �� ‖df ‖∞
λ4ψ covol2�� Sys �� ψ(N )

+
A2(diam �� + A

λψ
) ‖ f ‖∞

λ3ψ covol2�� ψ(N )

⎞

⎠ . (42)

Ifψ ′(N ) = ψ(N )2 as assumed in the third case of Equation (18), it follows from Formula
(41) and Lemma 3.3 by symmetry that

1
ψ ′(N )

RL� ,ψ
N

∗
⇀

1
covol ��

θ∞ LebC .
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This proves Formula (19) when λψ �= 0,∞, with a convergence which is uniform on every
compact subset of� inGrid2, as well as the caseα = 1 inTheorem1.1 (since ifψ(N ) = N ,
then λψ = 1 and ψ ′(N ) = ψ(N )2 = N 2 = N 4−2α). Furthermore, for every f ∈ C1

c (C+)
with support contained in B(0, A), asN → +∞ and uniformly on � varying in a compact
subset of Grid2, using Equation (42) and the error term in Lemma 3.3 with the fact that
Sys �� ≤ diam ��, we have

1
ψ ′(N )

(RL� ,ψ
N )|E+

N
( fN ) = 1

ψ(N )2
μ+
N ( f ) + O

(
A4 ‖df ‖∞ N 4

covol2�� ψ(N )5

)

=
∫

z∈C+
f (z)

θ∞(z)
covol ��

d LebC(z)

+ O
(

A5 ‖ f ‖∞
∣∣ λψ − ψ(N )

N
∣∣

λ9ψ Sys4�� covol2��
+ A4 diam �� ‖df ‖∞

λ4ψ covol2�� Sys �� ψ(N )

+
A2(diam �� + A

λψ
) ‖ f ‖∞

λ3ψ covol2�� ψ(N )

⎞

⎠ .

By symmetry, this concludes the proof of Theorem 3.1. ��
Let us give a numerical illustration of Theorem 3.1 when� = �� = Z[i] andψ(N ) = N .

The following figure shows the points 60 logm − 60 log n contained in the ball of radius
5 centered at 0 for (m, n) ∈ I60.

The second figure shows an approximation (given by Mathematica and its smoothing
process) of the pair correlation function gL� ,ψ computed using the empirical measure
1
602R

L� ,ψ
60 in the ball of center 0 and radius 5. We refer to the first picture in the intro-

duction for the actual graph of the pair correlation function gL� ,ψ .
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The first figure below gives the graph of the pair correlation function gL� ,ψ of the Z-
lattice � = �� = Z[ 1+i

√
3

2 ] of the Eisenstein integers at the linear scaling ψ : N �→ N in
the ball of center 0 and radius 5. The blue lines on the bounding box represent the limit

π

2 covol2��
= 2π

3 at+∞ of gL� ,ψ , given by Equation (7) with k = 2. The second figure shows

the approximation of the pair correlation function computed with the empirical measure
1
602R

L� ,ψ
60
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4 Mertens andMirsky formulae for algebraic number fields
In this short section, we recall the notation and statements of [24] that we will use in Sects.
5 and 6.
Let K be an imaginary quadratic number field (with DK , OK , ζK , I +

K , N the nota-
tion introduced before Corollary 2.4). We assume in Sects. 4, 5 and 6 that OK is
principal (or equivalently factorial (UFD)). This implies, see for instance [20], that
DK ∈ {−4,−8,−3,−7,−11,−19,−43,−67,−163}. For all I, J ∈ I +

K , we write J | I if
I ⊂ J , we denote by (I, J ) = I + J the greatest common ideal divisor of I and J , and by IJ
the product ideal of I and J .
We denote by ϕK : I +

K → N the Euler function of K , defined (see for instance [20, page
13]) equivalently by

∀ a ∈ I +
K , ϕK (a) = Card

(
(OK /a)×

) = N(a)
∏

p|a

(
1 − 1

N(p)

)
,

where, here and thereafter, p ranges over the prime ideals ofOK . For every a ∈ OK � {0},
we define ϕK (a) = ϕK (aOK ).
We first give a version in angular sectors of the Mertens formula on the average of the

Euler function that will be needed in the proof of Theorem 5.1. For all z ∈ C
×, θ ∈ ]0, 2π ]

and R ≥ 0, we consider the truncated angular sector

C(z, θ , R) = {
ρ eitz : t ∈ ] − θ

2
,
θ

2
]
, 0 < ρ ≤ R

|z|
}
. (43)

Note that for every z′ ∈ C
×, we have

z′C(z, θ , R) = C(zz′, θ , R |z′| ) . (44)

It is important that the function O(·) in the following result is uniform in m, z and θ . For
every m ∈ I +

K , let

cm = N(m)
∏

p|m

(
1 + 1

N(p)

)
.

Theorem 4.1 (A Sectorial Mertens formula) For allm ∈ I +
K , z ∈ C

× and θ ∈ ]0, 2π ], as
x → +∞, we have

∑

a∈m∩C(z,θ ,x)
ϕK (a) = θ

2
√|DK | ζK (2) cm x4 + O(x3) .

Proof See [24, Thm. 1.1]. ��

We now give a uniform asymptotic formula for the sum in angular sectors in C of the
products of two shifted Euler functions with congruences, which is used in the proof of
Theorems 5.1 and 6.1. When K = Q (the sectorial restriction is then meaningless), this
formula is due to Mirsky [17, Thm. 9, Eq. (30)] without congruences, and to Fouvry [22,
Appendix] with congruences.
For all m ∈ I +

K , z ∈ C
×, θ ∈ ]0, 2π ], k ∈ OK , and x ≥ 1, let

∣∣∣ Sm, z, θ , k (x) =
∑

a∈m∩C(z,θ ,x) : a�=−k
ϕK (a)ϕK (a + k) . (45)
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Let

cm,k = 1
N(m)

∏

p
(p,m) | kOK

(
1 − N((p,m))

N(p)2

) ∏

p

(
1 − κm,k (p) κ ′

k (p)N((p,m))
N(p)2

)
, (46)

where

κm,k (p) =
⎧
⎨

⎩
(1 − N((p,m))

N(p)2 )−1 if (p,m) | kOK

1 otherwise
and

κ ′
k (p) =

⎧
⎨

⎩
1 − 1

N(p) if p | kOK

1 otherwise.

