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1 Introduction

One of the key long term goals in neutrino physics is to obtain practically solvable quantum
kinetic equations (QKEs) that can accurately and consistently model the coherent neutrino
flavor evolution including also decohering collisions. Traditionally neutrino oscillations have
been described either in the quantum-mechanical (QM) wave-packet approach or using
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some partial quantum-field theory (QFT) methods. In the QM treatment [1–11] neutrinos
are described by wave packets whose widths are related to the uncertainty of neutrino
momentum at the production process. In the partial QFT approaches [11–23] neutrino
production, detection and propagation are considered via compound Feynman diagrams that
treat neutrinos internally as QFT propagators and externally as wave packets. In vacuum,
when decoherence effects related to neutrino production, detection and propagation can be
neglected, both approaches lead to the standard formula for neutrino oscillations probabilities.
However, in hot and dense environments, where interactions modify neutrino flavor evolution
significantly, more fundamental approaches are needed.

The kinetic theory for flavour mixing neutrinos in thermal environments was developed in
early nineties [24–30]. It led to the discovery of an activation mechanism for sterile neutrinos
via mixing and decohering collisions (for the non-resonant case [24, 25] and for the resonant
case [26–28]), which was used to derive accurate nucleosynthesis bounds on neutrino mixing
parameters [29]. For later numerical work see also [31, 32]. The activation mechanism
of [24–28] was later used to establish popular freeze-in warm dark-matter scenarios [33, 34].
The early derivations of the kinetic (density matrix) equations were based on the S-matrix
formalism [29, 35] or on the operator formalism [30]. The resulting equations included forward-
scattering (mean field) corrections and displayed the strong coupling between the particle
and antiparticle sectors [27, 28] induced by neutrino-neutrino forward scattering, which can
cause lepton asymmetry instabilities in the early Universe [32, 36–38]. For more recent work
see [39]. Early treatments did not include the direct particle-antiparticle coherence (or the
particle-antiparticle pair correlation) however. These were incorporated in the CTP-based
derivation in [40–47], which resulted in general QKEs that include both the flavour and
the particle-antiparticle mixing.

Other efforts to derive quantum kinetic equations in the specific neutrino physics context
include [48–51], but these treatments were less general than that of [40–47], relying on the
ultra relativistic (UR) limit and the mean field limit [48] or expansions in small perturbative
quantities [49–51]. These articles found some effects of the particle-antiparticle coherence
and proposed that they may be relevant in hot and dense environments (see also [52]).
This is usually not the case however and there indeed seems to be some confusion in the
literature concerning the notion of particle-antiparticle mixing. This term seems to be used
when actually referring to the CP-violating flavour mixing induced effects on the evolution
of the particle-antiparticle asymmetry, already included in the early treatments discussed
above. Such CP-violating effects are of course at the heart of the leptogenesis [53] and
the electroweak baryogenesis [54] problems. They are also relevant for the production and
decay of heavy Majorana neutrinos in high energy physics experiments [55] as well as for
the dynamics of the supernovae explosions [52]. The true particle-antiparticle mixing on
the other hand, is relevant e.g. for particle production in the early universe during the
(p)reheating phase after inflation [56, 57].

Articles [41–46] discussed dispersive corrections only at a generic level. A more detailed
formulation, but still with no explicit expressions for dispersive corrections was given in [53].
These corrections are important as they eventually give rise to neutrino forward-scattering
potentials. A fully general and self-consistent derivation of the QKEs from fundamental
principles, which include both the forward scattering potentials and the decohering collision
integrals and encompass both flavour and particle-antiparticle mixing coherences, has still
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been missing until now. This work fills this gap responding to a demand sometimes voiced
in the literature [52]. Our formalism is not restricted to treating just neutrino mixing and
coherences and it is indeed much more general than is necessary for most neutrino physics
applications. We will still tune our presentation at all times keeping the neutrino physics
motivation in mind however.

We start from the Schwinger-Dyson (SD) equation in the Closed Time Path (CTP)
formulation [58–60]. In a series of well motivated steps we reduce the SD-equation to quantum
kinetic equations which contain all coherence information essential for neutrino mixing and
oscillations. Our derivation assumes only slowly (adiabatically) varying background fields, the
validity of weak coupling expansion and eventually the spectral limit (although this is optional).
We employ the local approximation that was recently developed and applied in the context of
resonant Leptogenesis [53] and is closely related to the coherent quasiparticle approximation
(cQPA) developed in [41–47]. An essential element in our derivation is the introduction of a
projective representation which reduces the original SD-equation to a set of Boltzmann-type
equations for distribution functions classified according to their natural oscillation frequencies.
In the weak coupling limit it also reveals a novel spectral shell-structure with new “coherence
shells” that are recognized to carry information about the particle-antiparticle and flavour
coherences. We generalize the work of refs. [40–46] in several ways. In addition to using
the projective representation of [47, 53] we allow for an adiabatic evolution in the spatial
coordinates. We also include a derivation and evaluation of the neutrino forward scattering
potentials, whose general structure is much more complex than that found in [48, 49].

Our master equations take a very elegant and intuitive form of a set of Boltzmann-
type equations (or a generalized density matrix equation) that fully contain the neutrino-
antineutrino mixing and are straightforward to solve numerically. Our results are also valid
for arbitrary neutrino masses and kinematics, while e.g. [48–51] assume UR-limit from the
outset. However, we do present our results also in the limit when particle-antiparticle mixing
can be neglected and eventually in the UR-limit. Moreover, we take into account some
higher (infinite) order gradient corrections in the Kadanoff-Baym-equations, which seem to
be neglected elsewhere [49, 50], but are necessary for correct evaluation of the self-energies
and collision terms. In addition (going also beyond the treatments in [40–47, 53]) we present
our results clearly indicating at each step how they can be generalized to include finite width
corrections beyond the spectral limit. Lastly, our derivation comes with a comprehensive
set of generalized Feynman rules which provide a straightforward and systematic way to
compute collision integrals for our QKEs including all coherence effects.

Our most general equations are useful to model the production of flavour-mixing particles
by background fields, for example at the reheating phase after the inflation or during some
phase transitions. In most other cases the particle-antiparticle mixing can be neglected
however, and the frequency-diagonal limit can be assumed. This is sufficient for the resonant
leptogenesis problem as well as the heavy (Majorana) neutrino-antineutrino oscillations
mentioned above. Finally, the UR-limit equations are useful tool to set up numerical
framework to study neutrino distributions in hot and dense astrophysical environments, such
as neutron stars and compact object mergers. These equations are similar to the usual
Boltzmann equations, except for a slightly modified flow term and the phase space functions,
which are replaced by density matrices everywhere.
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The paper is organized as follows. In sections 2 and 3 we set up the Kadanoff-Baym
equations, and show how the pole- and statistical equations can be decoupled. In sections 4–6
we reduce these equations to local QKEs which take the form of a density matrix equation
with and without the particle-antiparticle oscillations. In section 7 we show how to compute
collision integrals appearing in these QKEs, and derive simple Feynman rules to automatize
this task. In section 8 we compute the general 1-loop forward scattering potentials. In
section 9 we discuss how the localization is related to the (lack of) prior information on
the system, and how in general a preparation of the system affects its evolution. Finally,
section 10 contains our conclusions and outlook.

2 Kadanoff-Baym equations

In this section we briefly review the derivation of the Kadanoff-Baym equations for the
neutrino two-point function from the CTP-formalism. Indeed, the quantity that holds the
information about coherence for mixing neutrinos in out-of-equilibrium conditions is the
2-point correlation function:

iSCij(u, v) ≡ Tr
{
ρ̂TC [ψi(u)ψ̄j(v)]

}
, (2.1)

where ρ̂ is an unknown density operator for the system, ψ is the fermion field, TC is time
ordering operator and u0 and v0 are complex time arguments on the usual Keldysh-contour
C [59]. The path ordered 2-point function SC(u, v) obeys the Schwinger-Dyson equation [60–63]
(we suppress the Dirac and flavor indices when there is no risk of confusion):

(S−1
0 ∗ S)C(u, v) = δ4

C(u− v) + (Σ ∗ S)C(u, v), (2.2)

where S−1
0 is the free inverse fermion propagator, (A ∗B)C(u, v) ≡

∫
C d4wA(u,w)B(w, v) and

the contour time delta function δ(4)
C (u− v) ≡ δC(u0 − v0)δ3(u − v). The self-energy function

ΣC depends on the model. It can be computed for example from the 2-PI effective action:

ΣC ≡ −i δΓ2[S]
δS(v, u) , (2.3)

where Γ2 is the sum of the 2-PI vacuum graphs of the theory, truncated to a desired order
in coupling constants.

The complex-time SD-equation (2.2) is equivalent to a coupled set of Kadanoff-Baym
equations [64] for the real-time valued correlation functions:(

[S−1
0 − Σp] ∗ Sp)(u, v) = δ(4)(u− v)(

[S−1
0 − Σr] ∗ Ss)(u, v) = (

Σs ∗ Sa)(u, v). (2.4)

Here p = r, a refers to the retarded and advanced (pole) functions and s =<,> to the
statistical Wightman functions. For more details on precise definition of the real time
functions and self-energies see [41, 42, 47, 53]. The convolution is now defined over real
time variables, and one can separate the internal and external degrees of freedom in (2.4)
by performing the Wigner transform:

g(k, x) ≡
∫

d4r eik·rg(x+ 1
2r, x− 1

2r), (2.5)
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where x ≡ (u + v)/2 is the average coordinate and k is the conjugate momentum to the
relative coordinate r = u − v. This leads to the following mixed space equations:

/̂KSp(k, x)−
(
Σp ⊗ Sp)(k, x) = 1

/̂KSs(k, x)−
(
Σr ⊗ Ss)(k, x) = (

Σs ⊗ Sa)(k, x), (2.6)

where K̂ ≡ k + i
2∂x and we defined a shorthand notation for the mixed space correlation

function [47]:

(Σ⊗ S)(k, x) ≡ e−
i
2 ∂Σ

x ·∂k [Σout(K̂, x)S(k, x)]. (2.7)

Here the superscript Σ indicates that the gradient ∂Σ
x acts only on the self-energy function,

while ∂k is a total derivative. We also defined Σout(k, x) ≡ e
i
2 ∂Σ

x ·∂Σ
k Σ(k, x), and absorbed

the mass term into the singular part of the Hermitian self-energy: ΣH(k, x) = ΣH,sg(x) +
ΣH,nsg(k, x). The two forms of the KB-equations: (2.4) and (2.6) are equivalent and exact
to the given approximation for the self-energy function. Each for has its unique advantages
that we shall use in what follows.

3 Decoupling of the pole and the statistical equations

In addition to their manifest non-locality the KB-equations (2.4) and (2.6) feature a direct
coupling between the statistical and the pole functions. In order to reduce them to a single
local quantum kinetic equation, we must both localize them and decouple the pole equations
from the statistical ones. We will address the decoupling problem first. The key idea is
to split the statistical function into a background part that is strongly coupled to the pole
functions and to a perturbation, whose equation formally decouples. The formal decoupling
then suggests a wide range of approximate solutions that make the decoupling exact, leading
to a single self-consistent equation for the perturbation.

3.1 The general background solution

The pole functions Sr,a can be expressed in terms of the Hermitian function SH and the
spectral function A: Sr,a = SH ∓ iA, and similarly Σr,a = ΣH ∓ iΣA. We can then write
the pole equations in (2.4) symbolically as follows:

S−1
H0 ∗ SH = 1− ΣA ∗ A
S−1

H0 ∗ A = ΣA ∗ SH,
(3.1)

while the statistical equation becomes

S−1
H0 ∗ S< = Σ< ∗ SH − iΣA ∗ S< + iΣ< ∗ A. (3.2)

The inverse Hermitian operator in these equations is defined as

S−1
H0,k(x, y) ≡

(
i∂x −m

)
δ4(x− y)− ΣH(x, y). (3.3)

We chose to work explicitly with S<. The equation for S> is equivalent, but not needed
because A = i

2(S> + S<). We chose to use the direct space notation here, but one may go
to Wigner space by basically just replacing “∗” by “⊗” everywhere.
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We observe that while the pole functions appear explicitly in the equation for S<, the
converse is not true; statistical functions affect the pole equations only indirectly through
the self-energy functions. This suggests dividing the statistical functions as S< ≡ S<

0 + δS<,
where the background solution S<

0 satisfies the equation

S−1
H0 ∗ S<

0 ≡ Σ<∗ SH. (3.4)

This implies that the perturbation δS< satisfies the equation

S−1
H0 ∗ δS< = C<, (3.5)

where the collision integral is given by

C< = iΣ< ∗ A − iΣA ∗ S< = 1
2(Σ

>∗ S< − Σ<∗ S>). (3.6)

The essential feature of this construction is removing the direct coupling term Σ< ∗ SH
from equation (3.5) for the perturbation δS<. We stress that S<

0 is not guaranteed to be
the background solution in the sense that it would make the collision term vanish in the
equation for δS<. For that to be true additional constraint needs to be imposed which is
easiest to see by going to the Wigner space. From (3.1) and (3.4) one readily finds the
solutions A = SH0 ⊗ ΣA ⊗ SH and S<

0 = SH0 ⊗ Σ<⊗ SH. Using these results we can write
the Wigner space expression for the collision integral (3.6) as follows:

C<

ad(k, x) = iΣ< ⊗ SH0 ⊗ ΣA ⊗ SH − iΣA ⊗ SH0 ⊗ Σ< ⊗ SH. (3.7)

This expression vanishes identically if

Σ<(k) = g<(k)ΣA(k) ⇒ S<
0 (k) = g<(k)A(k), (3.8)

where g<(k) is an arbitrary 4-momentum dependent scalar function. Equation (3.8) defines
a large class of consistent background solutions, including the vacuum: g<

vac(k0) = θ(−k0)
and the thermal background:1 g<

th(k0) = 2fFD(k0/T ). We stress that while we call δS< a
perturbation, it does not need to be small; we have only made a convenient division of the
solutions, but no approximations yet. All equations written so far are as general as the
full interacting field theory itself.

