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1 Introduction

When studying the asymptotic distribution of a sequence of finite subsets of R, finer
information is sometimes given by the statistics of the spacing (or gaps) between pairs or k-
tuples of elements, seen at an appropriate scaling. These problems often arise in quantum
chaos, including energy level spacings or clusterings, and in statistical physics, including
molecular repulsion or interstitial distribution. See for instance [2,3,13-15,18,23,25].
This paper may be seen as a complex version of our paper [22] where we study the
pair correlation of logarithms of pairs of natural integers, though new phenomena occur,
including the necessity to take limits of the underlying spaces, as we now explain.

The general setting for our study may be described as follows. Let E be an abelian
locally compact group. Let &7 = (An, @n)neN be a sequence of finite subsets Ay of E,
endowed with a weight function wy : AN — 10, +00[ (or multiplicity function when
its values are positive integers). When studying the asymptotic distribution of differences
of elements of Ay, looking at them at various scalings is often desirable. As explained
by Gromov (see for instance [10]), scaling a metric space sometimes requires to change
the space, especially at the limit (unless this space has a nice family of homotheties, as
the Euclidean space R” does). We thus introduce a sequence (Ex)nen of abelian locally
compact groups converging for the pointed Hausdorff-Gromov convergence to an abelian
locally compact group Ex (see for instance [11]). Let Haarg  be a Haar measure on E.
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Lety : N — ¥ (N) beascaling function, that is, for every N € N~ {0},let v (N) : E — Ey
be any map, typically a dilating homeomorphism for appropriate distances, that we think
of as “scaling” the space E. Let ¥’ : N\ {0} — [1, +00[ be an appropriately chosen
function, called a renormalising function. The pair correlation measure of &/ at time N
with scaling v (N) is the measure on Ey with finite support

%}?W= Z N (x) on (¥) Ay ) y—x) » (1)
%YEANXFEY

where A, denotes the unit Dirac mass at z in any measurable space. When the sequence
of measures (%’A{’w)NeN, renormalised by v//(N), converges for the pointed Hausdorff-
Gromov weak-star convergence (see Sect. 3 for background definitions) to a measure
&,y Haarg, absolutely continuous with respect to Haarg,_, the Radon-Nikodym deriva-
tive go/,y is called the asymptotic pair correlation function of <7 for the scaling  and
renormalisation y'. When g v is a positive constant, we say that ./ has a Poissonian
behaviour for the scaling y and renormalisation '. When g,/ y vanishes on a neighbour-
hood of 0 in E, but is not the constant 0-function, we say that the pair (<7, ) exhibits a
strong level repulsion. The standard level repulsion only requires g.s,y to vanish at 0.
Recall that a Z-lattice in C is a discrete (free abelian) subgroup of (C, +) generating
C as an R-vector space. Let A be a Z-grid in C (or an affine (Euclidean) lattice in the
terminology of [8,15]), that is, a translate A = a + A of a Z-lattice A in the Euclidean
space C for some a € C (well defined modulo ]\), see for instance [1]. We denote by
covol; = Vol(C/ A) the area of a fundamental parallelogram for A. We denote by

Sysj =min{|z| :ze;\\{O}} >0

the systole of the Z-lattice A. Recall that the complex logarithm is an isomorphism of
abelian topological groups log : C* — E = C/(2niZ). Given N € N ~ {0} and a
function ¥ : N\ {0} — ]0, +o00[, we again denote by ¥/(N) the scaling map from E to
En = C/Q2miy(N)Z) defined by z mod 27iZ +— (N)z mod 2miy(N)Z. In Sects. 2 and
3, we study the pair correlations of the family of the complex logarithms of grid points

Ln= (LY ={logz:ze A, 0<lz] <N}, wn = 1) yven

without multiplicities.

In order to simplify the statements in this introduction, we only consider power scalings
¥ : N — N9 for « > 0, and we denote them by id*. We use the notation Leby for the
Lebesgue measures on A = C and A = C/(27iZ).

Theorem 1.1 Let « > 0 and let A be a Z-grid. As N — oo, the normalised pair
correlation measures ]ﬁ %’]f w0 the cylinder En = C/(2niN*Z) converge for
the pointed Hausdorff-Gromov weak-star convergence to the measure g », iq= Lebg_ on

Ey = C/(2niZ) ifa = 0 and Eo, = C otherwise, with pair correlation function given by

b4 —2|Rez ’ —

2 €1 ifa =0,
A

T .

2covol2 lfO <a<l
8&Lp,id* * 2> 1A 9 .
covoly |z|* ﬁz Ipl lfOl =1
PEA: |p|<lz]|

0 ifa > 1
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The convergence is uniform on A varying in any given compact subset of the set of Z-grids
of C endowed with the Chabauty topology.

The renormalisation by Aﬁ in Theorem 1.1 is naturally chosen in order for the pair
correlation function to be finite. We refer to Theorems 2.2 and 3.1 for more complete
versions of Theorem 1.1, with more general scaling functions, as well as for error terms.
These error terms, as well as the ones in Theorems 5.1 and 6.1, constitute the main
technical parts of this paper.

A standard scaling function in dimension # is the inverse of the #n-th root of the average
volume gap, which is the quotient of the volume of the ball of smallest radius containing Fy

by the number of elements in Fyy . See for instance [3,13,14,18,25], though these references
In N)?

( r;v 2) ,
up to a positive multiplicative constant. As we shall see in Theorem 3.1, the corresponding

are in dimension # = 1. For the family %, this average volume gap is equivalent to

scaling function ¢ : N — % gives, as for ¥ : N — N® for 0 < « < 1 in the above
theorem, a Poissonian behaviour (see also [8,28] for a similar behaviour).

There is a phase transition from a Poissonian behaviour when 0 < @ < 1toatotal loss of
mass when « > 1. In fact, the support of the measure itself converges to infinity for @ > 1.
The transition occurs at the linear scaling (when « = 1 in Theorem 1.1), where an exotic
pair correlation function g, ;41 appears, which has a discontinuity along every circle

(centered at 0) through a grid point. Since go,, .1 (2) vanishes when z ¢ 53(0, Sysz), the
pair (£, id!) exhibits a strong level repulsion. Hence g ¢, iq! has near z = 0 a behaviour

similar to the case « > 1. Note that g, ;41(z) converges to > when z goes to oo,
A

corresponding to the Poissonian behaviour of 0 < « < 1, see Lemma 2.1 with k = 2.
The figure below gives the graph of the pair correlation function g¢,, 4 of .Z for the

Z-grid (which is a Z-lattice) A = A= Z[i] of the Gaussian integers at the linear scaling

¥ = id! : N — N in the ball of center 0 and radius 5. The blue lines on the bounding box

represent the limit = ZJat+ooofgy,,y. Werefer to the end of Sect. 3 for further

R S
Pl
2 covol i

illustrations, also in the case of the Eisenstein integers.

We now give some existence results of pair correlation functions of logarithms of lattice
points with weights, restricting to integral lattices with an arithmetic weight motivated by
geometric applications. Let K be an imaginary quadratic number field K, with discriminant
Dy, whose ring of integers U is principal. We fix a nonzero ideal A in Ok, and we denote
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by ¢k : Ok ~ {0} — N the Euler function a — Card ((ﬁK/aﬁK)x) of K. In the products
below, p runs over the prime ideals of k. The following result describes the asymptotic
behaviour of the pair correlation measures associated with the family

LK = (LII\\, ={logz:z€ A, 0<|z| <N}, oy =gx o exp)NEN . (2)
2K

Theorem 1.2 (1) As N — 400, the pair correlation measures %y, " '~ on the constant

cylinder E = C/(2miZ), renormalised to be probability measures, weak-star converge to the

probability measure gyt 1 Lebg, with pair correlation function independent of A given
bygypec, 2 e g e tIReE
f;;K,i 1
(2) As N — +o0, the normalised pair correlation measures 1\% Ky * on the vary-
ing cylinders Exy = C/(2wi N Z) converge for the pointed Hausdorff-Gromov weak-star

convergence to the measure g ,ox ;1 Lebc, with pair correlation function
ox’

(o ( ;)
2 K TT (" Spymer=2)

kEﬁK p\kﬁK
[k|<lel

P — (1 _ L)
S T e D LT NG
3)

We refer to Theorems 5.1 and 6.1 for more complete versions of Theorem 1.2, including
possible congruence restrictions, and for error terms. The proof of Theorem 1.2 (2) uses
Theorems 1.1 and 4.1 of [24] that describe the asymptotic behaviour in angular sectors in
C for the Euler function of K. For the reader’s convenience, we briefly review these results
in Sect. 4. In order to simplify the treatment, we only consider the constant and linear
scaling in Theorem 1.2.

4

2 4 6 8 10

The pair correlation functions at the linear scaling are radially symmetric by Theorem 1.2
(2). The figure above compares the radial profiles of the pair correlation functions g 0K id!

for K = Qi) and A = Ok = Z[i] in blue and K = Q(i~/3) and A = O = Z[#g] in
orange. The radial profiles of the pair correlation functions converge to a limit

T (1_L) (1+;)
1Dxcl L N(p)2 N(p)2(N(p)? - 2)

at infinity, where p ranges over the prime ideals of O, see Proposition 6.5. This limit is
approximately 0.346 for the blue curve and 0.634 for the orange one.
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The radial profiles of the pair correlation functions in the weighted and unweighted cases
are similar to certain radial distribution functions in statistical physics, see for example [29,
Sect. I1], [26, Fig. 7], [6, page 199] or [4, page 18]. See also [16]. The unfolding technique
(see for instance [4, p. 14] and [15, §3, §5]), though guiding the very first step of the proofs
of Theorem 1.1 and 1.2, falls short of giving a complete answer, in particular when varying
the scalings and weights and for the error term analysis.

As explained in Sect. 7, our motivation for introducing the weights by the Euler func-
tion comes from hyperbolic geometry. We prove in Proposition 7.1 that the pair correla-
tion measures of the lengths (counted with multiplicity) of the common perpendiculars
between the maximal Margulis cusp neighbourhood and itself in the (one-cusped) Bianchi
orbifold PSLy (& K)\H% are closely related to the pair correlation measures of the weighted
family Zgﬁ . Theorem 1.2 implies a pair correlation result for the lengths of common per-
pendiculars of cusps neighbourhoods in the Bianchi orbifold PSLy (0 )/ ]HII?’R, see Corollary
7.2 for a precise statement and a version with congruences.

Notation. We introduce here some of the notation used throughout the paper.

All our measures are Borel, positive, regular measures on locally compact spaces. The
pushforward of a measure u by a mapping f is denoted by fi i1, and its total mass by || u]|.
We denote by Lebp the restriction of Lebesgue’s measure of C to any Borel subset B of C.
For every smooth manifold with boundary ¥ and every k € N, we denote by CX(Y) the
set of complex-valued C* functions with compact support on Y.

We equivariantly identify the space Gridy of Z-grids in the real Euclidean plane C,
endowed with the Chabauty topology and the affine action of GLy(R) x R? with the
homogeneous space (GLy(R) x R?)/(GLy(Z) x Z?), which smoothly fibers by the map
a+ A — A over the space of Z-lattices GLy(R)/ GLy(Z), with fibers the elliptic curves
C/A.