For instance, if m = OK then by [24, Eq. (15)], we have

cOK ,k =
∏

p

(
1 − 2

N(p)2

) ∏

p | kOK

(
1 + 1

N(p)(N(p)2 − 2)

)
. (47)

Since it will be useful in Sect. 6, by [24, Lem. 4.2], we have

c′m = inf
k∈OK

cm,k > 0 . (48)

Theorem 4.2 (A Sectorial Mirsky Formula) There exists a constant CK > 0 such that for
all m ∈ I +

K , z ∈ C
×, θ ∈ ]0, 2π ], k ∈ OK and x ≥ 1, we have

∣∣∣ Sm, z, θ , k (x) − θ cm,k
3

√|DK | x
6
∣∣∣

≤ CK
(
(1 +

√
N(k) ) x5 + N(k) x4 + N(k) ln(N(k)) x2 ln(2x)

)
.

Proof See [24, Thm. 4.1 and Lem. 4.2]. ��

5 Pair correlation of integral lattice points with Euler weight and no scaling
In this section, we fix an imaginary quadratic number field K whose ring of integers OK
is principal. We fix a nonzero ideal � ∈ I +

K . Note that � = �� is a Z-lattice (hence a
Z-grid) in C, with covol� = N(�)

√|DK |
2 as seen in Equation (16). As in Sect. 2, we work

on the constant cylinder E = C/(2π iZ) in this section.
Recall that L ϕK

� is the family defined in Equation (2). For every N ∈ N � {0}, the (not
normalised, empirical) pair correlation measure of the logarithms of nonzero elements in
�, with trivial scaling function� = 1 andmultiplicities given by the Euler function, is the
measure on E with finite support defined, with IN = IN,� by

ν̃N = R
L

ϕK
� ,1

N =
∑

(m, n)∈IN
ϕK (m) ϕK (n) �logm−log n .

Theorem 5.1 As N → +∞, the measures ν̃N on E, renormalised to be probability mea-
sures, weak-star converge to themeasure absolutely continuous with respect to the Lebesgue
measure on E, with Radon-Nikodym derivative the function gL ϕK

� ,1 : z′ �→ 1
π
e− 4 |Re z′|,

which is independent of � and K :

ν̃N
‖ ν̃N‖

∗
⇀ gL ϕK

� ,1 LebE .
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Furthermore, for all f ∈ C1
c (E) and α ∈ ]0, 12 [ , with c� = N(�)

∏

p | �
(1 + 1

N(p)
), we have

ν̃N
‖ ν̃N‖ ( f ) =

∫

z′∈E
1
π
e− 4 |Re z′| f (z′) d LebE(z′) + O

(
c� ‖ f ‖∞
N 1−2α + ‖e−z′df (z′)‖∞

Nα

)
.

This result gives the first assertion of Theorem 1.2 in the introduction. As in Remark
2.3, Theorem 5.1 remains valid if we allow n = m in the definition of the index set IN , and
we will use this remark in the proof of Corollary 7.2.

Proof In this proof, all functions O(·) are absolute, since there are finitely many fields K
satisfying the assumptions of this section. The first assertion of Theorem 5.1 follows from
the second one, by the density of C1

c (E) in C0
c (E) for the uniform convergence.

For all N ∈ N and q ∈ � with 0 < |q| ≤ N , let Jq be given by the equation on the left in
Formula (9). We now define

ω̃q =
∑

p∈Jq
ϕK ( p) � p

q
,

which is a finitely supported measure on the closed unit disc D = B(0, 1) of C, and is
nonzero since −q ∈ Jq .

Lemma 5.2 As |q| → +∞, we have ‖ ω̃q‖ = π√|DK | ζK (2) c� |q|4 + O(|q|3) .

Proof This follows from Theorem 4.1 applied with m = �, z = 1, θ = 2π and x = |q|,
since ϕK (q) = O(N(q)) and

‖ ω̃q‖ =
∑

p∈� : 0<|p|≤|q|, p �=q
ϕK ( p) =

⎛

⎝
∑

p∈�∩C(1,2π ,|q|)
ϕK ( p)

⎞

⎠ − ϕK (q) . ��

Lemma 5.3 For all f ∈ C1(D) and α ∈ ]0, 12 [ , as |q| → +∞, we have

ω̃q
‖ ω̃q‖ ( f ) =

∫

D

2
π

|z|2 f (z) d LebC(z) + O
(
c� ‖ f ‖∞
|q|1−2α + ‖df ‖∞

|q|α
)
.

Proof Note that c� ≥ 1 and let us define

c′′� = 2
√|DK | ζK (2) c� = O(c�) .

By Lemma 5.2, as |q| → +∞, we have

1
‖ ω̃q‖ = c′′�

2π |q|4 + O
(

c2�
|q|5

)
. (49)

Let Q = � |q|α� ≥ 1, which tends to +∞ as |q| → +∞. For all elements m and n in
{0, . . . , Q − 1}, let

An,m =
{
ρ e2iπ t : ρ ∈ ] n

Q
,
n + 1
Q

]
, t ∈ ]m

Q
,
m + 1
Q

]}
,

so that D � {0} is the disjoint union of the sets An,m form, n ∈ {0, . . . , Q − 1}.
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With the notation of Equation (43), we have

An,m = C
(
e2iπ

m+1/2
Q ,

2π
Q

,
n + 1
Q

)
� C

(
e2iπ

m+1/2
Q ,

2π
Q

,
n
Q

)
. (50)

Note that since n + 1 ≤ Q, as Q tends to +∞, we have

diam(An,m ) ≤
∣∣∣
n + 1
Q

e2iπ
m+1
Q − n + 1

Q
e2iπ

m
Q

∣∣∣ +
∣∣∣
n + 1
Q

e2iπ
m
Q − n

Q
e2iπ

m
Q

∣∣∣

= O
(
1
Q

)
.

Hence for every z ∈ An,m, we have by the mean value theorem

f (z) = f
(
n
Q

e2iπ
m
Q

)
+ O

(‖df ‖∞
Q

)
. (51)

Since
∫

An,m
|z|2 d LebC(z) =

∫ 2π m+1
Q

2π m
Q

∫ n+1
Q

n
Q

ρ3 dρ dθ = 2π
Q

(n + 1)4 − n4

4Q4 = O
(

1
Q2

)
,

we have therefore
∫

An,m

1
π

|z|2 f (z) d LebC(z) =
(
f
(
n
Q

e2iπ
m
Q

)
+ O

(‖df ‖∞
Q

))∫

An,m

1
π

|z|2 d LebC(z)

= 1
Q2

(
(n + 1)4 − n4

2Q3 f
(
n
Q

e2iπ
m
Q

)
+ O

(‖df ‖∞
Q

))
.