3.2 Adiabatic background solutions

The separation of equations (3.1) and (3.4) from (3.5) suggests a way to construct efficient
approximations. First note that the pole functions SH and A are strongly constrained by the
spectral sum rule, which prevents them from having rapidly varying coherence solutions [40, 53].
In many cases they can be solved in an adiabatic approximation which then must hold by
construction also for the background solution S<

0 . Taking a cue from the exact solutions for
A and S<

0 used in (3.7), we may define adiabatic solutions in the Wigner space as follows:

Aad ≡ SH0,ad ΣA,ad SH,ad

S<

0,ad ≡ SH0,ad Σ<

ad SH,ad,
(3.9)

and SH,ad ≡ SH0,ad(1 − ΣA,adAad) with S−1
H0,ad(k, x) ≡ k/ −m − ΣH,ad(k, x).2

1In the spectral and thermal limits, where A = πϵ(k0)(k/ − m)δ(k2 − m2) and Σ< = 2fFD(k0)ΣA, this
implies that S<

0 = 2πϵ(k0)fFD(k0)(k/ − m)δ(k2 − m2) which is the usual thermal propagator.
2The solutions for the pole functions are equivalent with Sp

ad(k, x) = (k/ − m − Σp
ad(k, x))−1.
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The idea is that after the division S< = S<

0,ad + δS<, the term δS< should describe a
transient around the adiabatic background solution S<

0,ad. Again, this is not guaranteed to
hold automatically and for the consistency of the definition two additional conditions are
needed. First, we interpret Σ< ⊗ SH as a coherence damping term that only gives the width
to the background solution. That is, we set Σ< ⊗ SH → Σ<

adSH,ad in equation (3.2) as a part
of the adiabatic approximation. Second, we require that the collision integral (3.6) vanishes
for the adiabatic solution. Dropping all gradients in Wigner space convolutions (2.7) (note
that when acting on adiabatic solution also K̂0 → k0), we get from (3.7):

C<

ad(k, x) ≈ iΣ<

adSH0,adΣA,adSH,ad − iΣA,adSH0,adΣ<

adSH,ad. (3.10)

This expression vanishes if

Σ<

ad(k, x) = g<

ad(k, x)ΣA,ad(k, x) ⇒ S<

ad,0(k, x) = g<

ad(k, x)Aad(k, x), (3.11)

which is the adiabatic generalization of (3.8).
Beyond the choice of g<

ad(x, k), there is a lot of freedom in defining the adiabatic pole
solutions. It is often sufficient to work in the spectral limit, where ΣA,ad ≡ 0, or even in the
vacuum, where Σp

ad ≡ 0, but taking the finite width, dispersion and even backreaction from
δS< could be accounted for, as long as the constraint (3.11) holds. There is yet more freedom
in choosing the approximation for the operator S−1

H0 which can differ in the perturbation
equation (3.5) from S−1

H0,ad in the pole and background equations (3.1) and (3.4). Moreover,
the approximations for the convolutions involving the Hermitian self-energy functions can
be different from the leading order result employed for the absorptive self-energy functions
leading to (3.11). There are thus many ways to define consistent approximation schemes for
the split equations, whose accuracy will obviously depend on the problem at hand.

3.3 Decoupled equation for the statistical function

After an approximation scheme is defined for the pole and the background functions, the
equation (3.5) for the perturbation δS< acquires additional source terms. Given a specific
scheme that satisfies (3.9) and (3.11) and another specific definition for S−1

H0 to be used
in (3.5), we can write the decoupled equation for the δS< as follows:

S−1
H0 ⊗ δS< = S<

ad + C<, (3.12)

where the collision term in (3.12) is written in terms of full S< including the vanishing
adiabatic part, and the source term S<

ad can be written as:

S<

ad ≡ i
2∂/S

<

0,ad + (ΣH − ΣH,ad)⊗ S<

0,ad + g<(ΣH ⊗Aad)− ΣH ⊗ (g<Aad). (3.13)

To get this form we used the adiabatic pole equation for the spectral function along with the
result (3.11). We remind that the approximation used for ΣH does not need to be the same
as the one used for the adiabatic self-energy function ΣH,ad and moreover, the convolutions
associated with the self-energies can be computed also to higher order in gradients. Indeed,
note that the last two terms cancel to the lowest order in gradients.

– 7 –
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The gradient source i
2∂/S

<

0,ad is relevant in applications with rapidly changing backgrounds,
such as resonant leptogenesis [53]. On the other hand, in the transport equations for the
electroweak baryogenesis the entire CP-violating source term comes from the two last terms in
equation (3.13) [54]. However, both terms can be dropped in very slowly varying backgrounds
which is usually the case in light neutrino physics. The term involving ΣH on the other
hand, will allow accounting for the forward scattering corrections to the evolution equations
even when ΣH,ad was set to zero in the pole and the background equations. Conversely,
if ΣH,ad = ΣH, then the self-energy corrections are already resummed to the quasiparticle
dispersion relation and also the explicit self-energy corrections drop from the source term.
We will return to this issue in section 6.3.

It will be useful to rewrite equation (3.12) in an alternative form, in terms of the full
S<-function:

S−1
H0 ⊗ S< = Σ<

adSH,ad + C<. (3.14)

The first term on the right hand side drops in the spectral limit, leaving no explicit source
terms in (3.14). The gradient source and the sources arising from the different approxi-
mations imposed on the Hermitian self-energy functions in (3.12) remain however, hidden
in the notation.

4 Local equations

The quintessential feature of the KB-equations (2.4) and (2.6), and of (3.12) and (3.14)
is their non-locality. Our quest to reduce (3.14) to a local density matrix equation then
clearly requires some further approximations. From the Wigner-space point of view the
task is to curtail the infinite expansions in gradients. This can be justified by a further
adiabaticity assumption, now concerning the perturbation δS<, or it can be enforced by
integration over some of the momentum variables (encoding the lack of information on them).
In what follows, we shall use both methods.

4.1 Adiabaticity in space coordinates

In essentially all problems relevant for neutrino physics, backgrounds are changing slowly in
microscopic scales. This means that we can drop all spatial gradients acting on self-energies
in the Wigner space evolution equations. In a generalization from the purely homogeneous
case studied in [53], we keep the gradients acting on the correlation function however. To
this end we Wigner transform equation (3.12) only over the spatial coordinates and then
work in the adiabatic limit. The result is the following 2-time equation:(

i∂t1 + i
2α · ∇ −Hk

)
S̄<

kx(t1, t2)− (Σ̄Hkx ∗ S̄<

kx)(t1, t2) = iC̄<

kx(t1, t2), (4.1)

where C̄<

kx ≡ γ0C<

kxγ
0. The convolution is now only over time and we identified the vacuum

Hamiltonian
Hkij = δij(α · k +miγ

0), (4.2)

with α ≡ γ0γ and the correlation functions and self-energies with over-bars are defined as
S̄s ≡ iSsγ0, S̄p ≡ Spγ0 and Σ̄s ≡ iγ0Σs, Σ̄p ≡ γ0Σp. Also, to keep our notation compact
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and to highlight the essential features related to the time variable, we defined a shorthand
notation S̄<

kx(t1, t2) ≡ S̄<(k,x; t1, t2). Finally, we dropped the explicit source term appearing
in (3.14), because we are eventually going to the spectral limit with the adiabatic solutions.
This source could be simply added at any point of the derivation however.

4.2 Localization in time

Our next step is to localize equation (4.1) in time. From the 2-time perspective the motivation
for this is obvious as discussed above. From the Wigner space point of view the localization
corresponds to an integration over the frequency variable3. In other words, localization
corresponds to working to the lowest order in a moment expansion in the frequency variable
in Wigner space. We will discuss localization from a more general point of view in section 9,
relating it to a definite statement of the prior information on the system.

Deriving local equation is simple. We start by taking the total derivative of S<

kx(t, t)
and using the chain rule to get

∂tS
<

kx(t, t) =
d
dt
[
S<

kx(t, t)
]
= lim

t1,t2→t

(
∂t1S

<

kx(t1, t2) + ∂t2S
<

kx(t1, t2)
)
. (4.3)

Equation (4.3) can then be combined with (4.1) and its Hermitian conjugate to obtain
the local equation:

∂tS̄
<

kx(t, t) + 1
2
{
α · ∇, S̄<

kx(t, t)
}
+ i
[
Hk, S̄

<

kx(t, t)
]

+ i(Σ̄H ∗ S̄<)kx(t, t)− i(S̄< ∗ Σ̄H)kx(t, t) =
(
C̄<

kx(t, t) + h.c.
)
.

(4.4)

A time-dependent Hamiltonian can be induced by adding singular terms to the self-energy
function ΣH. Likewise, the source term appearing in (3.14) could be easily added to complete
the finite width corrections for the background solution.

Equation (4.4) is local by construction but it is no longer closed. This becomes evident
when one writes explicitly any of the local convolutions appearing in (4.4):

(Σ̄ ∗ S̄)kx(t, t) =
∫
dw0 Σ̄kx(t, w0)S̄kx(w0, t) ≈

∫ dk0
2π Σ̄(K̂0,k, x)S̄(k, x). (4.5)

In the second step we used (2.7), dropped the total derivatives under the integral and
used the adiabatic assumption to replace Σ̄out → Σ̄. From the 2-time perspective the
problem is that the convolution depends on the unknown δS̄kx(w0, t) for arbitrary w0, while
equation (4.4) only yields the solution for w0 = t. The loss of closure is a generic problem
in deriving Boltzmann type equations from the SD-equations, and the usual solution is to
reduce the Wigner space correlation functions to spectral limit [41, 53]. We will also go to
spectral limit eventually, but for now we continue to develop the more general formalism
including finite width corrections. To facilitate this we next introduce a novel homogeneous
decomposition [53] for the perturbation δS<.

3The local function Skx(t, t) is the lowest frequency moment of the Wigner-space function S(k, x):

Skx(t, t) = lim
t′→t

S(k; x, t, t′) = lim
t′→t

∫
dk0

2π
e−ik0(t′−t)S(k, x) =

∫
dk0

2π
S(k, x).
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4.3 Homogeneous ansatz

Remember that equation (4.4) is really an equation for δS̄<, even though we wrote it in
terms of the full S̄< for the simplicity of notation. Equations for δS̄< admit a broader class of
solutions than do the pole equations (3.1) and the equation (3.4) for the background. While
the latter two admit only inhomogeneous solutions (in the sense of classifying the solutions
to differential equations), equation (3.5) and its descendants have also homogeneous solutions
which can always be written in the following form [53]:

δS̄<

kx(t;u0, v0) = 2Ākx(u0, t) δS̄<

kx(t, t) 2Ākx(t, v0). (4.6)

Homogeneous solutions are often used to model transients set up at some initial time tin.
Indeed, the spectral function is the unitary time evolution operator in the free theory limit:
2Ā0(t1, t2) = U(t1, t2), whose correct normalization is ensured by the spectral sum rule
2Ā(t, t) = 1. Here we follow the idea of [44–46, 53] and use (4.6) as an ansatz for the
non-local terms in the convolution integrals. This makes sense in dissipative systems with
a finite damping rate γk where only points with |u0 − v0| <∼ γk are strongly correlated;
for more discussion see [53]. Remarkably, the structure (4.6) transforms all convolutions
in (3.5) into simple matrix products:

(Σ̄ ∗ δS̄s)kx(t, t) = (Σ̄ ∗ 2Ā)kx(t, t) δS̄s
kx(t, t) ≡ Σ̄eff,k(x) δS̄s

k(x). (4.7)

Here we used the spectral sum rule and we also adopted the more convenient notation setting
e.g. δS<

kx(t, t) ≡ δS<

k (t,x) ≡ δS<

k (x). The reverse ordered convolutions are just the Hermitian
conjugates of the above: (δS̄s ∗ Σ̄)kx(t, t) = [(Σ̄ ∗ δS̄s)kx(t, t)]†.