We will use the following indexing sets in Sects. 2, 3 and 5. Given a Z-grid A, for every
N e N~ {0}, let

In =Ina ={(mn) € A%: 0 < |m|, |n| <N, m # n},

Iy ={mn) €ly: |m| <|nl} and Iy ={(mmn)ely: |n <|ml}.

Given a subset b of the set of ambient parameters, for every positive function g of a
variable in N \ {0}, we will denote by O (g) (and O(g) when b is empty) any function f on
N ~ {0} such that there exists a constant C’ depending only on the parameters in b and a
constant Ny possibly depending on the all the parameters (including the ones in b) such
that for every N > Np, we have | f(N)| < C |g(N)|.

2 Pair correlation of grid points without weight or scaling

In this section, we work on the constant cylinder E = C/(27iZ), endowed with its quotient
Riemann surface structure, with its quotient additive abelian locally compact group struc-
ture, and with its Haar measure d Lebg (" + iy') = dx'dy’ wherex’ € Randy’ € R/(2nZ).
We endow the multiplicative group C* with its Riemann surface structure as an open
subset of C and with the restriction of the Lebesgue measure Lebc of C. The logarithm
map log : C* — E defined by p ¢/ + In p + if is a biholomorphic group isomorphism,
whose inverse is the exponential map z’ = &’ 4 iy/ > exp(z’) = ¢* e’ The real part map
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Re : E — R defined by &” 4 iy’ — x’ is a smooth (trivial) fibration, and

Re, Lebg = 27 Lebp . (4)
Note that for every z € C \ {0}, we have

In(|z|?) = 2 Re(logz) . (5)
Since d Lebc(p €) = p dp db, we have

d(log, Lebc)(z') = €8¢ d Lebg(2) . (6)

Let A =a+ Abea Z-grid. We choose a Z-basis (vy, v2) of A such that the (weak)
fundamental parallelogram

11
T = tvy: s te[—= =
fsn+in:stel— 31}
for the action of A on C has smallest diameter. We then denote by
diamy; = diam(%3) = max{|vy + va|, [v1 — 2|}

the diameter of .%3, which is the length of a longest diagonal of the parallelogram .7 ;.
We denote by

covoly = Vol((C/j\) = Area(73) = | det(vy, v2) |

the area of the elliptic curve C/ A for the measure induced by the Lebesgue measure on C,
or the area of the parallelogram .73 (which does not depend on the choice of the Z-basis
(v1, v2) of Z\). We will use several times the following well known result, having a more
precise error term that we won’t need, and we only give a proof in order to make the
dependence on the parameters k and A explicit.

Lemma 2.1 For every k € N, there exists a constant Cy > 0 such that for all A € Grid,
and x > 1, we have

(1 + diam; )x + diam?
A Ax) . @

2
k_ =~ k2 ‘ <C
‘pEAZ|121<x Pl (k + 2) covol 3 x =k ( covol;

Proof The case k = 0 of the lemma is the standard Gauss counting result of lattice
points in discs. With Ay = {p € A : |p| < x} and By = U,eq, (P + F3), so that
Area(B,) = Card(A,) Area(.#3), we have

B(O,x—diam]\) C By CB(O,x—}—diam]\),

(with the convention that B(0, r) = @ if r < 0) so that the result for k = 0 with a slightly
xdiam +diam§-\

simpler error term O( ) follows by computing the area of the two above discs.

covol;
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[
Letnow k > 1. We consider the sequence (@, = Card{p € A : n—1 < |p| < n}),>; and

the smooth functions f : [1, +00[ — R defined by t — tX or by ¢ +> (£ — 1)X. For every
x > 1, we have the estimate

Yooan—1 < Y plfs Y aunt. (8)

1=n=|x] PEA :|p|<x 1<n<[x]

Using the case k = 0 showing that } ;_,_, 4, = o t2+0 (

covol
general result follows from Abel’s summation formula

Z an f(n) = Z ay f(x)—/lx Z an | £/(t) dt

1<n<x 1<n<x 1<n<t

diam ; (¢+diam5 )
A A
covoly )’ the

applied to the above sequence (a,),>1 and to the two functions f, the first one for the

majoration in Formula (8), the second one for its minoration. O

For every N € N~ {0}, the (not normalised) pair correlation measure of the logarithms
of nonzero grid points in A, with trivial multiplicities and with trivial scaling function, is
the finite measure on the cylinder E defined by

21
VN = VNA = %NA = Z AIogm—Iogn'
(m, n)ely

Note that for every k € N\ {0}, we have injka = Ina and viaka = vaja- Let us consider
the function (actually independent on A) on E defined by

1 ,
. —2|Re(z)|
1 Z = e .
gLn1 o

Theorem 2.2 As N — +00, the measures vy on E, renormalised to be probability mea-
sures, weak-star converge to g, 1 Lebg. The convergence is uniform for A varying in any
given compact subset of Gridy. Furthermore, for every f € CL(E), we have

W ooy L 1y p=2IRe(2)| /
||uN||(f)_2n Lf(z)e d Lebg(z")

+0 ( LD (1 o + e ~af (Z)““)> ‘

This result implies the case « = 0 of Theorem 1.1 in the introduction, since we will

lvwll _ _ =2

prove in Formula (15) that limy_, 4 s e = 7
Covo. }‘\

24
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Remark 2.3 Theorem 2.2 is still valid if we allow # = m in the definition of the index set
Iy (this correspond to removing the condition p # g in the definition below of J;), see
also Remark (2) in [23, §3] for a general argument. We will use this comment in the proofs
of Corollary 2.4 and 2.5.

Proof of Theorem 2.2. Forall N € Nandg € A with0 < |g| <N, let

Jy={peh:0<lpl<lgh p#q) and wg=) As, ()

PElq

QR

which is a finitely supported measure on the closed unit disc D of C. Note that the
assumptions 0 < |p| and 0 < |g| are automatic when 0 ¢ A, that is, when A is not a
Z-lattice. As ¢ — +00, by Equation (7) with & = 0 (and its slightly better error term), its
total mass, which is nonzero since —q € J,, satisfies

b
Card J, = =
ard J; = [|agll s

vol =

Iq|2+o(diam;\(|q| +diam;\)) , (10)
A

covol i

for some O(-) uniform in A. Note that we need to remove 0 if 0 € A and g from the
counting of Equation (7), but this is taken care of by the above O(-). In particular, we have

diam?
lwgll = O ( i) uniformly in A if |g| < diam3 and otherwise

covol
9 diam3 |q|2
] lg|1”+ O lq] | = O :
i covoly covolz

We hence have, if |g| > diam3,

llwgll =

1 covol ( diam 3 covoly )

g~ 7 gl lq]?

for some O(-) uniform in A. We denote by w; = the renormalisation of w, to a

Hw [
probability measure on D.

Let f € CY(D). Assume that |g| > diam3. Let

Cy= U(p—i—f*

pelq

Note that the symmetric difference (D \ iq) U (% . D) is contained in the union of the
diam 3 A

diam

annulus B(0, 1+ )\B (0 1-— 7 ) and (when 0 € A) the parallelogram 9“7;\, hence

has area at most

15 diams \? diams \? diam
cov02A+n<(1+ 1amA> _(1_ 1amA> >=O< 1amA)‘
g1 g1 g1 g1
dlatmA covol 3

Also note that T’W wg(f)l =0 (%) by Equation (10). Therefore

E /D f(2) dLebc(z) — a)_q(f)’

1 covol diamj || f llo
- ‘;/C;f @atebets) = Zboy(n] +o (S,
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By the mean value inequality, for all p € J; and z € P +f7‘ , we have
@ =fC) | = dflls |2 = 2.
Hence
1 covol;
‘—/ f(z) dLebe(z) — L (1)
mJa 7 1q]
1 p
- ;‘ Z/;+ﬁx (f(z) —f (;)) dLeb(c(z)‘
pElq q
1 + 75
< LS i swp 22| Avea (” A)
d pely zeLfi‘ 1 1
- l Card() diamyz covolz 1dflso = O diamjy [ldf [ ‘
u gl lql? lq|

Therefore, if |g| > diam i then

diam 3 (Il flloo + ||df||oo)>

1
) =~ /D £(2) dLebc(@) + O ( 2

. X 1
In particular, as ¢ — +o00, we have w; — - Lebp.
Assume that N > diam3. Let us now define

= Y s = X e
(m, mely geA, 0<lq|<N

which is a finitely supported measure on D. By Equations (10) and (7) with k = 2,1,0, a
heavy computation since N > diamj gives that its total mass is equal to

lugll=" > oyl

gen, 0<|q|<N
diam+ |¢| + diam?2
T
= 2 ( - |q|2+0< A
se o< \COVOlA covol
2 1 + diam; N*
=~ _N+o[—AN%) =0 - . 12)
2 covol i covol i covol 2
It follows that if N > diam3, then
2 o 2 2
1 _ 2covoli\ o 1+ dlamA)covolix _o covoli\ 3)
Iyl m2N N5 Nt )

Let f € CY(D). By Equations (11), (13), (12) and (7) with k = 1, we have, as N > diam 3

tends to oo,
MO L[ eiamns Y el o)
lleepll lleepll

geA, 0<|g|<diamy geA, diamj <|q|<N

24
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_ gl = Mg 1\ 1
=0 —— g 11flle | + ~diami 7 ) 1 / £(2) d Lebe(2)
]l diami Iyl 7 Jo
.y leog O(diamx<||f||oo+||df||oo>>
llen lql

geA, diam;\ <|q|<N

0] COVOI%\ diam‘}\ 140 diam% 1 Leb
el R S W ) [r@ avebeeo

o diam;x 4
+ ( = (||f||oo+||f||oo))

diam 3
N

1 f £(@) dLebe(z) + O ( (I flloo + ||df||oo)) , (14)
7 Jp

Let E* = (&[0, oo[ +iR)/(27i7Z) so that E = E~ U ET. Note that log : D \. {0} — E~
and log : C \. D — ET are homeomorphisms. Let us define a measure with finite support
on E* by

+
W= 2 Dg

+
(m, m)ely

so that vy, = log, ), = vn |g-, and |[vyll = [luyll. For every f € CC1 (E7), we have
folog € CH(D~ {0}) (hencef olog may be extended to a C! function on D which vanishes
on a neighbourhood of 0). By Equations (14) and (6), we have

vy (f)  py(f olog)

(N [l

= l /fo log(z) d Lebe(z) + O(
T Jp

diam 3

(If olog lec + Id(f o log>||oo))

1 /
=— | f e?Re@) g Lebr(z)) + O (
-

diam 3
N

(Iflloo + ||e—2df<z)||oo>) .

