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Abstract

This thesis studies the Hausdorff dimension of variants of Kakeya sets in Rn. It consists
of an introduction and three papers.
In paper [A], we define Kakeya sets in the n-th Heisenberg group and show the sharp

lower bound is 3 for the Heisenberg Hausdorff dimension of Kakeya sets in the first Heisen-
berg group.
In papers [B] and [C], we define circular (s, t)-Furstenberg sets F in R2. We prove that

the Hausdorff dimension dimH(F ) ⩾ t
3
+ s if 0 < s ⩽ 1 and 0 < t ⩽ 3 and dimH(F ) ⩾

(2s−1)t+s if 1/2 < s ⩽ 1 and 0 < t ⩽ 1 in [B]. Moreover, we show the sharp lower bound
dimH(F ) ⩾ s+ t if 0 < t ⩽ s ⩽ 1 in [C].

v



Tiivistelmä

Tämä väitöskirja tarkastelee Kakeya-joukkojen muunnelmien Hausdorff-dimensiota.
Väitöskirja koostuu johdannosta ja kolmesta paperista.

Paperissa [A] määrittelemme Kakeya-joukot n:nnessä Heisenbergin ryhmässä ja
näytämme ensimmäisen Heisenberg-ryhmän Kakeya-joukkojen Heisenberg-Hausdorff-
dimension tarkan alarajan olevan 3.

Papereissa [B] ja [C] määrittelemme ympyräiset (s, t)-Furstenberg-joukot F ⊂ R2.
Paperissa [B] osoitamme, että Hausdorffin dimensio dimH(F ) ⩾ t

3
+ s, jos 0 < s ⩽ 1 ja

0 < t ⩽ 3 ja dimH(F ) ⩾ (2s − 1)t + s, jos 1/2 < s ⩽ 1 ja 0 < t ⩽ 1. Paperissa [C]
näytämme tarkan alarajan dimH(F ) ⩾ s+ t, jos 0 < t ⩽ s ⩽ 1.

vi



INTRODUCTION

Estimating the dimension of various fractal sets is one of the major topics in geometric
measure theory. This thesis focuses on studying the dimension of fractal sets of certain
types, which originate from Kakeya sets. To be precise, the first part of the thesis con-
centrates on Kakeya sets in the first Heisenberg group. The second part is devoted to the
study of circular Furstenberg sets.

1. Kakeya Set and Its Generalizations

We begin with the definition of Kakeya sets in Rn.

Definition 1.1 (Kakeya Set). A set E ⊂ Rn is a Kakeya set if for every e ∈ Sn−1 there
exists a unit line segment Ie parallel to e such that Ie ⊂ E.

Kakeya sets are also known as Besicovitch sets. Directly from the definition, we know
that the unit ball B(0, 1) ⊂ Rn is a Kakeya set which reaches the full dimension n. So it
is natural to investigate the dimension lower bound for Kakeya sets. Here the dimension
we consider is Hausdorff dimension.

Definition 1.2 (Hausdorff dimension). Let X be a metric space. For α ∈ [0,∞) and
E ⊂ X, define the α-Hausdorff measure of E by

Hα(E) := lim
δ→0

Hα
δ (E)

where

Hα
δ (E) := inf

{ ∞∑

j=1

( diamUj)
α :
⋃

j

Uj ⊃ E, diamUj < δ

}

where the infimum is taken over all countable covers U = {Uj} of E.
The Hausdorff dimension of E is

dimH(E) := sup{α : Hα(E) = ∞} = inf{α : Hα(E) = 0}.
The following conjecture is known as the Kakeya conjecture.

Conjecture 1.3. Every Kakeya set in Rn has Hausdorff dimension n.

Among those who were devoted to resolving this conjecture, the first successful attempt
was by Davies [4] in 1971. He confirmed this conjecture for the case n = 2. For n ⩾ 3, the
conjecture is still open and many mathematicians have made partial progress: Bourgain
used two different methods to provide lower bounds [1, 2], which were further improved
by Wolff [31] and Katz-Tao [14] respectively. Recently, Katz-Zahl [18] and Guth-Zahl [9]
enhanced the results of [31] in R3 and R4 respectively, which show that the best known
lower bound is 5/2+ ϵ0 in R3 with ϵ0 an absolute constant and 3+ 1/40 in R4. In Rn with
n ⩾ 5, the best known lower bound is given by a combination of the results obtained in [16]
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8 INTRODUCTION

by Katz-Tao and in [13] by Hickman-Rogers-Zhang. In addition, Wang-Zahl in [30] verified
Conjecture 1.3 for the special class of sticky Kakeya sets in R3. For another special class
of SL2 Kakeya sets in R3, Fässler-Orponen [6] and Katz-Wu-Zahl [17] verified Conjecture
1.3 using two different approaches.
Since this thesis does not aim to study Kakeya sets in Rn, we will move on to its

generalizations. And for a comprehensive study of Kakeya sets and its role in geometric
measure theory, we refer to two books [21, 22] by Mattila and references therein.

1.1. Linear Furstenberg Sets. From the definition of Kakeya sets, one can also extend
this notion to similar types of sets. First, one can generalize this notion to a broader class
of sets that contain Kakeya Sets as a special class. We name these sets linear Furstenberg
sets in this thesis. We first need the following concept.

Definition 1.4 (A(n, k) and G(n, k)). The space of all affine k-dimensional hyperplanes
in Rn is denoted A(n, k). The space of k-dimensional subspaces of Rn is denoted G(n, k).
Every plane W ∈ A(n, k) can be expressed uniquely as W = a + V , where V ∈ G(n, k),
and a = a(W ) ∈ V ⊥. This observation allows us to metrize A(n, k) by setting

d(W,W ′) := ∥πV − πV ′∥op + |a− a′|,
where W = V + a, W ′ = V ′ + a′, and ∥ · ∥op refers to the operator norm.

Definition 1.5 (Linear Furstenberg sets). Let 1 ⩽ k ⩽ n, 0 < s ⩽ k and 0 < t ⩽
dimA(n, k). A set F ⊂ Rn is called a linear (s, t, k)-Furstenberg set if there exists a
parameter set K ⊂ A(n, k) with

dimHK ⩾ t

such that for every W ∈ K,

dimH(F ∩W ) ⩾ s.

From Definition 1.5, we see that Kakeya sets in Rn are special linear (1, n − 1, 1)-
Furstenberg sets with the parameter set K satisfying dimK = dimG(n, 1) = n− 1.
Since most studies of linear Furstenberg sets are concentrated on linear (s, t, 1)-Furstenberg

sets in R2 in the literature, we write linear (s, t)-Furstenberg sets for simplicity if k = 1
and n = 2.
In 1999, Wolff [33] initiated the study and showed that linear (s, 1)-Furstenberg sets

with parameter set K containing lines in every direction have Hausdorff dimension at least

max{1
2
+ s, 2s} for all 0 < s ⩽ 1. (1.1)

After Wolff, general linear (s, t)-Furstenberg sets have been constantly studied. Noting
that n = 2, k = 1 implies that dimA(2, 1) = 2, this shows all possible values of s and t are
s ∈ (0, 1] and t ∈ (0, 2]. It is conjectured that the sharp lower bounds for the Hausdorff
dimension of linear (s, t)-Furstenberg sets is

min{s+ t,
3s+ t

2
, s+ 1}. (1.2)
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If 0 < s ⩽ t ⩽ 1, the sharp lower bound is s + t, which was shown by Héra-Shmerkin-
Yavicoli [12] and Lutz-Stull [20] using two very different proofs. Besides, if s + t ⩾ 2, the
sharp lower bound is s+1, which was obtained by Fu-Ren [8]. For other values of s and t,
the sharp lower bound is 3s+t

2
is verified by Ren-Wang [25]. We also refer to [3, 8, 10, 24, 27]

and references therein for partial progress.
In terms of linear (s, t, k)-Furstenberg sets in Rn, we refer to [3, 10, 11] and references

therein.

1.2. Circular Furstenberg Sets. In this subsection, we restrict ourselves to R2. For the
second variant of Kakeya sets, we substitute “lines” by “circles” in the definition.

Definition 1.6 (Circular Kakeya Sets). A set F ⊂ R2 is called a circular Kakeya set if it
contains circles of every radius.

Wolff in [32] showed that circular Kakeya sets in R2 have full dimension 2 employing
techniques from harmonic analysis.
After paper [32], more general families of circles have been studied. Noting that a circle

S(x, r) in R2 is uniquely determined by its center x ∈ R2 and its radius r ∈ R+ = (0,+∞),
we can identify a circle in R2 by a point (x, r) ∈ R3

+ := R2 × R+. This is a one-to-one
correspondence. In the following, we say S = {S(x, r)} is a t-dimensional family of circles
in R2 if {(x, r)}S(x,r)∈S forms a t-dimensional set in R3

+.
In [34], Wolff proved that a subset in R2 consisting of circles with 1-dimensional family

of radii has Hausdorff dimension at least 2. Also, in [19], motivated by a paper [26] of
Schlag, Käenmäki-Orponen-Venieri were able to show that the sharp lower bound 1 + t in
[32] holds true for any analytic t-dimensional family of circles.
Continuing the study in [19], in papers [B] and [C], we extend the above study to more

general circular Furstenberg sets and study their dimension.

Definition 1.7 (Circular Furstenberg sets). Let 0 < s ⩽ 1 and 0 < t ⩽ 3. A set F ⊂ R2

is called a circular (s, t)-Furstenberg set if there exists a parameter set K ⊂ R3
+ with

dimHK ⩾ t

such that for every (x, r) ∈ K,

dimH(F ∩ S(x, r)) ⩾ s.

In papers [B] and [C], we proved the following dimension lower bounds for circular
Furstenberg sets.

Theorem 1.8 (Main result of [B]). For any 0 < s ⩽ 1 and 0 < t ⩽ 3, the Hausdorff
dimension of a circular (s, t)-Furstenberg set F in R2 is at least t

3
+ s.

Theorem 1.9 (Main result of [B]). For any 1/2 < s ⩽ 1 and 0 < t ⩽ 1, the Hausdorff
dimension of a circular (s, t)-Furstenberg set F in R2 is at least (2s− 1)t+ s.

Theorem 1.10 (Main result of [C]). For 0 < t ≤ s ≤ 1, the Hausdorff dimension of a
circular (s, t)-Furstenberg set F in R2 is at least s+ t.
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We remark that in paper [B], the range of t in Theorem 1.8 is stated for t ∈ (0, 1].
However, the proof works for all t ∈ (0, 3].
Recently, after paper [C], Zahl [35] extends Theorem 1.10 to more general Furstenberg

set of curves.

1.3. Kakeya Sets in Heisenberg Groups. For the third generalization of Kakeya sets,
we change the ambient space in Definition 1.1 from Euclidean spaces to Heisenberg groups.
We denote by Hn the n-th Heisenberg group. When n = 1, we write H instead of H1 for
simplicity.

Definition 1.11 (Heisenberg Kakeya Sets). A set E ⊂ Hn is a Heisenberg Kakeya set if
for every unit line segment I ⊂ R2n × {0} centred at the origin, there exists q ∈ Hn such
that qI ⊂ E.

For an introduction to Heisenberg groups, we refer the readers to Section 2. Compared
with the study in the Euclidean case, the study of Heisenberg Kakeya sets has relatively
limited results in the literature. Indeed, in [28], Venieri studied the Heisenberg Hausdorff
dimension dimH

H E of Euclidean Kakeya sets E in Hn = R2n+1 and showed that dimH
HE ⩾

2n+5
2

if n ⩽ 3 and dimH
H E ⩾ 8n+14

7
if n ⩾ 4. In [29], Venieri further studied Kakeya sets for

general metric spaces in an axiomatic sense.
In paper [A], we proved the sharp lower bound for Heisenberg Kakeya sets in the first

Heisenberg group.

Theorem 1.12 (Main result of [A]). In the first Heisenberg group H equipped with the
Korányi metric, every Heisenberg Kakeya set has Heisenberg Hausdorff dimension at least
3 and this lower bound is sharp.

The sharpness of the bound in Theorem 1.12 can be easily seen, since the {xoy}-plane
in H, which has Heisenberg Hausdorff dimension 3, is a Heisenberg Kakeya set.
After paper [A], Fässler-Pinamonti-Wald reproved Theorem 1.12 as a corollary of their

Heisenberg Kakeya maximal function inequality established in [7]. For 0 < t ⩽ 3 and a
general set E consisting of a t-dimensional family of horizontal lines in H, Fässler-Orponen
showed that the Euclidean Hausdorff dimension of E is min{t+ 1, 3} in [6].

Below in Section 2, we review the contents of paper [A] and in Section 3, we review the
contents of papers [B] and [C].

Notation. The notation |A| refers to the cardinality of set A ⊂ Rd if A is a finite set and
refers to the d-dim Lebesgue measure of A ⊂ Rd if A is an infinite set. For r ∈ 2−N =
{2−k : k ∈ N}, the notation |E|r refers to the r-covering number of E.
The notation A ≲ B means that there exists an absolute constant C ≥ 1 such that A ≤

CB. Since this introduction aims to provide heuristical ideas of the proof, for δ ∈ (0, 1],
we will abuse the notation A ≲ B to also denote

A ≤ C ·
(
1 + log

(
1
δ

)C)
B.
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And below (3.12), when the auxiliary constant ϵ is chosen, we keep using A ≲ B to denote
A ≤ δ−CϵB for some absolute constant C ≥ 1. The two-sided inequality A ≲ B ≲ A is
abbreviated to A ∼ B. If the constant C is allowed to depend on a parameter “θ”, we
indicate this by writing A ≲θ B.

2. Dimension of Kakeya Sets in Heisenberg Groups

In this section, we review the contents of paper [A]. We aim to explain the idea of
showing Theorem 1.12. We begin with the introduction of the first Heisenberg group H.
The first Heisenberg group H is R3 equipped with the group multiplication, for any

w = (x, y, t) and w′ = (x′, y′, t′), as follows

w · w′ =

(
x+ x′, y + y′, t+ t′ +

1

2
[xy′ − x′y]

)
. (2.1)

We introduce the Korányi metric on the first Heisenberg group. This is the left invariant
metric given by

dH(w,w
′) := ∥(w′)−1 · w∥H (2.2)

where ∥ · ∥H is defined as

∥(x, y, t)∥H = ((x2 + y2)2 + 16t2)1/4.

Since we will need the Hausdorff measure and dimension induced by both the Euclidean
metric and dH, we denote by Hs

H (resp. Hs
R) the s-dimensional Hausdorff measure induced

by the Korányi metric (resp. Euclidean metric) and by dimH
H (resp. dimR

H) the Hausdorff
dimension of sets induced by Korányi metric (resp. Euclidean metric).
We define horizontal lines in the first Heisenberg group H as lines which can be obtained

by a left translation of some line passing through the origin and lying in the {xoy}-plane,
the 2-dimensional subspace spanned by the first two coordinates.
By the definition of horizontal lines, we know that for any b ∈ R and q ∈ H, qIb and qJb

are a horizontal line and a horizontal line segment respectively where

Ib(τ) = (τ, bτ, 0), τ ∈ R (2.3)

and

Jb(τ) = (τ, bτ, 0), τ ∈ (− 1

2
√
b2 + 1

,
1

2
√
b2 + 1

). (2.4)

The domain (− 1
2
√
b2+1

, 1
2
√
b2+1

) of τ in (2.4) guarantees that Jb has unit length with respect

to dH.
In fact, (2.3) characterizes all the horizontal lines passing through the origin except the

y-axis. Thus, L(H) := {qIb}b∈R,q∈H is the family of all the horizontal lines that are not
parallel to the {yot}-plane since the Heisenberg multiplication restricted to the first two
coordinates coincides with the addition in R2. Furthermore, the horizontal lines in L(H)
have the following parametrization,

L(H) = {l(a,b,d) := (s, bs+ a,−as

2
+ d), s ∈ R : a, b, d ∈ R}. (2.5)
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Similarly, all the horizontal line segments {qJb}b∈R,q∈H have following parametrization,

lϵ(a,b,d) :=

{
(s, bs+ a,−as

2
+ d) ∈ H : s ∈ (ϵ, ϵ+

1√
b2 + 1

)

}
.

A merit of the above parametrization is that, for a Kakeya set E ⊂ H, we know for each
Jb, b ∈ R, there exists a copy of Jb under left translation that is contained in E. This
implies that for each b ∈ R, there exists a = a(b), d = d(b), ϵ = ϵ(b) such that lϵ(a,b,d) ⊂ E.
The above observation motivates us to define the following set

L(E) := {(a, b, d, ϵ) ∈ R× (−
√
3,
√
3)× R× R : lϵ(a,b,d) ⊂ E}. (2.6)

The reason why we restrict b ∈ (−
√
3,
√
3) is that the range (−

√
3,
√
3) guarantees the Eu-

clidean orthogonal projection of lϵ(a,b,d) to x-axis has length larger than 1/2. This property,
combined with some fundamental measure theory, enables us to further find an interval
[c0, c0 + 1/4] and a Borel set B ⊂ R3 with dimR

H(B) ⩾ 1 such that

B × {c} ⊂ L(E), c ∈ [c0, c0 + 1/4]

and

lϵ(a,b,d) ∩ {x = c} ≠ ∅, (a, b, d) ∈ B, c ∈ [c0, c0 + 1/4].

We have found a 1-dimensional family of parallel planes {x = c}c∈[c0,c0+1/4] such that
Ec := lϵ(a,b,d) ∩ {x = c} ̸= ∅. In particular, Ec ⊂ E ∩ {x = c} ⊂ E. Thus, if we can show,

for almost every c ∈ [c0, c0 + 1/4],

dimH
H(Ec) = 2, (2.7)

then, noting that the map f : (H, dH) → R, (x, y, t) → (x, 0, 0) is 1-Lipschitz and letting
F = E ∩ {(x, y, t) ∈ H | x ∈ [c0, c0 + 1/4]}, for any 0 < α < 2, using a co-area inequality
from [5], that is,

Hα+1
H (F ) ⩾

∫ ∗

[c0,c0+1/4]

Hα
H(F ∩ f−1(y)) dy = ∞, (2.8)

we derive

dimH
H(E) = 3. (2.9)

This concludes the proof.
Here we remark that in (2.8),

∫ ∗
R g dy is the upper integral of g : R → [0,+∞). That is

∫ ∗

R
g(y) dy = inf

∫

R
h(y) dy

where the infimum is taken over all measurable functions h : R → [0,+∞) satisfying
0 ⩽ g(y) ⩽ h(y) for a.e. y ∈ R.
Indeed, (2.7) is established with the help of the following Marstrand-type projection

theorem in R3 by Käenmäki-Orponen-Venieri in [19, Theorem 1.2].
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Theorem 2.1. Suppose that γ : [0, 2π) → S2, θ 7→ γ(θ) = 1√
2
(cos θ, sin θ, 1). If K ⊂ R3

is a Borel set, then dimR
H ργ(θ)(K) = min{dimR

H K, 1} for almost every θ ∈ [0, 2π) where
for any x ∈ S2, ρx : R3 → Span(x) denotes the Euclidean orthogonal projection to the line
passing through the origin and x.

We explain how to obtain (2.7) from Theorem 2.1. The idea is that using Heisenberg
left translation to translate Ec to {yot}-plane for each c ∈ [c0, c0 + 1/4], we get a new set
E1

c satisfying

dimH
H(E

1
c ) = dimH

H(Ec) c ∈ [c0, c0 + 1/4]. (2.10)

Then we find that the third coordinate of E1
c (i.e. the Euclidean orthogonal projection of E1

c

to t-axis) is precisely the Euclidean projection of B to Span(−c,− c2

2
, 1), i.e. ρ

(−c,− c2

2
,1)
(B),

which implies

dimH
H(E

1
c ) ⩾ dimH

H(ρ(−c,− c2

2
,1)
(B)) c ∈ [c0, c0 + 1/4]. (2.11)

Now {ρ
(−c,− c2

2
,1)
(B)}c∈[c0,c0+1/4] is a family of orthogonal projections of B to the one pa-

rameter family of lines {Span(−c,− c2

2
, 1)}c∈[c0,c0+1/4] in R3. Using some basic geometry,

one can find that this one parameter family of lines happens to be the one in Theorem 2.1.
Applying this theorem, we arrive at

1 = dimR
H(ρ(−1, c

2
,c2)(B)) =

1

2
dimH

H(ρ(−c,− c2

2
,1)
(B)) a.e. c ∈ [c0, c0 + 1/4] (2.12)

where in the second equality we use the property that the Heisenberg Hausdorff dimension
for any subset in t-axis is twice as its Euclidean Hausdorff dimension.
Combining (2.10), (2.11) and (2.12), we arrive at (2.7). This completes the sketch of the

main ideas in the proof of Theorem 1.12.

3. Dimension of Circular Furstenberg Sets

In this section, we review the contents in papers [B] and [C]. We aim to sketch the proofs
of Theorem 1.8, Theorem 1.9 and Theorem 1.10.
One common point of the above three theorems is that these theorems are all proved

using a δ-discretized version of circular Furstenberg sets for arbitrary small δ > 0. However,
in Theorem 1.8 and Theorem 1.9, the δ-discretized version of circular Furstenberg sets we
used is defined using the so called Katz-Tao (δ, s)-sets introduced by Katz-Tao in [15] while
in Theorem 1.10, we use another type of (δ, s)-sets introduced by Orponen-Shmerkin in
[23]. We give the definitions.

Definition 3.1 (Katz-Tao (δ, s, C)-set). Let s ≥ 0, C > 0, and δ > 0. A bounded
δ-separated set A ⊂ Rn is called a Katz-Tao (δ, s, C)-set if for all r ∈ [δ, 1] and x ∈ Rn,

|A ∩B(x, r)| ⩽ C
(r
δ

)s
.
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Definition 3.2 ((δ, s, C)-set). Let s ≥ 0, C > 0, and δ > 0. A bounded δ-separated set
A ⊂ Rn is called a (δ, s, C)-set if for all r ∈ [δ, 1] and x ∈ Rn,

|A ∩B(x, r)| ≤ Crs|A|.
Here | · | denotes the cardinality of a set and we note that the constant C in the above

two definitions can depend on δ and when C is absolute we also write Katz-Tao (δ, s)-set
or (δ, s)-set instead.

Remark 3.3. Note that if a Katz-Tao (δ, s)-set A has cardinality |A| = Cδ−s for some
absolute constant C > 0, then A is also a (δ, s)-set and vice versa. Indeed, in the proof
of the three theorems, we finally need to assume a (δ, s)-set A has cardinality |A| = Cδ−s

though in many middle steps we only need properties of A being Katz-Tao (δ, s)-set or
(δ, s)-set. Thus, in this introduction, we always assume both types of (δ, s)-set A satisfy
|A| = Cδ−s and there is no need to distinguish two concepts of (δ, s)-set.

For p = (x, r) ∈ R2 × (0,∞) (typically p ∈ D where D is defined in (3.1)), we write
S(p) = S(x, r) for the circle centred at x and radius r > 0. The notation Sδ(p) refers to
the δ-annulus around S(p), thus Sδ(p) = {w ∈ R2 : dist (w, S(p)) ≤ δ}.
Definition 3.4. Let s, t ∈ (0, 1], C > 0, and δ ∈ 2−N := {2−k : k ∈ N}. A (δ, s, t, C)-
configuration is a set Ω ⊂ R5 such that

Ω :=
⋃

p∈P
(p, E(p)).

Here,

(i) P := πR3(Ω) is a non-empty (δ, t, C)-subset of

D := {(x, r) ∈ R2 × [0,∞) : |x| ≤ 1
4
and r ∈ [1

2
, 1]}, (3.1)

where πR3(x1, . . . , x5) = (x1, x2, x3);
(ii) E(p) := {v ∈ R2 : (p, v) ∈ Ω} is a non-empty (δ, s, C)-subset of S(p) for all p ∈ P .

Additionally, we require that the sets E(p) have constant cardinality: there exists M ≥ 1
such that |E(p)| = M for all p ∈ P .

Remark 3.5. The reduction to only considering the parameter set P in the domain D in
(3.1) is standard (see, for example, Remark 2.1 in [B] for an explanation). This reduction
already appeared in [33] by Wolff.

The following theorem reveals why we can estimate the Hausdorff dimension of a circular
Furstenberg set by discretizing the set at a fixed scale δ.

Theorem 3.6. Let s ∈ (0, 1], t ∈ (0, 3] and α ∈ (0, 2]. If for every κ > 0, there exist
ϵ(κ), δ0(κ) ∈ (0, 1

2
] such that for all δ ∈ (0, δ0] and all (δ, s, t, δ−ϵ)-configurations Ω

|F|δ ≥ δκ−α,

where
F :=

⋃

p∈P
E(p),
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and we recall |F|δ refers to the δ-covering number of F, then every circular (s, t)-Furstenberg
set F has Hausdorff dimension at least α.

Note that in paper [C], the symbol |F|δ refers to the number of dyadic δ-cubes intersecting
F, which is comparable to the δ-covering number of F. The choice of using dyadic δ-cubes
instead of δ-balls will make it easier to formulate several proofs in paper [C].
Thanks to Theorem 3.6, we will focus on providing a lower bound of |F|δ associated with

an arbitrary configuration Ω. Indeed, the proof of Theorem 3.6 is standard (see the proof
Theorem 1.2 in [C]) and this argument has already been employed to study the Hausdorff
dimension of linear Furstenberg sets, for example, in [12].
Specifically, in Theorem 1.8, we need to show |F|δ ≥ δκ−(s+t/3). To this end, we adapt

the approach for showing the lower bound for the Hausdorff dimension of linear (s, 1)-
Furstenberg sets used by Wolff in [33] together with some geometric observations from
planar geometry. However, the proofs of |F|δ ≥ δκ−[(2t+1)s−t] in Theorem 1.9 and |F|δ ≥
δκ−(s+t) in Theorem 1.10 differ from the above method significantly but share some similar
ideas with each other. In fact, we will further transfer the proofs of these two theorems
to control the upper bound of a multiplicity function. This idea was first used by Schlag
[26]. In Theorem 1.9, we will directly apply a result involving upper bounds of multiplicity
functions for whole circles by Käenmäki-Orponen-Venieri in [19], which is further based on
the ideas of Schlag [26]. In Theorem 1.10, we deeply investigate the intersections and other
properties of circles and obtain a better upper bound for the multiplicity function, which
leads to the sharp lower bound for circular (s, t)-Furstenberg sets when 0 < t ⩽ s ⩽ 1.

3.1. Outline of Theorem 1.8. Our goal is to show |F|δ ≳ δ−(s+t/3) where F = ∪p∈PE(p)
is induced by an arbitrary (δ, s, t)-configuration Ω. This is slightly inaccurate compared
with Theorem 3.6 since we omit the parameters κ and ϵ. However, it is enough to illustrate
the ideas behind the proof. Let I be the family of δ-balls covering F and |I| = |F|δ. We
recall that Ω being a (δ, s, t)-configuration implies that |P | = |πR3(Ω)| ∼ δ−t and E(p) is
contained in the circle S(p) with |E(p)| ∼ δ−s for all p ∈ P .
We begin by recalling the fact that three non-collinear points determine a unique circle in

R2. Inspired by this fact, we could deduce that three well-separated δ-balls (Bi, Bj, Bk) ∈ I

“determine a unique circle” S(p) with p ∈ P . Here the meaning of “determine a unique
circle” is understood in the way that there are ≲ 1 many p ∈ P such that

S(p) ∩Bl ̸= ∅, l = i, j, k, (3.2)

or equivalently, those points p ∈ P such that the circles S(p) enjoying (3.2) belong to a
Cδ-ball BCδ ∩ P for an absolute constant C ⩾ 1. Furthermore, this fact can be utilised to
identify the circle S(p) with the triple (Bi, Bj, Bk). Indeed, the above operations are stim-
ulated by Wolff’s argument [33] to show that the lower bound for the Hausdorff dimension
of linear (s, 1)-Furstenberg sets is 1/2 + s in (1.1) where 1/2 arises from the fact that two
points determine a unique line in the plane. For circular (s, 1)-Furstenberg sets, we merely
obtain the lower bound 1/3 + s due to the fact that three points determine a circle.
In the meantime, since |E(p)| ∼ δ−s for all p ∈ P , we need, roughly speaking, ∼ δ−s

many δ-balls in I to cover E(p). Hence we could use the triples (Bi, Bj, Bk) ∈ I × I × I
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to represent each E(p) where E(p) ∩ Bl ̸= ∅ for l = i, j, k. Then each E(p) leads to
δ−s(δ−s−1)(δ−s−2) ∼ δ−3s many distinct triples (Bi, Bj, Bk) ∈ I×I×I on behalf of three
distinct δ-balls in I and as a result we get a total number of |P | × δ−3s = δ−3s−t many
distinct triples. Consequently, since all these triples belong to I× I× I, we can infer that
|I|3 ≳ δ−3s−t, which gives |F|δ = |I| ≳ δ−s−t/3 as desired.

3.2. Outline of Theorem 1.9 and Theorem 1.10. As mentioned above, the proofs of
these two theorems are based on some good control of the upper bound of the multiplicity
function associated with a configuration Ω.

Definition 3.7 (Total multiplicity function). Fix an arbitrary (δ, s, t)-configuration Ω. For
w ∈ R2, define

mδ(w | Ω) := |{(p, v) ∈ Ω : w ∈ B(v, δ)}|. (3.3)

We briefly explain the meaning of (3.3). By the definition of Ω, we know for each p ∈ P ,
E(p) is a (δ, s)-set. In particular, E(p) ⊂ S(p) is δ-separated. Thus for each p, there are
at most ≲ 1 many v ∈ E(p) such that w ∈ B(v, δ). This observation gives

|{v ∈ E(p) : w ∈ B(v, δ)}| ≲ 1 p ∈ P.

As a result,

mδ(w | Ω) ⩽
∑

p∈P
|{v ∈ E(p) : w ∈ B(v, δ)}| ≲ |P | ≲ δ−t.

Hence mδ(w | Ω) can be interpreted as, up to an absolute constant, the number of circles
S(p) with p ∈ P such that the associated set E(p) ⊂ S(p) is δ close to w.
Again, let I be the family of δ-balls covering F and |I| = |F|δ. In fact, since one needs

at least ∼ δ−s δ-balls in I to cover E(p) for each p ∈ P , if each δ-ball in I only intersects
one E(p) for some p ∈ P , then I consists of at least δ−s|P | ∼ δ−s−t many δ-balls. However,
this may not be the case. In general, if each δ-ball in I intersects no more than δ−κ

(0 < κ ⩽ t) many sets from the family {E(p)}p∈P , then we can deduce that I consists of

at least δ−s|P |
δ−κ ∼ δ−(s+t−κ) many δ-balls.

The above discussion reveals that a smaller κ will lead to a larger cardinality of |I|, which
further gives a better lower bound for the Hausdorff dimension of the circular Furstenberg
sets. Indeed, if we can show

mδ(w | Ω) ≲ δ−κ w ∈ R2, (3.4)

then letting w be the center in each δ-ball of I, we deduce that each δ-ball in I intersects
no more than δ−κ many sets from the family {E(p)}p∈P and the bound |I| ≳ δ−(s+t−κ).
This is the idea of transferring the estimate to the multiplicity function. However, it is
not necessary for (3.4) to be true for all w ∈ R2. In reality, instead of (3.4), in the proof
of Theorem 1.9 and Theorem 1.10, we will show two weaker versions of (3.4), which could
guarantee the desired lower bound for |I|.
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3.2.1. Outline of Theorem 1.9. Recall from Theorem 3.6 that the desired bound for |I| is
δ−[(2t+1)s−t] = δ−s−t

δt(2−2s) . This indicates that the correct choice of κ is κ = t(2−2s) > 0 where
we recall the range of s in this theorem is 1/2 ⩽ s ⩽ 1. And the weaker version of (3.4) in
this proof is the following: for each (δ, s, t)-configuration Ω, there is a (δ, s, t)-configuration
G ⊂ Ω such that |G| ⩾ |Ω|/4 and for each v ∈ R2 with (p, v) ∈ G, we have that

mδ(v | Ω) ≲ δ−κ−ηt = δt(2−2s)−ηt (3.5)

holds for any 0 < η ≪ 1. Moreover, writing G = ∪p∈P̄{p} × Ē(p) where Ē(p) ⊂ E(p) for
each p ∈ P̄ := πR3(G), we have

|P̄ | ⩾ 1

2
|P | and |Ē(p)| ⩾ 1

2
|E(p)| p ∈ P̄ . (3.6)

Let Ī be the subfamily of I which covers ∪p∈P̄ Ē(p). We have |Ī| ⩽ |I|. On the other hand,

(3.5) will imply |Ī| ≳ δ−s−t

δt(2−2s) = δ−[(2t+1)s−t]. Hence we obtain the desired lower bound for
|I|.
We are left to show the existence of (δ, s, t)-configuration G ⊂ Ω satisfying the above

conditions. Indeed, this is an application of [19, Lemma 5.1], which is a variant of Schlag’s
weak type inequality [26, Lemma 8] and the main lemma in [32] by Wolff. Since in this
introductory part we aim to avoid some technical parts of the proof, we will formulate [19,
Lemma 5.1] in a simplified and discretized version as below.

Lemma 3.8. Fix t ∈ (0, 1], δ > 0, η > 0, and P ⊂ D be a (δ, t)-set. The for any
(δ, 1, t)-configuration Ω with πR3(Ω) = P and λ ∈ (0, 1], there is a set P̄ = P̄ (η, δ, λ) ⊂ P
with

|P \ P̄ (η, δ, λ)| < δηt/3|P |
such that the following holds for all p ∈ P̄ (η, δ, λ):

|Sδ(p) ∩ {w : mδ(w | Ω) ⩾ δ−ηtλ−2t}| ⩽ λ|Sδ(p)|. (3.7)

Here we remark that Lemma 3.8 is also used to prove Theorem 2.1 in the previous
section. Hence it is ultimately involved in the proof of Theorem 1.12.
Lemma 3.8 states that if we choose η ≪ 1, then for a (δ, t)-set P ⊂ D representing a

family of circles in R2, we could always find a subfamily P̄ consisting almost all the circles
in P such that for all the circles S(p) in this subfamily, the points w in the δ-neighbourhood
of S(p) (i.e. w ∈ Sδ(p)) with the property that mδ(w | Ω) ⩾ δ−ηtλ−2t has λ proportion in
Sδ(p) in the sense of 2-dimensional Lebesgue measure.
However, there is no direct information involving E(p). Since for a (δ, s, t)-configuration

Ω, E(p) is a (δ, s)-set for all p ∈ P with E(p) ∼ δ−s, we know the δ-neighbourhood Eδ(p)
of E(p) has measure |Eδ(p)| ⩾ c1δ

2−s. Moreover, since |Sδ(p)| ⩽ c0δ for all p ∈ P , by
choosing λ = c1δ

1−s/(2c0), (3.7) becomes

|Sδ(p) ∩ {w : mδ(w | Ω) ≳ δ−ηtδ−2t(1−s)}| ⩽ λ|Sδ(p)| ⩽ λc0δ ⩽ c1δ
2−s/2 ⩽ |Eδ(p)|/2.

Here c0 and c1 are two absolute constants. This further gives

|Eδ(p) ∩ {w : mδ(w | Ω) ≳ δ−ηtδ−2t(1−s)}| ⩽ |Eδ(p)|/2



18 INTRODUCTION

and hence
|Eδ(p) ∩ {w : mδ(w | Ω) ≲ δ−ηtδ−2t(1−s)}| ⩾ |Eδ(p)|/2.

Now, form a (δ, s, t)-configuration G from Ω by letting πR3(G) = P̄ = P̄ (η, δ, λ) with
λ = c1δ

1−s/(2c0) and Ē(p) is a (δ, s)-set in Eδ(p) ∩ {w : mδ(w | Ω) ≲ δ−ηtδ−2t(1−s)} with
E(p) ∼ δ−s for each p ∈ P . We arrive at the desired configuration G and conclude the
sketch of the proof of Theorem 1.9.

3.2.2. Outline of Theorem 1.10. In this theorem we need to show |I| ∼ δ−(s+t). Indeed,
similar to the reasoning in the proof of Theorem 1.9, the following weaker estimate will
be enough to conclude that |I| ≳ δ−(s+t): for any κ > 0, 0 < δ < δ0(κ) and each (δ, s, t)-
configuration Ω, there is a (δ, s, t)-configuration G ⊂ Ω such that |G| ≳κ |Ω| and for each
v ∈ R2 with (p, v) ∈ G, we have

mδ(v | G) ≲ δ−κ. (3.8)

Since we only study the range in 0 < t ⩽ s ⩽ 1, it turns out that if we can show the
above statement for all (δ, s, s)-configurations Ω, then the above statement holds for all
(δ, s, t)-configuration Ω. Thus in the following, we only consider a (δ, s, s)-configurations
Ω and write (δ, s)-configurations instead.
Note that we need to show (3.8) for any κ > 0 arbitrarily small. This is much stronger

than the previous theorem where we choose κ = t(2−2s) > 0 as a fixed number. Therefore,
we have to investigate more deeply the factors that influence the value of the multiplicity
function. Recall that the multiplicity function mδ(w | G) counts the number of circles S(p)
such that the associated set E(p) ⊂ S(p) is δ close to w. This motivates us to study the
intersection of δ-neighbourhoods of circles in the plane, which has already been done by
Wolff when studying circular Kakeya sets.
In fact, the shape of the intersection Sδ(p) ∩ Sδ(q), p = (x, r), q = (x′, r′) ∈ D ⊂

R2 × (0,∞) is determined by the following two quantities.

∆(p, q) := ||x− x′| − |r − r′|| and |p− q| := |x− x′|+ |r − r′|. (3.9)

Here ∆(p, q) is called the tangency parameter and |p− q| is called the distance parameter.
Intuitively, if ∆(p, q) = 0, then the circles S(p), S(q) are internally tangent, and if ∆(p, q) ∼
1, the circles S(p), S(q) intersect transversally. We recall the following definition and lemma
by Wolff.

Definition 3.9 ((δ, σ)-rectangle). Given p ∈ D and v ∈ S(p), we call Rδ
σ(p, v) a (δ, σ)-

rectangle that is the intersection of the δ-annulus Sδ(p) with the disc B(v, σ) of radius σ,
that is,

Rδ
σ(p, v) = Sδ(p) ∩B(v, σ).

For any C > 0, we define

CRδ
σ(p, v) := RCδ

Cσ(p, v) = SCδ(p) ∩B(v, Cσ).

We also write R(p, v) instead of Rδ
σ(p, v) if we do not aim to emphasis the parameter δ and

σ.

In [33, Lemma 3.1], Wolff showed that
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Lemma 3.10. For p, q ∈ D, Sδ(p) ∩ Sδ(q) consists of at most two connected components

and |Sδ(p) ∩ Sδ(q)| ≲ δ2/
√
(δ +∆(p, q))(δ + |p− q|). Moreover, Sδ(p) ∩ Sδ(q) can be

covered by boundedly many (δ, δ/
√

(δ +∆(p, q))(δ + |p− q|))-rectangles.
In the following, we will define the partial multiplicity functionsmδ,λ,t. We first give some

motivations for defining them. Heuristically, given p ∈ P , let P1 := {q ∈ P : ∆(p, q) =
0 and |p− q| ∼ 1}. Then by Lemma 3.10, for any q ∈ P1, we know |Sδ(p) ∩ Sδ(q)| ∼ δ3/2.
Thus if E(p) ⊂ Sδ(p) ∩ Sδ(q) is a (δ, 1)-set, then there exists ≲ δ−1/2 many v ∈ E(p) such
that q ∈ P1 may make one contribution to the total multiplicity function mδ(v | G), which
means that there exists some w ∈ E(q) such that v ∈ B(w, δ) (recalling (3.3)).
However, if we consider the set P2 := {q ∈ P : ∆(p, q) ∼ 1 and |p − q| ∼ 1}, then

|Sδ(p) ∩ Sδ(q)| ∼ δ2. In this case, there exists ≲ 1 many v ∈ E(p) such that q ∈ P2 may
make a contribution to the total multiplicity function mδ(v | G).
This observation motivates us to count the total multiplicity function mδ(v | G) sepa-

rately by using the following partial multiplicity functions (this is a vague version and a
more detailed version will be given later). For (p, v) ∈ G, we write

mδ,λ,t((p, v) | G) := |{(p′, v′) ∈ G : ∆(p, p′) ∼ λ, |p− p′| ∼ t and |v − v′| ⩽ 2δ}|.
Here and in the following t ∈ (δ, 1] always denotes the value of the distance parameter
instead of the t in the (δ, s, t)-configuration and there will be no ambiguity since we only
discuss (δ, s)-configurations now.
Usually, for example, in the proof of (3.7) in Lemma 3.8, one may choose the series of

partial multiplicity functions mδ,λ,t dyadically, where λ, t ∈ [δ, 2δ, · · · , 1]. Here, by showing

mδ,λ,t((p, v) | G) ≲ δ−κ

for each pair (λ, t), it also seems possible to conclude

mδ(v | G) ⩽
∑

λ,t

mδ,λ,t((p, v) | G) ≲ (log(1/δ))2δ−κ ≤ δ−κδ−κ = δ−2κ

provided that δ ≪ 1 such that (log(1/δ))2 < δ−κ.
However, this is not the series of partial multiplicity functions we adopt in reality. We

explain the reason below (in a heuristic way). Note that we need to prove thatmδ,λ,t((p, v) |
G) ≲ δ−κ simultaneously holds for all pairs (λ, t) and (p, v) in some configuration G with
|G| ∼κ |Ω|. In reality, we will first show mδ,λ1,t1((p, v) | G1) ≲ δ−κ holds for a fixed
pair (λ1, t1) and for all (p, v) in some configuration G1 with |G1| ∼ |Ω|/2. And then
show mδ,λ2,t2((p, v) | G2) ≲ δ−κ holds for the second pair (λ2, t2) and for all (p, v) in
some configuration G2 with |G2| ∼ |G1|/2. Since there are ∼ N := (1/ log δ)2 many
pairs, after repeating this process for all pairs (λ, t), we will obtain a configuration GN

with |GN | ∼ (1/2)N |Ω| ∼ (1/2)(1/ log δ)
2|Ω| ⩽ 1 for δ ≪ 1. Thus by this choice of partial

multiplicity functions the final configurationGN would have cardinality too small compared
with Ω.
Instead, we choose the partial multiplicity functions as follows. Let 0 < ϵ ≪ κ be suffi-

ciently small. Let Λ ⊂ [δ, 1] be a finite set of cardinality |Λ| ∼ 1/ϵ which is multiplicatively
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δ−ϵ-dense in the following sense: if λ ∈ [δ, 1] is arbitrary, then there exists λ ∈ Λ with
λ ≤ λ ≤ δ−ϵλ. Next, for every λ ∈ Λ fixed, we associate a finite set T(λ) ⊂ [λ, 1] of car-
dinality |T(λ)| ∼ 1/ϵ which is multiplicatively δ−ϵ-dense on the interval [λ, 1] in the same
sense as above: if t ∈ [λ, 1] is arbitrary, then there exists t ∈ T(λ) such that t ≤ t ≤ δ−ϵt.
For each λ ∈ Λ and t ∈ T := ∪λ∈ΛT(λ) and (p, v) ∈ G, define the partial multiplicity
function

mδ−ϵ

δ,λ,t((p, v) | G) := |{(p′, v′) ∈ G : ∆(p, p′) ∈ [δϵλ, λ], |p− p′| ∈ [δϵt, t], |v − v′| ⩽ δ1−ϵ}|.
(3.10)

Thus there are ∼ (1/ϵ)2 many partial multiplicity functions. And in the following we will

find a configuration G with |G| ∼ (1/2)(1/ϵ)
2|Ω| ≳ δϵ|Ω| ≳ δκ|Ω| by choosing δ < δ0(ϵ) so

small such that
mδ−ϵ

δ,λ,t(ω | G) ⩽ δ−κ, ω ∈ G, λ ∈ Λ, t ∈ T. (3.11)

And ultimately, we have

mδ(ω | G) ⩽
∑

λ∈Λ,t∈T
mδ−ϵ

δ,λ,t((p, v) | G) ≲ (1/ϵ)2δ−κ ≤ δ−ϵδ−κ = δ−2κ

with δ−2κ instead of δ−κ in (3.8), which does no harm to conclude the proof.
We remark that the partial multiplicity function in (3.10) is still not the one used in

the actual proof in [C]. The precise one is in Definition 5.29 in [C] and would need extra
notions. However, (3.10) is enough to give the rough idea for the following proof.
Our final goal is to show (3.11). Since the final configurationG has cardinality |G| ∼κ |Ω|,

we will not distinguish G and Ω in the following and keep using Ω. Also, since κ > 0 can
be arbitrarily small in (3.11), we will show mδ−ϵ

δ,λ,t(ω | Ω) ≲ 1 to simplify the presentation.
From now on, we fix ϵ > 0 and choose δ ⩽ δ0 such that

1/ϵ < δ−ϵ
0 . (3.12)

We remark that the actual choice of parameters is more complicated than this and we refer
to Section 7.1 in [C]. Since ϵ > 0 is fixed, in the following, for δ ∈ (0, 1], we remind the
reader that the notation A ≲ B means

A ≤ δ−CϵB.

for some absolute constant C ≥ 1 and change A ≳ B and A ∼ B correspondingly.
The two main ingredients of the proof will be an application of Wolff’s famous tangency

bound of circles in [34] and an induction process in an increasing order on λ ∈ Λ for each
t ∈ T fixed. Since for different t ∈ T, the proof will be independent, we will concentrate
on the case t = 1 in the following and write mδ−ϵ

δ,λ instead of mδ−ϵ

δ,λ,1 for simplicity.

Step 1. We show the base case λ = δ, that is

mδ−ϵ

δ,δ (ω | Ω) ≲ 1 (3.13)

(corresponding to Section 5 in [C]). This will be an application of Wolff’s tangency bound,
which, roughly speaking, provides an upper bound of total tangencies of a given family
of circles. To introduce this bound, we need several notions. Recall that the intersection
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of two annuli Sδ(p) and Sδ(q) with ∆(p, q) = λ and |p − q| ∼ 1 can be localized to a

(δ, σ)-rectangle Rδ
σ with σ = δ/

√
λ. Thus it is possible to transfer counting the total (λ, 1)-

tangencies of a given family of circles to counting the total number of (δ, δ/
√
λ)-rectangles

associated to this family of circles. However, to properly count the (δ, δ/
√
λ)-rectangles,

we need the following two notions of rectangles introduced by Wolff.
To introduce the definitions, we make a further reduction that in the remaining part of

this subsection, the parameter set P ⊂ D is P = W ∪B where

W = P ∩B(p0, δ
2ϵ) and B = P ∩ [B(p0, 1) \B(p0, δ

ϵ)] (3.14)

for some p0 ∈ D. We note that W and B are δϵ separated, that is, dist (W,B) ∼ δϵ. This
property will be needed in the following proof. The set W ∪ B is a special kind of almost
1-bipartite sets (see Definition 4.51 in [C]) and for general P , one can always construct a
proper bipartite set W ∪B inside P .
To simplify to computation in this introduction, we also assume

|B| ≲ |W | ∼ δ−ϵ. (3.15)

Definition 3.11 (Type). Let 0 < δ ≤ σ ≤ 1, ϵ > 0. Let P = W∪B ⊂ D. Form,n ≥ 1, we

say that a (δ, σ)-rectangle R ⊂ R2 has type (≥ m,≥ n)ϵ relative to (W,B) if R ⊂ Sδ1−ϵ
(p)

for at least m points p ∈ W , and R ⊂ Sδ1−ϵ
(q) at least n points q ∈ B.

Definition 3.12 (Comparability). Given a constant C ≥ 1, we say that two (δ, σ)-
rectangles R1, R2 are C-comparable if there exists a third (δ, σ)-rectangle R = Rδ

σ(p, v)
such that R1, R2 ⊂ CR. If no such rectangle R exists, we say that R1 and R2 are C-
incomparable.

We give an example to heuristically explain the meaning of the above definitions.

Figure 1. Rectangles.
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Example 3.13. In Figure 1 (a), the family of four circles S(pi), i = 1, 2, 3, 4 are tangent at
one point, so there is only one tangency caused by these four circles. We have ∆(pi, pj) = 0
for all pairs i, j = 1, 2, 3, 4. By Lemma 3.10 (strictly speaking, Lemma 3.1 in [33]), the

intersection of four annuli Sδ(pi) can be covered by a (Cδ,C
√
δ)-rectangle R0. We find that

any (δ,
√
δ)-rectangle R contained in R0 can represent this tangency formed by these four

annuli. By Definition 3.12, any two (δ,
√
δ)-rectangles contained in R0 are C-comparable.

Thus there is only one C-incomparable (δ,
√
δ)-rectangle, which coincides with the number

of tangency caused by these four circles. Moreover, if we assume p1, p3 ∈ W and p2, p4 ∈ B,
the situation in Figure 1 (a) can be described as one C-incomparable rectangle of type
(⩾ 2,⩾ 2) relative to W and B.
In Figure 1 (b), at the tangent point, the circles S(p1) and S(p2) are tangent and the

circles S(p3) and S(p4) are tangent, i.e. ∆(p1, p2) = 0 and ∆(p3, p4) = 0. But for all other

pairs 1 ⩽ i < j ⩽ 4, ∆(pi, pj) ∼ 1. We can naturally associate a (δ,
√
δ)-rectangle R12

and a (δ,
√
δ)-rectangle R34 to represent Sδ(p1) ∩ Sδ(p2) and Sδ(p3) ∩ Sδ(p4) respectively.

However, for an absolute constant C > 1 it is not possible that one can use one (Cδ,C
√
δ)-

rectangle R to represent Sδ(p1) ∩ Sδ(p2) and Sδ(p3) ∩ Sδ(p4) simultaneously. This shows
that there are two tangencies caused by the pairs (p1, p2) and (p3, p4) respectively. Also,

the (δ,
√
δ)-rectangles R12 and R34 are C-incomparable for some absolute constant C. Thus

there are two C-incomparable (δ,
√
δ)-rectangles equal to the number of tangencies caused

by the four circles. Moreover, if we assume p1, p3 ∈ W and p2, p4 ∈ B, the situation in
Figure 1 (b) can be described as two incomparable rectangles of type (⩾ 1,⩾ 1) relative
to W and B.

We are ready to state the “ϵ”-variant of Wolff’s tangency bound for (δ,
√
δ)-rectangles,

which is a simplified version of Lemma 4.53 in [C].