4.4 The master equation

The result (4.7) allows a tremendous simplification, reducing the original integro-differential
equations to a set of ordinary differential equations. Indeed we can now immediately recast
our local equation (4.4) simply as:

∂tS̄
<

k + 1
2{α · ∇, S̄<

k } = −i
[
Hk, S̄

<

k

]
− iΞ<

k + C̄<

H,k, (4.8)

where the forward scattering term is defined as

Ξ<

k = Σ̄H
effkδS̄

<

k + Σ̄H,k ∗ S<

0k − h.c., (4.9)

and the Hermitian part of the local collision integral is

C̄<

H,k ≡ −1
2
(
Σ̄>

eff,kS̄
<

k − Σ̄<

eff,kS̄
>

k + h.c.
)
. (4.10)

We suppressed the x-dependence in all correlation and self-energy functions for clarity and
we remind that we dropped the source term appearing in (3.14).

Equation (4.8) is our final master equation. While the effective self-energies are still
convolutions with the spectral function, they no longer depend explicitly on the perturbation.
Also the convolution Σ̄H,k ∗ S<

0k is just some known function. In the spectral limit it can
be absorbed into the δS̄<

k -term in (4.9), which then allows writing Ξ<

k → Σ̄H
effkS̄

<

k − h.c.
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The master equation is formally closed, assuming that self-energy functions are defined
externally. We define the Hermitian self-energy function in sections 5.3 and 8 and in section 7
we show that (4.6) allows expressing all self-energies including those in the collision integral
in terms of the local correlation function. Note that no specific approximation scheme for
the pole and the background solutions was needed in the above derivation. Different choices
would lead to slightly different effective self-energy functions without changing the form
of the master equation.

5 Density matrix equations

We now proceed to derive the quantum kinetic (density matrix) equations from the master
equation (4.8). These equations take the simplest form in a projective representation onto
the helicity and the Hamiltonian eigenbases. This classifies solutions according to their
eigenfrequencies which simplifies equations and helps the analysis and interpretation. We
will work explicitly in the vacuum Hamiltonian basis, as this is sufficient in most, if not all
problems in neutrino physics. A generalization to the quasiparticle basis incorporating a
resummation of thermal corrections to the Hamiltonian is discussed in section 6.3.

Vacuum representation. In a homogeneous and isotropic system helicity is conserved and
the whole Dirac algebra is spanned by eight primitive structures that we list in (A.1). However,
these structures can be more conveniently chosen [47, 53] in the following combinations:

P ab
khij = Nab

kijPkhP
a
kiγ

0P b
kj , (5.1)

where the helicity4 and the vacuum energy projection operators are defined as:

Pkh ≡ 1
2
(
1+ hα · k̂γ5) and P a

ki ≡
1
2

(
1+ a

Hki

ωki

)
. (5.2)

Here h = ±1 is the helicity, a, b = ±1 are the energy sign indices and ωki = (k2 +m2
i )1/2 is the

vacuum energy of the neutrino eigenstate. Projection operators satisfy completeness relations
P+

ki + P−
ki = Pk+ + Pk− = 1, the orthogonality and idempotence relations P a

kiP
b
ki = δabP

a
ki

and PkhPkh′ = δhh′Pkh, and the eigenequations HkiP
a
ki = P a

kiHki = aωkiP
a
ki as well as

α · k̂γ5Pkh = Pkhα · k̂γ5 = hP a
ki. The normalization factors Nab

kij are most conveniently
chosen as follows:

Nab
kij ≡

(
Tr
[
PkhP

a
kiγ

0P b
kjγ

0])−1/2
=
[

2ωkiωkj

ωkiωkj + ab(mimj − |k|2)

]1/2

. (5.3)

This construction generalizes directly to the adiabatic case, so that we can parametrize our
Wightman functions without any loss of generality as follows:

S̄<

kij(t,x) =
∑
haa′

f<aa′

khij (t,x)P aa′
khij , (5.4)

4The non-covariant operator Pkh corresponds to helicity only in the rest frame of the energy eigenstate.
Otherwise it measures the spin along the momentum in a given frame. The covariant helicity operator
Ph = 1

2 (1 + γ5/si
) with si = (|k|, ωkik̂)/mi cannot be used, because its definition would require an exact

definition of the energy shell, and this information is not available to us. Indeed, if it were, then each state
would be defined precisely and no oscillations would take place.
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where f<aa′

khij (t,x) are some yet unspecified functions. Given the normalization (5.3) it is easy
to show that Tr[S̄<

kijP
e′e
khji] = f<ee′

khij . This normalization also simplifies the dynamical equations
and leads to the standard normalization of the distribution functions in the thermal limit.

5.1 Projected master equation

Using the projective representation (5.3) we can easily derive a generalized density matrix
form for the master equation (4.8). We insert (5.3) into (4.8), multiply with P e′e

khji (note the
order of the flavour and the energy sign indices) and take a trace over the Dirac indices to
extract scalar equations for the eigenfunctions f<ee′

khij (t,x):5

∂tf
<ee′

khij + (Ve′e
khij)aa′ k̂ · ∇f<aa′

khij = − 2i∆ωee′
kijf

<ee′

khij +Tr
[
C̄<

H,khijP
e′e
khji

]
− i(WHee′

khij )l
af

<ae′

khlj + i[(WHe′e
khji )l

a]∗f<ea
khil,

(5.5)

where k̂ = k/|k|, a sum over the repeated indices a and l is understood and e defined the
oscillation frequency:

2∆ωee′
kij ≡ ωe

ki − ωe′
kj , (5.6)

with ωe
ki ≡ eωki. The forward scattering coefficient tensor is given by:

(WHee′
khij )l

a ≡ Tr
[
P e′e

khjiΣ̄H
effkilP

ae′
khlj

]
. (5.7)

In deriving (5.5) we used (f<ae
khil)∗ = f<ea

khli, which follows from the Hermiticity of S̄<

k (t, t), as
well as the orthogonality relation Tr[P aa′

khijP
e′e
khji] = δa′e′δae and we defined

Tr
[
P e′e

khjiαP
aa′
khij

]
+Tr

[
P aa′

khijαP e′e
khji

]
≡ (Ve′e

khji)aa′k, (5.8)

where the velocity tensor then is

(Ve′e
khij)aa′ = δa′e′Veae′

khij + δaeVa′e′e
khji , (5.9)

with
Vabc

khij ≡ 1
2N

ac
kijN

bc
kij

(
vki

[
a

(N bc
kij)2 + b

(Nac
kij)2

]
− vkjcδa,−b

)
, (5.10)

and vki ≡ |k|/ωki.
The master equation (5.5) is written in terms of frequency states rather than particle

and antiparticle solutions. The positive frequency solutions directly correspond to particles
5We implicitly assumed that in the forward scattering terms in (5.5) the background solution has the same

form as the perturbation. To be consistent with our most general assumptions, one should replace e.g.

(WHee′
khij )l

af <ae′

khlj → (WHee′
khij )l

aδf <ae′

khlj + Tr
[
P e′e

khji(Σ̄H ⊗ S<
0 )
]
.

While the trace-term is a known function, it has a different form than the first term, except in the spectral
limit. Remember that we also dropped the source term appearing in (3.14), which would add a further term:
Tr[((Σ<

ad,khSH,ad,kh)ij + h.c.)P e′e
khji] to the r.h.s. of (5.5). Instead of writing equation (5.5) in a complete but

cumbersome form for δf <ee′

khij , we prefer the simpler, slightly inaccurate notation, keeping these caveats in mind.
These issues are eventually not relevant for the neutrino physics applications where the spectral limit can
be taken.
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of course, while the antiparticles correspond to the negative frequency solutions with inverted
3-momenta. At the level of distribution functions this implies the following relation:6

f̄<,>
khij = −f>,<−−

(−k)hij , (5.11)

where functions in the l.h.s. refer to antiparticles. It is indeed notationally much simple to
work with frequencies without an explicit identification of antiparticles at the level of the
evolution equation (5.5). One can always convert the initial conditions and the final results
to the particle-antiparticle language using (5.11), however.

The first term on the right hand side of (5.5) comes from the commutator with Hk

and it induces the leading time-dependence of solutions according to (5.6). The left-hand
side of (5.5) displays a modified Liouville term where the tensor (Ve′e

khij)aa′ encodes the
effect of different group velocities on the coherence evolution. The interaction terms are
cleanly separated into a collision integral and the forward scattering terms. All terms in (5.5)
thus have a clear physical meaning and the apparent complexity of the equation merely
reflects its wide generality; equation (5.5) describes both flavour and particle-antiparticle
oscillations for arbitrary neutrino masses with arbitrary interactions in backgrounds that
are only constrained to be adiabatic in space, with a large freedom in the choice of the
adiabatic approximation scheme.

To proceed we must finally specify our approximation scheme(s) and define how to
compute the self-energy functions and collision integrals. We will first consider the simplest
approximation, i.e. the (vacuum) spectral limit. After that we will define forward scattering
terms involving known Hermitian self-energy structures. The definition and evaluation of
generic self-energies and the collision integral will be discussed in section 7.

5.2 Spectral limit

Spectral solutions are easy to find directly using the projective parametrization (5.4). One
can start with the Hermitian part of the statistical KB-equation (2.6) in the collisionless
limit to the zeroth order in gradients:

2k0S̄
s(k, x) = {Hk, S̄

s(k, x)}. (5.12)

Inserting here the equivalent of (5.4): S̄<

hij(k, x) =
∑

ee′ Fsee′
khij(k0, x)P ee′

khij , one immediately
finds

(
k0 − ω̄ee′

kij)Fsee′
khij = 0. This is a spectral equation whose solutions are distributions

Fsee′
khij(k0, x) = 2πf see′

khij(t,x)δ(k0 − ω̄ee′
kij), (5.13)

where f see′
khij are some shell-functions that parametrize the correlation functions Ss

il(k, x). The
cQPA shell solutions (5.13) were found and used to derive QKEs for fermions and bosons
in the spectral limit in [41, 44–47]. The frequencies ω̄ee′

kij are given by

ω̄ee′
kij ≡ 1

2(ωe
ki + ωe′

khj). (5.14)
6The minus sign in this definition is a convention that arises from our definition of the spectral repre-

sentation (5.4). Indeed, from S̄> + S̄< = 2Ā we get f >ab
khij + f <ab

khij = aδabδij . For positive frequencies the
usual relation f >

khij = δij − f <

khij then arises with f<
khij ≡ f<++

khij . For the negative frequencies however,
f >−−

khij = −δij − f <−−
khij and the minus sign in (5.11) is needed to give the correct relation f̄ >

khij = δij − f̄ <

khij .
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Figure 1. Shown is the cQPA-shell structure for two-neutrino mixing. (The continuation to negative
k is a simplification of the full 3-dimensional rotation symmetry.) Blue and red lines denote the
mass shells, purple lines show the flavor coherence shells, and green dashed lines are the particle-
antiparticle coherence shells. Black ellipses illustrate the uncertainty on momentum and frequency in
the preparation of the system, which would prevent determining exact flavour shells (mass-eigenstates),
but would eliminate the particle-antiparticle mixing. The black line on the negative momentum side
illustrates the use of a flat weight in frequency and ideal accuracy in momentum (see section 9).

We display these shells for two-neutrino mixing in figure 1. A solution corresponding to a
spectral shell k0 = ω̄ee′

kij has the oscillation frequency 2∆ωee′
kij , given by (5.6). The particle-

antiparticle coherence solutions with e ̸= e′ reside at k0 ≈ 0 and oscillate very rapidly in
comparison to flavour coherence solutions with e = e′ but i ̸= j that form tight bundles with
the usual mass-shell solutions with e = e′ and i = j. We will use the vast difference in the
oscillation frequencies between the particle-antiparticle and flavour mixing to derive a much
simpler evolution equation limited to only flavour mixing in section 6.1 below.