Let sg : E — E be the horizontal change of sign map &’ + iy’ — —x’ + iy, which maps
E~ to ET. Then v}, = sg, vy and vy = vy, + vy Since E~ N E™ has zero measure for the
Haar measure Lebg and since ||v§ = % lvarll + O(diam;\Ng), the last claim of Theorem
2.2 follows. Note that, as needed just after the statement of Theorem 2.2, as N — +00,

we have

2
N%. (15)

lon Il ~ 20 pp I ~ 5
Vol[—\

The first claim of Theorem 2.2 follows by approximating continuous functions with
compact support by C! ones. The uniformity of the convergence on compact subsets of
lattices follows from the uniformity of the functions O(-) and the fact that the constants
covolz and diam 3 vary in a compact subset of |0, +-0co[ when A varies in a compact subset
of Gridy. O

The following picture illustrates the weak-star convergence statement in Theorem 2.2
when A = A = Z[i] is the ring of Gaussian integers and N = 20, using as horizontal
coordinates (x,)") € E withx’ € R and y € [, 7[. A smooth histogram scaled to a
probability density is displayed in orange, and the limiting distribution in grey.
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Arithmetic applications. (1) Let K be an imaginary quadratic number field, with dis-
criminant D, ring of integers Ok and Dedekind zeta function ¢x. We denote by f; the
semigroup of nonzero (integral) ideals of the Dedekind ring Ok (with unit k). We denote
by N(I) = Card(Ox /I) the norm of an ideal I € flj' , which is completely multiplicative.
The norm of a € O ~ {0} is

N(a) = N(a0k).

It coincides with the (relative) norm Ngq(a) of 4 (see for instance [20]), and in particular
is equal to |a|? since K is imaginary quadratic. The norm of a fractional ideal m of Oy is
#N(cm) for any ¢ € Ok \ {0} such that cm C Ok.

Let m be a nonzero fractional ideal of 0. Note that m is a Z-lattice in C with

covoly, = w and diamy, = O(v/|Dx|N(m) ), (16)

for a O(:) uniform in K, since Ox = 7Z + @Z and diamg, = |1 + @| ifDg =0
mod 4, and since Ox = 7Z + %DT(Z and diamg, = |%DT<| if Dk = 1 mod 4. In
particular, the Gauss ball counting argument of Equation (7) with k = 0 (with its slightly
simpler error term) and x = VN’ gives, as N > N(m) tends to 400,

. . 2
N 40 ( diamp VN’ + dlamfn ))

(Card{m e m:0 < N(m) < N'})* = (

covoly, covoly,
472N"? VI1DkIN

_ _An (140 [Dx | N(m) '
[Di IN(m) VN’

Hence Theorem 2.2 implies the existence of a pair correlation function (independent of
m) for the family of the complex logarithms of nonzero elements of m

L = (AR}, ={logn: nem, 0 <N(n) <N}, oy = 1)1\]/eN

without weights or scaling, as stated in the following result, using Remark 2.3.

Corollary 2.4 Foreveryf € CL(E), as N' — +oc, we have

|Dg IN(m)? Z

12N f(ogm — log n)

mnem : 0<N(m),N(n)<N’
—1 ! Di|N
/f(zl) e—2 |Re(z')| dLebE(z/) +0 (M
2 JE /N’

Page 11 of 41
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(2) For every positive integer d, let 5 ; : N\ {0} — N be the arithmetic function where
ryq4(n) = Card{(x, y) € 7% %+ dy2 =n}
is the number of integral solutions of the Diophantine equation x> + d y*> = #, for every
n € N. In particular, if d = 1, then ry; = ry is the well known function counting the
sum of two squares representatives of a given positive integer (see for instance [7] or [12,
Sect. 16.9]). The following result proves that the map

gt ~ el
2

on R is the pair correlation function for the family

fl\?’d =(Av=1{lnn: 0<n <N, ryq(n) #0}, on =ry40 exp)NEN
of the logarithms of the nonzero natural integers, without scaling but with weights given
by ry 4 (removing the zero weights). Other weights have been considered in [22] (including
the one given by the Euler function ¢). Note that the following corollary holds also when
1y, 4(n) is replaced by the number of representations of # by the norm form of any imaginary
quadratic number field, evaluated on any order of their ring of integers (as for instance

the norm form (x, y) — x2 — xy + y? of the Eisenstein integers).

Corollary 2.5 As N — 400, we have

1 *
2 Z r2,a(m) r3,4(n) Alnm-nn — gr Lebgr .
(ZO<WISN2 rz’d(m)) mneN : 0<mn<N?

Proof Let us consider the Z-lattice A = Z + iv/d Z in C. Using Remark 2.3, we remove
"2,d
d |
the assumptions 7 # n in the summations defining %]”\?A’l as well as %NZN

By the linearity of (2 Re), and 2 Re, and by Equation (5), for every N € N \ {0}, we have

L1
(2Re). ('@NA ) = Z A2Re(10gp)72 Re(log q)
pqeN : 0<|pllgI=N

= > > Aln(|p2)-In(lqP?)

0<mn<N? pqeA :|p|*=mlq|>=n

The pushforward map (2 Re),. preserves the total mass and is continuous for the weak-star
topology, since the map 2Re : E — R is proper. Hence by the weak-star convergence
statement in Theorem 2.2 and by (4), we have

2271
%NZN P iA;l * ( ) 1 ‘ZRQ(Z/)l d b ( /)
———— =Q2Re)y | ——— ] — 2Re*(—e Lebg(z )
o72d | ZLns1 2
1% 1951
1
= —e 1!l d Lebg(t).
2
Corollary 2.5 follows. ]

As COVOIZJriﬁ 7 = Vd, by Lemma 2.1 with k = 0, we have
_ t/2 , _ T
> raaln) = Card (BO,/) N (Z + iVd 1)) = e

Inn<t

Thus, the conclusion of Corollary 2.5 also follows from [23, Theo. 1.1], whose proof only

(14 O(e!’?)).

uses the exponential growth property of the weighted family fl\rf‘d.
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3 Pair correlation of grid points with scaling without weight

In this section, we study the pair correlations of complex logarithms of grid points at
various scaling. We fix a positive scaling function ¥ : N \ {0} — ]0, +-o0o[ such that
lig ¥ = +00. We consider a normalisation function ¥’ : N\ {0} — ]0, +00[ depending
on ¥, which will be made precise later on, but which in most cases will not yield the
renormalisation to a probability measure.

We will work on the following family (Ex)nenw (o) of varying cylinders. For every
N € N ~ {0}, we consider Ey = C/(2miy(N)Z), endowed with its quotient Rie-
mann surface structure and its quotient additive abelian locally compact group struc-
ture. Since a real number 0 is well defined modulo 27 Z if and only if ¥ (N)6 is well
defined modulo 271 (N)Z, the scaled logarithm map ¥(N)log : C* — Ey defined by
pe? = Y (N)Inp + iy (N)6 is a biholomorphic group 1somorphlsm, whose inverse is

the rescaled exponential map z’ = x" + iy’ — exp( 1//(N)) = eW\’) e a7 ). The real part map
: C — R induces a map again denoted by Re : Exy — R, which is a trivial smooth
bundle map with fibers iR /(27 iy (N)Z), such that for every z € E,

Re(y(N)z) = ¢ (N) Re(z) . 17)

We consider also Ex as a pointed metric space, with distance the quotient of the
Euclidean distance on C and base point its (additive) identity element 0. Note that Ex
is a proper metric space. As l+im Y = 400, for every R > 0, there exists Np € N\ {0} such

o0

that for every N > Np, the closed ball B(0, R) in C injects isometrically by the canonical
projection py : C — Ey. Hence the sequence (Ex)nen- o} of proper pointed metric
spaces converges to the proper metric space C pointed at 0 for the pointed Hausdorff-
Gromov convergence (see [11] for background).

Any function f € Cg((C) defines for all N large enough a function fy € CB(EN) as
follows. Let Ry > 0 be such that the support of f is contained in B(0, Ry). Then for every
N = Ng;, the function fy € C2(Ey) is the function which vanishes outside py (B(0, Ry))
and coincides with f o (pN|B(O,Rf))_1 on pn(B(0, Rr)). Note that fy is Cliffis CL

We say that a sequence () neN~ {0} Of measures 1y on Ex converges to a measure [loo
on C for the pointed Hausdorff-Gromov weak-star convergence if for every f € C2(C), the
sequence (un (fN))NzNRf converges in C to j1oo(foo) (see [11, Chap. 3%] for background).

We again use the symbol X in order to denote this convergence.

Let A be a Z-grid in C. For every N € N \ {0}, the (not normalised, empirical) pair
correlation measure of the complex logarithms of points in A at time N with trivial weights
and with scaling ¥ (N) is the measure with finite support in Ex defined by

LnY
‘%NA - Z Ay (N) log m—y (N) log n»
(m, n)ely

%3’/\,!0

. . 1
and the normalised one is 7 %N

Theorem 3.1 LetA = a+A bea Z-grid in C. Assume that the scalingfunction W satisfies

Nlim % = Ay € [0,4+00]. AsN — +o0, the measures% wY
—+00

V¥’ (N) as given below, converge for the pointed Hausdorfj-Gromov weak-star convergence to

on En, normalised by

a measure gz, v Lebc on C, absolutely continuous with respect to the Lebesgue measure
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on C, with Radon-Nikodym derivative the function

0 if Ay =4occandy’' =1y,
T . _ / _ N*
E8Lny 2> 2covolf~\ if )‘W =0andy (N) = Ww(N)2’

o T peiupie i 1P I hy # 0 o0 and /) = YINP*.

(18)
The convergence
! IV L gy Lebe, (19)
YNy TN >

is uniform on every compact subset of 7-grids A in the space Gridy.
Furthermore, if Ly # 0,400, forall A > 1 and f € CCI(C) with support contained in
B(0, A), we have

1 L f
RN = z) g7,y (2) d Lebc(z
o N (fv) zeCf( ) 82,v(2) c(2)
Cof A M [y = 5P|, At diamg ldf
A% Sys% covol% )L?p covol%\ Sysz ¥(N)

A%(diamjy + %) £ lloo
)\?// covol% Y(N)

Note that the pair correlation function g¢, 4 depends on A but is independent of a.
The above result shows in particular that renormalizing to probability measures (taking

Y'(N) ~ C’Z i];]l: by Equation (7) with k = 0) is inappropriate, as the limiting measure
would always be 0. We will see during the proof that the above result implies the cases
a > 0 of Theorem 1.1 in the introduction.
The fact that g, 4 vanishes when 1y, = 400 means that the sequence of measures
1 fA,W

(W %’N )NeN\{O} on (Ex)nenwjo} has a total loss of mass at infinity. For error

terms when Ay = 400 and Ay = 0, see respectively Equation (37) and Equation (40).

Proof Let A =a+ Abea Z-grid in C. We may assume that a € .7 ;. Let N € N~ {0}.
Let

E = (&[0, 0o[ +iR)/(27i Y (N) Z)

(which contains the base point 0) so that Ey = Ey U E;. Note that the sequence
(Eﬁ)NeN\{O} converges for the pointed Hausdorff-Gromov convergence to the closed
halfplane C* = +[0, co[ +iR and that C~ N C* has measure 0 for any measure absolutely
continuous with respect to the Lebesgue measure on C. Note that if f € C!(C*), then for
N large enough, we have fiyy € C! (Eﬁ), with the above notation.