(52)

By Equations (50) and (44), we have

qAn,m = C
(
q e2iπ

m+1/2
Q ,

2π
Q

,
(n + 1)|q|

Q

)
� C

(
q e2iπ

m+1/2
Q ,

2π
Q

,
n|q|
Q

)
.

By Equations (51) and (49), applying twice Theorem 4.1 with m = �, θ = 2π
Q and

x = |q| n+1
Q , |q| n

Q , and using the fact that |q|
Q tends to +∞ as |q| → +∞ since α < 1, we

have, as |q| → +∞,

∑

p∈ qAn,m ∩ Jq

f
(
p
q

)
1

‖ ω̃q‖ ϕK ( p)
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=
(
f
(
n
Q

e2iπ
m
Q

)
+ O

(‖df ‖∞
Q

))
1

‖ ω̃q‖
∑

p∈ �∩ qAn,m : p �=q
ϕK ( p)

=
(
f
(
n
Q

e2iπ
m
Q

)
+ O

(‖df ‖∞
Q

))(
c′′�

2π |q|4 + O
(

c2�
|q|5

))

×
(
2π |q|4
Q c′′�

(n + 1)4 − n4

Q4 + O
( |q|3(n + 1)3

Q3

))

= 1
Q2

(
(n + 1)4 − n4

Q3 f
(
n
Q

e2iπ
m
Q

)
+ O

(‖df ‖∞ n3

Q4

)
+ O

(‖ f ‖∞ c� n3

|q|Q
))

.

(53)

Note that qD = B(0, |q|). By cutting the sum defining ω̃q and the integral over D into Q2

subparts, by using Equations (52) and (53), and since n ≤ Q ≤ |q|α , as |q| → +∞, we
have

∣∣∣
ω̃q

‖ ω̃q‖ ( f ) −
∫

D

2
π

|z|2 f (z) d LebC(z)
∣∣∣

=
∣∣∣

Q−1∑

n,m=0

⎛

⎝
∑

p∈ qAn,m ∩Jq

ϕK ( p)
‖ ω̃q‖ f

(
p
q

)
−

∫

An,m

2
π

|z|2 f (z) d LebC(z)

⎞

⎠
∣∣∣

= O
(‖df ‖∞

Q

)
+ O

(‖ f ‖∞ c�
|q|1−2α

)
.

This proves Lemma 5.3. ��
For every N ∈ N � {0}, let us define

μ̃−
N =

∑

(m, n)∈I−N
ϕK (m) ϕK (n) �m

n
=

∑

q∈�−{0}: |q|≤N
ϕK (q) ω̃q,

which is a finitely supported measure on D. By Theorems 4.1 and 4.2 both with m = �,
θ = 2π , x = N and the second one with k = 0, since c� ≥ 1 and c�,0 ≤ 1 by Equation
(46), and since there are finitely many such fields K , its total mass is

‖μ̃−
N‖ =

∑

q∈��{0} : |q|≤N
ϕK (q) ‖ω̃q‖ =

∑

(m,n)∈I−N
ϕK (m) ϕK (n)

= 1
2

⎛

⎜⎜⎝

⎛

⎜⎜⎝
∑

p∈��{0}
|p|≤N

ϕK ( p)

⎞

⎟⎟⎠

2

−
∑

p∈��{0}
|p|≤N

ϕK ( p)2

⎞

⎟⎟⎠ = 2π2

(c′′�)2
N 8 + O(N 7) .

For every f ∈ C1(D), by Lemmas 5.3 and 5.2, again by Theorem 4.1 with m = �, θ = 2π
and x = N , we have

μ̃−
N ( f )

‖μ̃−
N‖ = 1

‖μ̃−
N‖

∑

q∈��{0} : |q|≤N
ϕK (q) ‖ω̃q‖ ω̃q( f )

‖ω̃q‖

=
∫

D

2
π

|z|2 f (z) d LebC(z)

+ 1
‖μ̃−

N‖
∑

q∈��{0}
|q|≤N

ϕK (q) ‖ω̃q‖O
(
c� ‖ f ‖∞
|q|1−2α + ‖df ‖∞

|q|α
)
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=
∫

D

2
π

|z|2 f (z) d LebC(z)

+ O

⎛

⎜⎜⎝
(c′′�)2

2π2N 8

∑

q∈��{0}
|q|≤N

ϕK (q)
2π
c′′�

(
N 3+2αc� ‖ f ‖∞ + N 4−α ‖df ‖∞

)

⎞

⎟⎟⎠

=
∫

D

2
π

|z|2 f (z) d LebC(z) + O
(
c� ‖ f ‖∞
N 1−2α + ‖df ‖∞

Nα

)
.

For every N ∈ N � {0}, let us define

ν̃N = R
L

ϕK
� ,1

N =
∑

(m, n)∈IN
ϕK (m) ϕK (n) �logm−log n .

which is a measure with finite support on E± = (±[0,∞[+iR)/(2π iZ), so that ν̃−
N =

log∗ μ̃−
N = ν̃N |E− , and ‖̃ν−

N‖ = ‖μ̃−
N‖. For every f ∈ C1

c (E−), the function f ◦ log is a C1

function on D which vanishes on a neighbourhood of 0. By Equation (6), we have

ν̃−
N ( f )
‖̃ν−

N‖ = μ̃−
N ( f ◦ log)
‖μ̃−

N‖
=

∫

D

2
π

|z|2 f ◦ log(z) d LebC(z) + O
(
c� ‖ f ◦ log ‖∞

N 1−2α + ‖d( f ◦ log)‖∞
Nα

)

=
∫

E−
2
π
e4 Re(z

′) f (z′) d LebE(z′) + O
(
c� ‖ f ‖∞
N 1−2α + ‖e−z′df (z′)‖∞

Nα

)
.