Lemma 3.14. For every ϵ > 0, there exists δ0 > 0 such that the following holds for all
δ ∈ (0, δ0]. Let Rδ√

δ
be a family of pairwise 100-incomparable (δ,

√
δ)-rectangles of type

(≥ m,≥ n)ϵ relative to (W,B), where 1 ≤ m ≤ |W | and 1 ≤ n ≤ |B|. Then,

|Rδ√
δ
| ≲

( |W ||B|
mn

)3/4

+ less important terms. (3.16)

This lemma is the same as [33, Lemma 1.4] by Wolff, except that it allows for constants
of form “δ−ϵ” in Definition 3.11.
Now, in an informal way, we show mδ−ϵ

δ,δ (ω | Ω) ≲ 1 using Lemma 3.14 by contradiction.
We assume there exists κ0 ≫ ϵ such that for all ω = (p, v) ∈ Ω,

mδ−ϵ

δ,δ (ω | Ω) = |{(p′, v′) ∈ Ω : ∆(p, p′) ∈ [0, δ], |p− p′| ∈ [δϵ, 1], |v − v′| ⩽ δ1−ϵ}| = δ−κ0 .
(3.17)

The idea is to construct a 100-incomparable family of (δ,
√
δ)-rectangles of type (≥ m,≥ n)ϵ

relative to (W,B) with m ⩽ n = δ−κ0 that violates (3.16).
Recalling that Ω is a (δ, s)-configuration with P = πR3(Ω), from Definition 3.4, we know

that for each p ∈ P , E(p) is a (δ, s)-set with |E(p)| ∼ δ−s. Since a (δ,
√
δ)-rectangle
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can contain at most ∼ (
√
δ/δ)s = 1/δs/2 many points in E(p), we can associate at least

∼ δ−s/(1/δs/2) = δ−s/2 many 100-incomparable (δ,
√
δ)-rectangles {R(p, i)}i=1,··· ,δ−s/2 on

each S(p), p ∈ W . See Figure 2 for an illustration.

Figure 2. The incomparable family {R(p, i)}i=1,··· ,δ−s/2 .

For each R(p, i), we investigate its type relative to W and B. First, we show R(p, i) has
type n = δ−κ0 relative to B. To this end, fix R(p, i) and choose a point v ∈ E(p)∩R(p, i).
Recalling the definition of type in Definition 3.11, it suffices to find the number of points
q ∈ B such that R(p, i) ⊂ Sδ1−ϵ

(p) ∩ Sδ1−ϵ
(q). Applying (3.17) to (p, v), we know that for

the pair (p, v), there are δ−κ0 many points (p′, v′) ∈ Ω such that |v − v′| ⩽ δ1−ϵ. Since
v′ ∈ E(p′) and E(p′) is δ-separated, we know for each p′, there are ≲ 1 many points in
E(p′) such that (p′, v′) satisfies (3.17). This further implies there are δ−κ0 many points
p′ ∈ P such that

∆(p, p′) ∈ [0, δ], |p− p′| ∈ [δϵ, 1]. (3.18)

Recalling the choice of the sets W and B in (3.14) and noting p ∈ W , we deduce that the
points p′ satisfying (3.18) are contained in B. Denote the set of points p′ satisfying (3.18)

by BR(p,i). Thus (3.18) together with Lemma 3.10 implies that R(p, i) ⊂ Sδ1−ϵ
(p)∩Sδ1−ϵ

(q)
for all q ∈ BR(p,i). As a result, R(p, i) has type

⩾ n = |BR(p,i)| = δ−κ0 (3.19)

relative to B. For an illustration, see Figure 3 where we recall from (3.14) that, W is
contained in the ball B(p0, δ

2ϵ) colored yellow and B is contained in the annulus B(p0, 1) \
B(p0, δ

ϵ) colored grey in Figure 3.
Next, we show R(p, i) has type m ⩽ δ−κ0 relative to W . Similarly as before, it suffices to

find the number of points u ∈ W such that R(p, i) ⊂ Sδ1−ϵ
(u). From the above paragraph,

we can find q ∈ BR(p,i) such that R(p, i) ⊂ Sδ1−ϵ
(q) and w ∈ E(q) such that w ∈ δ1−ϵR(p, i)

(since v ∈ R(p, i) and by (3.17), |v − w| ⩽ δ1−ϵ). Hence it suffices to find the number of
points in u ∈ W such that

R(p, i) ⊂ Sδ1−ϵ

(u) ∩ Sδ1−ϵ

(q). (3.20)
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Figure 3. The type of R(p, i) relative to B.

Also if u satisfies (3.20), then |Sδ1−ϵ
(u)∩Sδ1−ϵ

(q)| ⩾ |R(p, i)| ∼ δ3/2. By u ∈ W and q ∈ B
implying |u − q| ∼ 1 and Lemma 3.10, we know a neccessary condition for u satisfying
(3.20) is that ∆(u, q) ≲ δ. Applying (3.17) to (q, w) and by a similar reasoning as (3.18),
we obtain that there are δ−κ0 many points u ∈ P such that

∆(q, u) ∈ [0, δ], |q − u| ∈ [δϵ, 1]. (3.21)

Hence u ∈ W satisfying (3.20) implies u enjoying (3.21). See Figure 4 for an illustration.

Figure 4. The type of R(p, i) relative to W .

By the upper bound in (3.17), we can conclude that there are ⩽ δ−κ0 many u ∈ W such

that R(p, i) ⊂ Sδ1−ϵ
(u) ∩ Sδ1−ϵ

(q). Thus R(p, i) has type m ⩽ δ−κ0 relative to W . Here,
for simplicity, we assume that m is independent of the choice among R(p, i).

To summarize, we have constructed a family R0 of ∼ |W |δ−s/2 many (δ,
√
δ)-rectangles

{R(p, i)}p∈W,i=1,··· ,δ−s/2 and for each rectangle, there are at most m circles S(u) with u ∈ W
such that

R(p, i) ⊂ Sδ1−ϵ

(u) ∩ Sδ1−ϵ

(p).



INTRODUCTION 25

For each u, if there exists R(u, i(u)) ∈ R0 such that

R(u, i(u)) ⊂ Sδ1−ϵ

(u) ∩ Sδ1−ϵ

(p), (3.22)

then R(p, i) and R(u, i(u)) may be 100-comparable. On the other hand, for each u, since
by our construction, {R(u, i)}i=1,··· ,δ−s/2 is a 100-incomparable family and diamR(u, i) ∼
diam(Sδ1−ϵ

(u) ∩ Sδ1−ϵ
(p)), we know there are at most ∼ 1 rectangles R(u, i(u)) satisfying

(3.22). Therefore, for each R(p, i), there are at most m rectangles in R0 that are 100-
comparable to it. Thus we can find a subfamily R ⊂ R0 of 100-incomparable rectangles
with

|R| ∼ |W |δ−s/2

m
.

Recalling (3.15), we have |B| ≲ |W | ∼ δ−s. Also, we recall that each R(p, i) has type
⩾ n = δ−κ0 relative to B by (3.19). Thanks to m ⩽ n = δ−κ0 and Lemma 3.14, we deduce

|W |δ−s/2

m
≲
( |W ||B|

mn

)3/4

, (3.23)

which implies

1 ≲ δκ0/2.

We get a contradiction and this completes the heuristic proof of showing (3.13), that is,
mδ−ϵ

δ,δ (ω | Ω) ≲ 1.

Step 2. Recall Λ = {δ = λ1, λ2, · · · , λ|Λ|} is the multiplicatively δ−ϵ-dense set defined

above (3.10). We show mδ−ϵ

δ,λk
(ω | Ω) ≲ 1 for all λk ∈ Λ (corresponding to Section 7.6 in

[C]). By induction, assuming

mδ−ϵ

δ,λl
(ω | Ω) ≲ 1 l = 1, · · · , k − 1, (3.24)

we show mδ−ϵ

δ,λk
(ω | Ω) ≲ 1. From Step 1, one can expect that a good upper bound for the

cardinality of incomparable (δ, δ/
√
λ)-rectangles would be useful to conclude the proof.

Actually, we obtain the following bound (a simplified unrigorous version of Theorem 6.5
in [C]). Recall W and B are (δ, s)-sets defined in (3.14) and Ω is the (δ, s)-configuration
with parameter set P = W ∪B.

Theorem 3.15. For every ϵ > 0, there exists δ0 > 0 such that the following holds for all
δ ∈ (0, δ0]. For δ ⩽ λ ⩽ 1, assume

mλ−ϵ

λ,λ (ω | Ω) ≲ 1, ω ∈ Ω. (3.25)

where Ω ⊂ Ω is a properly chosen (λ, s)-configuration. Let Rδ
δ/

√
λ
be a family of pairwise

100-incomparable (δ, δ/
√
λ)-rectangles of type (≥ m,≥ n)ϵ relative to (W,B), where 1 ≤

m ≤ |W | and 1 ≤ n ≤ |B|. Then,

|Rδ
δ/

√
λ
| ≲

( |W ||B|
mn

)3/4(
λ

δ

)s/2

+ less important terms. (3.26)



26 INTRODUCTION

Here the (λ, s)-configuration Ω ⊂ Ω can be roughly considered as the maximal λ-
separated set in Ω. In the following the proof, we will sketch the construction of Ω from
Ω. We also remark that the assumption (3.25) is not unrealistic, since by Step 1 (letting
λ = δ in (3.13)), one can always find (λ, s)-configurations Ω satisfies (3.25). In addition,
we substitute the weaker assumption (6.7) made in Theorem 6.5 in [C] by the assumption
(3.25) in Theorem 3.15 to simplify many technical steps in this introduction.
Before giving an outline of the proof, we provide some evidence why Theorem 3.15 is

true. First, letting λ = δ in Theorem 3.15, then (3.26) becomes

|Rδ√
δ
| ≲

( |W ||B|
mn

)3/4

+ less important terms,

which coincides with Wolff’s tangency bound (3.16) in Lemma 3.14. Another evidence is
that, if we assume |W | = |B| ∼ δ−s, m = n = 1 and let λ ∼ 1 in Theorem 3.15, then (3.26)
becomes |Rδ

δ| ≲ δ−2s. This bound is also sharp, which can be reached by the case that
every circle in W intersects all circles in B transversely. See Figure 5 for an illustration.

Figure 5. Sharp bound for |Rδ
δ|.

The brief idea of the proof of Theorem 3.15 is as follows. Here we will only show the
case m = n = 1. One can use a random sampling argument to show the other cases
m,n > 1 (see page 42-44 in paper [C]). We also remark that in reality, the notion of type
of rectangles in Theorem 6.5 in [C] is more delicate and takes the sets {E(p)} into account.
Let m = n = 1. Omitting the “less important terms”, we need to show

|Rδ
δ/

√
λ
| ≲ (|W ||B|)3/4

(
λ

δ

)s/2

=

( |W |
(λ/δ)s

· |B|
(λ/δ)s

)3/4(
λ

δ

)2s

. (3.27)

Inequality (3.27) will be established with the help of the known upper bound of incom-

parable (λ,
√
λ)-rectangles with type (⩾ 1,⩾ 1) relative to some bipartite set. To this

end, consider p ∈ W and q ∈ B such that there exists a (δ, δ/
√
λ)-rectangle R(p, q) ⊂

SCδ(p)∩ SCδ(q) of type (⩾ 1,⩾ 1) for some absolute constant C > 1. By Lemma 3.10, we
know

δ2/
√
∆(p, q) + δ ≳ |SCδ(p) ∩ SCδ(q)| ⩾ |R(p, q)| ∼ δ2/

√
λ.

This implies that ∆(p, q) ≲ λ and thus SCλ(p)∩SCλ(q) can be covered by boundedly many

(λ,
√
λ)-rectangles (where the boundedness is guaranteed by Lemma 4.3 in [C]). As a result,
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Figure 6. The construction of R(p, q).

we can associate a (λ,
√
λ)-rectangle R(p, q) such that R(p, q) ⊂ R(p, q) ⊂ SCλ(p)∩SCλ(q).

See Figure 6 for an illustration.
Next, from the original (δ, s)-configuration Ω, we construct the (λ, s)-configuration Ω ⊂

Ω. Let πR3(Ω) = W ∪B. Using pigeonholing, we can assume

|W ∩B(x, λ)| ∼ |B ∩B(x, λ)| ≲
(
λ

δ

)s

, ∀x ∈ R2

and again by pigeonholing, we may choose W and B satisfying

|W | ∼
(
λ

δ

)s

|W| and |B| ∼
(
λ

δ

)s

|B|. (3.28)

Roughly speaking, for each R(p, q), in the parameter set, there exists a “unique” pair (“≲ 1
many pairs”) p ∈ W and q ∈ B such that p ∈ B(p, λ) ∩ W and q ∈ B(q, λ) ∩ B. See
Figure 7 for an illustration.

Figure 7. p ∈ W and q ∈ B.

Moreover, a direct computation shows that ∆(p,q) ≲ λ if ∆(p, q) ≲ λ and we associate

a (λ,
√
λ)-rectangle R(p,q) ⊂ SCλ(p) ∩ SCλ(q). Then an observation is that R(p,q)
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and R(p, q) are comparable and hence R(p, q) ⊂ CR(p,q). Thus for each of the (λ,
√
λ)-

rectangles R(p,q), there are

≲ |B(p, λ) ∩W ||B(p, λ) ∩B| ∼ (λ/δ)2s (3.29)

many of the (δ, δ/
√
λ)-rectangles R(p, q) ⊂ CR(p,q). See Figure 8 for an illustration.

Figure 8. The construction of R(p,q).

Writing

Rλ = {R(p,q) : there exists R(p, q) such that R(p, q) ⊂ R(p,q)},
we obtain a family Rλ consisting of (λ,

√
λ)-rectangles. To apply the bound in Lemma

3.14, we need to deduce Rλ consists of incomparable rectangles. This fact is guaranteed
by the assumption (3.25). Indeed, (3.25) implies that, generically, the above R(p,q) have
type (1, 1) relative to W and B and one can then deduce they are incomparable with each

other. Thus Rλ is a family of incomparable (λ,
√
λ)-rectangles.

Applying Lemma 3.14 to W ∪B we know

|Rλ| ≲ (|W||B|)3/4 (3.28)∼
( |W |
(λ/δ)s

· |B|
(λ/δ)s

)3/4

.

Combining the above inequality and (3.29), we arrive at the bound (3.27) for |Rδ
δ/

√
λ
| (in

the case m = n = 1).
With Theorem 3.15 in hand, under the counter assumption mδ−ϵ

δ,λk
(ω | Ω) = δ−κ0 , using a

similar argument as in Step 1, a similar computation as (3.23) will result in a contradiction.
We do not repeat the process again here but only highlight the point where we need the
induction hypothesis (3.24). Indeed, the induction is employed to show m ≲ δ−κ0 . Using
the same notation as in Step 1, recall that m is the type relative to W of a (δ, δ/

√
λk)-

rectangle R(p, i) for some p ∈ W , that is, the number of p′ ∈ W such that

R(p, i) ⊂ Sδ1−ϵ

(p′). (3.30)
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To upper bound m, since R(p, i) has type ⩾ n = δ−κ0 relative to B, choose q ∈ B such

that R(p, i) ⊂ Sδ1−ϵ
(q). Together with (3.30), it suffices to find the the number of p′ ∈ W

such that
R(p, i) ⊂ Sδ1−ϵ

(p′) ∩ Sδ1−ϵ

(q). (3.31)

As a consequence of (3.31), we have |Sδ1−ϵ
(p′) ∩ Sδ1−ϵ

(q)| ⩾ |R(p, i)| ≳ δ2/
√
λk. Thus for

every p′ ∈ W such that (3.31) holds, by Lemma 3.10, we know

|Sδ(p′) ∩ Sδ(q)| ∼ δ2/
√
∆(p′, q) ≳ δ2/

√
λk,

which implies that ∆(p′, q) ⩽ λk every p′ ∈ W satisfying (3.31). We can conclude that

m ⩽ |{p′ ∈ W : ∆(p′, q) ⩽ λk}|.
Choosing w ∈ E(q) ∩ δ1−ϵR(p, i), we know for each p′ ∈ W there exist ≲ 1 many

v′ ∈ E(p′) ∩ δ1−ϵR(p, i) such that |w − v′| ⩽ δ1−ϵ since E(p′) is δ-separated. We have

m ⩽
k∑

l=1

|{(p′, v′) ∈ ∪p′∈W (p′, E(p′)) : δϵλl ⩽ ∆(p′, q) ⩽ λl, |w − v′| ⩽ δ1−ϵ}|

⩽
k∑

l=1

mδ−ϵ

δ,λl
(q, w) =

k−1∑

l=1

mδ−ϵ

δ,λl
(q, w) +mδ−ϵ

δ,λk
(q, w)

≲ 1

ϵ
+ δ−κ0 ≲ δ−κ0

where in the second last inequality we recall {λ1, · · · , λk} ⊂ Λ with |Λ| ∼ 1/ϵ above (3.10)
and apply (3.24), and in the last inequality we use (3.12) and κ0 ≫ ϵ. This concludes Step
2 and finishes the rough outline of the proof of Theorem 1.10.
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ON THE DIMENSION OF KAKEYA SETS

IN THE FIRST HEISENBERG GROUP
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Abstract. We define Kakeya sets in the Heisenberg group and show that the
Heisenberg Hausdorff dimension of Kakeya sets in the first Heisenberg group
is at least 3. This lower bound is sharp since, under our definition, the {xoy}-
plane is a Kakeya set with Heisenberg Hausdorff dimension 3.

1. Introduction

The study of Kakeya sets in Euclidean space is one of the central topics in
geometric measure theory. A set E ⊂ Rn is a Kakeya set if for every e ∈ Sn−1

there exists a unit line segment Ie parallel to e such that Ie ⊂ E.
A natural question is to determine the least Hausdorff dimension of Kakeya sets.
The answer is known in 2-dimensional Euclidean space. Indeed, Kakeya sets in

R2 turn out to be of Hausdorff dimension equal to 2 which can be shown by multiple
ways. See [7,9,15]. However, for Kakeya sets in higher dimensional Euclidean space,
the sharp lower bound is not known. We would like to remark some progress:
Bourgain used two different methods to provide lower bounds [3, 4], which were
further improved by Wolff [18] and Katz-Tao [11] respectively. Recently, Katz-Zahl
[13] and Guth-Zahl [10] enhanced the results of [18] in R3 and R4 respectively,
which show that the best known lower bound is 5/2 + ε0 in R3 with ε0 an absolute
constant and 3 + 1/40 in R4. In Rn with n ≥ 5, the best known lower bound

3 + (2 −
√

2)(n − 4) was established in [12] by Katz-Tao.
As an analogy to Euclidean Kakeya sets, we can define Kakeya sets in the Heisen-

berg group. In this paper, we denote by Hn the n-th Heisenberg group. When
n = 1, we write H instead of H1 for simplicity.

Definition 1.1. A set E ⊂ Hn is a Kakeya set if for every unit line segment
I ⊂ R2n × {0} centred at the origin, there exists q ∈ Hn such that qI ⊂ E.

Here and in what follows, by a unit line segment we mean an isometric copy
of the unit open interval (0, 1). Moreover, by Heisenberg Hausdorff measure we
mean the one induced by the Korányi metric on the first Heisenberg group. For
the definition of the Korányi metric, we refer the readers to Section 2.
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Remark 1.2. The Kakeya sets we consider here are often also called Besicovitch sets
in some other literature. And some authors use Kakeya sets to denote those inside
of which a unit line segment can be continuously rotated through all directions.
However it is not clear how to well define the latter concept on sub-Riemannian
setting. Hence it is quite interesting to consider the latter concept as a further
study.

The Heisenberg Hausdorff dimension of Euclidean Kakeya sets has been studied
in [16] where the author showed a lower bound on the dimension of Kakeya sets. In
[17], the author studied Kakeya sets for general metric spaces in axiomatic sense.

According to Definition 1.1, it is not hard to show that the Euclidean Hausdorff
dimension of Kakeya sets in H is at least 2. This can be done as follows. Under
orthogonal projection to the {xoy}-plane, every Kakeya set E in H becomes a
Kakeya set E′ in R2. Hence the known lower bound of the Euclidean Hausdorff
dimension of E′ is also the one of E since orthogonal projection in R3 is Lipschitz.
Moreover, 2 is sharp since the {xoy}-plane is a Kakeya set in H with Euclidean
Hausdorff dimension 2. However, the Heisenberg Hausdorff dimension of the {xoy}-
plane is 3 and the orthogonal projection from H to the {xoy}-plane is no longer
Lipschitz with respect to the Korányi metric. Hence to calculate a lower bound of
Heisenberg Hausdorff dimension of Kakeya sets seems to be a nontrivial problem.

In this note, we will show the following

Theorem 1.3. In the first Heisenberg group H equipped with the Korányi metric,
every Kakeya set has Heisenberg Hausdorff dimension at least 3 and this lower
bound is sharp.

In the following, E will denote a Kakeya set in the first Heisenberg group.
Our method to show Theorem 1.3 is based on the idea of [2,9]. We first encode

each horizontal line segment in E by a quadruple in R4 forming a subset L(E) ⊂ R4.
Then we transfer the computation for dimensions of each intersection of E and a
plane belonging to a one parameter family to that of a subset in R3 obtained by
certain projections acting on L(E). This can be seen as a duality principle. Finally
we use a recent Marstrand-type projection theorem in R3 by Käenmäki-Orponen-
Venieri [14] and a co-area inequality by Eilenberg-Harrold, Jr. [8] to conclude the
proof.

Since every Kakeya set in the first Heisenberg group has Heisenberg Hausdorff
dimension at least 3, a further question that may be asked is to find a lower bound
of 3-dimensional Heisenberg Hausdorff measure among all Kakeya sets in the first
Heisenberg group. Unlike the Euclidean Kakeya set, which may have n-dimensional
Lebesque measure zero in every Rn (for example, see [1]), it is not easy to show a
counterpart for Kakeya sets in the Heisenberg group. Hence we would like to ask
the following question:

Problem 1.4. Does there exist a Kakeya set in the first Heisenberg group with
zero 3-dimensional Heisenberg Hausdorff measure?

The paper is organised as follows. In section 2, we recall some background in
Heisenberg groups, the Marstrand-type projection theorem in R3 and the co-area
inequality. In section 3, we prove Theorem 1.3.
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2. Preliminaries

The first part of this section is dedicated to a brief introduction to the first
Heisenberg group H. For a detailed one, we refer the readers to [5].

The first Heisenberg group H is R3, equipped with the group multiplication, for
any w = (x, y, t) and w′ = (x′, y′, t′), as follows

(2.1) ww′ =

(
x + x′, y + y′, t + t′ +

1

2
[xy′ − x′y]

)
.

We introduce the Korányi metric on the first Heisenberg group. This is the left
invariant metric given by

(2.2) dH(w, w′) := ‖(w′)−1 · w‖H

where ‖ · ‖H is defined as

‖(x, y, t)‖H = ((x2 + y2)2 + 16t2)1/4.

We define horizontal lines in the first Heisenberg group H as lines which can be
obtained by a left translation of some line passing through the origin and lying in
the {xoy}-plane.

By the definition of horizontal lines, we know that for any b ∈ R and q ∈ H, qIb

and qJb are horizontal line and horizontal line segment respectively where

(2.3) Ib(τ ) = (τ, bτ, 0), τ ∈ R

and

Jb(τ ) = (τ, bτ, 0), τ ∈ (− 1

2
√

b2 + 1
,

1

2
√

b2 + 1
).

The following observation is needed in the proof of Theorem 1.3.

Lemma 2.1. For any b ∈ R and q = (q1, q2, q3) ∈ H,

(1) qIb and qJb can be parameterised as

(2.4) qIb(s) = (s, bs + a, −as

2
+ d), s ∈ R

and

(2.5) qJb(s) = (s, bs + a, −as

2
+ d), s ∈ (ε, ε +

1√
b2 + 1

)

where a = q2 − bq1, d = q3 + 1
2aq1 and ε = q1 − 1

2
√

b2+1
.

(2) If we denote

(2.6) l(a,b,d) := {(s, bs + a, −as

2
+ d) ∈ H | s ∈ R}

and

lε(a,b,d) :=

{
(s, bs + a, −as

2
+ d) ∈ H | s ∈ (ε, ε +

1√
b2 + 1

)

}
.

Then lε(a,b,d) has length 1 with respect to dH for every a, b, d, ε.

(3) If b ∈ (−
√

3,
√

3), then the orthogonal projection of lε(a,b,d) to the x-axis has

Euclidean length greater than 1
2 .
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Proof. (1) Let Ib be parameterised as in (2.3). Then by the Heisenberg multi-
plication law (2.1), we have

qIb = {(q1 + τ, q2 + bτ, q3 +
1

2
(q1bτ − q2τ )) | τ ∈ R }.

Letting s = q1 + τ , a = q2 − bq1 and d = q3 + 1
2aq1, we arrive at (2.4). In

addition, letting ε = q1 − 1
2
√

b2+1
, we verify that (2.5) holds.

(2) Using the definition of dH and the fact that left translation is an isometry
with respect to dH, we deduce the result.

(3) From (2.5), the orthogonal projection of lε(a,b,d) to the x-axis is the interval

(ε, ε + 1√
b2+1

) ⊂ x-axis. Hence when b ∈ (−
√

3,
√

3), the length of the

interval is greater than 1
2 .

�

Remark 2.2. In the sense of sub-Riemannian geometry, there exist more general
horizontal curves in H besides horizontal lines. Indeed, associated to the group
operation (2.1), we can define the left invariant vector fields

X =
∂

∂x
− y

2

∂

∂t
, Y =

∂

∂y
+

x

2

∂

∂t
.

A Lipschitz curve γ = (γ1, γ2, γ3) : [a, b] → H is said to be horizontal if γ̇(s) ∈
Span{X(γ(s)), Y (γ(s))}, i.e. γ̇(s) = a(s)X(γ(s)) + b(s)Y (γ(s)), for almost every
s ∈ [a, b]. One can check that horizontal lines are indeed horizontal curves under
this definition. For more information from the sub-Riemannian point of view, we
refer readers to [5, Chapter 2].

In this paper, we denote by Hs
H (resp. Hs

R) the s-dimensional Hausdorff measure

induced by the Korányi metric (resp. Euclidean metric) and by dimH
H (resp. dimR

H)
the Hausdorff dimension of sets induced by Korányi metric (resp. Euclidean metric).
In addition, given any set A ⊂ H, we denote

(2.7) L(A) := {(a, b, d, ε) ∈ R × (−
√

3,
√

3) × R × R | lε(a,b,d) ⊂ A}
and

(2.8) L(A, c) := {(a, b, d, ε) ∈ L(A) | lε(a,b,d) ∩ {x = c} 	= ∅}.

Next, we recall a version of a Marstrand-type projection theorem [14, Theorem
1.2]:

Theorem 2.3. Suppose that γ : [0, 2π) → R3, θ �→ γ(θ) = 1√
2
(cos θ, sin θ, 1). If

K ⊂ R3 is Borel set, then dimR
H ργ(θ)(K) = min{dimR

H K, 1} for almost every
θ ∈ [0, 2π).

Here, and in what follows, for any x ∈ R3 \ {0}, ρx : R3 → Span(x) denotes the
Euclidean orthogonal projection to the straight line passing through the origin and
x.

We also need the following co-area inequality [8, Theorem 1]:

Theorem 2.4. Let X be an arbitrary metric space, 0 ≤ α < ∞ be real numbers
and F ⊂ X be any subset. Then, for any 1-Lipschitz map f : X → R we have

(2.9)

∫ ∗

R
Hα

X(F ∩ f−1(y)) dy ≤ Hα+1
X (F ).
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Here,
∫ ∗

R g dy is the upper integral of g : R → [0, +∞). That is

∫ ∗

R
g(y) dy = inf

∫

R
h(y) dy

where the infimum is taken over all measurable functions h : R → [0, +∞) satisfying
0 ≤ g(y) ≤ h(y) for a.e. y ∈ R.

3. Proof of Theorem 1.2

Proof of Theorem 1.3. Since every set is contained in a Gδ-set of the same dimen-
sion, we may assume E to be Gδ.

Step 1 (Properties of L(E, c)). First, we need

Claim I. For every c ∈ R, L(E, c) is a Gδ set in R4.

Proof of Claim I. Recalling (2.7),

L(E, c) = {(a, b, d, ε) ∈ L(E) | lε(a,b,d) ∩ {x = c} 	= ∅}.

Since E is a Gδ set, we can find a sequence of open sets {Ei}i∈N such that Ei ⊃ Ei+1

for each i ∈ N and

(3.1) E =
⋂

i∈N
Ei.

Consider the sets

L(Ei, c) = {(a, b, d, ε) ∈ L(Ei) | (lε(a,b,d) ∩ {x = c}) 	= ∅}.

By (3.1) it is not hard to see

L(E, c) =
⋂

i≥1

L(Ei, c).

We just need to show that L(Ei, c) is open for any c ∈ R and i ∈ N.
Consider an arbitrary quadruple (a, b, d, ε) ∈ L(Ei, c), i.e.

(3.2) lε(a,b,d) ∩ {x = c} 	= ∅ and lε(a,b,d) ⊂ Ei,

Thanks to the openness of Ei and the interval (ε, ε + 1√
b2+1

), we deduce that for

(a′, b′, d′, ε′) close enough to (a, b, d, ε), we have

lε
′

(a′,b′,d′) ∩ {x = c} 	= ∅ and lε
′

(a′,b′,d′) ⊂ Ei

and hence (a′, b′, d′, ε′) ∈ L(Ei, c), which implies L(Ei, c) is open. �

Furthermore, we have the following

Claim II. There exists at least one c0 ∈ R satisfying

(3.3) H1
R(π123(L(E, c0))) > 0

where π123 is the orthogonal projection from R4 to the subspace spanned by the
first three coordinates.
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Proof of Claim II. Since E is a Kakeya set in H, by Definition 1.1 and recalling
(2.7), we have

π2(L(E)) ⊃ (−
√

3,
√

3)

where π2 is the orthogonal projection from R4 to the subspace spanned by the
second coordinate, which implies

(3.4) H1
R(π2(L(E))) > 0.

By observing that

L(E) =
⋃

c∈Q
L(E, c)

and using (3.4), we infer that there exists c0 such that

(3.5) H1
R(π2(L(E, c0))) > 0.

Noting that
H1

R(π123(L(E, c))) ≥ H1
R(π2(L(E, c))), ∀c ∈ R,

we conclude the proof. �

We end Step 1 with the following:

Claim III. We can find a Borel set B ⊂ π123(L(E, c0)) with

(3.6) H1
R(B) > 0

and at least one of the following holds:

(3.7) B ⊂ π123(L(E, c)), ∀c ∈ [c0 − 1

4
, c0]

or

(3.8) B ⊂ π123(L(E, c)), ∀c ∈ [c0, c0 +
1

4
].

Proof of Claim III. Using Lemma 2.1(3), we observe that if lε(a,b,d) ∩ {x = c0} 	= ∅,

then either

lε(a,b,d) ∩ {x = c0 − 1

4
} 	= ∅,

or

lε(a,b,d) ∩ {x = c0 +
1

4
} 	= ∅.

Hence we have

L(E, c0) ⊂ [L(E, c0) ∩ L(E, c0 − 1

4
)] ∪ [L(E, c0) ∩ L(E, c0 +

1

4
)].

We conclude

(3.9) π123(L(E, c0)) ⊂ π123(L(E, c0)∩L(E, c0− 1

4
))∪π123(L(E, c0)∩L(E, c0+

1

4
)).

From the above inclusion, we can assume, without loss of generality, that

H1
R

(
π123(L(E, c0) ∩ L(E, c0 +

1

4
))

)
≥ 1

2
H1

R(L(E, c0)) > 0

where the last inequality results from Claim II.
On the other hand, if (a, b, d, ε) ∈ L(E, c0) ∩ L(E, c0 + 1

4 ), then for any c ∈
[c0, c0 + 1

4 ], we have (a, b, d, ε) ∈ L(E, c), which indicates

L(E, c0) ∩ L(E, c0 +
1

4
) ⊂ L(E, c) for any c ∈ [c0, c0 +

1

4
].
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Figure 1. A line segment that intersects both {x = c0} and {x =
c0 + 1

4}

By I, for any c ∈ R, we know that L(E, c) is a Gδ set and hence π123(L(E, c0)
∩L(E, c0 + 1

4 )) is an analytic set. Hence we can apply Corollary 2 in [6] to choose

B to be a closed subset of π123(L(E, c0)∩L(E, c0 + 1
4 )) with H1

R(B) > 0. Therefore
B satisfies the assumption of the claim. �

Claim III enables us to choose c0 ∈ R such that, without loss of generality, there
exists a Borel set B ⊂ π123(L(E, c0)) satisfying (3.6), i.e.

H1
R(B) > 0.

and (3.8). Therefore, we infer that

(3.10) dimR
H(B) ≥ 1.

Step 2 (Establish a duality principle). Recall the definition of l(a,b,d) in (2.6). For
every c ∈ [c0, c0 + 1/4], we consider Ec ⊂ {x = c} ∩ E ⊂ H defined by

Ec : = {la,b,d ∩ {x = c} | (a, b, d) ∈ B}
= {(c, bc + a, −ac

2
+ d) | (a, b, d) ∈ B}.(3.11)

Use left translation T(−c,0,0) to translate Ec to {yot}-plane, which means E1
c :=

T(−c,0,0)(Ec) lies in {yot}-plane and has the same dimension as Ec. See the above
Figure 2.

Recalling (3.11) and the Heisenberg multiplication law (2.1), we deduce that

E1
c = T(−c,0,0)(Ec)

= {(−c, 0, 0) · (c, bc + a, −ac

2
+ d) | (a, b, d) ∈ B}

= {(0, bc + a, −ac − bc2

2
+ d) | (a, b, d) ∈ B}.(3.12)
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Figure 2. Translating Ec to {yot}-plane

Notice that the third coordinate of points in E1
c expressed in (3.12) takes the form

−ac − bc2

2
+ d =

〈
(−c, −c2

2
, 1), (a, b, d)

〉

where 〈, 〉 is the Euclidean inner product in R3.
By considering the t-axis as R and letting

(3.13) ϕ : {yot} → H, (0, y, t) �→ (0, 0, t),

we can write

ϕ(E1
c ) =

{〈
(−c, −c2

2
, 1), (a, b, d)

〉
| (a, b, d) ∈ B

}

=

(
1 +

c2

2

)
ρ
(−c,− c2

2 ,1)
(B).(3.14)

Equation (3.14) implies that ϕ(E1
c ) can be viewed as a Euclidean projection of

B to the one parameter family of lines Γ = {γc : R → R3 | t �→ (−ct, − c2

2 t, t), c ∈
[c0, c0 +1/4]} up to scalings. Letting t = 1, we observe that c �→ (−c, − c2

2 , 1) forms

a part of parabola Hi in R3. Hence this one parameter family of lines forms part
of a cone C1 in R3, i.e.

C1 = {(x, y, z) ∈ R3 | x2 = −2yz}.

Moreover, the intersection of Γ and the unit sphere in R3 is contained in a circle
and can be parameterised as

γ̃(c) =

{
2

2 + c2
(−c, −c2

2
, 1) | c ∈ [c0, c0 + 1/4]

}
.

We see the arc γ̃ and the parabola Hi are both conical curves, they can be included
in one same cone as Figure 3 depicts.
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Figure 3. Parabola X and Arc γ̃ can be included in one same cone.

Step 3 (Conclusion). In Theorem 2.3, the family of lines passing through the origin
and

γ(θ) =
1√
2
(cos θ, sin θ, 1)

also spans a cone C2 = {(x, y, z) ∈ R3 | x2 + y2 = z2} in R3.
We observe that the cone C2 can be obtained by a rotation R : (x, y, z) �→

(x,
√

2
2 (y + z),

√
2

2 (z − y)) acting on C1 and γ̃ is mapped to an arc of γ, i.e.

γ(θ(c)) = R ◦ γ̃(c) =
2

2 + c2

(
−c,

√
2

4
(2 − c2),

√
2

4
(2 + c2)

)

=
1√
2

(
−2

√
2c

2 + c2
,
2 − c2

2 + c2
, 1

)
,

for c ∈ [c0, c0 + 1
4 ], where θ(c) is determined from

(cos(θ(c)), sin(θ(c))) =

(
−2

√
2c

2 + c2
,
2 − c2

2 + c2

)
.

This implies

(3.15) ρ
(−c,− c2

2 ,1)
((x, y, z)) = ργ(θ(c))(R(x, y, z)), ∀(x, y, z) ∈ R3.

By Claim III and (3.10), we know B is Borel and dimR
H(B) ≥ 1. We use

(3.15) and apply Theorem 2.3 to the family of lines passing through the origin
and {γ(θ(c))}c∈[c0,c0+1/4] to deduce that

(3.16) dimR
H[ρ

(−c,− c2

2 ,1)
(B)] = dimR

H[ργ(θ(c))(R(B))] = 1 a.e. c ∈ [c0, c0 + 1/4].
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Recalling the definition of ϕ in (3.13) and according to (2.2), we know ϕ is 1-
Lipschitz with respect to dH and for any set A ⊂ t-axis,

dimH
H(A) = 2 dimR

H(A).

Hence for any c ∈ [c0, c0 + 1/4] such that (3.16) holds, combining (3.11), (3.14),
(3.16) and the above equality, we conclude

dimH
H({x = c} ∩ E) ≥ dimH

H(Ec) = dimH
H(E1

c ) ≥ dimH
H(φ(E1

c ))

= 2 dimR
H(ρ(−1, c

2 ,c2)(B))

= 2

and for any 0 < α < 2, we deduce

Hα
H({x = c} ∩ E) = ∞.

By definition of dH, the map f : (H, dH) → R, (x, y, t) → (x, 0, 0) is 1-Lipschitz. Now
letting X = H, Y = [c0, c0 + 1/4] and F = E ∩ {(x, y, t) ∈ H | x ∈ [c0, c0 + 1/4]} in
Theorem 2.4, for any 0 < α < 2, we derive

Hα+1
H (F ) ≥

∫ ∗

[c0,c0+1/4]

Hα
H(F ∩ f−1(y)) dy = ∞,

which implies

dimH
H(E) ≥ dimH

H(E ∩ {(x, y, t) ∈ H | x ∈ [c0, c0 + 1/4]}) = dimH
H(F ) ≥ 3.

We finish the proof. �
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Dimension estimates on
circular (s, t)-Furstenberg sets

Jiayin Liu

Abstract. In this paper, we show that circular (s, t)-Furstenberg sets in R2 have Hausdorff
dimension at least

max{ t3 + s, (2t+ 1)s− t} for all 0 < s, t ≤ 1.

This result extends the previous dimension estimates on circular Kakeya sets by Wolff.

Furstenbergin (s, t)-ympyräjoukkojen ulottuvuuden arvioita

Tiivistelmä. Tässä työssä osoitetaan, että tason R2 Furstenbergin (s, t)-ympyräjoukkojen
Hausdorffin ulottuvuus on vähintään

max{ t3 + s, (2t+ 1)s− t} kaikilla 0 < s, t ≤ 1.

Tämä tulos yleistää Wolffin aiemmin todistamia Kakeyan ympyräjoukkojen ulottuvuusarvioita.

1. Introduction

Let F be a circular (s, t)-Furstenberg set in R2. That is, there exists a parameter
set K ⊂ R3

+ with Hausdorff dimension

dimHK ≥ t

such that for every (x, r) ∈ K,

(1.1) dimH(F ∩ S(x, r)) ≥ s

where R3
+ := {(x, r) = (x1, x2, r) | r > 0} and S(x, r) is the circle centered at x ∈ R2

with radius r. A special class of circular (1, 1)-Furstenberg sets is the family of
circular Kakeya sets, that is, Borel sets in R2 that contain circles of every radius.

The study on the Hausdorff dimension of Furstenberg sets was initiated from
their linear version. In this paper, we call a set F ⊂ R2 a linear (s, t)-Furstenberg
set if there exists a parameter set K in A(2, 1) with

dimHK ≥ t

such that for every L ∈ K,
dimH(F ∩ L) ≥ s

where A(n, k) denotes the family of k-dimensional affine subspaces in Rn.
In 1999, Wolff [16] showed that linear (s, 1)-Furstenberg sets with parameter set

K containing lines in every direction have Hausdorff dimension at least

(1.2) max{1
2

+ s, 2s} for all 0 < s ≤ 1.
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In the sequel, there is a series of works improving the above lower bound and providing
the one for linear (s, t)-Furstenberg sets with some of them only considering special
values of s, t. We refer the readers to [9, 1, 11, 10, 12, 7, 3, 2, 13] and references therein.
Moreover, in higher dimensions, one can similarly define linear (s, t)-Furstenberg sets
with parameter set K in A(n, k). See [5, 6] for some recent progress.

It is not clear whether the above lower bound estimates on the Hausdorff di-
mension for linear (s, t)-Furstenberg sets in R2 are sharp for any value of s and t
except s = 1. Hence determining the sharp lower bound remains open for Hausdorff
dimension of linear (s, t)-Furstenberg sets.

In terms of circular (s, t)-Furstenberg sets in R2, Wolff in [17, Corollary 3] showed
that circular Kakeya sets in R2 have full dimension 2 employing techniques from
harmonic analysis. Also, in [15, Corollary 3], Wolff proved that Borel sets in R2

consisting of circles with t-dimensional set of centers have Hausdorff dimension at
least 1 + t. Later, in [8], as an application of their techniques to prove a Marstrand-
type restricted projection theorem, Käenmäki–Orponen–Venieri were able to show
that the above lower bound 1 + t in [15] holds true for analytic t-dimensional family
of circles. Hence they provide an alternative method showing the dimension of sets
containing full circles. Since the above results concern special cases of circular (1, t)-
Furstenberg sets, these bounds are sharp. To the best of the author’s knowledge,
these works and earlier results on families of full circles are the only ones concerning
the Hausdorff dimension for circular Furstenberg sets.

In this paper, we extend the existing result to general 0 < s, t ≤ 1. We show the
following:

Theorem 1.1. For any 0 < s ≤ 1 and 0 < t ≤ 1, the Hausdorff dimension of a
circular (s, t)-Furstenberg set F in R2 is at least

(1.3) max{ t
3

+ s, (2s− 1)t+ s}.
We remark that for any 0 < t ≤ 1, if 0 < s ≤ 2

3
, then the maximum in (1.3)

is attained by t
3

+ s. Otherwise, it is achieved by (2s − 1)t + s. Indeed, these two
bounds are obtained by different approaches. Hence Theorem 1.1 is a combination
of the following two theorems.

Theorem 1.2. For any 0 < s ≤ 1 and 0 < t ≤ 1, the Hausdorff dimension of a
circular (s, t)-Furstenberg set F in R2 is at least

t

3
+ s.

Theorem 1.3. For any 1
2
< s ≤ 1 and 0 < t ≤ 1, the Hausdorff dimension of a

circular (s, t)-Furstenberg set F in R2 is at least

(2s− 1)t+ s.

Below, we briefly outline our ideas of the proof of Theorem 1.2 and Theorem 1.3,
which will imply Theorem 1.1. Here, we will focus on explaining some informal
ideas on obtaining the Minkowski dimension lower bounds for circular Furstenberg
sets. Then we can derive the Hausdorff dimension lower bounds from the Minkowski
dimension lower bounds in a standard way. To this end, in the proof, we will work
with a discretized version of the circular (s, t)-Furstenberg set F in the following sense.
That is, instead of studying the t dimensional parameter set K, we will concentrate
on a finite subset V ⊂ K which is a (δ, t)-set (See Definition 2.2). In brief, V is a
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δ-separated set with cardinality δ−t and satisfies a t-dimensional non-concentration
condition.

With this discretized circular Furstenberg set
⋃
z∈V S(z) ∩ F , we consider an

arbitrary cover U = {B(xi, ri)}i∈Ik1 of this set by balls of radii between δ/2 and δ

where δ = 2−k1 (k1 ∈ N) is sufficiently small. We will give a lower bound of #Ik1
independent of the choice of the cover U . Recall that the desired lower bound is t

3
+s

in Theorem 1.2 and (2t+ 1)s− t in Theorem 1.3, so we need to show that

(1.4) #Ik1 &
(

1

δ

) t
3

+s

in Theorem 1.2

and

(1.5) #Ik1 &
(

1

δ

)(2t+1)s−t
if 1

2
< s ≤ 1 in Theorem 1.3.

Indeed, this will imply

∑

i∈Ik1

r
t
3

+s

i &
(

1

δ

) t
3

+s

δ
t
3

+s & 1 in Theorem 1.2

and
∑

i∈Ik1

r
(2t+1)s−t
i &

(
1

δ

)(2t+1)s−t
δ(2t+1)s−t & 1 if 1

2
< s ≤ 1 in Theorem 1.3,

which further imply that the t
3

+s (resp. (2t+1)s−t) dimensional Hausdorff measure
of F is positive and therefore the Hausdorff dimension of F is at least t

3
+ s (resp.

(2t+ 1)s− t).
To show (1.4), we adapt the approach for showing the lower bound for the Haus-

dorff dimension of linear (s, 1)-Furstenberg sets used by Wolff in [16] together with
some geometric observations from planar geometry. The heuristic idea is that, since
three points determine a unique circle in the plane provided they are not collinear,
we can show that three well-separated δ-balls Bi, Bj, Bk determine a “unique” cir-
cle S(z) (not necessarily unique in reality, see the statement before (3.22)), z ∈ V ,
with the help of Lemma 2.5, which intuitively means that there exists a unique cir-
cle S(z) with z ∈ V such that S(z) ∩ Bl 6= ∅ for l = i, j, k. This further enables
us to identify the circle S(z) with the triple (i, j, k). Indeed, the above manipu-
lations are motivated by Wolff [16] to show the lower bound 1/2 + s in (1.2) for
the Hausdorff dimension of linear (s, 1)-Furstenberg sets where 1/2 appears from
the fact that two points determine a unique line in the plane. For circular (s, 1)-
Furstenberg sets, we can only get the lower bound 1/3 + s since we need three points
to determine a circle. On the other hand, since S(z) ∩ F has Hausdorff dimen-
sion no less than s, we need, roughly speaking, at least ∼ δ−s δ-balls in U to cover
S(z)∩F . Hence we can identify each S(z)∩F by the triples (i, j, k) ∈ Ik1×Ik1×Ik1
(or equivalently, (Bi, Bj, Bk) ∈ U × U × U) where S(z) ∩ Bl 6= ∅ for l = i, j, k.
Then each S(z) ∩ F gives rise to δ−s(δ−s − 1)(δ−s − 2) ∼ δ−3s many distinct triples
(i, j, k) ∈ Ik1 ×Ik1 ×Ik1 representing three distinct δ-balls in U and therefore we ob-
tain a total number #V × δ−3s = δ−3s−t many distinct triples. Finally, since all these
triples are contained in Ik1×Ik1×Ik1 , we deduce that (#Ik1)3 & δ−3s−t, which gives
(1.4). This is the rough idea behind the proof of the Minkowski dimesion version of
Theorem 1.2.
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On the other hand, inequality (1.5) is obtained by applying the result from
Käenmäki–Orponen–Venieri in [8] utilised to find the Hausdorff dimension of t-di-
mensional analytic sets of circles. Heuristically, as discussed above, since one needs
at least ∼ δ−s δ-balls in U to cover S(z) ∩ F for each z ∈ V , if each δ-ball in U only
intersects one S(z) ∩ F for some z ∈ V , then U consists of at least δ−s#V ∼ δ−s−t

many δ-balls. However, this may not be the case. In general, if each δ-ball in U
intersects no more than δ−ξ (0 < ξ ≤ t) many sets from the family {S(z) ∩ F}z∈V ,
then we can deduce that U consists of at least δ−s#V

δ−ξ ∼ δ−s−t
δ−ξ many δ-balls. Actually,

by applying [8, Lemma 5.1], we can show that for more than half of points z in V ,
there exists S ′(z) ⊂ S(z)∩F with dimH S ′(z) = dimH[S(z)∩F ] ≥ s such that each δ-
ball in U intersects no more than δt(2s−2) many sets from the family {S ′(z)}z∈V where
t(2s−2) arises from the choice of the parameter λ when applying Lemma 5.1 in [8] to
guarantee (4.15) holds. We refer readers to the discussion around (4.17) in Section 4
for details. This fact will imply that there exist at least δ−s#V

δt(2s−2) ∼ δ−[(2t+1)s−t] many
δ-balls in U , which is equivalent to say #Ik1 & δ−[(2t+1)s−t]. Hence (1.5) holds and
this concludes a heuristic discussion regarding Theorem 1.3.

Finally, we remark that we do not know if the bound max{ t
3

+ s, (2s−1)t+ s} in
Theorem 1.1 is sharp and we here make a conjecture that the sharp lower bound for
Hausdorff dimension of circular (s, 1)-Furstenberg sets is 1

2
+ 3

2
s for 0 < s ≤ 1. Indeed,

in the following example, based on the example in [16], we construct a circular (s, 1)-
Furstenberg set whose Hausdorff dimension does not exceed 1

2
+ 3

2
s for all 0 < s ≤ 1.

Example 1.4. Due to the construction in [16, Section 1] by Wolff, for all 0 < s ≤
1, there exists a linear (s, 1)-Furstenberg set F ⊂ B(0, 4) \ B(0, 1) whose Hausdorff
dimension does not exceed 1

2
+ 3

2
s. Now considering R2 as the complex plane C,

using the map ω : C→ C, z 7→ 1
z
, all lines in C are mapped to circles through (0, 0).

Also noticing that ω|B(0,4)\B(0,1) is a biLipschitz homeomorphism, we deduce that
F ′ := ω(F ) is a circular (s, 1)-Furstenberg set with same dimension as F . That is,
dimH(F ′) ≤ 1

2
+ 3

2
s.

The paper is organised as follows. In Section 2, we clarify our notations and
symbols, as well as introduce definitions and results employed in the proof. Sections 3
and 4 are devoted to showing the proof of Theorem 1.2 and 1.3 respectively. In the
last section, Section 5, we complete the proof of some auxiliary lemmas needed in
the proof of Theorem 1.2 using planar geometry.

Acknowledgement. J. L. would like to thank K. Fässler and T. Orponen for
many motivating discussions and their constant support. J. L. would also like to
convey his gratitude to the anonymous referee for pointing out a mistake in the
proof of Theorem 1.2 and for providing many valuable suggestions which significantly
improved the final presentation of the paper.

