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Abstract

The coronavirus disease 2019 (COVID-19) pandemic has spurred a wide range of approaches to control and combat the disease.
However, selecting an effective antiviral drug target remains a time-consuming challenge. Computational methods offer a promising
solution by efficiently reducing the number of candidates. In this study, we propose a structure- and deep learning-based approach
that identifies vulnerable regions in viral proteins corresponding to drug binding sites. Our approach takes into account the protein
dynamics, accessibility and mutability of the binding site and the putative mechanism of action of the drug. We applied this technique
to validate drug targeting toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein S. Our findings
reveal a conformation- and oligomer-specific glycan-free binding site proximal to the receptor binding domain. This site comprises
topologically important amino acid residues. Molecular dynamics simulations of Spike in complex with candidate drug molecules bound
to the potential binding sites indicate an equilibrium shifted toward the inactive conformation compared with drug-free simulations.
Small molecules targeting this binding site have the potential to prevent the closed-to-open conformational transition of Spike, thereby
allosterically inhibiting its interaction with human angiotensin-converting enzyme 2 receptor. Using a pseudotyped virus-based assay
with a SARS-CoV-2 neutralizing antibody, we identified a set of hit compounds that exhibited inhibition at micromolar concentrations.

Keywords: cryptic binding sites learning; SARS-CoV-2; Spike glycoprotein S

INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic, which
started in December 2019, has caused over a million human
deaths worldwide and has become a global challenge in the 21st
century. Although the closely related coronaviruses severe acute
respiratory syndrome coronavirus (SARS-CoV) and Middle East
respiratory syndrome had been known and studied for over a
decade, humankind turned out to be helpless against a novel
strain, SARS-CoV-2. The World Health Organization reported
little or no therapeutic effect for some of the most promising
anti-COVID drugs: remdesivir, hydroxychloroquine, lopinavir
and interferon [1]. Unprecedented scientific collaborative efforts
are being made to develop antiviral therapies, emphasizing the
need for fast and efficient response tools to fight viruses at
the molecular level. Computational structure-based drug design
approaches are matured to high-level precision and take a
relatively short time to be applied for a drug target of interest
[2]. Unfortunately, target and binding site identification is not
straightforward and can arguably be considered one of the most
challenging and critical parts of the drug discovery campaign

[3, 4]. Generally, the binding site detection methods can be divided
into sequence- and structure-based approaches. The sequence-
based approaches [5–8] do not take into account protein structure
and dynamics, thus, are not applicable to detect binding site
opening. The structure-based approaches can be further divided
into several categories. The template-based methods screen the
query protein against a database and identify regions similar to
known binding sites [9–13]. These methods strongly rely on the
constructed database of known binding sites and, thus, can detect
only similar binding sites in the target protein; moreover, as the
database grows, the screening becomes more time-consuming.
The geometry-based methods typically utilize information about
protein shape [14–19], but miss physicochemical information
related to the binding site, unless specifically taken into account.
The energy-based methods typically aim to find low-energy
regions as potential binding sites using molecular probes
[20–23] or analyzing residue dynamics [24]. The classical machine
learning approaches utilize sequential and/or structural features
to classify amino acids as binding or non-binding [25–29]
and strongly rely on the dataset construction and calculated
features to describe binding sites. Most recently, due to the
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rapid accumulation of structural data and the development of
deep learning, new deep learning-based methods for binding site
identification emerged, which process structural data using graph
[30–32] or convolutional [33–38] neural networks. In most cases,
these methods show higher accuracy and computational speed,
compared with the other types of structure-based approaches,
though lack interpretability. Typical obstacles in binding site
identification include pitfalls related to protein (i) f lexibility, (ii)
druggability, (iii) accessibility and (iv) mutability. First, protein
flexibility is crucial in drug discovery [39], and a binding site
may be present or absent in a given three-dimensional structure;
hence, there is a risk of overlooking a relevant binding site or
detecting a fleeting and irrelevant binding site [35]. Secondly, not
every detected binding site is ‘druggable’, which refers to whether
it is possible to make a drug that modulates protein function upon
binding that site [4]. Thirdly, the binding site must be accessible to
a potential drug; for example, viral proteins can be glycosylated,
hence shielding their surface from drug binding [40]. Lastly, viral
proteins adapt through amino acid substitutions; therefore, a
binding site in one viral strain can be modified or eliminated in
another strain [41]. Another essential concern is that for newly
discovered binding sites, there is typically a lack of understanding
of the modulation mechanism of a potential drug molecule, which
limits drug design against novel viral strains or for personalized
medicine purposes [42]. Computational approaches that consider
the issues mentioned above would help reduce the high rate
of false-positive drug target binding sites [43, 44] and facilitate
a faster social response in case of future pandemics. Here, we
rationalize viral target identification by considering the flexibility,
druggability, accessibility and mutability of the protein target,
as well as the putative mechanism of action of a potential
drug. We used spike glycoprotein S (Spike) as the protein target
that covers spherically shaped SARS-CoV-2 virions [45]. Spike
has homotrimeric architecture and consists of three subunits
responsible for binding to the host cell and merging cellular-viral
membranes [46, 47]. One subunit contains the receptor-binding
domain (RBD) that undergoes large conformational transitions
from the closed (down RBD conformation, PDB: 6VXX [45]) to
the open (up RBD conformation, PDB: 6VSB [48]) Spike states.
In the open conformation, the virus is capable of binding to the
peptidase domain (PD) of angiotensin-converting enzyme 2 (ACE2)
with one of its subunit RBDs followed by the fusion process [49,
50]. One of the strategies to prevent viral infection is to design a
protein–protein interaction inhibitor that directly blocks the RBD–
PD interaction interface [2, 51]. However, such inhibitors could be
challenging to design because of highly glycosylated Spike [40,
52]. Another concern is that RBD comprises highly variable amino
acid residues, potentially making identified blockers ineffective
against different viral strains. Finally, direct RBD–PD inhibitors
may affect normal ACE2 function, leading to side effects upon
binding to it. Therefore, drugs targeting more accessible and
conservative regions in the Spike structure would be safer and
have broader applicability than direct RBD–PD inhibitors; many
experimental and computational efforts are being made to
describe such a distinct region ([41, 53–60], to name a few).