Let sgy : EN — En be the change of sign map z' +— —z’, which maps E}; to E;r[
and converges to the change of sign map sg : z — —z on C. The change of variables
(m, n) — (1, m) in the index set Iy proves that we have %ﬁ"’w |Ez§: (sgar)+ (%ﬁ"’w |E$).
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We will thus only study the convergence of the measures m %’i’\’w on EIJ\?, and deduce

the global result by the symmetry of g, y under sg.
Foreveryp € A~ {0}, let

Jon={g€A:0<]ql <|p+4g| <N}, (20)
and let
WpN = Z AMN)%? and u}; = Z Wp, N - (21)
q€)p,N peA~{0})

Note that w), n is a measure on C with finite support, which vanishes if |[p| > 2N by the
triangle inequality, hence y}; is also a measure on C with finite support.

Lemma 3.2 As N > diam i tends to +00, we have

TN? n (lp| + diamz; ) N
2 covoly '

w, Nl = Card J, n =
lop Nl P covoly

Proof We may assume that |p| < 2N. Note that J, y is the finite set of nonzero grid
points in the intersection

Con=1z€C: |zl <|p+2z| <N} (22)

of the disc B(—p, N) of radius N centered at —p with the closed halfplane containing 0
with boundary the perpendicular bisector of 0 and —p (see the picture below).

Since Gp, N is contained in a halfdisc of radius N and contains the complement in
this halfdisc of its intersection with a rectangle of length 2N and height %, we have
%Nz —|pIN < Area(Ep,N) < %Nz, so that

Area(C, y) = %NZ +0(p| N).
Let
Gn=J @+75). (23)

q€lp, N

By a Gauss counting argument similar to the one in the proof of Equation (7) with k = 0,
we have

Area(Cy, n) . Area(a‘p,N) n Area(Cp N) — Area(ap,N)
covol 3 o covol; covol 3

lwp, NIl = Card Jp,n =

Page 15 of 41
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N2 o ((|p| —I—diam;\)N—I-diam%) ‘

2 covol i covol i

The lemma follows. O

Lemma 3.3 Forevery A > 0 and for every f € CL(C") with support contained in B(0, A),
as N — 400 and uniformly on A varying in a compact subset of Gridy, we have

A* |df lloo N‘*)

LnY _,t —
[T ) ) — 150) | 0<CovolK2 o

Proof Let A and f be as in the statement of this lemma. Note that since ¥(N) > 0 and
by Equation (5), for every (m, n) € Iy, we have (m, n) € I, thatis |n| < |m], if and only if
Y(N)logm — Y(N)logn € E]‘\?. Hence by the change of variable

(pg)—> m=p+qn=gq)

(which is a bijection from A x AtoA x A), we have

(%iA,w)lEﬁ(fN)z > A (N)logm — y(N)log )

+
(m, n)ely

= Y ANEWO)log(p+q)—v(N)logg) -

pe]\\{o}, qeA
0<lql<lp+q|=N

By the assumption on the support of f, if an index (p, g) contributes to the above sum,

then Re(y(N) log(p 4+ q) — ¥(N)logg) < A. Hence by Equations (17) and (5), we have

In |1 + g | < ﬁ, which tends to 0 as N — +00, since llm Y = +o00. In particular, using
o0

the assumption on g, we have

bl _ (A _of AN
|q|_o(w(N)) and Ip| O(w(m)’ (24

so that |§ | < 1if N is large enough. This allows to use the principal branch, again denoted
by log, of the complex logarithm in the open ball of center 1 and radius 1. By the analytic

expansion of this branch, we have

pos (14 5) = [ =0 (5F) = (5ixe )

The mean value theorem hence implies that

p p D2 A2
g (142) 2] =0 (I2) =0 (5 25)

By Lemma 3.2 and Equation (7) with k = 0, we have

- AN
Card{(p,q)eAxA:0<|q|§|p+q|§N,lp|=O( >}

V¥ (N)
= Z Card J,, n

peZ\\{O} : \plzo(%)
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=0 (Card A : =oAL N
= ( ar {pe ~ {0} ¢ |pl = (W(N)>} covolx)

2
_of AN ) (26)
Y (N)? covol%

Similarly, if an index ( p, ) contributes to the sum

p
o= X r(vwk),
pe]\\{o}, qeN
0<lgl<|p+qI<N
then Equation (24) holds. By summing Equation (25) on the set of elements (p, ) € AxA
suchthat0 < |g] < |[p+¢| <Nand|p| =0 (A—II\V[)), and by using Equation (26), Lemma

¥
3.3 follows. O

Let us now study the convergence properties (after renormalization) of the measures
wp, N and of their sums ,u]'\"[ as N — 4o00. We assume in what follows that |p| < N (which
is possible if N is large enough since we will have |p| = O (%) ).Lett: C* — C* bethe
involutive diffeomorphism z %, which maps C* \ {0} to C* \. {0}, whose holomorphic
derivative at z is — Z%, hence whose Jacobian at z is

Jie) = — . (27)

|z|

By the equation on the left in Formula (21), we have

LopN = Y Aa . (28)
q e]p,N

When g varies in J,, y, as seen in the proof of Lemma 3.2, the above Dirac masses are

exactly at the nonzero points of the Z-grid Ay, x = m A that belong to the set
¥ g
N = ——=— CpN.
PR yw)p
Note that
T3 covol
covol; = Area< A > = V2 A 5 - (29)
PN V(N)p V(N)* |pl
By Equation (22), the set ?p,N is the intersection of the disc B(—W, llf(%)lpl) with the
closed halfplane containing 0 with boundary the perpendicular bisector of 0 and —W.
Let us define
N
Zp,Nz{ze(C:RezZO, lz| < }
v (N)Ipl
Note that
N
UZpN) = {ze(C: Rez>0, |z]> i )Ipl}‘ (30)

N
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\\
— e\ N\
-\
: VX‘

The symmetric difference of )N’p, ~ and Zy, N, that we denote by ?Zp, N is contained in the
union of the rectangle [ — m, O] X [ — m, llf(%)lpl] and the half-annulus

N 1 N }

{ze(C: Rez >0, TP v S lel = v (N)lpl

(well defined since |p| < N). In particular, its area satisfies Leb@(%p,N) =0 (WNLPIPJ
Let

1

. Cun, 31
yN)p PN (3D

Ypn =

so that, as in the proof of Lemma 3.2, the symmetric difference of Y}, 5 and ?p, ~ has area

0] (%) as N — +oo. The symmetric difference of Y,y and Z, n, that we denote

by YZ,,n, hence has area Lebc (YZ,n) = O <N(diam7‘+‘p|)) as N — +o0. In particular, for

Y(N)?|p|?
every ¢ € CL(C* . {0}), since ZpN C B(0, T |P|) and Y, n C B(0, Ayi[—lm) we have

‘ / #(2) dLebe(z) — | () dLebe(z) ‘
ZpN YpN
N(diamj + |p|) ||¢>IB(O N-tdiam ; )||
=0 L ) (32)

¥ (N)?|p|?
By Equations (31), (23), (28) and (29), by the mean value theorem and by Lemma 3.2, as
N — 400, we have

covol i

[ ], #0410 = G

=[ 3 fur (‘“ (w( ),,)> dLebe(s)|

q€lpN © VN

Lxwp, N (@) ‘

covol i

T T

< (Card J,,n) 1BO, ) oo ¥ (N) |p
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NZ

o0

diam 3 Netdiam +
AT 1BO, )
Y(N)|pl

¥ (N)? |pl?

Hence by Equation (32), we have

¥(N)? |pl?
covol 5

Lo N () = /Z $(2) d Lebc(2)
‘»,N

N

N+diam 7
A
1B(O, Y (N)Ip| )

dlamA d¢\B(O, N+d1am H N2 (diam;\ + ‘P‘) ¢

A)
o i
+ covol; ¥ (N)|p| covol

33)

Letf € Ccl((C+ . {0}) with support contained in B(0, A). Note that f o ¢ € Cg (C*T ~{o}),
that Hf ot N-tdiam 3 Hfl{\2|> Ypl }H and that

HlzI = ot TN)Ip | N+d1am~

< 4? ” df I{]2]2 2 o0lel }”

H d(f o L)‘ N+diam ‘oo

A
{2l = =l

since the support of f is contained in B(0, A). The change of variable by ¢ in the integral of
Equation (33) applied with ¢ = f o ¢, together with Equations (30) and (27), hence give

_ VNPl
onn (1) = F LGP [T 4 1ebetd

A? diam ”dfm 2> LD }H N%  (diamj + |p|) HfH\ZP Vlpl }H

N+d1am N+d|am

(0]
+ covol; ¥ (N)|p| + covol 3

For every z € C* \ {0}, let

1 1
On(z) = 12t Z pl? l{lzlzwl\\l])\pl}(z) =2 Z pl*. (34)
peA~{0} PEAN(0}:IpI= 515

Note that if z and N are fixed, then for |p| large enough, we have |z| < %, thus the
first sum above has only finitely many nonzero terms. Let 65(0) = 0.

Note that 6y (z) vanishes if and only if |z| < w(NJ)Vﬂ, by the definition of the systole of
A.

As seen in the proof of Lemma 3.3, the only elements p € A that give a nonzero
contribution to the sum Zpe;\\{o} wp, N(f) satisfy p # Oand |p| = <¢(N)> By Equation
(7) with k = 0, as N — 400, we have

Card{pe i (0} :pl=0( V120 4N
ard{p e A\ {0} : |p| = (W)}_ (W)

if .y < +oo. Otherwise, if Ay = 400, we have O (1//(N ) < Sysj if N is large enough,
hence if N is large enough, we have

Card{peZ\\{O}:lp|:O<%)}:0. (35)

24
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Thus, by the right equality in Formula (21), we have

w4 (f)
N 2
= Y wopn(f)= V(N) / f(2) 0n(2) d Lebc(2)
< covoly Jyec+
peA~(0}
4 4 2 73
A dlamA Hdl{\Zl_‘ﬁ](f;,:Ls | ooN (dlamA + w(N)) H (el ij,:f‘\} A“N
+ 0o 2 + 2
covol% Sysz ¥/(N )3 covolz (N )2
(36)
Case 1. Let us first assume that Ay = 400, that is, Nllm W(N) =0.