2. Preliminaries

In this paper, we denote by Sδ(x, r) the δ-neighbourhood of S(x, r), i.e.

Sδ(x, r) := B(x, r + δ) \B(x, r − δ).
We also use the notation z = (x, r) ∈ R3. Moreover, we use the notation f . g (resp.
f .h g) for f ≤ kg (resp. f ≤ k(h)g) where k is a constant that depends only on the
ambient space (resp. the parameter h), and may change from line to line. Likewise,
f & g and f ∼ g are understood correspondingly.
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The notation Hs stands for the s-dimensional Hausdorff measure, and Hs
∞ stands

for s-dimensional Hausdorff content. The notation | · | and ‖ · ‖ will denote the
Lebesgue measure and the Euclidean distance respectively in R2 or R3. We also use
dist(A,B) to denote Euclidean distance between A and B where A and B can be
either points or sets. #A will denote the cardinality of a set A.

We have the following observation which makes it possible to restrict ourselves
to circular Furstenberg sets with bounded parameter set.

Remark 2.1. (i) Since we are concerned with the Hausdorff dimension of the
circular Furstenberg set F , we claim that it is enough to consider the case that F
has parameter set K ⊂ B0 where

(2.1) B0 = {(x, r) ∈ R3 | x ∈ B(0, 1
4
) and 1

2
≤ r ≤ 2}.

To see this, consider the following covering of the parameter space R3
+. For k, l,m ∈

Z, let
Dk,l,m := {(x, r) ∈ R3 | x ∈ B((22m−2k, 22m−2l), 22m−2) and 22m−1 ≤ r ≤ 22m+1}.

Then
R3

+ =
⋃

k,l,m

Dk,l,m

and
B0 = D0,0,0.

Hence for each ε > 0 sufficiently small, there exists kε, lε,mε such that

(2.2) dimH(K)− dimH(K ∩Dkε,lε,mε) < ε.

Let Fε be the circular Furstenberg set with parameter set K ∩Dkε,lε,mε . Denote by
Sy : R2 → R2, Sy(x) := x− y for any y ∈ R2 and by Dλ : R2 → R2, Dλ(x) := λx for
any λ > 0.

Then, letting y = (22mε−2kε, 2
2mε−2lε) and λ = 2−2mε , we observe that

F̃ε := D2−2mε ◦ S(22mε−2kε,22mε−2lε)(Fε)

is a circular Furstenberg set the parameter set K̃ε contained in B0 and satisfying

(2.3) dimH(K̃ε) = dimH(K ∩Dkε,lε,mε).

If F is a circular (s, t)-Furstenberg set, then by (2.2) and (2.3), for 0 < ε < t, we
know F̃ε is a circular (s, t− ε)-Furstenberg set and

(2.4) dimH F ≥ dimH F̃ε for every 0 < ε < t.

Now, assume Theorem 1.1 holds for circular Furstenberg sets with parameter set
contained in B0, then

(2.5) dimH F̃ε ≥ max{ t−ε
3

+ s, (2s− 1)(t− ε) + s} for every 0 < ε < t.

Combining (2.4) and (2.5), we deduce that

dimH F ≥ lim
ε→0

max{ t−ε
3

+ s, (2s− 1)(t− ε) + s} = max{ t
3

+ s, (2s− 1)t+ s}.

Hence to show Theorem 1.1, we only need to consider the case that F has parameter
set K ⊂ B0.

(ii) Note that |Sδ(x, r)| ≤ c0δ for all (x, r) ∈ B0 where c0 is an absolute constant.

We introduce the following:
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Definition 2.2. ((δ, q)-sets) Let δ ∈ (0, 1), q > 0, and let P ⊂ Rn be a finite
δ-separated set. We say that P is a (δ, q)-set, if it satisfies the estimate

(2.6) #{P ∩B(x, r)} .
(r
δ

)q
, x ∈ Rn, r > δ.

We recall from [4, Lemma 3.13] the following

Lemma 2.3. Let δ, q > 0, and let Q ⊂ Rn be any set with Hq
∞(Q) =: β > 0.

Then there exists a (δ, q)-set P ⊂ Q with cardinality #P & β · δ−q.
Remark 2.4. If Q ⊂ B0 and Hq

∞(Q) = β, by Lemma 2.3, we know that for any
δ > 0, there exists a (δ, q)-set P ⊂ Q with cardinality #P & βδ−q. Furthermore,
letting r = diamB0 in (2.6), we know #P . δ−q, if δ < diamB0. We conclude that

βδ−q . #P . δ−q.

To show Theorem 1.2, we need to establish the following result from planar
geometry. Since the proof relies on two more auxiliary lemmas, we postpone it to
the last section.

Lemma 2.5. Let A,B,C ∈ R2 such that min{‖A−B‖, ‖A−C‖, ‖B−C‖, 2} ≥
2c. For a > 0 such that a < 1

20
c2, define

(2.7) W :=





b− a ≤ ‖x− A‖ ≤ b+ a,
(x, b) ∈ R2 × [1

2
, 2] : b− a ≤ ‖x−B‖ ≤ b+ a,

b− a ≤ ‖x− C‖ ≤ b+ a



 .

Then

(2.8) diamW . a

c2
.

It is worth mentioning that Lemma 2.5 shares a very similar conclusion with the
one in [16, Lemma 3.2 (Mastrand’s 3-circle lemma)]. Indeed, if we let ε = δ = a,
r = b, λ = c, t = 1/2 − a and r1 = r2 = r3 = a therein, then the set W in Lemma
2.5 will be contained in Ωεtλ defined in [16, Lemma 3.2]. And the conclusion of [16,
Lemma 3.2] says that Ωεtλ is contained in the union of two ellipsoids in R3 with
diamΩεtλ . a

c2
. Since we only consider the case r1 = r2 = r3 = a (that is, Cδ(xi, ri)

become balls B(xi, 2a) for i = 1, 2, 3 in [16, Lemma 3.2]), we can deduce that W lies
in one cuboid in R3 based on an approach which differs completely from the one of
[16, Lemma 3.2].

Now, we start the preparation for the proof of Theorem 1.3. Let P ⊂ R3 be a
(δ, q)-set. For any p ∈ P , let ∆p be the Dirac measure centered at p. Then

(2.9) µP :=
1

#P

∑

p∈P
∆p

is a probability measure satisfying the Frostman condition µP (B(z, r)) . rq for all
z ∈ R3 and r > δ. Indeed, for any ball B(z, r) with r > δ we have

µP (B(z, r)) =
1

#P

(∑

p∈P
∆p

)
(B(z, r)) =

1

#P

∑

p∈P
∆p(B(z, r))

=
1

#P
#(P ∩B(z, r)) . rq.

Below in Section 3 and 4, thanks to Remark 2.1(i), we will assume the circular
(s, t)-Furstenberg set F has parameter set K ⊂ B0.
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3. Proof of Theorem 1.2

Proof of Theorem 1.2. Let F be a circular (s, t)-Furstenberg set with parameter
set K ⊂ B0. It suffices to show, for any ε > 0, 0 < s′ < s and 0 < t′ < t,

dimH(F ) ≥ t′

3
+ s′ − ε.

Hence in the following, we fix s′, t′ and 0 < ε < t′
3

+ s′.
We notice that there exists α > 0 and K1 ⊂ K such that Ht′

∞(K1) > α, where

(3.1) K1 := {z ∈ K | Hs′
∞(F ∩ S(z)) > α}.

Indeed, by the subadditivity of Hausdorff content, and the fact

K =
⋃

n

{z ∈ K | Hs′
∞(F ∩ S(z)) > 1

n
},

we deduce the existence of α such that Ht′
∞(K1) > α for K1 defined as in (3.1).

Next, since ε > 0, we can find δ0 = δ0(ε, s′) > 0 sufficiently small such that for
any 0 < δ < δ0, we have

(3.2) δ−ε
(

log
1

δ

)−( 8
3

+ 12
s′ )

> 1.

and

(3.3)
√

640δ < τ = τ(δ) := π−1

(
1

16

)1/s′ (
1

log 1
δ

)2/s′

< 1.

Then we choose k0 to be an integer larger than log( 1
δ0

) also satisfying

(3.4) α >
∞∑

k=k0

1

k2
.

Now, we outline the main steps of the proof. We start with an arbitrary cover
U = {B(xi, ri)}i∈I of F by balls of radius less than 2−k0 . In the sequel, we will derive
a lower bound ∑

i∈I
rσi &ε,t′,s′ 1

with σ = t′/3 + s′ − ε independent of the choice of the particular cover. This will
imply

Hσ(F ) > 0.

To this end, we divide the proof into 4 steps. Let

Ik := {i ∈ I | 2−(k+1) < ri ≤ 2−k}, Fk :=
{⋃

B(xi, ri) | i ∈ Ik
}
.

First, in Step 1, we will deduce that there exists k1 ≥ k0 and a (δ, t′)-set V ⊂ K
with δ = 2−k1 such that for every circle z = (x, r) ∈ V , we have

(3.5) Hs′
∞(S(z) ∩ Fk1) > k−2

1 .

Then, in Step 2, we modify Wolff’s approach for linear (s, 1)-Furstenberg sets to
fit our circular case. For each circle S(z) with z ∈ V , we will extract from S(z) three
τ -separated arcs h+

z , h
−
z , h

×
z such that

(3.6) Hs′
∞(h+

z ∩ Fk1) & k−2
1 , Hs′

∞(h−z ∩ Fk1) & k−2
1 , Hs′

∞(h×z ∩ Fk1) & k−2
1 .
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These arcs enable us to define an index set T ⊂ Ik1 × Ik1 × Ik1 × V whose
cardinality will be estimated in the following steps and will imply the lower bound
for #Ik1 .

Next, in Step 3, we will deduce that the cardinality of T is upper bounded by
the cardinality of Ik1 with the help of Lemma 2.5. Indeed, we will show

#T . (#Ik1)3τ−6.

Finally, in Step 4, we will estimate the lower bound of #T which also serves as the
one of #Ik1 , hence #I with the aid of (3.6). This will enable us to conclude the
proof.

Step 1. Let α be as in (3.4). Hence by pigeonhole principle we deduce that for
each S(z) ∈ K1, there exists k(z) ≥ k0 such that Hs′

∞(S(z) ∩ F ∩ Fk(z)) > k(z)−2.
Moreover, by applying pigeonhole principle again we obtain that there exists

k1 ≥ k0 such that

(3.7) Ht′
∞(K2) > k−2

1

where K2 := {z ∈ K1 : k(z) = k1}.
We remark that for every circle z ∈ K2, we have

(3.8) ∞ > Hs′
∞(S(z) ∩ Fk1) ≥ Hs′

∞(S(z) ∩ F ∩ Fk1) > k−2
1 .

By letting δ = 2−k1 , q = t′ and Q = K2 in Lemma 2.3, we know that there exists
a (δ, t′)-set V ⊂ K2 with cardinality

(3.9) #V & Ht′
∞(K2) · δ−t′ .

Hence for every z ∈ V , (3.8) implies (3.5), which concludes Step 1.

Step 2. We start the procedure of extracting three disjoint arcs for any S(z), z =
(x, r) ∈ V , which is illustrated in Figures 1, 2 and 3. Let

η := η(z) = Hs′
∞(S(z) ∩ Fk1).

Also let γ = ( η
16

)1/s′ . Divide S(z) into N arcs I1, · · · , IN such that
• the length of I1, · · · , IN−1 is γ,
• the length of IN is at most γ,
• and Nγ ≥ 2πr.

Since γ = ( η
16

)1/s′ ≤ 1
16

and z = (x, r) ∈ B0 implies r > 1
2
, we know

N ≥ 2πr

γ
≥ π

1
16

≥ 16.

Note that if I is an arc in S(z), then

(3.10) Hs′
∞(I) ≤ (diam I)s

′ ≤ (H1(I))s
′
.

This implies for all l = 1, · · · , N ,

(3.11) Hs′
∞(Il ∩ Fk1) ≤ Hs′

∞(Il) ≤ γs
′
=

η

16
.

See Figure 1 for N arcs.
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Figure 1. N arcs on S(z).

Since

η = Hs′
∞(S(z) ∩ Fk1) = Hs′

∞(
⋃N
l=1 Il ∩ Fk1)

≤ Hs′
∞(
⋃N−12
l=1 Il ∩ Fk1) +

∑N
l=N−11Hs′

∞(Il ∩ Fk1)
≤ Hs′

∞(
⋃N−12
l=1 Il ∩ Fk1) + 12 η

16

where in the last inequality we use (3.11), we obtain

Hs′
∞(
⋃N−12
l=1 Il ∩ Fk1) ≥ 1

4
η.

This guarantees that there exists N1 ∈ [2, N − 12] which is the smallest integer
satisfying

(3.12) Hs′
∞(
⋃N1

l=1 Il ∩ Fk1) ≥ 1
8
η

and

(3.13) Hs′
∞(
⋃N1−1
l=1 Il ∩ Fk1) < 1

8
η.

Let h+
z :=

⋃N1

l=1 Il. By (3.12) and (3.13), we know

1

8
η ≤ Hs′

∞(h+
z ) ≤ Hs′

∞(
⋃N1−1
l=1 Il ∩ Fk1) +Hs′

∞(IN1 ∩ Fk1)

≤ 1

8
η +

1

16
η =

3

16
η.(3.14)

See Figure 2 for the construction of h+
z .
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Figure 2. The construction of h+z .

Hence the arc h+
z satisfies the first inequality in (3.6). We continue to construct

the other two arcs. Notice that

(3.15) Hs′
∞(
⋃N1+1
l=1 Il ∩ Fk1) ≤ Hs′

∞(h+
z ) +Hs′

∞(IN1+1 ∩ Fk1) ≤ 3
16
η + 1

16
η = 1

4
η.

We remark that since N1 ≤ N − 12, we know N1 + 1 ≤ N − 11. Combining this,
(3.15) and (3.11), we have

η = Hs′
∞(
⋃N
l=1 Il ∩ Fk1)

≤ Hs′
∞(
⋃N1+1
l=1 Il ∩ Fk1) +Hs′

∞(
⋃N−8
l=N1+2 Il ∩ Fk1) +

∑N
l=N−7Hs′

∞(Il ∩ Fk1)

≤ 1

4
η +Hs′

∞(
⋃N−8
l=N1+2 Il ∩ Fk1) + 8 η

16
,

which implies

Hs′
∞(
⋃N−8
l=N1+2 Il ∩ Fk1) ≥ 1

4
η.

Hence we can find N2 ∈ [N1 + 3, N − 8] which is the smallest integer satisfying

(3.16) Hs′
∞(
⋃N2

l=N1+2 Il ∩ Fk1) ≥ 1
8
η

and

(3.17) Hs′
∞(
⋃N2−1
l=N1+2 Il ∩ Fk1) < 1

8
η.

Let h−z :=
⋃N2

l=N1+2 Il. By (3.16) and (3.17), we know

1

8
η ≤ Hs′

∞(h−z ) ≤ Hs′
∞(
⋃N2−1
l=N1+2 Il ∩ Fk1) +Hs′

∞(IN2 ∩ Fk1)

≤ 1

8
η +

1

16
η =

3

16
η.(3.18)

The construction of the third arc h×z ⊂ S(z) is similar. See Figure 3 for an illustration.



Dimension estimates on circular (s, t)-Furstenberg sets 309

Figure 3. The construction of h−z and h×z .

That is, we can find h×z =
⋃N3

l=N2+2 Il for some integer N3 ∈ [N2 + 3, N − 2] such
that

1

8
η ≤ Hs′

∞(h×z ) ≤ 3

16
η.(3.19)

We omit the details here. By the construction, it is clear that

dist(h+
z , h

−
z ) = diamIN1+1, dist(h−z , h

×
z ) = diamIN2+1, and dist(h+

z , h
×
z ) ≥ diamIN3+1.

Recall for any 1 ≤ l ≤ N−1,H1(Il) = γ. Hence diamIl ≥ π−1γ for any 1 ≤ l ≤ N−1.
We conclude that

min{dist(h+
z , h

−
z ), dist(h−z , h

×
z ), dist(h+

z , h
×
z )} ≥ π−1γ.

Therefore, for each circle S(z), we have found three π−1γ-separated arcs h+
z , h

−
z ,

h×z ⊂ S(z) with the property in (3.14), (3.18) and (3.19) respectively. Furthermore,
recalling γ = ( η

16
)1/s′ and η > 1

k21
= 1

(log 1
δ

)2
, we deduce that h+

z , h
−
z , h

×
z are τ =

π−1( 1
16

)1/s′( 1
log 1

δ

)2/s′-separated. Hence by combining with (3.8), we have showed that
(3.6) holds.

We end Step 2 by defining

T :=





h+
z ∩ Fk1 ∩Bi+ 6= ∅,

(i+, i−, i×, z) ∈ Ik1 × Ik1 × Ik1 × V : h−z ∩ Fk1 ∩Bi− 6= ∅,
h×z ∩ Fk1 ∩Bi× 6= ∅





where Bi+ = B(xi+ , ri+), Bi− = B(xi− , ri−), and Bi× = B(xi× , ri×). In the following,
we will write x+ instead of xi+ for short and other lower indices will be abbreviated
correspondingly.

Step 3. We estimate #T from above.
First we fix i+, i−, i× and estimate the upper bound of the number of z ∈ V such

that (i+, i−, i×, z) ∈ T , where V is chosen as explained above (3.9).
To this end, we observe that a necessary condition for (i+, i−, i×, z) ∈ T is that

(3.20) S(z) ∩Bi+ 6= ∅, S(z) ∩Bi− 6= ∅, S(z) ∩Bi× 6= ∅
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and

(3.21) min{‖x+ − x−‖, ‖x+ − x×‖, ‖x− − x×‖} ≥ τ − 2δ = τ −
√

4δ >
τ

2

since h+
z , h

−
z , h

×
z are τ -separated and Bi+ = B(x+, r+), Bi− = B(x−, r−), Bi× =

B(x×, r×) are balls of radius between δ/2 and δ. Moreover, in the last inequality of
(3.21) we recall (3.3).

Hence we will provide an upper bound of z satisfying (3.20) and (3.21) in the
following. Assume for some z = (x, r) ∈ V , (3.20) holds. Then we know

r − δ ≤ ‖x− x+‖ ≤ r + δ, r − δ ≤ ‖x− x−‖ ≤ r + δ, r − δ ≤ ‖x− x×‖ ≤ r + δ,

which implies

(x, r) ∈ Γ :=





d− δ ≤ ‖y − x+‖ ≤ d+ δ,
(y, d) ∈ R2 × [1

2
, 2] : d− δ ≤ ‖y − x−‖ ≤ d+ δ,

d− δ ≤ ‖y − x×‖ ≤ d+ δ





by the fact that z ∈ B0 implies r ∈ [1
2
, 2]. Also by (3.21) and by δ < τ2

640
from (3.3),

we can apply Lemma 2.5 with 4ABC = 4x+x−x×, a = δ, b = r and c = τ
4
to

deduce that

diamΓ . δ

τ 2
.

Recall V is a δ-separated set in B0 ⊂ R3. Then for any z, z′ ∈ V ∩ Γ,

B(z, δ
3
) ∩B(z′, δ

3
) = ∅,

which, together with diam(V ∩ Γ) . δτ−2, implies

#(V ∩ Γ)δ3 ∼ #(V ∩ Γ)|B(z, δ
3
)| =

∣∣∣∣∣
⋃

z∈V ∩Γ

B(z, δ
3
)

∣∣∣∣∣ . [diam (V ∩ Γ)]3 . δ3τ−6.

Hence #(V ∩ Γ) . τ−6. We can deduce that there are at most only . τ−6 many
z ∈ V satisfying (3.20) for fixed i+, i− and i×. As a consequence, we have

(3.22) #T . #Ik1 ×#Ik1 ×#Ik1 × τ−6 . (#Ik1)3τ−6 .s′ (#Ik1)3(log 1
δ
)12/s′ ,

which completes the proof of Step 3.

Step 4. We estimate #T from below. To this end, recall Fk1 = ∪i∈Ik1B(xi, ri).
Hence for any z ∈ V , we have

h+
z ∩ Fk1 ⊂

⋃

i∈Ik1

B(xi, ri), h−z ∩ Fk1 ⊂
⋃

i∈Ik1

B(xi, ri), h×z ∩ Fk1 ⊂
⋃

i∈Ik1

B(xi, ri).

For each z ∈ V , define

I+
k1

(z) := {i ∈ Ik1 | h+
z ∩B(xi, ri) 6= ∅}, I−k1(z) := {i ∈ Ik1 | h−z ∩B(xi, ri) 6= ∅},

and
I×k1(z) := {i ∈ Ik1 | h×z ∩B(xi, ri) 6= ∅}.

With the help of (3.6), we have

(log
1

δ
)−2 .s′ Hs′

∞(h+
z ∩ Fk1) ≤

∑

i∈I+k1 (z)

(diamB(xi, ri))
s′ ∼

∑

i∈I+k1 (z)

δs
′ ≤ #I+

k1
(z)δs

′
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for all z ∈ V , which implies

(3.23) #I+
k1

(z) &s′
1

δs′
(log 1

δ
)−2 for all z ∈ V .

Similarly, we have

(3.24) #I−k1(z) &s′
1

δs′
(log 1

δ
)−2 and #I×k1(z) &s′

1

δs′
(log 1

δ
)−2 for all z ∈ V .

On the other hand, recalling the definition of T in thew end of Step 2, we know

T =
⋃

z∈V
I+
k1

(z)× I−k1(z)× I×k1(z)× {z}.

Employing the lower bounds in (3.23) and (3.24), we arrive at

#T ≥ min
z∈V

{
#I+

k1
(z)
}
×min

z∈V

{
#I−k1(z)

}
×min

z∈V

{
#I×k1(z)

}
×#V &s′

1

δ3s′
(log 1

δ
)−6#V.

Combining (3.7) and (3.9) we conclude

#T &s′
1

δ3s′+t′
(log 1

δ
)−8.

Recalling (3.22) we obtain

#Ik1 &s′
(

1

δ3s′+t′
(log 1

δ
)−8

)1/3

(log 1
δ
)−12/s′ =

1

δs′+t′/3
(log 1

δ
)−( 8

3
+ 12
s′ ).

We deduce that
∑

i∈I
r
s′+t′/3−ε
i ≥

∑

i∈Ik1

r
s′+t′/3−ε
i &s′ 2−k1(s′+t′/3−ε) 1

δs′+t′/3
(log 1

δ
)−( 8

3
+ 12
s′ )

&s′ δ−ε(log 1
δ
)−( 8

3
+ 12
s′ ) > 1.

where in the third inequality we recall δ = 2−k1 and in the last inequality we recall
(3.2). This enables us to deduce

dimH(F ) ≥ s′ +
t′

3
− ε

for any 0 < s′ < s, 0 < t′ < t and ε > 0. Therefore,

dimH(F ) ≥ s+
t

3
.

We conclude the proof. �

4. Proof of Theorem 1.3

To show Theorem 1.3, we define the multiplicity function mµ
δ (w) : R2 → [0, 1]

with respect to a finite measure µ on R3:

(4.1) mµ
δ (w) := µ({z ∈ R3 | w ∈ Sδ(z)}).

We recall [8, Lemma 5.1], which is a variant of Schlag’s weak type inequaltiy [14,
Lemma 8] and the main lemma in [15] by Wolff:
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Lemma 4.1. Fix t ∈ (0, 1], δ > 0, η > 0,C ≥ 1, and A ≥ Cη,C,t · δ−η, where
Cη,C,t ≥ 1 is a large constant depending only on η,C and t. Let µ be a probability
measure on R3 satisfying the Frostman condition µ(B(z, r)) ≤ Crt for all z ∈ R3 and
r > 0, and with D := spt µ ⊂ B0 where B0 is defined in (2.1). Then, for λ ∈ (0, 1],
there is a set G(A, δ, λ) ⊂ D with

µ(D \G(A, δ, λ)) < A−t/3

such that the following holds for all z ∈ G(A, δ, λ):

|Sδ(z) ∩ {w | mµ
δ (w) ≥ Atλ−2tδt}| ≤ λ|Sδ(z)|.

Remark 4.2. We remark that the assumptions on µ in Lemma 4.1 can be slightly
relaxed, which means we can apply Lemma 4.1 for measures µ satisfying that

(i) µ is a finite measure with total mass smaller or equal to 1 supported on B0;
(ii) µ enjoys Frostman condition

µ(B(z, r)) ≤ Crt for all z ∈ R3 and r > δ.

Indeed, in the proof of [8, Lemma 5.1], the fact that the total measure µ(D) = 1
was only used at the beginning to reduce the proof to the case that δ is small. See
the first paragraph of the proof therein. Moreover, the Frostman condition was only
applied to balls in R3 with radius δ < r ∈ [Cδ, 1] where C ≥ 1 in their proof. See the
inequality above (5.4), the definition of B below (5.22) and inequality (5.24) therein.
Hence we can reduce the assumptions in Lemma 4.1 to (i) and (ii) above for the
measure µ.

Proof of Theorem 1.3. Let F be a circular (s, t)-Furstenberg set with parameter
set K ⊂ B0. It suffices to show, for any ε > 0, 1

2
< s′ < s and 0 < t′ < t,

dimH(F ) ≥ (2s′ − 1)t′ + s′ − ε.
Hence in the following, we fix ε, s′, t′.

Let α > 0 and K1 be as in (3.1). Now we clarify the choices of parameters
appeared in the ensuing proof and we remind that all parameters are unrelated to
those in the proof of Theorem 1.2. First, we choose

(4.2) η = min{ε/2t′, (2s′ − 1)/2}.
Then there exists δ0 = δ0(ε, s′, t′) > 0 such that for any 0 < δ < δ0, we have

(4.3) δε−t
′η(log 1

δ
)6+4t′ ≤ δ

ε
2 (log 1

δ
)6+4t′ < 1,

(4.4) δ
ηt′
3 (log 1

δ
)2 <

1

4
,

and

(4.5) Cη,C,t′,s′ = (Cη,C,t′)
t′(2c04s

′
)2t′ ,

where C and Cη,C,t′ ≥ 1 are the constants appeared in Lemma 4.1 and c0 is as in
Remark 2.1(ii), i.e. |Sδ(x, r)| ≤ c0δ for all (x, r) ∈ B0.

Let k0 be the smallest integer larger than (log 1
δ0

) also satisfying

(4.6) α >
∞∑

k=k0

1

k2
.
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Now, we outline the main steps of the proof. We start with an arbitrary cover
U = {B(xi, ri)}i∈I of F by balls of radius less than 2−k0 . In the sequel, we will derive
a lower bound ∑

i∈I
rσi &ε,t′,s′ 1

with σ = (2t′ + 1)s′ − t′ − ε independent of the choice of the particular cover. This
will imply

Hσ(F ) > 0.

To this end, we divide the proof into 3 steps. Let

Ik := {i ∈ I | 2−(k+1) < ri ≤ 2−k}, Fk := {⋃B(xi, ri) | i ∈ Ik}.
First, in Step 1, we will deduce that there exists k1 ≥ k0 and a (δ, t′)-set V ⊂ K

with δ = 2−k1 such that

(4.7)
1

k2
1

· δ−t′ . #V . δ−t
′
,

and for every circle z = (x, r) ∈ V , we have

(4.8) Hs′
∞(S(z) ∩ Fk1) > k−2

1 .

Next, in Step 2, we associate a finite measure µ supported on V using (2.9).
Then we apply Lemma 4.1 to obtain that there exists G ⊂ V and Sδ2(z) contained in
the δ-neighbourhood of S(z) ∩ Fk1 , such that for every z ∈ G and w ∈ Sδ2(z),

(4.9) #{z′ ∈ G | w ∈ Sδ2(z′)} .t′ Cη,C,t′,s′δt
′(2s′−2−η)(log 1

δ
)4t′+2.

Finally, in Step 3, we will provide a lower bound of the cardinality #Ik1 by
combining the upper bound in Step 2 as well as the lower bounds on the cardinality
#G and the Lebesgue measure |Sδ2(z)|. Explicitly, we have

#Ik1 &ε,t′,s′
1

δ(2t′+1)s′−t′(1+η)

1

(log 1
δ
)6+4t′

.

This will enable us to conclude the proof.

Step 1. Employing the same arguments as in Step 1 in the proof of Theorem 1.2,
we can deduce the existence of k1 and V ⊂ K2 ⊂ K1 satisfying (4.8) and the first
inequality in (4.7). The second inequality in (4.7) is derived from Remark 2.4. Here,
we omit the details.

Step 2. Define µV as in (2.9) applied to P = V . Then we know µV is a probability
measure satisfying the Frostman condition

µV (B(z, r)) ≤ CHt′
∞(K2)−1rt

′
< Ck2

1r
t′ = C(log 1

δ
)2rt

′

for all z ∈ R3 and r > δ. Hence by setting

µ :=
µV

(log 1
δ
)2
,

we know that µ has total measure (log 1
δ
)−2 < 1, sptµ = V ⊂ B0 and

µ(B(z, r)) ≤ Crt
′

=: Crt
′

for all z ∈ R3 and r > δ.
Let mδ

µ be the corresponding multiplicity function with respect to µ defined as
in (4.1).
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Applying Lemma 4.1 with t = t′, δ = 2−k1 , η as in (4.2), µ = (log 1
δ
)−2µV , D = V

and

(4.10) λ = (2c04s
′
k2

1)−1δ1−s′ ,

we obtain that for A = Cη,C,t′ · δ−η, there is a set G = G(k1, s
′, t′, ε) ⊂ V with

(4.11) µ(V \G) < A−t
′/3

such that the following holds for all z ∈ G:

(4.12) |Sδ(z) ∩ {w | mµ
δ (w) ≥ At

′
λ−2t′δt

′}| ≤ λ|Sδ(z)|.
Because |Sδ(z)| ≤ c0δ for all z ∈ B0, (4.12) becomes

(4.13) |Sδ(z) ∩ {w | mµ
δ (w) ≥ At

′
λ−2t′δt

′}| ≤ c0λδ.

Moreover, recalling that δ = 2−k1 and k1 ≥ k0, we know that 0 < δ < δ0. Hence by
Cη,C,t′ ≥ 1, (4.4) and the choice of η in (4.2) we deduce

A−
t′
3 ≤ δ

ηt′
3 ≤ 1

4

1

(log 1
δ
)2

=
1

4
µ(V ).

Hence (4.11) becomes

(4.14) µ(V \G) <
1

4
µ(V ).

For z ∈ G, let S1(z) := S(z) ∩ Fk1 and Sδ1(z) be the δ-neighbourhood of S1(z).
Our next goal is to substitute the right hand side term λ|Sδ(z)| in (4.12) by the term
1
2
|Sδ1(z)| with the help of the proper choice of λ as in (4.10). This means, in the sense

of 2-dimensional Lebesgue measure, more than half of the points in Sδ1(z) have low
multiplicity. To this end, we claim that

(4.15) |Sδ1(z)| ≥ 1

4s′k2
1

δ2−s′ .

To see (4.15), let P (z) be a maximal 2δ-separated set in S1(z). Then
⋃
p∈P (z) B(p, 2δ)

forms a cover of S1(z). Hence

Hs′
∞(S1(z)) ≤ #P (z)(4δ)s

′
.

which, combined with (4.8), implies

#P (z) ≥ Hs′
∞(S1(z))

1

(4δ)s′
≥ 1

4s′k2
1

1

δs′
.

On the other hand, we have
⋃
p∈P (z) B(p, δ) ⊂ Sδ1(z). Hence by {B(p, δ)}p∈P (z) being

mutually disjoint, we deduce

|Sδ1(z)| ≥ |⋃p∈P (z)B(p, δ)| = #Pδ2π ≥ π
4s′k21

δ2−s′ > 1
4s′k21

δ2−s′ ,

which gives (4.15).
Noticing that |Sδ(z)| ≤ c0δ, S1(z) ⊂ S(z) and combining (4.13) as well as (4.15),

we arrive at

(4.16) |Sδ1(z) ∩ {w | mµ
δ (w) ≥ At

′
λ−2t′δt

′}| ≤ λc0δ ≤ λc04s
′
k2

1δ
s′−1|Sδ1(z)|.

Now recall A = Cη,C,t′ · δ−η and λ = (2c04s
′
k2

1)−1δ1−s′ = (2c04s
′
)−1(log 1

δ
)−2δ1−s′ .

Then (4.16) becomes

|Sδ1(z) ∩ {w | mµ
δ (w) ≥ Cη,C,t′,s′δ

t′(2s′−1−η)(log 1
δ
)4t′}| ≤ 1

2
|Sδ1(z)|
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where we recall Cη,C,t′,s′ defined in (4.5).
For each z ∈ G, define the low-multiplicity set

Sδ2(z) := {w ∈ Sδ1(z) | mµ
δ (w) < Cη,C,t′,s′δ

t′(2s′−1−η)(log 1
δ
)4t′}.

Then we have

(4.17) |Sδ2(z)| ≥ 1

2
|Sδ1(z)|.

See Figure 4 for an illustration of S1(z), Sδ1(z) and Sδ2(z).

Figure 4. An illustration of S1(z), Sδ1(z) and Sδ2(z).

Notice that mµ
δ (w) < Cη,C,t′,s′δ

t′(2s′−1−η)(log 1
δ
)4t′ is equivalent to

µ({z′ ∈ R3 | w ∈ Sδ(z′)}) < Cη,C,t′,s′δ
t′(2s′−1−η)(log 1

δ
)4t′ ,

which, combined with (4.7), indicates that for w ∈ Sδ2(z), it holds

#{z′ ∈ V | w ∈ Sδ(z′)} ≤ #V · Cη,C,t′,s′δt
′(2s′−1−η)(log 1

δ
)4t′+2

.t′ Cη,C,t′,s′δt
′(2s′−2−η)(log 1

δ
)4t′+2.

Furthermore, by the inclusions G ⊂ V and Sδ2(z) ⊂ Sδ(z), we conclude (4.9), which
finishes Step 2.

Step 3. We will lower bound #Ik1 in the following. First notice that if {Sδ(z)}z∈G
were mutually disjoint, we could lower bound #Ik1 by summing up the number of
balls Bi (i ∈ Ik1) needed to cover each Sδ2(z) since no ball could simultaneously
intersect two of these sets. However, in general, {Sδ(z)}z∈G may not be mutually
disjoint, which needs a bit more efforts to get the lower bound of #Ik1 .

Let
F̃k1 :=

⋃

i∈Ik1

B(xi, 4ri).
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We deduce that

(4.18)
⋃

z∈G
Sδ2(z) ⊂ F̃k1 .

Indeed, for any w ∈ Sδ2(z), there exists w′ ∈ S(z) ∩ Fk1 such that

‖w − w′‖ < δ.

On the other hand, we know that w′ ∈ B(xi, ri) for some xi ∈ Ik1 and ri > 2−(k1+1) =
δ/2, which implies

‖w′ − xi‖ < ri
and hence

‖w − xi‖ < δ + ri < 3ri.

In addition, by (4.7) and (4.14), we can infer that

(4.19) #G & #V & 1

δt′
1

(log 1
δ
)2
.

Moreover by recalling (4.9) we obtain that for every w ∈ ⋃z∈G S
δ
2(z),

N (w) := #{z′ ∈ G | w ∈ Sδ2(z′)} .t′ Cη,C,t′,s′δt
′(2s′−2−η)(log 1

δ
)4t′+2

and hence combining (4.19), we can estimate∣∣∣∣∣
⋃

z∈G
Sδ2(z)

∣∣∣∣∣ =
∑

z∈G

ˆ
χSδ2(z)(w)

1

N (w)
dw

&t′ (Cη,C,t′,s′δ
t′(2s′−2−η)(log

1

δ
)4t′+2)−1

∑

z∈G

∣∣Sδ2(z)
∣∣

&t′ (Cη,C,t′,s′)
−1 1

δt′(2s′−2−η)

1

(log 1
δ
)4t′+2

1

δt′
1

(log 1
δ
)2

min
z∈G
{|Sδ2(z)|}

&η,t′,s′
1

δt′(2s′−2−η)

1

(log 1
δ
)4t′+2

1

δt′
1

(log 1
δ
)2
δ2−s′ 1

(log 1
δ
)2

(4.20)

where in the last inequality we employ (4.15) and (4.17). Therefore, combining (4.18)
and (4.20) we arrive at

#Ik1δ2 &
∣∣∣F̃k1

∣∣∣ ≥
∣∣∣∣∣
⋃

z∈G
Sδ2(z)

∣∣∣∣∣ &η,t′,s′
1

δt′(2s′−2−η)

1

(log 1
δ
)4t′+2

1

δt′
1

(log 1
δ
)2
δ2−s′ 1

(log 1
δ
)2
,

which implies

#Ik1 &η,t′,s′
1

δ(2t′+1)s′−t′(1+η)

1

(log 1
δ
)6+4t′

.

Since Ik1 ⊂ I, we deduce that
∑

i∈I
r

(2t′+1)s′−t′−ε
i ≥

∑

i∈Ik1

r
(2t′+1)s′−t′−ε
i

&η(ε,t′,s′),t′,s′ 2−k1((2t′+1)s′−t′−ε) 1

δ(2t′+1)s′−t′(1+η)

1

(log 1
δ
)6+4t′

&η(ε,t′,s′),t′,s′ δ
t′η−ε 1

(log 1
δ
)6+4t′

&ε,t′,s′ δ−ε/2
1

(log 1
δ
)6+4t′

> 1,
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where in the third inequality we recall δ = 2−k1 and in the fourth as well as the last
inequality we recall (4.3). This enables us to deduce

dimH(F ) ≥ (2t′ + 1)s′ − t′ − ε

for any 1
2
< s′ < s, 0 < t′ < t and ε > 0. Therefore,

dimH(F ) ≥ (2t+ 1)s− t = (2s− 1)t+ s.

We conclude the proof. �

5. Proof of Lemma 2.5

This section is devoted to the proof of Lemma 2.5. For the readers’ convenience,
we restate Lemma 2.5 in the following.

Lemma 5.1. Let A,B,C ∈ R2 such that min{‖A−B‖, ‖A−C‖, ‖B−C‖} ≥ 2c
with c < 1. For a > 0 such that a < 1

20
c2, define

W :=





b− a ≤ ‖x− A‖ ≤ b+ a,
(x, b) ∈ R2 × [1

2
, 2] : b− a ≤ ‖x−B‖ ≤ b+ a,

b− a ≤ ‖x− C‖ ≤ b+ a



 .

Then

diamW . a

c2
.

We briefly explain the approach. We will decompose W as

W =
⋃

b∈I⊂[1/2,2]

W (b)× {b}.

Then for each fixed b,

W (b) :=





b− a ≤ ‖x− A‖ ≤ b+ a,
x ∈ R2 : b− a ≤ ‖x−B‖ ≤ b+ a,

b− a ≤ ‖x− C‖ ≤ b+ a



 = Sa(A, b)∩Sa(B, b)∩Sa(C, b)

is a subset in R2 formed by the intersection of three annuli. We will show that
W (b) 6= ∅ only for b ranging in a set I with diameter . a

c2
. Moreover, if W (b) 6=

∅, then A,B,C form a non-degenerate 4ABC with circumcenter M and W (b) is
contained in a rhombus centered at M with diameter . a

c2
. This will imply

diamW . a

c2
.

The above justification is contained in next two auxiliary lemmas. In what follows,
given A,B ∈ R2 and 0 < a < c2

20
, we denote by Ra,c

AB the rectangle centered at the
middle point of AB whose short sides have length 9a

c
and long sides have length 6

parallel to the bisector of AB.

Lemma 5.2. Let A,B ∈ R2 and b ∈ [1
2
, 2]. If c < min{1, ‖A−B‖

2
} and 0 < a <

c2

20
< 1, then

Sa(A, b) ∩ Sa(B, b) ⊂ Ra,c
AB.
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Proof. Let ‖A − B‖ = 2u. Without loss of generality, we assume A = (−u, 0)
and B = (u, 0). It is easy to see that

Sa(A, b) ∩ Sa(B, b)
= {x ∈ R2 | b− a ≤ ‖x− A‖ ≤ b+ a, b− a ≤ ‖x−B‖ ≤ b+ a}
⊂ U := {x = (x1, x2) ∈ R2 | max{‖x− A‖, ‖x−B‖} ≤ 3,

− 2a ≤ ‖x− A‖ − ‖x−B‖ ≤ 2a}.

Since u = ‖A−B‖
2

> c > a, from planar geometry we know that the set

{x ∈ R2 | ‖x− A‖ − ‖x−B‖ = ±2a}

consisting of points, whose absolute difference of distances to the two fixed points A
and B is the constant 2a, is a hyperbola in R2 determined by the equation

y(x) = y(x1, x2) = 1

where y : R2 → R is defined by

y(x) = y(x1, x2) 7→ x2
1

a2
− x2

2

u2 − a2
.

Then we observe that

{x ∈ R2 | −2a ≤ ‖x− A‖ − ‖x−B‖ ≤ 2a} = {x ∈ R2 | y(x1, x2) ≤ 1}

and hence

U = [B((−u, 0), 3) ∩B((u, 0), 3)] ∩ {x ∈ R2 | y(x1, x2) ≤ 1},

which implies
U ⊂ {x ∈ R2 | |x2| ≤ 3, y(x1, x2) ≤ 1}.

Figure 5 shows the case that u = 2 and a = 0.75.

Figure 5. The case u = 2 and a = 0.75.
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Letting |x2| = 3 in the equation y(x1, x2) = 1, we have |x1| = a
√

1 + 9
u2−a2 . Since

20a < c2 < 1 and u > c, it holds

(5.1) a

√
1 +

9

u2 − a2
< a

√
1 +

9

c2 − a2
< a

√
1 +

9
8
9
c2
< a

√
81

4c2
=

9

2

a

c
< 3.

This implies that the rectangle with four vertices (±9
2
a
c
,±3) has short side length 9a

c

and long side length 6. By recalling the definition of Ra,c
AB, we have

Sa(A, b) ∩ Sa(B, b) ⊂ U ⊂ Ra,c
AB = {x ∈ R2 | |x1| ≤ 9

2
a
c
, |x2| ≤ 3},

which concludes the proof. �

Lemma 5.3. Let A,B,C ∈ R2 such that min{‖A−B‖, ‖A−C‖, ‖B−C‖, 2} ≥
2c. Let b ∈ [1

2
, 2]. Then for a > 0 such that a < 1

20
c2 < b, define

(5.2) W (b) :=





b− a ≤ ‖x− A‖ ≤ b+ a,
x ∈ R2 : b− a ≤ ‖x−B‖ ≤ b+ a,

b− a ≤ ‖x− C‖ ≤ b+ a





If the triangle 4ABC is degenerate, then

(5.3) W (b) = ∅ for all b ∈ [
1

2
, 2].

If 4ABC is non-degenerate, let M be the circumcenter of 4ABC and

h := ‖M − A‖ = ‖M −B‖ = ‖M − C‖.
Then, we have

(5.4) W (b) ⊂ B
(
M,K a

c2

)
for all b ∈

[
1
2
, 2
]
.

In addition, if W (b) 6= ∅, then
(5.5) b ∈

[
h−K a

c2
, h+K a

c2

]
∩
[

1
2
, 2
]
.

Here in (5.4) and (5.5), K is an absolute constant.

Proof. Without loss of generality, we assume the side BC of4ABC has maximal
length. Then ∠A := ∠BAC ≥ π/3. Since W (b) = Sa(A, b) ∩ Sa(B, b) ∩ Sa(C, b),
from Lemma 5.2 we know

(5.6) W (b) ⊂ Ra,c
AB ∩Ra,c

AC .

Below we estimate diam(Ra,c
AB ∩Ra,c

AC) from above.
Denote by L1 and L2 the bisector of AB and AC respectively. Hence D :=

L1 ∩ AB is the middle point of AB and E := L2 ∩ AC is the middle point of AC.
See Figure 6 for an illustration.

Let d = 9
2
a
c
. Since 20a < c2, we have

(5.7) d =
9

2

a

c
<

9

40
c <

1

4
c.

Case 1. ∠A = π. That is, 4ABC degenerates. By (5.7), it is easy to see
Ra,c
AB ∩Ra,c

AC = ∅, which, with help of (5.6), implies

W (b) = ∅ for all b ∈ [1
2
, 2].

That is, (5.3) holds.
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Figure 6. An illustration for L1, L2, Ra,cAB and Ra,cAC .

Case 2. ∠A ∈ (π − arctan(2c/9), π). We will show that

(5.8) Ra,c
AB ∩Ra,c

AC = ∅.
Denote ‖A − B‖ = 2u and ‖A − C‖ = 2v. Since M is the circumcenter of 4ABC,
it is the intersection of lines L1 and L2. Then the line L3 passing through A and
M divides R2 into two connected components. Since the center D of Ra,c

AB and the
center E of Ra,c

AC are contained in different connected components above and d < 1
4
c

by (5.7), a sufficient condition for Ra,c
AB ∩Ra,c

AC = ∅ is that
(5.9) Ra,c

AB ∩ L3 = ∅ and Ra,c
AC ∩ L3 = ∅.

See Figure 7 for an illustration.

Figure 7. An illustration for Case 2.

Recall that half of the length of the short sides ofRa,c
AB andRa,c

AC is d = 9
2
a
c
. By as-

sumption ∠A ∈ (π−arctan(2c/9), π), this implies ∠DMA+∠EMA ≤ arctan(2c/9).
Hence

(5.10) tan∠DMA <
2c

9
≤ c− d

3
≤ u− d

3
and tan∠EMA <

2c

9
≤ c− d

3
≤ v − d

3

where in the second inequality we apply d < c
3
from (5.7). Now we explain how (5.10)

implies (5.9). Let D′ be the intersection of the line segment AD and the long side of
the triangle Ra,c

AB. Also, let L′1 := L1 + (D′ −D). That is, line L′1 is the translation
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of line L1 by the vector D′ −D in R2. Denote the intersection of L′1 and L3 by M ′.
See Figure 8 for an illustration.

Figure 8. An illustration for D′, M ′ and L′1.

We observe that

(5.11) ∠D′M ′A = ∠DMA and tan∠D′M ′A =
‖A−D′‖
‖D′ −M ′‖ =

u− d
‖D′ −M ′‖

where in the last inequality we recall that ‖A−D′‖ = ‖A−D‖−‖D−D′‖, ‖A−D‖ = u
and ‖D −D′‖ = d. Combining (5.10) and (5.11), we deduce that

u− d
‖D′ −M ′‖

(5.11)
= tan∠D′M ′A

(5.10)
<

u− d
3

,

which implies
‖D′ −M ′‖ > 3.

This, combined with the fact that half of the length of the long sides of Ra,c
AB is 3,

shows that
Ra,c
AB ∩ L3 = ∅.

By a similar argument, we also have Ra,c
AC ∩ L3 = ∅ with the help of (5.10). This

shows that (5.9) is true and hence (5.8) holds.

Case 3. ∠A ∈ [π/3, π − arctan(2c/9)]. In this case, W (b) may not be empty.
Now, we assume that W (b) 6= ∅, which implies that Ra,c

AB ∩ Ra,c
AC 6= ∅. Moreover,

denote by VdLi the closed d-neighbourhood of lines Li, i = 1, 2. Then VdL1
∩ VdL2

is a
rhombus TM centered at M satisfying Ra,c

AB ∩Ra,c
AC ⊂ TM . We will show that

(5.12) diam TM ≤ 324
a

c2
.

See Figure 9 for an illustration.
Denote the length of two diagonals of TM by d1 and d2 and the the length of four

sides of TM by l. We have

diam TM = max{d1, d2},(5.13)

d2
1 + d2

2 = 4l2(5.14)

and

(5.15) l =
2d

sin∠A.
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Figure 9. An illustration for the estimate ‖y −M‖.

Since ∠A ∈ [π/3, π − arctan(2c/9)], we have

(5.16) sin∠A ≥ sin

(
arctan

2c

9

)
≥ sin

c

9
≥ c

18

where in the second last inequality we use the fact that arctan y > y
2
if 0 < y < 1

and in the last inequality we use the fact that sin y > y
2
if 0 < y < 1.

Combining (5.13), (5.14), (5.15) and (5.16), we obtain

(5.17) diam TM ≤ 2l ≤ 72d

c
= 324

a

c2

where in the last equality we recall d = 9
2
a
c
. Therefore, we conclude (5.12).

Combining Case 2 and Case 3, we conclude (5.4).
Finally, we show (5.5). Let x ∈ W (b). By (5.2) and (5.13), we have

|b− h| = |b− ‖M − A‖| ≤ |b− ‖x− A‖|+ ‖x−M‖ . a+
a

c2
. a

c2
.

The proof is complete. �
Now, we are in a position to show:

Proof of Lemma 2.5. For b ∈ [1
2
, 2], define

W̃ (b) := W (b)× {b}

=





b− a ≤ ‖x− A‖ ≤ b+ a,
(x1, x2, x3) = (x, x3) ∈ R3 : b− a ≤ ‖x−B‖ ≤ b+ a, x3 = b

b− a ≤ ‖x− C‖ ≤ b+ a,



 .

First we assume 4ABC degenerates. Then by (5.3), we know

W̃ (b) = ∅ for all b ∈ [1
2
, 2].

Hence the lemma holds for this case.
Next, we assume 4ABC is non-degenerate. Then by (5.4), we have

(5.18) W̃ (b) ⊂ B((M, b), K a
c2

) ∩ {x3 = b} ⊂ R3 for all b ∈ [1
2
, 2],

where M is the circumcenter of the triangle 4ABC.
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Since W̃ (b) 6= ∅ implies h−K a
c2
≤ b ≤ h+K a

c2
from Lemma 5.3, we know

(5.19) W ⊂
⋃

{b|W̃ (b) 6=∅}

W̃ (b) ⊂
⋃

b∈[h−K a
c2
,h+K a

c2
]

W̃ (b).