In this study, we identified a vulnerable region in the Spike
trimer structure that could be used to allosterically inhibit RBD–
PD interactions by preventing the closed-to-open conformational
transition of Spike. We analyzed the long-range molecular
dynamics (MD) trajectories of Spike using a spatiotemporal deep
learning-based approach [35] and selected conformation- and
oligomer-specific cryptic binding sites based on the putative
mechanism of action and structure-based criteria. Namely, the

detected binding site is formed by two Spike subunits: it shares
amino acid residues with the RBD of one subunit, and it is present
in the closed but not the open conformation of Spike. The binding
site is accessible to small molecules and free from glycans. We
applied sequence-based and 3D structure-based network analysis
to show that the amino acid residues forming the binding site
are more conserved and less tolerant of mutations than those
in the RBD, indicating a broader application of potential drugs
targeting this binding site against viruses from the Coronaviridae
family. We further performed virtual ligand screening to select
putative binding candidates and compared the flexibility of
ligand-free and ligand-bound Spike conformations using MD
simulations to identify molecules that stabilize Spike in the closed
conformation. Finally, we tested the most promising compounds
in vitro and confirmed viral inhibition for several compounds in
the micromolar concentration range using neutralizing antibody
by a pseudotyped SARS-CoV-2 S virus-based assay [61]. Therefore,
we hypothesize that ligands bound to the detected binding site
could lock Spike in the closed state conformation, preventing the
association of the virus with the host cell.

RESULTS AND DISCUSSION
This section is organized as follows. First, we described the tar-
get binding site selection criteria and its identification. Then
we presented the binding site druggability analysis by means of
molecular docking of the drug-like compounds into the selected
binding site. This is followed by the MD simulations of the top-
selected compounds with the hypothesis that an interesting com-
pound would stabilize RBD. Next, we performed virtual ligand
screening of a large chemical library, and the most promising
hit candidates were validated in vitro. Finally, we presented the
amino acid residue variability analysis of the identified binding
site. Figure 1 schematically demonstrates the proposed approach.