Since ν̃N = ν̃−
N + ν̃+

N on E � (iR)/(2iπZ) and LebE((iR)/(2iπZ)) = 0, since ν̃+
N = sg∗ ν̃−

N
where sg : E �→ E is the map x′ + iy′ �→ −x′ + iy′, we have ‖̃ν±

N‖ = 1
2 ‖̃νN‖ and the last

claim of Theorem 5.1 follows by symmetry. ��

6 Pair correlation of integral lattice points with scaling and Euler weight
As in Sect. 5, we fix an imaginary quadratic number field K whose ring of integers OK
is principal, and a nonzero ideal � = �� ∈ I +

K . We also study the pair correlations of
the family L ϕK

� defined in the introduction, but now with the linear scaling function
ψ = id1 : N �→ N . We leave to the reader the study of a general scaling ψ , assumed to
converge to +∞, proving a Poissonian behaviour for sublinear scalings and total loss of
mass behaviour for superlinear scalings. We also leave to the reader a statement similar
to Theorem 6.1, replacing the above Z-lattice � by a Z-grid a + � for any a ∈ OK .
As in Sect. 3, we work on the family of varying cylinders (EN = C/(2π i N Z))N∈N�{0}.

As in Sect. 3, for every f ∈ C1
c (C), for every N large enough such that the support of f

is contained in
◦
B(0,πN ), we denote by fN ∈ C1

c (EN ) the map that coincides with f on
B(0,πN ) modulo 2π i N Z and vanishes elsewhere. For every N ∈ N � {0}, we consider
the measure on EN with finite support defined with IN = IN,� by

R̃N = R
L

ϕK
� , id1

N =
∑

(m, n)∈IN
ϕK (m) ϕK (n) �N (logm−log n) ,

which is the (not normalised) empirical pair correlationmeasure at timeN of the complex
logarithms of the elements of � with multiplicities given by the Euler function and with
linear scaling ψ = id1 : N �→ N .
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Theorem 6.1 As N → +∞, the family
(

1
N 6 R̃N

)

N∈N

of measures on EN converges ( for
the pointed Hausdorff-Gromov weak-star convergence) to the measure absolutely continu-
ouswith respect to the Lebesguemeasure onC, withRadon-Nikodymderivative the function

gL ϕK
� , id1 : z �→ 1

|z|8
∑

k∈�: |k|≤|z|

2 c�,k√|DK | |k|6 ,

that is, as N → +∞,
1
N 6 R̃N

∗
⇀ gL ϕK

� , id1 LebC .

Furthermore, for all A ≥ 1 and f ∈ C1(C) with compact support contained in B(0, A), as
N → +∞, we have

1
N 6 R̃N ( fN ) =

∫

z∈C

f (z) gL ϕK
� , id1 (z) d LebC(z)

+ O
(

A4

covol� c′� N 1/2 (‖df ‖∞ + ‖ f ‖∞)
)
.

The above result with � = OK gives the second assertion of Theorem 1.2 in the intro-
duction, using the values of cOK ,k for k ∈ OK given in Equation (47).
Note that, as the proof below shows, the total mass of R̃N is equivalent to c N 8 as

N → +∞, for some constant c > 0. Hence renormalising R̃N to be a probability measure
would make it converge to the zero measure on C.

Proof We proceed as in the beginning of the proof of Theorem 3.1 : We only have to
prove the second assertion above; We define E±

N = (±[0,∞[+iR)/(2π i N Z); We only
study the convergence of the measures 1

N 6 R̃N on the halfcylinder E+
N to the measure

gL ϕK
� ,id1 LebC+ on the halfplane C

+ = {z ∈ C : Re(z) ≥ 0} as N → +∞; And we deduce
the global result by the symmetry of gL ϕK

� ,id1 under z �→ −z.
For all N ∈ N � {0} and p ∈ � � {0}, let Jp, N be given by Equation (20). Note that

(� � {0}) ∩ B(0, N − |p|) ⊂ Jp, N ⊂ (� � {0}) ∩ B(0, N ) . (54)

We now define the key auxiliary measure by

ω̃p, N =
∑

q∈Jp, N
ϕK (q) ϕK (q + p) � q

N p
.

Then ω̃p, N is a measure with finite support on B(0, 1
|p| )� {0}, which is nonzero ifN ≥ 2|p|

(which is the case if p is bounded and N → +∞), and vanishes if |p| > 2N . If N ≥ 2|p|,
by Theorem 4.2 withm = �, k = p and θ = 2π , by Formula (54), since |p| ≥ 1, and since
c�,p ≤ 1 (see Equation (46)), we have

‖ ω̃p, N‖ =
∑

q∈Jp, N
ϕK (q) ϕK (q + p) = 2π c�,p

3
√|DK | (N + O(|p|))6

+ O
(

|p| (N+O(|p|))5+|p|2 (N+O(|p|))4+|p|2 ln |p| (N+O(|p|))2 ln(N+O(|p|))
)

= 2π c�,p

3
√|DK | N

6 + O( |p|N 5) . (55)
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In particular, if N ≥ 2|p|, since c′� > 0 by Equation (48), we have

1
‖ ω̃p, N‖ = 3

√|DK |
2π c�,p N 6

(
1 + O

( |p|
c′� N

))
. (56)

The next result implies that the measures ω̃p,N , once normalised to be probability mea-
sures, weak-star converge to the measure dμ(z) = 3

π
|p|6 |z|4 d LebB(0, 1|p| )(z) on B(0, 1

|p| )
as N → +∞, uniformly on p ∈ � � {0} bounded.

Lemma 6.2 For all p ∈ � � {0}, α ∈ ] 0, 1 [ and f ∈ C1
c (C), as N → +∞, we have

ω̃p,N
‖ω̃p,N‖ ( f ) =

∫

B(0, 1|p| )

3
π

|p|6 |z|4 f (z) d LebC(z)

+O
( ‖df ‖∞

Nα |p| + |p| ‖ f ‖∞
c′� N 1−α

+ ‖ f ‖∞
Nα

)
.