For every A > 1, if N is large enough (uniformly on A varying in a compact subspace
of Gridy, since then A varies in a compact subspace of the space of Z-lattices, on which
the systole function A Sys; has a positive lower bound), then for every z € B(0, A),
we have 0y(z) = 0 by Equation (34), and ,uj\'[(f) = 0 by Formulas (21) and (35), since the
sum defining uj\'{ (f) is an empty sum. Thus, whatever the ( positive) normalizing function
¥’ is, we have a total loss of mass at infinity :

1
+ _*\ 0

Ny MY

Assume that the renormalizing function ¥ is such that W tends to 0 as N tends
to oo, for instance ' = i, as assumed in the first case of Equation (18). Note that if
¥ (N) = N* with « > 1, then we indeed have Ay, = +o00 and if ¥/(N) = N*2¢ a5 in the
statement of Theorem 1.1, we do have limy_, W;/’(N) =0

With Lemma 3.3, the above centered formula proves Formula (19) when Ay = 400,
with a convergence which is uniform on every compact subset of A in Grids, as well as
the case @ > 1in Theorem 1.1. Furthermore, it follows from the error term in Lemma 3.3
that for every f € C}(C) with support contained in B(0, A), as N — +oc and uniformly

on A varying in a compact subset of Gridy, we have

L 220y = A* |ldf |0 N*
i =0 ( covol 2 ¥ (N)*y/(N) ) ' 7

Case 2. Let us now assume that 1y, = 0, thatis, lim % =0.
N—+o0

Forallz € C* \ {0}, by Equations (34) and (7) for k = 2, we have

4 4
Y(N) O (2) = <1/f(N)> Z 2

N4 N |z| _—
pek:Ip|< 5
, 2
- (1+ diamz) () diam y(N)? (38)
2 covol ; covol; N |z] covol; N2 [z|?

y) SySA , then )4 On(2) is uniformly bounded. Since Oy (z) van-

N
N4
C* ~ {0}, and pomtw1se converges to the constant function 5-*——. Hence by Equation

A

In particular, if |z| >

¥ (N) Sys

ishes if |z| < A thls proves that the function ¥

On is uniformly bounded on



J. Parkkonen, F. Paulin Res. Number Theory (2024)10:24 Page 21 of 41

(36) and by the Lebesgue dominated convergence theorem, we have, with a convergence
which is uniform on every compact subset of A in Grids,
I//(1\[)2 4+ *

T
ot & —Z— Leber (39)
N 2covoli\

More precisely, for every A > 1, for every f € C}(C* . {0}) with support in B(0, A), and
for every A in a compact subset of Gridy, we have the following control. At each point
z € C* where 6y does not vanish, the second error term in Equation (38) is at most the
first one, as it satisfies

diam? v (N)? diam? ¥ (N)> (1 + diamy) ¥ (N)
< <
covol; N2 |z|2 = covol; Sysz N?|z| =  covol; N [z]

for N large enough since S+ ‘p( ) tends to 0. By Equatlons (36) and (38), and since ¥ (N) < N
/2
for N large enough, using the equality / —pdpdf = A in order to integrate
—/2 Y
the first error term in Equation (38), we have

¥(N)?

+
0 ) = O [ e vt dnebed
Atdiamy [|df oo = A*(diamz + A) || flloo
covol}\ Sysz w(N) covol}\ ¥ (N)
A*diam; ||
=" [ r@diec@+0 ( a1 e
2covolz\ 2eC+ covolz\ Sysz ¥(N)
A%(diamz 4+ A) [ flloc | A1+ diam3z) ¥ (N)| f oo
covol% W(N) covol%\ N '
Ify/'(N) = 7 (N)2 as assumed in the second case of Equation (18), it follows from Formula
(39) and Lemma 3.3 by symmetry that
1 Lay * b4

Y~ ——— Lebc.
Y'(N) TN 2 covol% ©

This proves Formula (19) when Ay = 0, with a convergence which is uniform on every
compact subset of A in Gridy, as well as the case 0 < o < 1in Theorem 1.1. Furthermore,
for every f € C1(C) with support contained in B(0, A), as N — +oc and uniformly on A
varying in a compact subset of Gridy, using the error term in Lemma 3.3 with the fact that

Sysj < diam i we have

A* diam; ||d
1/“21\[) %A"‘ng"/’(fN) - 2¢ ol2 /f dLebc +0 ( covol% S;f\s! 1f//”(j$)
A*(diamz +4) [ flloo A1 +diamz) Yy(N) [/ lloo ) 40)
COVOI% Y(N) covol% N
Case 3. Let us finally assume that lim % = Ay belongs to ]0, +-00] .

N—>+o0

We consider the function 6, : C — [0, +00[ defined by

1 2
BT Z Ipl%

eA:|p|< L
p Ip\_kw

24
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where by convention 6,(0) = 0, and replacing p € A byp € A ~ {0} makes no difference.
Note that 6, vanishes on the open disc E(O, Ay Sys3), is uniformly bounded and tends
m as |z| — +oo by Equation (7) with kK = 2. Furthermore, 0, is piecewise
continuous, with discontinuities along each circle S(0, |p|) centered at 0 passing through
a nonzero lattice point p € A. See the picture in the introduction representing the graph
of 0o when A = A= Zl[i] (so that covol; = 1)and Ay = 1.
By Equation (34), the sequence of uniformly bounded maps (6nx)nen converges almost
everywhere to 0 (more precisely, it converges at least outside pei(0) S(0, |p])). Hence
by Equation (36) and by the Lebesgue dominated convergence theorem, we have

1 *
+
— — 0 Lebc+ . 41
Y(N)? N covol; * cr (1)
Let A > 1. Note that |z] < A implies that )% < % < %. If N is large enough so that

—‘/’I(\IIV) > )‘7"’, then |z| < A implies that

is large enough, we have

]2\[(‘]@) < % Hence for every z € CT N B(0, A), if N

| Ooo(z) — On(2) | <

Note that if N is large enough, the left term vanishes if |z| < % Sysz.
Letf € C}(C™) with support in B(0, A). By integration on annuli and Equation (7) with
k = 3, we have

1f oo ) Y )lp|
O —ON)dLebe | =0 | ———— 21 | A -
[ﬁf(oo N) e«:’ D 7 | hlpl =
PEAilplin
Cof AW )
=\ 5yt covel; 1T N ’ '
y Sysj; covolz

Hence by Equation (36), we have

1
Wﬂj\rg(f) =

1
covol

N
a3 ||f||oo\xw—“’ﬁz)()

9 4 2
Ay Sys 2 covol?

/ f(z) 6x0(z) d Lebc(z) + O (
zeCt

Lo Atdiamg I4f e N* A%(diamj + 735) 1 flloo N°
Covol}\ Sys; W(N) covol% Y(N)*

1

A5 1f oo | 2y — 452 |
= / f(z) 6x0(z) d Lebc(z) + O
zeCt

k?// Sysj‘-\ covol%\

covol 3

(42)

Atdiamy [df o AP(diamg + 50 1l
)»3/ covol%\ Sysz ¥ (N) )»3,/, COVOI% Y (N)

If /(N) = ¥ (N)? as assumed in the third case of Equation (18), it follows from Formula
(41) and Lemma 3.3 by symmetry that

1 Y 184 * 1

N

Y/(N) TN covolz

0 Lebc.
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This proves Formula (19) when Ay # 0, 0o, with a convergence which is uniform on every
compact subset of A in Gridy, as well as the case « = 1in Theorem 1.1 (since if *(N) = N,
then Ay = land ¥/'(N) = ¥ (N)? = N? = N*72¢), Furthermore, for every f € CC1 (ChH
with support contained in B(0, A), as N — +o00 and uniformly on A varying in a compact
subset of Gridy, using Equation (42) and the error term in Lemma 3.3 with the fact that
Sys; < diamjy, we have

1 L 1 At ”df”oo N*
N 7 - _ - T +Oof| L2
a0 e U = g T O e s
0
:/ f(2) —OO(Z) d Lebc(z)
2eC+ covol;
Cof AWMl |ry — 5P| A diamg 4f
kgw Sys‘}\ covol%\ )»?// covol%\ Sysz ¥(N)
A(diam; + 2 [ f o
)»3]!/ covol% ¥ (N)
By symmetry, this concludes the proof of Theorem 3.1. ]

Let us give a numerical illustration of Theorem 3.1 when A = A= Zli]land ¥ (N) = N.
The following figure shows the points 60 log m — 601og n contained in the ball of radius
5 centered at O for (m, n) € Igo.

The second figure shows an approximation (given by Mathematica and its smoothing
process) of the pair correlation function g,y computed using the empirical measure
#%&%"’w in the ball of center 0 and radius 5. We refer to the first picture in the intro-
duction for the actual graph of the pair correlation function g,y .

24
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The first figure below gives the graph of the pair correlation function g¢,, 4 of the Z-
lattice A = A = Z[#] of the Eisenstein integers at the linear scaling ¥ : N — N in
the ball of center 0 and radius 5. The blue lines on the bounding box represent the limit

2c0’\’/ = = 27” at +00 of g, v, given by Equation (7) with k = 2. The second figure shows
A

the approximation of the pair correlation function computed with the empirical measure
1 gpZay¥
5027760
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4 Mertens and Mirsky formulae for algebraic number fields
In this short section, we recall the notation and statements of [24] that we will use in Sects.
5and 6.

Let K be an imaginary quadratic number field (with Dg, Ok, ¢k, fl?, N the nota-
tion introduced before Corollary 2.4). We assume in Sects. 4, 5 and 6 that Ok is
principal (or equivalently factorial (UFD)). This implies, see for instance [20], that
Dy € {—4,—8,-3,—-7,—11,—-19, —43,—67,—163}. For all [,] € %}", we write J | I if
I C J, we denote by (I, J]) = I 4] the greatest common ideal divisor of I and J, and by IJ
the product ideal of I and /.

We denote by ¢k : flj — N the Euler function of K, defined (see for instance [20, page
13]) equivalently by

Vae fK*: @i (a) = Card ((ﬁK/a)X) — N(a)l_[ (1 _ ﬁp))}
pla

where, here and thereafter, p ranges over the prime ideals of Ox. For every a € Ok ~ {0},
we define px (a) = px(a0).

We first give a version in angular sectors of the Mertens formula on the average of the
Euler function that will be needed in the proof of Theorem 5.1. For allz € C*, 0 € ]0, 2]
and R > 0, we consider the truncated angular sector

C(Z,G,R)z{peitz;te]—g,g],0<p§|§—|}. (43)

Note that for every z’ € C*, we have
ZC(z6,R) = C(zZ,6,R|Z). (44)

It is important that the function O(:) in the following result is uniform in m, z and 6. For
everym € Jf, let

1
cm:N(m)H<1+—).
pim N(p)

Theorem 4.1 (A Sectorial Mertens formula) For allm € IE,2 € C* and b €10,2r], as
x — 400, we have

6 4 3
Z ¢x (@) = ——————— "+ 0O(x°).
aemnCloo) 2Dk | ¢k (2) em
Proof See [24, Thm. 1.1]. O

We now give a uniform asymptotic formula for the sum in angular sectors in C of the
products of two shifted Euler functions with congruences, which is used in the proof of
Theorems 5.1 and 6.1. When K = Q (the sectorial restriction is then meaningless), this
formula is due to Mirsky [17, Thm. 9, Eq. (30)] without congruences, and to Fouvry [22,
Appendix] with congruences.

Forallm € 7/, z € C*,0 €10,27], k € Ok, and x > 1, let

S,z 0,k(%) = > k(@) gx (@ + k) . (45)
aemNC(z,0,x):a®—k
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Let

! N((p, m)) K (p) £ (p) N((p, m))
mk =Ny L1 (“W) 1;[(1_ N(p)? ) (40

p
(p,m) | kOK
where
1 — Nemy—1 - if (p, m) | ko,
Km’k(p) _ ( N(p)2 ) (p ) | K and
1 otherwise
1— < if p|kOg
ki (p) = N®)
1 otherwise.