To allosterically inhibit the RBD–PD interactions, we searched
for a vulnerable region in the Spike structure involved in the
conformation transition from the closed to the open state. Such
a region can be exploited for drug discovery to disrupt the con-
formational transition, hence inhibiting viral activity. To locate
a binding site in the Spike trimer structure that could be used
to lock it in the closed state conformation, we searched for a
spatial region that (i) involves two or three subunits of the spike
(oligomer-specific); (ii) is observed in the closed but not in the
open conformation (conformation-specific); (iii) is located near
the RBD; (iv) can fit drug-like molecules; (v) is not sheltered by gly-
can molecules; (vi) is not highly prone to mutations. The first three
criteria aim to select a region involved in RBD movement; the
fourth and fifth criteria ensure that this region can be exploited
for drug discovery; and the last criterion aims to expand the
applicability of potential drugs across different viral strains. To
detect binding sites satisfying those criteria, we applied BiteNet
[35], a deep learning approach for the spatiotemporal identifi-
cation of druggable binding sites, to the 10 μs MD simulation
trajectories by D.E. Shaw Research for the Spike structure in the
closed and prefusion states [60] (see Methods). More precisely, we
converted the MD trajectories into voxel grids, where each voxel
stores atomic densities for different atom types (sulfur, amide
nitrogen, aromatic nitrogen, guanidinium nitrogen, ammonium
nitrogen, carbonyl oxygen, hydroxyl oxygen, carboxyl oxygen, sp2
carbon, aromatic carbon and sp3 carbon), as the input to the
BiteNet 3D convolutional neural network [62]. The network was
rigorously trained on atomic structures from the Protein Data
Bank (https://www.rcsb.org) to recognize binding sites given the
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Figure 1. A schematic illustration of the workflow of this study.

three-dimensional structure of a target, such that the output of
the network corresponds to the binding site center along with the
probability score for each binding site. Out of 202 putative predic-
tions, 51 passed the probability score thresholds; of these 51, 30
binding sites comprised amino acid residues from the two or three
Spike subunits. This was followed by the conformation-specific
filter that kept 16 putative binding sites present in the closed but
not prefusion conformation (see Figure 2B and Supplementary
File 1). The subsequent filter left seven putative binding sites with
a median topological importance higher than that calculated for
Spike (see Methods). Among these, three are located in the regions
occupied by glycans, thus yielding four prefinal candidates. Tak-
ing into account the proximity of the RBD domain left us with
only two remaining binding sites. Finally, along the 10 μs MD
trajectory, one binding site was present in 52.5% of frames (2630
out of 5005), while the other was present in only 5% (250 out of
5005) (see Figure 2A,C). The most promising detected binding site
is formed by the two neighboring subunits and comprises amino
acid residues from the RBD of one subunit (see Figure 2C). We
observed such a binding site for each pair of interacting subunits,
and only one binding site, which corresponds to the RBD in the up
conformation, was collapsed in the prefusion state. The BiteNet
probability score for this binding site varies from 0.0 to 0.7 across
the MD trajectory (see Figure 2D); therefore, it can be overlooked
in the static structure of Spike. On the other hand, this binding
site is continuously observed along the MD trajectory, indicating
that it is indeed a binding site, rather than a fleeting prediction.
These observations emphasize the role of MD trajectory analysis
in binding site identification.

To analyze the ‘druggability’ of the detected binding site, we
used molecular docking to screen ∼8000 FDA-approved, experi-
mental and investigational compounds retrieved from the Drug-
Bank database [63] using the conformation corresponding to the
highest probability score of the binding site (see Methods). We
observed ∼200 drug-like molecules that fit into the binding site
with high docking scores (Score ≤−30.0) and formed interactions
with both subunits (see Figure 3 and Supplementary File 2). The
detected binding site can fit compounds of different molecular
weights, octanol-water partition coefficients, topological polar
surface areas, numbers of hydrogen bond donors and acceptors
and numbers of rotatable bonds (see Figure 3A,B). The high score
values for some of the compounds, however, might be artifacts
of molecular docking given a large number of possible polar
contacts (for example, see Figure 3B, CID: 193491). Therefore,
we selected 20 drug-like molecules from the hit list for further
investigation, excluding potential artifacts, as well as highly sim-
ilar compounds. Figure 3C shows superimposed docking poses of
these compounds along with the BiteNet predicted binding site.
Interestingly, we found experimental structures for seven out of

20 ligands in PDB and observed that root-mean-squared deviation
(RMSD) between the experimental and docked binding poses are
low (< 1.9 Å) for six out of seven cases, suggesting that the
obtained binding poses are feasible (see Supplementary File 7).