Proof As in the proof of Lemma 5.3, we will estimate the difference of the main terms in
the above centered formula by cutting the sum defining the renormalised measure ω̃p,N
and by cutting similarly the integral on B(0, 1

|p| ). We assume, as we may, that N ≥ 2|p|.
Let Q = �Nα� ≥ 1, which tends to +∞ as N → +∞. For allm, n ∈ {0, . . . , Q − 1}, let

A′
n,m =

{
ρ e2iπ t : ρ ∈

] n
Q |p| ,

n + 1
Q |p|

]
, t ∈

]m
Q
,
m + 1
Q

]}
, (57)

so that B(0, 1
|p| ) � {0} is the disjoint union of the sets A′

n,m form, n ∈ {0, . . . , Q − 1}. With
the notation of Equation (43), we have

A′
n,m = C

(
e2iπ

m+1/2
Q ,

2π

Q
,
n + 1
Q |p|

)
� C

(
e2iπ

m+1/2
Q ,

2π

Q
,

n
Q |p|

)
. (58)

Note that diam(A′
n,m ) = O

(
1

Q |p|
)
. Hence for every z ∈ A′

n,m, we have by the mean value
theorem

f (z) = f
(

n
Q |p| e

2iπ m
Q

)
+ O

(‖df ‖∞
Q |p|

)
. (59)

If |p| ≤ N 1−α (which is the case if p is bounded and N → +∞) and if n ≤ Q − 2, then

N |p|n + 1
Q |p| ≤ N

Q − 1
Q

≤ N − N 1−α ≤ N − |p| .

Hence for all m, n ∈ {0, . . . , Q − 1}, by Formula (54), if |p| ≤ N 1−α and if n �= Q − 1, we
have

(
N pA′

n,m
) ∩ Jp,N = � ∩ (

N pA′
n,m

)
. (60)

For allm, n ∈ {0, . . . , Q − 1}, let

Sn,m =
∑

q ∈ (N pA′
n,m)∩ Jp,N

f
(

q
N p

)
1

‖ ω̃p,N‖ ϕK (q) ϕK (q + p) .
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If n �= Q − 1, by Equations (59) and (60) for the first equality, and for the second one, by
Equations (56), (58) and (44), by Theorem 4.2 applied twice with m = �, k = p, θ = 2π

Q
and x = N (n+1)

Q , N n
Q , we have, as N → +∞ (so that in particular N ≥ max{2, c′�} |p|),

Sn,m =
(
f
(

n
Q |p| e

2iπ m
Q

)
+ O

(‖df ‖∞
Q |p|

))
1

‖ ω̃p,N‖
∑

q ∈ �∩(N pA′
n,m)

ϕK (q) ϕK (q + p)

=
(
f
(

n
Q |p| e

2iπ m
Q

)
+ O

(‖df ‖∞
Q |p|

))
3

√|DK |
2π c�,p N 6

(
1 + O

( |p|
c′� N

))

×
2π
Q c�,p

3
√|DK |

((
N (n + 1)

Q

)6
−

(
N n
Q

)6
+ O

(
|p|
c′�

(
N n
Q

)5
+ |p|2

c′�

(
N n
Q

)4

+|p|2
c′�

ln |p|
(
Nn
Q

)2
ln

(
Nn
Q

)))

= 1
Q2

(
(n + 1)6 − n6

Q5 f
(

n
Q |p| e

2iπ m
Q

)
+ O

(‖df ‖∞
Q |p| + Q |p| ‖ f ‖∞

c′� N

))
. (61)

Note that by Equations (58), (54) and (44) for the first inequality, and for the second one,
by Equations (56) and twice (55), as N → +∞, we have

∣∣∣
∑

0≤m≤Q−1
SQ−1,m

∣∣∣ ≤ ‖ f ‖∞
1

‖ ω̃p,N‖
∑

q ∈ �∩(B(0,N )�B(0,N−N
Q ))

ϕK (q) ϕK (q + p)

= ‖ f ‖∞
3

√|DK |
2π c�,p N 6

(
1 + O

( |p|
c′� N

))

× 2π c�,p

3
√|DK |

(
N 6 − (N − N

Q
)6 + O(

|p|
c′�

N 5)
)

= O
(‖ f ‖∞

Q

)
.

(62)

For allm, n ∈ {0, . . . , Q − 1}, let
In,m =

∫

A′
n,m

3
π

|p|6 |z|4 f (z) d LebC(z) .

By Equations (59) and (57), we have

In,m =
(
f
(

n
Q |p| e

2iπ m
Q

)
+ O

(‖df ‖∞
Q |p|

)) ∫ 2π (m+1)
Q

2πm
Q

∫ n+1
Q |p|
n

Q |p|

3
π

|p|6 ρ5 dρ dθ

= 1
Q2

(
(n + 1)6 − n6

Q5 f
(

n
Q |p| e

2iπ m
Q

)
+ O

(‖df ‖∞
Q |p|

))
. (63)

Furthermore,

∣∣∣
∑

0≤m≤Q−1
IQ−1,m

∣∣∣ ≤ ‖ f ‖∞
∫ 2π

0

∫ 1
|p|
1
|p| − 1

Q |p|

3
π

|p|6 ρ5 dρ dθ = O
(‖ f ‖∞

Q

)
. (64)

Since B(0,
1
|p| ) � {0} =

Q−1⊔

n,m=0
A′
n,m, putting together Equations (61), (63), (62) and (64),

and since Q = �Nα� ∈ [Nα

2 , Nα] for N large enough, we have
∣∣∣

ω̃p,N
‖ω̃p,N‖ ( f ) −

∫

B(0, 1|p| )

3
π

|p|6 |z|4 f (z) d LebC(z)
∣∣∣
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=
∣∣∣

Q−2∑

n,m=0
(Sn,m − In,m) +

Q−1∑

m=0
SQ−1,m −

Q−1∑

m=0
IQ−1,m

∣∣∣

≤
Q−2∑

n,m=0
|Sn,m − In,m| + ∣∣

Q−1∑

m=0
SQ−1,m

∣∣ + ∣∣
Q−1∑

m=0
IQ−1,m

∣∣∣

= O
(‖df ‖∞

Q |p| + Q |p| ‖ f ‖∞
c′� N

)
+ O

(‖df ‖∞
Q |p|

)
+ O

(‖ f ‖∞
Q

)
+ O

(‖ f ‖∞
Q

)

= O
(‖df ‖∞
Nα |p| + |p| ‖ f ‖∞

c′� N 1−α
+ ‖ f ‖∞

Nα

)
.

This proves Lemma 6.2. ��

Now, let us introduce the finitely supported measure on C � {0} defined by

μ̃+
N =

∑

p∈��{0}
ι∗ω̃p,N =

∑

p,q∈��{0}: |q|≤|q+p|≤N
ϕK (q) ϕK (q + p) �N p

q
,

where as previously ι : z �→ 1
z (recalling that the measure ω̃p, N vanishes if |p| > 2N and

has finite support contained in B(0, 1
|p| ) � {0}).