Homogeneous ansatz with the spectral limit. The Ansatz (4.6) is a more general
construction than the spectral cQPA solution, but it reduces to (5.13) when one uses spectral
free theory solutions for the pole functions. The free spectral function in the Wigner space
is given by:

Āij(k, x) = πsgn(k0)(/k +mi)γ0δ(k2 −m2
i )δij = πδij

∑
a

P a
kiδ(k0 − ωaki). (5.15)

Here it is simpler to use the direct space representation of this function, which is just the
time-evolution operator:

2Āk(u0, v0) = eiHk(u0−v0). (5.16)
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Using (5.4) we can write the local correlator appearing in (4.6) in the projective representation.
Then, employing (5.16) with the rules given below equation (5.2), we immediately get

δS̄s
kxij(t;u0, v0) =

∑
habln

2Ākxil(u0, t)δf sab
khln(t,x)P ab

khln2Ākxnj(t, v0),

=
∑
hab

1
2ω̄ab

kij

δf̂ sab
khij(t,x)Dab

khijγ
0 exp

(
−iωa

kiu0+iωb
kjv0

)
,

(5.17)

where s =<,> and δf̂ sab
khij ≡ exp(2i∆ωab

kijt)δf sab
khij and we defined

Dab
khij ≡ 2ω̄ab

kijP
ab
khijγ

0 = abN̂ab
kijPkh(/ka

i +mi)(/kb
j +mj), (5.18)

with (ka
i )µ ≡ (ωa

ki,k) and N̂ab
kij ≡ Nab

kijω̄
ab
kij/(2ωa

kiω
b
kj). Moving to the Wigner space in fre-

quency and assuming t = 1
2(u0 + v0), equation (5.17) becomes (now written for δSs

ij without
the bar)

iδSs
ij(k, x) = 2π

∑
hab

δf sab
khij(t,x)

1
2ω̄ab

kij

Dab
khijδ(k0 − ω̄ab

kij). (5.19)

This is the just the spectral cQPA-result (5.13). We shall see in section 7 that the non-
vanishing phase factors for t ̸= 1

2(u0 + v0) have a crucial role in ensuring correct 4-momentum
conservation over the internal vertices in loops contributing to collision integrals [65].

In the diagonal limit a = b and i = j the structure Dab
khij reduces to the standard form:

Daa
khii = Pkh(/ka

i +mi). We then get:

iδSsaa
ii (k, x) = 2π

∑
h

δf saa
khii(t,x)Phk(/ka

i +mi)
1

2ωa
ki

δ(k0 − ωa
ki). (5.20)

This solution has the same form as the most general spectral adiabatic background solution
depending on flavour, helicity and frequency, proving that in the spectral limit the background
solutions can indeed be merged into diagonal transient solutions. One can then write the
full solution in the same form as (5.21):

iSs
ij(k, x) = 2π

∑
hab

f sab
khij(t,x)

1
2ω̄ab

kij

Dab
khijδ(k0 − ω̄ab

kij), (5.21)

where f sab
khij = δabδijf

sa
eq,kii + δf sab

khij .
We stress that the spectral limit for adiabatic solutions is convenient and often sufficient,

but not obligatory assumption for the analysis of (5.5) and the self-energy terms that appear
in the equation. One could add non-trivial gradient corrections and finite widths to (5.5)
and to spectral function (5.15), although this would come with a considerable amount of
additional tedium. Our goal has been to balance between the full generality and the simplicity
of notation for the benefit of both approaches.

5.3 Hermitian self-energy corrections

In essentially all problems in neutrino physics one can neglect dispersive and finite width
corrections to background solutions and in the definition of the projective basis. However,
we have included forward scattering corrections to (5.5). As we discussed at the end of the
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Figure 2. One-loop diagrams which contribute to light neutrino self-energy.

section 3, we can use different Hermitian self-energy functions in the pole- and the background
equations and in equation (5.5). This freedom induces forward scattering corrections to (5.5)
even when the pole equations are treated in the free theory limit.

Moreover, we can evaluate the effective Hermitian self-energies (4.7) using the vacuum
spectral function (5.15). This immediately reduces the effective self-energies into simple
products:

Σ̄H
eff,kij(t,x) = (Σ̄H ∗ 2Ā)kx,ij(t, t) =

∑
a
Σ̄H,kxij(aωkj)P a

kj . (5.22)

The forward scattering coefficients then become

(WHee′
khij )l

a = Tr
[
P e′e

khji Σ̄Hkil(aωkl)P ae′
khlj

]
. (5.23)

This expression involves ordinary self-energy function instead of the effective one. One should
note that the self-energy function inherits its energy sign from the nearest energy projector
to the right from the self-energy function.

In general Σ̄Hk can depend on the dynamical quantities we are set out to solve. An
example is given by the first diagram in the figure 2 which contains an internal neutrino line.
This correction can cause a strong back-reaction from local neutrino densities, which have
been shown give rise to interesting new phenomena in the early universe [32, 36–39] as well
as in the core collapse supernovae and in the accretion discs around compact objects [52].
Often ΣHk is dominated by the interactions with the background however, and in such cases
one can use some adiabatic (thermal of finite density) approximation for ΣHk. We give a
simpler treatment for such cases below and postpone a direct evaluation of the diagrams
involving neutrinos to section 8.

Simple 1-loop weak gauge corrections. Any homogeneous self-energy function can be
expressed in terms of structures (A.1) and evaluated in the projective basis using table 1.
The weak gauge interactions in particular induce a one-loop self-energy for light neutrinos
corresponding to diagrams shown in figure 2. This self-energy can be written in the following
general form:

Σ̄H,ij(k, x) = γ0(aij/k + bij/u)PL

=
(
k0aij + bij

)
PL − aijα · kPL,

→
(
(k0 + h|k|)aij + bij

)
PL ≡ Vkhij(k0, x)PL,

(5.24)

where aij(k, x) and bij(k, x) are some space-time varying flavor matrices and uµ is the plasma
4-velocity. In the second line we went to the plasma rest frame uµ = (1,0) and in the third
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line we used the fact that operators α · k̂PL and −hPL have the same projective representation
in the vacuum eigenbasis. In this case the forward scattering coefficient tensor becomes

(We′e
khij)l

a = σeae′
khljiVkhil(aωkl, x), (5.25)

where Vkhij(k0, x) is the matter potential experienced by propagating neutrinos, defined
above in (5.24) and the tensor σabc

klji ≡ Tr[P ca
khilPLP

bc
khji] is given by (see (A.1)):

σabc
khlji ≡

1
2N

ca
kilN

bc
kji

(
P̂ a

khl

(N bc
kji)2 +

P̂ b
khj

(N ca
kil)2 − P̂ c

khi

(
1

(Nab
klj)2 − ab

mlmj

ωklωkj

))
, (5.26)

where P a
khi ≡

1
2(1− ahvki) is yet another useful projector function. In the ultra relativistic

(UR) limit P a
khi → δa,−h. Even with thermal assumption, the expression (5.26) is much

more general than the ones presented in the literature so far, see e.g. [48]. It will simplify
significantly in the frequency diagonal and in the UR-limits to be considered below.

Renormalization. Let us briefly discuss the role of renormalization in our quantum
transport formalism. The key point is that renormalization only affects the vacuum parts
of the correlation functions arising from a need to regulate and properly define the vacuum
self-energy corrections. From the results of section 3 it is then clear that renormalization only
affects the vacuum limit of the pole and the background statistical functions. Moreover, the
SD-equations for these functions decouple in the spectral limit, after which renormalization
procedure only concerns the Hermitian self-energy function and can be done using the
standard field theory methods, augmented to account for the flavour mixing. We refer the
reader for example to [53] for a recent explanation of the procedure. For our current purposes,
we can assume that our Hermitian self-energy functions are properly renormalized and we
are using renormalized masses and couplings to parametrize our theory.

6 Limiting cases and extensions

So far our results are very general and in particular valid for arbitrary masses. This results
in complex tensor structures in the projected equations and in the projected self-energies. In
some problems, such as the production of flavour mixing particles from background fields,
this complexity is unavoidable. Considerable simplifications arise if one can neglect the
particle-antiparticle mixing and even more if one can take the UR-limit. Indeed, if one
was only interested in the flavour oscillations, the particle-antiparticle mixing is but an
unnecessary complication. We now show how to remove these structures from (5.5) by a
simple integration [53].

6.1 Integrating out the particle-antiparticle oscillations

As was already pointed out, the particle-antiparticle oscillations have very high frequencies
and they should average out in the usually much slower flavour oscillation scale. Indeed from
equations (5.5) and (5.6) the leading time-dependence of the particle-antiparticle coherence
functions is f e−e

khij(t) ∼ exp(−2ieω̄kijt) with 2ω̄kij = ωki + ωkj , while for the flavour mixing
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functions f ee
khij(t) ∼ exp(−2ie∆ωkijt) with 2∆ωkij = ωki − ωkj . This suggests [53] to take

a Weierstrass transform of equation (5.5):∫
dt′W (t, t′)

[
e.o.m.(t′)

]
, (6.1)

where W (t, t′) ∼ exp
(
−(t− t′)2)/2σ2. Given hierarchy ∆ωk ≪ ω̄k, we can choose a σ such

that 1/∆ωk ≫ σ ≫ 1/ω̄k. Then all terms in the equation which vary in the flavor scale
are essentially unchanged by the transform, while the terms proportional to the coherence
functions get exponentially suppressed:∫

dt′W (t, t′)ce
k(t′)δf e−e

kh (t′) ∼ ce
k(t)δf e−e

kh (t) exp
(
−2(ω̄kσ)2), (6.2)

where ce
kh stands for any coefficient of δf e−e

kh in the equation of motion which is assumed
to vary only in the flavour scale. The Weierstrass transform thus induces a coarse-graining
with a temporal resolution scale σ which effectively washes out the particle-antiparticle
mixing from the master equation.

In the absence of the particle-antiparticle mixing the tensor structures in (5.5) simplify
considerably. In particular the velocity tensor in the spatial gradient term becomes just

(Ve′e
khij)aa′ → e

2δee′δaa′δae(vki + vkj) ≡ eδee′δaa′δaev̄kij , (6.3)

where v̄kij is the average velocity of the flavour states i and j with momentum k. The projected
density matrix equation restricted either to particle or antiparticle sector then becomes:

∂tf
e
khij + v̄kij k̂ · ∇f e

khij = − 2ie∆ωkijf
e
khij +Tr[C̄<

H,khijP
ee
khji]

+ f e
khiliσ

eee
khjilVkhlj(eωkl)− iσeee

khljiVkhil(eωkl)f e
khlj .

(6.4)

No sum over the energy signs remains here, but the sum over the repeated flavour index l

persists. The tensor σeee
khlji still has a complex mass-dependence for general kinematics. We

continue to defer the evaluation of the collision integral to a later stage. Here we also made
explicitly the Feynman-Stueckelberg interpretation and replaced everywhere:

k → ek and (then) f<ee
(ek)hij → ef e

khij . (6.5)

After this identification f+
kh refers to particle and f−kh to antiparticle flavour density matrix.

Equation (6.4) is relevant for studying for example the resonant leptogenesis. It presents a
generalization from [53] in that it gives explicit expressions for the dispersive corrections that
so far have not been included in any leptogenesis calculation. Because (6.4) also allows for
(adiabatic) evolution in the spatial coordinate, it could be easily used to accurately model
the heavy neutrino production and the associated lepton number violating processes in the
collider experiments with arbitrary heavy state kinematics.

6.2 The ultra-relativistic limit

Equation (6.4) simplifies further in the ultra-relativistic limit. UR-limit can be always taken
when dealing with light neutrinos and it is therefore useful to show the equation explicitly
in this case. Using UR-expansion for energies it is easy to show that

Nab
kij ≈ δa,−b + δa,b

2|k|
mi +mj

⇒ σeee
khilj ≈ δe,−h. (6.6)
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With this result we immediately get:

σeee
khljiVkhil(eωkl, x) ≈ δe,−hVkhil(e|k|, x) ≡ (V e

kh)il

σeee
khjilVkhlj(eωkl, x) ≈ δe,−hVkhlj(e|k|, x) ≡ (V e

kh)lj .
(6.7)

The forward scattering terms now collapsed to the familiar light neutrino matter potentials.
If we further define an effective matter Hamiltonian:

(He
kh)ij = eδijωki + (V e

kh)ij , (6.8)

and diagonal velocity matrix vkij ≡ δij |k|/ωki, we can write equation (6.4) in the UR-limit
in the compact, familiar form of a density matrix evolution equation:

∂tf
e
kh + 1

2{vk, k̂ · ∇f e
kh} = −i[He

kh, f
e
kh] + C̄e

kh, (6.9)

where (C̄e
kh)ij ≡ Tr[C̄<

H,khijP
ee
khji]. When dealing with light neutrinos over relatively small

propagation distances, one can further set vkij → δij , in which case the spatial flow term
reduces to 1

2{vk, k̂ · ∇f e
kh} → k̂ · ∇f e

kh.
Equation (6.9) looks deceivingly simple, but it still contains all information of flavour

coherences and forward scattering potentials in the UR-limit. It also has the same form, except
for the more general flow term, as early UR-limit kinetic equations derived by the S-matrix or
operator formalism techniques [27–30] and it is sufficient for almost all light-neutrino physics
applications, from laboratory experiments to light neutrino interactions in the early universe
and within high density astrophysical objects. Before we turn to crucial issue of computation
of the collision integrals we still discuss two issues related to the matter Hamiltonian and
the choice of the basis one uses for the pole functions.