We hypothesize that such small molecules can stabilize
bridges, preventing the closed-to-open conformational transition
of Spike, thus abolishing viral activity. To support this hypothesis,
we ran 100 ns MD simulations of the ligand-bound Spike
structures for the 20 selected compounds. Given that the
trimer structure is asymmetric and that only one Spike subunit
undergoes the closed-to-open conformational transition, we used
three compounds placed at three binding sites formed by the A-
C, C-B and B-A subunits. Next, we analyzed the RBD flexibility
in terms of the RMSD and compared it with the ligand-free MD
simulations. We observed that for four out of 20 compounds, the
maximal RBD deviation is almost twice as low compared with
the ligand-free simulations (see Figure 4A,B). More precisely, the
RBD of one of the subunits deviated by 10.0 Å by the end of the
ligand-free simulation, while the RMSD values for each RBD in
ligand-bound simulations did not exceed 5.0 Å (see Figure 4C and
Supplementary File 3). For the other 16 compounds, we observed
at least one pair of subunits with similar RMSD values compared
with the ligand-free simulation. It is important to note that 100
ns simulations are not enough to observe the RBD transitions
from the closed to the fully open state, and longer simulations
are required to capture this event [57]. Nonetheless, we did
observe the difference between the ligand-bound and ligand-free
simulations in terms of the RBD deviation on a smaller scale for
four drug-like molecules.

From the results of 1 ms simulation [64], the RMSD values for
RBD smaller than 5 Å are observed around 40% of the simulation
time, which is consistent with our 100 ns ligand-free simulations.
We, thus, hypothesized that ligands for which the corresponding
RMSD values are below 5 Å for the entire simulation are more
likely to have a stabilization effect and use this hypothesis as one
of the criteria to filter hit candidates.

Analysis of the protein–ligand interactions revealed 27 amino
acid residues within 4.0 Å of the ligands across the MD trajec-
tories. To evaluate the flexibility of these 27 amino acid residues,
we calculated the root-mean-squared fluctuations (RMSFs) across
the MD trajectories, and Figure 5D shows the obtained RMSF
profiles for the ligand-bound and ligand-free simulations (see
Supplementary File 4 for the RMSF profiles corresponding to all
20 ligands). We observed that the amino acid residues in the
ligand-bound trajectories are more stable on average than in the
ligand-free MD trajectories, especially the K462-P463-F464-E465
region of the RBD domain, where the RMSF value is at most 2
Å for the ligand-bound MD trajectories. Among these residues,
we observed eight that form and maintain close contacts with
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Figure 2. Target binding site identification pipeline. (A) Filtering steps to select the final candidate from the putative binding site predictions (B) Top
16 binding sites predicted in the Spike structure. The predictions are shown with red contours; the glycan densities are shown with yellow transparent
surfaces. (C) Side and top view of the closed Spike conformation and the three binding sites corresponding to the three pairs of interacting subunits
shown with red, green and blue contours. (D) BiteNet probability scores obtained for the selected binding sites along the 10 μs MD trajectory.

a ligand during the simulations, namely, Y200 and P230 of one
subunit and Y396, D428, F429, F464, S514, and E516 of the other
subunit (see Figure 5A). The ligands form hydrophobic contacts
with Y200 and P230 of one subunit, and Y200 also forms pi-
stacking interactions and hydrogen bonds via its phenolic oxygen.
For the other subunit, one can note hydrophobic contacts formed
with Y396 and F454, as well as pi- and T-stacking interactions and
hydrogen bonds formed by E516 with the ligands. Figure 5C shows
the percentage of time these amino acid residues were within
4.0 Å of the ligand for each interaction interface during the MD
simulation.

In the next step, we ran structure-based virtual ligand
screening of the ChemDiv chemical library (1.5 M compounds,
https://www.rcsb.org) using the ICM docking suite (https://www.
molsoft.com) and selected the top 74 compounds based on the
docking score, estimated physicochemical properties and visual
inspection. The top 74 hit candidates were synthesized and
reconstituted in DMSO at a 10 micromolar concentration. Only
21 of 74 compounds were soluble in water at 1-10 micromolar
concentrations; these water-soluble compounds were tested for
cytotoxicity on HEK293 cells (Figure 6A). After overnight incuba-
tion, we found that four compounds (C768-1445, E581-1452, 8011-
6716 and L036-0392) were not cytotoxic at 1 micromolar, and
one compound was nontoxic at 0.2 micromolar (J078-0893). To
evaluate the neutralization activity of the identified compounds,
we utilized the SARS-CoV-2 S pseudotyped virus based on an