Then combining (5.18) and (5.19), we deduce (2.8), i.e.

diamW . a

c2
,

which finishes the proof. �
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ON THE HAUSDORFF DIMENSION OF CIRCULAR FURSTENBERG SETS

KATRIN FÄSSLER, JIAYIN LIU AND TUOMAS ORPONEN

ABSTRACT. For 0 ¤ s ¤ 1 and 0 ¤ t ¤ 3, a set F � R2 is called a circular ps, tq-Furstenberg
set if there exists a family of circles S of Hausdorff dimension dimH S ¥ t such that

dimHpF X Sq ¥ s, S P S.
We prove that if 0 ¤ t ¤ s ¤ 1, then every circular ps, tq-Furstenberg set F � R2 has
Hausdorff dimension dimH F ¥ s � t. The case s � 1 follows from earlier work of Wolff
on circular Kakeya sets.
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2 KATRIN FÄSSLER, JIAYIN LIU AND TUOMAS ORPONEN

1. INTRODUCTION

We start by introducing a few key notions. Throughout the paper, we identify families
of circles S with subsets of R2 � p0,8q in the obvious way: the circle Spx, rq with centre
x P R2 and radius r ¡ 0 is identified with the point px, rq P R2 � p0,8q. With this
convention, if E � R2 � p0,8q, then the Hausdorff dimension of the circle family S �
tSpx, rq : px, rq P Eu is defined to be

dimH S :� dimHE.

Definition 1.1 (Circular Furstenberg sets). Let 0 ¤ s ¤ 1 and 0 ¤ t ¤ 3. A set F � R2 is
called a circular ps, tq-Furstenberg set if there exists a family of circles S with dimH S ¥ t
such that dimHpF X Sq ¥ s for all S P S.

Equivalently, there exists a set E � R2�p0,8qwith dimHE ¥ t, and with the property
that dimHpF X Spx, rqq ¥ s for all px, rq P E.

Our main result is the following:

Theorem 1.2. Let 0 ¤ t ¤ s ¤ 1. Then, every circular ps, tq-Furstenberg set F � R2 has
Hausdorff dimension dimH F ¥ s� t.

Remark 1.3. After the first version of this paper was posted on the arXiv, Zahl [29, The-
orem 1.12] proved a significant generalisation of Theorem 1.2, which covers much more
general "curvy" Furstenberg sets and yields the same lower bound dimH F ¥ s� t.

Theorem 1.2 will be deduced from a more quantitative δ-discretised version, Theorem
1.8 below. To state this version, it is convenient to introduce the following subset of the
parameter space R2 � p0,8q, where the centres are near the origin, and the radii are
bounded both from above, and away from zero:

Notation 1.4 (The domain D). We write

D :� tpx, rq P R2 � r0,8q : |x| ¤ 1
4 and r P r12 , 1su. (1.5)

A similar normalisation already appears in Wolff’s work on circular Kakeya sets, for
example [27]. As long as we restrict attention to circles Sppq with p P D, his geometric
estimates will be available to us, including [27, Lemma 3.1].

The following definition will be ubiquitous in the paper:

Definition 1.6. Let s ¥ 0, C ¡ 0, and δ P 2�N. A bounded set P � Rd is called a
pδ, s, Cq-set if

|P XBpx, rq|δ ¤ Crs|P |δ, x P Rd, r ¥ δ.

Here, and in the sequel, |E|δ refers to the number of dyadic δ-cubes intersecting E. We
also extend the definition to the case where P is a finite family of dyadic δ-cubes: such a
family is called a pδ, s, Cq-set if the union YP is a pδ, s, Cq-set in the sense above.

The following observations are useful to keep in mind about pδ, s, Cq-sets. First, if P
is a non-empty pδ, s, Cq-set, then |P |δ ¥ C�1δ�s. This follows by applying the defining
condition at scale r � δ. Second, a pδ, s, Cq-set is a pδ, t, Cq-set for all 0 ¤ t ¤ s.

It turns out that the critical case for Theorem 1.2 is the case s � t: it will suffice to
establish a δ-discretised analogue of the theorem in the case s � t (see Theorem 1.8
below), and the general case 0 ¤ t ¤ s of Theorem 1.2 will follow from this. With this in
mind, we introduce the following δ-discretised variants of a circular ps, sq-Furstenberg
sets. In the definition, πR3 : R5 Ñ R3 stands for the map πR3px1, . . . , x5q � px1, x2, x3q.
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Definition 1.7. Let s P p0, 1s, C ¡ 0, and δ P 2�N. A pδ, s, Cq-configuration is a set Ω � R5

such that P :� πR3pΩq is a non-empty pδ, s, Cq-subset of D, and Eppq :� tv P R2 : pp, vq P
Ωu is a non-empty pδ, s, Cq-subset of Sppq for all p P P . Additionally, we require that the
sets Eppq have constant cardinality: there exists M ¥ 1 such that |Eppq| �M for all p P P .

If the constant M is worth emphasising, we will call Ω a pδ, s, C,Mq-configuration.
Conversely, if the constant C is not worth emphasising, we will talk casually about pδ, sq-
configurations (but only in heuristic and informal parts of the paper).

We note that automatically M ¥ δ�s{C, since Eppq is a non-empty pδ, s, Cq-set, but it
may happen that M is much greater than δ�s.

Theorem 1.8. For every κ ¡ 0 and s P p0, 1s, there exist ϵ, δ0 P p0, 12 s such that the following
holds for all δ P p0, δ0s. Let Ω be a pδ, s, δ�ϵ,Mq-configuration. Then, |F |δ ¥ δκ�sM , where

F :�
¤
pPP

Eppq.

The proof of Theorem 1.8 is based on starting with a pδ, s, δ�ϵq-configuration Ω, and
refining it multiple times (the required number depends on κ and s) until the following
total multiplicity function of the final refinement is uniformly bounded from above.

Definition 1.9 (Total multiplicity function). Let Ω � R5 be a bounded set, and let δ ¡ 0.
For w P R2, we write

mδpw | Ωq :� |tpp, vq P Ω : w P Bpv, δqu|δ. (1.10)

The total multiplicity function is called this way, because we will also introduce "par-
tial" multiplicity functions (denoted mδ,λ,t) which do not take into account all pairs pp, vq P
Ω, but rather impose certain restrictions on p, depending on the parameters λ and t.

The next theorem contains the technical core of the paper, and it implies Theorem 1.8.

Theorem 1.11. For every κ ¡ 0 and s P p0, 1s there exist δ0, ϵ P p0, 12 s such that the following
holds for all δ P p0, δ0s. Let Ω � D� R2 be a pδ, s, δ�ϵq-configuration with |P | ¤ δ�s�ϵ. Then,
there exists a subset Ω1 � Ω such that |Ω1|δ ¥ δκ|Ω|δ, and

mδpw | Ω1q ¤ δ�κ, w P Ω1. (1.12)

Remark 1.13. In practical applications of Theorem 1.11, it will be important to know that
the constant ϵ ¡ 0 stays bounded away from zero as long as κ ¡ 0 and s P p0, 1s stay
bounded away from zero. This is true, and follows from the proof of Theorem 1.11,
where the dependence between ϵ and κ, s is always explicit and effective. Since Theorem
1.8 is a consequence of Theorem 1.11, this remark also applies to Theorem 1.8.

Deducing Theorem 1.8 from Theorem 1.11, and finally Theorem 1.2 from 1.8, is accom-
plished in Section 2.

1.1. Circular vs. linear Furstenberg sets. The results in this paper should be contrasted
with their (known) counterparts regarding linear ps, tq-Furstenberg sets.

A linear ps, tq-Furstenberg set is defined just like a circular ps, tq-Furstenberg set, except
that the t-dimensional family of circles is replaced by a t-dimensional family of lines. The
main difference between linear and circular Furstenberg sets is that the parameter space
of circles is 3-dimensional, whereas the parameter space of lines is only 2-dimensional.
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This difference makes linear Furstenberg sets substantially simpler: in particular, the
analogue of Theorem 1.2 for linear ps, tq-Furstenberg sets is known, see [8, Theorem A.1]
or [11, Theorem 12] for two very different proofs, and [6, 7, 14, 27] for earlier partial
results. Furthermore, any results for circular Furstenberg sets imply their own counter-
parts for linear Furstenberg sets, simply because the map z ÞÑ 1{z takes all lines to circles
through 0. In particular, Theorem 1.2 gives another – seriously over-complicated – proof
for [8, Theorem A.1] and [11, Theorem 12].

Even with Theorem 1.2 in hand, the theory of circular Furstenberg sets remains sub-
stantially less developed than its linear counterpart. Theorem 1.2 is obviously sharp in
its stated range 0 ¤ t ¤ s ¤ 1, but gives no new information if t ¡ s (compared to
the case t � s). In contrast, it is known that linear ps, tq-Furstenberg sets have Haus-
dorff dimension ¥ 2s � ϵps, tq for t ¡ s (see [15]). Even stronger results are available
for t ¡ mint1, 2su (see [4, Theorem 1.6] and [20] for the current world records). For cir-
cular Furstenberg sets, the only improvement over Theorem 1.2 is known in the range
t P p3s, 3s: in an earlier paper [10], the second author proved that every circular ps, tq-
Furstenberg set has Hausdorff dimension at least t{3 � s, when s P p0, 1s and t P p0, 3s
(the result is only stated for t P p0, 1s, but the proof actually works for t P p0, 3s).

The sharp lower bound for the dimension of linear ps, tq-Furstenberg sets is a major
open problem: it seems plausible that every linear ps, tq-Furstenberg has dimension at
least mintp3s � tq{2, s � 1u. The case t � 1 of the problem was posed by Wolff in [26,
§3] and [27, Remark 1.5]. The ps � 1q-bound governs the case s � t ¥ 2, and is already
known, see [4, Theorem 1.6]. The bound mintp3s� tq{2, s� 1u would be sharp if true.

Linear Furstenberg sets can be viewed as special cases of circular Furstenberg sets
(as explained above), so at least one cannot hope for something stronger than the lower
bound mintp3s � tq{2, s � 1u for circular ps, tq-Furstenberg sets. However, it is not clear
to us if the optimal lower bounds for linear and circular Furstenberg sets should always
coincide. Theorem 1.2 shows that they do in the range 0 ¤ t ¤ s ¤ 1.

Remark 1.14. After this paper appeared on the arXiv, the linear Furstenberg set problem
was solved in [16, 18].

1.2. Relation to previous work. The main challenge in the proof of Theorem 1.11 is
to combine the non-concentration hypotheses inherent in pδ, sq-configurations with the
techniques of Wolff [24, 25] developed to treat the case s � 1 of Theorem 1.2. Our argu-
ment is also inspired by the work of Schlag [19].

To be accurate with the references, Wolff in [24, Corollary 5.4] proved that if t P r0, 1s,
and E � R2 is a Borel set containing circles centred at all points of a Borel set with Haus-
dorff dimension ¥ t, then dimHE ¥ 1 � t. This is formally weaker than the statement
that circular p1, tq-Furstenberg sets have dimension ¥ 1 � t, but the distinction is fairly
minor: Wolff’s technique is robust enough to deal with circular p1, tq-Furstenberg sets.
The main novelty in the present paper is to consider the cases ps, tq with 0 ¤ t ¤ s   1.

To illustrate the challenge, consider the case s � 1
2 . Let Ω � tpp, vq : p P P and v P

Eppqu be a pδ, 12q-configuration. The pδ, 12q-set property of the sets Eppq � Sppq implies
that |Eppq|δ ⪆ δ�1{2 for all p P P . Unfortunately, this information alone is far too weak,
because all the circles Sppq, p P P , may be tangent to a single rectangle R � R2 of
dimensions δ � δ1{2, and |R|δ � δ�1{2. So, if we only had access to the information
|Eppq|δ ⪆ δ�1{2, all the sets Eppq might be contained in R. In this case, the resulting
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"Furstenberg set" F in (1.8) would have |F |δ ¤ |R|δ � δ�1{2. In other words, we could
hope (at best!) to prove the trivial lower bound

dimF ¥ 1
2 , (1.15)

whereas the "right answer" given by Theorem 1.2 is dimF ¥ 1. In a previous work
[10], the second author showed that every circular ps, sq-Furstenberg set has Hausdorff
dimension at least maxt4s{3, 2s2u, and the second bound "2s2" matches (1.15) for s � 1

2 :
this bound indeed follows by applying the techniques of Wolff and Schlag without fully
exploiting the non-concentration of the sets Eppq. The first bound "4s{3" used the non-
concentration, but only in a non-sharp "two-ends" manner.

Our proof is also inspired by the very recent work of Pramanik, Yang, and Zahl [17].
In fact, [17, Section 1.1] is entitled A Furstenberg-type problem for circles, and a special case
of Theorem 1.2 follows from [17, Theorem 1.3]. To describe this case, let s P r0, 1s, and
let E � R be a set with dimHE ¥ s. Let S be a t-dimensional family of circles, with
0 ¤ t ¤ s, and write ES :� SXpE�Rq for all S P S. Assume that dimHES � dimHE ¥ s
for all S P S. Then

F :�
¤
SPS

ES

is an ps, tq-Furstenberg set, and [17, Theorem 1.3] (with some effort) implies dimH F ¥ s�
t. In other words, [17, Theorem 1.3] treats the case of ps, tq-Furstenberg sets arising from
the specific construction described above. This precursor allowed us to expect Theorem
1.8, but we did not succeed in modifying the argument of [17] to prove it in full generality.
Our proof, outlined in the next section, is therefore rather different from [17].

While the existing literature on circular Furstenberg sets is narrow, there are many
more works dealing with various aspects of circular – or in general: curvilinear – Kakeya
problems. We do not delve into the details or definitions here, but we refer the reader to
[1, 2, 5, 9, 12, 13, 21, 22, 23, 28] for more information.

1.3. Ideas of the proof: key concepts and structure. When studying circular Kakeya
or Furstenberg sets, one needs to understand the geometry of intersecting δ-annuli. If
p � px, rq P R2 � p0,8q and δ ¡ 0, we write Sδppq for the closed δ-annulus around the
circle Sppq, thus Sδppq � tw P R2 : distpw, Sppqq ¤ δu.

If p � px, rq, q � px1, r1q P D � R2 � p0,8q, what does this intersection Sδppq X Sδpqq
look like (when non-empty)? Wolff noted that the answer depends on two parameters:

λ :� λpp, qq :� ||x� x1| � |r � r1|| and t :� tpp, qq :� |p� q|. (1.16)

Notice that "t" in (1.16) has a different meaning than the letter "t" in ps, tq-Furstenberg
sets. For the majority of the paper (proofs of Theorems 1.8 and 1.11), we only consider
ps, sq-Furstenberg sets, so this should not cause confusion. In fact, from now on the letter
"t" will always refer to the distance parameter defined in (1.16), except for the short proof
of Theorem 1.2 in Section 2 (where the distance parameter is not needed).

Here λ is called the tangency parameter. If λpp, qq � 0, then the circles Sppq, Spqq are
internally tangent, whereas if λpp, qq � 1, the circles Sppq, Spqq intersect roughly transver-
sally. The intersection Sδppq X Sδpqq can be covered by boundedly many pδ, δ{?λtq-
rectangles. In general, a pδ, σq-rectangle is the intersection of a δ-annulus with a disc of
radius σ, thus

Rδ
σpp, vq � Sδppq XBpv, σq
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for some v P Sppq. If δ ¤ σ ¤ ?
δ, a pδ, σq-rectangle looks like a "straight" rectangle of

dimensions � δ � σ. If σ ¡ ?
δ, then the curvature of the annulus becomes visible, and a

pδ, σq-rectangle is a genuinely "curvy" set of thickness δ and diameter � σ.
When bounding the total multiplicity function mδ (Definition 1.9), one ends up study-

ing families of pδ, σq-rectangles, for all possible values δ ¤ σ ¤ 1. In some form, this
problem appears in all previous works related to circular Kakeya sets, but the manner of
formalising it varies. For us, the main new twist is to incorporate the information from
the "fractal" sets Eppq � Sppq.

In addition to the total multiplicity function, we introduce a range of partial multiplicity
functions. The precise definition is Definition 5.29, but we give the idea. For δ ¤ λ ¤ t ¤
1, the partial multiplicity function mδ,λ,t looks like this: for pp, vq P Ω (with p P P and
v P Eppq), we write

mδ,λ,tpp, vq :� |tpp1, v1q P Ωδ
σ : λpp, p1q � λ, tpp, p1q � t and Rδ

σpp, vq XRδ
σpp1, v1q � Hu|.

Here σ :� δ{?λt, a common notation in the paper. The set Ωδ
σ is the pδ, σq-skeleton of Ω:

slightly vaguely, it is a maximal pδ�σq-separated set inside the original configuration Ω.
It turns out that the total multiplicity function mδ is bounded from above by the sum

of the partial multiplicity functions mδ,λ,t, where the sum ranges over dyadic pairs pλ, tq,
δ ¤ λ ¤ t ¤ 1. There are ≲ plogp1{δqq2 ¤ δ�κ such pairs pλ, tq. So, to prove the upper
bound (1.12) for mδ, it suffices to prove it separately for all the partial functions mδ,λ,t.
This is what we do, see Theorem 7.5. Bounding mδ by the sum of the partial functions
mδ,λ,t is straightforward, and is accomplished at the end of the paper, in Section 7.7.

The partial multiplicity functions mδ,λ,t have been normalised so that they might po-
tentially satisfy the same bounds as the total multiplicity function (see Theorem 1.11):
after replacing the original pδ, sq-configuration Ω by a suitable refinement Ω1 (depending
on λ and t), we expect – and will prove in Theorem 7.5 – that

}mδ,λ,tp� | Ω1q}L8pΩ1q ⪅ 1, δ ¤ λ ¤ t ¤ 1. (1.17)

The proof of (1.17) proceeds in a specific order of the triples pδ, λ, tq. In order to cope with
a given triple pδ, λ, tq, we will need to know a priori that the triples pλ, λ, tq and pδ, λ1, tq
for all δ ¤ λ1   λ have already been dealt with. More precisely: if we have already found
a refinement Ω1 � Ω such that (1.17) holds for all the triples pδ, λ1, tq with δ ¤ λ1   λ, and
also for the triple pλ, λ, tq, then we are able to refine Ω1 further to obtain (1.17) for pδ, λ, tq.

We can now explain a technical challenge we need to overcome: the partial multiplicity
function mδ,λ,t counts elements in the pδ, σq-skeleton of Ω, rather than Ω itself. However,
our assumptions on the configuration Ω were formulated at scale δ – recall that Ω is a
pδ, sq-configuration, which meant that both P , and the sets Eppq, are pδ, sq-sets. In or-
der for (1.17) to be plausible, the property of "being a pδ, sq-configuration" needs to be
hereditary: the pδ, σq-skeleton Ωδ

σ of a pδ, sq-configuration Ω needs to look like a pδ, σ, sq-
configuration (whatever that precisely means). This is not literally true, but we develop
reasonable substitutes for this idea in Section 3.

We next outline where the "inductive" structure for proving (1.17) stems from. Why
do we need information about the triple pλ, λ, tq in order to handle the triple pδ, λ, tq?
The reason is one of the main technical results of the paper, Theorem 6.5. This is a gen-
eralisation of Wolff’s famous "tangency bound" [24, Lemma 1.4]. We sketch the idea of
Wolff’s result, and our generalisation, in a slightly special case. Namely, we will confine
the discussion to the case t � 1 to keep the numerology as simple as possible.
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In Wolff’s terminology, a pair of sets W,B � P � D is called bipartite if

distpW,Bq � 1.

If p P W and q P B, we have |p � q| � 1, but the tangency parameter λpp, qq may
vary freely in r0, 1s. If λpp, qq � λ P r0, 1s, recall that the intersection Sδppq X Sδpqq can
be covered by boundedly many pδ, δ{?λq-rectangles. When bounding the multiplicity
function mδ,λ,1, the following turns out to be a key question:

Question 1. What is the maximal cardinality of incomparable pδ, δ{?λq-rectangles which are
incident to at least one pair pp, qq PW �B with λpp, qq � λ?

One of the main results in Wolff’s paper [24] contains the answer in the case λ � δ. If
Rδ is a collection of incomparable pδ,?δq-rectangles incident to at least one pair pp, qq P
W �B with λpp, qq ≲ δ, then [24, Lemma 1.4] states that

|Rδ| ⪅ p|W ||B|q3{4 � lesser terms. (1.18)

This is a highly non-trivial result. In contrast, the case λ � 1 is trivial: the sharp answer
is |R1| ≲ |W ||B|. In this case the pδ, δ{?1q-rectangles are roughly δ-discs, and clearly a
generic bipartite pair W,B may generate � |W ||B| transversal intersections.

Is there a way to "interpolate" between these bounds? One might hope that if δ !
λ ! 1, then |Rδ| ⪅ p|W ||B|qθpλq for some useful intermediate exponent θpλq P p34 , 1q.
Unfortunately, this is not true: if λ " δ, the best one can say is |Rλ| ≲ |W ||B|.

 

Rλ Rλ
W

B

FIGURE 1. Scenarios with |Rλ| � |W ||B|.

Figure 1 shows two slightly different ways in which |Rλ| � |W ||B| can be realised. In
both examples, there are two well-separated collections W,B of (thick, λ-separated) λ-
annuli, all elements of which are tangent to a common pλ,?λq-rectangle Rλ. (A technical
comment: to make the figure clearer, we deliberately draw annuli with external tangen-
cies, although formally all our tangency-counting problems and estimates concern num-
bers of internal tangencies. The distinction between internal and external tangencies is,
however, not relevant for the phenomenon we describe here.)

Inside each annulus in W (respectively Bq pick XW (respectively XB) thinner δ-annuli,
shown in darker colours. This way one gets two well-separated collections W,B of δ-
annuli with cardinalities

|W | � |W| �XW and |B| � |B| �XB.

The picture on the left of Figure 1 represents the case XW � XB � 1, the picture on
the right represents the case |W| � |B| � 1. If the δ-annuli in W,B are chosen ap-
propriately, their pairwise intersections (contained in Rλ) are located at incomparable



8 KATRIN FÄSSLER, JIAYIN LIU AND TUOMAS ORPONEN

pδ, δ{?λq-rectangles, say R. (To be more accurate, this can be done as long as the to-
tal number of intersections |W ||B| does not exceed the total number of incomparable
pδ, δ{?λq-rectangles contained in Rλ, roughly pλ{δq2.) Each of the rectangles in R has
type p¥ 1,¥ 1q relative to pW,Bq. Therefore, |R| � |W ||B|, provided |W ||B| ¤ pλ{δq2.

The trivial upper bound |Rλ| ≲ |W ||B| is useless for λ ! 1, but there is a way to
improve it. The examples shown in Figure 1 indicate the main obstructions: the high
numbers of incomparable pδ, δ{?λq-rectangles are "caused" by either

(a) a high level of tangency of "parent" annuli of thickness λ, or
(b) a high number of "child" δ-annuli contained inside "parent" annuli of thickness λ.

If we stipulate a priori bounds on the numbers relevant for problems (a)-(b), we get a
non-trivial upper bound for |Rλ|, which looks like this (see Theorem 6.5 for a precise
statement):

|Rλ| ⪅ p|W ||B|q3{4 � pXλYλq1{2 � lesser terms, (1.19)
Here Xλ � max |P XBλ|, where the "max" runs over balls of radius λ, and Yλ is an upper
bound for how many λ-annuli can be tangent to any fixed pλ,?λq-rectangle. In fact,

Yλ � }mλ,λ,1}L8 .
In the examples of Figure 1, we have Xλ � 1 and Yλ � |W | � |B| � λ{δ (left picture) or
Xλ � |W | � |B| � λ{δ and Yλ � 1 (right picture). In both cases (1.19) only yields the
trivial bound, as it should. On the other hand, if we have already established (1.17) for
the triple pλ, λ, 1q, we can rest assured that Yλ ⪅ 1, and (1.19) becomes a useful tool for
proving (1.17) for the triple pδ, λ, 1q (bounds for the number Xλ are, more easily, provided
by non-concentration conditions on the collections of circles). This explains why our
inductive proof of (1.17) needs information about the triples pλ, λ, tq to handle the triples
pδ, λ, tq. There is a separate reason why all the triples pδ, λ1, tq, λ1   λ, need to be treated
before the triple pδ, λ, tq, but we will not discuss this here: the reason will be revealed
around Figure 4.

We have now quite thoroughly explained the structure of the paper, but let us sum-
marise. In the short Section 2, we first deduce Theorem 1.8 from Theorem 1.11, and then
Theorem 1.2 from Theorem 1.8. Section 3 deals with the question: to what extent is the
pλ, σq-skeleton of a pδ, sq-configuration a pλ, σ, sq-configuration?

Section 4 introduces pδ, σq-rectangles properly, and studies their elementary geometric
properties. For example, what do we exactly mean by two pδ, σq-rectangles being "incom-
parable"? The results in Section 4 will look familiar to those readers knowledgeable of
Wolff’s work, but our pδ, σq-rectangles are more general than Wolff’s pδ,

a
δ{tq-rectangles,

and in some cases we need more quantitative estimates than those recorded in [24].
In Section 5, we establish the cases pλ, λ, tq of the estimate (1.17). The main produce of

that section is Theorem 5.31. The geometric input behind Theorem 5.31 is simply Wolff’s
estimate (1.18), and this is why it can be proven before introducing the general pδ, λ, tq-
version in (1.19). The proof of (1.19) occupies Section 6.

Finally, Section 7 applies the estimate (1.19) to prove (1.17) in full generality. The upper
bound for the total multiplicity function mδ is an easy corollary, and the proof Theorem
1.11 is concluded in Section 7.7. In Appendix A we prove some results from Section 4.2.

Notation. Some of the notation in this section has already been introduced above, but
we gather it here for ease of reference. If r P 2�N, the notation |E|r refers to the number
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of dyadic r-cubes intersecting E. Here E might be a subset of R, R2, or R3. We will only
ever consider dyadic cubes in R3 which are subsets of the special region D introduced in
(1.5). Therefore, the notation Dr will always refer to dyadic r-cubes contained in D.

In general, we will denote points in R3 (typically in D) by the letters p, p1, q, q1. Points
in R2 are denoted by v, v1, w, w1.

For p � px, rq P R2 � p0,8q (typically p P D), we write Sppq � Spx, rq for the circle
centred at x and radius r ¡ 0. The notation Sδppq refers to the δ-annulus around Sppq,
thus Sδppq � tw P R2 : distpw, Sppqq ¤ δu.

The notation A ≲ B means that there exists an absolute constant C ¥ 1 such that
A ¤ CB. The two-sided inequality A ≲ B ≲ A is abbreviated to A � B. If the constant
C is allowed to depend on a parameter "θ", we indicate this by writing A ≲θ B.

For δ P p0, 1s, the notation A ⪅δ B means that there exists an absolute constant C ¥ 1
such that

A ¤ C �
�
1� log

�
1
δ

�C	
B.

We write A ≈δ B if simultaneously A ⪅δ B and B ⪅δ A hold true. If the constant C is
allowed to depend on a parameter "θ", we indicate this by writing A ⪅δ,θ B.

Given p � px, rq P R2 � r0,8q and p1 � px1, r1q in R2 � r0,8q, we write ∆pp, p1q :�
||x� x1| � |r � r1||. This is slightly inconsistent with our notation from (1.16), but in the
sequel we prefer to use the letter "∆" for this "tangency" parameter.

Acknowledgements. We would like to thank the anonymous reviewers for reading the
manuscript carefully, and for making many helpful suggestions.

2. PROOF OF THEOREM 1.8 AND THEOREM 1.2

We first use Theorem 1.11 to prove Theorem 1.8.

Proof of Theorem 1.8 assuming Theorem 1.11. Let Ω � R5 be a pδ, s, δ�ϵ,Mq-configuration.
Write P :� πR3pΩq � D, and Eppq � tv P R2 : pp, vq P Ωu � Sppq. By replacing P
and Eppq by maximal δ-separated subsets, we may assume that P , Eppq, and Ω are finite
and δ-separated to begin with. Furthermore, P contains a pδ, s, δ�2ϵq-subset P̄ � P of
cardinality |P̄ | ¤ δ�s by [15, Lemma 2.7]. Then Ω̄ :� tpp, vq : p P P̄ and v P Eppqu remains
a pδ, s, δ�2ϵq-configuration with |Eppq| � M . It evidently suffices to prove Theorem 1.8
for this sub-configuration, so we may assume that |P | ¤ δ�s to begin with.

With this assumption, we may apply Theorem 1.11 to find a subset Ω1 � Ω with |Ω1| ¥
δκ|Ω| � δκM |P | and the property

mδpw | Ω1q ¤ δ�κ, w P R2.

For p P P , we write Ω1ppq :� tv P R2 : pp, vq P Ω1u � Eppq (this will become standard
notation in the paper).

Let F 1 be a maximal δ-separated set in¤
pPP

Ω1ppq � F ,

where F appeared in the statement of Theorem 1.8. We claim that |F 1| ¥ δ3κ�sM , if δ ¡ 0
is small enough. This will evidently suffice to prove Theorem 1.8.

First, we notice that |rΩ1ppqsδ X F 1| ≳ |Ω1ppq| for all p P P , where rAsδ refers to the
δ-neighbourhood of A. The reason is that if w P Ω1ppq, then distpw,F 1q ¤ δ, and therefore
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there exists a point w1 P rΩ1ppqsδ X F 1 with |w � w1| ¤ δ. Moreover, since Ω1ppq was
assumed to be δ-separated, the map w ÞÑ w1 is at most C-to-1. As a consequence of this
observation, ¸

wPF 1

|tv P Ω1ppq : w P Bpv, δqu ¥ |rΩ1ppqsδ X F 1| ≳ |Ω1ppq|.

Now,

δ�κ ¥ 1

|F 1|
¸
wPF 1

mδpw | Ω1q � 1

|F 1|
¸
wPF 1

|tpp, vq P Ω1 : w P Bpv, δqu|

� 1

|F 1|
¸
wPF 1

¸
pPP

|tv P Ω1ppq : w P Bpv, δqu| ≳ 1

|F 1|
¸
pPP 1

|Ω1ppq| � |Ω1|
|F 1| .

Now, recalling that |Ω1| ¥ δκM |P | ¥ δκ�ϵ�sM , and rearranging, we find |F 1| ¥ δ3κ�sM ,
assuming δ ¡ 0 small enough. This is what we claimed. □

Now we use Theorem 1.8 to prove Theorem 1.2. This is virtually the same argument
as in the proof of [8, Lemma 3.3], but we give the details for the reader’s convenience.

Proof of Theorem 1.2. Fix 0   t ¤ s ¤ 1, and let F � R2 be a circular ps, tq-Furstenberg
set with parameter set E � R2 � p0,8q satisfying dimHE ¥ t. To avoid confusion, we
mention already now that the plan is to apply Theorem 1.8 with parameter "t" in place of
"s", and with M � δ�s (which is potentially much larger than δ�t).

Translating and scaling F , it is easy to reduce to the case E � D. Fix t1 P rt{2, ts and
t1 ¤ s1   s. Since Ht18pEq ¡ 0, there exists α � αpE, t1q ¡ 0 and E1 � E such that
Ht18pE1q ¡ α, where

E1 :� tp P E |Hs1

8pF X Sppqq ¡ αu. (2.1)
This follows from the sub-additivity of Hausdorff content.

We also fix a parameter κ ¡ 0, and we apply Theorem 1.8 with constants κ and t1
(as above). The result is a constant ϵpκ, t1q ¡ 0. Recalling Remark 1.13, the constant
ϵpκ, t1q ¡ 0 stays bounded away from zero for all t1 P rt{2, ts. We set

ϵ :� ϵpκ, tq :� inf
t1Prt{2,ts

ϵpκ, t1q ¡ 0.

Next, we choose k0 � k0pα, ϵq � k0pE, t1, ϵq P N satisfying

α ¡
8̧

k�k0

1

k2
and k20 ¤ mint2ϵk0{C, 2κk0{Cu, (2.2)

where C ¥ 1 is an absolute constant to be determined later. Let U � tDpxi, riquiPI be an
arbitrary cover of F by dyadic ri-cubes with ri ¤ 2�k0 and F XDpxi, riq � H for all i P I.
For k ¥ k0, write

Ik :� ti P I : ri � 2�ku and Fk :� tYDpxi, riq : i P Iku.
By the pigeonhole principle and (2.2) we deduce that for each p P E1, there exists kppq ¥
k0 such that

Hs1

8pF X Sppq X Fkppqq ¡ kppq�2.

Using pigeonhole principle again we obtain that there exists k1 ¥ k0 such that

Ht1

8pE2q ¡ k�2
1 (2.3)
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where E2 :� tp P E1 : kppq � k1u. By the construction of E2, we have

Hs1

8pSppq X Fk1q ¥ Hs1

8pF X Sppq X Fk1q ¡ k�2
1 , p P E2.

Write δ � 2�k1 . By (2.3) and [3, Lemma 3.13], we know that there exists a δ-separated
pδ, t1, Ck21q-set P � E2 satisfying pk�2

1 {Cqδ�t1 ¤ |P | ¤ δ�t1 . Since P � E2, we have

Hs1

8pSppq X Fk1q ¡ k�2
1 , p P P. (2.4)

Applying [3, Lemma 3.13] again to Sppq X Fk1 , p P P , we obtain δ-separated pδ, s1, Ck21q-
sets Eppq � Sppq X Fk1 such that

|Eppq| �M ¥ pk�2
1 {Cqδ�s1

(2.2)¥ δκ�s1 , p P P.

By (2.2), P is a pδ, t1, δ�ϵq-set, and each Eppq is a pδ, s1, δ�ϵq-set. Since s1 ¥ t1, the sets Eppq
are automatically also pδ, t1, δ�ϵq-sets. Therefore,

Ω :� tpp, vq : p P P and v P Eppqu � R5

is a pδ, t1, δ�ϵ,Mq-configuration. Recall that ϵ ¤ ϵpκ, t1q by the definition of ϵ. Letting

F :�
¤
pPP

Eppq

and applying Theorem 1.8, we deduce that |F |δ ¥ δκ�t1M ¥ δ2κ�s1�t1 .
Since Eppq � Fk1 for each p P P , we have F � Fk1 , which implies

|Ik1 | � |Fk1 |δ ¥ |F |δ ¥ δ2κ�s1�t1 .

Then ¸
iPI

rs
1�t1�2κ

i ¥
¸

iPIk1
rs

1�t1�2κ
i � δs

1�t1�2κ|Ik1 | ¥ 1.

As the covering was arbitrary, we infer that dimH F ¥ s1� t1� 2κ. Sending s1 Õ s, t1 Õ t,
and κ× 0, we arrive at the desired result. □

3. PRELIMINARIES ON pδ, sq-CONFIGURATIONS

The proof of Theorem 1.11 – the multiplicity upper bound for pδ, sq-configurations –
will involve considering such configurations at scales ∆ " δ. In a dream world, a pδ, sq-
configuration would admit a "dyadic" structure which would enable statements of the
following kind: (a) the ∆-parents of a pδ, sq-configuration form a p∆, sq-configuration,
and (b) the ∆-parents of a pδ, s, C,Mq-configuration form a p∆, s, C 1,M 1q-configuration.
Such claims are not only false as stated, but also seriously ill-defined.

To formulate the problems – and eventually their solutions – precisely, we introduce
notation for dyadic cubes.

Definition 3.1 (Dyadic cubes). For δ P 2�N, let Dδ be the family of dyadic cubes in R3 of
side-length δ which are contained in the set D. We also write D :� �

δP2�N Dδ. If P � R3

is an arbitrary set of points, or a family of cubes, we also write

DδpP q :� tQ P Dδ : QX P � Hu.
For p P D, we write Qδppq P Dδ for the unique cube in Dδ containing p.
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We then explain some of the problems we need to overcome. The first one is that if
P � D or P � Dδ is a pδ, sq-set, it is not automatic that P∆ :� D∆pP q is a p∆, sq-set
for δ   ∆ ¤ 1. This is not too serious: it is well-known that there exists a "refinement"
P 1 � P such that |P 1| �δ |P |, and P 1

∆ is a p∆, sq-set (a proof of this claim will be hidden
inside the proof of Proposition 3.14).

There is another problem of the same nature, which seems more complex to begin
with, but can eventually be solved with the same idea. Assume that Ω � tpp, vq : p P
P and v P Eppqu is a pδ, sq-configuration, and ∆ " δ. In what sense can we guarantee
that some "∆-net" Ω∆ � Ω is a p∆, sq-configuration? By the fact stated in the previous
paragraph, we may start by refining P ÞÑ P 1 such that P 1

∆ is a p∆, sq-set. Then the
question becomes: which set E∆ppq � Sppq should we associate to each p P P 1

∆ in such
a manner that

Ω∆ � tpp,vq : p P P 1
∆ and v P E∆ppqu

is a p∆, sq-configuration – which hopefully still has some useful relationship with Ω? This
question will eventually be answered in the main result of this section, Proposition 3.14,
but we first need to set up some notation.

For p � px, rq P R3� and an arc I � Sppq, we let V pp, Iq be the (one-sided) cone centred
at x and spanned by the arc I . That is,

V pp, Iq :�
¤
ePI
tx� tpe� xqut¥0.

Definition 3.2 (Dyadic arcs). We introduce a dyadic partition on the circles Sppq. If σ P
2�N and p � px, rq P D, we let Sσppq be a partition of Sppq into disjoint (half-open) arcs of
length 2πrσ. We also let Sppq :� �

σP2�N Sσppq. (We note that for p � px, rq P D, always
r P r12 , 1s, so the dyadic σ-arcs have length comparable to σ.)

Remark 3.3. The notation of dyadic arcs Sσppqwill often be applied with parameters such
as σ �

a
δ{t or σ � δ{?λt, which are not dyadic rationals to begin with. In such cases,

we really mean Sσ̄ppq, where σ̄ P 2�N is the smallest dyadic rational with σ ¤ σ̄.

Notation 3.4. In the sequel, it will be very common that the letters p, q,p refer to dyadic
cubes instead of points in D. Regardless, we will use the notation Sppq, Sδppq and V pp, Iq.
This always refers to the corresponding definitions relative to the centre of p, q,p, which
is an element of D.

Lemma 3.5. Let 0   δ ¤ ∆ ¤ 1 and 0   σ ¤ Σ ¤ 1 be dyadic numbers with ∆ ¤ Σ. Assume
that p P Dδ and p P D∆ with p � p, and let v P Sσppq. If v P SΣppq is such that

v X V pp,vq � H,

then there exists an arc Iv � Sppq of length ≲ Σ such that v � V pp, Ivq and v � Iv.

For all p,p, and v as in the statement of the lemma, there exists at least one v P SΣppq
such that v X V pp,vq � H, simply because R2 � YvPSΣppqV pp,vq.
Proof. Without loss of generality, we may assume that Σ ¤ 1{12, say. We denote

SΣpp, vq :� tv P SΣppq : v X V pp,vq � Hu.
Our goal is to bound the cardinality of SΣpp, vq uniformly from above and prove that Iv
can be obtained as the union of the arcs in SΣpp, vq.
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Let px, rq, px, rq P D be the centers of the cubes p P Dδ and p P D∆, respectively. By
assumption, r ¥ 1{2 and ∆ ¤ Σ ¤ 1{12, so that r � 3∆ ≳ 1. Since Sppq � S3∆ppq by a
simple application of the triangle inequality, we find

distpv,xq ¥ distpSppq,xq ≳ 1. (3.6)

Moreover, using also that r ¥ 1{2, and δ ¤ 1{12, it follows that x must be contained in
the interior of the disk bounded by Sppq.

By the connectedness of v and since vXtxu � H, we find thatYSΣpp,vqv is a connected
set in Sppq which implies that SΣpp, vq � tviui�1,��� ,m is a family of adjacent arcs. If m P
t1, 2u, then their union is obviously an arc Iv of length at most 4πrΣ with v � V pp, Ivq
and v � Iv. Thus we assume from now on that m ¥ 3. Letting v�i and v�i be the
two endpoints of the arc vi, we can arrange the arcs vi P SΣpp, vq in such an order that
v�i � v�i�1 for all i � 1, � � � ,m� 1.

To conclude the proof of the lemma, it suffices to show that m is bounded from above
by a universal constant. As v P Sσppq for p � px, rq, the length ℓpvq of v is 2πrσ. As x lies
inside the disk bounded by Sppq, the set v X V pp,viq is a curve for every i. Since σ ¤ Σ
and r ¤ 2, we have that

4πΣ ¥ ℓpvq �
m̧

i�1

ℓpv X V pp,viqq ¥
m�1̧

i�2

ℓpv X V pp,viqq.

Thus, the desired upper bound for m will follow, if we manage to prove that

ℓpv X V pp,viqq ≳ Σ, 2 ¤ i ¤ m� 1. (3.7)

Note that

BV pp,viq � txu Y tx� tpv�i � xqut¡0 Y tx� tpv�i � xqut¡0, 1 ¤ i ¤ m.

Write v̄�i :� tx� tpv�i � xqut¡0 and v̄�i :� tx� tpv�i � xqut¡0. We have

v̄�i X v̄�i � H, 1 ¤ i ¤ m.

Recall that v X txu � H. Then, by the arrangement of the arcs vi, we know for i �
2, � � � ,m� 1, that v must intersect both v̄�i and v̄�i . Let

x�i P v̄�i X v and x�i P v̄�i X v, 2 ¤ i ¤ m� 1.

We claim that
|x�i � x�i | ≳ Σ, 2 ¤ i ¤ m� 1, (3.8)

which will yield (3.7) and thus conclude the proof of the lemma.
To prove (3.8), recall that vi is an arc of length 2πrΣ in Sppq. Thus

=pv̄�i , v̄�i q � 2πΣ ¤ π{2.
We have

|x�i � x�i | ¥ distptx�i u, v̄�i q � inft|x�i � y| : y P v̄�i u � |x�i � x| sin=pv̄�i , v̄�i q
(3.6)
≳ =pv̄�i , v̄�i q

2
≳ Σ,

where for the second inequality we recall that x�i P v � S3∆ppq, and we use the fact that
sin θ ¥ θ{2 for all 0 ¤ θ ¤ π{2. The proof is complete. □
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Dyadic cubes have the well-known useful property that if Q,Q1 P D with QXQ1 � H,
then either Q � Q1 or Q1 � Q. For a fixed circle Sppq, the dyadic arcs Sppq have the
same property, but things get more complicated when we want to compare dyadic arcs
in Sppq,Spqq for p � q. The next notation is designed to clarify this issue.

Notation 3.9. Let 0   δ ¤ ∆ ¤ 1 and 0   σ ¤ Σ ¤ 1 be dyadic numbers. Assume that
p P Dδ and p P D∆ with p � p. For each v P Sσppq, we write v   v for the unique arc
v P SΣppq such that the centre of v is contained in V pp,vq. In particular, vXV pp,vq � H.
For two pairs pp, vq and pp,vq, we write

pp, vq   pp,vq ðñ p � p and v   v.

We remark that by Lemma 3.5, if ∆ ¤ Σ and pp, vq   pp,vq, then v � V pp, Ivq for an arc
Iv � Sppq of length � Σ with v � Iv.

The " " relation is illustrated in Figure 2. It gives a precise meaning to "dyadic parents"
of pairs pp, vqwith p P Dδ and v P Sppq. We just have to keep in mind that if pp, vq   pp,vq,
then it is not quite true that v � v. A good substitute is the inclusion v � V pp, Ivq.
Definition 3.10 (Skeleton). Let 0   δ ¤ ∆ and 0   σ ¤ Σ be dyadic rationals. Assume
that p P Dδ and Eσppq � Sσppq. The p∆,Σq-skeleton of Eσppq is the set

EΣppq � tv P SΣppq : v   v for some v P Eσppqu,
where p P D∆ is the unique dyadic cube with p � p. (It is important to note that the
p∆,Σq-skeleton of Eσppq is a subset of SΣppq instead of SΣppq. These coincide if ∆ � δ.)

We also need the following version of the definition. Let P � Dδ, and assume that we
are given a (possibly empty) family Eσppq � Sσppq for all p P P . Write Ω � tpp, vq : p P
P and v P Eσppqu. Then, the p∆,Σq-skeleton of Ω is defined to be

Ω∆
Σ :� tpp,vq : p P D∆, v P SΣppq, and pp, vq   pp,vq for some pp, vq P Ωu.

In other words, Ω∆
Σ consists of pairs pp,vq such that p P D∆pP q, and v P EΣppq for some

p P P with p � p. We write

EΣppq :� tv P SΣppq : pp,vq P Ω∆
Σu and P∆ :� tp P D∆ : EΣppq � Hu.

Remark 3.11. Note that EΣppq is the union of all the p∆,Σq-skeletons EΣppq for all p P P
with p � p. Thus, EΣppq may be rather wild, even if the individual sets Eσppq are nice
(say, pσ, sq-sets). Proposition 3.14 will regardless give us useful information about the sets
EΣppq, provided that we are first allowed to prune Ω (and hence the sets Eσppq) slightly.

Let us recap the meaning of pδ, s, C,Mq-configurations from Definition 1.7. These were
defined to be sets Ω � R5 such that P � πR3pΩq � D is a non-empty pδ, s, Cq-set, and
Eppq � tv P R2 : pp, vq P Ωu is a pδ, s, Cq-subset of Sppq for all p P P , satisfying |Eppq|δ �
M . We next pose the following dyadic (and slightly generalised) variant of the definition.

Definition 3.12. Let 0   s ¤ 1, C ¡ 0, and let 0   δ ¤ 1, 0   δ, σ ¤ 1 be dyadic rationals.
A pδ, σ, s, C,Mq-configuration is a set of the form

Ω � tpp, vq : p P P and v P Eσppqu,
where P � Dδ is a pδ, s, Cq-set, and Eσppq � Sσppq, for p P P , is a pσ, s, Cq-set of constant
cardinality |Eσppq| �M . If Ω is a pδ, σ, s, C,Mq-configuration for some M , we simply say
that Ω is a pδ, σ, s, Cq-configuration.
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p

FIGURE 2. The red squares represent the centres of three circles
Spp1q, Spp2q, Spp3q, where p1, p2, p3 P Dδ. In the figure we have p1, p2, p3 �
p for a certain p P D∆, where ∆ ¡ δ. Therefore the red δ-annuli
Sδpp1q, Sδpp2q, Sδpp3q are contained in the (yellow) ∆-annulus S∆ppq. The
black dots on the red circles represent the sets Eσpp1q, Eσpp2q, Eσpp3q, and
the three longer arcs spanning the cones form the set EΣppq � Sppq. As
shown in the figure, each pair ppj , vq with v P Eσppjq satisfies ppj , vq  
pp,vq for some v P EΣppq.

In the new terminology, the pδ, s, C,Mq-configurations from Definition 1.7 correspond
to pδ, δ, s, C,Mq-configurations. To be precise, we should distinguish between pδ, s, C,Mq-
configurations and "dyadic" pδ, s, C,Mq-configurations, but we will not do this: in the
sequel, the terminology will always refer to the dyadic variant in Definition 3.12.

We record the following simple refinement principle for pδ, σ, s, C,Mq-configurations:

Lemma 3.13 (Refinement principle). Let Ω be a pδ, σ, s, Cq-configuration, and let G � Ω be
a subset with |G| ¥ c|Ω|, where c P p0, 1s. Then, there exists a pδ, σ, s, 2C{cq-configuration
Ω1 � G with |Ω1| ¥ pc2{4q|Ω|.
Proof. Write Ω � tpp, vq : p P P and v P Eσppqu. For p P P , let Gppq :� tv P Eσppq : pp, vq P
Gu. Note that (with M :� |Eσppq|), we have

cM |P | � c|Ω| ¤ |G| �
¸
pPP

|Gppq| ¤M |tp : |Gppq| ¥ cM{2u| � cM |P |{2.

It follows that the set P 1 :� tp P P : |Gppq| ¥ cM{2u has |P 1| ¥ c|P |{2. For each p P P 1,
let E1

σppq � Gppq be a set with |E1
σppq| � cM{2 � c|Eσppq|{2. Now, P 1 is a pδ, s, 2C{cq-set,

E1
σppq is a pσ, s, 2C{cq-set for all p P P 1, and

Ω1 :� tpp, vq : p P P 1 and v1 P E1
σppqu � G

is the desired pδ, σ, 2C{cq-configuration with |Ω1| � c|P 1|M{2 ¥ pc2{4q|Ω|. □

We then arrive at the main result of this section.

Proposition 3.14. Let 0   δ ¤ ∆ ¤ 1 and 0   σ ¤ Σ ¤ 1 be dyadic numbers with δ ¤ σ
and ∆ ¤ Σ. For every C ¥ 1, there exists a constant C 1 �δ C such that the following holds.
If Ω is a pδ, σ, s, Cq-configuration, then there exists a subset G � Ω with |G| �δ |Ω| whose
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p∆,Σq-skeleton G∆
Σ is a p∆,Σ, s, C 1q-configuration with the property

|tpp, vq P G : pp, vq   pp,vqu| �δ
|Ω|
|G∆

Σ |
, pp,vq P G∆

Σ . (3.15)

Remark 3.16. Let 0   δ ¤ ∆ ¤ 1 and 0   σ ¤ Σ ¤ 1 be dyadic rationals. Let Ω � tpp, vq :
p P P and v P Eσppqu, as in Proposition 3.14. We will use the following notation:

pb v :� tpp, vq P Ω : pp, vq   pp,vqqu, p P D∆, v P SΣppq.
(So, the sets pb v depend on "Ω" even though this is suppressed from the notation). The
sets p b v are disjoint for distinct pp,vq with p P D∆ and v P SΣppq. Indeed, if p � p1,
evidently no pair pp, vq can lie in p b v and p1 b v1 for any v,v1 P Sppq. On the other
hand, if p � p1 and p P Dδ with p � p � p1, then for each arc v P Sσppq we have chosen
exactly one arc v P SΣppq such that v   v. That is, pp, vq   pp,vq for only one pp,vq.

To simplify the proof of Proposition 3.14 slightly, we extract the following lemma:

Lemma 3.17. Let 0   δ ¤ ∆ ¤ 1 be dyadic rationals, and let P � Dδ be a pδ, s, Cq-set. Assume
that every set

pX P :� tp P P : p � pu, p P P∆ :� D∆pP q,
has cardinality |pX P | P rm, 2ms for some m ¥ 1. Then P∆ is a p∆, s, C 1q-set with C 1 � C.

Proof. Let Q P Dr with ∆ ¤ r ¤ 1. Then,

m � |QX P∆| ¤ |QX P | ≲ Crs|P | ¤ 2m � Crs|P∆|.
Dividing by "m" yields a dyadic version of the p∆, s, C 1q-set condition for P∆. This easily
implies the usual p∆, s, C 1q-set condition with a slightly worse "C 1". □

We then complete the proof of Proposition 3.14.

