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Abstract We extend the FONLL general-mass variable-
flavour-number scheme to the case of longitudinally polarised
DIS structure functions, accounting for perturbative correc-
tions up to O (

α2
s

)
. We quantify the impact of charm quark

mass and higher-order perturbative corrections on projected
measurements of inclusive and charm-tagged longitudinal
asymmetries at the Electron-Ion Collider (EIC) and at the
Electron-ion collider in China (EicC). We demonstrate how
the inclusion of these corrections is essential to compute pre-
dictions with an accuracy that matches the projected preci-
sion of the measurements. The computation is made pub-
licly available through the open-source EKO and YADISM

programs.
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1 Introduction

The production of charm quarks in unpolarised deep-inelastic
scattering (DIS) contributes significantly to the inclusive
structure functions measured by HERA [1,2]. In particular,
it can amount to up to 25% at small values of the proton
momentum fraction x and at small to moderate values of
the momentum transfer Q2. The accurate determination of
parton distribution functions (PDFs) [3–5] from experimen-
tal data therefore requires to include charm mass effects in
the computation of DIS cross sections. Indeed, all modern
PDF determinations [1,6–9] account for these effects either
with the fixed-flavour-number (FFN) scheme [10] or with
a general-mass variable-flavour-number (GM-VFN) scheme
[11–13]. The latter combines power-suppressed mass correc-
tions proportional to m2

c/Q
2 with resummation of collinear

logarithms of the form ln(Q2/m2
c), where mc is the charm

quark mass. GM-VFN schemes provide an accurate descrip-
tion of charm structure functions for all values of Q2.

The production of charm quarks in polarised DIS is in prin-
ciple subject to similar considerations. Until now, however,
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a zero-mass variable flavour number (ZM-VFN) scheme,
whereby charm production is modelled in terms of a massless
charm PDF, has been used in all modern polarised PDF deter-
minations [14–17]. The reason being that charm mass effects
are small in the kinematic region covered by the available
polarised DIS datasets, which furthermore are less precise
than their unpolarised counterparts.

This state of affairs will change with the upcoming
Electron-Ion Collider [18], which is expected to start tak-
ing data in the 2030 s. The EIC will be sensitive to polarised
DIS structure functions and asymmetries down to x ∼ 10−4

for both inclusive and charm-tagged measurements with
unprecedented precision. Similar considerations apply to the
proposed Electron-ion collider in China (EicC) [19]. The the-
oretical interpretation of these upcoming high-precision mea-
surements demands, in analogy with the unpolarised case, to
properly account for charm mass effects and higher-order
perturbative corrections.

The goal of this paper is to present a unified computa-
tional framework in which longitudinally polarised struc-
ture functions, cross sections, and asymmetries can be deter-
mined using a state-of-the-art treatment of higher-order QCD
and charm-quark corrections. In particular, this is achieved
by extending the FONLL GM-VFN scheme, developed
for unpolarised DIS in [12,20], to the polarised case. The
FONLL scheme matches the massive fixed-flavour compu-
tation, accurate when Q2 ∼ m2

c , with the massless compu-
tation, accurate when Q2 � m2

c . Our computational frame-
work is made available through the open-source EKO [21]
and YADISM [22] software.

We deploy this framework to evaluate predictions for
inclusive and charm-tagged longitudinally polarised asym-
metries in the kinematic region covered by the EIC and EicC.
We specifically quantify the impact of including higher-order
and charm-quark corrections in the computation, and we
demonstrate their comparative relevance to properly match
the expected precision of these measurements. The theoreti-
cal accuracy of our framework therefore represents an impor-
tant input to analyse future EIC and EicC data, in particular
to determine polarised PDFs.

The outline of this paper is as follows. In Sect. 2 we sum-
marise the theoretical framework underpinning the calcula-
tion of massless and massive polarised structure functions up
to O (

α2
s

)
accuracy, and discuss their combination into the

FONLL scheme. In Sect. 3 we assess the phenomenologi-
cal relevance of heavy quark mass effects and higher-order
QCD corrections on predictions for inclusive and charm-
tagged longitudinally polarised asymmetries at the EIC and
EicC. In particular, we compare these corrections to the pro-
jected experimental uncertainties for these observables. A
summary is provided in Sect. 4. The paper is supplemented
with two appendices. Appendix A presents a benchmark of
the implementation of polarised DGLAP evolution in EKO

against PEGASUS [23]. Appendix B revisits the role of target
mass corrections in polarised structure functions, and com-
pares their impact with that associated with heavy quark and
higher-order corrections.