HIV-1 lentiviral packaging system with a luciferase reporter [61].
We confirmed that the pseudotyped virus binds to the human
angiotensin-converting enzyme 2 (hACE2) receptor exposed on
the hACE2-overexpressing HEK-293T (hACE2-HEK293) (Figure 6B)
and that the cell viral load correlates with the luciferase
signal and hACE2 specificity (Figure 6C). We observed that five
compounds inhibited hACE2-HEK293 cell infection at 10 and
1 micromolar concentrations (Figure 6D,E). However, similar to
SARS Cov-2, VSV-G pseudotyped virus control transduction was
also affected by J078-0893, C768-1445 and E581-1452 compounds.
In contrast, 8011-6716 and L036-0392 demonstrated specific
infection inhibition at 1 micromolar concentration. We further ran
an MD simulation of the 8011-6716 compound in complex with
Spike and observed the stabilization effect, similar to the drug-like
compounds.

Thus, using a comprehensive in silico pipeline that includes
target binding site identification and analysis, molecular docking
and MD simulation, we identified compounds that inhibit viral
infection by the SARS-CoV-2 S pseudotyped virus in vitro. However,
we want to stress that although we hypothesize that the identified
compounds demonstrate inhibition by means of binding to the
detected binding site, there is a possibility that the identified
hit candidates infer its inhibition effect by binding to a differ-
ent binding site or by a different molecular mechanism in gen-
eral. Therefore, further investigations, such as crystallographic or
cryogenic electron microscopy structure determination of Spike
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Figure 3. Drug-like molecules identified from molecular docking. (A) Distribution of molecular properties for 209 top-scored compounds, including
topological polar surface area (TPSA), predicted octanol-water partition coefficient (XlogP), molecular weight, number of rotatable bonds and number
of potential polar contacts, defined as the sum of the number of hydrogen bond donors and acceptors. (B) Examples of five different compounds; three-
dimensional conformers alongside their molecular properties. (C) Superimposed docking poses for the 20 selected compounds are shown with sticks,
and the predicted binding site is shown with mesh.

in complex with the identified hit candidates, are required to
rigorously validate our hypothesis.

Variability of the amino acid sequence is one of the greatest
challenges in drug repurposing and drug discovery for use against
viruses. As a consequence, drugs targeting less variable binding
regions might be effective across different viral stamps. It was
shown that the topological importance of the amino acid residues
is critical in accessing mutational tolerance for viral proteins,
especially to predict vulnerable epitopes [65]. Accordingly, we
applied structure-based network analysis [66] to estimate the
topological importance of the Spike trimer (see Methods and
Supplementary File 6). We compared regions corresponding to the
RBD, which is a common drug target, and the detected binding
site (see Figure 7A,B,C). We observed that the detected binding
site is endowed with lower mutation tolerance than the RBD (0.35
versus 0.22 for the median topological importance). Moreover,
we analyzed the amino acid sequence conservation profiles of
the Spike proteins from the coronavirus family (see Methods
and Supplementary File 5 for the constructed multiple sequence
alignments). We calculated the Valdar’s conservation scores [67]
and observed that the detected binding site is more conserved
among the coronavirus family than the RBD domain or the set
of exposed amino acid residues of Spike (see Figure 7D,E,F and
Supplementary File 6). Altogether, these results demonstrate that

the detected binding site corresponds to the vulnerable region
in the Spike structure of the coronavirus family and indicates
a larger applicability domain for drugs targeting it than those
targeting the RBD.

To summarize, we presented a computational pipeline for
rational drug target binding site identification in viral proteins.
We applied the pipeline to the SARS-CoV-2 spike glycoprotein S
and identified the vulnerable region, which is more conserved
and topologically important than the RBD. Molecular docking
and MD simulations revealed drug-like compounds that stabilize
the RBD in the closed state, indicating the possibility of
inhibiting RBD–PD interactions allosterically, hence abolishing
viral activity. The subsequent in silico ligand screening and in
vitro testing of the most promising compounds helped to identify
compounds that demonstrate viral inhibition effects at micromo-
lar concentrations.