Proof of Proposition 3.14. In the first part of the proof, we construct certain sets P∆ � D∆

and Eppq � SΣppq, p P P∆, by pigeonholing, and we define Ω̄ � tpp,vq : p P P∆ and v P
Eppqu. The set G � Ω will be defined as

G :�
¤

pp,vqPΩ̄
pb v � Ω. (3.18)

This implies trivially that G∆
Σ � Ω̄. In the second part of the proof, we show that Ω̄ is a

p∆,Σ, s, C 1q-configuration satisfying (3.15), so in particular p b v � H for all pp,vq P Ω̄.
Therefore also G∆

Σ � Ω̄ by definitions, and the proof will be complete.
Write Ω � tpp, vq : p P P and v P Eppqu, where P � Dδ and Eppq � Sδppq. To construct

P∆, consider initially P 1
∆ :� D∆pP q. Each p P P 1

∆ may contain different numbers of
δ-cubes from P , and to fix this we perform our first pigeonholing. Let p P P 1

∆ and define

DδppX P q :� tp P P : p � pu and P 1
∆,i :� tp P P 1

∆ : 2i�1 ¤ |DδppX P q|   2iu
for i ¥ 1. Observing that

|P | �
¸
iPN

¸
pPP∆,i

|DδppX P q|
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and noting that P∆,i is empty if 2i�1 ¡ |Dδ| � δ�3, we conclude by pigeonholing that
there exists i0 ⪅δ 1 such that

|P | �δ

¸
pPP∆,i0

|DδppX P q|.

For this index i0, we then have |P∆,i0 | �δ |P |{2i0 .
For each p � px, rq P P 1

∆, we next construct families Sj
Σppq, j P N, that will be used for

the definition of the sets Eppq. Again, we use pigeonholing to find a subset of tpbv : p P
P∆,i0 , v P SΣppqu of typical cardinality.

First, since each p P P∆,i0 contains � 2i0 cubes p P P , since we have |Eσppq| � M for
all of them, and since for each such p and v P Eσppq there exists a unique v P SΣppq such
that pp, vq   pp,vq, we obtain ¸

vPSΣppq
|pb v| � 2i0M. (3.19)

Next, for j ¥ 1, we define

Sj
Σppq :� tv P SΣppq : |pb v| P r2j�1, 2jqu. (3.20)

Since δ ¤ σ by assumption, we have |pb v| ≲ δ�3σ�1 ¤ δ�4. It follows that Sj
Σppq � H

if 2j " δ�4. Hence, by (3.19) and pigeonholing, there exists jppq ⪅δ 1 such that¸
vPSjppq

Σ ppq
|pb v| �δ 2

i0M.

By a second pigeonholing, since |P∆,i0 | ≲ δ�3, there exists j0 ⪅δ 1 and P∆ � P∆,i0 � P 1
∆

such that

|P∆| �δ |P∆,i0 | �δ
|P |
2i0

, (3.21)

and ¸
vPSj0

Σ ppq
|pb v| �δ 2

i0M, p P P∆. (3.22)

In (3.25), we will see that all the sets Sj0
Σ ppq, p P P∆, have cardinality �δ 2i0M{2j0 , but

the sets Eppq, p P P∆ are required to have exactly the same cardinality. To this end, we
define

MΣ :� mint|Sj0
Σ ppq| : p P P∆u, (3.23)

which satisfies MΣ ¥ 1 by (3.22). For each p P P∆, we choose Eppq to be an arbitrary
subset of Sj0

Σ ppq of cardinality |Eppq| � MΣ. Now, as already announced at the start of
the proof, we set Ω̄ :� tpp,vq : p P P∆ and v P Eppqu, and we define G � Ω with the
formula (3.18). We record that |Ω̄| � |P∆|MΣ.

Keeping in mind Remark 3.16 about the disjointness of the sets p b v, and using the
definition of the sets Eppq � Sj0

Σ ppq, we have

|G| �
¸

pPP∆

¸
vPEppq

|pb v| ¥ |P∆| �MΣ � 2j0�1
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To conclude that |G| ⪆δ |Ω| � |P |M , it suffices to check that

MΣ �δ
|P |M
|P∆|2j0 . (3.24)

Since pp b vq X pp b v1q � H for v � v1, recalling first (3.20) and (3.22), and then (3.21),
we have

|Sj0
Σ ppq| �δ

2i0M

2j0
�δ

|P |M
|P∆|2j0 , p P P∆. (3.25)

Hence (3.24) holds by the definition of MΣ in (3.23), and therefore |G| �δ |Ω|, as desired.
In retrospect, (3.25) also implies MΣ � 2i0M{2j0 .

We next verify (3.15). The definition of Sj0
Σ ppq in (3.20) results in

|pb v| � 2j0
(3.24)�δ

|P |M
|P∆|MΣ

� |Ω|
|Ω̄| , p P P∆ and v P Eppq. (3.26)

By the definition of G, we have ppb vq XG � pb v � H for p P P∆ and v P EΣpvq, and
evidently G∆

Σ � Ω̄. Therefore (3.15) follows from (3.26).
Next we show that P∆ is a p∆, s, C 1q-set and Eppq is a pΣ, s, C 1q-set for all p P P∆. This

will show that Ω̄ � G∆
Σ is a p∆,Σ, s, C 1,MΣq-configuration, and conclude the proof of the

proposition. To verify that P∆ is a p∆, s, C 1q-set, note that P 1 � �
pPP∆

Dδpp X P q has
|P 1| �δ |P | by (3.21). Therefore P 1 is a pδ, s, C 1q-set with C 1 �δ C. But now P∆ � D∆pP 1q,
and every cube in P∆ contains � 2i0 elements of P 1. Therefore, it follows from Lemma
3.17 that P∆ is a p∆, s, C 1q-set.

It remains to verify that Eppq is a pΣ, s, C 1q-set for all p P P∆. Fix p P P∆, let Σ ¤ r ¤ 1
be a dyadic number and vr P Srppq. Our goal is to show (and it suffices to show) that
|tv P Eppq : v � vru| ⪅δ CrsMΣ. To this end, we first note that

|tv P Eσppq : v   vru| ≲ CrsM, p P pX P. (3.27)

This follows by observing that all v P Eσppq with v   vr are contained in V pp, Ivq X Sppq
by Lemma 3.5, and diampV pp, Ivq X Sppqq ≲ r.

Next, observe that¤
vPEppq
v�vr

pb v �
¤

pPpXP

tpp, vq : v P Eppq and v   vru. (3.28)

Thus recalling that |pb v| � 2j0 for v P Eppq � Sj0
Σ ppq, we have

|tv P Eppq : v � vru| � 2j0 �
��� ¤
vPEppq
v�vr

pb v
���

¤
��� ¤
pPpXP

tpp, vq : v P Eσppq and v   vru
���

¤ |pX P | max
pPpXP

|tpp, vq : v P Eσppq and v   vru|
(3.27)
≲ 2i0 � CrsM.
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To conclude the proof, we recall from (3.25) that MΣ �δ 2
i0M{2j0 . Therefore,

|tv P Eppq : v � vru| ⪅δ Crs � 2
i0M

2j0
�δ CrsMΣ, v P Srppq,

as desired. We have now proven that G∆
Σ � Ω̄ � tpp,vq : p P P∆ and v P Eppqu is a

p∆,Σ, s, C 1,MΣq-configuration, as claimed. □

4. RECTANGLES AND GEOMETRY

The purpose of this section is to gather facts about curvilinear rectangles (that is: pieces
of annuli) and their geometry. Similar considerations are present in every paper regard-
ing curvilinear Kakeya problems and its relatives, for example [17, 24, 25, 27].

4.1. pδ, σq-rectangles and some basic properties.

Definition 4.1 (pδ, σq-rectangle). Let δ, σ P p0, 1s. By definition, a pδ, σq-rectangle is a set
of the form

Rδ
σpp, vq :� Sδppq XBpv, σq,

where p P D and v P Sppq. For C ¡ 0, we write CRδ
σpp, vq :� RCδ

Cσpp, vq.
Remark 4.2. If the reader is familiar with the terminology of Wolff’s paper [24], we men-
tion here that Wolff’s "pδ, tq-rectangles" are the same as our pδ,

a
δ{tq-rectangles. While

Wolff’s notation for these objects is more elegant, the purpose of our terminology is to
handle e.g. pδ, δ{?λtq-rectangles without having to introduce further notation.

For the next lemma, we recall that ∆pp, p1q � ||x�x1|�|r�r1|| for p � px, rq P R2�p0,8q
and p1 � px1, r1q P R2 � p0,8q.
Lemma 4.3. Let p, q P D be points with |p � q| � t and ∆pp, qq � λ. Then, the intersection
Sδppq X Sδpqq can be covered by boundedly many pδ, σq-rectangles, where

σ :� δ{
a
pλ� δqpt� δq.

Conversely, assume that v P Sppq X Spqq. Then, for all C ¥ 1, we have

CRδ
σpp, vq � SC1δpqq, (4.4)

where C 1 ≲ maxtC,C2δ{pλ� δqu ¤ C2.

Proof. The first statement is well-known, see for example [27, Lemma 3.1], so we only
prove the inclusion (4.4). Recall that p, q P D, so the radii of the circles Sppq, Spqq are
bounded between 1

2 and 1. For this reason, there is no loss of generality in assuming
that Sppq is the unit circle Sppq � S1, that the radius of Spqq is r P r12 , 1q, and that Spqq is
centred at a point z � px, 0qwith x ¡ 0. These are incidentally the same normalisations as
in [27, Lemma 3.1], and our proof is overall very similar to the argument in that lemma.
With this notation, we observe that

λ � ∆pp, qq � ||z � 0| � |1� r|| � |p1� xq � r| � |p1� xq2 � r2|,
and t � |p � q| � x � p1 � rq. Since Sppq X Spqq � H, we moreover have x ¥ 1 � r,
and therefore t � x. We may assume that x � t ¥ δ, since otherwise (4.4) follows from
CRδ

σpp, vq � SCδppq � SCδ�tpqq � S2Cδpqq.
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We assume that v P Sppq X Spqq. Since Sppq � S1, we may therefore write v � eiθ0 for
some θ0 P p�π, πs. Recalling that z is the center of Spqq, we have

1� 2x cos θ0 � x2 � |eiθ0 � z|2 � r2 ðñ cos θ0 � 1� r2 � x2

2x
. (4.5)

We further rewrite this as

cos θ0 � 1� r2 � x2

2x
� 1� r2 � p1� xq2

2x
�: 1� h,

where |h| � |r2 � p1� xq2|{p2xq � λ{t. We now claim that

|θ � θ0| ¤ Cσ � Cδa
pλ� δqt ùñ ||eiθ � z|2 � r2| ¤ C 1δ, (4.6)

where C 1 � maxtC,C2δ{λu. This means that a circular arc on Sppq of length Cσ around
v � eiθ0 is contained in SC1δpqq. Since every point on CRδ

σpp, vq is within distance Cδ ¤
C 1δ from such a circular arc, (4.4) follows immediately.

Revisiting the calculation in (4.5), the condition on the right hand side of (4.6) is equiv-
alent to

|1� 2x cos θ � x2 � r2| ≲ C 1δ ðñ | cos θ � cos θ0| �
����cos θ � 1� r2 � x2

2x

���� ¤ C 1δ
2x

.

Moreover, the right hand side here is � C 1δ{t. To prove that this estimate is valid when-
ever |θ � θ0| ¤ Cσ, we note that

1 � sin2 θ0 � cos2 θ0 � sin2 θ0 � p1� hq2 ùñ sin2 θ0 � 2h� h2,

and therefore
| cos1 θ0| � | sin θ0| �

a
|2h� h2| ≲

a
λ{t.

recalling that |h| � λ{t ¤ 1. Finally, for all |θ � θ0| ¤ Cσ, we have

| cos θ � cos θ0| �
����
» θ

θ0

cos1 ζ dζ
���� ¤

» θ

θ0

| cos1 ζ � cos1 θ0| dζ � |θ � θ0| � | cos1 θ0| �: I1 � I2.

The term I2 is bounded from above by

I2 ≲ Cσ �
a
λ{t � Cδa

pλ� δqt �
a
λ{t � Cδ

t
.

Since cos1 � sin is 1-Lipschitz, the term I1 is bounded from above by

I1 ¤
» θ

θ0

|ζ � θ0| dζ �
» |θ�θ0|

0
|ζ| dζ � |θ � θ0|2 ¤ C2σ2 � C2δ2

pλ� δqt .

This completes the proof of (4.6) with constant C 1 � maxtCδ,C2δ{pλ� δqu. □

Corollary 4.7. Let p, q P D be points with λ � ∆pp, qq and t � |p � q|. Write σ :�
δ{
a
pλ� δqpt� δq. Assume that

CRδ
σpp, vq X CRδ

σpq, wq � H
for some v P Sppq, w P Spqq, and C ¥ 1. Then, CRδ

σpp, vq � C 1Rδ
σpq, wq for some C 1 ≲ C4.



ON THE HAUSDORFF DIMENSION OF CIRCULAR FURSTENBERG SETS 21

Proof. Fix v P CRδ
σpp, vq X CRδ

σpq, wq. Then

maxtdistpv, Sppqq, distpvq, Spqquu ¤ Cδ.

Consequently, there exist points

v1 P Sppq XBpv, Cσq and w1 P Spqq XBpw,Cσq
such that |v1 � v| ¤ Cδ and |w1 � v| ¤ Cδ. Now we shift the circles Sppq and Spqq a little
bit so that v lies in their intersection. The details are as follows. Write p � px, rq, and
define p1 � px1, rq, where x1 � x� pv � v1q. Thus, Spp1q � Sppq � v � v1, and

v � v1 � pv � v1q P Sppq � pv � v1q � Spp1q.
We define similarly q1 :� py1, rq, where q � py, rq, and y1 � y � v � v1.

With these definitions, |p� p1| ¤ Cδ and |q � q1| ¤ Cδ, and

v P Spp1q X Spq1q.
Write λ1 :� ∆pp1, q1q and t1 :� |p1 � q1|, and σ1 :� δ{

a
pλ1 � δqpt1 � δq. After a small case

chase, it is easy to check that σ ¤ ACσ1, where A ¥ 1 is absolute (the worst case in the
inequality occurs if λ ¤ t ¤ δ, but λ1 � t1 � Cδ). It now follows from Lemma 4.3 that

pAC2qRδ
σ1pp1,vq � SC1δpq1q,

where C 1 ≲ C4, since A ¥ 1 is absolute. Finally,

CRδ
σpp, vq � SCδppq XBpv, Cσq

� S2Cδpp1q XBpv, AC2σ1q
� pAC2qRδ

σ1pp1,vq � SC1δpq1q � S2C1δpqq.
Since also CRδ

σpp, vq � Bpv, 2Cσq � Bpw, 4Cσq, we have now shown that

CRδ
σpp, vq � S2C1δpqq XBpw, 4Cσq � 2C 1Rδ

σpq, wq,
as claimed. □

4.2. Comparable rectangles.

Definition 4.8. Given a constant C ¥ 1, we say that two pδ, σq-rectangles R1, R2 are C-
comparable if there exists a third pδ, σq-rectangle R � Rδ

σpp, vq such that R1, R2 � CR. If
no such rectangle R exists, we say that R1 and R2 are C-incomparable.

The definition of C-comparability raises a few questions. Is it necessary to speak about
the third rectangle R, or is it equivalent to require that R1 � CR2 and R2 � CR1 (up to
changing constants)? If this definition is equivalent, is it enough to require the one-sided
condition R1 � CR2? The answer to both questions is affirmative, and follows from the
next lemma.

Lemma 4.9. Let 0   δ ¤ σ ¤ 1, and let R1, R2 be pδ, σq-rectangles satisfying R1 � CR2 for
some C ¥ 1. Then CR2 � C 1R1 for some C 1 ≲ C5.

Proof. Write R1 � Rδ
σpp1, v1q and R2 � Rδ

σpp2, v2q. Let t :� |p1 � p2| and λ :� ∆pp1, p2q.
Write

σ̄ :� Cδ{
a
pλ� Cδqpt� Cδq.
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From Lemma 4.3, we know that the intersection SCδpp1q X SCδpp2q can be covered by
boundedly many pCδ, σ̄q-rectangles. Since R1 � CR2 � SCδpp1qXSCδpp2q, and diampR1q ≳
σ, we may infer that σ̄ ≳ σ. We set C̄ :� maxt1, Cpσ{σ̄qu ≲ C.

It follows from our assumption Rδ
σpp1, v1q � CRδ

σpp2, v2q that Rδ
σpp1, v1q � C̄RCδ

σ̄ pp2, v2q,
and in particular C̄RCδ

σ̄ pp1, v1q X C̄RCδ
σ̄ pp2, v2q � H. Therefore, applying Corollary 4.7 at

scale Cδ and with constant C̄, we get

CRδ
σpp2, v2q � C̄RCδ

σ̄ pp2, v2q C. 4.7� C 1RCδ
σ̄ pp1, v1q � SCC1δpp1q

for some C 1 ≲ C̄4 � C4. Finally, since also CRδ
σpp2, v2q � Bpv2, Cσq � Bpv1, 2Cσq, using

that v1 P R1 � Bpv2, Cσq, we may infer that

CRδ
σpp2, v2q � SCC1δpp1q XBpv1, 2Cσq � CC 1Rδ

σpp1, v1q.
Since CC 1 ≲ C5, the proof is complete. □
Remark 4.10. Lemma 4.9 clarifies the (up-to-constants) equivalence of different notions of
comparability. If R1, R2 are C-comparable pδ, σq-rectangles according to Definition 4.8,
then there exists a third pδ, σq-rectangle R such that R1, R2 � CR. But now R � C 1R2

according to Lemma 4.9, so R1 � C 1R2. By symmetric reasoning, also R2 � C 1R1.
Similarly, if we took as our definition the one-sided inclusion R1 � CR2, then Lemma

4.9 would imply that R2 � C 1R1, and consequently we could infer the symmetric condi-
tion R1 � C 1R2 and R2 � C 1R1 (or R1, R2 � C 1R with either R :� R1 or R :� R2).

We record the following useful corollary of Lemma 4.9:

Corollary 4.11 (Transitivity of comparability). For every C ¥ 1 there exists C 1 ≲ C5 such
that the following holds. Let 0   δ ¤ σ ¤ 1, and let R1, R2, R3 be pδ, σq-rectangles such that
R1, R2 and R2, R3 are both C-comparable. Then R1, R3 are C 1-comparable.

Proof. Since R1, R2 and R2, R3 are C-comparable, by definition there exist pδ, σq-rectangles
R12 and R23 such that R1, R2 � CR12 and R2, R3 � CR23. We may infer from Lemma 4.9
that

R1 � CR12 � C 1R2 and R3 � CR23 � C 1R2,

for some C 1 ≲ C5. This means by definition that R1, R3 are C 1-comparable. □
Next, given a family R of pairwise 100-incomparable pδ, σq-rectangles, for A ¥ 100, we

will show that there exists a subfamily R̄ � R consisting of A-incomparable rectangles
such that AOp1q|R̄| ¥ |R|. This result will be proved in Corollary 4.13.

Indeed, Corollary 4.13 is a direct consequence of the following proposition:

Proposition 4.12. Let A ¥ 100 and δ ¤ σ ¤ 1, and let R be a family of pairwise 100-
incomparable pδ, σq-rectangles. Suppose also that there exists a fixed (δ, σq-rectangle R such
that the union of the rectangles in R is contained in AR. Then, |R| ≲ A10.

After somewhat tedious initial reductions, the proof will be virtually the same as the
proof of [17, Lemma 3.15]. We postpone the details to the Appendix A, and only give a
short outline here. Since [17, Lemma 3.15] was stated for curvilinear rectangles arising
as neighborhoods of arcs of graphs of C2pIq functions defined on an interval I � R, we
need several auxiliary lemmas (see Lemma A.2, A.8, A.12, and A.17 in Appendix A) to
reduce our proof to a situation similar to [17, Lemma 3.15]. Then, in the terminology of
[17], the pδ, σq-rectangles we need to consider are called pδ, tq-rectangles with t � δ{σ2
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provided that σ ¥ ?
δ (hence t ¤ 1). Thus in the range σ ¥ ?

δ, our proposition would
basically follow from [17, Lemma 3.15]. (The comparison between the different types
of rectangles is stated more precisely in (A.10)-(A.11).) But we also need to check that
the proof works if σ ¤ ?

δ. In this range our rectangles are shorter than any of the
rectangles literally treated by [17, Lemma 3.15]. The argument we give in Appendix A
for Proposition 4.12 reveals, however, that the proof sees no essential difference between
these cases. Alternatively, one could treat the case σ ¤ ?

δ separately, relying on the fact
that the pδ, σq-rectangles in this range look like "ordinary" or "straight" rectangles.

The following consequence of Proposition 4.12 is similar in spirit to [17, Lemma 3.16].
It is not used in this section but will be applied later in the proof of Theorem 6.5.

Corollary 4.13. Let A ¥ 100 and δ ¤ σ ¤ 1. Let R be a pairwise 100-incomparable family
of pδ, σq-rectangles. Then R contains a subset R̄ of cardinality |R̄| ≳ A�50|R| consisting of
pairwise A-incomparable rectangles.

Proof. Let R̄ be the maximal A-incomparable subfamily of R. That is, R̄ consists of pair-
wise A-incomparable rectangles, and any element in R is A-comparable to at least one
rectangle in R̄. For R P R̄, we define

RApRq :� tR1 P R : R1 � CA5Ru,
where C ¥ 1 is an absolute constant to be fixed momentarily. By Proposition 4.12,

|RApRq| ≲ A50, R P R̄. (4.14)

We claim that
R �

¤
RPR̄

RApRq. (4.15)

Once (4.15) has been verified, a combination of (4.14)-(4.15) shows that |R| ≲ |R̄|A50, and
the proof will be complete.

To prove (4.15), fix R1 P R. Then R1 is A-comparable to some R P R̄ by the maximality
of R̄. By Remark 4.10, this gives R1 � CA5R, provided that C ¡ 0 is a sufficiently large
absolute constant. In particular, R1 P RApRq, as desired. □

4.3. A slight generalisation of Wolff’s tangency counting bound. The following defi-
nition is due to Wolff [24].

Definition 4.16 (t-bipartite pair). Let 0   δ ¤ t ¤ 1. A pair of sets W,B � D is called
t-bipartite if both W,B are δ-separated, maxtdiampBq, diampW qu ¤ t, and additionally

distpB,W q ¥ t and diampB YW q ¤ 100t.

Lemma 4.17. Let δ ¤ t ¤ 1, and let W,B � D be a t-bipartite pair of sets. Let C ¥ 1 be a
constant, and assume that p1, . . . , pk PW and q1, . . . , ql P B are points satisfying

∆ppi, qjq ¤ Cδ, 1 ¤ i ¤ k, 1 ¤ j ¤ l.

Assume further that there exists a point v P R2 which lies on all the circles Sppiq, Spqjq.
Write Σ :�

a
δ{t. Then, for suitable C 1 � C, every pδ,Σq-rectangle Rδ

Σppi, vq is contained in
every annulus SC1δppmq and SC1δpqnq (where i has no relation to m,n).
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Proof. We will use the inclusion (4.4). Namely, (4.4) applied with λ :� Cδ shows imme-
diately that if pi, jq P t1, . . . , ku � t1, . . . , lu is a fixed pair, then

Rδ
Σppi, vq � SC1δpqjq (4.18)

for some C 1 � C. (Note that now Σ ≲
?
Cδ{a∆ppi, qjq|pi � qj | �

?
Cσ in the notation

of (4.4), so we may apply (4.4) with constant � ?
C to obtain (4.18).) This already proves

that every rectangle Rδ
Σppi, vq is contained in every annulus SC1δpqjq. What remains is to

prove a similar conclusion about the annuli SC1δppmq for m � i.
To proceed, we observe that (4.18) can immediately be upgraded to

Rδ
Σppi, vq � RC1δ

Σ pqj , vq, (4.19)

simply as a consequence of (4.18) and definitions. Further, if m P t1, . . . , ku, we have

RC1δ
Σ pqj , vq � SC2δppmq, (4.20)

by another application of the inclusion (4.4) (here still C2 � C 1 � C). Now, chaining
(4.19)-(4.20), we find Rδ

Σppi, vq � SC2δppmq. Combined with (4.18), this completes the
proof. □

In this paper, we will need the following slight relaxation of t-bipartite pairs:

Definition 4.21 (Almost t-bipartite pair). Let δ ¤ t ¤ 1. A pair of sets W,B � D is called
pδ, ϵq-almost t-bipartite if both W,B are δ-separated, and additionally

distpW,Bq ¥ δϵt and diampB YW q ¤ δ�ϵt.

Definition 4.22 (Type). Let 0   δ ¤ σ ¤ 1, ϵ ¡ 0. Let W,B � D be finite sets. For
m,n ¥ 1, we say that a pδ, σq-rectangle R � R2 has type p¥ m,¥ nqϵ relative to pW,Bq if
R � Sδ1�ϵppq for at least m points p PW , and R � Sδ1�ϵpqq at least n points q P B.

Here is a slight variant of [24, Lemma 1.4]:

Lemma 4.23. For every ϵ ¡ 0, there exists δ0 ¡ 0 such that the following holds for all δ P p0, δ0s.
Let 0   δ ¤ t ¤ 1, and let W,B � D be a pδ, ϵq-almost t-bipartite pair of sets. Let Σ :�

a
δ{t,

and let Rδ
Σ be a family of pairwise 100-incomparable pδ,Σq-rectangles of type p¥ m,¥ nqϵ

relative to pW,Bq, where 1 ¤ m ¤ |W | and 1 ¤ n ¤ |B|. Then,

|Rδ
Σ| ¤ δ�Cϵ

�� |W ||B|
mn


3{4
� |W |

m
� |B|

n

�
, (4.24)

where C ¡ 0 is an absolute constant.

This lemma is the same as [24, Lemma 1.4], except that it allows for constants of form
"δ�ϵ" in both Definition 4.21 and Definition 4.22. In [24, Lemma 1.4], the definition of "t-
bipartite pair" is exactly the one we stated in Definition 4.16, and the definition of "type"
was defined with a large absolute constant C0 ¥ 1 in place of δ�ϵ. As it turns out, Lemma
4.23 can be formally reduced to [24, Lemma 1.4] with a little pigeonholing.

Proof of Lemma 4.23. In this proof, the letter "C" will refer to an absolute constant whose
value may change from line to line.

We may assume that δ1�3ϵ ¤ t, since if pW,Bq is pδ, ϵq-almost t-bipartite for some t ¤
δ1�3ϵ, then both W and B have cardinality ≲ δ�12ϵ, and it easily follows that |Rδ

Σ| ¤ δ�Cϵ.



ON THE HAUSDORFF DIMENSION OF CIRCULAR FURSTENBERG SETS 25

By assumption, we have diampW q ¤ δ�ϵt and diampBq ¤ δ�ϵt. Therefore, we may
decompose both W and B into r ≲ pδ�ϵt{δϵtq3 � δ�6ϵ subsets W1, . . . ,Wr and B1, . . . , Br

of diameter ¤ δϵt. Now, for each pair Wi, Bj , we have

distpWi, Bjq �: τij P rδϵt, δ�ϵts. (4.25)

Each pair pWi, Bjq is τij-bipartite in the terminology of Definition 4.16, since (4.25) holds,
and

maxtdiampWiq,diampBjqu ¤ δϵt ¤ τij and diampWi YBjq ¤ 3τij .

Next, notice that if R P Rδ
Σ, then there exists (by the pigeonhole principle) at least one

pair pWi, Bjq such that Rδ
Σ has type p¥ m̄,¥ n̄qϵ relative to pWi, Bjq, where

m̄ :� maxtδ6ϵm, 1u and n̄ :� maxtδ6ϵn, 1u.
This means that there exist at least m̄ circles Spp1q, . . . , Sppm̄q with pk P Wi and and at
least n̄ circles Spq1q, . . . , Spqn̄q with ql P Bj with the property

R � Sδ1�ϵppkq and R � Sδ1�ϵpqlq. (4.26)

Based on what we just said, we have

Rδ
Σ �

¤
i,j

Rδ
Σpi, jq ùñ |Rδ

Σ| ¤
¸
i,j

|Rδ
Σpi, jq|, (4.27)

where Rδ
Σpi, jq refers to rectangles of type p¥ m̄,¥ n̄qϵ relative to pWi, Bjq. Since the

number of pairs pi, jq is ¤ δ�Cϵ, it suffices to prove (4.24) for each Rδ
Σpi, jq individually.

Fix 1 ¤ i, j ¤ r, and write τ :� τij P rδϵt, δ�ϵts, and also abbreviate (or redefine)
W :� Wi and B :� Bj and Rδ

Σ :� Rδ
Σpi, jq. Before proceeding further, we deduce

information about the "tangency" of pk P W and ql P B satisfying (4.26). Recall that
|pk � ql| ¥ τ ¥ δϵt, and note that diampRq ≳ Σ �

a
δ{t. Then,a

δ{t ≲ diampRq
L. 4.3

≲ δ1�ϵa
δϵt∆ppk, qlq

,

from which we may infer that

∆ppk, qlq ≲ δ1�3ϵ, 1 ¤ k ¤ m̄, 1 ¤ l ¤ n̄. (4.28)

For purposes to become apparent in a moment, it would be convenient if W,B were
δ1�3ϵ-separated instead of just δ-separated. This can be arranged, at the cost of reduc-
ing m̄ and n̄ slightly. Indeed, we may partition W and B into δ1�3ϵ-separated subsets
W1, . . . ,Ws and B1, . . . , Bs, where s ¤ δ�9ϵ. Now, arguing as before, every rectangle R P
Rδ

Σ has type p¥ m̄1,¥ n̄1q relative to at least one pair pWi, Bjq, where m̄1 :� maxtδ9ϵm̄, 1u
and n̄1 :� maxtδ9ϵn̄, 1u. After repeating the argument at (4.27), we may focus attention
to bounding the number of rectangles associated with a fixed pWi, Bjq. Since the passage
from pW,Bq to pWi, Bjq eventually just affects the absolute constant "C" in (4.24), we now
assume that W,B are δ1�3ϵ-separated to begin with, and m̄1 � m̄ and n̄ � n̄1.

The improved separation of W,B gives the following benefit: the pair pW,Bq is τ -
bipartite relative to the scale δ1�3ϵ in the strong sense of Definition 4.16. The role of
"δ" (or now δ1�3ϵ) is hardly emphasised, but one of the assumptions in Definition 4.16
was that a τ -bipartite set is δ-separated, and the conclusion of [24, Lemma 1.4] concerns
"type" and "tangency" defined for δ-annuli and pδ,

a
δ{tq-rectangles. Now, since W,B are

δ1�3ϵ-separated, we have access to the conclusion of the same lemma at scale δ1�3ϵ.
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Now, [24, Lemma 1.4] implies that the maximal number of pairwise 100-incomparable
pδ1�3ϵ,

a
δ1�3ϵ{τq-rectangles of type p¥ m̄,¥ n̄q relative to pWi, Bjq is bounded from

above by the right hand side of (4.24). The definition of "type" here is the one which
Wolff is using in the statement of [24, Lemma 1.4]: a pδ1�3ϵ,

a
δ1�3ϵ{τq-rectangle R̄ has

type p¥ m̄,¥ n̄q relative to pW,Bq if there are p1, . . . , pm̄ PW and q1, . . . , qn̄ P B such that

R̄ � SCδ1�3ϵppkq X SCδ1�3ϵpqlq, 1 ¤ k ¤ m̄, 1 ¤ l ¤ n̄, (4.29)

where C ¡ 0 is an absolute constant.
What does this conclusion about the rectangles R̄ tell us about the cardinality of Rδ

Σ?
We will use the pδ,Σq-rectangles in Rδ

Σ to produce a new family R̄ of pairwise 100-
incomparable pδ1�3ϵ, Σ̄q-rectangles satisfying (4.29), where Σ̄ �

a
δ1�3ϵ{τ . Then, we will

apply the upper bound for |R̄| (given by [24, Lemma 1.4]) to conclude the desired esti-
mate for |Rδ

Σ|.
Recall from (4.26) that each of our pδ,Σq-rectangles R P Rδ

Σ has type p¥ m̄,¥ n̄qϵ
relative to pW,Bq in the sense R � Sδ1�ϵppkq X Sδ1�ϵpqlq for every 1 ¤ k ¤ m̄ and 1 ¤ l ¤
n̄. As we observed in (4.28), this implies ∆ppk, qlq ≲ δ1�3ϵ. Recall that further |pk�ql| � τ
for all 1 ¤ k ¤ m̄ and 1 ¤ l ¤ n̄.

In view of applying Lemma 4.17, we would need that the circles Sppkq and Spqlq share
a common point. This is not quite true, but it is true for slightly shifted copies of Sppkq
and Spqlq. Namely, take "v" to be an arbitrary point in R, for example its centre (writing
R � Rδ

Σpp, vq for some p P D and v P Sppq). Now, since v P R � Sδ1�ϵppkq, there exists
p̄k P Bppk, δ1�ϵq such that v P Spp̄kq (see the proof of Corollary 4.7). Similarly, there exist
points q̄l P Bpqk, δ1�ϵq, 1 ¤ l ¤ n̄, such that v P Spq̄lq. Note that the crucial hypotheses
∆pp̄k, q̄lq ≲ δ1�3ϵ and |p̄k � q̄l| � τ were not violated (since τ ¥ δϵt ¥ δ1�2ϵ).

Now, we are in a position to apply Lemma 4.17 at scale δ1�3ϵ, and with "τ " in place of
"t". The conclusion is that if we set

R̄ :� R̄pRq :� Rδ1�3ϵ

Σ̄ pp1, vq, Σ̄ :�
a
δ1�3ϵ{τ ,

then (4.29) holds, provided that the constant C ¡ 0 is sufficiently large (initially with the
points p̄k, q̄l, but since |p̄k � pk| ¤ δ1�ϵ and |ql � q̄l| ¤ δ1�ϵ, we also get (4.29) as stated).
In other words, R̄ is a pδ1�3ϵ, Σ̄q-rectangle which has type p¥ m̄,¥ n̄q relative to pW,Bq
in the terminology of Wolff.

We have now shown that each rectangle R P Rδ
Σ gives rise to a pδ1�3ϵ, Σ̄q-rectangle

R̄pRq which has type p¥ m̄,¥ n̄q relative to pW,Bq. We also observe that

R
(4.26)� Sδ1�ϵpp1q XBpv,Σq � Sδ1�3ϵpp1q XBpv, Σ̄q � R̄pRq. (4.30)

Finally, let R̄ be a maximal pairwise 100-incomparable subset of tR̄pRq : R P Rδ
Σu. The

rectangles in R̄ have type p¥ m̄,¥ n̄q relative to pW,Bq, so |R̄| satisfies the desired upper
bound (4.24) by [24, Lemma 1.4]. It remains to show that

|Rδ
Σ| ¤ δ�Cϵ|R̄|. (4.31)

If R P Rδ
Σ, then R̄pRq �100 R̄ for some R̄ P R̄. Combining (4.30) and Lemma 4.9, we

may infer that R � R̄pRq � CR̄ for some absolute constant C ¡ 0. Therefore, (4.31) will
follow if we manage to argue that

|tR P Rδ
Σ : R � CR̄u| ¤ δ�Cϵ, R̄ P R̄.



ON THE HAUSDORFF DIMENSION OF CIRCULAR FURSTENBERG SETS 27

But since the rectangles in Rδ
Σ are pairwise 100-incomparable, this follows immediately

from Proposition 4.12. The proof is complete. □

5. BOUNDING PARTIAL MULTIPLICITY FUNCTIONS WITH HIGH TANGENCY

In this section, we will finally introduce the partial multiplicity functions mδ,λ,t men-
tioned in the proof outline, Section 1.3 (see Definition 5.29). The plan of this section is to
prove a desirable upper bound for mλ,λ,t – the partial multiplicity function only taking
into account incidences of maximal tangency at scale λ. This will be accomplished in
Theorem 5.31, although most of the work is contained in Proposition 5.2.

Notation 5.1 (Gρ
λ,tpωq). Let 0   δ ¤ σ ¤ 1, and let P � Dδ, tEppqupPP be finite sets, where

Eppq � Sσppq for all p P P . Let Ω � tpp, vq : p P P and v P Eppqu. If G � Ω is an arbitrary
subset, δ ¤ λ ¤ t ¤ 1, and ρ ¥ 1, we define

Gρ
λ,tpωq :� tpp1, v1q P G : t{ρ ¤ |p� p1| ¤ ρt and λ{ρ ¤ ∆pp, p1q ¤ ρλu, ω P Ω.

The distance |p � p1| and ∆pp, p1q are defined relative to the centres of p, p1 P Dδ. If
λ P rδ, ρδs (as in Proposition 5.2 below), we remove the lower bound ∆pp, p1q ¥ λ{ρ from
the definition.

Proposition 5.2. For every κ ¡ 0, and s P p0, 1s, there exist ϵ � ϵpκ, sq P p0, 12 s and λ0 �
λ0pϵ, κ, sq ¡ 0 such that the following holds for all λ P p0, λ0s. Let λ ¤ t ¤ 1 and Σ :�

a
λ{t.

Let Ω � tpp, vq : p P P and v P Eppqu be a pλ,Σ, s, λ�ϵq-configuration (see Definition 3.12).
Then, there exists a pλ,Σ, s, Cκλ

�ϵq-configuration G � Ω with |G| �κ |Ω| with the property

|tω1 P Gλ�ϵ

λ,t pωq : λ�ϵRλ
Σpωq X λ�ϵRλ

Σpω1q � Hu| ¤ λs�κ|P |, ω P G. (5.3)

To be precise, Σ in Proposition 5.2 refers to the smallest dyadic rational Σ̄ P 2�N with
Σ ¤ Σ̄, recall Remark 3.3. Taking this carefully into account has a small impact on some
constants in the proof below, but leave this to the reader.

Proof of Proposition 5.2. Write MΣ :� |Eppq| for p P P (this constant is independent of
p P P by Definition 3.12). We start by disposing of the special case where t ¤ λ1�κ{3. In
this case we claim that G � Ω works. To see this, note that now Σ �

a
λ{t ¥ λκ{6, so

MΣ � |Eppq| ¤ |SΣppq| ≲ λ�κ{6. Furthermore,

Ωλ�ϵ

λ,t pp, vq � tpp1, v1q P Ω : p1 P P XBpp, λ1�κ{2qu, pp, vq P Ω,

assuming that ϵ ¤ κ{6. Fix ω � pp, vq P Ω. Then, for every p1 P Bpp, λ1�κ{2q, using the
Σ-separation of Epp1q, there are ≲ λ�ϵ possible choices v1 P Epp1q such that

λ�ϵRλ
Σpωq X λ�ϵRλ

Σpp1, v1q � H.

Consequently,

|tω1 P Ωλ�ϵ

λ,t pωq : λ�ϵRλ
Σpωq X λ�ϵRλ

Σpω1q � Hu| ≲ λ�ϵ � |P XBpp, λ1�κ{2q|
≲ λ�2ϵλp1�κ{2qs|P | ¤ λs�5κ{6|P |.

using the pλ, s, λ�ϵq-set property of P in the final inequality, as well as ϵ ¤ κ{6, and s ¤ 1.
We have now proven (5.3) with G � Ω. In the sequel, we may assume that

t ¥ λ1�κ{3. (5.4)
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Fix ϵ � ϵpκ, sq ¡ 0 and λ ¡ 0 (depending on ϵ, κ, s) be so small that

A � 18r20{κsϵ   κs and A18r20{κs
λ�18r20{κsϵ   λ�s, (5.5)

where A ¥ 1 is a suitable absolute constant. We start by defining a sequence of constants

C0 " C1 " . . . " Ch :� λ�ϵ,

where h � r20{κs, and such that Cj � AC18
j�1. Thus,

C0 ¤ A18r20{κs
λ�18r20{κsϵ   λ�s. (5.6)

We will abbreviate

njpω | Gq :� |tω1 P G
Cj

λ,tpωq : CjR
λ
Σpωq XCjR

λ
Σpω1q � Hu|

for G � Ω and ω P Ω. Note that the constants Cj are decreasing functions of "j", so
nh ¤ nh�1 ¤ . . . ¤ n0. Also, njpω | Gq is an upper bound for the left hand side of (5.3)
for each 0 ¤ j ¤ h, since Cj ¥ λ�ϵ.

We start by recording the "trivial" upper bound

n0pω | Gq ¤ n0pω | Ωq ≲ C0|P |, ω P Ω, G � Ω. (5.7)

The first inequality is clear. To see the second inequality, fix ω � pp, vq P Ω and p1 P P .
Now, if v1 P SΣpp1q is such that

C0R
λ
Σpp1, v1q XC0R

λ
Σpωq � H,

then |v�v1| ≲ C0Σ. But the points v1 P SΣpp1q are Σ-separated, so there are ≲ C0 possible
choices for v1, for each p1 P P . This gives (5.7).

The trivial inequality (5.7) tells us that the estimate (5.3) holds automatically with G �
Ω and κ � 2s, since λ�ϵ ¤ C0   λ�s by (5.5).

By the previous explanation, if κ ¡ 2s, there is nothing to prove (we can take G � Ω).
Let us then assume that κ ¤ 2s. Then, let

0 � κ1   κ2   . . .   κh � 2s

be a pκs{10q-dense sequence in r0, 2ss (this is why we chose h � r20{κs). We now define
a decreasing sequence of sets Ω � G0 � G1 � . . . � Gk, where k ¤ h. We set G0 :� Ω,
and in general we will always make sure inductively that |Gj�1| ¥ 1

2 |Gj | for j ¥ 0. Note
that n0pω | G0q ¤ λ�s|P | � λs�κh |P | by (5.7), for all ω P G0.

Let us then assume that the sets G0 � . . . � Gj have already been defined. We also
assume inductively that njpω | Gjq ¤ λs�κh�j |P | for all ω P Gj . This was true for j � 0.
Define

Hj :� tω P Gj : nj�1pω | Gjq ¥ λs�κh�pj�1q |P |u, 0 ¤ j ¤ k.

This is the subset of Gj where the lower bound for the multiplicity nearly matches the
(inductive) upper bound – albeit with a slightly different definition of the multiplicity
function. There are two options.

(1) If |Hj | ¥ 1
2 |Gj |, then we set H :� Hj and k :� j and the construction of the sets

Gj terminates.
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(2) If |Hj |   1
2 |Gj |, then the set Gj�1 :� Gj zHj has |Gj�1| ¥ 1

2 |Gj |, and moreover

nj�1pω | Gj�1q ¤ nj�1pω | Gjq ¤ λs�κh�pj�1q |P |, ω P Gj�1.

In other words, Gj�1 is a valid "next set" in our sequence G0 � . . . � Gj�1, and
the inductive construction may proceed.

The "hard" case of the proof of Proposition 5.2 occurs when case (1) is reached for
some "j" with κh�j ¡ κ. Namely, if case (1) never takes place for such indices "j", then
we can keep constructing the sets Gj until the first index "j" where κh�j   κ. At this
stage, the set G :� Gj satisfies njpω | Gq ¤ λs�κ|P | for all ω P G (so (5.3) is satisfied
because Cj ¥ λ�ϵ), and since |G| ¥ 2�j |Ω| ¥ 2�r20{κs|Ω| �κ |Ω|, the proof is complete.
(To be accurate, G is not quite yet a pδ,Σ, s, Cκλ

�ϵq-configuration, but this can be fixed by
a single application of Lemma 3.13).

In fact, we claim that case (1) cannot occur: more precisely, if ϵ � ϵpκ, sq ¡ 0 is as small
as we declared in (5.5), then case (1) cannot occur for κh�j ¥ κ. To prove this, we make a
counter assumption: case (1) is reached at some index j P t0, . . . , hu satisfying κh�j ¥ κ.
We write κ̄ :� κh�j and

κh�pj�1q �: κ̄� ζ, where ζ ¤ pκsq{10 ¤ pκ̄sq{10. (5.8)

We also set

Ḡ :� Gj and H :� Hj � tω P Ḡ : nj�1pω | Ḡq ¥ λs�κ̄�ζ |P |u,
so that |H| ¥ 1

2 |Ḡ| ≳κ |Ω| by the assumption that case (1) occurred. Finally, we will
abbreviate

n :� λs�κ̄�ζ |P | (5.9)

in the sequel. Thus, to spell out the definitions, we have H � Ḡ, and

|tω1 P Ḡ
Cj�1

λ,t pωq : Cj�1R
λ
Σpωq XCj�1R

λ
Σpω1q � Hu| ¥ n, ω P H. (5.10)

On the other hand, by the definition of Ḡ � Gj , and κ̄ � κh�j , we have

|tω1 P Ḡ
Cj

λ,tpωq : CjR
λ
Σpωq XCjR

λ
Σpω1q � Hu| ¤ λs�κ̄|P | � λ�ζn, ω P Ḡ. (5.11)

We perform a small refinement to H . Note that¸
pPP

|Hppq| � |H| ≳κ |Ω| �MΣ|P |,

where as usual Hppq � tv P Eppq : pp, vq P Hu. Consequently, there exists a subset
P̄ � P of cardinality |P̄ | ≳κ |P | and a number M̄Σ ≳κ MΣ such that |Hppq| ¥ M̄Σ for all
p P P̄ . For each p P P̄ , we further pick (arbitrarily) a subset H̄ppq � Hppq of cardinality
precisely |H̄ppq| � M̄Σ. Then, we define H̄ :� tpp, vq : p P P̄ and v P H̄ppqu � H . Note
that |H̄| �κ |Ω|, and now H̄ has the additional nice feature compared to H that

|H̄ppq| � M̄Σ, p P P̄ . (5.12)

Let B be a cover of P by balls of radius 1
4 t{Cj�1 such that even the concentric balls

of radius 2tCj�1 (that is, the balls t8C2
j�1B : B P Bu) have overlap bounded by λ�Cpκqϵ
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(this is possible, since Cj ¤ λ�Cpκqϵ for all 1 ¤ j ¤ h, recall (5.6)). Then, we choose the
ball Bpp0, 14 t{Cj�1q P B in such a way that the ratio

θ :� |P̄ XBpp0, 14 t{Cj�1q|
|P XBpp0, 2Cj�1tq|

is maximised. We claim that θ ¥ λCpκqϵ: this follows from the estimate

|P̄ | ¤
¸
BPB

|P̄ XB| ¤ θ
¸
BPB

|P X 8C2
j�1B| ¤ θλ�Cpκqϵ|P |,

and recalling that |P̄ | ≳κ |P |. Now, we set

W :� P̄ XBpp0, 14 t{Cj�1q and B :� P XBpp0, 2Cj�1tq zBpp0, 12 t{Cj�1q, (5.13)

so that
|B| ¤ |P XBpp0, 2Cj�1tq| � θ�1|W | ≲κ λ�Cpκqϵ|W |. (5.14)

We also set

W :� tpp, vq P H̄ : p PW u and B :� tpp, vq P Ḡ : p P Bu.
Let us note that

|Wppq| � |tv P Eppq : pp, vq PWu| ¥ |H̄ppq| � M̄Σ �κ MΣ, p PW, (5.15)

since W � P̄ , recall (5.12). We now claim that

ω PW ùñ Ḡ
Cj�1

λ,t pωq � B
Cj�1

λ,t pωq. (5.16)

Indeed, fix ω � pp, vq P W and pp1, v1q P Ḡ
Cj�1

λ,t pωq. We simply need to show that p1 P B,
and this follows from p P W � Bpp0, 14 t{Cj�1q, and t{Cj�1 ¤ |p � p1| ¤ Cj�1t, and the
triangle inequality:

3
4 t{Cj�1 ¤ |p� p1| � |p0 � p| ¤ |p0 � p1| ¤ |p0 � p| � |p� p1| ¤ 2Cj�1t.

From (5.16), and since W � H̄ � H , and recalling (5.10), it follows

|tβ P B
Cj�1

λ,t pωq : Cj�1R
λ
Σpωq XCj�1R

λ
Σpβq � Hu| ¥ n ¡ 0, ω PW. (5.17)

Next, we consider the rectangles

Rλ
Σ :� tRλ

Σpωq : ω PWu.
To be precise, let Rλ

Σ be the maximal family of pairwise 100-incomparable pλ,Σq-rectangles
inside the family indicated above. Below, we will denote the 100-comparability of R,R1

by R �100 R1. We now seek to show that every rectangle in Rλ
Σ has a high type relative

to the pair pW,Bq, in the terminology of Definition 4.22.
To this end, we first define the quantity

mpRq � |tω PW : R �100 R
λ
Σpωqu|, (5.18)

The value of mpRq may vary between 1 and ¤ λ�4, but by pigeonholing, we may find a
subset R̄λ

Σ � Rλ
Σ with the property mpRq � m P r1, λ�4s for all R P R̄λ

R, and moreover¸
ωPW

|tR P R̄λ
Σ : R �100 R

λ
Σpωqu| ⪆λ

¸
ωPW

|tR P Rλ
Σ : R �100 R

λ
Σpωqu|. (5.19)
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Now, we have

|R̄λ
Σ| �

1

m

¸
RPR̄λ

Σ

¸
pPW

¸
vPEppq
pp,vqPW

1tR�100Rλ
Σpp,vqu

(5.19)
⪆λ

1

m

¸
pPW

¸
vPEppq
pp,vqPW

|tR P Rλ
Σ : R �100 R

λ
Σpp, vqu|

(5.15)¥ |W |M̄Σ

m
�κ

|W |MΣ

m
. (5.20)

The second-to-last inequality is true because every rectangle Rλ
Σpp, vq with pp, vq P W is

100-comparable to at least one rectangle in Rλ
Σ, by definition of Rλ

Σ.

5.0.1. Proving that m ⪅ n. We next claim that

mpRq ¤ λ�ζn, R P Rλ
Σ, (5.21)

where n ¥ 1 was the constant defined in (5.9). In particular m ¤ λ�ζn. The estimate
(5.21) will eventually follow from the inductive hypothesis (5.11), but the details take
some work. Let Rλ

Σpωq P Rλ
Σ, with ω � pp, vq P W. According to (5.17), there exists at

least one element β � pq, wq P B
Cj�1

λ,t pωq � Ḡ such that

Cj�1R
λ
Σpωq XCj�1R

λ
Σpβq � H. (5.22)

We claim that if ω1 � pp1, v1q P W is any element such that Rλ
Σpωq �100 Rλ

Σpω1q, then
automatically

ω1 P Ḡ
Cj

λ,tpβq and CjR
λ
Σpω1q XCjR

λ
Σpβq � H. (5.23)

This will show that

mpRq ¤ |tω1 P Ḡ
Cj

λ,tpβq : CjR
λ
Σpβq XCjR

λ
Σpω1q � Hu| (5.11)¤ λ�ζn,

as desired. The points ω, ω1 P W and β P B, as above, will be fixed for the remainder of
this subsection.