2 Polarised structure functions in a general-mass
scheme

In this section we discuss how the FONLL scheme can be
extended to the polarised case. We first review the definition
of polarised structure functions. We then discuss the details
of the FONLL scheme in the polarised case and its imple-
mentation in EKO and YADISM. We finally present numerical
results in different regions of x and Q2 to validate the imple-
mentation of the scheme, and highlight the role played by
charm mass effects, by higher-order corrections, and by the
choice of input polarised PDFs.

2.1 Polarised structure functions revisited

Let us consider lepton-proton polarised DIS where both the
lepton and the proton beams are longitudinally polarised.
The differential cross section can be expressed in terms of
the polarised structure functions g1, gL , and g4 as

d2�σ j (x, Q2)

dxdy
= 4πα2

xyQ2 ξ j
{
−

[
1 + (1 − y)2

]
g j

4 (x, Q2)

+ y2g j
L(x, Q2) + (−1)p2x

[
1 − (1 − y)2

]

× g j
1 (x, Q2)

}
, (2.1)

with p = 1 for leptons and p = 0 for anti-leptons. The
index j distinguishes charged current (CC) interactions, with
ξCC = 2, from neutral current (NC) interactions, with ξNC =
1. The inelasticity y is given by y = Q2/(2xmN E�) for
fixed-target scattering and y = Q2/xs for collider scattering;
mN is the proton mass, E� is the lepton beam energy, and s
is the square of the centre-of-mass energy. In Eq. (2.1), we
neglect the polarised structure functions g2 and g3, which are
suppressed by powers of W 2/Q2, with W being the invariant
mass of the hadronic final state.

Provided Q2 is large enough, polarised structure func-
tions can be factorised as a convolution between perturba-
tive polarised coefficient functions, �C j

i,k(x, αs), and non-
perturbative, process-independent polarised PDFs, �qk(x,
Q2) (for quarks), and �g(x, Q2) (for the gluon). These
polarised PDFs are defined as the difference between the
PDFs of partons with the same and with the opposite helic-
ity as compared to the direction of the proton spin, e.g. for
quarks
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�qk(x, Q
2) = q↑↑

k (x, Q2) − q↑↓
k (x, Q2) , (2.2)

and likewise for the gluon, where the first arrow indicates the
direction of the proton spin and the second the partonic helic-
ity. As reviewed in Appendix A, these polarised PDFs satisfy
polarised DGLAP evolution equations in analogy with their
unpolarised counterparts. At leading twist, this factorised
convolution for the polarised structure functions reads

g j
1 (x, Q2) =

∫ 1

x

dz

z

[ n f∑

k=1

�q+
k

(
x

z
, Q2

)
�C j

1,k(z, αs)

+ �g

(
x

z
, Q2

)
�C j

1,g(z, αs)

]
,

g j
i (x, Q

2) =
∫ 1

x

dz

z

[ n f∑

k=1

�q−
k

(
x

z
, Q2

)
�C j

i,k(z, αs)

]
,

i = 4, L ,

(2.3)

with n f the number of active quark flavours and �q±
k =

�qk ± �q̄k defining the usual sea and valence quark flavour
combinations. Being leading-twist, Eq. (2.3) does not include
target mass corrections (TMCs), which are reviewed in
Appendix B.

The dominant contribution to the double differential cross
section Eq. (2.1) is provided by the parity-conserving g1

structure function. Therefore, we will henceforth focus only
on this specific structure function. Furthermore, we restrict
ourselves to the electromagnetic case, in which a virtual pho-
ton is exchanged in the hard scattering. Nevertheless, our
discussion can be generalised to the other polarised structure
functions.

Rearranging the quark PDFs in linear combinations which
are convenient for DGLAP evolution, see Appendix A, the
structure function g1 can be expressed as

g1(x, Q
2) =

(
1

n f

n f∑

k=1

e2
qk

) ∫ 1

x

dz

z

[
��

(
x

z
, Q2

)
�CPS

1

× (z, αs) + �g

(
x

z
, Q2

)
�C1,g (z, αs)

]

+
n f∑

k=1

e2
qk

∫ 1

x

dz

z
�q+

k

(
x

z
, Q2

)
�CNS

1 (z, αs) ,

(2.4)

where eqk is the fractional quark charge. The polarised struc-
ture function g1(x, Q2) is therefore decomposed into three
contributions proportional to the quark non-singlet (NS),
gluon, and quark pure singlet (PS) coefficient functions. The
latter is defined as the difference between the singlet (S) and
NS coefficient functions, �CPS

1 = �CS
1 − �CNS

1 .