Flavour and the matter eigenbases. So far we have worked exclusively in the vacuum
basis. However, given the effective Hamiltonian, we can perform rotations to the flavour
or matter bases in the usual manner. In particular the transformation between the flavor
and mass basis is just a constant rotation.

Hfl,e
kh ≡ UHe

khU
†, (6.10)

where in the standard case with three light neutrinos U would be the usual PMNS mixing
matrix. A similar transformation could be performed to go to the matter basis where He

kh is
diagonal. The matter basis, which always depends on k and possibly on h, in general also
rotates along the neutrino path, because V e

kh = V e
kh(x). As a result Um ≡ U e

kh(x) depends
on the space-time coordinate x as well, which gives rise to the additional Liouville terms
after the rotation into the matter basis: ∂tf → ∂tfm + [Um(∂tU

†
m), fm] and {vk , k̂ · ∇f} →

{vkm , k̂ · ∇fm + [Um(k̂ · ∇U †
m), fm]}, where vkm = UmvkmU

†
m.

6.3 Quasiparticle basis

Until now we have used vacuum solutions both for the projective representation and in
the reduction of the effective self-energy functions. This is a very good assumption in all
light neutrino physics applications and in the leptogenesis problem. However, in some cases
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dispersive corrections can change the phase space structure significantly. A well known
example is the infrared region of a thermal plasma with gauge interactions, where new
collective hole excitations appear [66–68]. This situation is realized in some electroweak
baryogenesis scenarios [69–72] due to strong flavour blind QCD interactions. For illustration
we briefly consider this case where additional weak flavour mixing interactions can be treated
perturbatively as discussed above.

The QCD-interactions are vector-like and induce a Hermitian self-energy correction,
which in the hard thermal loop (HTL) approximation has the form

Σth
H = a/k + b/u. (6.11)

Because Σth
H is flavour diagonal, we can work in the vacuum mass eigenbasis. Neglecting

for the moment all other corrections, the inverse propagator for the system can be written
as S−1 = rnp0γ

0 − rγ · k − mi, where r ≡ 1 − a and rnk0 ≡ rk0 − b. This propagator
has two branches of poles given by:

nrk0 = ±
√
|rk|2 +m2

i ⇒ k0 = ωpl
i±(|k|, T ). (6.12)

The positive sign corresponds to particle and the negative sign to the hole solutions of [67, 68].
One can now derive the effective Hamiltonian near these quasiparticle shells [54]:

H±
kh = δij

1
ni

(
α · k + mi

ri
γ0
) ∣∣∣

|k0|=ωpl
i±

. (6.13)

Thermal corrections are manifested mainly via the nontrivial refractive index ni. One can
proceed to construct the energy projectors using (6.13) in entirely analogous manner to
the vacuum case. One should also include the thermal wave-function corrections for the
quasistates, see e.g. [54]. Similarly, one can use quasi-particle generalization of the spectral
function in the evaluation of the various self-energy functions. Finally the perturbative flavour
changing interactions can be added on top of this structure similarly to the vacuum case.

An even simpler generalization to the energy-shell projectors, relevant for the leptogenesis
problem, is to replace the constant masses by a time dependent masses. In this case the
energy projectors pick up a time dependence through masses that gives rise to additional
terms proportional to ∂tmi in the projected equations (5.5), (6.4) and (6.9). For explicit
expressions see [53].

7 Collision integrals

In this section we show how to compute the collision integrals with coherent states in our
transport equations. Our approach is different from section 5.3 where we assumed generic
structures for the Hermitian self-energy function and worked out their projections. Here
we construct the expansion of the collision integrals directly in the projected basis. That
is we will compute the collision integral traces:

Tr
[
C̄<

H,khijP
e′e
khji

]
=
∑
ab

C̄<ab
H,khij Tr

[
P ab

khijP
e′e
khji

]
= C̄<ee′

H,khij , (7.1)
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where in the last step we used the orthogonality of the energy projection operators and the
normalization (5.3). We now insert the expression (4.10) for C̄<

H,khij into (7.1) and proceed
similarly to what we did with the Hermitian self-energy function terms in section 5.1. We
can then write the generic collision integral as follows

C̄<ee′

H,khij = 1
2
∑

l,a

[
(W>ee′

khij )l
af

<ae′

khlj + [(W>e′e
khji)l

a]∗f<ea
khil − (>↔<)

]
, (7.2)

where (Wse′e
khji)l

a-tensors are defined similarly to (WHe′e
khji )l

a-tensor in (5.23):

(Wsee′
khij)l

a = 1
4ω̄ee′

kijω̄
ae′
klj

Tr[ Σsa
kil D

ae′
khljγ

0De′e
khji], (7.3)

for s =>,<. Here we preferred to write the projection operators in the D-tensor notation of
equation (5.18). The key quantity in the expression (7.3) is the self-energy function:

Σsa
kil ≡

∫
dw0Σs

kil(t, w0) exp(iωa
kl(t− w0)) = Σs

out,khil(ωa
kl), (7.4)

where again s =>,<. An essential element in the following analysis is the fact that the
homogeneous Ansatz (4.6), which reduced temporal convolutions to simple products, also
reduces an arbitrary function Σsa

kil, with any number of internal lines, computable in the local
limit. From the reduction process we can infer simple rules for a diagrammatic construction
of collision integrals. We give the main points of the derivation and the final results here.
More details can be found in the companion paper [65].

7.1 General reduction process

Any diagram contributing to the self energy (7.4) consists of a number of vertices connected
by propagators, with an integration over the spacetime coordinates in each internal vertex.
Wigner transforming propagators then introduces a momentum integral for each internal line
and a group of phase factors that after integration give rise to 4-momentum conservation
over vertices. For the spatial coordinates and momenta this works out in the usual manner,
but the time coordinate requires more attention. Moreover, the internal lines are divided
to statistical (cut) and pole propagators, following the standard rules of the thermal field
theory [46, 65, 73]. Each cut propagator introduces a statistical f -factor that gets associated
with an external state in the interaction process, while the pole propagators give rise to the
internal resonances or generate loop corrections to collision rates.

It is simplest to work in the 2-time representation and we continue to assume the free
theory limit for the pole functions. In this case the dynamical and the background solutions
can be combined as explained in section 5.2. Following (5.19) the full statistical correlation
function can then be written as:

S̄s
kxij(t;u0, v0) =

∑
hab

1
2ω̄ab

kij

f sab
khij(t,x)Dab

khij exp
(
−2i∆ab

khijt− iωa
kiu0 + iωb

kjv0
)
, (7.5)

where s =<,>. In this article we consider only the gauge interactions and treat the gauge
fields as non-coherent resonances. This means that we only need the 2-time representation
of the standard gauge-field propagator:

Dµν(q;u0, v0) =
∫ dq0

2π Dµν(q)e−iq0(u0−v0), (7.6)
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Figure 3. A section of a generic diagram contributing to the projected local collision integral (7.1).
The dashed outline shows the extent of the self-energy contribution and the detail at the center
displays insertion of nontrivial coherent propagators (7.5).

where Dµν(q) is the usual momentum space propagator function. Extension to gauge
fields, or additional scalar fields, that are a part of the non-equilibrium quantum plasma is
straightforward, but to keep discussion simple we do not present it explicitly here.

Figure 3 shows the propagator (7.5) associated with the internal time coordinates u0
and v0 in a generic self-energy diagram contributing to the self energy (7.4). Remarkably,
the phase factors in (7.5) appear with different frequencies at coordinates u0 and v0 when
either e ̸= e′ or i ̸= j. This difference is crucial to ensure the correct energy conservation
at both vertices even when the connecting propagator has support on a constant energy
shell ω̄ee′

kij . Including also the phase factors from the gauge-field propagators (7.6), we see
that the integral over u0 results in 2πδ(aωpk − bωrl − q0) and the integral over v0 gives
2πδ(cωrm − dωp′n + q′0). As usual, the delta-functions from vertices kill all frequency integrals
associated with the propagators, leaving one extra delta-function that gives a generalized
energy conservation for the process in question [65]. Using the delta-functions one can also
show that the sum of all explicit t-dependent phases, which appear in the definition (7.4) and
in the cut propagators (7.5), vanishes exactly for any process [65]. Instead of giving general
proofs of these statements, we will show below how this works in specific examples.

Having gotten rid of all phase factors we see that each internal cut propagator effectively
contributes the following factor to the diagram:

∑
hab

∫ d3k

(2π)32ω̄ab
kij

f sab
khij(t,x)Dab

khij

=
∫ d4k

(2π)4

[
2π
∑
hab

1
2ω̄ab

kij

f sab
khij(t,x)Dab

khijδ(k0−ω̄ab
kij)

]
≡
∑
hab

∫ d4k

(2π)4 iS
sab
hij (k,x).

(7.7)

The differential fraction in the integral in the first line in (7.7) defines a natural phase space
density factor and f sab

khij(t,x) is the corresponding phase space distribution function. This
leaves Dab

khij as the sole contribution to the scattering matrix element. Alternatively, one
can use the singular cQPA-form given on the second line as the Feynman rule for the cut
propagators with the associated full four dimensional momentum integral.

These results can be summarized by the Feynman rules for evaluating self-energy diagrams
shown in figure 4. In addition to these rules one should associate each propagator line with
an integral over the four-momentum and sums over the helicity, the energy-sign and the
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Z (q0,q)

k pai bj

W (q0, q)

k pai bα

∼ ig
2cw

γµPLŪij(2π)
4δ3(k + p + q)δ(aωki + bωpα + q0)

∼ ig√
2
γµPLUiα(2π)

4δ3(k + p + q)δ(aωki + bωpα + q0)

ai kh bj ∼ iSsab
hij (k, x) = 2π 1

2ω̄abkij
fsabkhij(t,x)D

ab
khijδ(k0 − ω̄abkij)

Figure 4. The Feynman rules for the internal lines and weak interaction vertices associated with
coherent neutrino propagators. In the W -boson vertex Uiα reduces to the PMNS-matrix in the case
of pure active-active mixing (α refers to lepton flavour). In the Z-boson vertex cw = cos θw and the
mixing matrix Ūij reduces to 1 for pure active-active mixing. The rules generalize to arbitrary Lorentz
and flavour structures in an obvious way.

flavour indices. For the pole propagators one should use just the usual momentum space
Feynman rules.

7.2 Collision integral from two-loop gauge diagrams

In figure 5 we show all two-loop self-energy diagrams that give rise to the 2-2 scattering
terms in collision integrals mediated by the weak gauge interactions. Only the four first
diagrams are two-particle irreducible (2PI). The last two diagrams on the second row should
not be included in the full SD approach, where they would be accounted for by the one-
loop corrections to the gauge-boson equations. However, when gauge bosons are treated as
non-dynamical resonances, the 2PI-hierarchy is partially broken and these diagrams must be
added as perturbative corrections to gauge boson propagators. They eventually produce the
squared matrix elements for the s, t and u-channels for a given scattering process while the
2PI-diagrams give rise to the interference terms between the different channels.

In addition to scattering terms these self-energies create a large number of 1-3 decay
and inverse decay terms as well as vertex corrections to 1-2 decays. Different processes
correspond to different cuts on the self-energy diagrams following standard rules of the
finite temperature field theory [46, 65, 73]. For illustration we show cuts that give rise to
Z-mediated 2-2 scatterings and 1-3 decays between neutrinos and other fermions in the
first and fifth diagrams and a cut producing W -boson 1-2 decay correction in the third
diagram. The 2-2 scatterings and the 1-3 decay corrections are further distinguished by
the frequency sign signatures in the overall momentum conservation function following the
standard kinematic analysis which we shall elaborate more in [65].