The second claim in (5.23) is easy: since Rλ
Σpωq �100 Rλ

Σpω1q, it follows from Lemma
4.9 that Rλ

Σpω1q � ARλ
Σpωq � Cj�1R

λ
Σpωq for a suitable absolute constant A ¥ 1. Lemma

4.9 then yields
Cj�1R

λ
Σpωq � AC5

j�1R
λ
Σpω1q � CjR

λ
Σpω1q. (5.24)

The second part of (5.23) follows from this inclusion, and (5.22).
We turn to the first claim in (5.23). Since ω1 � pp1, v1q PW and β � pq, wq P B, we have

p1 PW and q P B, so

t{Cj ¤ 1
4 t{Cj�1 ¤ |p1 � q| ¤ 2Cj�1t ¤ Cjt.

It therefore only remains to show that ∆pp1, qq ¤ Cjλ. To this end, recall that ω � pp, vq.
Then, since β � pq, wq P B

Cj�1

λ,t pωq, we have

λ̄ :� ∆pp, qq ¤ Cj�1λ and t̄ :� |p� q| ¤ Cj�1t.

Consequently,

Σ̄ :� λ{
b
pλ̄� λqpt̄� λq ≳ C�1

j�1

a
λ{t � C�1

j�1Σ,
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and because of this,

AC2
j�1R

λ
Σ̄pωq XAC2

j�1R
λ
Σ̄pβq � Cj�1R

λ
Σpωq XCj�1R

λ
Σpβq

(5.22)� H.

It now follows from Corollary 4.7 applied at scale λ and with constant C � AC2
j�1 that

Rλ
Σpωq � C1

j�1R
λ
Σpβq � SC1

j�1λpqq, (5.25)

for some C1
j�1 ≲ C8

j�1. On the other hand, we saw in (5.24) that

Rλ
Σpωq � AC5

j�1R
λ
Σpω1q � SAC5

j�1pp1q,
and therefore Rλ

Σpωq is contained in the intersection SC9
j�1λpqq X SC9

j�1pp1q. But this in-
tersection can be covered by boundedly many discs of radius C9

j�1λ{
a
∆pp1, qq|p1 � q|,

which shows that c
λ

t
� Σ ≲

C18
j�1λa

∆pp1, qq|p1 � q| ,

and rearranging this we find ∆pp1, qq ≲ C12
j�1λ. This proves that ∆pp1, qq ¤ Cjλ, since we

chose Cj � AC18
j�1 above (5.6). We have now shown (5.23), and therefore (5.21).

5.0.2. The type of rectangles in R̄λ
Σ. We claim that that every R P R̄λ

Σ has type p¥ m̄,¥ n̄qρ
relative to pW,Bq, where

m̄ :� λρm, n̄ ¥ λρn, and ρ � 10 � 18r20{κsϵ. (5.26)

Let us recall from Definition 4.22 what this means: a pλ,Σq-rectangle R has type p¥ m̄,¥
n̄qρ relative to W,B if there exists at least m̄ points tp1, . . . , pm̄u �W and at least n̄ points
tq1, . . . , qn̄u � B such that

R � Sλ1�ρppkq X Sλ1�ρpqlq, 1 ¤ k ¤ m̄, 1 ¤ l ¤ n̄. (5.27)

To see this, recall that mpRq � m for all R P R̄λ
Σ, where mpRq was defined in (5.18): there

exist m pairs tω1, . . . , ωmu � W such that R �100 Rλ
Σpωjq. Writing ωk � ppk, vkq, and

using Lemma 4.9, this implies

R � ARλ
Σpωkq � Sλ1�ϵppkq,

where A ¥ 1 is absolute, and the second inclusion holds for λ ¡ 0 small enough. This is
even better than the first inclusion in (5.27). There is a small problem: some of the points
"pk" may be repeated, even though the pairs ωk � ppk, vkq P W are distinct. However,
for pk P D fixed, there are ≲ 1 choices vk P Eppq such that R � ARλ

Σppk, vkq (since Eppq is
Σ-separated), so the number of distinct points "pk" is ≳ m, and certainly ¥ m̄.

The proof of the second inclusion in (5.27) is similar, but now based on (5.17): for all
R � Rλ

Σpωq P Rλ
Σ, there exist n pairs

tβ1, . . . , βnu � B
Cj�1

λ,t pωq s.t. Cj�1RXCj�1R
λ
Σpβlq � H for 1 ¤ l ¤ n.

If we write βl � pql, wlq, then the same argument which we used in (5.25) shows that

Rλ
Σpωq � C9

j�1R
λ
Σpβlq � SC9

j�1λpqlq � Sλ1�ρpqlq, 1 ¤ l ¤ n, (5.28)

using in the final inclusion that

C9
j�1 ¤ C9

0

(5.6)¤ A9�18r20{κs � λ�9�18r20{κsϵ
(5.26)¤ λ�ρ,
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assuming λ ¡ 0 small enough (depending on ϵ, κ) in the final inequality. This proves
the second inclusion in (5.27). Again, all the "n" points ql need not be distinct, but for
every fixed ql, the first inclusion in (5.28) can hold for ≲ C5

j�1 ¤ λ�ρ choices of "wl", so
|tq1, . . . , qlu| ≳ λρn, as desired. This completes the proof of (5.27).

5.0.3. Applying Lemma 4.23. To find a contradiction, and conclude the proof, we aim to
apply Lemma 4.23 to bound the cardinality of R̄λ

Σ from above. Notice that, by the defi-
nition of W,B, see (5.13), the definition of "ρ" at (5.26), and since 4Cj�1 ¤ λ�ρ, the pair
pW,Bq is pλ, ρq-almost t-bipartite. In the previous section, we showed that every rectan-
gle R P R̄λ

Σ has type p¥ m̄,¥ n̄qρ relative to W,B. Therefore, Lemma 4.23 is applicable to
R̄λ

Σ. This yields the following inequality (see explanations below it):

|W |MΣ

m

(5.20)
⪅λ |R̄λ

Σ| ⪅λ

� |B||W |
mn


3{4
� |B|

m
� |W |

n
⪅λ

� |W |2
mn


3{4
� λ�ζ |W |

m
.

To make the estimate look neater, we allowed the "�λ" notation hide constants of the form
λ�Cpκqϵ, where Cpκq ¥ 1 is a constant depending only on κ. In the second inequality, we
are hiding the constant λ�Cρ � λ�Cpκqϵ produced by Lemma 4.23. In the third inequality,
we are hiding the constant λ�Cpκqϵ produced by (5.14). The factor λ�ζ in the second
inequality appears from (5.21), and it is a good moment to recall from (5.8) that ζ ¤
pκsq{10.

We observe immediately that the second term on the right cannot dominate the left
hand side for ϵ � ϵpκ, sq ¡ 0 sufficiently small (the choice in (5.5) should suffice), and
λ � λpϵ, κ, sq ¡ 0 sufficiently small: this is because MΣ ¥ λϵΣ�s � λϵ

a
λ{t�s ¥ λϵ�κs{6 ¥

λ�κs{7 (using our assumption (5.4)), whereas λ�ζ ¤ λ�κs{10 by (5.8).
Therefore, the term |W |3{2{pmnq3{4 needs to dominate the left hand side. Rearranging

this inequality, using again m ¤ λ�ζn, recalling that n � λs�κ̄�ζ |P |, and finally using the
pλ, s, λ�ϵq-set property of P to bound |W | ¤ λ�ϵts|P | leads to

MΣ ⪅λ λ�ζ{4n�1{2|W |1{2 ¤ λ�s{2�ζ�κ̄{2
� |W |
|P |


1{2
⪅λ λ�ζ�κ̄{2

�
t

λ


s{2
.

This inequality is impossible for ϵ, λ ¡ 0 small enough depending on κ, since κ̄ ¥ κ, and
ζ ¤ pκsq{10 ¤ κ̄{10 – and finally because MΣ � |Eppq| ¥ λϵΣ�s � λϵpt{λqs{2.

To summarise, we have now shown that the case (1) in the construction of the sequence
tGju cannot occur as long as long as κh�j ¥ κ. As we explained below the case distinc-
tion, this allows us to set G :� Gj for the first index satisfying κh�j   κ. The proof of
Proposition 5.2 is complete. □

We will use Proposition 5.2 via Theorem 5.31 below. First, as promised at the beginning
of this section, we introduce the partial multiplicity functions. Compare these with the total
multiplicity function from Definition 1.9.

Definition 5.29 (Partial multiplicity function). Fix 0   δ ¤ ∆ ¤ λ ¤ t ¤ 1 and ρ ¥ 1. Let
P � Dδ, and Eppq � Sδppq for all p P P . Write Ω � tpp, vq : p P P and v P Eppqu, and let
σ P 2�N be the smallest dyadic rational larger than ∆{?λt. For G � Ω, we define

mρ,C
∆,λ,tpω | Gq :� |tω1 P pG∆

σ qρλ,tpωq : CR∆
σ pωq X CR∆

σ pω1q � Hu|, ω P GYG∆
σ .

Here G∆
σ is the p∆, σq-skeleton of G.
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Remark 5.30. The only interesting parameters "∆" for us will be ∆ � δ and ∆ � λ. If
∆ � δ, we will usually write σ � ∆{?λt � δ{?λt, and for ∆ � λ, we will instead use the
capital letter Σ � ∆{?λt �

a
λ{t. Also, to be accurate, the notation σ,Σ typically refers

to the smallest dyadic rational greater than δ{?λt and
a
λ{t, respectively.

Finding a nice notation for the partial multiplicity functions is a challenge, due to
the large number of parameters. In addition to the "range" and "constant" parameters
ρ and C, one could add up to 4 further parameters: two "skeleton" parameters and two
"rectangle" parameters. In practice, however, if the triple p∆, λ, tq is given, the only useful
rectangles are the p∆,∆{?λtq-rectangles. This relationship stems from Lemma 4.3. So,
we have decided against introducing the fourth parameter independently.

Theorem 5.31. For every κ ¡ 0 and s P p0, 1s, there exist ϵ0 :� ϵ0pκ, sq P p0, 12 s and δ0 �
δ0pϵ, κ, sq ¡ 0 such that the following holds for all δ P p0, δ0s and ϵ P p0, ϵ0s.

Let Ω be a pδ, δ, s, δ�ϵq-configuration with P :� πR3pΩq. Fix δ ¤ λ ¤ t ¤ 1. Then, there
exists a pδ, δ, s, Cδ�ϵq-configuration G � Ω such that C �δ,κ 1, |G| �δ,κ |Ω|, and

mδ�ϵ0 ,δ�ϵ0

λ,λ,t pω | Gq ¤ δ�κλs|P |λ, ω P Gλ
Σ. (5.32)

Proof. Let us spell out what (5.32) means: for Σ �
a
λ{t, we should prove that

|tω1 P pGλ
Σqδ

�ϵ0

λ,t pωq : δ�ϵ0Rλ
Σpωq X δ�ϵ0Rλ

Σpω1q � Hu| ¤ δ�κλs|P |λ, ω P Gλ
Σ.

We first dispose of the case where λ ¥ δκ{10. In this case we simply take ϵ0 � κ{5 and
G :� Ω. Now, the left hand side of (5.32) is bounded from above by

|Gλ
Σ| ≲ λ�3Σ�1 ¤ λ�4 ¤ δ�2κ{5 � δ�3κ{5δϵ0 ¤ δ�3κ{5λs|P |λ,

using finally the assumption that P is a non-empty pδ, s, δ�ϵ0q-set.
Let us then assume that λ ¤ δκ{10. We apply Proposition 3.14 with σ � δ and ∆ � λ

and Σ �
a
λ{t ¥ σ. This produces a subset G0 � Ω of cardinality |G0| �δ |Ω| whose

pλ,Σq-skeleton
pG0qλΣ � tpp,vq : p P Pλ and v P Eppqu

is a pλ,Σ, s, Cδ�ϵq-configuration with C �δ 1 (in particular, this skeleton is a pλ,Σ, s, Cδ�ϵ0q-
configuration). Moreover, recall from (3.15) that

|tpp, vq P G0 : pp, vq   pp,vqu| �δ
|Ω|

|pG0qλΣ|
, pp,vq P pG0qλΣ. (5.33)

It may be worth emphasising a small technical point: we never claimed, and do not claim
here either, that G0 would be a pδ, δ, s, Cδ�ϵq-configuration.

Next, we apply Proposition 5.2 with constants "κ, s". This produces a constant ϵ1 :�
ϵ1pκ, sq ¡ 0. Note that since λ ¤ δκ{10 by assumption, we have Cδ�ϵ0 ¤ λ�20ϵ0{κ for
δ ¡ 0 small enough. Therefore, if we choose "ϵ0" presently so small that 20ϵ0{κ   ϵ1, we
see that pG0qλΣ is a pλ,Σ, s, λ�ϵ1q-configuration. Now, by Proposition 5.2, there exists a
pλ,Σ, s, Cκλ

�ϵ1q-configuration G � pG0qλΣ with |G| �κ |pG0qλΣ|, and the property

|tω1 P Gλ�ϵ1

λ,t pωq : λ�ϵ1Rλ
Σpωq X λ�ϵ1Rλ

Σpω1q � Hu| ¤ λs�κ|Pλ|, ω P G. (5.34)

Note that δ�ϵ0 ¤ λ�ϵ1 by our choices of constants, and λ ¥ δ, so (5.34) implies

|tω1 P Gδ�ϵ0

λ,t pωq : δ�ϵ0Rλ
Σpωq X δ�ϵ0Rλ

Σpω1q � Hu| ¤ δ�κλs|P |λ, ω P G. (5.35)



ON THE HAUSDORFF DIMENSION OF CIRCULAR FURSTENBERG SETS 35

We also used that |Pλ| ¤ |P |λ. Next, let

G1 :�
¤

pp,vqPG
tpp, vq P G0 : pp, qq   pp,vqu �

¤
pp,vqPG

G0 X ppb vq.

Then pG1qλΣ � G by definition, so (5.35) implies (5.32) for G1. Moreover, as explained in
Remark 3.16, the sets pb v are disjoint, so

|G1| �
¸

pp,vqPG
|G0 X ppb vq| (5.33)�δ |G| � |Ω|

|pG0qλΣ|
�κ |Ω|.

The only problem remaining is that G1 may not be a pδ, δ, s, Cδ�ϵq-configuration. How-
ever, |G1| �δ,κ |Ω|, so it follows from the refinement principle (Lemma 3.13) that there
exists a pδ, δ, s, Cδ�ϵq-configuration G � G1 such that C �δ,κ 1 and |G| �δ,κ |Ω|. Now, G
continues to satisfy (5.32), so the proof of Theorem 5.31 is complete. □

Remark 5.36. It may be worth remarking that if G is the final pδ, δ, sq-configuration in the
previous theorem, the pλ,Σq-skeleton Gλ

Σ may fail to be a pλ,Σ, sq-configuration. This
was not claimed either. It seems generally tricky to ensure that a set G � Ω is simultane-
ously a pδ, σ, sq-configuration and a p∆,Σ, sq-configuration for δ ! ∆ and σ ! Σ.

6. AN UPPER BOUND FOR INCOMPARABLE pδ, σq-RECTANGLES

Notation 6.1. Let 0   δ ¤ ∆ ¤ 1 and 0   σ ¤ Σ ¤ 1. Let p P Dδ, and let Eσppq � Sσppq
(recall that the notation Sδppq refers to a circle associated to the centre of p). We write

E∆
Σ ppq :�

¤
vPEΣppq

R∆
Σ pp,vq � S∆ppq,

where p P D∆ is the unique dyadic ∆-cube with p � p, and EΣppq is the p∆,Σq-skeleton
of Eσppq, namely EΣppq � tv P SΣppq : v   v for some v P Eσppqu.
Lemma 6.2. Let C ¥ 1, 0   δ ¤ ∆ ¤ 1, 0   σ ¤ Σ ¤ 1. Assume also that ∆ ¤ Σ. Let p P Dδ,
and let Eσppq � Sσppq. Then CEδ

σppq � C 1E∆
Σ ppq for some C 1 � C.

 

pp

CRδ
σpp, vq

C 1R∆
Σ pp,vq

FIGURE 3. The rectangles CRδ
σpp, vq and C 1R∆

Σ pp,vq in the proof of
Lemma 6.2.
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Proof. The proof is illustrated in Figure 3. The set Eδ
σppq is a union of the pδ, σq-rectangles

Rδ
σpp, vq centred at v P Eσppq. Let R � Rδ

σpp, vq be one of these rectangles. By the def-
inition of p∆,Σq-skeleton, there exists v P EΣppq such that v   v, or in other words
p � p P D∆ and v X V pp,vq � H. Since |p� p| ¤ 2∆ and δ ¤ ∆, we have

SCδppq � S2C∆ppq.
Moreover, it follows from v X V pp,vq � H and ∆ ¤ Σ that |v � v| ¤ C 1Σ, where C 1 ¡ 0
is absolute. Consequently,

Bpv, Cσq � Bpv, CΣq � Bpv, pC � C 1qΣq.
Combining this information, we have

CRδ
σpp, vq � SCδppq XBpv, Cσq � S2C∆ppq XBpv, pC � C 1qΣq � C2R∆

Σ pp,vq,
with C2 :� maxt2C,C � C 1u. This completes the proof. □

We next define a variant of the "type" introduced in Definition 4.22.

Definition 6.3. Let 0   δ ¤ σ ¤ 1, and let P � Dδ. For every p P P , let Eppq � Sδppq. Let
W,B � P be finite sets. For δ ¤ λ ¤ 1, and m,n ¥ 1, we say that a pδ, σq-rectangle R � R2

has λ-restricted type p¥ m,¥ nqϵ relative to pW,B, tEppquq if there exists a set WR � W of
cardinality |WR| ¥ m, and for every p P WR a subset BRppq � B of cardinality |BRppq| ¥
n such that the following holds:

(1) δϵλ ¤ ∆pp, qq ¤ δ�ϵλ for all p PWR and all q P BRppq.
(2) R � δ�ϵEδ

σppq X δ�ϵEδ
σpqq for all p PWR and all q P BRppq.

If λ � δ, then the requirement in (1) is relaxed to ∆pp, qq ¤ δ1�ϵ.

Remark 6.4. The presence of the sets Eppq is a major difference compared to Definition
4.22, and we will distinguish between these two definitions by using the terminology
"...relative to pW,Bq" in Definition 4.22, and "...relative to pW,B, tEppquq in Definition 6.3.
We will make sure that there is never a risk of confusion which definition is meant.

Other differences are (obviously) the condition (1) of Definition 6.3, which is com-
pletely absent from Definition 4.22. A more subtle point is the asymmetry of Definition
6.3: even if a rectangle has λ-restricted type p¥ m,¥ mqϵ relative to pW,B, tEppquq, it
need not have λ-restricted type p¥ m,¥ mqϵ relative to pB,W, tEppquq.
Theorem 6.5. For every η ¡ 0, there exist ϵ � ϵpηq P p0, 1s and δ0 � δ0pη, ϵq P p0, 1s such that
the following holds for all δ P p0, δ0s. Let 0   δ ¤ λ ¤ t ¤ 1 be dyadic rationals with λ ¤ δ2ϵt.
Let P � Dδ be a set satisfying

|P X p| ¤ Xλ, p P Dλ, (6.6)

where Xλ P N. For every p P P , let Eppq � Sδppq. Write Σ :�
a
λ{t, and let Ωλ

Σ be the
pλ,Σq-skeleton of Ω � tpp, vq : p P P and v P Eppqu. Assume that, for some Yλ P N,

mδ�Aϵ,δ�Aϵ

λ,λ,t pω | Ωq ¤ Yλ, ω P Ωλ
Σ, (6.7)

where A ¥ 1 is a sufficiently large absolute constant, in particular A is independent of the
previous parameters δ, η, λ, t. Write σ :� δ{?λt, and let W,B be a pδ, ϵq-almost t-bipartite pair
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of subsets of P . Let 1 ¤ m ¤ |W | and 1 ¤ n ¤ |B|. Let Rδ
σ be a collection of pairwise 100-

incomparable pδ, σq-rectangles whose λ-restricted type relative to pW,B, tEppquq is p¥ m,¥ nqϵ.
Then,

|Rδ
σ| ¤ δ�η

�� |W ||B|
mn


3{4
pXλYλq1{2 � |W |

m
�XλYλ � |B|

n
�XλYλ

�
. (6.8)

Remark 6.9. It is worth noting that the upper bound (6.7) which is assumed here looks
exactly like the upper bound provided by Theorem 5.31.

Another remark is that (6.8) in the case λ � δ may actually be weaker than Wolff’s
tangency bound (4.24). In this case evidently Xλ ¤ 1, but it may well happen that Yλ " 1.
This is irrelevant for our purposes, since Theorem 6.5 will only be applied in a situation
where Yλ ⪅ 1. For the interested reader, we mention that the main loss in the proof arises
from the estimate (6.31), which is always unsharp if MλNλ � pmλnλq " pλ{δq2.

Proof of Theorem 6.5. We start with the case m � 1 � n, and later deal with the general
case with a "random sampling" argument. Fix η ¡ 0. We also choose ϵ ¡ 0 so small
that

?
ϵ   cη for a suitable absolute constant to be determined later (this constant will be

determined by the constant in Lemma 4.23).
In this proof, "C" will refer to an absolute constant whose value may change – usually

increase – from one line to the next without separate remark. We will also assume, when
needed, that "δ ¡ 0 is small enough" without separate remark.

We may assume with no loss of generality that the rectangles in Rδ
σ are pairwise δ�Cϵ-

incomparable for a suitable absolute constant C ¡ 0, instead of just 100-incomparable.
This is because by Corollary 4.13, any collection of 100-incomparable rectangles Rδ

σ con-
tains a δ�Cϵ-incomparable subset R̄δ

σ of cardinality |R̄δ
σ| ¥ δOpCϵq|Rδ

σ|, and now it suffices
to prove (6.8) for R̄δ

σ.
By assumption, every rectangle R P Rδ

σ has λ-restricted type p¥ 1,¥ 1qϵ relative to
pW,Bq. Thus, for every R P Rδ

σ we may associate a pair pp, qqR P W � B with the
properties

δϵλ ¤ ∆pp, qq ¤ δ�ϵλ and R � δ�ϵEδ
σppq X δ�ϵEδ

σpqq � Sδ1�ϵppq X Sδ1�ϵpqq. (6.10)

(If λ � δ, we only have ∆pp, qq ¤ δ1�ϵ.) We record at this point that any fixed pair
pp, qq PW �B can only be associated to boundedly many rectangles R P Rδ

σ:

|tR P Rδ
σ : pp, qqR � pp, qqu| ≲ 1, pp, qq PW �B. (6.11)

Indeed, if there exists at least one rectangle R0 P Rδ
σ such that pp, qqR0 � pp, qq, then

|p � q| ¥ δϵt and ∆pp, qq ¥ δϵλ. Under these conditions, Lemma 4.3 implies that the
intersection Sδ1�ϵppq X Sδ1�ϵpqq can be covered by boundedly many pδ1�Cϵ, δ1�Cϵ{?λtq-
rectangles, and actually they can be selected to be of the form

δ�CϵRj :� δ�CϵRδ
σpq, vjq, 1 ¤ j ≲ 1,

where each Rj is a pδ, σq-rectangle. (We note that this is true also if λ � δ, using only
|p � q| ¥ δϵt in that case.) We claim that each rectangle R P Rδ

σ with pp, qqR � pp, qq is
δ�Cϵ-comparable to one of the rectangles Rj . This will imply (6.11), because at most one
rectangle in Rδ

σ can be δ�Cϵ-comparable to a fixed Rj : indeed any pair of pδ, σq-rectangles
δ�Cϵ-comparable to Rj would be ≲ δ�Cϵ-comparable to each other by Corollary 4.11,
contradicting our "without loss of generality" assumption that the rectangles in Rδ

σ are
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δ�Cϵ-incomparable. Thus, the left hand side of (6.11) is bounded by the number of the
rectangles Rj (which is ≲ 1).

We then show that every R P Rδ
σ with pp, qqR � pp, qq is δ�Cϵ-comparable to some

Rj . Namely, if pp, qqR � pp, qq, then R � Sδ1�ϵppq X Sδ1�ϵpqq by definition, and because
diampRq ¤ 2σ, it follows that R � δ�ϵRδ

σpq, vq for some v P Spqq (here e.g. v is the closest
point on Spqq from the centre of R). On the other hand, since the rectangles δ�CϵRj �
δ�CϵRδ

σpq, vjq cover Sδ1�ϵppq X Sδ1�ϵpqq, one of them intersects R, say R X δ�CϵRj � H.
Now, it is easy to check that

Rj � δ�CϵRδ
σpq, vq,

and therefore R,Rj � δ�CϵRδ
σpq, vq. In other words, R,Rj are δ�Cϵ-comparable.

With the proof of (6.11) behind us, we proceed with other preliminaries. Let

p P DλpW q �: Wλ and q P DλpBq �: Bλ,

and write
Rδ

σpp,qq :� tR P Rδ
σ : pp, qqR P pW X pq � pB X qqu.

With this notation, we have

|Rδ
σ| ¤

¸
pp,qqPWλ�Bλ

|Rδ
σpp,qq|. (6.12)

We use the pigeonhole principle to find subsets

Wλ �Wλ and Bλ � Bλ

with the properties #
|W X p| �Mλ, p PWλ,

|B X q| � Nλ, q P Bλ,
(6.13)

(where Mλ, Nλ P t1, . . . , Xλu are fixed integers) and such that

|Rδ
σ|

(6.12)¤
¸

pp,qqPWλ�Bλ

|Rδ
σpp,qq| �δ

¸
pp,qqPWλ�Bλ

|Rδ
σpp,qq|. (6.14)

It now suffices to show that¸
pp,qqPWλ�Bλ

|Rδ
σpp,qq| ⪅δ p|W ||B|q3{4pXλYλq1{2 � |W |pXλYλq � |B|pXλYλq. (6.15)

To begin with, we claim that

|Rδ
σpp,qq| ≲ MλNλ, p PWλ, q P Bλ. (6.16)

This follows from

|Rδ
σpp,qq| �

¸
pp,qqPpWXpq�pBXqq

|tR P Rδ
σ : pp, qqR � pp, qqu|,

and the fact recorded in (6.11) that every term in this sum is ≲ 1.
To proceed estimating (6.14), notice that we only need to sum over the pairs pp,qq P

Wλ � Bλ with Rδ
σpp,qq � H. In this case there exists at least one pair p P W X p
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and q P B X q satisfying (6.10). It follows from Lemma 6.2 applied with ∆ � λ and
Σ :�

a
λ{t ¥ maxtλ, σu that

δ2ϵt ¤ |p� q| ¤ δ�2ϵt, ∆pp,qq ¤ δ�2ϵλ, and δ�2ϵEλ
Σppq X δ�2ϵEλ

Σpqq � H. (6.17)

Here the bounds |p � q| ¥ δ2ϵt and ∆pp,qq ¤ δ�2ϵλ used our assumption λ ¤ δ2ϵt (and
that |p� q| ¥ δϵt for some pair p P p and q P q). To spell out the definitions, here

Eλ
Σppq �

¤
vPEΣppq

Rλ
Σpp,vq,

where EΣppq is the pλ,Σq-skeleton of Eppq (for p P P X p). We record at this point that

p PWλ Y Bλ and v P EΣppq ùñ pp,vq P Ωλ
Σ,

where Ωλ
Σ is the pΣ, λq-skeleton of Ω.

We write p � q if p P Wλ, q P Bλ, and the conditions (6.17) hold. Then, by (6.14) and
the preceding discussion

|Rδ
σ| ⪅

¸
p�q

|Rδ
σpp,qq|

(6.16)
≲ MλNλ � |tpp,qq PWλ � Bλ : p � qu|. (6.18)

To estimate the cardinality |tpp,qq : p � qu|, we will infer from (6.17) that whenever
p � q, then Sppq and Spqq are "roughly" tangent to a pλ,Σq-rectangle, denoted Rλ

Σpp,qq,
more precisely satisfying

Rλ
Σpp,qq � δ�CϵEλ

Σppq X δ�CϵEλ
Σpqq (6.19)

for a suitable absolute constant C ¥ 1. Let us justify why Rλ
Σpp,qq can be found. Since

δ�2ϵEλ
Σppq X δ�2ϵEλ

Σpqq � H, there first of all exist v P EΣppq, w P EΣpqq, and a point

v P δ�2ϵRλ
Σpp,vq X δ�2ϵRλ

Σpq,wq.
Consequently, we may find points p̄ and q̄ with |p̄�p| ¤ δ�2ϵλ and |q̄�q| ¤ δ�2ϵλ such
that v P Spp̄q X Spq̄q. Since Σ ¥ λ, we also have

maxtdistpv,EΣppqq, distpv,EΣpqqqu ¤ δ�2ϵΣ. (6.20)

Now, it follows from (6.17) and the inclusion (4.4) (and noting that Σ ¤ δ�ϵ
a
λ{|p� q|)

that
Rλ

Σpp,qq :� Rλ
Σpp̄, vq � Sδ�Cϵλpp̄q X Sδ�Cϵλpq̄q.

Taking also into account (6.20), we arrive at (6.19).
Now that we have defined the pλ,Σq-rectangles Rλ

Σpp,qq, we let Rλ
Σ be a maximal col-

lection of pairwise 100-incomparable rectangles in tRλ
Σpp,qq : p P Wλ, q P Bλ and p �

qu. For R P Rλ
Σ, we then write R � pp,qq if p � q and R �100 Rλ

Σpp,qq. With this
notation, we may estimate

|tpp,qq PWλ � Bλ : p � qu| ¤
¸

RPRλ
Σ

|tpp,qq PWλ � Bλ : R � pp,qqu|, (6.21)

since every pair pp,qq with p � q satisfies R � pp,qq for at least one rectangle R P Rλ
Σ.

To estimate (6.21) further, we consider the following slightly ad hoc "type" of the rect-
angles R P Rλ

Σ relative to the pair pWλ,Bλq. (This notion will not appear outside this
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proof.) We say that R P Rλ
Σ has type pmλ, nλq relative to pWλ,Bλq if the following sets

WλpRq �Wλ and BλpRq � Bλ have cardinalities |WλpRq| � mλ and |BλpRq| � nλ:
 WλpRq consists of all p PWλ such that R � δ�CϵEλ

Σppq.
 BλpRq consists of all q P Bλ such that R � δ�CϵEλ

Σpqq.
Here

C :� 2C ¥ 2, (6.22)
where "C" is the absolute constant from (6.19). We observe at once that the type of every
rectangle R P Rλ

Σ is p¥ 1,¥ 1q in this terminology, because each R P Rλ
Σ has the form

R � Rλ
Σpp,qq for some pp,qq PWλ � Bλ, and (6.19) holds for this pair pp,qq.

Remark 6.23. Assume for a moment that λ ¤ δ
?
ϵ. Then, if R P Rλ

Σ has type p¥ mλ, nλq
relative to pWλ,Bλq according to the definition above, then R also has type p¥ mλ, nλqC?ϵ

relative to pWλ,Bλq in the sense of Definition 4.22. This is simply because

δ�CϵEλ
Σppq � Sδ�Cϵλppq,

and δ�Cϵ ¤ λ�C
?
ϵ by the temporary assumption λ ¤ δ

?
ϵ. But the "ad hoc" definition

here is far more restrictive: it requires R to lie close to the sets EΣppq and EΣpqq.
We now establish two claims related to our ad hoc notion of type:

Claim 6.24. If R P Rλ
Σ has type pmλ, nλq relative to pWλ,Bλq, then

|tpp,qq PWλ � Bλ : R � pp,qqu| ¤ mλnλ. (6.25)

Proof. Let W 1
λpRq �Wλ be the subset of all those p PWλ such that R � pp,qq for at least

one q P Bλ. Define B1λpRq similarly, interchanging the roles of Wλ and Bλ. Evidently

|tpp,qq PWλ � Bλ : R � pp,qqu| ¤ |W 1
λpRq||B1λpRq|.

It remains to show that W 1
λpRq �WλpRq and B1λpRq � BλpRq. To see this, fix p PW 1

λpRq.
By definition, there exists q P Bλ such that R � pp,qq. This means that R is 100-
comparable to the rectangle Rλ

Σpp,qq which satisfies (6.19). According to Lemma 4.9,
there exists an absolute constant C ¡ 0 such that

R � CRλ
Σpp,qq

(6.19)� Cδ�CϵEλ
Σppq X Cδ�ϵEλ

Σpqq � δ�CϵEλ
Σppq.

This shows that p P WλpRq by definition. Thus W 1
λpRq � WλpRq. The proof of the

inclusion B1λpRq � BλpRq is similar. □

Claim 6.26. Assume that R P Rλ
Σ has type pmλ, nλq relative to pWλ,Bλq, and assume that the

constant "A" in (6.7) satisfies A ¥ 3pC � 1q, where C is the absolute constant determined at
(6.22). Then

maxtmλ, nλu ¤ Yλ. (6.27)

This is where the absolute constant A in the statement of Theorem 6.5 is determined.

Proof of Claim 6.26. Write R � Rλ
Σpp,qq with p P Wλ, q P Bλ, and p � q. Then, enu-

merate WλpRq � tp1, . . . ,pmλ
u. Now δ2ϵt ¤ |pj � q| ¤ δ�2ϵt for all 1 ¤ j ¤ mλ, and

moreover
R � δ�CϵEλ

Σppjq X δ�CϵEλ
Σpqq, 1 ¤ j ¤ mλ.
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Unraveling this inclusion, there exist w P EΣpqq, and for each 1 ¤ j ¤ mλ some vj P
EΣppjq such that

R � δ�CϵRλ
Σppj ,vjq X δ�CϵRλ

Σpq,wq. (6.28)
We now claim that

ppj ,vjq P pΩλ
Σqδ

�Aϵ

λ,t pq,wq, 1 ¤ j ¤ mλ, (6.29)

if A ¥ 3pC� 1q. Noting that ω :� pq,wq P Ωλ
Σ, this will prove that

mλ ¤ |tω1 P pΩλ
Σqδ

�Aϵ

λ,t pωq : δ�AϵRλ
Σpω1q X δ�AϵRλ

Σpωq � Hu| � mδ�Aϵ,δ�Aϵ

λ,λ,t pω | Ωq (6.7)¤ Yλ,

and the upper bound |BλpRq| � nλ ¤ Yλ can be established in a similar fashion.
Regarding (6.29), we already know that δAϵt ¤ |pj � q| ¤ δ�Aϵt, provided that A ¥ 2.

So, it remains to show that ∆ppj ,qq ¤ δ�Aϵλ. But (6.28) implies that

R � Sδ�Cϵλppjq X Sδ�Cϵλpqq, 1 ¤ j ¤ mλ.

The set R P Rλ
Σ has diampRq � Σ �

a
λ{t, and on the other hand Lemma 4.3 implies

that the intersection of the two annuli above can be covered by boundedly many discs of
radius

δ�Cϵλ{
b
∆ppj ,qq|pj � q| ¤ δ�pC�1qϵλ{

b
∆ppj ,qq � t.

This shows that
a
λ{t ≲ δ�pC�1qϵλ{a∆ppj ,qq � t, and rearranging gives ∆ppj ,qq ≲

δ�2pC�1qϵλ. This completes the proof of (6.29), and the lemma. □

Each rectangle R P Rλ
Σ has some type pmλ, nλq relative to pWλ,Bλq, with 1 ¤ mλ, nλ ≲

λ�3. By pigeonholing, we may find a subset R̄λ
Σ � Rλ

Σ such that every rectangle R P R̄λ
Σ

has type between pmλ, nλq and p2mλ, 2nλq for some mλ, nλ ¥ 1, and moreover¸
RPRλ

Σ

|tpp,qq PWλ � Bλ : R � pp,qqu| �δ

¸
RPR̄λ

Σ

|tpp,qq PWλ � Bλ : R � pp,qqu|. (6.30)

When we now combine (6.18) with (6.21), then (6.30), and finally (6.25), we find

|Rδ
σ| ⪅δ MλNλ � pmλnλq � |R̄λ

Σ|. (6.31)

To conclude the proof of (6.8) from here, we consider separately the "main" case λ ¤ δ
?
ϵ,

and the "trivial" case λ ¥ δ
?
ϵ. In the trivial case, we simply apply the following uniform

estimates:
maxtmλ, nλu ¤ λ�C ¤ δ�C

?
ϵ and |R̄λ

Σ| ¤ λ�C ¤ δ�C
?
ϵ

Consequently, using also Mλ ¤ mint|W |, Xλu and Nλ ¤ mint|B|, Xλu, we get

|Rδ
σ| ⪅δ δ

�3C
?
ϵpMλNλq ¤ δ�3C

?
ϵp|W ||B|q3{4X1{2

λ .

This is even better than the case m � 1 � n of (6.8), assuming 3C
?
ϵ ¤ η.

Assume then that λ ¤ δ
?
ϵ. In this case, as pointed out in Remark 6.23, the family R̄λ

Σ

consists of pλ,Σq-rectangles of type p¥ mλ,¥ nλqC?ϵ relative to pWλ,Bλq, in the sense of
Definition 4.22. Furthermore, the pair pWλ,Bλq is pλ,C?ϵq-almost t-bipartite by (6.17),
and since δ�2ϵ ¤ λ�C

?
ϵ. Consequently, by Lemma 4.23, we have

|R̄λ
Σ| ¤ λ�Op?ϵq

�� |Wλ||Bλ|
mλnλ


3{4
� |Wλ|

mλ
� |Bλ|

nλ

�
. (6.32)
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In particular, we may choose ϵ � ϵpηq ¡ 0 so small that λ�Op?ϵq ¤ δ�η.
The estimate (6.32) is not yet the same as the case m � 1 � n of (6.8). To reach (6.8)

from here, we consider separately the cases where the first, second, or third terms in
(6.32) dominate. In all cases, we will use (recall (6.13)) that

|Wλ| ≲ |W |
Mλ

and |Bλ| ≲ |B|
Nλ

and maxtMλ, Nλu ¤ Xλ.

Now, if the first ("main") term in (6.32) is the largest, then (omitting the factor λ�Op?ϵq for
notational simplicity, and combining (6.31) with (6.32))

|Rδ
σ| ⪅δ MλNλ � pmλnλq �

� |Wλ||Bλ|
mλnλ


3{4

≲ pMλNλq1{4 � pmλnλq1{4 � p|W ||B|q3{4 (6.27)¤ pXλYλq1{2 � p|W ||B|q3{4.
This is what we desired in (6.8) (case m � n � 1).

Assume next that the second term in (6.32) dominates. Then,

|Rδ
σ| ⪅δ MλNλ � pmλnλq � |Wλ|

mλ
� Nλ � nλ � |W | ≲ XλYλ|W |.

Similarly, if the third term in (6.32) dominates, we get |Rδ
σ| ⪅δ XλYλ|B|. This concludes

the proof of (6.8) in the case m � 1 � n.
We then, finally, consider the case of general 1 ¤ m ¤ |W | and 1 ¤ n ¤ |B|. This

is morally the random sampling argument from [24, Lemma 1.4], but the details are
more complicated due to our asymmetric definition of "λ-restricted type". Fix a large
absolute constant A ¥ 1 (to be determined soon; this constant has no relation to the
constant A introduced in Claim 6.26). Let W � W be the subset obtained by keeping
every element of W with probability A{m. Define the random subset B̄ � B in the same
way, keeping every element of B with probability A{n. However, if m ¤ 2A, we keep
all the elements of W , and if n ¤ 2A, we keep all the elements of B. We assume in
the sequel that mintm,nu ¥ 2A and leave the converse special cases to the reader (the
case maxtm,nu   2A is completely elementary, but to understand what to do in the case
m   2A ¤ n, we recommend first reading the argument below, and then thinking about
the small modification afterwards.)

The underlying probability space is t0, 1u|W | � t0, 1u|B| �: Λ. The pairs pω, βq P Λ are
in 1-to-1 correspondence with subset-pairs W � B̄ � W �B, and we will prefer writing
"pW, B̄q P Λ" in place of "pω, βq P Λ". We denote by P the probability which corresponds
to the explanation in the previous paragraph: thus, the probability of a sequence pω, βq
equals

Ptpω, βqu � pAmq|tωi�1u|p1� A
mq|tωi�0u|pAn q|tβj�1u|p1� A

n q|tβj�0u|.

The most central random variables will be |W | and |B̄|, formally

|W |pω, βq :� |t1 ¤ i ¤ |W | : ωi � 1u| and |B̄|pω, βq :� |t1 ¤ j ¤ |B| : βj � 1u|
In expectation E|W | � A|W |{m and E|B̄| � A|B|{n. By Chebychev’s inequality, the
probability that either |W | ¥ 4A|W |{m or |B̄| ¥ 4A|B|{n is at most 1

2 . We let Λ1 � Λ be
sequences in pω, βq P Λ for which |W pω, βq| ¤ 4A|W |{m and |B̄pω, βq| ¤ 4A|B|{n. As we
just said, PpΛ1q ¥ 1

2 .
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Let Rδ
σpW, B̄q � Rδ

σ be the subset which has λ-restricted type p¥ 1,¥ 1qϵ relative to
pW, B̄q. We claim that there exists pW, B̄q P Λ1 such that

|Rδ
σ| ¤ 4|Rδ

σpW, B̄q|. (6.33)

To see this, fix R P Rδ
σ, and recall the definition of λ-restricted type p¥ m,¥ nqϵ relative

to pW,Bq. There exists a set WR �W with |WR| ¥ m, and for each p PWR a subset

Bppq � B with |Bppq| ¥ n, (6.34)

such that δϵλ ¤ ∆pp, qq ¤ δ�ϵλ for all p PWR and q P Bppq, and R � δ�ϵEδ
σppq X δ�ϵEδ

σpqq
for all p PWR and q P BRppq. We claim that for any c ¡ 0, we have

PptD at least one pair pp, qq PW � B̄ such that p PWR and q P Bppquq ¥ 1� c, (6.35)

assuming that the constant "A" is chosen large enough, depending only on c. Before
attempting this, we prove something easier: PptW XWR � Huq ¥ 1� c. For each p PWR

fixed, we have

Pptp RW uq � 1� A

m
.

Moreover, these events are independent when p PWR (or even p PW ) varies. Therefore,

PptW XWR � Huq �
¹

pPWR

Pptp RW uq � p1� A
mq|WR| ¤

�
p1� A

mqm{A
	A

. (6.36)

Since m ¥ 2A, the right hand side is bounded from above by ρA for some (absolute)
ρ   1, and in particular the probability is   c as soon as ρA   c.

To proceed towards (6.35), we partition the event tW X WR � Hu into a union of
events of the form tW XWR � Hu, where H � WR is a fixed non-empty subset. Clearly
the events tW XWR � Hu and tW XWR � H 1u are disjoint for distinct (not necessarily
disjoint) H,H 1 � WR. For every H � H � WR, we designate a point pH P H in an
arbitrary manner. For example, we could enumerate the points in WR, and pH P H could
be the point with the lowest index in the enumeration. Then, for H � WR fixed, we
consider the event tB̄ X BppHq � Hu, where BppHq � B is the set from (6.34). Since
Pptq R B̄uq � 1 � A{n, and |BppHq| ¥ n, a calculation similar to the one on line (6.36)
shows that

PptB̄ XBppHq � Huq ¥ 1� ρA ¡ 1� c, H � H �WR, (6.37)

assuming that ρA   c. Furthermore, we notice that for H � H �WR fixed,

PptW XWR � Hu X tB̄ XBppHq � Huq � PptW XWR � HuqPptB̄ XBppHq � Huq.

From a probabilistic point of view, this is because the events tB̄ X BppHq � Hu and
tW XWR � Hu are independent. From a measure theoretic point of view, the set tW X
WR � Hu X tB̄ XBppHq � Hu � t0, 1u|W |� t0, 1u|B| � Λ can be written as a product set.
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Now, we may estimate as follows:¸
H�H�WR

PptB̄ XBppHq � Hu X tW XWR � Huq

(6.37)¥ p1� cq
¸

H�H�WR

PptW XWR � Huq

� p1� cq � PptW XWR � Huq ¥ p1� cq2.
On the other hand, the events we are summing over on the far left are disjoint, and their
union is contained in the event shown in (6.35). This proves (6.35) with p1� cq2 in place
of p1� cq, which is harmless.

Let GR � Λ be the "good" event from (6.35). Note that if pW, B̄q P GR, then R has
restricted λ-type p¥ 1,¥ 1qϵ relative to pW, B̄q – indeed this is due to the pair pp, qq P
W � B̄ with p P WR and q P Bppq whose existence is guaranteed by the definition of
pW, B̄q P GR. Thus R P Rδ

σpW, B̄q (defined above (6.33)) whenever pW, B̄q P GR. This
implies that»

Λ1
|Rδ

σpW, B̄q| dPpW, B̄q �
¸

RPRδ
σ

PpΛ1 X tR P Rδ
σpW, B̄quq ¥

¸
RPRδ

σ

PpΛ1 XGRq.

Finally, recall that PpΛ1q ¥ 1{2 and PpGRq ¥ 1�c. In particular, if we choose c   1{4 (and
thus finally fix "A" sufficiently large), then the integral above is bounded from below by
|Rδ

σ|{4. This proves the existence of pW, B̄q P Λ1 such that (6.33) holds.
Finally, since every R P Rδ

σpW, B̄q �: R̄δ
σ has λ-restricted type p¥ 1,¥ 1qϵ relative to

pW, B̄q, the first part of the proof implies

|Rδ
σ| ¤ 4|R̄δ

σ| ≲ δ�η
�
p|W ||B̄|q3{4pXλYλq1{2 � |W |pXλYλq � |B̄|pXλYλq

�
.

Since pW, B̄q P Λ1, we have |W | ¤ 4A|W |{m and |B̄| ¤ 4A|B|{n. Noting that "A" is an
absolute constant, the upper bound matches (6.8), and the proof is complete. □

7. PROOF OF THEOREM 1.11

In this section we finally prove Theorem 1.11. In fact, we will prove a stronger state-
ment concerning the partial multiplicity functions mδ,λ,t, see Theorem 7.5 below. Theo-
rem 1.11 will finally be deduced from Theorem 7.5 in Section 7.7.

Recall Notation 5.1. We will need the following slight generalisation, where the ranges
of the "distance" and "tangency" parameters can be specified independently of each other.

Definition 7.1 (Gρλ,ρt
λ,t pωq). Let δ ¤ λ ¤ t ¤ 1, and G � Ω � tpp, vq : p P P and v P Eppqu.

For ρλ, ρt ¥ 1 and ω � pp, vq P Ω, we write

Gρλ,ρt
λ,t pωq :� tpp1, v1q P G : λ{ρλ ¤ ∆pp, p1q ¤ ρλλ and t{ρt ¤ |p� p1| ¤ ρttu.

Similarly, for Q � P � D, we will also write

Qρλ,ρt
λ,t ppq :� tq P Q : λ{ρλ ¤ ∆pp, qq ¤ ρλλ and t{ρt ¤ |p� q| ¤ ρttu.

Thus, the former notation concerns pairs, and the latter points. The correct interpretation
should always be clear from the context (whether G � Ω or Q � P ).



ON THE HAUSDORFF DIMENSION OF CIRCULAR FURSTENBERG SETS 45

Whenever δ ¤ λ ¤ δρλ, we modify both definitions so that the two-sided condition
λ{ρλ ¤ ∆pp, qq ¤ ρλλ is replaced by the one-sided condition ∆pp, qq ¤ ρλλ.

Notation 7.2. Thankfully, we can most often (not always) use the definitions in the cases
ρλ � ρ � ρt. In this case, we abbreviate Gρλ,ρt

λ,t �: Gρ
λ,t.

Definition 7.3 (mρλ,ρt,C
δ,λ,t ). Fix 0   δ ¤ λ ¤ t ¤ 1 and ρλ, ρt ¥ 1. Let Ω � tpp, vq : p P

P and v P Eppqu as usual, and write σ :� δ{?λt. For any set G � Ω, we define

mρλ,ρt,C
δ,λ,t pω | Gq :� |tω1 P pGδ

σqρλ,ρtλ,t : CRδ
σpωq X CRδ

σpω1q � Hu|, ω P G.

Here Gδ
σ is the pδ, σq-skeleton of G.

Notation 7.4. Consistently with Notation 7.2, in the case ρλ � ρ � ρt we abbreviate

mρλ,ρt,C
δ,λ,t �: mρ,C

δ,λ,t.

The full generality of the notation will only be needed much later, and we will remind
the reader at that point.

Theorem 7.5. For every κ P p0, 12 s and s P p0, 1s, there exist ϵ � ϵpκ, sq ¡ 0 and δ0 �
δ0pϵ, κ, sq ¡ 0 such that the following holds for all δ P p0, δ0s. Let Ω � tpp, vq : p P P and v P
Eppqu be a pδ, δ, s, δ�ϵq-configuration with

|P | ¤ δ�s�ϵ, (7.6)

Then, there exists a subset G � Ω of cardinality |G| ¥ δκ|Ω| such that the following holds
simultaneously for all δ ¤ λ ¤ t ¤ 1:

mδ�ϵ,κ�1

δ,λ,t pω | Gq ¤ δ�κ, ω P G. (7.7)

Theorem 1.11 will be easy to derive from Theorem 7.5. The details are in Section 7.7.
Theorem 7.5 will be proven by a sequence of successive refinements to the initial config-
uration Ω. Every refinement will take care of the inequality (7.7) for one fixed pair pλ, tq,
but the refinements will need to be performed in an appropriate order, as we will discuss
later. After a large but finite number of such refinements, we will be able to check that
(7.7) holds for all δ ¤ λ ¤ t ¤ 1 simultaneously.

Notation 7.8. Throughout this section, we allow the implicit constants in the "�δ" no-
tation to depend on the constants κ, s and ϵ � ϵpκ, sq in Theorem 7.5 (the choice of ϵ is
explained in Section 7.1). Thus, the notation A ⪅δ B means that A ¤ Cplogp1{δqqCB,
where C � Cpϵ, κ, sq ¡ 0. In particular, if δ ¡ 0 is small enough depending on ϵ, κ, s, the
inequality A ⪅δ B implies A ¤ δ�ϵB.