Equation (2.4) assumes that all active quarks at the scale
Q2 can be treated as massless. However, quark mass effects
cannot be neglected when the value of Q2 is close to the value
of a heavy quark mass mh . Such effects can be included by
modifying the expressions for the coefficient functions, so
that g1 reads as

g1(x, Q
2,m2

h)=
(

1

n f

n f∑

k=1

e2
qk

) ∫ 1

x

dz

z

[

��

(
x

z
, Q2

)
�CPS

1

×
(

z, αs,
m2

h

Q2

)

+ �g

(
x

z
, Q2

)
�C1,g

(

z, αs,
m2

h

Q2

)]

+
n f∑

k=1

e2
qk

∫ 1

x

dz

z
�q+

k

(
x

z
, Q2

)
�CNS

1

×
(

z, αs,
m2

h

Q2

)

. (2.5)

The polarised structure function is then recast into light,
heavy, and light-heavy contributions

g1(x, Q
2,m2

h) = g(�)
1 (x, Q2) + g(h)

1 (x, Q2,m2
h/Q

2)

+g(�h)
1 (x, Q2,m2

h/Q
2), (2.6)

where g(�)
1 indicates the contributions from diagrams where

only light quark lines are present, g(h)
1 those from diagrams

where the heavy quark couples to the virtual gauge boson,
and g(�h)

1 those which contain heavy quark lines but where a
light quark couples to the virtual boson.

The separation between light and heavy structure func-
tions in Eq. (2.6) is hence affected by an ambiguity concern-
ing in which category one should assign the g(�h)

1 contribu-
tion, involving heavy quarks in the final state but where only
light quarks couple to the virtual boson. This ambiguity is
irrelevant for the inclusive structure function, but it affects
the heavy quark structure functions.

The case of charm production is of particular phenomeno-
logical interest. The experimental definition of the charm
structure function gc1 is based on tagging charm quarks (or
charmed hadrons) in the final state, hence it would include
g(�h)

1 . However, the theoretical infrared-safe definition of gc1
coincides with g(h)

1 , and contains only diagrams where the
charm quark couples with the virtual boson. Here we adopt
the same convention as in [12], and define the charm struc-
ture function exclusively in terms of g(h)

1 , while the g(�h)
1

contribution enters only the total structure function. The lat-
ter term is non-zero only starting atO (

α2
s

)
and is small in the

region relevant for both current and future measurements. In
the n f = 3 massive scheme, the charm structure function at
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Table 1 Overview of polarised neutral-current DIS coefficient func-
tions available in the literature and implemented in YADISM (blue),
available in the literature (only for g1), but not implemented inYADISM
(yellow), and not available in the literature (red). For each perturba-
tive order (NLO, NNLO, and N3LO) we indicate the light-to-light
(“light”), light-to-heavy (“heavy”), heavy-to-heavy (“intrinsic”), and
“asymptotic” (Q2 � m2

h limit) coefficients functions which have been
implemented and benchmarked

the first non-trivial order is expressed in terms of the gluon
polarised PDF,

gc1(x, Q2,m2
c) = e2

c

∫ 1

x

dz

z
�g

(
x

z
, Q2

)
�Cc

1,g

(

z, αs ,
m2
c

Q2

)

,

(2.7)

with the first non-zero term of the gluon coefficient function
�C1,g being O (αs).

The massless coefficient functions entering the polarised
structure function g1, Eq. (2.4), have been computed at
NNLO in [24] and recently at N3LO in [25].1 The mas-
sive coefficient functions entering Eq. (2.5) are available
up to O(α2

s ) [29] together with their corresponding asymp-
totic limit Q2 � m2

h [30–35]. In Table 1 we summarise
which polarised neutral-current DIS coefficient functions are
available in the literature and which we have implemented
in YADISM. For each perturbative order (NLO, NNLO, and
N3LO) we indicate the light-to-light (“light”), light-to-heavy
(“heavy”), heavy-to-heavy (“intrinsic”), and “asymptotic”
(Q2 � m2

h) contributions. As we will see next, all the
perturbative ingredients required to implement FONLL at
O(α2

s ) are available and implemented. Whereas, in principle,
Eq. (2.7) could be extended to account for a polarised intrin-
sic charm component, as done for the unpolarised case [36],
we neglect it here and set it to zero. The implementation of the
massless polarised coefficient functions and structure func-
tions in YADISM has been benchmarked against APFEL[37]
andAPFEL++[38] up toO(α2

s ), finding satisfactory agreement
[22].