The self energy function Σ<a
ZZ,il. We now work out the self-energy function Σ<a

ZZ,il that
describes scatterings between coherent neutrinos mediated by Z-gauge bosons. The relevant
diagrams are the first in the upper and the second in the lower row of figure 5. We show these
diagrams again in figure 6 including labels for the momenta and the discrete indices for the
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Figure 5. The 2-loop Feynman diagrams for the self-energy function that give rise to 2-2 neutrino
scattering processes are shown. Crosses in propagator lines denote the possibly coherent propagator
function (7.7), and the light blue lines are thermal cuts which are explained in the text.

intermediate states. To alleviate the complexity of notation we will be using the shorthand

S
saia

′
i

hilil′i
(ki, x) ≡ Ss

Xi
(ki, x). (7.8)

Note that the rightmost propagators marked red in figure 6 are not part of the self-energy
function, but they do contribute to the collision integral according to (7.3). The light blue
numbers at each vertex correspond to the Keldysh time-path indices [65, 73]. They allow
reading which type of propagator corresponds to each line: S12

Xi
= S<

Xi
and S21

Xi
= S>

Xi

for the statistical cut propagators and iD11
µν = iDµν and iD22

µν = (iDµν)∗ for the standard
gauge field propagators. The cut-line thus passes through all statistical propagators in the
diagram. Using these instructions and the Feynman rules given in figure 4 it is easy to
see that the interference diagram gives:

iΣ<a,int
ZZ,il (k, x) =

(
ig

2cw

)4∑
{Xi}

Ūil3Ūl′3l2Ūl′2l1Ūl′1l

∫
{pi,qi}

iDZαν(q1)(iDZµβ(q̃2))∗

× (2π)9δ3(q1 − p3 + p2)δ3(q1 − k + p1)δ3(q̃2 − p1 + p2)

× (2π)3δ(q10 − ω
a′

3
p3l′3

+ ωa2
p2l2

)δ(q10 − ωa
kl + ω

a′
1

p1l′1
)δ(q̃20 − ωa1

p1l1
+ ω

a′
2

p2l′2
)

× γµPL iS
<

X3
(p3, x) γαPL iS

>

X2
(p2, x) γβPL iS

<

X1
(p1, x) γνPL, (7.9)

where
∫

p ≡
∫
d4p/(2π)4 and the curly brackets indicate groups of indices to be summed

or variables to be integrated over. It is easy to perform the q1 and q2-integrals using the
delta-functions from vertices, which leaves out the one overall momentum conserving delta
function. After performing the integrations one finds:

iΣ<a,int
ZZ,il (k, x) =

∑
{Xi}

∫
dPS3A

int,a
kil{pi,Xi} Λ

<

{pi,Xi}(x), (7.10)
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Figure 6. Two-loop graphs that contribute to the matrix element squared of neutrino-neutrino
scattering through s and t channels are shown with explicit index structures and cuts. The black
dot implies the starting point of the evaluation of the trace. The red propagator is the dependent
momentum propagator, see section 7.3 for explanation.

where the phase space integral is defined as:

∫
dPS3 ≡

∫  ∏
i=1,3

d3pi

(2π)32ω̄Xi

 (2π)4δ4(ka
l − p

a′
1

1l′1
+ pa2

2l2
− p

a′
3

3l′3
), (7.11)

where the energy sign indices tell whether a given term contributes to a 2-2 scattering or a
1-3 decay channel. The distribution functions in (7.9) were gathered into the factor

Λ<

{pi,Xi}(x) ≡ f<

X1p1
(x)f>

X2p2
(x)f<

X3p3
(x), (7.12)

and the part that eventually contributes to the matrix element was defined as:

Aint,a
kil{pi,Xi} =

(
ig

2cw

)4
Ūil3Ūl′3l2Ūl′2l1Ūl′1lDZαν(q1)D∗

Zµβ(q̃2)

× γµPLDX1p1γ
αPLDX2p2γ

βPLDX3p3γ
νPL, (7.13)

where the gauge-boson 4-momenta are q1 = (ωa
kl−ω

a′
1

p1l′1
;k−p1) and q̃2 = (ωa1

p1l1
−ωa′

2
p2l′2

;k−p3).
Evaluation of the “direct” diagram shown in the right in figure 6 proceeds analogously.

The phase space-integral (7.11) and the element (7.12) containing the distribution functions
are the same as in the interference diagram. The only difference stems from the different
way of connecting the fermion lines and from the value of the gauge boson momentum q2,
which give rise to a different A-factor:

Adir,a
kil{pi,Xi} = −

(
ig

2cw

)4
Ūil1Ūl′1lŪl′2l3Ūl′3l2DZαν(q1)D∗

Zµβ(q2)

× γµPLDX1p1γ
νPL Tr

[
γαPLDX2p2γ

βPLDX3p3

]
, (7.14)

where q1 = (ωa
kl− ω

a′
1

p1l′1
;k− p1) and q2 = (ωa3

p3l3
− ω

a′
2

p2l′2
;k− p1).

Note that both 3-momenta in the direct channel (7.14) are the same q1 = q2 = k − p1,
while in the interference channel q̃2 = k − p3 is different. This is as expected, since direct
diagram accounts for the s- and t-channels, while interference diagram accounts for their
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interference. Identifying different channels by Mandelstam variables is not obvious in presence
of particle-antiparticle mixing and was done above based on 3-momenta. In the frequency
diagonal limit the situation is simple. For example the t- and u-channel particle-particle
collisions correspond to a = e = ai = a′i = 1 for all i, while the t- and u-channel particle-
antiparticle collision correspond to a = e = a3 = a′3 = 1 and a1 = a′1 = a2 = a′2 = −1. These
are just examples from the different processes embedded in the generic collision integral.
Identifying and classifying all different channels is straightforward but somewhat tedious
task of standard kinematic analysis. For more details see [65].

Collision integral for Z-mediated processes. We have now collected all the pieces
needed to write down the full collision integral corresponding diagrams in figure 6. Inserting the
self-energies computed above to equation (7.1) and doing some simple reorganization we find

C<ee′

ZZ,H,khij =
∑

Y
1

2ω̄aa′
klj

∫
dPS3

[
1
2(M2)ee′aa′

khilj{pi,Xi}Λ
aa′

khlj{pi,Xi}(x) + (h.c.)e′↔e
i↔j

]
, (7.15)

where we collected all summed indices into curly brackets Y = {Xi, a, a
′, l}. The phase space

factor is the same as in (7.11) and the factor containing all distribution functions is

Λaa′

khlj{pi,Xi}(x) = f<aa′

khlj (x) f>

X1p1
(x) f<

X2p2
(x) f>

X3p3
(x)− (>↔< ). (7.16)

Finally, the effective matrix element squared is defined as

(M2)ee′aa′

khilj{pi,Xi} ≡
1

2ω̄ee′
kij

Tr
[
Aa

kil{piXi}D
aa′
khljγ

0De′e
khji

]
, (7.17)

with
Aa

kil{piXi} ≡ Aint,a
kil{piXi} +Adir,a

kil{piXi}, (7.18)

where the quantities in the right hand side are given in equations (7.13) and (7.14). Remember
that f>ab

phij = aδijδab − f>ab
phij in general and the rule f̄<,>

khij = −f>,<−−
(−k)hij for translation between

negative frequency and antiparticle distributions. Note that, as emphasized by our notation,
the frequency and flavour indices get flipped in the Hermitian conjugate term in (7.17),
as is clear from (7.2).

Let us stress that in the presence of mixing the collision integral components are in general
complex; indeed, we found already in section 5.2 that a function fab

khij(t,x) has a leading phase
−2∆ωab

khijt. From (7.16) and the phase space constraint in (7.11) it is then easy to work out
that the leading phase of the phase factor term Λ (and hence that of the whole integrand) is

φΛ = (ωe′
kj − ωa1

p1l1
+ ω

a′
2

p2l′2
− ωa3

p3l3
)t. (7.19)

This means that the integrand is a rapidly oscillating function in the particle-antiparticle
mixing scale in all cases except the fully diagonal limit, where e = e′ and ai = a′i for all i
and in the fully anti-diagonal limit, where e = −e′ and ai = −a′i. This implies that also
the collision integral averages to zero under the Weierstrass coarse-graining of the equation
of motion in the limit discussed in section 6.1.

Despite the compact notation, expression (7.15) is a very complex object that encompasses
all flavour and particle-antiparticle mixing effects for arbitrary neutrino masses and kinematics.
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ai kh bj ∼ Dab
khij

Z (q0,q)

k pai bj ∼ ig
2cw

γµPLŪij

W (q0, q)

k pai bα ∼ ig√
2
γµPLUiα

∼ 1

2ω̄e
′e
kij

Daa′
khljγ

0De′e
khji

a′jal ei

kh

e′j

Figure 7. Simplified Feynman rules for computing the squared matrix element directly. The first
propagator function is to be used in all internal lines and the special DMP propagator (see text for
discussion), shown by red color applies for the outgoing line in the diagram. For the definition of
quantities in the vertex factors see figure 4.

It still displays only the familiar structures from the usual Boltzmann theory and all complexity
is reduced to a bookkeeping of the indices labeling the states. In particular, the phase-space
factor and the dependence on the distribution functions are universal features independent
of the structure of the interactions. The interaction matrix element is more complex than
the usual result for non-mixing states, but its evaluation is formally straightforward and
can be easily done using symbolical routines. We will evaluate (7.17) in the UR-limit in
section 7.4 below. For now, we comment that the simple, intuitive form of our collision
integral, which clearly separates the different flavour and frequency structures, appears to be
in stark contrast with other existing QKE computations in the literature [49, 50].

7.3 Simple Feynman rules for the matrix element squared

The simple factorization of the collision integral to universal phase space elements and a
dynamical matrix element squared allows us to deduce a very simple set of rules to evaluate
the collision integrals directly without the need to repeat the integration procedure for each
new diagram and set of interactions. The rules we now spell out should be obvious from
the above derivation.

• Draw the loop diagrams that contribute to a given interaction process to the desired order
in perturbation theory, and assign unique momentum variable and flavor and frequency
indices for each internal propagator line in the graph, allowed by the interaction vertices.

• Assign the Keldysh-path indices to all vertices to isolate the cut that gives rise to the
desired interaction process. You only need to evaluate Σ> = Σ21 directly, so the first
index is always 2 and the last 1.

• Read off the phase space functions contributing to the Λ-factor from all internal cut
propagator lines. Add the external phase space factor f<aa′

khlj /2ωaa′
khlj , which is associated

with the external, dependent momentum propagator (DMP), marked red in diagrams
in figure 6.

• Determine the phase space density factor with the overall energy conserving delta
function. This depends on the number of loops in the diagram and the cut one is
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interested in. At two loops with a cut leading to 2-2 scatterings this was simple: we
isolated the internal 11-propagator and eliminated its frequency and momentum from
one of its end-vertex delta-functions using the other one.

• Compute the matrix element squared using the Feynman rules shown in figure 7. Start
from the equivalent of the black dot in the diagrams in figure 6 and follow the direction
of momentum in the graph. For each internal cut-line insert the standard propagator
shown in the first diagram in 7. Add the DMP at the end of the fermion line it is
connected to. For each (”22”) “11” line use the (anti) Feynman propagator. Add
the DMP at the end of the fermion line it is connected to. Take a trace over the
Dirac indices.

• Divide the result by two and add the Hermitian conjugate, accounting for the index
changes as indicated in (7.17).

We invite the reader to verify that these rules indeed allow writing (7.15)–(7.17) directly
from the diagrams shown in figure 6. These rules can also be extended, in an obvious way,
to any other interaction types. One particularly interesting application is the Leptogenesis
problem where the gauge interactions are replaced by scalar Yukawa interactions. In that
case one also encounters Majorana neutrinos which require some special rules that can be
found for example in [53].