7.1. Choice of constants. We explain how ϵ in Theorem 7.5 depends on κ, s. Let ϵmax �
ϵmaxpκ, sq ¡ 0 be an auxiliary constant, which (informally) satisfies ϵ ! ϵmax ! κ. Pre-
cisely, the constant ϵmax is determined by the following two requirements:

 Let A be the absolute constant from Theorem 6.5. We require ϵmax to be so small
that if Theorem 5.31 is applied with parameters κ̄ � κs{100 and s, then Aϵmax ¤
ϵ0pκ̄, sq, where the ϵ0pκ̄, sq is the constant produced by Theorem 5.31.

 We apply Theorem 6.5 with constant η � κs{100, and we require that ϵmax ¤ ϵpηq
(where ϵpηq is the constant produced by Theorem 6.5).
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 We require that ϵmax   cκs for a small absolute constant c ¡ 0, whose size will be
determined later.

The relationship between the "final" ϵ in Theorem 7.5, and the constant ϵmax fixed
above, is the following, for a suitable absolute constant C ¡ 0:

C � 10100{κϵ ¤ ϵmax. (7.9)

As stated in Theorem 7.5, the threshold δ0 ¡ 0 may depend on all the parameters ϵ, κ, s.
We do not attempt to track the dependence explicitly, and often we will state inequalities
of (e.g.) the form "C ¤ δ�ϵ" under the implicit assumption that δ ¡ 0 is small enough,
depending on ϵ. Here, we only explicitly record that δ0 ¡ 0 is taken so small that

CApϵ, κqC{ϵ ¤ δ�ϵmax
0 , (7.10)

where Apϵ, κq ¥ 1 is a constant depending only on κ, and C ¥ 1 is absolute.

7.2. The case t � λ. In the "main" argument for Theorem 7.5, we will need to assume
that t ¥ δ�κ{10λ. The opposite case t ¤ δ�κ{10λ is elementary, and we handle it straight
away. So, fix δ ¤ λ ¤ t ¤ 1 with t ¤ δ�κ{10λ.

Claim 7.11. There exists a pδ, δ, s, 4δ�ϵq-configuration G � Ω (depending on λ, t) of cardinality
|G| ¥ |Ω|{16 such that (7.7) holds with ϵ :� κ{100.

We record that our assumption t ¤ δ�κ{10λ implies

σ � δ{
?
λt ¥ δκ{20pδ{λq ¥ δκ{5pδ{λq. (7.12)

To save a little space, we abbreviate Rpp, vq :� κ�1Rδ
σpp, vq. We also write M :� |Eppq|

for the common cardinality of the sets Eppq, p P P . With this notation, we estimate as
follows (the final estimate will be justified carefully below the computation):

1

|P |
¸
pPP

1

M

¸
vPEppq

|tpp1, v1q P pΩδ
σqδ

�ϵ

λ,t pp, vq : Rpp, vq XRpp1, v1q � Hu|

¤ 1

|P |M
¸
pPP

¸
p1PP δ�ϵ

λ,t ppq
|tpv, v1q P Eppq � Sσpp1q : Rpp, vq XRpp1, v1q � Hu| (7.13)

¤ δs�κ{2|P |. (7.14)

We justify the final estimate. The easiest part is

|P δ�ϵ

λ,t ppq| ¤ |P XBpp, δ�ϵtq| ¤ |P XBpp, δ�ϵ�κ{10λq| ¤ δ�2ϵ�κ{10λs|P |, (7.15)

using the pδ, s, δ�ϵq-set property of P . A slightly more elaborate argument is needed to
estimate the number of pairs pv, v1q appearing in (7.13) for pp, p1q fixed. Fix pp, p1q P P �P

with p1 P P δ�ϵ

λ,t ppq: thus |p � p1| ¥ δϵt ¥ δϵλ and ∆pp, p1q ¥ δϵλ. Lemma 4.3 implies that
the intersection

Sδ{κppq X Sδ{κpp1q (7.16)

can be covered by boundedly many discs of radius

δ{κa
p∆pp, p1q � δ{κqp|p� p1| � δ{κq ¤

δ{κa
pδϵλqpδϵλq ¤ δ�2ϵpδ{λq �: r.
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(Here we assumed that δ ¡ 0 is small enough in terms of ϵ, κ.) Let tBpzi, rquCi�1 be an
enumeration of these discs. Now, if Rpp, vq X Rpp1, v1q � H, then both v, v1 must lie at
distance ¤ 2r from one of these discs (the intersection Rpp, vq XRpp1, v1q is contained in
the intersection (7.16), and diampRq ¤ σ{κ ¤ δ{pλκq ! r). On the other hand,

|Eppq XBpzi, rq| ¤ δ�ϵrsM ¤ δ�3ϵpδ{λqsM and |Sσpp1q XBpzi, 4rq| ¤ δ�κ{4,

where the first inequality used the pδ, s, δ�ϵq-set property of Eppq, and the second in-
equality used (7.12), along with the σ-separation of Sσpp1q. This shows that

|tpv, v1q P Eppq � Sσpp1q : Rpp, vq XRpp1, v1q � Hu| ¤ δ�4ϵ�κ{4pδ{λqsM.

When this upper bound is plugged into (7.13), then combined with (7.15), we find (7.14).
To conclude the proof, notice that the left hand side of (7.14) is in fact the expectation

of the random variable
ω ÞÑ mδ�ϵ,κ�1

δ,λ,t pω | Ωq,
relative to normalised counting measure on Ω. By Chebychev’s inequality, there exists a
set G � Ω with |G| ¥ 1

2 |Ω| such that

mδ�ϵ,κ�1

δ,λ,t pω | Gq ¤ mδ�ϵ,κ�1

δ,λ,t pω | Ωq ¤ δs�3κ{4|P | ¤ δ�κ, ω P G,

using the assumption (7.6) that |P | ¤ δ�s�ϵ in the final inequality. Finally, we replace "G"
by a slightly smaller pδ, δ, s, 4δ�ϵq-configuration by applying Lemma 3.13 with c � 1

2 .

7.3. Uniform sets. We start preparing for the proof of Theorem 7.5 (the case of pairs
pλ, tq with t ¥ δ�κ{10λ) with a few auxiliary definitions and results which allow us to
find – somewhat – regular subsets inside arbitrary finite sets P � D.

Definition 7.17. Let n ¥ 1, and let

δ � ∆n   ∆n�1   . . .   ∆1 ¤ ∆0 � 1

be a sequence of dyadic scales. We say that a set P � D is t∆junj�1-uniform if there is a
sequence tNjunj�1 such that |D∆j pP X pq| � |P X p|∆j � Nj for all j P t1, . . . , nu and all
p P D∆j�1pP q. As usual, we extend this definition to P � Dδ (by applying it to YP ).

The following lemma allows us to find t∆junj�1-uniform subsets inside general finite
sets. The result is a special case of [15, Lemma 7.3], which works for more general se-
quences t∆jumj�1 than the sequence t2�jT umj�1 treated in Lemma 7.18.

Lemma 7.18. Let P � D, m,T P N, and δ :� 2�mT . Let also ∆j :� 2�jT for 0 ¤ j ¤ m, so
in particular δ � ∆m. Then, there there is a t∆jumj�1-uniform set P 1 � P such that

|P 1|δ ¥ p4T q�m |P |δ. (7.19)

In particular, if ϵ ¡ 0 and T�1 logp4T q ¤ ϵ, then |P 1|δ ¥ δϵ|P |δ.

Proof. The inequality (7.19) follows by inspecting the short proof of [15, Lemma 7.3]. The
"in particular" claim follows by noting that

p4T q�m � 2�m logp4T q � 2�mT �pT�1 logp4T qq � δT
�1 logp4T q.

This completes the proof. □
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7.4. Initial regularisation for the proof of Theorem 7.5. We denote the "given" pδ, δ, s, δ�ϵq-
configuration in Theorem 7.5 by

Ω0 � tpp, vq : p P P0 and v P E0ppqu,
where P0 � Dδ is a non-empty pδ, s, δ�ϵq-set, and E0ppq � Sδppq is a pδ, s, δ�ϵq-set of
cardinality M ¥ 1 (for every p P P0). The purpose of this section is to perform an initial
pruning to Ω0, that is, to find a pδ, δ, s, δ�2ϵq-configuration

Ω � tpp, vq : p P P and v P Eppqu � Ω0,

where P is a pδ, s, δ�2ϵq-set, each Eppq is a pδ, s, δ�2ϵq-set with constant cardinality, and
|Ω| �δ |Ω0|. The subset Ω will have additional useful regularity properties compared to
Ω0. After we are finished constructing Ω, we will focus on finding the "final" set G (as in
Theorem 7.5) inside Ω, instead of Ω0.

There is no loss of generality in assuming that δ � 2�mT for some m ¥ 1, and some
T ¥ 1 whose size depends on ϵ (and therefore eventually κ). We start by applying Lemma
7.18 to the sequence

λj :� 2�jT , 0 ¤ j ¤ m.

Provided that T�1 logp4T q ¤ ϵ, the result is a tλjumj�1-uniform subset P 1
0 � P0 with car-

dinality |P 1
0| ¥ δϵ|P0|. In particular, P 1

0 is a pδ, s, δ�2ϵq-set. We define Ω1
0 :� tpp, vq : p P

P 1
0 and v P E0ppqu. Then |Ω1

0| ¥ δϵ|Ω0|. From this point on, the proof will see no differ-
ence between Ω0, P0 and Ω1

0, P
1
0, so we assume that P0 � P 1

0 and Ω0 � Ω1
0 to begin with –

or in other words that P0 is tλjumj�1-uniform for λj � 2�jT , 1 ¤ j ¤ m. In particular, the
"branching numbers"

Nj :� |P0 X p|λj
, p P D2Tλj

pP0q, 1 ¤ j ¤ m,

are well-defined (that is, independent of "p").
We have slightly overshot our target: the argument above shows that P0 may be as-

sumed to be t2�jT umj�1-uniform. We only need something weaker. Let ϵ ¡ 0 be so small
that the requirement (7.9) is met. Let Λ � rδ, 1s be a finite set of cardinality |Λ| � 1{ϵ
which is multiplicatively δ�ϵ{2-dense in the following sense: if λ P rδ, 1s is arbitrary, then
there exists λ P Λ with λ ¤ λ ¤ δ�ϵ{2λ. If δ ¡ 0 is so small that 2T ¤ δ�ϵ, we may (and
will) choose Λ � t2�jT umj�1 � tλjumj�1. We agree that tδ, 1u P Λ, and for every λ P Λ z t1u,
we denote by λ̂ P Λ the smallest element of Λ with λ̂ ¡ λ.

Since Λ � t2�jT umj�1, the set P0 is automatically Λ-uniform: the number

Nλ :� |P0 X p|λ, p P Dλ̂pP0q, λ P Λ z t1u, (7.20)

is independent of the choice of p P Dλ̂pP0q. From this point on, the uniformity with re-
spect to the denser sequence t2�jT umj�1 will no longer be required. From (7.20), it follows
that also the number

Xλ :� |P0 X p|δ � |P0|{|P0|λ, p P DλpP0q, λ P Λ, (7.21)

is independent of the choice of p P DλpP0q (since Xλ is the product of the numbers Nλ1

for λ1 P Λ with λ1   λ, recalling that δ P Λ by definition).
Next, for every λ P Λ fixed, we associate a finite set T pλq � rλ, 1s of cardinality

|T pλq| � 1{ϵ which is multiplicatively δ�ϵ{2-dense on the interval rλ, 1s in the same sense
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as above: if t P rλ, 1s is arbitrary, then there exists t P T pλq such that t ¤ t ¤ δ�ϵ{2t. For
later technical convenience, it will be useful to know that the sets

Λptq :� tλ P Λ : t P T pλqu, t P T :�
¤
λPΛ

T pλq, (7.22)

are multiplicatively δ�ϵ{2-dense in rδ, ts. This can be accomplished by choosing both
the λ’s and the t’s from some "fixed" multiplicatively δ�ϵ{2-dense sequence in rδ, 1s, for
example tδ, δ1�ϵ{2, δ�ϵ, . . . , 1u.

We order the pairs pλ, tq with λ P Λ and t P T pλq arbitrarily. The total number of pairs
is ≲ ϵ�2. Then, we apply Theorem 5.31 with constant κs{100 to the first pair pλ1, t1q. If
ϵmax ¡ 0 is sufficiently small (as small as we stated in Section 7.1), and since ϵ ¤ ϵmax ¤
Aϵmax ¤ ϵ0pκ̄, sq, Theorem 5.31 provides us with a pδ, δ, s, Cδ�ϵq-configuration G � Ω0

such that C �δ 1, |G| �δ |Ω0|, and

mδ�Aϵmax ,δ�Aϵmax

λ1,λ1,t1
pω | Gq ¤ δ�κs{100λs

1|P0|λ1 , ω P Gλ1
Σ1
, (7.23)

where Σ1 �
a
λ1{t1, and A ¥ 1 is the constant from Theorem 6.5.

Assume that we have already found a sequence of pδ, δ, s, Cjδ
�ϵq-configurations G �:

G1 � G2 � . . . Gj , where Cj �δ,j 1 and |Gj | �δ,j |Ω0|, and (7.23) holds for Gj relative to
the pair pλj , tjq (with Σj �

a
λj{tj). We reapply Theorem 5.31 to Ωj :� Gj , and the pair

pλj�1, tj�1q. This is legitimate, since j ≲ ϵ�2, and the constant Cjδ
�ϵ is smaller than the

threshold δ�ϵmax required to apply Theorem 5.31 with constant "κs{100" (by our choice of
"ϵ"). Thus, Theorem 5.31 outputs a pδ, δ, s, Cj�1δ

�ϵq-configuration Gj�1 � Gj satisfying
(7.23) for the pair pλj�1, tj�1q, and with |Gj�1| �δ,j�1 |Ω0|.

After Theorem 5.31 has been applied in this "successive" manner to all the pairs pλ, tq
with λ P Λ and t P T pλq, we arrive at a final pδ, δ, s, Cϵδ

�ϵq-configuration

Ω � tpp, vq : p P P and v P Eppqu, (7.24)

where Cϵ �δ 1, |Ω| �δ |Ω0|, and Ω satisfies simultaneously a version of (7.23) for all the
pairs pλj , tjq. In particular, we note that |P | �δ |P0| and |Eppq| �δ M for all p P P .
Therefore, P,Eppq remain pδ, s, Cϵδ

�ϵq-sets with Cϵ �δ 1.

Remark 7.25. It is worth comparing the accomplishment (7.23) with the ultimate goal (7.7)
in Theorem 7.5. Roughly speaking, we have now tackled the cases pλ, λ, tq of (7.7) (with
the caveat that this has only been done for the pairs pλ, tq with λ P Λ and t P T pλq).
7.5. Proof of Theorem 7.5. We just finished constructing the pδ, δ, s, Cϵδ

�ϵq-configuration
Ω � tpp, vq : p P P and v P Eppqu � Ω0 with |Ω| �δ |Ω0| which satisfies property (7.23)
(with G � Ω) for all λ P Λ and t P T pλq. We record this once more:

mδ�Aϵmax ,δ�Aϵmax

λ,λ,t pω | Ωq ¤ δ�κs{100λs|P0|λ, ω P Ωλ
Σ, (7.26)

for every λ P Λ and t P T pλq, where Σ �
a
λ{t.

Remark 7.27. At this point, we remind the reader that the left hand side of (7.26) is short-
hand notation for

mδ�Aϵmax ,δ�Aϵmax ,δ�Aϵmax

λ,λ,t pω | Ωq,
recall Notation 7.4. Soon we will need the full generality of the notation mρλ,ρt,C

δ,λ,t .
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The main step towards proving Theorem 7.5 for every pair pλ, tq with δ ¤ λ ¤ t ¤ 1 is
to prove it for the (finitely many) pairs pλ, tq with λ P Λ and t P T pλq. Write

T :�
¤
λPΛ

T pλq � rδ, 1s,

and for every t P T , let Λptq :� tλ P Λ : t P T pλqu � rδ, ts. Recall from (around) (7.22) that
Λptq is multiplicatively δ�ϵ{2-dense in rδ, ts. This will be used in the form of the corollary
that Λptq is multiplicatively δ�ϵ{2-dense in rδ,maxΛptqs.
Proposition 7.28. For every fixed t P T and λ P Λptq, there exists a pδ, δ, s, Cϵδ

�ϵq-configuration
G � Ω (depending on λ, t), such that |G| �δ |Ω|, and

mδ�ϵ,Cκ�1

δ,λ,t pω | Gq ¤ δ�κ, ω P G, (7.29)

where C ¡ 0 is an absolute constant to be determined in the proof of Proposition 7.30.

We will prove Proposition 7.28 in such a way that the various configurations "G" will
form a nested sequence. So, once the proposition has been established for all pairs pλ, tq
with t P T and λ P Λptq, then the "last" set G will satisfy (7.29) for all pairs t P T and
λ P Λptq simultaneously. We start with the easiest cases where λ � t. The value of the
constant "Cϵ" will change many times during the proof, but it will always remain Cϵ �δ 1.

Pairs pλ, tq with t ¤ δ�κ{10λ. Let λ P Λ and t P T with t ¤ δ�κ{10λ. In this case we
apply the claim proved in Section 7.2: the conclusion is that there exists a pδ, δ, s, 4Cϵδ

�ϵq-
configuration G1 � Ω satisfying (7.29) for the fixed pair pλ, tq. (To be perfectly accurate,
one needs to apply the proof of the claim with constant Cκ in place of κ.) Next, we simply
repeat the argument inside G1, and for all the pairs pλ, tq P Λ � T with t ¤ δ�κ{10λ, in
arbitrary order. This involves refining Ω at most ≲ ϵ�2 times, so the final product of this
argument remains a pδ, δ, s, Cϵδ

�ϵq-configuration.
Before launching to the main argument – treating the cases λ ¤ δκ{10t – we use (7.29)

to complete the proof of Theorem 7.5.

Proposition 7.30. Assume that (7.29) holds for simultaneously for all pλ, tq P Λ � T . Then, if
the absolute constant C ¡ 0 is large enough, we have

mδ�ϵ{2,κ�1

δ,λ,t pω | Gq ¤ δ�2κ, ω P G (7.31)

simultaneously for all δ ¤ λ ¤ t ¤ 1 (not necessarily from Λ� T ).

Proof. Let δ ¤ λ ¤ t ¤ 1. Let λ P Λ and t P T pλq be elements with λ ¤ λ ¤ δ�ϵ{2λ and
t ¤ t ¤ δ�ϵ{2t. Recall that

mδ�ϵ{2,κ�1

δ,λ,t pω | Gq � |tω1 P pGδ
σqδ

�ϵ{2

λ,t pωq : κ�1Rδ
σpωq X κ�1Rδ

σpω1q � Hu|, ω P G,

where Gδ
σ is the pδ, σq-skeleton of G (with σ � δ{?λt). An unpleasant technicality is

that σ̄ � δ{?λt P rσ, δ�ϵ{2σs might be a little different from σ, so elements of Gδ
σ are

not automatically elements of Gδ
σ̄. However, for every ω1 � pq, wq P Gδ

σ, we may pick
ω̄1 � pq, w̄q P Gδ

σ̄ with pq, wq   pq, w̄q, and in particular |w � w̄| ¤ Cσ̄ for an absolute
constant C ¥ 1. Then, it is straightforward to check that

ω1 P pGδ
σqδ

�ϵ{2

λ,t pωq ùñ ω̄1 P pGδ
σ̄qδ

�ϵ

λ,t pωq, ω P G, (7.32)
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and

κ�1Rδ
σpωq X κ�1Rδ

σpω1q � H ùñ Cκ�1Rδ
σ̄pωq X Cκ�1Rδ

σ̄pω̄1q � H. (7.33)

The implication (7.33) follows from the inclusion κ�1Rδ
σpω1q � Cκ�1Rδ

σ̄pω̄1q (note that
σ̄ ¥ σ). Regarding (7.32), it is worth noting that the implication is even true in the special
case λ ¤ δ1�ϵ{2 (recall Definition 7.1) since in that case λ ¤ δ1�ϵ.

Finally, observe that the map ω1 ÞÑ ω̄1 is at most δ�ϵ-to-1: if pq, w1q, pq, w2q, . . . , pq, wN q P
Gδ

σ are distinct, and ω̄1 � pq, w̄q is the image of them all, then |wi � wj | ≳ Nσ for some
1 ¤ i � j ¤ N , and on the other hand maxt|w̄ � wi|, |w̄ � wj |u ≲ σ̄ ¤ δ�ϵ{2σ.

Combining this with (7.32)-(7.33), we find

mδ�ϵ{2,κ�1

δ,λ,t pω | Gq ¤ δ�ϵmδ�ϵ,Cκ�1

δ,λ,t pω | Gq (7.29)¤ δ�κ�ϵ, ω P G.

This proves (7.31), since ϵ ¤ κ (by the choices in Section 7.1). □

7.6. Proof of Proposition 7.28. We then arrive at the core of the proof of Theorem 7.5.

7.6.1. Structure of the proof Proposition 7.28. Very much like in Section 7.4, we will enu-
merate the pairs pλ, tq with t P T , and λ P Λptq X rδ, δκ{10ts, and we will construct a
decreasing sequence of pδ, δ, sq-configurations G1 � G2 � . . . such that Gj satisfies (7.29)
for the pair pλj , tjq – and therefore automatically for all pairs pλi, tiq with 1 ¤ i ¤ j. We
will show inductively that |Gj | �δ |Ω|.

In contrast to Section 7.4, this time the ordering of the pairs pλj , tjqmatters. We will do
this as follows. We enumerate the elements of T arbitrarily. Then, if tj P T is fixed, we
enumerate the pairs pλ, tjq with λ P Λptjq X rδ, δκ{10tjs in increasing order. Thus, the first
pair is pδ, tjq, the second one pδ1�ϵ{2, tjq, and so on. This has the crucial benefit that when
we are in the process of proving (7.29) for a fixed pair pλ, tjq, we may already assume
that (the current) G satisfies (7.29) for all pairs pλ1, tjq with λ1 P Λptjq and λ1   λ.

7.6.2. Setting up the induction. We will then begin to implement the strategy outlined
above. Fix t :� tj P T arbitrarily, and for the remainder of the proof. We enumerate
Λptq X rδ, δκ{10ts in increasing order, with the abbreviation |Λ| :� |Λptq X rδ, δκ{10ts|:

δ � λ1   λ2   . . .   λ|Λ| ¤ δκ{10t. (7.34)

For each index 1 ¤ l ¤ |Λ| we also define a constant Cl ¥ 1 in such a way that the
sequence C1 ¡ C2 ¡ . . . ¡ C|Λ| ¥ 1 is very rapidly decreasing, more precisely

Cl�1 � Apϵ, κq�1Cl, 1 ¤ l   |Λ| (7.35)

for a suitable constant Apϵ, κq ¥ 1, depending only on κ, and to be determined later,
precisely right after (7.51). To complete the definition of the sequence tClu, we specify its
smallest (last) element:

C|Λ| :� Cκ�1, (7.36)

where κ ¡ 0 is the parameter given in Theorem 7.5, and C ¡ 0 is the absolute constant
from (7.29). With these definitions, and noting that |Λ| ¤ C{ϵ for an absolute constant
C ¡ 0, we have

C1 � Apϵ, κq|Λ|C|Λ| ¤ CApϵ, κqC{ϵκ�1
(7.10)¤ δ�ϵmax , δ P p0, δ0s. (7.37)
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We will prove the following by induction on k P t1, . . . , |Λ|u: there exists a decreasing
sequence of pδ, δ, s, Cϵδ

�ϵq-configurations G1 � . . . � Gk such that |Gl| �δ |Ω| for all
1 ¤ l ¤ k, and such that the following slightly stronger version of (7.29) holds:

mClδ
�ϵ,Cl

δ,λl,t
pω | Glq ¤ δ�κ, ω P Gl, 1 ¤ l ¤ k. (7.38)

Once we have accomplished this for k � |Λ|, we set G :� G|Λ|. Then (7.29) holds for
G (by (7.36)), and for all pairs pλ, tq with λ P Λptq. After this, we may repeat the same
procedure for all t P T in arbitrary order (but always working inside the configurations
we have previously constructed). This will complete the proof of Proposition 7.28.

Remark 7.39. Notice that the constants "Cl" in (7.38) decrease (rapidly) as l increases. The
idea is that we can prove (7.38) with index "k�1" and the smaller constant Ck�1, provided
that we already have (7.38) for all 1 ¤ l ¤ k, and the much larger constants Cl " Ck�1.

7.6.3. The case k � 1. This case is a consequence of (7.26) applied with λ � λ1 � δ, with
G1 :� Ω. Note that in this case σ � δ{?λt �

a
λ{t � Σ, so (7.26) with λ � δ (and our

fixed t P T ) can be rewritten as

mδ�Aϵmax ,δ�Aϵmax

δ,δ,t pω | Ωq ¤ δ�sκ{100λs|P0|δ ¤ δ�κ, ω P Ωδ
Σ. (7.40)

This is actually much stronger than what we need in (7.38), since ϵ   ϵmax, and C1 �ϵ,κ 1.
One small point of concern is that (7.38) is a statement about ω P G1 � Ω, whereas (7.40)
deals with ω P Ωδ

Σ � Ωδ
σ. This is not a problem thanks to the following elementary

lemma, which will also be useful later:

Lemma 7.41. Let 0   δ ¤ λ ¤ t ¤ 1 and ρλ, ρt, C ¥ 1. Let G � Ω and ω P G. Let ω̄ P Gδ
σ be

the parent of ω in the pδ, σq-skeleton Gδ
σ, where σ � δ{?λt as usual. Then,

m
ρλ,ρt,C{A
δ,λ,t pω̄ | Gq ¤ mρλ,ρt,C

δ,λ,t pω | Gq ¤ mρλ,ρt,AC
δ,λ,t pω̄ | Gq, (7.42)

where A ¥ 1 is absolute.

In particular, (7.40) for ω P Ωδ
Σ implies (7.38) for all ω P Ω, at the cost of replacing the

second δ�Aϵmax by δ�Aϵmax{A (which is still much bigger than C1 �ϵ,κ 1).

Proof of Lemma 7.41. We only prove the upper bound, since the lower bound is estab-
lished in a similar fashion. Let us spell out the quantities in (7.42):

mρλ,ρt,C
δ,λ,t pω | Gq � |tω1 P pGδ

σqρλ,ρtλ,t pωq : CRδ
σpωq X CRδ

σpω1q � Hu|
and

mρλ,ρt,AC
δ,λ,t pω̄ | Gq � |tω1 P pGδ

σqρλ,ρtλ,t pω̄q : ACRδ
σpω̄q XACRδ

σpω1q � Hu|.
The crucial observation is that if the point ω P G is written as ω � pp, vq, then the parent
ω̄ � pp,vq, where |v � v| ≲ 1, and the "p-component" remains unchanged. In particular,

ω1 P pGδ
σqρλ,ρtλ,t pωq ðñ ω1 P pGδ

σqρλ,ρtλ,t pω̄q,
since these inclusions only concern the p-components of ω, ω1, ω̄. Therefore, (7.42) boils
down to the observation

CRδ
σpωq X CRδ

σpω1q � H ùñ ACRδ
σpω̄q X CRδ

σpω1q � H,

which follows from CRδ
σpωq � ACRδ

σpω̄q (for A ¥ 1 sufficiently large). □
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7.6.4. Cases 1   k � 1 ¤ |Λ|. We then assume that the pδ, δ, s, Cϵδ
�ϵq-configurations

G1 � . . . � Gk have already been constructed for some 1 ¤ k   |Λ|. We next explain
how to construct the set Gk�1. To be precise, our task is to construct a pδ, δ, s, Cϵδ

�ϵq-
configuration Gk�1 � Gk with the properties Cϵ �δ 1, |Gk�1| �δ |Gk|, and

m
Ck�1δ

�ϵ,Ck�1

δ,λk�1,t
pω | Gk�1q ¤ δ�κ, ω P Gk�1. (7.43)

We abbreviate
λ :� λk�1 and σ :� δ{

a
λk�1t (7.44)

for the duration of this argument. We write Gk � tpp, vq : p P Pk and v P Gkppqu with
|Gkppq| �Mk for all p P Pk. Here |Pk| �δ |P | and Mk �δ M since |Gk| �δ |Ω| �M |P |.

Note that the multiplicity function appearing in (7.43) counts elements in the pδ, σq-
skeleton of Gk�1. It would be desirable to know that |Eσppq| �Mσ is a constant indepen-
dent of p P Pk, where

Eσppq � tv P Sσppq : v   v for some v P Gkppqu
is the pδ, σq-skeleton of Gkppq. This may not be true to begin with, but may be accom-
plished with a small pruning, as follows. For each pp,vq P pGkqδσ, let

Mpp,vq � |tpp1, vq P Gk : pp1, vq   pp,vqu| � |tv P Gkppq : v   vu|.
The second equation follows from p P Dδ (that is, pp1, vq   pp,vq implies p1 � p). Now,
for each p P Pk fixed, we pigeonhole an integer Mppq ¥ 1 and a subset E1

σppq � pGkqδσppq
such that Mppq ¤Mpp,vq ¤ 2Mppq for all v P E1

σppq, and further

|tv P Gkppq : v   v for some v P E1
σppqu| �δ |Gkppq| �Mk. (7.45)

It follows that Mppq � |E1
σppq| �δ Mk �δ M for all p P Pk. Next, we pigeonhole an integer

Mσ ¥ 1, and a subset P̄k � Pk such that Mσ ¤ |E1
σppq| ¤ 2Mσ for all p P P̄k, and

|P̄k| �δ |Pk|. With this definition, let

Ḡ :� tpp, vq : p P P̄k, v P Gkppq, and v   v for some v P E1
σppqu.

Thus, the pδ, σq-skeleton of Ḡ is Ḡδ
σ � tpp,vq : p P P̄k and v P E1

σppqu, and for each p P P̄k,
the pδ, σq-skeleton of Ḡppq is Ḡδ

σppq � E1
σppq, which has constant cardinality Mσ (up to

a factor of 2). To simplify notation, we denote in the sequel Eσppq :� E1
σppq for p P P̄k.

Note that

|Ḡ| �
¸
pPP̄k

¸
vPEσppq

|tv P Gkppq : v   vu| (7.45)�δ |P̄k|Mk �δ |Pk|Mk � |Gk|.

To summarise, the procedure above has reduced Gk to a subset Ḡ � Gk of size |Ḡ| �δ

|Gk|, and further we have gained the following properties:

|Ḡδ
σppq| � |Eσppq| P rMσ, 2Mσs, p P P̄k, (7.46)

and
|tv P Gkppq : v   vu| �Mppq �δ M{Mσ, p P P̄k, v P Eσppq. (7.47)

We also record for future reference that

Mσ � |Eσppq| ⪆δ δ
ϵσ�s � δϵ

�?
λt

δ

�s

, (7.48)
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since Ḡppq is a non-empty pδ, s, Cϵδ
�ϵq-set. (It follows from (7.46)-(7.47) that |Ḡppq| �δ M

for all p P P̄k, but Ḡ may fail to be a pδ, δ, s, Cδ�ϵq-configuration in the strict sense that
the sets |Ḡppq| have equal cardinality. This will not be needed, so we make no attempt to
prune back this property. The moral here is that the set Gk can be completely forgotten:
we will only need Ḡ � Gk in the sequel, and the rough constancy of |Ḡδ

σppq|.)
We then begin the construction of the set Gk�1 � Ḡ. This argument requires another

induction, in fact very similar to the one we saw during the proof of Proposition 5.2. This
is not too surprising, given that the "base case" δ � λ, or in other words k � 1, of (7.38)
followed directly from Proposition 5.2. To reduce confusion with indices, the letters "k, l"
will from now on refer to the sets in the sequence G1, . . . , Gk already constructed in our
"exterior" induction and we will use letters "i, j" are reserved for the "interior" induction
required to construct Gk�1.

Remark 7.49. It may be worth noting that the "exterior" induction runs � 1{ϵ times,
whereas the "interior" induction below runs only r20{κs � 1{κ times. This is signifi-
cant, because it is legitimate to increase (say: double) the constant "ϵ" roughly 1{κ times
and still rest assured that the resulting final constant is ≲ 21{κϵ ¤ ϵmax (a small number).
In contrast, it would not be legitimate to double the constant "ϵ" roughly 1{ϵ times in the
"exterior" induction.

We start by setting h :� r20{κs, and defining the auxiliary sequence of exponents

100ϵ   ϵh   ϵh�1   . . .   ϵ0   ϵmax{100, (7.50)

where ϵj   ϵj�1{10 for all 1 ¤ j ¤ h. This choice of the sequence tϵju is possible thanks
to the relation between the constants "ϵ" and "ϵmax" explained in Section 7.1. Namely, in
(7.9) we required that

C � 10100{κϵ ¤ ϵmax.

In addition to the exponents tϵju, we also define an auxiliary sequence of constants tCju:
Ck�1 ! Ch ! Ch�1 ! . . . ! C0 ! Ck. (7.51)

The necessary rate of decay for the sequence tCju turns out to be of the form AC5
j�1 ¤ Cj

for an absolute constant A ¥ 1. There are h � r20{κs constants in the sequence, so the
sequence tCju can be found, satisfying (7.51), since Ck � Apϵ, κqCk�1 by (7.35). This is the
requirement which determines the size of the constant Apϵ, κq. It may worth remarking
that the constant Apϵ, κq necessarily depends on both ϵ and κ. This is because the index
"k" in Ck, Ck�1 ranges in t1, . . . , C{ϵu for an absolute constant C ¥ 1, so Ck�1 depends
on both ϵ, κ. Given the requirement for the constants Cj stated below (7.51), we see that
the size of the multiplicative gap Apϵ, κq � Ck{Ck�1 also depends on both ϵ, κ.

Recall that our goal is to define the next set "Gk�1" satisfying (7.43). To do so (as in
the proof of Proposition 5.2), we consider an auxiliary sequence of sets Ḡ � G0 � G1 �
. . . � Gj . Finally, we will set Gk�1 :� Gj for a suitable member of this auxiliary sequence
(or in fact a slight refinement of Gj).

Recalling from (7.44) that σ � δ{?λt, and λ � λk�1, and writing

ρj :� Cjδ
�ϵ, (7.52)
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we will abbreviate

mjpω | Gq :� m
δ�ϵj ,ρj ,Cj

δ,λ,t pω | Gq
� |tω1 P pGδ

σqδ
�ϵj ,ρj

λ,t pωq : CjR
δ
σpωq XCjR

δ
σpω1q � Hu| (7.53)

for G � Ḡ and ω P Ḡ. We recall that the constant δ�ϵj refers to the range of the tangency
parameter "λ", and the constant ρj refers to the range of the distance parameter "t". It is
worth noting that

Cj�1 ¤ Cj and ρj�1 ¤ ρj and δ�ϵj�1 ¤ δ�ϵj ,

so mh ¤ mh�1 ¤ . . . ¤ m0. It is also worth noting that since ϵj ¡ 10ϵ, the "tangency"
range δ�ϵj is very much larger than the "distance" range ρj �ϵ,κ δ�ϵ, assuming that δ ¡ 0
is sufficiently small in terms of ϵ, κ.

We start by recording the "trivial" upper bound

m0pω | Gq ¤ m0pω | Ω0q ≲ C0δ
�s�ϵ, ω P Ḡ, G � Ḡ, (7.54)

which has nothing to do with the parameters δ�ϵ0 , ρ0, and only has to do with the con-
stant C0 �ϵ,κ 1. The first inequality is clear. To see the second inequality, fix ω � pp, vq P
Ḡ and pp1, v1q P pΩ0qδσ � tpq, wq : q P P0 and w P Sσpqqu such that

C0R
δ
σpp1, v1q XC0R

δ
σpp, vq � H.

Then v1 P Sσpp1q and |v1 � v| ≲ C0σ. But Sσpp1q is σ-separated, so this can only happen
for ≲ C0 choices of v1. This gives (7.54), recalling that |P0| ¤ δ�s�ϵ by assumption (7.6).

The trivial inequality (7.54) tells us that the estimate (7.43) holds automatically with
Gk�1 � Ḡ and κ � 2s (with room to spare), assuming that δ, ϵ ¡ 0 is chosen so small that
C0 ¤ δ�ϵ ¤ δ�s{2. So, we may assume that 0   κ ¤ 2s. Let 0 � κ1   κ2   . . .   κh � 2s
be a pκs{10q-dense sequence in r0, 2ss. Thus h ¤ 20{κ. As already hinted above, we
now define a decreasing sequence of sets Ḡ � G0 � G1 � . . . � Gl, where l ¤ h. We
set G0 :� Ḡ, and in general we will assume inductively that |Gj�1| ¥ 1

2 |Gj | for j ¥ 0

(whenever Gj ,Gj�1 have been defined). Note that m0pω | G0q ¤ δ�2s � δ�κh by (7.54),
for all ω P G0, provided that δ ¡ 0 is small enough.

Let us then assume that the sets G0 � . . . � Gj have already been defined. We also
assume inductively that

m
δ�ϵj ,ρj ,Cj

δ,λ,t pω | Gjq � mjpω | Gjq ¤ δ�κh�j , ω P Gj . (7.55)

This is true by (7.54) for j � 0, as we observed above. Define

Hj :� tω P Gj : mj�1pω | Gjq ¥ δ�κh�pj�1qu.
Note that κh�pj�1q   κh�j . So, Hj is the subset of Gj where the lower bound for the
pj � 1qst multiplicity nearly matches the (inductive) upper bound on the jth multiplicity.

There are two options.
(1) If |Hj | ¥ 1

2 |Gj |, then we set H :� Hj , and the construction of the sets Gj termi-
nates. We will see that this case cannot occur as long as κh�j ¡ κ.

(2) If |Hj |   1
2 |Gj |, then the set Gj�1 :� Gj zHj has |Gj�1| ¥ 1

2 |Gj |, and moreover

mj�1pω | Gj�1q ¤ mj�1pω | Gjq ¤ δ�κh�pj�1q , ω P Gj�1.



56 KATRIN FÄSSLER, JIAYIN LIU AND TUOMAS ORPONEN

In other words, Gj�1 is a valid "next set" in our sequence G0 � . . . � Gj�1, and
the inductive construction may proceed.

If (and since) case (1) does not occur for indices j ¥ 0 with κh�j ¡ κ, we can keep
constructing the sets Gj until the first index "j" where κh�j ¤ κ. At this stage, the set

Gk�1 :� Gj (7.56)

satisfies mjpω | Gk�1q ¤ δ�κ for all ω P Gk�1 by the inductive assumption (7.55). This
implies (7.43), since Ck�1 ¤ Cj by (7.51). Moreover, |Gk�1| ¥ 2�j |Ḡ| ¥ 2�20{κ|Ḡ| �δ |Gk|,
so Gk�1 is a valid "next set" in the sequence tGku. To be precise, we still need to apply
Lemma 3.13, and thereby refine Gk�1 (as in (7.56)) to a pδ, δ, s, Cϵδ

�ϵq-configuration of
cardinality �δ |Gk|. This will complete the definition of Gk�1.

Thus, to complete the construction of the sequence tGku, and the proof of Theorem 7.5,
it suffices to verify that the "hard" case (1) cannot occur for any j ¥ 0 such that κh�j ¡ κ.
To prove this, we make a counter assumption:

Counter assumption: Case (1) occurs at some index j P t0, . . . , hu with κh�j ¡ κ.

7.6.5. Deriving a contradiction. The overall strategy is similar to the one we have already
encountered in the proofs of Proposition 5.2 and Theorem 6.5. We will use the counter as-
sumption to produce a "large" collection of incomparable pδ, σq-rectangles, each of which
has a high (λ-restricted) type relative to a certain pδ, ϵmaxq-almost t-bipartite pair pW,Bq
of subsets of P . Eventually, the existence of these rectangles will contradict the upper
bound established in Theorem 6.5. The hypothesis (6.7) of Theorem 6.5 will be valid
thanks to our previous refinements, specifically (7.26).

We write κ̄ :� κh�j and (recalling the pκsq{10-density of the sequence tκju),
κh�pj�1q �: κ̄� ζ, where ζ ¤ pκsq{10 ¤ pκ̄sq{10.

We also abbreviate

G :� Gj and H :� Hj � tω P G : mj�1pω | Gq ¥ δ�κ̄�ζu � G,

and we recall that |H| ¥ 1
2 |G| �δ |Gk| �δ M |P | by the assumption that we are in case (1).

Finally, we will abbreviate

n :� δ�κ̄�ζ . (7.57)

To spell out the definition of "mj�1" (recall (7.53)), we have

|tω1 P pGδ
σqδ

�ϵj�1 ,ρj�1

λ,t pωq : Cj�1R
δ
σpωq XCj�1R

δ
σpω1q � Hu| ¥ n, ω P H. (7.58)

On the other hand, by the inductive assumption (7.55) applied to G � Gj , and recalling
that κ̄ � κh�j , we have

|tω1 P pGδ
σqδ

�ϵj ,ρj
λ,t pωq : CjR

δ
σpωq XCjR

δ
σpω1q � Hu| ¤ δ�κ̄ � δ�ζn, ω P G. (7.59)

The numerology is not particularly important yet, but it is crucial that a certain lower
bound for mj�1p� | Gq holds in a large subset H � G, whereas a nearly matching upper
bound for mjpω | Gq holds for all ω P G. Achieving this "nearly extremal" situation was
the reason to define the sequence tGju.
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Remark 7.60. In fact, we will need (7.58)-(7.59) for ω P Hδ
σ and ω P Gδ

σ instead of ω P H
and ω P G, respectively. This is easily achieved, at the cost of changing the constants a
little. Indeed, if A ¥ 1 is a sufficiently large absolute constant, then (7.58)-(7.59) imply

m
δ�ϵj�1 ,ρj�1,ACj�1

δ,λ,t pω | Gq ¥ n, ω P Hδ
σ,

and
m

δ�ϵj ,ρj ,Cj{A
δ,λ,t pω | Gq ¤ δ�ζn, ω P Gδ

σ.

These inequalities follow from Lemma 7.41. It will be important that the constant Cj is
substantially larger than Cj�1, but we can arrange this so (recall the definition (7.51)) that
even Cj{A " ACj�1. To avoid burdening the notation with further constants, we will
assume from now on that (7.58)-(7.59) hold as stated for ω P Hδ

σ and ω P Gδ
σ, respectively.

The set H � Ḡ may have lost the uniformity property (7.46) at scale σ. That is, we
no longer know that all the pδ, σq-skeletons Hδ

σppq � Ḡδ
σppq, for p P P̄k, have roughly

constant cardinality (let alone Mσ). (Recall that the set P̄k � Pk was defined below (7.45).)
We resuscitate this property by a slight pruning of H. Note that

M |P | �δ |H| �
¸
pPP̄k

¸
vPHδ

σppq
|tv P Hppq : v   vu|. (7.61)

By pigeonholing, choose a number M̄σ ¥ 1, and a subset P̄ � P̄k with the properties
M̄σ ¤ |Hδ

σppq| ¤ 2M̄σ for all p P P̄ , and such that the quantity on the right hand side of
(7.61) is only reduced by a factor of �δ 1 when replacing P̄k by P̄ . Thus,

M |P | �δ

¸
pPP̄

¸
vPHδ

σppq
|tv P Hppq : v   vu| ¤ |P̄ | � 2M̄σ �max

v
|tv P Hppq : v   vu|. (7.62)

Here the "max" runs over all v P Hδ
σppq, with all possible p P P̄ . Here Hppq � Gkppq and

p P P̄k, so we see from (7.47) that the "max" is bounded by ⪅δ M{Mσ. Since evidently
M̄σ ¤ 2Mσ, we may now deduce that M̄σ �δ Mσ and |P̄ | �δ |P̄k|. At this point we define
H̄ :� tpp, vq P H : p P P̄ u. Then it follows from (7.62) that |H̄| �δ |H| �δ M |P |, and
moreover

|H̄δ
σppq| � |Hδ

σppq| � M̄σ �δ Mσ, p P P̄ . (7.63)

7.6.6. Finding a t-bipartite pair. Next, we proceed to find a pδ, ϵmaxq-almost t-bipartite pair
of subsets of P , very much like in the proof of Proposition 5.2. Let B be a cover of P by
balls of radius t{p4ρj�1q such that the concentric balls of radius 2ρj�1t (that is, the balls
t8ρ2j�1B : B P Bu) have overlap bounded by Opρj�1q � Oϵpδ�ϵq ¤ δ�ϵmax (recall that
ρj�1 � Cj�1δ

�ϵ). Then, we choose a ball Bpp0, t{p4ρj�1qq P B in such a way that the ratio

θ :� |P̄ XBpp0, t{p4ρj�1qq|
|P XBpp0, 2ρj�1tq|

is maximised. Here P̄ � P̄k � Pk is the subset of cardinality |P̄ | �δ |Pk| �δ |P | we just
found above, recall (7.63). We claim that θ ⪆δ δϵmax : this follows immediately from the
estimate

|P̄ | ¤
¸
BPB

|P̄ XB| ¤ θ
¸
BPB

|P X 8ρ2k�1B| ¤ θδ�ϵmax |P |,

and since |P̄ | �δ |P |. Now, we set
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W :� P̄ XBpp0, t{p4ρj�1qq and B :� P XBpp0, 2ρj�1tq zBpp0, t{p2ρj�1qq, (7.64)

so that
|B| ¤ |P XBpp0, 2ρj�1tq| � θ�1|W | ⪅δ δ

�ϵmax |W |. (7.65)
We record at this point that

distpW,Bq ¥ 1
4 t{ρj�1 ¥ δϵmaxt and diampW YBq ¤ 4ρj�1t ¤ δ�ϵmaxt, (7.66)

so the pair pW,Bq is pδ, ϵmaxq-almost t-bipartite, independently of "j" or "k". This will be
needed in an upcoming application of Theorem 6.5.

We then set

W :� tpp, vq P H̄δ
σ : p PW u and B :� tpp, vq P G : p P Bu. (7.67)

We note that the "angular" components of W have separation σ, but the angular compo-
nents of B are δ-separated; this is not a typo. Let us note that

|Wppq| � |H̄δ
σppq|σ

(7.63)� M̄σ �δ Mσ, p PW. (7.68)

(For this purpose, it was important to choose W � P̄ .) Also, it follows from definitions
of W,B that if p P W , and q P P is arbitrary with t{ρj�1 ¤ |p � q| ¤ ρj�1t, then q P B.
Consequently,

ω PW ùñ pGδ
σqδ

�ϵj�1 ,ρj�1

λ,t pωq � pBδ
σqδ

�ϵj�1 ,ρj�1

λ,t pωq.
For this inclusion to be true, it is important that in the definition of "B" we take into ac-
count all points in P̄k, and not only the refinement P̄ . Now this is certainly true, because
we are even taking along all the points in P . From this, and since W � Hδ

σ, and recalling
(7.58), it follows

|tβ P pBδ
σqδ

�ϵj�1 ,ρj�1

λ,t pωq : Cj�1R
δ
σpωq XCj�1R

δ
σpβq � Hu| ¥ n ¡ 0, ω PW. (7.69)

We also used the reduction explained in Remark 7.60 that we may assume (7.58) to hold
for all ω P Hδ

σ. Without this reduction, (7.69) would instead hold with constant "CCj�1".

7.6.7. The rectangles Rδ
σ. We will produce a family of 100-incomparable pδ, σq-rectangles

with high λ-restricted type relative to pW,Bq. This will place us in a position to apply
Theorem 6.5. Consider the pδ, σq-rectangles tRδ

σpωq : ω PWu, and let

Rδ
σ � tRδ

σpωq : ω PWu.
be a maximal family of pairwise 100-incomparable elements. Some rectangles in Rδ

σ may
arise as Rδ

σpωq for multiple distinct ω PW. We quantify this by considering

mpRq � |tω PW : R �100 R
δ
σpωqu|, R P Rδ

σ, (7.70)

where "�100" refers to 100-comparability. We note that since every R P Rδ
σ satisfies R �100

Rδ
σpωq for some ω P W, we have mpRq ¥ 1 (and mpRq ¤ |W| ≲ δ�4). By pigeonholing,

we may find a subset R̄δ
σ � Rδ

σ with the property mpRq � m P r1, Cδ�4s for all R P R̄δ
σ,

and moreover¸
ωPW

|tR P R̄δ
σ : R �100 R

δ
σpωqu| �δ

¸
ωPW

|tR P Rδ
σ : R �100 R

δ
σpωqu|.
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Now, we have

|R̄δ
σ| �

1

m

¸
RPR̄δ

σ

mpRq � 1

m

¸
RPR̄δ

σ

¸
pPW

¸
vPWppq

1tR�100Rδ
σpp,vqu

�δ
1

m

¸
pPW

¸
vPWppq

|tR P Rδ
σ : R �100 R

δ
σpp,vqu|

(7.68)
⪆δ

|W |Mσ

m
. (7.71)

(The final lower bound would not necessarily hold for R̄δ
σ, since every rectangle Rδ

σpp,vq,
pp,vq PW, is not necessarily 100-comparable to at least one rectangle from R̄δ

σ.)

7.6.8. Proving that m ≲ n. Recall the constant n � δ�κ̄�ζ from (7.57). We next claim that

mpRq ≲ϵ,κ δ�ζn, R P Rδ
σ, (7.72)

and in particular m ≲ϵ,κ δ�ζn. This inequality is analogous to (5.21) in the proof of
Proposition 5.2, but the argument here will be a little harder: now we will finally need
the inductive information (7.38) regarding the higher levels of tangency λl for 1 ¤ l ¤ k.

Let R � Rδ
σpp, vq P Rδ

σ, with pp, vq PW. According to (7.69), there exists at least one

β � pq, wq P pBδ
σqδ

�ϵj�1 ,ρj�1

λ,t pp, vq � pGδ
σqδ

�ϵj�1 ,ρj�1

λ,t pp, vq (7.73)

such that Cj�1R
δ
σpp, vq XCj�1R

δ
σpβq � H. We first claim that if ω1 � pp1, v1q P W � Gδ

σ

is any element such that Rδ
σpp, vq �100 R

δ
σpω1q, then automatically

t{ρj ¤ 1
4 t{ρj�1 ¤ |p1 � q| ¤ 4ρj�1t ¤ ρjt and CjR

δ
σpω1q XCjR

δ
σpβq � H (7.74)

The first property follows from the separation (7.64) of the sets W,B, and noting that
ρj � Cjδ

�ϵ ¥ 4Cj�1δ
�ϵ � 4ρj�1 (recall (7.52)).