1 For the other polarised structure functions, massless coefficient func-
tions were computed at NLO in [26,27] and recently at NNLO in [28].

2.2 The FONLL scheme for polarised structure functions

The FONLL scheme was originally proposed in [39] to
account for heavy quark mass effects in D- and B-meson
production in hadronic collisions, and was later generalised
to unpolarised DIS [12], eventually taking into account an
intrinsic charm contribution [20]. The basic idea under-
lying FONLL is best exemplified in the case of charm
quark mass effects. There FONLL combines the mas-
sive (three-flavor-number, 3FN) and massless (four-flavor-
number, 4FN) schemes through a suitable matching pro-
cedure. Since both the 3FN and the 4FN schemes are
well defined factorisation schemes, the FONLL framework
has the advantage that it can be generally applied to any
(un)polarised electro- and hadro-production processes with-
out the need to rely on alternative factorisation schemes.
Whereas henceforth we will focus on charm, the discussion
can be readily generalised to the case of bottom, as well as
to that of multiple heavy quarks.

In analogy with the unpolarised case, a generic polarised
structure function in the FONLL scheme with four active
quarks can be written as:

gFONLL(x, Q2) = g[4](x, Q2)+g[3](x, Q2)−g[3,0](x, Q2),

(2.8)

where the 3FN- and 4FN-scheme structure functions are
respectively given by:

g[3](x, Q2) =
∫ 1

x

dz

z

∑

i=g,q,q̄

� f [3]
i

(
x

z
, Q2

)

× �C [3]
i

(
z, α[3]

s ,
m2

c

Q2

)
, (2.9)

g[4](x, Q2) =
∫ 1

x

dz

z

∑

i=g,q,q̄,c,c̄

� f [4]
i

(
x

z
, Q2

)

× �C [4]
i

(
z, α[4]

s

)
, (2.10)

with q and c denoting the light quarks and the charm quark,
respectively. The PDFs and strong coupling entering the 3FN
structure function in Eq. (2.8) can be expressed in terms of
their 4FN counterparts, by means of the matching relations
provided below. The asymptotic limit (Q2 � m2

c) of the
massive calculation, g[3,0], ensures that terms appearing in
both the 3FN and 4FN schemes cancel out for virtualities
much higher than that charm quark mass, and it is given by

g[3,0](x, Q2) =
∫ 1

x

dz

z

∑

i=g,q,q̄

� f [3]
i

(
x

z
, Q2

)
�C [3,0]

i

×
(
z, α[3]

s , log
m2

c

Q2

)
, (2.11)
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where �C [3,0]
i is the massless (asymptotic) limit of the

polarised massive coefficient function, in which only the
collinear logarithms log(m2

c/Q
2) are retained and mass-

suppressed terms are neglected.
As pointed out in [12], there is some flexibility in choos-

ing the perturbative accuracy at which heavy quark mass
terms are included in the 3FN and 4FN schemes. In partic-
ular, three different variants can be considered: FONLL-A,
in which both 3FN and 4FN expressions are computed at
O(αs); FONLL-B, in which the 3FN expression is computed
at O(α2

s ) while the 4FN is computed at O(αs); and FONLL-
C, in which both 3FN and 4FN expressions are computed at
O(α2

s ).
It is clear from Eq. (2.8) that in the asymptotic limit

the FONLL expression reduces to the 4FN scheme owing
to the fact that the difference term

(
g[3] − g[3,0]) vanishes

by construction. On the other hand, in the threshold region
m2

c ∼ Q2, the difference term g[d] ≡ (
g[4] − g[3,0]) van-

ishes only up to higher-order perturbative corrections, which
can be numerically large. Different options are available to
reduce the impact of a non-vanishing value of g[d] near
the threshold region so that the 3FN calculation is recov-
ered. One option, known as χ -scaling, consists in replacing
the lower integration limit x in the convolutions entering
g[d], namely Eqs. (2.10) and (2.11), with a scaling variable
χ = x(1 + 4m2

c/Q
2), motivated by the physical threshold

for charm quark pair production.
In FONLL, one adopts instead a damping prescription,

which is based on rewriting Eq. (2.8) as

gFONLL(x, Q2) = g[3](x, Q2) + D

(
m2

c

Q2

)
g[d](x, Q2),

D

(
m2

c

Q2

)
≡ 


(
Q2 − m2

c

) (
1 − m2

c

Q2

)2

. (2.12)

The definition of the damping factor D in Eq. (2.12) ensures
that the difference term g[d], formally of higher order, is sup-
pressed close to the threshold region m2

c ∼ Q2, without
affecting the required cancellation between g[3] and g[3,0]
in the asymptotic limit Q2 � m2

c . In this work, when pre-
senting results for the polarised FONLL structure functions,
we adopt the threshold damping prescription Eq. (2.12). For
unpolarised structure functions, the numerical impact of this
threshold damping prescription is large in FONLL-A, and
otherwise small in FONLL-B and FONLL-C. In the polarised
case, instead, one finds minimal effects of the damping pre-
scription for all FONLL variants.