METHODS
Binding site identification
To predict a vulnerable region in Spike, we considered 10 μs MD
trajectories of the closed- and pre-fusion Spike states made by
D.E.Shaw Research [60]. We used the GROMACS trjconv utility
to split trajectory into a set of.pdb files [68] that contain only
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Figure 4. Stabilized RBD in MD simulations of the ligand-bound Spike structure. (A, B) The RBD domain structures corresponding to the last frame of
the ligand-bound (CID: 10125830, blue ribbons) and ligand-free (magenta ribbons) simulations. The closed-state (PDB ID: 6VXX) and open-state (PDB ID:
6VYB) structures are shown as green and red surfaces, respectively. (C) RMSD profiles of the RBD domains with respect to the initial structure for the
ligand-bound (blue scale) and ligand-free (gray scale) simulations for four of the most stabilizing compounds. (D) Three-dimensional conformers for
four of the most stabilizing compounds.

protein chains. Then we applied BiteNet [35] to the closed-state
MD simulation using the probability score threshold of 0.01 result-
ing in 202 putative binding site candidates. This was followed by
filtering predictions using the clustering score threshold of 0.01,
leading to 51 predictions. In the next step, we filtered out only
binding sites that are within 8 Å from only one protein chain
yielding 30 candidates. This was followed by filtering predictions
also observed in the prefusion-state MD simulation; thus, we
obtained top 16 binding sites. Then, we calculated the topological
importance for each residue, and took seven binding sites with
the median topological importance higher as compared with the
entire Spike. Next, we considered binding sites within 8 Å from
the RBD region starting from 350th amino acid residue, resulting
in four binding sites. Two predictions were sheltered by glycans
and were filtered out; the densities of glycans were calculated
for all conformations of the closed-state Spike MD trajectory
using VMD [69]. Finally, we compared the time ratio, a binding
site was observed in the MD simulation, and selected the one
corresponding to a higher fraction as the final candidate (52%
versus 5%).

Amino acid conservation analysis
We retrieved amino acid sequences corresponding to the Spike
protein from the GISAID [70] database (version March 2023) as

well as the reference sequence from the UniProt [71] (UniProt
ID: P0DTC2). We kept only unique protein sequences to avoid
bias toward overrepresented strains and disregarded sequences
with lengths out of the Q1-Q3 quartile range (Q1=1270, Q3=1273).
Finally, we substituted all non-standard or unknown amino acid
residues with ‘X’ and kept only sequences that contain less than
60 ‘X’, resulting in 1 144 383 sequences. We aligned all the protein
sequences to the reference sequence using mafft [72]. Finally, we
calculated the Valdar’s conservation score[67] for each amino acid
residue position.

Topological importance analysis
The topological importance was calculated using the structure-
based residue interaction network approach [65]. We used the
starting frame of the closed-state MD trajectory for the analysis.
We disregarded glycans and water molecules beyond 3 Å from
the protein chains. We skipped the first steps of the network
workflow aimed to add hydrogen atoms [66]. The atom names for
hydrogen and water molecule oxygen were renamed according to
the network workflow.

Molecular docking
We retrieved investigational, experimental and approved drug
molecules from the DrugBank database [63] library in the SMILES
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Figure 5. Protein–ligand interactions. (A) Protein–ligand contacts formed within the detected binding site with one of the selected compounds (CID:
969516). Spike is shown with ribbons colored with respect to the chain ID, and the compound is shown with spheres. (B) Interaction interfaces for the
top four compounds (one interface per compound) corresponding to the last frames of the MD simulations. (C) The percentage of time the most stable
contacts were within 4.0 Åof the ligand during the MD simulations for each interaction interface. (D) RMSF profiles for the amino acid residues observed
within 4.0 Å of the ligand during the MD simulations. The amino acid residues of the two subunits are labeled in black and red, respectively.

format and applied the standardization procedure according to
the ChEMBL structure standardization pipeline [73] yielding 8282
compounds. We want to note that we refer to the PubChem
compounds as to the standardized versions of these compounds;
however, one should keep in mind that the standardization may
change a molecule, particularly stereoisomerization. Then we
generated three-dimensional conformations and assign partial
charges for each compound using the semi-empirical PM3 opti-
mization method implemented in the ORCA software package
[74]. This procedure yielded 8096 3D conformers, which we con-
verted to the MOL2 format for molecular docking. For the hit
identification, we used the ChemDiv chemical library of ∼1.5M
compounds retrieved from https://www.rcsb.org. As the protein
structure, we used the Spike conformation from the 10 μs trajec-
tory corresponding to the highest probability score of the binding
site of interest. We pre-processed the structure by optimizing side-
chain rotamers using Monte Carlo optimization and the MMFF-
94 force field. A rectangular box enclosing amino acid residues
within 8 Å of the binding site center with an additional 8 Å margin
was used as the sampling space for molecular docking. The
protein structure was presented as smoothened grid potentials,
while the docking simulations sampled ligand conformations in
the internal coordinate space using biased probability Monte

Carlo optimization [75] implemented in ICM-Pro by MolSoft www.
molsoft.com with the sampling parameter (docking effort) set to
30. Finally, we constructed the docking hit list ranked with respect
to the docking score of the drug-like candidates and selected
the top 20 compounds, excluding highly similar and those with
multiple PO4 groups, for further analysis.