Lemma 6.3 For all A ≥ 1 and f ∈ C1(C+) with compact support contained in B(0, A), as
N → +∞, we have

∣∣ R̃N |E+
N
( fN ) − μ̃+

N ( f )
∣∣ = O

(
A4‖df ‖∞ N 5

covol�

)
.

Proof Let us assume thatN > A
π
, so that the ballB(0, A) injects by the canonical projection

C → EN = C/(2π i N Z). Note that fN has support in E+
N . Using the change of variables

( p, q) �→ (m = p + q, n = q), we have

R̃N ( fN ) =
∑

(m,n)∈I+N
ϕK (m) ϕK (n) fN (N logm − N log n)

=
∑

p,q∈��{0} : |q|≤|q+p|≤N
ϕK (q) ϕK (q + p) fN (N log( p + q) − N log q) .

As in the proof of Lemma 3.3 (see Formulas (24) and (25) with ψ(N ) = N ), if a pair
( p, q) occurs in the index of the sum defining either R̃N ( fN ) or μ̃+

N ( f ) with nonzero
corresponding summand, then |p|

|q| = O
(
A
N

)
, |p| = O(A), and

∣∣ fN (N log( p + q) − N log q) − f (N
p
q
)
∣∣ = O

(
A2‖df ‖∞

N

)
.

Hence, by Equation (55), since c�,p ≤ 1 (see Equation (46)) and by Lemma 2.1 with k = 0,
as N ≥ diam �� tends to +∞, we have

∣∣ R̃N ( fN ) − μ̃+
N ( f )

∣∣ ≤
∑

p∈��{0} : |p|=O(A), q∈Jp,N
ϕK (q) ϕK (q + p)O

(
A2‖df ‖∞

N

)

=
∑

p∈��{0} : |p|=O(A)
O(N 6)O

(
A2‖df ‖∞

N

)
= O

(
A4‖df ‖∞ N 5

covol�

)

This proves Lemma 6.3. ��
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Lemma 6.4 For all A ≥ 1 and f ∈ C1(C+) with compact support contained in B(0, A), as
N → +∞, we have

1
N 6 μ̃+

N ( f ) =
∫

C+
f (z) gL ϕK

� , id1 (z) d LebC(z)

+O
(

A4

covol� c′� N 1/2 (‖df ‖∞ + ‖ f ‖∞)
)
.

Proof Let A and f be as in the statement, let N be large enough, and let α ∈ ]0, 1[ .
Since the support of ω̃p, N is contained in B(0, 1

|p| ), the support of ι∗ω̃p, N is contained in
{z ∈ C : |z| ≥ |p|}. Since a nonzero element of OK has norm, hence absolute value, at
least 1, the measures μ̃+

N and gL ϕK
� , id1 (z) d LebC(z) both vanish on

◦
B(0, 1). Hence we may

assume that the support of f is contained in {z ∈ C : |z| ≥ 1}, so that the support of f ◦ ι is
compact. Note that ‖ f ◦ ι‖∞ = ‖ f ‖∞ and as the support of f is contained in B(0, A), that

‖d( f ◦ ι)‖∞ ≤ A2‖df ‖∞ .

By Equation (55) and by Lemma 6.2, by Equation (27), since 1 ≤ |p| = O(A) and
c�,p ≤ 1, as N → +∞, we hence have

μ̃+
N ( f ) =

∑

p∈��{0}
ι∗ω̃p,N ( f ) =

∑

p∈��{0}
‖ω̃p, N‖ ω̃p,N

‖ω̃p, N‖ ( f ◦ ι)

=
∑

p∈��{0}

( 2π c�,p

3
√|DK | N

6 + O( |p|N 5)
)

×
(∫

B(0, 1
|p| )

3
π

|p|6 |z|4 f ◦ ι(z) dLebC(z)

+O
(
A2‖df ‖∞
Nα |p| + |p| ‖ f ‖∞

c′� N 1−α
+ ‖ f ‖∞

Nα

))

= N 6

⎛

⎝
∑

p∈�

2 c�,p |p|6√|DK |
∫

|z|≥|p|
1

|z|8 f (z) dLebC(z)

+O
( ∑

p∈� : |p|=O(A)

|p| ‖ f ‖∞
N

+ A2‖df ‖∞
Nα

+ A ‖ f ‖∞
c′� N 1−α

+ ‖ f ‖∞
Nα

)⎞

⎠ .

By Lemma 2.1 with k = 0, as N → +∞, we hence have

μ̃+
N ( f )
N 6 =

∫

C

1
|z|8

∑

p∈� : |p|≤|z|

2 c�,p |p|6√|DK | f (z) d LebC(z)

+ O
(

A2

covol�

(
A2 ‖df ‖∞

Nα
+ A ‖ f ‖∞

c′� N 1−α
+ ‖ f ‖∞

Nα

))
.

Taking α = 1
2 , this proves Lemma 6.4 since c′� ≤ 1 and A ≥ 1. ��

Theorem 6.1 now follows from Lemmas 6.3 and 6.4, as explained in the beginning of
the proof. ��
The following figure illustrates Theorem 6.1 when we take K = Q( 1+i

√
3

2 ) and
� = OK = Z[ 1+i

√
3

2 ]. It shows an approximation of the pair correlation function gL ϕK
� , id1
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computed using the empirical measure 1
506 R̃50 in the ball of radius 5 centered at the ori-

gin, to be compared with the orange radial profile of gL ϕK
� , id1 in the second figure of the

introduction.

The graph of gL ϕK
� , id1 is bounded by Lemma 2.1 with k = 6 since c�,p ≤ 1. It is

asymptotic to a horizontal plane at infinity, by the following result. In its proof, we use the
Möbius function μK : I +

K → Z of K , defined by

∀ a ∈ I +
K , μK (a) =

⎧
⎨

⎩
0 if p2 | a for some prime ideal p

(−1)m if a = p1 . . . pm for distinct prime ideals p1, . . . , pm

(in particular μK (OK ) = 1). For every a ∈ OK � {0}, we define μK (a) = μK (aOK ). We
have (see for instance [27]) theMöbius inversion formula: for all f, g : I +

K → C,

f (a) =
∑

b|a
g(b) if and only if g(a) =

∑

b|a
μK (b) f (ab−1) . (65)

Proposition 6.5 We have

lim|z|→∞ gL ϕK
� , id1 (z) = π

|DK |
∏

p

(
1 − 2

N(p)2

)(
1 + 1

N(p)2(N(p)2 − 2)

)
.