For instance, if m = Ok then by [24, Eq. (15)], we have
2 1
o= | (1 - N(p)?) [ (1 T NENE? - 2)) ‘ )
p plkOk

Since it will be useful in Sect. 6, by [24, Lem. 4.2], we have

’ .
c.. = inf ¢ >0. 48
m keox m,k (48)

Theorem 4.2 (A Sectorial Mirsky Formula) There exists a constant Cx > 0 such that for
allm e fg, ze€C*0¢€]0,2n), k € Ox andx > 1, we have

_ 0 Cm,k x6 ‘
3VIDk|
< Cx ((1 + VN ) &% + NUK) 2% + Nk In((k)) %2 ln(2x)) ,

Proof See [24, Thm. 4.1 and Lem. 4.2]. O

‘ Sm, 2 6,k(*®)

5 Pair correlation of integral lattice points with Euler weight and no scaling

In this section, we fix an imaginary quadratic number field K whose ring of integers O
is principal. We fix a nonzero ideal A € fﬂ; Note that A = A is a Z-lattice (hence a
Z-grid) in C, with covoly = N(A) @ as seen in Equation (16). As in Sect. 2, we work
on the constant cylinder E = C/(27iZ) in this section.

Recall that .ZX)K is the family defined in Equation (2). For every N € N \ {0}, the (not
normalised, empirical) pair correlation measure of the logarithms of nonzero elements in
A, with trivial scaling function ¥ = 1 and multiplicities given by the Euler function, is the
measure on E with finite support defined, with Iy = Iy A by

~ ZiK1

VN = ‘%N = Z o (m) g (n) Alog m—logn +
(m, n)eln
Theorem 5.1 As N — +o0, the measures V on E, renormalised to be probability mea-
sures, weak-star converge to the measure absolutely continuous with respect to the Lebesgue
measure on E, with Radon-Nikodym derivative the function g e | : Z %e"* IRe 2’
1eE
which is independent of A and K:

T)JN *

—_— g YK LebE.
vnl Lat



J. Parkkonen, F. Paulin Res. Number Theory (2024)10:24 Page 27 of 41 24

1
Furthermore, for all f € CCl (E) and o €10, %[, with cp = N(A) H(l + ——), we have

on No)
N 1 aRes| s , eallflloe lledf ()
ol ) —'/Z/EE —e f(Z)dLebE(Z)+O( Nt e ,

This result gives the first assertion of Theorem 1.2 in the introduction. As in Remark
2.3, Theorem 5.1 remains valid if we allow # = m in the definition of the index set I;, and
we will use this remark in the proof of Corollary 7.2.

Proof In this proof, all functions O(-) are absolute, since there are finitely many fields K
satisfying the assumptions of this section. The first assertion of Theorem 5.1 follows from
the second one, by the density of C Cl (E) in CS (E) for the uniform convergence.

ForallN € Nandg € A with 0 < |g| < N, let J; be given by the equation on the left in
Formula (9). We now define

wg = Z §01<(P) Ag)
PElq

which is a finitely supported measure on the closed unit disc D = B(0, 1) of C, and is
nonzero since —q € J;.

Lemma 5.2 As |q| — 400, we have || &y = lq1* + O(|q|3).

T
V1D ¢k (2) ca

Proof This follows from Theorem 4.1 applied withm = A,z = 1,0 = 27 and x = |q],
since ¢x (g) = O(N(g)) and

11l = > oK (p) = > exp) | —ex@).

PEA : 0<|p|=lql, p#q €ANC(1,2m,|q])

Lemma 5.3 Forallf € C'(D) and a € 10, % [, as|q| — +oo, we have

calfllo | Ndflloo
12« + o :
g1 lq1

wq

(f)=/D glzlzf(z) dLebc(z) + o(

[| gl
Proof Note that cp > 1 and let us define
cp =2IDkltk(2) ca = O(ca).

By Lemma 5.2, as |g| — +00, we have

1 ¢! C2
= —A4 +0 —A5 ) (49)
gl 27 |q] lq|

Let Q = ||q|*] > 1, which tends to +o00 as |g| — +oo. For all elements m and # in
{O; )Q - ].}, let

n n+1

_ %t . n m m+1
An,m_{pe t.pe]Q,—Q ],te]Q,—Q ]},

so that D \ {0} is the disjoint union of the sets A,,,,, for m, n € {0,..., Q — 1}.
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With the notation of Equation (43), we have

m+1/2 2 1 m+1/2 2
= (GG ) e (G G). &

Note that since n + 1 < Q, as Q tends to +00, we have

n g m
—e

Q
Q

n+1 gpmel n41 9m n+1 gpm
diam( Lemn 0 _LeZUTQ‘_'_‘LeZm

m)f‘ 3 2 Q —

of3)

Hence for every z € A,,,;, we have by the mean value theorem

aer() o)

Since

o Ml ntl 4
Q Q 2 (n+1)* — n* 1
|z|*> d Lebc(z) = f / p2dpdo = ——— =0 (—),
/ . ey Ja Q4 Q
we have therefore

1 5 . B oint |f l| o i 2
/n,ﬁ'Z' £(2) d Lebg(z) = (f(Q >+o< p )) /An,mn 122 d Lebc(2)

. 1 (;’l‘i'l)zl_n4 n oigm ”df”oo
_@< 2Q f(6 Q>+O( Q ))

QlZ

(52)
By Equations (50) and (44), we have
2ip 12 21 (n+1)|q| 2in ™12 27 nlq|
qAn, =C<qe e, — ———— |~ Clge
w Q Q QT Q
By Equations (51) and (49), applying twice Theorem 4.1 with m = A, § = %’ and
x = |q| nEl g 8 o and using the fact that Igl tends to +00 as |g| — +oo since @ < 1, we

have, as |q| — 400,

2 f( ) a0 <7

PEGALmNIg
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> oK (p)

(G ) ol mr X
<f<gezin’g> (ndfnoo)) (MW (%))
(e o)

(”+1)4_V1 n 2171’") (”df”oo”) (”f”ooCA”3>)
Q2< @ ( 1) PO\ e )

(53)

Note that gD = B(0, |g]). By cutting the sum defining @, and the integral over ID into Q?
subparts, by using Equations (52) and (53), and since n < Q < |¢q|%, as |g| — +o00, we
have

2 2
— d Leb
” q”(f) | 2Pt diebeta) |

Q-1

[ Y| X SR(E)- [ s e

nm=0 \p € qAnm Vg || wal

—O<W%>+O(”|JZI:|I;’°;A>.

This proves Lemma 5.3. O

For every N € N \ {0}, let us define
A= Y. oxim e An = oK (q) By,
(m, n)ely qeA—{0}: |g|=N
which is a finitely supported measure on D. By Theorems 4.1 and 4.2 both with m = A,

0 = 2w, x = N and the second one with k = 0, since cx > 1 and cp,0 < 1 by Equation
(46), and since there are finitely many such fields K|, its total mass is

Egl= " Y ex@lagdl= ) ex0m) exn)
geAN{0}: |g|=N (mn)ely
2
1
=51 2 x| - X e —( )2N8+0(N7>

PpEAN{0} peAN{0}
lpI=N |pI=N

For every f € C1(D), by Lemmas 5.3 and 5.2, again by Theorem 4.1 withm = A, § = 27
and x = N, we have

O _ L g ) 2

1 1 yen 5 en g1

— / 2 12 £(2) d Lebe(2)
D T

1 - callfllso | lldfl
+— Y k() ||cuq||0<| |1{2§°+ |f|;’°
(2 ™ q q

lg|=N

24
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=/ 2|Z|2f(z)dLeb((j(Z)
D T

(CX)Z 27 34+2a 4—a
s O oK@ (NP enflloe + N 1df o)
qeA~{0} A
lgI<N
2 ca llfll ldf |l
:/D ;|Z|2f(z)dLeb(C(Z)+O( 1]\\[1{250 + ]{[aoo) .

For every N € N \ {0}, let us define

~ K1
VN = %NA = Z i (m) o (n) Alogmflogn'

(m, n)eln

which is a measure with finite support on E¥ = (&[0, oo +iR)/(27iZ), so that vy =
log, 1iy, = VN [g-> and [|[Vy || = [I[1iy|I. For every f € CL(E™), the function f o log is a C!
function on D which vanishes on a neighbourhood of 0. By Equation (6), we have

Telf)  Fin(f olog)

IVl AN
2 5 callfologlis  Ild(f olog)llso
= /D - |z| f olog(z) d Lebc(z) + O ( 12 + e

= f_ ze4Re(z’)f(z/) dLebg(z') + O (CA I1f oo N e df(z/)”oo) |

T Nl—2a N«

Since Ty = Dy, + V5 on E \ (iR)/(2iw Z) and Lebg((iR)/(2in Z)) = 0, since Vy; = sg, Uy,
where sg : E > E is the map &’ + iy’ — —&’ + iy/, we have ||§]ﬂf[|| = % IV || and the last
claim of Theorem 5.1 follows by symmetry. o

6 Pair correlation of integral lattice points with scaling and Euler weight

As in Sect. 5, we fix an imaginary quadratic number field K whose ring of integers Ok
is principal, and a nonzero ideal A = A e f; We also study the pair correlations of
the family .Z{* defined in the introduction, but now with the linear scaling function
¢ =id! : N — N. We leave to the reader the study of a general scaling ¥, assumed to
converge to 400, proving a Poissonian behaviour for sublinear scalings and total loss of
mass behaviour for superlinear scalings. We also leave to the reader a statement similar
to Theorem 6.1, replacing the above Z-lattice A by a Z-grid a + A for any a € 0.

As in Sect. 3, we work on the family of varying cylinders (Ey = C/(2miN Z))nen-{0}-
As in Sect. 3, for every f € C}(C), for every N large enough such that the support of f
is contained in E(O, nN), we denote by fy € CC1 (En) the map that coincides with f on
B(0, #N) modulo 27i N Z and vanishes elsewhere. For every N € N \ {0}, we consider
the measure on Ey with finite support defined with Iy = Ix o by

oK .
‘ZAK’ ldl

KN = '@N = Z @K (m) g (n) AN (log m—log 1) »
(m, n)eln
which is the (not normalised) empirical pair correlation measure at time N of the complex
logarithms of the elements of A with multiplicities given by the Euler function and with
linear scaling ¢ = id! : N — N.
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Theorem 6.1 As N — 400, the family (A% @N>N N of measures on Ex converges (for
€

the pointed Hausdorff-Gromov weak-star convergence) to the measure absolutely continu-

ous with respect to the Lebesgue measure on C, with Radon-Nikodym derivative the function

1 ZCA,k 6
gzﬁﬂ]()idl:ZP—) T Z |k| 5
: 12 el PR
that is, as N — +00,
1 ~ *

1\? %N — ngwK) idl Leb(c,
Furthermore, for all A > 1 and f € CY(C) with compact support contained in B(0, A), as
N — +o00, we have

]\% @N(fN) = LEC f(2) ggxx,idl(z) d Lebc(z)

4
L0 (A— (Idf lloo + ||f||oo>>.

covolp ¢ N1/2

The above result with A = Ok gives the second assertion of Theorem 1.2 in the intro-
duction, using the values of ¢, for k € Ok given in Equation (47).

Note that, as the proof below shows, the total mass of @N is equivalent to ¢ N® as
N — +o00, for some constant ¢ > 0. Hence renormalising % tobea probability measure

would make it converge to the zero measure on C.

Proof We proceed as in the beginning of the proof of Theorem 3.1 : We only have to
prove the second assertion above; We define E]jf] = ([0, oo[ +iR)/(27i N Z); We only
study the convergence of the measures % Zy on the halfcylinder Eﬁ to the measure
LK ig! Lebc+ on the halfplane CT = {z € C : Re(z) > 0} as N — +00; And we deduce
the global result by the symmetry of g K id! under z — —z.