7.4 Explicit results in the UR-limit

We return now to evaluate the effective matrix element (7.17) explicitly in the UR-limit. This
limit is interesting for practical applications and because it allows to make a direct contact with
some known results in the literature. We begin by pointing out some general simplifications:
first the orthogonality of the energy projectors immediately sets a′ = e′ independent of the
type of interactions. Second, in the case of neutrino-neutrino interactions the trace calculation
simplifies due to the orthogonality of the chirality operators which immediately gives:

PLD
ab
khijPR = abN̂ab

kijPLPkh(mj/k
a
i +mi/k

b
j)PR ≈ δa,−hδa,bPL/p

aPR, (7.20)

where the last result applies in the UR-limit. To arrive at this result we used the expansion
N̂ab

kij ≈ δa,−b/(2|k|) + δa,b/(mi +mj). Similarly, one can show that

PLD
aa′
kh′ljγ

0De′e
khjiPR ≈ δa,eδe,e′δa,a′δe,−h2e|k|PL/k

e
PR, (7.21)

in the UR-limit. From now on we will also assume that the Z-boson is very heavy in the energy
scale of interest, which means that we can set: DZµν = gµν/M

2
Z. With these simplifications

the matrix element (7.17) becomes simple to evaluate. The result is:

(M2)ee′aa′

khilj{pi,Xi} = −32G2
Fδe,e′δa,a′δa,eδe,−hδa1,a′

1
δa1,−h1δa2,a′

2
δa2,−h2δa3,a′

3
δa3,−h3

×
(
Ū4,dir

ilX + Ū4,int
ilX

)
(ke · pa2

2 )(pa1
1 · pa3

3 ),
(7.22)

where GF is the Fermi constant and Ū4,dir
ilX ≡ Ūil1Ūl′1lŪl′2l3Ūl′3l2 and Ū4,int

ilX ≡ Ūil3Ūl′3l2Ūl′2l1Ūl′1l.
Note that in the UR-limit all collision terms with particle-antiparticle mixing drop out at
the leading order. The mixing terms would appear as O(m/E)-corrections only, which we
have dropped above. Such terms also would have a large mixing phase.
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Standard Model (SM) limit. To make equations even more transparent, we now assume
the SM-limit where the neutral current rotation matrices are trivial: Ūij = δi,j . Making use
of the large number of Kronecker delta functions in (7.22), one can show that the general
collision term (7.15) now reduces simply to

C<ee
ZZ,H,khij = −16G2

F δe,e′δe,−h

∑
{ai}

1
2|k|

∫
dPS3 (ke · pa2

2 )(pa1
1 · pa3

3 )Λe
{ai}ij [f ], (7.23)

where the phase space factor is defined as before, but now the flavour indices are no longer
necessary in the kinematic factors:

∫
dPS3 =

∫  ∏
i=1,3

d3pi

(2π)3|2pi|

 (2π)4δ4(ke − pa1
1 + pa2

2 − pa3
3 ), (7.24)

and all flavour dependence is in the phase space factor:

Λe
{ai}ij [f ] =

∑
l,l′,l′′

{(
f>a3a3

p3−a3l′′l′f
<a2a2
p2−a2l′l′′f

>a1a1
p1−a1ilf

<ee
k−elj

+ f>a3a3
p3−a3il′f

<a2a2
p2−a2l′l′′f

>a1a1
p1−a1l′′lf

<ee
k−elj

)
− (>↔<)

}
+ h.c. .

(7.25)

The first combination of f -functions in (7.25) arises from the direct diagram and the second
set from the interference diagram. Note that while pure neutral current processes do not give
rise to source terms in (5.5), nontrivial source and therefore nontrivial mixing contributions
would be produced by charged currents. Equations (7.23) and (7.25) give the correct neutral
current collision integral for such a setup.

Neutrino-antineutrino scattering. Next consider the special case of νν̄ − νν̄-scattering
in the UR and SM-limits. To get this process we must set7 e = 1 = a3 = 1 and a1 = a2 = −1
in (7.23)–(7.25). To impose the Feynman-Stueckelberg relations we first redefine pi → aipi

and k → ek. This immediately sets (ke ·pa2
2 )(pa1

1 ·pa3
3 ) → ea1a2a3(k ·p2)(p1 ·p3) with ordinary

dot-products. In the present case moreover ea1a2a3 = 1. Similarly, the delta-function in
the phase space factor now becomes δ4(k + p1 − p2 − p3) appropriate for the process we are
considering. Finally, we identify e.g. f<−

−p2−(−1)l′l′′ = −f̄>
p2+ij . Working similarly with the

other distribution functions, we find that the particle distribution factor becomes:

Λνν̄→νν̄
klj{pi,Xi} =

∑
l,l′,l′′

{(
f̄<

p1+ilf
<

k−lj f̄
>

p2+l′′l′f
>

p3−l′l′′

+ f>

p3−il′ f̄
>

p2−l′l′′ f̄
<

p1−l′′lf
<

k−lj − (>↔<)
)
+ h.c.

}
.

(7.26)

Writing furthermore f>

k2hij = δij − f<

p2hij and similarly for the antiparticle distributions, this
falls into the familar form from the usual Boltzmann theory, except that the expression still
contains all information of the flavour mixing.

If we finally take the flavour diagonal limit, all terms in Λ become real. We also see that
the second (interference) term in (7.26) gives just one term with i = l = l′′ = j. In the first

7The indices 1 and 3 correspond to dummy variables and are interchangeable here.
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(direct) term however, we only get i = l = j and the term still contains a sum over one flavour:
l′ = l′′. That is, when l′ ̸= i only the first term survives and gives the collision integral for
the usual νiν̄l − νiν̄l-scattering coming from the single t-channel diagram. Indeed, the matrix
element for this process is easy to compute and the result |Mt|2 = 32G2

F(k · p2)(p1 · p3) is in
perfect agreement with the above results. For l′ = i both terms contribute and reproduce
the result for νiν̄i − νiν̄i-scattering obtained from summing the s- and t-channel terms using
the usual field theory methods.

Two flavour active-sterile mixing. Let us finally consider the case of two flavour mixing
between an active (a) and a sterile (s) neutrino in the UR-limit. We will cast the collision
integral for this system into the familiar form in the flavour basis. As before, we label
the flavour states by Greek and vacuum basis states by Latin letters. In this case the
rotation matrix between the flavour and vacuum basis U and the neutral current mixing
matrix Ū are given by:

Uiα =
(
c −s
s c

)
, Ūαβ =

(
1 0
0 0

)
⇒ Ūij =

(
c2 cs

cs s2

)
, (7.27)

where e.g. c ≡ cos θ, where θ is the vacuum mixing angle. Now observe that the rotation
matrices Ū within Ū4,dir

ilX and Ū4,int
ilX always sandwich the distribution functions f<,>

Xipi
in

equation (7.12). Because the matrix element function (7.17) does not depend on flavour
in the UR-limit, the rotation amounts to replacing the vacuum basis matrices Ūij by their
flavour basis representations Ūαβ as well as setting f sab

phij → Uαif
sab
phijU

†
βj ≡ f sab

phαβ everywhere.
The final result is

Cee
ZZ,Hkh = −

(
Γ>e

ZZ,Hkhaaf
<e
khaa

1
2Γ

>e
ZZ,Hkhaa f

<e
khas

1
2Γ

>e
ZZ,Hkhaa f

<e
khsa 0

)
−
(
<↔>

)
, (7.28)

where we used (f<e
khsa)∗ = f<e

khas in the Hermitian conjugate term and defined the real valued
purely active rate:

Γ>e
ZZ,Hkhaa ≡ 32G2

F δe,e′δe,−h

∑
{ai}

1
2|k|

∫
dPS3 (ke · pa2

2 )(pa1
1 · pa3

3 )

× f>a1
h1p1aaf

<a2
h2p2aaf

>a3
h3p3aa.

(7.29)

Here the direct term and interference term give equal contributions and are summed in
the rate (7.29). As expected, the sterile state has no collision integral in the flavour basis
and the off-diagonal terms are damped by rate that is half of the active rate. Further
identification of the particle and antiparticle channels proceeds as in the previous example
with neutrino-antineutrino scattering.

We have now reduced our initial collision integral with all flavour- and antiparticle mixing
effects down to the flavour diagonal limit, where the contact to usual field theoretical methods
was easy to make. We also extracted the known structure of the damping terms affecting
the coherent flavour evolution in the two-flavour active-sterile mixing case in the UR-limit.
We hope that showing these explicit results make it easier for the reader to understand how
apply our methods to study any given problem at hand.
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Let us finally emphasize the particular simplicity of the UR-limit equation (6.9). Indeed,
since the flavour structure was not relevant for the kinematics of the UR-limit matrix element,
the UR-limit collision integrals can be obtained from the usual Boltzmann integrals by
replacing the scalar phase space functions by density matrices and by accounting for the
flavour rotations in the matrix element. The only other correction needed is the vkij-factor
in the flow-term, which is relevant for large propagation distances.

8 General forward scattering potential term

We now show how to evaluate the Hermitian self-energy diagrams directly at one-loop level.
To be specific, we consider the leftmost bubble diagram in figure 2, with an internal neutrino
line (we label it by ZB). From this example it should be evident how the other diagrams are
computed. We begin by observing that the Hermitian self-energy is equal to the Hermitian
part of the 11-component of the self energy in the CTP indices: Σ̄H = He(Σ̄11). We shall
evaluate the self-energy and the corresponding forward-scattering coefficient (5.23) in the
spectral limit, discussed in section 5.2. We also first assume that Ūij = δij . It then is easy
to see that the ZB-diagram gives:

Σ̄ZB
Hil(k, x) = He

(
i

(
ig

2 cos θW

)2 ∫
q
γ0γµPLiS

11
il (q, x)γνPLiD11

Zµν(q − k, x)
)
. (8.1)

To obtain the most general result, we should derive a non-equilibrium CTP-propagator also
for the gauge boson. In most cases of interest however, the gauge bosons appear only as
intermediate resonances, which allows to replace D11

Zµν with the standard vacuum Feynman
propagator. For the S11-function we use the identity S11 = Sr − S< = SH − iA− S<. Using
the spectral results (5.15) and (5.21) we then get

iS11
il (q, x) =

iδil

/q −mi + iη −
∑
h̄bb′

(
δb,−1δbb′δil + f<bb′

qh̄il
(t,x)

) π

ω̄bb′
qij

Dbb′

qh̄il
δ(q0 − ω̄bb′

qil), (8.2)

where we combined part of the spectral function with the Hermitian propagator SH (the
principal value propagator in the spectral limit) to extract the vacuum propagator term.
It is easy to see that (8.2) reduces to the standard thermal Keldysh propagator in flavour
diagonal thermal limit. The vacuum contribution from iS11

il is absorbed by the standard
renormalization procedure and we only need to consider the second term in (8.2). Assuming
that the energy scales in the problem are small compared to the gauge-boson mass, we can
further set iD11

Zµν ≈ igµν/M
2
Z. In this (tadpole) limit ΣZB

Hil is actually independent of k, and
we can perform the q0 integral trivially to get

Σ̄ZB
Hil(x)≈−

√
2GF

∑
h̄bb′

∫ d3q

(2π)32ω̄bb′
qil

(
δb,−1δbb′δil+f<bb′

qh̄il
(t,x)

)
γ0γµPLD

bb′

qh̄il
γµPL. (8.3)

To get the forward scattering coefficient one inserts this function to the trace in the for-
mula (5.23). Equation (8.3) is a very general result however, and to keep the discussion simple,
we now specialize to the UR-limit, which is also frequency diagonal. Employing the form (7.3),
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using results (7.20) and (7.21) and computing the resulting simple trace term, one finally gets

(WZB,Hee
khij )l

e ≈ δe,−h

√
2GF

∑
b

1
2|k|

∫ d3q

(2π)32|q|
(
δb,−1δil + f<bb

q−bil(t,x)
)
4eqb · ke. (8.4)

Since the expression in the right hand side of (8.4) is independent of j, we can define, similarly
to (6.8), (WZB,Hee

khij )l
e ≡ (V ZB,e

kh )il. Setting q → bq and using the Feynman-Stueckelberg
relation (5.11) along with the equality f̄>

khij = δij − f̄<

khij , we find

(V ZB,e
kh )il(t,x) = δe,−h

√
2GF

∫ d3q

(2π)3 (1− q̂ · k̂)
(
f<

q−il(t,x)− f̄<

q+il(t,x)
)
. (8.5)

If the background is isotropic, then the directional term proportional to q̂ · k̂ vanishes, and
we recover the familiar expression [27, 30], written in the vacuum mass eigenbases. In the
supernova application, the directional term cannot be neglected however, and the complete
structure shown in (8.5) should be used.

It is easy to generalize the above calculation for a general mixing matrix Ūij . The result
is simply that (V ZB,e

kh )il → (ŪV ZB,e
kh Ū)il. This can be further rotated back to the flavour basis

using the rotation matrix Uiα. For example, in the two-flavour active-sterile mixing case
discussed above, the flavour space effective potential gets the expected form:

(V ZB,e
kh )αβ =

(
(V ZB,e

kh )aa 0
0 0

)
, (8.6)

where (V ZB,e
kh )aa is as in equation (8.5) with f<

q−aa = c2f<
q−11 + s2f<

q−22 + cs(f<
q−21 + f<

q−12)
and similarly for the antiparticle term. Other diagrams can be computed similarly. In
particular the tadpole diagram contributes a term (V ZT,e

kh )il = ŪilTr[Ū(V ZB,e
kh )] with the same

set of approximations. In the above 2-neutrino active-sterile mixing case this leads to the
same result as for the ZB-diagram: (V ZT,e

kh )αβ = (V ZB,e
kh )αβ , which is again the expected result.