Proof Let us consider the multiplicative1 function onI +
K defined by

f : a �→
∏

p |a

(
1 + 1

N(p)(N(p)2 − 2)

)

and the constant

C1 = 2π

|O×
K |√|DK |

∏

p

(
1 + 1

N(p)2(N(p)2 − 2)

)
.

Let us prove that uniformly in x ≥ 1, we have

∑

a∈I +
K : N(a)≤x

N(a)3f (a) = C1
4

x4 + O(x7/2) . (66)

Applying this with x = |z|2, by Equation (3), since the map k �→ kOK fromOK � {0} onto
I +

K is |O×
K |-to-1, this proves Proposition 6.5.

1Recall that a function f : I +
K → C

× ismultiplicative if f (OK ) = 1 and for all coprime integral ideals a,b inI +
K , we

have f (ab) = f (a) f (b).
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Let

g = f ∗ μK : a �→
∑

b|a
μK (b) f (ab−1)

be the Dirichlet convolution of f with theMöbius functionμK of K . Then g is multiplica-
tive. For every prime ideal p of OK , we have

g(p) = f (p)μK (OK ) + f (OK )μK (p) = 1
N(p)(N(p)2 − 2)

and g(pk ) = f (pk )μK (OK ) + f (pk−1)μK (p) = 0 for every k ≥ 2. Therefore, for every
b ∈ I +

K , we have

g(b) = μK (b)2
∏

p |b

1
N(p)(N(p)2 − 2)

.

By for instance Equation (7) with � = OK , k = 0 and x = √y, by Equation (16) with
m = OK , and again since the map k �→ kOK is |O×

K |-to-1, as y → +∞, we have (see also
[19, Theo. 15])

Card{a ∈ I +
K : N(a) ≤ y} = 2π

|O×
K |√|DK | y + O(y

1
2 ) . (67)

Lemma 6.6 For every b ∈ I +
K , we have 0 ≤ g(b) ≤ N(b)−3

∏

p

(
1 − 2

N(p)2

)−1
. In par-

ticular,
∑

b∈I +
K :N(b)≥x

g(b)
N(b)

= O
(

1
x2

)
.

Proof This is immediate if μK (b) = 0. Otherwise, b = p1 . . . pk with k ∈ N and p1, . . . , pk
pairwise distinct prime ideals, and

0 ≤ N(b)3g(b) =
k∏

i=1

N(pi)3

N(pi)(N(pi)2 − 2)

=
k∏

i=1

(
1 − 2

N(pi)2

)−1
≤

∏

p

(
1 − 2

N(p)2

)−1
< +∞.

The last claim follows from the well known error term in the Dedekind zeta function
summation: as an = Card{a ∈ I +

K : N(a) = n} = O(n) (see for instance Equation (67)),
we have by the first claim

∑

b∈I +
K :N(b)≥x

g(b)
N(b)

= O

⎛

⎜⎝
∑

b∈I +
K :N(b)≥x

1
N(b)4

⎞

⎟⎠ = O
(
∑

n≥x

an
n4

)

= O
(∫ +∞

x

1
t3

dt
)

= O
(

1
x2

)
. ��

Using the Möbius inversion formula of Equation (65) for the first equality, Equation
(67) with y = x

N(b) for the third equality, Lemma 6.6 for the fifth equality and an Eulerian
product (since g is multiplicative and vanishes on ideals divisible by a nontrivial square)
for the sixth equality, with S(x) = ∑

a∈I +
K : N(a)≤x f (a), uniformly in x ≥ 1, we have

S(x) =
∑

b,c∈I +
K

N(bc)≤x

g(b) =
∑

b∈I +
K

N(b)≤x

g(b)
∑

c∈I +
K

N(c)≤x/N(b)

1
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=
∑

b∈I +
K

N(b)≤x

g(b)
(

2π x
|O×

K |√|DK |N(b) + O
(

x1/2

N(b)1/2

))

= 2π x
|O×

K |√|DK |
∑

b∈I +
K

g(b)
N(b)

+ O

⎛

⎜⎜⎜⎝x
∑

b∈I +
K

N(b)≥x

g(b)
N(b)

⎞

⎟⎟⎟⎠ + O

⎛

⎜⎜⎜⎝x1/2
∑

b∈I +
K

N(b)≤x

g(b)
N(b)1/2

⎞

⎟⎟⎟⎠

= 2π x
|O×

K |√|DK |
∑

b∈I +
K

g(b)
N(b)

+ O(x1/2)

= 2π x
|O×

K |√|DK |
∏

p

(
1 + 1

N(p)2(N(p)2 − 2)

)
+ O(x1/2) = C1 x + O(x1/2) .

By summation by parts, we hence have

∑

a∈I +
K : N(a)≤x

N(a)3f (a) =
∫ x

1
t3d[S(t)]

= [
t3(C1 t + O(t1/2))

]x
1 − 3

∫ x

1
t2(C1 t + O(t1/2)) dt = C1

4
x4 + O(x7/2) .

This proves Equation (66) and concludes the proof of Proposition 6.5. ��

7 Pair correlations of common perpendiculars in the Bianchi manifolds
PSL(OK )\H

3
R

Weagain fix an imaginary quadratic number fieldK whose ring of integersOK is principal,
and a nonzero ideal � = �� ∈ I +

K . In this section, we give a geometric motivation for
the introduction of the Euler function as multiplicities in the family L ϕK

� of complex
logarithms of elements of � defined in Equation (2), and we give a geometric application
of the results in Sect. 5.
We refer to [5,21] formore information on the following notions. LetY be a nonelemen-

tary geodesically complete connected proper locally CAT(−1) good orbispace, so that the
underlying space of Y is �\Ỹ with Ỹ a geodesically complete proper CAT(−1) space and
� a discrete group of isometries of Ỹ preserving no point nor pair of points in Ỹ ∪ ∂∞Ỹ .
Let D− and D+ be connected proper nonempty properly immersed locally convex closed
subsets of Y , that is, D− and D+ are locally finite �-orbits of proper nonempty closed
convex subsets D̃− and D̃+ of Ỹ . A common perpendicular α between D− and D+ is the
�-orbit of the unique shortest arc α̃ between D̃− and γ D̃+ for some γ ∈ � such that
d(D̃−, γ D̃+) > 0. Themultiplicitymult(α) of α is the ratio A/B where

• A is the number of elements (γ−, γ+) ∈ (�/�D− )×(�/�γD+ ) such that α̃ is the unique
shortest arc between γ−D̃− and γ+γ D̃+, and

• B is the cardinality of the pointwise stabiliser of α̃ in �.