Forall N e N~ {0} and p € A \ {0}, let J,, 5 be given by Equation (20). Note that

(AN{0)NBO,N — |p|) CJp,n C(AN{0})NB(O,N). (54)

We now define the key auxiliary measure by

Bpn =Y ox@ ex@+p) Ag.

Np
q€lp,N

Then @), y is a measure with finite support on B(0, Ul%\) \ {0}, which is nonzero if N > 2|p|

(which is the case if p is bounded and N — +00), and vanishes if |p| > 2N.If N > 2|p|,
by Theorem 4.2 withm = A, k = p and 0 = 27, by Formula (54), since |p| > 1, and since
ca,p < 1 (see Equation (46)), we have

- 2T CcAp 6
| @p, Nl = vk (q) vx(q +p) = ——== (N + O(|pl))
v q; 3 /IDk|

+0 (Il (N O(Ip)*+1pI (N+ O(pD) +1pI In [p] (N+ O(Ip))* In(N+ O(1p1)

27 cpp

= 2P N° 4+ O(|p|N°). 55
N + O(|pIN”) (55)
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In particular, if N > 2|p|, since ¢/, > 0 by Equation (48), we have

1 3J|D
_ _ 3Dk 140 JPI ’ (56)
I wp,N” 27 CA,pN6 CAN

The next result implies that the measures @, 5, once normalised to be probability mea-
sures, weak-star converge to the measure du(z) = % Ipl® |z|* d LebB(0 i)(z) on B(0, F}‘)
dr]

as N — o0, uniformly on p € A \ {0} bounded.

Lemma 6.2 Forallpe AN {0, «a€]0,1[ andf € CCI((C), as N — 400, we have

w 3
OPN_ () = f 31918 l2l* £(2) d Lebe(2)
1B 0.2y 7

+O( 19f 1l L+ Pl flloo | 110 )

N« |P| C;\lea + N«
Proof As in the proof of Lemma 5.3, we will estimate the difference of the main terms in
the above centered formula by cutting the sum defining the renormalised measure @, n
and by cutting similarly the integral on B(0, ﬁ). We assume, as we may, that N > 2|p|.
Let Q = | N¥]| > 1, which tends to +oc0oas N — +oo. Forallm,n € {0,...,Q — 1}, let

Ay = [pe%”t: pE ]QTPVZTPH, te ] ,mTH]], (57)

Rl

so that B(0, |%|) . {0} is the disjoint union of the sets A, , for m, n € {0, ..., Q — 1}. With
the notation of Equation (43), we have

. m+1/2 D 1 . m+1/2 )
] Gt ) NS G P R (58)
’ Q Qlpl Q Qlpl
Note that diam(4;,,,,) = O (@) Hence for every z € A, ,,, we have by the mean value
theorem
n 2imr 2 ”df”oo
(2) = (—e Q)+O( . (59)
fe=s Qlpl Qlpl

If |p| < N'=* (which is the case if p is bounded and N — +00) and if # < Q — 2, then
n+1 - NQ —1

N|p| < <N-N""<N-|p|.
P Qinl Q d
Hence for all m, n € {0, ..., Q — 1}, by Formula (54), if [p| < N'=% and if n # Q — 1, we
have
(NpA;’l,Wl) m]PrN =AN (NpA:q,m) : (60)

Forallm,n e {0,...,Q — 1}, let

q 1
Snm = I a—— .
: E f( ) Sl or(q) ox(q + p)

N_
g€ N pA,,) NN p
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If n # Q — 1, by Equations (59) and (60) for the first equality, and for the second one, by
Equations (56), (58) and (44), by Theorem 4.2 applied twice withm = A, k =p, 0 = %’

and x = N(’(‘;l), %, we have, as N — +00 (so that in particular N > max{2, ¢, } |p|),
no ojpm lldf | 1
Snm = (f <Q| | ezmQ) +O< Qf| To T > vk (q) px(q + p)
p p PN e AN p Ay,
— d 3J|D,
=<f< . ezmQ>+O(n f||oo>> VD] K|6(1+0( I ))
Qlpl Qlpl 2w ecpap N AN
2

G cap (N(n+1))6_<@>6 o M(Z\ﬁ)s pl? (zg)‘*
X3|DK|( Q o) "Plal\e) T (q
IpI? Nn\?%. [Nn
A (%) (6)))

1 (1= < n 2mm> (ndfnoo QIPIIIflloo)>
_Q2< ¢ Nap )0 qm TN ) ©Y

Note that by Equations (58), (54) and (44) for the first inequality, and for the second one,
by Equations (56) and twice (55), as N — 400, we have

Y Socum | = Il = )3 ox(@) ox(q + 1)

| @pn i
0=m=<Q-1 PET qeanBON)~BON-Y)

=l (1+0(2%))

6 /
2 cpp N AN

27TCA,p <N6—(N—N)6+O(@NS)):O<”f||oo> )

X —
3 1Dk Q Ch Q
(62)
Forallm,n e {0,...,Q — 1}, let
3
bn= [ 2 bl 121 @) d Lebe).
A T
By Equations (59) and (57), we have
27 (m+1) n+1
i dj 3
Lym =\ f LezmQ +0 19/ llos / ¢ /QW = \pl® p°dp de
Q] Qlpl )) Jup Sy 7
6_ 6 o
:i2<(n+1)5 nf( n eZan)+O<||df”c>o)) ) (63)
Q Q Qlpl Qlpl
Furthermore,
2 L
Pl 3 (Al
| X e =i [ [ 2westdedo—o(VE2) . e
0=m=Q-1 O Jpr—am
1 Q-
Since B(0, |17|) ~ {0} = | | 4, putting together Equations (61), (63), (62) and (64),
n,m=0

and since Q = [ N%] € [NTa, N?] for N large enough, we have

) 3
OPN_ () — / 31918 J2l* £(2) d Lebe(2)
lwp,n I BO, L) T

24
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Q-2 Q-1 Q-1
= ‘ Z (Sn,m - In,m) + Z SQ—Lm - Z IQ—l,m ‘
m=0 m=0

n,m=0
Q-2 Q-1 Q-1
= Z |Sn,m - In,ml + | Z SQ—Lm| + } Z IQ—Lm ‘
n,m=0 m=0 m=0

L ldflee . QIplIf df e 11l 1 Flloe
_O<le| TToN >+O(lel>+o< Q )+O< Q )

=O(II(flflloo v £ 1loo ”f”oo) '

+
N« |p| C/A N1« N«

This proves Lemma 6.2. O

Now, let us introduce the finitely supported measure on C \ {0} defined by

~+ _ ~ _
i = Z LDpN = Z ox(q) ex(q +p) AN';:
peAN{0} pqeAN{0}: |gl<|g+pI<N
where as previously ¢ : z % (recalling that the measure @), y vanishes if [p| > 2N and
has finite support contained in B(0, Ip%l) ~ {0}).

Lemma 6.3 Forall A > 1andf € CY(C") with compact support contained in B(0, A), as
N — 400, we have

A4”df”ooN5>

covoly

| v ley Ui - 0| =0

Proof LetusassumethatN > %\, so that the ball B(0, A) injects by the canonical projection
C — Ey = C/(27iN Z). Note that fy has support in E;. Using the change of variables
(pq) — (m=p—+qn=q),wehave

AN =D exlm) gx(n) fu(N logm — N log n)

+
(m,n)eIN

= > ¢k (q) ¢x (g +p) fu(N log(p + q) — N logq) .
PAEASI0) : lgl<lq+pl<N

As in the proof of Lemma 3.3 (see Formulas (24) and (25) with ¥(N) = N), if a pair
(p, q) occurs in the index of the sum defining either @N( fn) or ﬁ?\'{( f) with nonzero

corresponding summand, then :;4" =0 (%), lp| = O(A), and

Azlldf”oo)‘

/N log(p+9) — Nlogg) — f(NE) | = O (
q N

Hence, by Equation (55), since cp , < 1 (see Equation (46)) and by Lemma 2.1 with k = 0,
as N > diamjy tends to +o0, we have

Az”"if”oo)
N

| %n(fa) — B () | < > ox(q) ¢x(q +p) O (

PEAN{0} 1 [p|=0O(A), g€pN

_ Y ow9o (A2||df||oo> o (A4||df||ooN5>

N covol
PEAN{0} : |p|=0(4)

This proves Lemma 6.3. o
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Lemma 6.4 Forall A > 1andf € CY(Ct) with compact support contained in B(0, A), as

N — +o00, we have
1

NG ﬁj-{_[(f) = [CJrf(Z) 8K ig! (z) d Lebc(2)

4

A |
o (v o (1 + 1£1))

Proof Let A and f be as in the statement, let N be large enough, and let @ € ]0, 1[.
Since the support of @y, x is contained in B(0, |P%|)’ the support of 1,@), N is contained in
{z € C: |z| = |p|}. Since a nonzero element of Ok has norm, hence absolute value, at
least 1, the measures /7;\'; and L% ig! (z) d Lebc(z) both vanish on E(O, 1). Hence we may
assume that the support of f is contained in {z € C : |z| > 1}, so that the support of f o ¢ is
compact. Note that || f o t||oc = || f|lco and as the support of f is contained in B(0, A), that

Id(f 0 Olloo < A%lldf lloo-

By Equation (55) and by Lemma 6.2, by Equation (27), since 1 < |p| = O(A) and

cap < 1,as N — 400, we hence have

= Y win) = Y 1@l 2 (f o)

per—{0} per~{0) lleop, n'l
27 cap L6 5

= Y (=2 NS+ O(IpIN?)

pEA\{0}<3\/|DK|

1
7 Il

2
L0 (A l19f 1l n Pl lloo | 11f oo ))

X (/ E |p|6 |z|4f o 1(z) dLebc(z)
BO,57) T

N« |P| ci\lea + N«

_ne | 3 2ere © L £) dLebe(o)
peh 1Dk | |z|>|p| |Z|8
Pl lloe | A2ldfllo | Allflloc | 1flloo
+O< > + e +C,ANH + e

PeA : |p|=0(4)

By Lemma 2.1 with k = 0, as N — +00, we hence have

~+ 6
MN(f) :/ 1 Z 2cpplpl f(z) d Lebe(2)
C

6 1,8
N 12 pen iz VIPKI
o A? A? ||df oo n Al flloo n I flloo
covolp N« ¢, NI- N« '
Taking o = %, this proves Lemma 6.4 since c;\ <landA > 1. O

Theorem 6.1 now follows from Lemmas 6.3 and 6.4, as explained in the beginning of
the proof. ]
The following figure illustrates Theorem 6.1 when we take K = Q(#) and

A=0k = Z[#g], It shows an approximation of the pair correlation function g 9K id!
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computed using the empirical measure %50 in the ball of radius 5 centered at the ori-

506
gin, to be compared with the orange radial profile of g ¢« 41 in the second figure of the
A

introduction.