9 Weight functions

A central element in our reduction of the non-local Kadanoff-Baym equations to a density
matrix equation, was temporal localization, or from the Wigner space point of view, the
integration over the frequency variable. The resulting loss of closure required new assumptions
about the full correlation function, elaborated in sections 4.3 and 5.2. While this approach
is clearly successful, one might ask if and to what extend it was unique? It is indeed not,
albeit the final equations often do not depend on precise details. The issue is related to how
the prior information, or preparation of the system affects its evolution.

First consider the exact solutions to the KB-equation (2.6) at formal level. Qualitatively
we know that, due to gradient corrections and finite widths as well as flavour and particle-
antiparticle mixing, they manifest some intricate structures, which in general are well localized
in the phase space. We have solved these structures explicitly in the spectral limit in section 5.2.
However, we can never have complete information of any system we observe or describe, and
sometimes the resolution of the setup is too poor to discern certain individual structures.
That is, we never have access to but some coarse-grained version of the actual system.
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Since by the “system” we basically mean the correlation function, we can formally express
the relation between the exact and the observable systems as follows:

Sij(k̄, x̄) ≡
1

(2π)4

∫
d4k d4xW(k̄, x̄; k, x)Sij(k, x), (9.1)

where W is the weight function encoding the observational resolution. The weight functions
can affect any or all variables relevant for the problem. The parameters relevant for this
paper were helicity, frequency, 3-momentum, and spatial and temporal coordinates. In the
electroweak baryogenesis problem one would be particularly interested in the momentum, the
spatial coordinate and the spin perpendicular to the phase transition wall. We only display
the weight functions for continuous variables for brevity.

In this language taking the local limit corresponds maximal coarse graining in the
frequency variable, or to a statement that there is no prior information about the frequencies.
This can be formally described by the weight function

W(k̄, x̄; k, x) = (2π)3δ3(k̄ − k) δ4(x̄− x). (9.2)

This setup is suitable for studying problems including particle-antiparticle mixing, such as
particle production, where the particle-and antiparticle mixing shells are widely separated.
However, in other problems some different weight functions might be more appropriate.

The weight function (9.2) is very simple, consisting of a flat distribution in frequency
and delta-functions in 3-momentum and space-time coordinates. These are idealizations of
more general functions. The flat weight could, to the same effect, be replaced by a very
broad and the delta-functions by very narrow Gaussian distributions. In some cases it can be
useful to use such weight functions to enter more detailed prior information on the setup.
Indeed, we have seen an example of this already in section 6.1, where we integrated out
the particle-antiparticle mixing from the general projected master equation (5.5). For the
parameters we used this procedure is effectively equivalent to using the weight function8

W(k̄, x̄; k, x) = (2π)3δ3(k̄ − k) δ3(x̄ − x) 1√
2πσ

exp
(
−(t− t̄)2/2σ2

)
. (9.3)

The same effect could be obtained also by a Wigner space weight function does not have
the resolution to erase the flavour structures but erases the information from the particle-
antiparticle mixing. For example:

W(k̄, x̄; k, x) = (2π)3δ3(k̄ − k) 1√
2πσk

exp
(
−(k0 − ωa

ki)2/2σ2
k

)
δ4(x̄− x). (9.4)

Given 2∆ωab
kij ≪ σk ≪ ω̄ab

kij this weight function picks the frequency diagonal particle- and
antiparticle solutions of all flavours, but suppresses all particle-antiparticle mixing solutions
around k0 = 2∆ωab

kij .
Of course the use of a particular weight function should be motivated by physical

arguments, but it is not difficult to see how such motivation would arise in specific setups.
8Weierstrass transform on an equation is not exactly equal to using weight function (9.3) on correlation

function in (9.1). However, our parameters were chosen such that the weight function either left variables
intact or averaged them out and in this limit the two are equivalent.
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Consider for example a laboratory experiment with a neutrino beam. One can usually
determine very well what particle or antiparticle flavour states are produced, but their
energy and momentum resolution is insufficient to resolve the emitted mass eigenstates.
This lack of knowledge imposes the need to integrate exact QKE’s over some phase space
patch with a weight function, possibly of the form (9.4), with parameters reflecting the
experimental resolution. When the experimental resolution is poor compared to spacing
of flavour structures, this procedure would lead to our equation (6.4), independent of the
precise structure of the weight function.

These are just some simple examples of how the prior information imposed on system by
integration with a weight function affects the resulting evolution equations. More general
weight functions could turn out to be useful tools to study quantitatively how the specific
details of neutrino production and detection processes, e.g. the observer-system interference,
affects the evolution of the system.

10 Discussion and conclusions

In this article we derived quantum kinetic equations (QKEs) for neutrinos that encompass
both the flavour and the particle-antiparticle mixing. Our results include explicit forward
scattering terms and collision integrals for the coherent neutrino states. We started from
the most general Kadanoff-Baym equations and reduced them, in a set of well defined steps,
into a single local density matrix equation (5.5), which is valid for arbitrary neutrino masses
and kinematics and contains all flavour and particle-antiparticle coherence effects. To our
knowledge evolution equations of this generality have not been presented before. We then
showed how to consistently integrate out the particle-antiparticle mixing and derived separate
(but coupled) equations for particles and antiparticles (6.4) that are still valid for all kinematic
variables. Finally we took the ultra-relativistic (UR) limit of these equations recovering the
familiar form of a density matrix equation (6.9).

Our analysis is closely related to earlier work done in refs. [40–47], but extending it in
many ways. Pivotal elements in our derivation were the careful separation of the pole- and
statistical KB-equations and the introduction of the projective representation (5.4). This
unveiled a novel shell structure underlying the mixing phenomenon and allowed expressing
the master equation as a set of scalar-valued equations for distribution functions classified
according to well defined oscillation frequencies. The only physical assumptions made during
the derivation were the slowly (adiabatically) varying background fields, the validity of the
weak coupling expansion and eventually the spectral limit.

The definition of the collision integrals with all information of the flavour and particle-
antiparticle coherences is a very delicate problem, whose importance has been recently
emphasized [52]. Although some computations in the absence of the particle-antiparticle
mixing exist [51, 74–79] and even some others that do include them [45–47], a complete and
comprehensive treatment of the forward scattering terms and collision integrals with the most
general mixing structure and arbitrary neutrino masses and kinematics has not existed so
far. In ref. [50] a formulation of the collision integral is presented in the relativistic limit,
but it does not seem convenient for practical purposes. In contradistinction, our derivation
includes a simple set of Feynman rules which provide a straightforward and systematic way
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to compute collision integrals for the flavor- and the particle-antiparticle mixing systems.
We showcased the simplicity of our formalism by deriving several simple and/or known
limiting cases for the collision integrals. In particular we identified the damping terms in
the two-flavour active-sterile mixing case in the UR-limit.

In addition to explicit collision integrals, we also showed how to compute the forward
scattering corrections coming from diagrams involving coherent states, i.e. the forward
scattering effect arising from a coherent neutrino background. Again we first showed how
to obtain the most general structures with both flavour and particle-antiparticle coherences
and then took the frequency-diagonal UR-limit of this result, which eventually revealed the
familiar structures found using other, less fundamental approaches. We also pointed out
that our UR-limit equation can be obtained from the usual Boltzmann equation by simply
replacing the phase space functions by density matrices everywhere, and by updating the
flow-term to include the vkij-factor, relevant for large propagation distances.

Finally, we briefly discussed how the prior information on the system impacts on its
evolution. We pointed out that our localization procedure corresponds to a complete ignorance
of the frequency structure of the correlation function and that it is precisely this lack of
information that allows for the non-trivial oscillation structure to emerge. However, the
perfect localization is an idealization and we sketched how more detailed information of
the system could be imposed by the use of specific weight functions. This seems like a
promising way to study the observer-system interference in general, beyond the astrophysical
and early universe applications.

It has been speculated that neutrino-antineutrino coherence could be relevant in some
astrophysical environments or in experiments involving the decay of heavy neutrinos [52, 55],
but we believe that this is not the case. Because due to their very fast rate the particle-
antiparticle oscillations average out completely in the time scales of interest. An exception
to the rule could be the leptogenesis problem in the non-resonant regime. In contrast, the
particle antiparticle mixing is essential for the particle production problem, e.g. during
the (p)reheating phase after inflation, and our most general QKE’s (5.5) are the right tool
for studying this problem in the presence of flavour mixing. However, in the astrophysics
applications the relevant physics is the CP-violating flavour mixing in the separate, but
possibly strongly coupled (via the forward scattering term) particle and antiparticle sectors.
For these systems, that include the core collapse supernovae, nascent neutron stars, compact
object mergers and the primordial nucleosynthesis, our frequency diagonal equations (6.4),
and quite often their UR-limit (6.9), are sufficient.

The same critique applies to some investigations of the CP-violating decays of heavy
Majorana neutrinos in collider experiments. Indeed, there has been some interest in the
possibility of measuring the heavy neutrino mixing parameters in colliders, because this
could give insight into the neutrino mass generation mechanism and eventually into the
question if the baryon asymmetry could be explained by the leptogenesis mechanism. To
be specific, it has been argued [55] that the heavy neutrino-antineutrino oscillations could
lead to oscillation in the lepton number conserving (LNC) and the lepton number violating
(LNV) decay rates, which could be testable at the LHC. Again, the physics behind the
phenomenon is not particle-antiparticle coherence, but the CP-violating flavour mixing of
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the heavy neutrinos. For these systems our frequency diagonal equations (6.4) are the ideal
tool to use, valid for arbitrary neutrino masses and kinematics.

Our QKE’s were derived with only a very few approximations, but there are still some
limitations to their applicability. In the local limit, which corresponds to working to the lowest
order in the frequency moment expansion in the Wigner space, all truly non-local effects,
such as quantum entanglement, are lost. However, we have a rather clear idea about the size
of the neglected effects, as they are all encoded in the gradient expansion in the Wigner space
KB-equations. If the adiabatic limit in the spatial variables is a reasonable approximation,
which often is the case, then all such effects are very small. This type of non-locality could be
relevant in some early universe applications however, and it has been studied in the context
of the QKE’s e.g. in [47]. Also, when computing the collision integrals and the forward
scattering terms we eventually assumed the spectral limit, which neglects the finite width
corrections. For the light neutrinos this should be an excellent approximation, but in the case
of heavy unstable neutrinos the finite width effects could be interesting. We tried to address
this issue by structuring our derivation such that the extension of our analysis to include finite
width corrections should be at least in principle evident and it would be interesting to study
these issues more in future. Our results should be useful in the study of many interesting
problems related to astrophysics, particle physics and physics of the early universe.
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A Trace reduction formulae in vacuum eigenbasis

The complete set of Dirac structures consistent with the homogeneity and isotropy of the
space can be chosen as follows.

X = {1, γ0,γ · k̂,α · k̂, γ5, γ0γ5,γ · k̂γ5,α · k̂γ5}. (A.1)

All projections of the effective self-energy functions Σ̄H = γ0ΣH appearing in the projected
master equation (5.5) can be reduced to simple combinations of the projected tensors of
the form

Oabc
khlji ≡ Tr

[
P ca

khilOP bc
khji

]
, (A.2)

where O ∈ X. For all other structures (the labeling follows from the way the operators appear
in ΣH) apart from the pseudoscalar γ0γ5 and the contracted tensor γ · k̂ = γ0 1

2 [γ0,γ] · k̂,
the projection can be written in the form:

Oabc
khlji ≡

1
2N

ca
kilN

bc
kji

(
Aa

khl

(N bc
kji)2 +

Bb
khj

(N ca
kil)2 + Cc

khi

(
1

(Nab
klj)2 − ab

γklγkj

))
, (A.3)

where the boost factor γk = m/γk and the coefficients Aa
khl, Bb

khj , Cc
khi and Dc

khl are listed
in table 1.
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Operator Aa
khl Bb

khj Cc
khi

1; hα · k̂γ5 1 1 −1
γ0; hγ · k̂γ5 a/γkl b/γkj c/γki

γ5; hα · k̂ ahvkl bhvkj −chvki

Table 1. Listed are the coefficients in reducted tensor in equation (A.3) for the spinor structures.

Finally, for the Dirac structures γ0γ5 and hγ · k̂ the projection tensor is given by

Oabc
khlji ≡

h

4N
ac
kilN

bc
kji

(
−bc

(
vkj

γki
+ vki

γkj

)
+ ca

(
vki

γkl
+ vkl

γki

)
− ab

(
vkl

γkj
− vkj

γkl

))
, (A.4)

where we defined the velocity vki ≡ |k|/ωki.
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