The length λ(α) of the common perpendicular α is the length of the geodesic segment α̃

in Ỹ . For every � in the set OL�(D−, D+) of lengths of common perpendiculars, the length
multiplicity of � is the sum of the multiplicities of the common perpendiculars between
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D−, D+ having the length � :

ω(�) =
∑

α common perpendicular
between D− and D+ with λ(α)=�

mult(α) . (68)

If Perp(D−, D+) is the set of all commonperpendiculars fromD− toD+ withmultiplicities,
then (λ(α))α∈Perp(D− , D+) is the marked ortholength spectrum from D− to D+, and the set
OL(D−, D+) = (OL�(D−, D+), ω) of the lengths of the common perpendiculars endowed
with the length multiplicity ω is the ortholength spectrum from D− to D+.
As defined in [22, §6], the pair correlation measure of the common perpendiculars from

D− to D+ is the pair correlation measure of the family

AD− ,D+ =
(
(AD− ,D+

N = OL�(D−, D+) ∩ [0, 2 lnN ])N∈N, ω
)
.

Let us specialise these objects as follows. Let

Ỹ = H
3
R

=
(

{(z = x + iy, t) ∈ C × R : t > 0}, ds2 = dx2 + dy2 + dt2

t2

)

be the upper halfspace model of the real hyperbolic 3-space with constant curvature −1.
We identify as usual its space at infinity ∂∞H

3
R

= (C × {0})∪ {∞} with P
1(C) = C ∪ {∞}.

For every b ∈ I +
K , let �0[b] be Hecke’s congruence subgroup modulo b of the Bianchi

group PSL2(OK ), which is the preimage of the upper triangular subgroup of PSL2(OK /b)
under the reduction morphism PSL2(OK ) → PSL2(OK /b). It acts faithfully on H

3
R
by

Poincaré’s extension, and is a lattice in the isometry group of H
3
R
. Let Y b = �0[b]\H

3
R
,

which is a finite (possibly ramified) cover of the Bianchi orbifold PSL2(OK )\H
3
R
. Note that

since OK is principal, this Bianchi orbifold has only one cusp (the number of cusps being
the class number of K , see for instance [9, Sect. 7.2]).
Let D̃− = D̃+ be the horoballH∞ = {(z, t) ∈ H

3
R
: t ≥ 1} inH

3
R
, whose imageD− = D+

in Y b is aMargulis neighbourhood of a cusp of Y b. In order to emphasise the dependence
on the ideal b, we will use the notation A b

D− ,D+ = AD− ,D+ for the family of lengths of
common perpendiculars between D− and D+ in Y b.
The following result relates the pair correlationmeasures of the commonperpendiculars

from this Margulis cusp neighbourhood to itself to the pair correlation measures of the
complex logarithms of the elements of � = b, with multiplicities given by the Euler
function ϕK . As explained in Remark 2.3, in the following result, we remove from the

index set IN of the summations defining R
A b

D− ,D+ , 1
N and R

L
ϕK
b , 1

N the assumption that
m �= n. Recall that the map 2Re : E → R is a continuous proper map.

Proposition 7.1 For every ideal b ∈ I +
K , we have

R
A b

D− ,D+ , 1
N = 4

|O×
K |4 (2 Re)∗

(
R

L
ϕK
b , 1

N

)
.

Proof The orbit ofH∞ under �0[b] consists, besidesH∞ itself, of the Euclidean 3-balls
H p

q
of Euclidean radius 1

2|q|2 tangent to the horizontal plane C at the rational elements p
q

(with this point removed), with p ∈ OK , q ∈ b � {0} and ( p, q) = 1. Note thatH∞ meets
H p

q
(and then is tangent to it) if and only if q ∈ O×

K , since the hyperbolic distance betwen
H∞ andH p

q
is equal to 2 ln |q|.
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Every common perpendicular between D− and D+ has a vertical representative in H
3
R

which starts from a point in ∂H∞ = C × {1} and ends on the boundary ofH p
q
with p

q as
above and q /∈ O×

K . Its hyperbolic length is 2 ln |q|. In particular, the set OL�(D−, D+) is
equal to

{2 ln |q| = 2Re(log q) : q ∈ b � O×
K }.

The stabiliser of H∞, or equivalently of ∞, in �0[b] is the upper triangular subgroup
U of �0[b], hence of PSL2(OK ). It contains the upper unipotent subgroup consisting of
translations byOK with finite index, equal to |O×

K |
2 . Hence given a denominator q ∈ b�O×

K ,
the points at infinity with denominator q of the vertical geodesic lines containing a lift of
a common perpendicular betweenD− andD+ are, modulo translation byOK , exactly the
points p

q where p ranges over a set of representatives of (OK /qOK )×. Note that for any
unit u ∈ O×

K , we have up
uq = p

q . Thus, the number modulo U of fractions p
q with |q| = n is

2
|O×

K |2
∑

|q|=n ϕK (q).

By Equation (5), the map z �→ � = 2Re(z) from LbN = {log q : q ∈ (b � {0}), |q| = n}
to the set AD− ,D+

n of lengths of the common perpendiculars between D− and D+ with
length 2 ln n hence sends the sum of the Euler weights

∑
|q|=n ϕK (q) to

|O×
K |2
2 times the

multiplicity ω(ln n) defined in Equation (68) of the common perpendiculars of length �.
The claim follows. ��
The following result computes the pair correlation function without scaling of the

lengths of the common perpendiculars from the Margulis cusp neighbourhood at infinity
to itself in the Hecke-Bianchi orbifold �0[b]\H

2
R
, giving a new proof of this special case of

[23, Cor. 4.2], see also the remark after Corollary 2.5. The maps Re : EN → R for N ∈ N

being not uniformly proper, the case with scalings requires a new analysis.

Corollary 7.2 For every ideal b ∈ I +
K , as N → +∞, the pair correlation measures

R
A b

D− ,D+ , 1
N onR, renormalised to be probabilitymeasures, weak-star converge to ameasure

absolutely continuous with respect to the Lebesgue measure on R, with pair correlation
function given by s �→ e− 2|s|.

Proof This follows from Theorem 5.1 with � = b as in the proof of Corollary 2.5, using
Proposition 7.1. ��
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