For the second property, note that since Rδ
σpp, vq �100 Rδ

σpω1q, we have Rδ
σpω1q �

ARδ
σpp, vq � Cj�1R

δ
σpp, vq for some absolute constant A ¡ 0 according to Lemma 4.9,

and by a second application of the same lemma,

Cj�1R
δ
σpp, vq � C1

j�1R
δ
σpω1q

for some C1
j�1 ≲ C5

j�1. In particular, Cj�1R
δ
σpp, vq � CjR

δ
σpω1q, recalling from (7.51) the

rapid decay of the sequence tCju. The second part of (7.74) follows from this inclusion,
recalling that Cj�1Rpp, vq XCj�1R

δ
σpβq � H.

Let us recap: we have now shown that for ω1 P W with Rδ
σpp, vq �100 Rδ

σpω1q, the
conditions (7.74) hold relative to the fixed pair β P Bδ

σ (determined by R). This gives an
inequality of the form

mpRq ¤ |tω1 P pGδ
σqρjt pβq : CjR

δ
σpβq XCjR

δ
σpω1q � Hu|, (7.75)

where the (non-standard) notation pGδ
σqρjt pβq refers to those pairs pp1, v1q such that t{ρj ¤

|p1�q| ¤ ρjt. In particular, we have no information – yet – about the tangency parameter
∆pp1, qq. This almost brings us into a position to apply (7.59), except for one problem:
(7.59) only gives an upper bound for the cardinality of elements

ω1 P pGδ
σqδ

�ϵj ,ρj
λ,t pβq.

To benefit directly from this upper bound, we should be able to add the information

δϵjλ ¤ ∆pp1, qq ¤ δ�ϵjλ (7.76)
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to the properties (7.74). This is a delicate issue: it follows from the choice of β � pq, wq in
(7.73) that we have excellent two-sided control for ∆pp, qq. Regardless, it is only possible
to obtain the upper bound for ∆pp1, qq required by (7.76), given the information that
Rδ

σpp, vq �100 Rδ
σpp1, v1q. The lower bound may seriously fail: the circles Spp1q, Spqq may

be much more tangent than the circles Sppq, Spqq, see Figure 4. This problem will be
circumvented by applying our inductive hypothesis. Before that, we however prove the
upper bound: we claim that if the properties (7.74) hold, then the upper bound in (7.76)
holds. This will be a consequence of Corollary 4.7. 

Spqq Sppq Spp1q

FIGURE 4. The failure of the lower bound in (7.76) in a case where λ � 1 �
t, thus σ � δ{?λt � δ. The black and red annuli Sδppq, Sδpqq on the left
intersect in a pδ, δq-rectangle R � Rδ

δpp, vq. On the right, the rectangle R

is evidently 100-comparable to a pδ, δq-rectangle R1 � Rδ
δpp1, v1q � Sδpp1q,

but nevertheless ∆pp1, qq � δ ! λ.

Let p1, p, q be as in (7.74). Thus Rδ
σpp1, v1q �100 Rδ

σpp, vq, where the point pp, vq P W
satisfied

Cj�1R
δ
σpp, vq XCj�1R

δ
σpq, wq � H, (7.77)

and
δϵj�1λ ¤ ∆pp, qq ¤ δ�ϵj�1λ and t{ρj ¤ |p� q| ¤ ρjt. (7.78)

These conditions place us in a position to apply Corollary 4.7. We write λ̄ :� ∆pp, qq and
t̄ :� |p � q|, and σ̄ :� δ{

a
pλ̄� δqpt̄� δq. If follows from the upper bounds in (7.78), and

since ρj � Cjδ
�ϵ ¤ δ�ϵj�1 , that

σ ≲ δ�ϵj�1 σ̄. (7.79)
After this observation, it follows from (7.77) that

Aj�1R
δ
σ̄pp, vq XAj�1R

δ
σ̄pq, wq � H (7.80)

for some Aj�1 ≲ Cj�1δ
�ϵj�1 ≲ϵ,κ δ�ϵj�1 . Using (7.79) again, we may also choose the

constant Aj�1 (under the same size constraint) so large that

ARδ
σpp, vq � Aj�1R

δ
σ̄pp, vq,

where A ¥ 1 is an absolute constant to be specified momentarily. Now, according to
Corollary 4.7, (7.80) implies

ARδ
σpp, vq � Aj�1R

δ
σ̄pp, vq � A1

j�1R
δ
σ̄pq, wq (7.81)

for some A1
j�1 ≲ A4

j�1 ≲ϵ,κ δ�4ϵj�1 . Finally, since Rδ
σpp1, v1q �100 R

δ
σpp, vq, we have

Rδ
σpp1, v1q

L. 4.9� ARδ
σpp, vq � A1

j�1R
δ
σ̄pq, wq � SA1

j�1δpqq.
Trivially also Rδ

σpp1, v1q � SA1
j�1δpp1q, so Rδ

σpp1, v1q � SA1
j�1δpqq X SA1

j�1δpp1q. This implies

A1
j�1δa

∆pp1, qq|p1 � q|
L. 4.3

≳ diampRδ
σpp1, v1qq � σ.
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Recalling that A1
j�1 ≲ϵ,κ δ�4ϵj�1 , this can be rearranged to

∆pp1, qq ≲ϵ,κ pδ1�4ϵj�1{σq2|p1 � q|�1 � δ�8ϵj�1λ � pt{|p1 � q|q ≲ϵ δ
�9ϵj�1λ.

In the final inequality we used that p1 PW and q P B, so |p1�q| ¥ t{ρj ≳ϵ δ
ϵj�1t. In (7.50),

the sequence tϵju was chosen to be so rapidly decreasing that ϵj ¡ 10ϵj�1. Therefore, if
δ ¡ 0 is small enough, the inequality above implies the upper bound claimed in (7.76).

Recalling also (7.75), we have now shown that

mpRq ¤ |tω1 P pGδ
σqδ

�ϵj ,ρj
¤λ,t pβq : CjR

δ
σpβq XCjR

δ
σpω1q � Hu|, (7.82)

where the "¤ λ" symbol refers to the fact that we only have guaranteed the upper bound
in (7.76), but not a matching lower bound.

As noted above, the matching lower bound ∆pp1, qq ⪆ λ may be false. However, recall
from (7.44) that λ � λk�1, and that the sequence tλlukl�1 is multiplicatively δ�ϵ-dense (or
even δ�ϵ{2-dense) on the interval rδ, δϵλs � rδ, λks. Therefore, we are either in the happy
case of the 2-sided bound

δϵjλ ¤ ∆pp1, qq ¤ δ�ϵjλ, (7.83)

or otherwise ∆pp1, qq   δϵjλ ¤ δϵλ, and we can find an index 1 ¤ l ¤ k such that

δϵλl{Cl ¤ λl ¤ ∆pp1, qq ¤ δ�ϵλl ¤ Clδ
�ϵλl. (7.84)

In fact, there is a small gap in this argument: if ∆pp1, qq   δ, then we cannot guarantee
(7.84) for any 1 ¤ l ¤ k. To fix this, we modify (7.84) so that in the case l � 1, only the
upper bound is claimed. With this convention, the index l P t1, . . . , ku satisfying (7.84)
can always be found whenever ∆pp1, qq   δϵjλ.

One of the two cases (7.83)-(7.84) is "typical" in the following sense. Since ∆pp1, qq ¤
δ�ϵjλ for all pairs pp1, qq appearing in (7.82), by the pigeonhole principle there exist
m̄pRq �ϵ mpRq pairs ω1, . . . , ωm̄pRq P W with first components p1, . . . , pm̄pRq P W , and a
fixed index 1 ¤ l ¤ k � 1, such that

δϵλl{Cl ¤ ∆ppi, qq ¤ Clδ
�ϵλl, 1 ¤ i ¤ m̄pRq, (7.85)

for some fixed 1 ¤ l ¤ k � 1. In the case l � k � 1, the constant "ϵ" in (7.85) needs to
be replaced by ϵj , recalling the alternatives (7.83)-(7.84). In the case l � 1, the two-sided
inequality in (7.85) has to be replaced by the one-sided inequality ∆ppi, qq ¤ C1δ

1�ϵ.
A subtle point is that even though the pairs ω1, . . . , ωm̄pRq are distinct, the first compo-

nents p1, . . . , pm̄pRq need not be. However, they "almost" are: for p P W fixed, there can
only exist ≲ Cj choices v P Sσppq such that CjR

δ
σpp, vq X CjR

δ
σpβq � H (as in (7.74)).

Thus,
|tp1, . . . , pm̄pRqu| ≳ C�1

j mpRq.
For this argument, it was important that the "angular" components of the pairs in W
are elements in Sσppq, recall (7.67). For notational convenience, we will assume in the
sequel that the points p1, . . . , pm̄pRq are distinct, and we will trade this information for
the weaker estimate m̄pRq ≳ϵ C

�1
j mpRq (this is harmless, since Cj ≲ϵ,κ 1).

Now, we have two separate cases to consider. First, if l � k � 1, then λl � λ, and we
have δϵjλ ¤ ∆ppi, qq ¤ δ�ϵjλ for all 1 ¤ i ¤ m̄pRq. In this case

mpRq ≲ϵ m̄pRq ¤ |tω1 P pGδ
σqδ

�ϵj ,ρj
λ,t pβq : CjR

δ
σpβq XCjR

δ
σpω1q � Hu| (7.59)¤ δ�ζn,
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using that β P Bδ
σ � Gδ

σ (recall also Remark 7.60 where we explained why (7.59) may be
assumed to hold for β P Gδ

σ, not just β P G). This proves (7.72) in the case l � k � 1.
Assume finally that 1 ¤ l ¤ k. Then, according to (7.85) we have

mpRq ≲ϵ m̄pRq ¤ |tω1 P pGδ
σqClδ

�ϵ,ρj
λl,t

pβq : CjR
δ
σpβq XCjR

δ
σpω1q � Hu|. (7.86)

We note that ρj � Cjδ
�ϵ ¤ Clδ

�ϵ by the choice of the intermediate constants tCju, see
(7.51), so the inequality (7.86) implies

mpRq ≲ϵ |tω1 P pGδ
σqClδ

�ϵ

λl,t
pβq : CjR

δ
σpβq XCjR

δ
σpω1q � Hu|. (7.87)

(This remains true as stated also in the special case l � 1: in this case (7.85) had to
be replaced by the one-sided inequality ∆ppi, qq ¤ C1δ

�ϵλ1 � C1δ
1�ϵ, but this implies

ωi � ppi, viq P pGδ
σqC1δ�ϵ

λ1,t
pβq for λ1 � δ, see the last line of Definition 7.1).

The right hand side looks deceptively like mClδ
�ϵ,Cl

δ,λl,t
pω | Gq (note also that Cj ¤ Cl),

and since G � Gl, the inductive hypothesis (7.38) now appears to show that

mpRq ≲ϵ δ
�κ

(7.57)¤ δ�ζn,

as desired, using here that κ̄ � κh�j ¡ κ by our counter assumption. There is still a small
gap in this argument: the definition of mClδ

�ϵ,Cl
δ,λl,t

counts elements in the pδ, σlq-skeleton of
G with σl � δ{?λlt ¡ σ, rather than the pδ, σq-skeleton appearing on the right hand side
of (7.87).

This is easy to fix. The solution is to first use the (distinct!) points p1, . . . , pm̄pRq found
in (7.85) to produce a collection of pairs ω̄1, . . . , ω̄m̄pRq P Gδ

σl
. Indeed, for every 1 ¤ i ¤

m̄pRq, we know from (7.74) that there corresponds a pair ωi � ppi, viq P Gδ
σ such that

CjR
δ
σppi, viq XCjR

δ
σpβq � H. (7.88)

For every 1 ¤ i ¤ m̄pRq, choose ω̄i :� ppi,viq P Gδ
σl

with ppi, viq   ppi,viq. Note that
the pairs ω̄1, . . . , ω̄m̄pRq are all distinct, since the "base" points p1, . . . , pm̄pRq are distinct.
Further, it follows from (7.88), combined with

ACj

(7.51)¤ Ck ¤ Cl ùñ CjR
δ
σppi, viq � ClR

δ
σl
ppi,viq � ClR

δ
σl
pω̄iq,

(here A ¥ 1 is a sufficiently large absolute constant) that

ClR
δ
σl
pω̄iq X ClR

δ
σl
pβq � H, 1 ¤ i ¤ m̄pRq. (7.89)

(The deduction from (7.88) to (7.89) looks superficially similar to the deduction of the
second claim in (7.74), but now the situation is much simpler, because ppi, viq and ppi,viq
have the same "pi".) We note that the tangency and distance parameters of the pairs
pppi, viq, βq and pω̄i, βq are exactly the same, since the "base point" pi remained unchanged.
Consequently, by (7.87) and (7.89), we have

m̄pRq ¤ |tω̄1 P pGδ
σl
qClδ

�ϵ

λl,t
pβq : ClR

δ
σl
pβq X ClR

δ
σl
pω̄1q � Hu|

� mClδ
�ϵ,Cl

δ,λl,t
pβ | Gq (7.38)¤ δ�κ

(7.57)¤ δ�ζn. (7.90)

We have finally proven (7.72).
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7.6.9. The type of the rectangles R P R̄δ
σ. We next claim that every rectangle R P R̄δ

σ has
λ-restricted type p¥ m̄,¥ n̄qϵmax relative to pW,B, tEppquq, where m̄ :� δϵmaxm and n̄ :�
δϵmaxn. Recall from Definition 6.3 what this means. Given R P R̄δ

σ, we should find a
subset WR � W with |WR| ¥ m̄, and the following property: for every p P WR, there
exists a subset BRppq � B of cardinality |BRppq| ¥ n̄ satisfying

δϵmaxλ ¤ ∆pp, qq ¤ δ�ϵmaxλ and R � δ�ϵmaxEδ
σppq X δ�ϵmaxEδ

σpqq (7.91)

for all p P WR and q P BRppq. If λ � δ, the first requirement in (7.91) is relaxed to
∆pp, qq ¤ δ�ϵmaxλ.

Remark 7.92. In (7.91), the definition of the sets Eδ
σppq, Eδ

σpqq involves the pδ, σq-skeletons
of Eppq and Epqq. We emphasise that these sets are not the "original" sets E0ppq, E0pqq
given in Theorem 7.5 (recall the notation from Section 7.4), but rather the subsets found
at the end of Section 7.4, see (7.24). This is important, since the upper bound (7.26) will
be needed in a moment.

To begin finding WR and BRppq for p P WR, recall that mpRq � m for all R P R̄δ
σ.

This mean that there exists a set WR � W of m pairs tωiumi�1 � tppi, viqumi�1 such that
R �100 R

δ
σpωiq for all 1 ¤ i ¤ m. While the pairs ωi are all distinct, the first components pi

need not be. This issue is similar to the one we encountered below (7.85), and the solution
is also the same: for every pi fixed, there can only be ≲ 1 possibilities for v P Sσppiq such
that R �100 Rδ

σppi, vq. Therefore the number of distinct elements in WR :� tp1, . . . , pmu
is ≳ m, and certainly |WR| ¥ δϵmaxm � m̄. To remove ambiguity, for each distinct point
pi P WR, we pick a single element v P Sσppiq such that ppi, vq P WR, and we restrict WR

to this subset without changing notation.
Next, fix p PWR. Let v P Sσppq be the unique element such that ω � pp, vq PWR �W.

Recall from (7.69) that

|tβ P pBδ
σqδ

�ϵj�1 ,ρj�1

λ,t pωq : Cj�1R
δ
σpωq XCj�1R

δ
σpβq � Hu| ¥ n.

Thus, there exists a collection tβiuni�1 � tpqi, wiquni�1 � Bδ
σ of pairs such that

Cj�1R
δ
σpωq XCj�1R

δ
σpqi, wiq � H, (7.93)

and
δϵj�1λ ¤ ∆pp, qiq ¤ δ�ϵj�1λ and δϵmaxt ¤ |p� qi| ¤ δ�ϵmaxt (7.94)

for all 1 ¤ i ¤ n. In the estimates for |p � qi|, we already plugged in ρj�1 � Cj�1δ
�ϵ ¤

δ�ϵmax , assuming δ ¡ 0 small enough.
Once more, the qi-components of the pairs tβiu need not all be distinct, but they almost

are, by the following familiar argument: for each qi, there can correspond ≲ Cj�1 distinct
choices w P Sσpqiq such that (7.93) holds. Therefore, BRppq :� tq1, . . . , qnu � B has
≳ C�1

j�1n distinct elements, and certainly |BRppq| ¥ n̄.
Let us finally check the conditions (7.91) for p P WR and q P BRppq. The tangency

constraint follows readily from (7.94), and noting that ϵj�1 ¤ ϵmax. So, it remains to
check the inclusion in (7.91). Fix p PWR and q P BRppq. By definition, p PWR means that
R �100 Rδ

σpωq for some ω � pp, vq P WR � Gδ
σ, and in particular v P Eσppq (the pδ, σq-

skeleton of Eppq). Next, q P BRppq means that there exists β � pq, wq P Bδ
σ (in particular

w P Eσpqq) such that (7.93)-(7.94) hold. We now claim that

R � δ�ϵmaxRδ
σpωq X δ�ϵmaxRδ

σpβq � δ�ϵmaxEδ
σppq X δ�ϵmaxEδ

σpqq. (7.95)



64 KATRIN FÄSSLER, JIAYIN LIU AND TUOMAS ORPONEN

This is a consequence of Corollary 4.7, and the argument is extremely similar to the one
we recorded below (7.77)-(7.78). We just sketch the details. Applying Corollary 4.7 with
σ̄ :� δ{

a
p∆pp, qq � δqp|p� q| � δq, it follows from the non-empty intersection (7.93) that

ARδ
σpωq � Aj�1R

δ
σpβq,

where A ¥ 1 is a suitable absolute constant, and Aj�1 ≲ϵ δ
�Opϵj�1q (compare with (7.81)).

Next, from R �100 Rδ
σpωq, we simply deduce that R � ARδ

σpωq. Since maxtA,Aj�1u ¤
δ�ϵmax for δ ¡ 0 small enough, the inclusion (7.95) follows.

We have now proven that every rectangle R P R̄δ
σ has λ-restricted type p¥ m̄,¥ n̄qϵmax

relative to pW,B, tEppquq.
7.6.10. Applying Theorem 6.5. The constant ϵmax � ϵmaxpκ, sq ¡ 0 was chosen (recall Sec-
tion 7.1) in such a way that Theorem 6.5 holds with constant η � κs{100. Therefore, we
may apply the theorem as soon as we have checked that its hypotheses are valid. At the
risk of over-repeating, we will apply Theorem 6.5 to the space Ω � tpp, vq : p P P and v P
Eppqu � Ω0 constructed during the "initial regularisation" in Section 7.4. Crucially, we
recall that Ω satisfies the upper bounds (7.26) for all λ P Λ and t P T pλq. This means that
the hypothesis (6.7) of Theorem 6.5 is valid with constant Yλ � δ�κs{100λs|P0|λ.

We also recall from Section 7.4 that our set P0 is Λ-uniform (without loss of generality),
and at (7.21) we denoted Xλ :� |P0 X p|δ � |P0|{|P0|λ for p P DλpP0q, and λ P Λ.

We have now verified the hypotheses of Theorem 6.5. Recall from the previous section
that every rectangle R P R̄δ

σ has type p¥ m̄,¥ n̄qϵmax relative to pW,B, tEppquq. Therefore,
we may infer from Theorem 6.5 that

|W |Mσ

m

(7.71)
⪅δ |R̄δ

σ| ¤ δ�κs{100
�� |W ||B|

m̄n̄


3{4
pXλYλq1{2 � |W |

m̄
�XλYλ � |B|

n̄
�XλYλ

�
.

Here
XλYλ ¤ p|P0|{|P0|λq � pδ�κs{100λs|P0|λq � δ�κs{100λs|P0|.

We also recap from (7.72) that m ≲ϵ,κ δ�ζn ¤ δ�ζ�ϵmax n̄ (where ζ   κs{10), and from
(7.65) that |B| ¤ δ�2ϵmax |W |. Recalling from (7.57) that n ¥ δ�κ�ζ , and from (7.6) that
|P0| ¤ δ�s�ϵ, we may rearrange and simplify the estimate above to the form

Mσ ¤ δ�κs{100�ζ�Opϵmaxq
�
|W |1{2 � δκ{2 � pδ�κs{100λs|P0|q1{2 � δ�κs{100λs|P0|

�
¤ δ�κs{100�κs{10�Opϵmaxq

�
|W |1{2 � pλ{δqs{2 � δκ{2�κs{100 � δ�κs{100pλ{δqs

�
. (7.96)

To derive a contradiction from this estimate, recall from (7.48) that

Mσ ¥ δ2ϵ

�?
λt

δ

�s

¥ δ2ϵ�κs{5
�
λ

δ


s

. (7.97)

The second inequality follows from our restriction to pairs pλ, tq with λ ¤ δκ{10t (recall
(7.34), and that λ � λk�1). These inequalities show that the second term in (7.96) cannot
dominate the left hand side, provided that ϵmax is chosen small enough in terms of κ, s,
and finally δ ¡ 0 is sufficiently small in terms of all these parameters.

To produce a contradiction with the counter assumption formulated above Section
7.6.5, it remains to show that the first term in (7.96) cannot dominate Mσ. Since P0 is
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a pδ, s, δ�ϵq-set, and W � P � P0 is contained in a ball of radius t, we have |W | ¤
δ�ϵts|P0| ¤ δ�ϵpt{δqs. Therefore, the first term in (7.96) is bounded from above by

δκ{2�κsp1{50�1{10q�Opϵmaxq
�?

λt

δ

�s

¤ δκs{5
�?

λt

δ

�s

,

provided that ϵmax ¡ 0 is small enough in terms of κ, s. Evidently, the number above is
smaller than the lower bound for Mσ recorded in (7.97), provided that ϵ, ϵmax, δ ¡ 0 are
small enough in terms of κ, s. We have now obtained the desired contradiction.

To summarise, we have now shown that case (1) in the construction of the sequence
tGju cannot occur as long as κh�j ¡ κ. As explained at and after (7.56), this shows that
we may define Gk�1 :� Gj for a suitable index "j", and this set Gk�1 satisfies (7.43). This
completes the proof of Proposition 7.28, then the proof of Proposition 7.30, and finally
the proof of Theorem 7.5.

7.7. Deriving Theorem 1.11 from Theorem 7.5. It clearly suffices to prove Theorem 1.11
for all κ P p0, cs, where c ¡ 0 is a small absolute constant to be determined later. Fix
κ P p0, cs, and let ϵ � ϵpκ, sq ¡ 0 be so small that Theorem 7.5 holds with constants κ, s.

Let Ω � tpp, vq : p P P and v P Eppqu be a pδ, s, Cq-configuration, as in Theorem 1.11.
There is no a priori assumption in Theorem 1.11 that the sets P,Eppq are δ-separated, but
it is easy to reduce matters to that case; we leave this to the reader, and in fact we assume
that P � Dδ and Eppq � Sδppq for all p P P .

To prove Theorem 1.11, we need to find a subset G � Ω satisfying |G| ¥ δκ|Ω|, and

mδpw | Gq ⪅δ δ
�κ, w P R2. (7.98)

We start by applying Theorem 7.5 to Ω to find the subset G � Ω of cardinality |G| ¥ δκ|Ω|.
By the choice of "ϵ" above, we then have

mδ�ϵ,κ�1

δ,λ,t pω | Gq ¤ δ�κ, ω P G. (7.99)

We claim that if the absolute constant "c ¡ 0" is chosen small enough (thus κ�1 ¥ c�1 ¡ 0
is sufficiently large), then (7.99) implies that

|tpp1, v1q P G : v1 P Bpv, 2δqu| � m2δppp, vq | Gq ⪅δ δ
�κ, pp, vq P G. (7.100)

Let us quickly check that this implies (7.98) for all w P R2. Indeed, if mδpw | Gq ¡ 0, then
there exists at least one pair pp, vq P G such that w P Bpv, δq. Now, it is easy to see from
the definitions that mδpw | Gq ¤ m2δppp, vq | Gq.

The idea for proving (7.100) is to bound the total multiplicity function m2δ from above
by a suitably chosen partial multiplicity function mδ,λ,t. Fix pp, vq � ω P G. Then,

m2δpω | Gq ¤
¸
λ¤t

m2δpω | Gδ�ϵ

λ,t pωqq,

where Gδ�ϵ

λ,t pωq � tpp1, v1q P G : δϵλ ¤ ∆pp, p1q ¤ δ�ϵλ and δϵt ¤ |p � p1| ¤ δ�ϵtu as
in Definition 7.1, and the sum runs over some multiplicatively δ�ϵ-dense sequences of
δ ¤ λ ¤ t ¤ 1 (or even all dyadic values, this is not important here). In particular, there
exists a fixed pair pλ, tq, depending on ω, such that

m2δpω | Gq ⪅δ m2δpω | Gδ�ϵ

λ,t pωqq � |tpp1, v1q P Gδ�ϵ

λ,t pωq : v1 P Bpv, 2δqu|.
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Let tωjuNj�1 � tppj , vjquNj�1 � Gδ�ϵ

λ,t pωq be an enumeration of the pairs on the right hand
side. The points tp1, . . . , pNu may not all be distinct. However, note that if pi is fixed,
there are ≲ 1 options v1 P Sδppiq such that v1 P Bpv, 2δq (since v is fixed). Therefore, there
is a subset of� N pairs among tppj , vjqu such that the points pj are all distinct. Restricting
attention to this subset if necessary, we assume that all the points pj are distinct.

Write σ :� δ{?λt. For every index j P t1, . . . , Nu, choose ppj ,vjq P Gδ
σ (the pδ, σq-

skeleton of G) such that ppj , vjq   ppj ,vjq. Automatically

ppj ,vjq P pGδ
σqδ

�ϵ

λ,t pωq, 1 ¤ j ¤ N,

since the point "pj" remained unchanged. We also note that |vj � vj | ≲ σ, and the pairs
ppj ,vjq are distinct because the points pj are. We claim that

κ�1Rδ
σppj ,vjq X κ�1Rδ

σpωq � H, 1 ¤ j ¤ N, (7.101)

provided that κ ¤ c, and c ¡ 0 is sufficiently small. Indeed, fix 1 ¤ j ¤ N , and recall
that vj P Bpv, 2δq. This immediately shows that vj P 2Rδ

σpp, vq � 2Rδ
σpωq, since σ ¥ δ. On

the other hand, vj P Sppjq, and |vj � vj | ≲ σ, so also vj P CRδ
σppj ,vjq for some absolute

constant C ¥ 1. Now, (7.101) holds for all κ�1 ¥ c�1 ¥ maxt2, Cu.
We have now shown that

m2δpω | Gq ⪅δ N ¤ |tω1 P pGδ
σqδ

�ϵ

λ,t pωq : κ�1Rδ
σpω1q X κ�1Rδ

σpωq � Hu| � mδ�ϵ,κ�1

δ,λ,t pω | Gq.
Recalling (7.99), this proves (7.100), and consequently Theorem 1.11.

APPENDIX A. PROOF OF PROPOSITION 4.12

We complete the proof of Proposition 4.12 in this appendix. For the reader’s conve-
nience, we recall the statement of Proposition 4.12 here.

Proposition 4.12. Let A ¥ 100 and δ ¤ σ ¤ 1, and let R be a family of pairwise 100-
incomparable pδ, σq-rectangles. Suppose also that there exists a fixed (δ, σq-rectangle R such that
the union of the rectangles in R is contained in AR. Then, |R| ≲ A10.

As mentioned in Section 4.2, we first need several auxiliary definitions and lemmas.

Definition A.1. We denote by πL : R2 Ñ L the orthogonal projection onto a 1-dimensional
subspace L in R2. If I � L is a fixed segment, p P R3 and v P Sppq are such that πLpvq P I,
then we denote by ΓI,p,v the connected component of π�1

L pIq X Sppq containing v.

The set ΓI,p,v need not be a graph over I in general. However, given a rectangle R and
a family R of pδ, σq-rectangles as in Proposition 4.12 with a suitable upper bound on σ,
we now show how to select a subfamily R� � R with |R�| ¥ |R|{2 such that both AR,
and the rectangles in R�, look like neighborhoods of 2-Lipschitz graphs over a fixed line
L. By a “2-Lipschitz graph over L” we mean the graph of a 2-Lipschitz function defined
on a subset of L. In the argument below, we abbreviate Rδ

σpp, vq �: Rpp, vq.
Lemma A.2. Let A ¥ 1, δ ¤ σ ¤ Aσ ¤ σ0 :� 1{600. Assume that R is a finite family of
pδ, σq-rectangles, all contained in AR, where R � Rpp,vq is another pδ, σq-rectangle. Then
there exists a 1-dimensional subspace L � R2, an interval I � L and a subfamily R� � R with
|R�| ¥ |R|{2 such that

(1) πLpARq � I and ΓI,p,v is a 2-Lipschitz graph over I;



ON THE HAUSDORFF DIMENSION OF CIRCULAR FURSTENBERG SETS 67

(2) for each Rpp, vq P R�:
πLpRq � I and ΓI,p,v is a 2-Lipschitz graph over I.

Proof. First, we find the subspace L and the subfamily R� � R. Let

Jpp,vq :� Sppq XBpv, 1
100q and Jpp, vq :� Sppq XBpv, 1

100q.
These are arcs on the circles Sppq and Sppqwhich contain the “core arcs” SppqXBpv, Aσq
and SppqXBpv, σq of the rectangles AR and R respectively. We claim that L can be chosen
from one of the three lines

L1 � spanp1, 0q, L2 � spanp1,
?
3q, L3 � spanp�1,

?
3q

such that Jpp,vq and Jpp, vq are 2-Lipschitz graphs over L for at least half of the rect-
angles Rpp, vq P R. The idea is that the arc Jpp,vq (resp. Jpp, vq) is individually a
2-Lipschitz graph over any line which is sufficiently far from perpendicular to (any tan-
gent of) that arc. For Jpp,vq (resp. Jpp, vq), this is true for at least two of the lines among
tL1, L2, L3u. We give some details to justify this claim.

For every circle Spx, rq and every line L, there exists a segment I of length 4r{?5,
centered at πLpzq, such that the two components of π�1

L pIqXSpx, rq are 2-Lipschitz graphs
over I ; see the explanation around (A.6). The constant “1{100” in the definition of Jpp, vq
has been chosen so small that for each v P Sppq, there are two choices of lines Li such that
πLipJpp, vqq is contained in the segment on Li over which the corresponding arc of Sppq
is a 2-Lipschitz graph. This also uses the fact that we are only considering parameters
p � px, rq P D, so that r ¥ 1{2.

For instance, if p � pp0, 0q, rq and v � p�
?
3
2 r, 12rq, then Jpp, vq is clearly a 2-Lipschitz

graph over the line L2, which is perpendicular to the direction of v, but Jpp, vq is also a
2-Lipschitz graph over the horizontal line L1 since

πL1pJpp, vqq � πL1pBpv, 1{100qq � r�
?
3
2 r � 1

100 ,�
?
3
2 r � 1

100 s � r� 2?
5
r, 2?

5
rs.

(By the same argument Jpp, vq is a 2-Lipschitz graph over L1 for any v � pr cosφ, r sinφq
with φ P rπ{6, 5π{6s).

Without loss of generality, we assume in the following that Jpp,vq is a 2-Lipschitz
graph over L1 and L2. For 1 ¤ i ¤ 2, define

Ri :� tRpp, vq P R : Jpp, vq is a 2-Lipschitz graph over Liu.
We have |R| ¤ |R1| � |R2|. Hence if |R1| ¥ |R|{2, we choose L � L1 and R� � R1.
Otherwise, we choose L � L2 and R� � R2. For an illustration, see Figure 5. We assume
with no loss of generality that L � L1 � spanp1, 0q and R� � R1. We abbreviate π :� πL
and identify L with R via px1, 0q ÞÑ x1. Next, we note that

I :� rπpvq � 1
600 , πpvq � 1

600 s � πpJpp,vqq X
£

Rpp,vqPR�

πpJpp, vqq. (A.3)

This follows easily from the fact that |v � v| ¤ 1{600 and that π restricted to Jpp,vq and
Jpp, vq is 2-Lipschitz; we omit the details. Since Jpp,vq, Jpp, vq are 2-Lipschitz graphs
over L, the inclusion (A.3) shows that ΓI,p,v,ΓI,p,v are 2-Lipschitz graphs over the seg-
ment I. Moreover, it is clear that

πpRq � πpARq � πpBpv, 1
600qq � I, R P R�.

This completes the proof of the lemma. □
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L
Jpp, vq

Jpq, wq
I

I L � R

FIGURE 5. Finding the line L. The fat red rectangle represents AR, and
the smaller green rectangles inside AR represent the rectangles R1 P R.

We will apply (a corollary of) Lemma A.2 to the rectangle R in Proposition 4.12. For
that purpose we may assume without loss of generality that the line L given by Lemma
A.2 is spanp1, 0q, and we restrict the following discussion to this case. This convention
leaves for each graph ΓI,p,v two possibilities: it is contained either on an ‘upper’ or on a
‘lower’ half-circle. For p � px, rq � px1, x2, rq P R2 � p0,8q, we write the circle Sppq as
the union of two graphs over L as follows

Sppq � Spx, rq � tpy1, y2q P R2 : py1 � x1q2 � py2 � x2q2 � r2u � S�ppq Y S�ppq,
where

S�ppq �
!
py1,�

a
r2 � py1 � x1q2 � x2q : y1 P rx1 � r, x1 � rs

)
.

Now for p � px1, x2, rq P R2 � p0,8q, we define

fp,�pθq :� �
a
r2 � pθ � x1q2 � x2, θ P rx1 � r, x1 � rs. (A.4)

We record for any θ P px1 � r, x1 � rq,

f 1p,�pθq � 	 θ � x1a
r2 � pθ � x1q2

and f2p,�pθq � 	 r2

rr2 � pθ � x1q2s3{2
. (A.5)

The functions fp,� are 2-Lipschitz on rx1 � 2?
5
r, x1 � 2?

5
rs, and this is the largest interval

with that property. At the endpoints of it, the corresponding function values are

fp,�px1 � 2r?
5
q � fp,�px1 � 2r?

5
q � x2 � r?

5
. (A.6)

The tangents to Sppq in the respective points on Sppq have precise slopes �2 or �2.
For simplicity, we denote π � πL : py1, y2q ÞÑ y1. Assume that I � L is an interval and

consider p P D and v P Sppq. If the arc ΓI,p,v introduced in Definition A.1 is a graph over
L, then

either ΓI,p,v � π�1pIq X S�ppq or ΓI,p,v � π�1pIq X S�ppq (A.7)
and ΓI,p,v is the graph of fp,�|I or fp,�|I, respectively. We may in the following assume
that the rectangles Rpp, vq P R� given by Lemma A.2 all yield functions of the same type,
either all associated to upper half-circles, or all associated to lower half-circles. This type
may not however be the same as for the rectangle R, cf. Figure 5.

Lemma A.8. Under the assumptions of Lemma A.2 (with L � spanp1, 0q), there exists a subset
R� � R with |R�| ¥ |R|{4 such that the conclusions (1)-(2) hold and additionally, either
ΓI,p,v � π�1

1 pIq X S�ppq for all Rpp, vq P R�, or ΓI,p,v � π�1
1 pIq X S�ppq for all Rpp, vq P R�.
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Proof. Observation (A.7) shows that the additional property can be arranged by discard-
ing at most half of the elements in the original family R� given by Lemma A.2. □

Even with this additional assumption in place, the family R� is not quite of the same
form as the families of graph neighborhoods considered in [17], but it is also not too
different. For arbitrary η ¡ 0 and subinterval I � I in the domain of fp,�, we define the
vertical η-neighborhood

fη
p,�pIq :� tpy1, y2q P I � R : fp,�py1q � η ¤ y2 ¤ fp,�py1q � ηu .

Moreover, for any η P p0, 1{200s, if fp,� : IÑ R is 2-Lipschitz, then

π�1pIq X Sηppq � f4η
p,�pIq Y f4η

p,�pIq. (A.9)

Here, the upper bound on η ensures that the points on Sppq which are η-close to points
in π�1pIqXSηppq lie in the part of the graph of fp,� where the Lipschitz constant is small
enough for the inclusion (A.9) to hold. In particular, if R � Rpp, vq is a rectangle with
I � πpRq � I and η � δ   1{200, and if fp P tfp,�, fp,�u is such that ΓI,p,v is the graph of
fp, then the inclusion in (A.9) yields

R � f4δ
p pπpRqq (A.10)

since R � π�1pπpRqq X Sδppq. A priori, (A.9) only yields R � f4δ
p,�pπpRqq Y f4δ

p,�pπpRqq,
but the conditions δ   1{200, πpRq � I and the assumptions on ΓI,p,v ensure that either
R � f4δ

p,�pπpRqq or R � f4δ
p,�pπpRqq.

We will also need an opposite inclusion for enlarged rectangles. Let δ ¤ σ, R � Rpp, vq
with πpRq � I and fp : I Ñ R be 2-Lipschitz with graph equal to ΓI,p,v. Then, for any
C ¥ 1, if I � I is an interval with |I| ¤ Cσ and such that πpRq � I , then

fCδ
p pIq � 4CR. (A.11)

The inclusion fCδ
p pIq � S4Cδppq is clear. To prove that also fCδ

p pIq � Bpv, 4Cσq, consider
an arbitrary point y � py1, y2q P fCδ

p pIq. Since πpRq � I � I and ΓI,p,v is the graph of fp,
there exists θ P I such that v � pθ, fppθqq and using the 2-Lipschitz continuity of fp on
I � I , we can estimate

|y � v| ¤ |y2 � fppy1q| � |py1, fppy1qq � pθ, fppθqq| ¤ Cδ �
?
5|y1 � θ| ¤ Cδ � 3|I| ¤ 4Cσ,

concluding the proof of (A.11). In order to apply arguments that were stated in [17] for
certain C2 functions, we need a preliminary result about the behavior of p ÞÑ fp,� with
respect to the C2pIq-norm.

Lemma A.12. There exists an absolute constant K ¥ 1 such that for all p, p1 P D, if I � R is
an interval so that fp,�, fp1,� : IÑ R are 2-Lipschitz, then

}fp,� � fp1,�}C2pIq ¤ K|p� p1|. (A.13)

The corresponding result for the pair pfp,�, fp1,�q is also true, but not needed.

Proof. We abbreviate fp � fp,� for p � px1, x2, rq. The norm }fp}C2pIq is uniformly
bounded for all p and I as in the statement of the lemma. Indeed, since fp is assumed to
be 2-Lipschitz on I, we have fppθq P rx2 � r?

5
, x2 � rs, θ P I, by the discussion around

(A.6) and hence
r?
5
¤

a
r2 � pθ � x1q2 ¤ r (A.14)
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for all θ P I. Since p P D, this yields a uniform upper bound for }fp}C2pIq, recalling the
expressions stated in (A.4)–(A.5) for fp and its derivatives. Thus it suffices to prove (A.13)
under the assumption that |p� p1| ¤ 1{400.

For arbitrary p, p1 P R2 � p0,8q, we have

Spp1q � S2|p�p1|ppq. (A.15)

In particular,

pθ, fp1pθqq P π�1pIq X S2|p�p1|ppq (A.9)� f
8|p�p1|
p,� pIq Y f

8|p�p1|
p,� pIq, θ P I.

Our upper bound |p � p1| ¤ 1{400 and the assumption p, p1 P D rule out the possibility
that pθ, fp1pθqq P f

8|p�p1|
p,� pIq. Indeed, by (A.6), we know on the one hand that

fp1pθq P rx12 � r1

5 , x
1
2 � r1s.

On the other hand, again by (A.6), if pθ, fp1pθqq P f
8|p�p1|
p,� pIq, then necessarily

fp1pθq P
�
x2 � r � 8|p� p1|, x2 � r?

5
� 8|p� p1|

�
.

The two inclusions are compatible only if

x12 � r1

5 ¤ x2 � r?
5
� 8|p� p1|,

or in other words, if
8|p� p1| ¥ x12 � x2 � r�r1?

5
.

Since this implies that 9|p� p1| ¥ 1{?5, it is impossible. Thus we conclude that

pθ, fp1pθqq P f8|p�p1|
p pIq, θ P I.

In particular, it follows

}fp1 � fp}8 :� sup
θPI

|fp1pθq � fppθq| ¤ 8|p� p1|. (A.16)

We write again in coordinates p � px1, x2, rq. The estimate (A.14), established at the
beginning of the proof, combined with (A.16), the assumption p, p1 P D, and a direct
computation gives

}f 1p1 � f 1p}8 ≲ |p� p1|, }f2p1 � f2p }8 ≲ |p� p1|,
with uniform implicit constants. Together with (A.16), this concludes the proof. □

To prove Proposition 4.12, we have to deal with rectangles that are 100-incomparable
in the sense of Definition 4.8. We now record a simple consequence of this property that
will be easier to apply when working with the ‘graph neighborhood rectangles’.

Lemma A.17. Let 0   δ ¤ σ ¤ 1{200 and assume that R � Rpp, vq, R1 � Rpp1, v1q are
100-incomparable pδ, σq-rectangles with p, p1 P D. Suppose further that there exists an interval
I such that ΓI,p,v � S�ppq, ΓI,p1,v1 � S�pp1q, πpRq Y πpR1q � I and so that fp,� and fp1,� are
2-Lipschitz on I.

Then, if Rpp, vq XRpp1, v1q � H, there exists a point θ P πpRpp, vq YRpp1, v1qq such that

|fp,�pθq � fp1,�pθq| ¡ 20δ.
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Proof. We denote I :� πpRpp, vq Y Rpp1, v1qq and observe that this is an interval since
Rpp, vq X Rpp1, v1q � H. By assumption I � I. To prove the lemma, we argue by contra-
diction and assume for all θ P I ,

|fp,�pθq � fp1,�pθq| ¤ 20δ. (A.18)

This implies that

Rpp1, v1q (A.10)� f4δ
p1,�pIq

(A.18)� f24δ
p,�pIq. (A.19)

Since
|I| � |πpRpp, vq YRpp1, v1qq| ¤ |πpBpv, σqq| � |πpBpv1, σqq| ¤ 4σ,

we can use (A.11) to conclude from (A.19) that Rpp1, v1q � 100Rpp, vq, contradicting the
100-incomparability of Rpp, vq and Rpp1, v1q. This concludes the proof. □

We are now in a position to show Proposition 4.12:

Proof of Proposition 4.12. Let R � Rpp,vq be a fixed pδ, σq-rectangle as in the statement
of the proposition. Since every pδ, σq-rectangle R � Rpp, vq � AR is contained in
SAδpp,vqXSAδpp, vq, and since SAδpp,vqXSAδpp, vq can be covered by boundedly many
pAδ,

a
Aδ{|p� p|q-rectangles according to Lemma 4.3, it follows that

σ ≲
b

Aδ
|p�p| .

This holds in particular for all R � Rpp, vq P R. Hence defining

PR :� tp P D : Rpp, vq P R for some v P Sppqu,
we know that there exists a universal constant C ¡ 0 such that

PR � B
�
p,CAδ

σ2

� � R3. (A.20)

We make one more observation about the family R, which will show in particular that it
is finite. Namely, if Rpp, vq P R, then

|tRpp1, v1q P R : |p� p1| ¤ δu| ≲ A. (A.21)

Indeed, let Rpp1, v1q, . . . , Rppn, vnq be a listing of the rectangles on the left. Then vi P
AR X S3δppq for all 1 ¤ i ¤ n. Note that diampARq � Aσ. Now, if n ¥ CA for a
suitable absolute constant C ¥ 1, we may find two elements vi, vj with |vi � vj | ¤ 10σ.
But since |pi � pj | ¤ 2δ, it would follow that the rectangles Rppi, viq and Rppj , vjq are
100-comparable, contrary to our assumption. This proves (A.21).

We divide the remaining proof into two cases according to the size of σ, using the
threshold σ0 � 1{600 from Lemma A.2. The first case, where σ is close to 1, will follow
roughly speaking because the rectangles in R are so curvy that their containment in a
common rectangle AR forces PR to be contained in a �A δ ball. The second case falls
under the regime where the assumptions of Lemmas A.2 and A.8 are satisfied, and we
can work with rectangles that are essentially neighborhoods of graphs over a fixed line.

Case 1 (A�1σ0   σ ¤ 1). Inserting the lower bound for σ into (A.20), we find that there
exists a universal constant C ¡ 0 (possibly larger than before) such that

PR � Bpp,CA3δq.
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Hence, PR can be covered by N ≲ pCA3q3 balls B1, . . . , BN of radius δ{2. By (A.21), for
every i � 1, . . . , N , there are ≲ A rectangles Rpp, vq P R with p P Bi. We deduce that

|R| ≲ pCA3q3 max
iPt1,...,Nu

|tRpp, vq P R : p P PR XBiu| ≲ pCA3q3 �A � A10.

Case 2 (σ ¤ A�1σ0). Let now R� � R be the subfamily given by Lemma A.8. Without
loss of generality we may assume that for every Rpp, vq P R�, we have ΓI,p,v � S�ppq. To
implement the approach from the proof of [17, Lemma 3.15], we need one more reduc-
tion to ensure that the rectangles Rpp, vq we consider give rise to functions fp,� that are
sufficiently close to each other in C2pIq-norm. Using Lemma A.12, this can be ensured
if the parameters p are sufficiently close in D. By (A.20), and recalling diamD ¤ 2, we
know already that

PR,� :� tp P D : there is v P Sppq with Rpp, vq P R�u � Bpp,Atq, (A.22)

where A ≲ A and
t :� mintδ{σ2, 2u.

On the other hand, by (A.21), we also know that for each p P PR,�, there are at most ≲ A
many v P Sppq such that Rpp, vq P R�. As a result,

|PR,�| ≳ A�1|R�|. (A.23)

Combining (A.22) and (A.23), we may choose a ball

B0 � Bpp,Atq (A.24)

of radius t
2K , where K ¥ 1 is the constant from Lemma A.12, such that

|PR,� XB0| ≳ A�3|PR,�|. (A.25)

We define a further subfamily

R�
� :� tRpp, vq P R� : p P PR,� XB0u.

Hence by (A.23) and (A.25)

|R�
�| ¥ |PR,� XB0| ≳ A�4|R�|.

Thus if we manage to show that |R��| ≲ A3, we can deduce that

A�4|R�| ≲ |R�
�| ≲ A3 ùñ |R�| ≲ A4A3 ≲ A10.

This will conclude the proof since |R�| � |R| by Lemma A.8.
It remains to prove that |R��| ≲ A3. Applying Corollary A.12, we deduce that

}fi � fj}C2pIq ¤ t pi, pj P B0, (A.26)

where fi :� fpi,� and fj :� fpj ,�. Following the argument in [17, Lemma 3.15], we will
show that

|tR P R�
� : z P Ru| ≲ A, z P R2. (A.27)

This will give

|R�
�| � δσ ≲

»
AR

¸
RPR�

�

1R ≲ A � LebpARq ≲ A3δσ,

as desired.
To prove (A.27), fix z � pθ0, y0q P R2 which is contained in, say, N pairwise 100-

incomparable pδ, σq-rectangles Rj P R��, for 1 ¤ j ¤ N . The claim is that N ≲ A.
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Note that πpRjq necessarily contains the point θ0 � σ{3 or θ0 � σ{3, and we can bound
individually the cardinality of the two subfamilies of tRj : j � 1, . . . , Nu where one of
the two options occur. Thus let us assume in the following without loss of generality that
θ0 � σ{3 P πpRjq for all j.

To show our claim, it suffices to establish the following two inequalities:

|f 1ipθ0q � f 1jpθ0q| ¤ 100A � pδ{σq, 1 ¤ i, j ¤ N, (A.28)

and

|f 1ipθ0q � f 1jpθ0q| ¥ δ{σ, 1 ¤ i � j ¤ N. (A.29)

The first inequality will be based on the assumption that the rectangles in R are contained
in AR, and the second inequality uses the 100-incomparability of the rectangles in R��.

We give one argument that takes care both of the short rectangles (σ ¤ ?
δ), and the

long rectangles (σ ¥ ?
δ) treated in [17]. Recalling the C2pIq bound (A.26), we have

}fi � fj}C2pIq ¤ t � mintδ{σ2, 2u. (A.30)

We apply this to prove (A.28). Let us denote h :� fi�fj , and let us assume to the contrary
that |h1pθ0q| ¡ 100A � pδ{σq. Then, using (A.30), for all θ P πpRiqYπpRjqwith |θ� θ0| ¤ σ,
we have

|h1pθq| ¥ |h1pθ0q| � }h2}8|θ � θ0| ¥ 100A � pδ{σq �mintδ{σ2, 2uσ ¡ 99A � pδ{σq,
using A ¥ 1. By (A.10) and the assumption that the rectangles Rj all intersect at pθ0, y0q
and θ0 P πpRjq � I, we have |hpθ0q| ¤ 8δ. We will combine this information with
the lower bound for |h1| on the interval πpRiq Y πpRjq to reach a contradiction with the
assumption that Ri YRj � AR. Recall that θ0 � σ{3 P πpRiq X πpRjq. Then,

|hpθ0 � σ{3q| ¥ |hpθ0 � σ{3q � hpθ0q| � 8δ ¥ 99A � pδ{σq � σ{3� 8δ ¥ 33A � δ � 8δ ¡ 25Aδ.

But this is not consistent with the assumption that

tpθ0 � σ{3, fipθ0 � σ{3qq, pθ0 � σ{3, fjpθ0 � σ{3qqu � Ri YRj � AR,

noting that the “vertical” thickness of AR is at most 8Aδ since AR � f4Aδ
p,� pπpARqq or

AR � f4Aδ
p,� pπpARqq according to (A.10).

The proof of (A.29) is similar. This time we make the counter assumption that |h1pθ0q|  
δ{σ. The assumption θ0 P πpRi X Rjq implies that πpRi Y Rjq is an interval contained in
rθ0 � 2σ, θ0 � 2σs. Using (A.30), as above, this leads to the following estimate

|h1pθq| ¤ |h1pθ0q| � }h1}8|θ � θ0|   δ
σ �min

 
δ
σ2 , 2

(
2σ ¤ 3δ{σ, θ P πpRi YRjq.

Finally, since |hpθ0q| ¤ 8δ, we deduce from the preceding estimate that

|hpθq| ¤ 8δ � p3δ{σq � 2σ � 14δ, θ P πpRi YRjq.
This inequality contradicts Lemma A.17 and shows that the counter-assumption cannot
hold. This completes the proof of (A.29), and thus the proof of Proposition 4.12. □
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