The graph of g ek ;41 is bounded by Lemma 2.1 with k = 6 since c5, < 1. It is
oK,
asymptotic to a horizontal plane at infinity, by the following result. In its proof, we use the
Mébius function g : I — Z of K, defined by

N 0 if p? | a for some prime ideal p
Vae s, px(a)=
(=)™ if a = py ... P, for distinct prime ideals py, . . ., Py

(in particular ux(Ox) = 1). For every a € Ok ~ {0}, we define ux(a) = ux(alx). We
have (see for instance [27]) the Mébius inversion formula: for all f, g : flj — C,

= Z g(b) if and only if g(a Z ux(b)flab™t). (65)
bla bla

Proposition 6.5 We have

bid 2 1
|zl|l—r>noo Lotk g1 (8) = Dxl 1;[ (1 - W) (1 + W)

Proof Let us consider the multiplicative! function on flj defined by

1
fram]] (1 T RENG? = 2))

pla

and the constant

1
= Ww_w H( )2(N(p)? 2))'

Let us prove that uniformly in x > 1, we have

Y. N@f@=—x* +06"%. (66)

aes¢ :N(a)<x

Applying this with x = |z|2, by Equation (3), since the map k — kO from O ~ {0} onto
ﬂlj is |0 |-to-1, this proves Proposition 6.5.

!Recall that a function f : flj — C* is multiplicative if f (Ox) = 1 and for all coprime integral ideals a, b in f; , we

have f(ab) = f(a)f(b).
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Let
g=fxux:ar> Yy  ug(b)f(ab)
bla
be the Dirichlet convolution of f with the Mébius function ux of K. Then g is multiplica-
tive. For every prime ideal p of Ok, we have
1

g(p) =f(p) ux(Ok) + f(Ok) ik (p) NONGE—2)
and g(p*) = fF(F) ux (Ox) + f®*1) ux(p) = 0 for every k > 2. Therefore, for every
be ﬂlj , we have

1
_ 2
$10) = puxc®) plllb NN —2)’

By for instance Equation (7) with A = O, k = 0 and x = ,/y, by Equation (16) with
m = O, and again since the map k — kO is |Of |-to-1, as y — 400, we have (see also
[19, Theo. 15])

Card{a € £ : N(a) <y} = (y2). (67)

2n +0
— =7
|0 | V1Dk]
9 \~!
Lemma 6.6 Forevery b € fg, we have 0 < g(b) < N(b)_BH (1 — W) . In par-
p

ticular, Z % =0 (é)

+.
besd :N(b)=x

Proof This is immediate if g (b) = 0. Otherwise, b = p; ... px withk € Nandpy, ..., px
pairwise distinct prime ideals, and
k
N(p;)®

N©Ee®) =] | s 2
0 < N(b)°g(b) EN(pi)(N(Pi)Z_m

k 9 -1 2 -1
=11 (1-%em) = 11 (1-%6r) <+

The last claim follows from the well known error term in the Dedekind zeta function
summation: as a,, = Card{a € fKJr : N(a) = n} = O(n) (see for instance Equation (67)),
we have by the first claim

g(b) 1] an
> Ny = © > NGOG —O<ZH4>

bes:N(b)=x bes g :N(b)=x

o[~ ) -o[ ) D

Using the Mobius inversion formula of Equation (65) for the first equality, Equation
(67) with y = % for the third equality, Lemma 6.6 for the fifth equality and an Eulerian
product (since g is multiplicative and vanishes on ideals divisible by a nontrivial square)
for the sixth equality, with S(x) = >_ S N(a)<x f(a), uniformly in x > 1, we have

Sy = ) gb)= ) gb) Y 1

beesd besd cesf
N(be)<x N(b)<x N(c)<x/N(b)

Page 37 of 41
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2w x x1/2
= 2 4 )(|ﬁx|«/|D NG (N(b)1/2>>

besy
N(b)<x
2w x g 1/2
+0 |«
|ﬁ1§ «/|DK N(b Z b) Z N(b 1/2

N(b)>x N(b)<x

2mx g(b) (x1/2
|v|D1< Z )

2w x

1
|ﬁ1§ 161 V1Dx] 1_[ ( W) + 02 = ¢y x + O/?) .

By summation by parts, we hence have

> N@Y@ = [ fdise)
aes  N(a)<x !

= [P(C e+ OW ] -3 [ 2 i+ 0E ) = St 06T
1

This proves Equation (66) and concludes the proof of Proposition 6.5. ]

7 Pair correlations of common perpendiculars in the Bianchi manifolds
PSL(Ok)\H3

We again fix an imaginary quadratic number field K whose ring of integers O is principal,
and a nonzero ideal A = A € JI? In this section, we give a geometric motivation for
the introduction of the Euler function as multiplicities in the family XXK of complex
logarithms of elements of A defined in Equation (2), and we give a geometric application
of the results in Sect. 5.

We refer to [5,21] for more information on the following notions. Let Y be a nonelemen-
tary geodesically complete connected proper locally CAT(—1) good orbispace, so that the
underlying space of Y is I'\Y with Y a geodesically complete proper CAT(—1) space and
I a discrete group of isometries of ¥ preserving no point nor pair of points in ¥ U 85, Y
Let D~ and D be connected proper nonempty properly immersed locally convex closed
subsets of Y, that is, D™ and D™ are locally finite I"-orbits of proper nonempty closed
convex subsets D~ and DT of Y. A common perpendicular o between D™ and D™ is the
[-orbit of the unique shortest arc @ between D~ and y5+ for some y € I' such that
d(D, y5+) > 0. The multiplicity mult(«) of « is the ratio A/B where

+ Aisthe number of elements (y_, y1) € (I'/T'p-) x (I'/T",, p+) such that @ is the unique
shortest arc between y_D and y4 yD+, and
« Bis the cardinality of the pointwise stabiliser of & in I.

The length A(«) of the common perpendicular « is the length of the geodesic segment &
inY. For every £ in the set OL*(D~, D) of lengths of common perpendiculars, the length
multiplicity of £ is the sum of the multiplicities of the common perpendiculars between
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D™, Dt having the length £ :

() = > mult(e) . (68)
« common perpendicular
between D™ and D with A(a)=¢

If Perp(D~, D) is the set of all common perpendiculars from D™ to DT with multiplicities,
then (A())yeperp(p-, p+) is the marked ortholength spectrum from D™ to D™, and the set
OL(D~, DY) = (OLY(D~, D), w) of the lengths of the common perpendiculars endowed
with the length multiplicity w is the ortholength spectrum from D™ to D™

As defined in [22, §6], the pair correlation measure of the common perpendiculars from
D~ to D is the pair correlation measure of the family

Ay pr = (4R P" = OLAD™, DY) N [0,2In NDyerw o).

Let us specialise these objects as follows. Let

?:H%: ({(z:x—l—iy,t) €eCxR:t>0}ds* = W)
be the upper halfspace model of the real hyperbolic 3-space with constant curvature —1.
We identify as usual its space at infinity 9o H3, = (C x {0}) U {oo} with P}(C) = C U {c0}.

For every b € f;, let 'o[b] be Hecke’s congruence subgroup modulo b of the Bianchi
group PSLy (O ), which is the preimage of the upper triangular subgroup of PSLy (O /b)
under the reduction morphism PSLy(Ox) — PSLa(Ok/b). It acts faithfully on H% by
Poincaré’s extension, and is a lattice in the isometry group of HI?!&. Let Y® =T o[b]\H%,
which is a finite (possibly ramified) cover of the Bianchi orbifold PSLy (&, K)\H%. Note that
since O is principal, this Bianchi orbifold has only one cusp (the number of cusps being
the class number of K, see for instance [9, Sect. 7.2]).

Let D~ = D be the horoball 7, = {(z, t) € H3 : ¢ > 1} in H3, whose image D~ = D
in Y'® is a Margulis neighbourhood of a cusp of Y'°. In order to emphasise the dependence
on the ideal b, we will use the notation szDh,, p+ = @p-p+ for the family of lengths of
common perpendiculars between D~ and D in Y°.

The following result relates the pair correlation measures of the common perpendiculars
from this Margulis cusp neighbourhood to itself to the pair correlation measures of the
complex logarithms of the elements of A = b, with multiplicities given by the Euler
function ¢x. As explained in Remark 2.3, in the following result, we remove from the

AN P¥K 1
index set Iy of the summations defining Z,,” " ™" and K" ' the assumption that

m # n. Recall that the map 2Re : E — R is a continuous proper map.

Proposition 7.1 For every ideal b € flj , we have

4 z“’
— (2Re), ( )
|O% 1+

Proof The orbit of 7%, under I'o[b] consists, besides .77% itself, of the Euclidean 3-balls
Jﬁa of Euclidean radius 5 ‘2 tangent to the horizontal plane C at the rational elements £
(w1th this point removed) w1th p € Ok, q € b~ {0}and (p, q) = 1. Note that 7%, meets

b
ﬁﬂD—,D‘F’ 1 _
N =

%’in (and then is tangent to it) if and only if ¢ € O, since the hyperbolic distance betwen
j‘f and jfp is equal to 21n|g].
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Every common perpendicular between D~ and DT has a vertical representative in ]HIIBR
which starts from a point in 3.7, = C x {1} and ends on the boundary of 7 with % as
q

above and g ¢ 0. Its hyperbolic length is 21In |g]|. In particular, the set OLY(D~, D7) is
equal to

{2In|g| = 2Re(logg) : g € b\ OF ).

t Ay
13

T

> 21nq|

st e

The stabiliser of .7%,, or equivalently of oo, in ['y[b] is the upper triangular subgroup
U of T'y[b], hence of PSLy(Ok). It contains the upper unipotent subgroup consisting of
translations by O with finite index, equal to @. Hence given adenominatorg € b\ 0,
the points at infinity with denominator g of the vertical geodesic lines containing a lift of
a common perpendicular between D~ and D™ are, modulo translation by O, exactly the

points i—; where p ranges over a set of representatives of (Ox /qOx)*. Note that for any

unit u € OF, we have % =
2
‘(j;((lz Z|q\=n ‘PK(q)

By Equation (5), the map z — ¢ = 2Re(z) from LK, = {logg : q € (b~ {0}), |lg| = n}

§. Thus, the number modulo U of fractions § with |g| = nis

to the set AD ~DT of lengths of the common perpendiculars between D~ and D' with
. ox .
length 2 In 7 hence sends the sum of the Euler weights ), ql=n %K (q) to | £ " times the

multiplicity w(In #) defined in Equation (68) of the common perpendiculars of length £.
The claim follows. o

The following result computes the pair correlation function without scaling of the
lengths of the common perpendiculars from the Margulis cusp neighbourhood at infinity
to itself in the Hecke-Bianchi orbifold I'y [b]\Hﬁ, giving a new proof of this special case of
[23, Cor. 4.2], see also the remark after Corollary 2.5. The maps Re : Ey — Rfor N e N
being not uniformly proper, the case with scalings requires a new analysis.

Corollary 7.2 For every ideal b € JI;F, as N — o0, the pair correlation measures

d° 1
%ND P on'R, renormalised to be probability measures, weak-star converge to a measure
absolutely continuous with respect to the Lebesgue measure on R, with pair correlation
function given by s > e~ 2l8l,
Proof This follows from Theorem 5.1 with A = b as in the proof of Corollary 2.5, using
Proposition 7.1. O
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