MD simulations and analysis
MD simulations were performed using the GROMACS 2018.6 soft-
ware [68]. The starting structure was prepared by merging the
CHARMM-GUI glycosylated structure [76] with structures by D. E.
Shaw Research [60]. The parameters were taken from CHARMM-
GUI [76] and reduced to atoms present in structures provided by
D. E. Shaw Research [60]. The starting coordinates of the spike
protein were pulled to the coordinates of the Spike conformation
used for molecular docking by applying position restraints on
spike backbone atoms with force constant 10 000 kJ/mol/nm2 for 1
ns. This resulted in a glycosylated structure with backbone atoms
RMSD of < 1Å from the structure used for molecular docking. The
MD parameters for 21 of the selected compounds were obtained
from Swissparam [77]. The compounds were placed into the
binding sites at all three interaction interfaces. For that, the com-
pound positions from the molecular docking were aligned with
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Figure 6. Experimental validation of viral inhibition. (A) Out of 74 compounds selected from virtual ligand screening, 21 had good solubility, four
compounds were nontoxic and two demonstrated viral neutralization activity. (B) Binding of pseudotyped virus to hACE2 exposed on hACE2-HEK293
cells. (C) Luciferase signal with respect to the pseudovirus concentration for HEK293 and hACE2-HEK293 cells. (D) Infection efficacy for the top five
compounds at 0.2, 1 and 10 micromolar concentrations for SARS Cov-2 pseudovirus as well as VSV-G pseudovirus as a control. (E) Chemical formulas
of the tested candidates.

respect to the other interfaces using MDAnalysis [78]. Overall, 22
systems were prepared, including one ligand-free and 21 ligand-
bound. For all the systems, periodic boundary conditions were
applied. A constant temperature of 303 K and pressure of 1 bar
were maintained using Nose–Hoover thermostat [79] with time
constant of 1.0 ps and isotropic Parrinello–Rahman barostat [80]
with a time constant of 5.0 ps. The Leanard–Jones cutoff was set to
1.2 nm, and Lennard–Jones interactions were smoothly switched
to zero at distances higher than 1.0 nm. Electrostatic interactions
were treated with the particle mesh Ewald method [81]. A leapfrog
integrator was used with an integration step of 2 fs. The bond
distances and bond angles of water molecules were constrained
using the SETTLE algorithm [82], and all other bond distances
were constrained using the LINCS algorithm [83]. Prior to all
simulation runs, the potential energy was first minimized using
the steepest descent method, followed by 125 ps equilibration MD
runs. The production runs for 100 ns were performed, and frames
were saved every 100 ps.

Cell lines
The 293T cells were cultured in DMEM (Gibco, Catalog #10-566-
016) supplemented with 10% FBS (HyClone, Catalog #SH30079.03),
10 mM HEPES (Gibco, Catalog #15-630-130), 100 U/ml penicillin,
100 microgram/ml streptomycin and 2 mM GlutaMAX (Gibco,
Catalog #35-050-079).

Cloning
The plasmid vectors pCG1-SARS-2-S with a gene of codon-
optimized S-protein with �19 and furin cleavage site mutations
(R682G or R685K) [84] and pCG1-hACE2 were kindly provided by
Prof. Dr. Dmytriy Mazurov (Institute of Gene Biology RAS). The
DNA fragment coding for the hACE2 were synthesized and cloned
into the dual promoter vector pCDH511b (CMV MCS/EF1a eGFP)
under the control of the CMV promoter. The soluble protein
expression vectors were generated by cloning of the SARS-2-
S and hACE2 extracellular domains into the pFUSE-Fc vector
(Invivogen).
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Figure 7. Structure-based topological importance and sequence-based conservation of the binding site. (A, B) Top and side views of the Spike structure
colored with respect to the structure-based topological importance and the conservation score of the Spike amino acid residues, respectively. (C, D)
Box plots of the structure-based topological importance and Valdar’s conservation score calculated for the binding site, RBD, and exposed amino acid
residues of Spike, respectively.

SARS Cov-2 and VSV-G pseudotyped viruses
The lentiviral particles were prepared by co-transfection of
HEK293T cells with lentiviral vector coding for firefly luciferase
(pCDH-CMV-LUC-EF1 Hygro, Addgene #129437), GAG and Rev
packaging plasmids combined with VSV-G or pCG-SARS-2-
S envelop plasmids. Supernatants containing the virus were
collected at 72h post-transfection and lentiviruses were con-
centrated with the Lenti-X Concentrator (Takara, Catalog
#631232). Aliquots of viruses were snap-frozen in liquid nitro-
gen and stored at -80C. Pseudotyped virus aliquots were
titrated on hACE2-HEK293T cells and assessed by luciferase
assay.

Compounds neutralization activity against
pseudovirus
hACE2-HEK293 cells were generated by transduction of HEK 293
cells with lentiviruses coding for hACE2 and GFP (pCDH511b CMV
hACE2/EF1a eGFP). Then, hACE2-HEK293 cells, which express
ACE2 receptor, were infected with pseudovirus expressing the
VSV-G or SARS Cov-2 and luciferase reporter gene in the presence
and absence of serial dilutions of testing compounds. Viral entry
to the cells was quantified using the Bright-Glo™ Luciferase
Assay System (# E2620, Promega). The dose–response curves were

plotted with the relative luminescence unit against the sample
concentration.

RBD and hACE2 proteins expression and
purification
The SARS-2-S-Fc and hACE2-Fc were expressed using the
FreeStyle 293 Expression System. Four days after transfection
media was collected, centrifuged 15 min 350 g at RT, and
filtered through a 0.22μm filter. The supernatants of cell culture
containing the SARS-2-S-Fc and hACE2-Fc were concentrated
and Fc-fusion proteins were captured by HiTrap™ Protein G
HP (Amersham). Then, proteins were concentrated and buffer-
exchanged to PBS by using Centricon Ultra 30K (Merck).

Flow cytometry
Cells were washed with PBS, resuspended in 100 microL of PBS
with 0.5% BSA at a concentration of 106 cells per mL, labeled
with ACE2-Fc or SARS-2-S-Fc at a final concentration of 1 micro-
gram/mL, washed with PBS and was secondary staining with
anti-IgG4 Goat anti-Human, DyLight™ 650 (SA510137, Invitrogen)
according to the manufacturer’s recommendations, washed, and
analyzed using NovoCyte 2060 flow cytometer (ACEA Biosciences,
USA). Data were analyzed with NovoExpress Software (ACEA Bio-
sciences).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/1/bbad459/7477804 by Jyvaskylan yliopisto / Kirjasto - kausijulkaisut user on 14 M

arch 2024



10 | Popov et al.

Visualization
We used PyMol v.2.3.5 [85] to produce structural images, and
matplotlib v.3.3.0 [86] and plotly v.4.12.0 [87] python libraries, and
the Mathematica v.10.1 package [88] to produce data plots.

CONCLUSION
In this study, we introduced a computational approach to iden-
tify vulnerable regions in viral proteins, specifically focusing on
SARS-CoV-2 spike glycoprotein S. By considering protein dynam-
ics, accessibility and mutability and the putative mechanism of
action of drugs, we aimed to detect promising binding sites for
potential therapeutic interventions. Our analysis of MD trajec-
tories revealed a conformation- and oligomer-specific glycan-
free binding site comprising topologically important amino acid
residues proximal to the RBD. Through virtual ligand screening,
we identified several promising hit candidates; to validate their
potential, we conducted in vitro assays, confirming their efficacy
in inhibiting the virus. We postulate that these ligands, when
bound to the identified binding site, have the ability to lock the
Spike protein in the closed conformation, thereby impeding viral
association with host cells. Overall, our study demonstrates the
effectiveness of our structure- and deep learning-based approach
in identifying drug binding sites and presents potential drug can-
didates for inhibiting the interaction between SARS-CoV-2 spike
glycoprotein S and the hACE2 receptor. The presented computa-
tional approach could help to prepare better for the next pan-
demic by identifying the most relevant viral drug target binding
sites for drug discovery and design.

Key Points

• Deep learning-based workflow enables binding site
detection in viral drug targets.

• SARS-CoV-2 Spike hides potential oligomer- and
conformation-specific binding site.

• This binding site comprises highly conservative amino
acid residues, thus, it is a vulnerable region of the coro-
navirus family.

• Ligands targeting the identified binding site could stabi-
lize the closed conformation of Spike, thus, inhibiting its
activity.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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