The two expressions in Eqs. (2.9) and (2.10) are alternative
definitions of the polarised structure functions that depend on
the PDFs and strong coupling. As mentioned previously, in
order to evaluate the FONLL expression in Eq. (2.8), the mas-
sive 3FN structure function needs to be expressed in terms of

� f [4]
i and α

[4]
s . The relations between the PDFs and strong

coupling in the two schemes are defined at some fixed match-
ing scale μc and the corresponding results at a generic scale
Q2 �= μ2

c can be obtained using the DGLAP evolution equa-
tions, see Appendix A. These matching conditions are given
by

α[4]
s (μ2

c) = α[3]
s (μ2

c) +
∞∑

n=2

cn
(
α[3]
s (μ2

c)
)n

, (2.13)

� f [4]
i (x, μ2

c) =
∫ 1

x

dz

z

∑

j=g,q,q̄

� f [3]
j

(
x

z
, μ2

c

)
�Ki j

×
(
z, α[4]

s (μ2
c),

μ2
c

m2
c

)
. (2.14)

Note that although it is customary to match at the charm mass
scale, μc = mc, this is not required.

The matching coefficients cn in Eq. (2.13) for the strong
coupling are known up to four loops [40]. The polarised
matching coefficients �Ki j in Eq. (2.14) admit a perturbative

expansion in α
[4]
s whose terms in the series are computed by

comparing the computations of the coefficient functions in
the 3FNS and 4FNS. The components of �Ki j for any values
of i and j are known up to O(α2

s ) [34]. The expression of the

zeroth order matching coefficients are trivial, �K (0)
i j = δi j .

At O(αs), only �K (1)
i j components with i = g, c, c̄ and

j = g contribute, while all other components that involve
quark lines are nonzero only starting at O(α2

s ).

2.3 Numerical results

The formalism described in Sect. 2.2 together with the the-
oretical ingredients listed in Sect. 2.1 has been implemented
in YADISM, enabling the calculation of FONLL polarised
structure functions at O (αs) and O (

α2
s

)
. In the following

we present numerical results for the polarised structure func-
tion g1 and gc1. After a review of the features of the current
polarised PDF sets, we check their expected Q2 behaviour,
their perturbative stability, and their dependence on the input
polarised PDF set.

2.3.1 Polarised PDFs

We present results for FONLL structure functions using
alternately two different determinations of polarised PDFs:
NNPDFpol1.1 [14] and JAM17 [17]. These two PDF sets
are compared in Fig. 1 at Q = 2 GeV as a function of x ,
where the error bands indicate the 68% CL PDF uncertain-
ties. For completeness, we also include in this comparison
the widely-used DSSV14 polarised PDF set, in particular its
Monte Carlo variant presented in [16]. We show the up and
down valence quarks, gluon, total quark singlet, strangeness,
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Fig. 1 Comparison of the polarised proton PDFs from the NNPDF-
pol1.1 [14], JAM17 [17], and DSSV14 [16] NLO determinations at
Q = 2 GeV. Error bands indicate the corresponding 68% CL PDF

uncertainties, evaluated over the Monte Carlo replicas provided by each
group. We note that the polarised charm PDF has been set to zero in the
DSSV14 Monte Carlo grid

and charm polarised PDFs. In DSSV14, the fit is performed
in a ZM-VFN scheme but the resulting charm PDF is set to
zero in the released LHAPDF grids.

Three observations are relevant in light of the subsequent
discussion. First, polarised PDFs are suppressed at small x ,
in contrast with their unpolarised counterparts in the singlet
sector, implying that in general spin asymmetries (defined as
ratios of polarised over unpolarised observables) are strongly
suppressed in this small-x region. Second, while there is a
broad agreement between the three groups considered for
�uV , �dV , and ��, there are larger differences for the �g,
�s+ and �c+. In particular, the polarised gluon PDF (which
drives perturbative charm production) is poorly known at
small x and displays large uncertainties which then feed into
the polarised charm PDF. Third, the polarised gluon PDF
peaks at higher values of x and with a larger magnitude in
NNPDFpol1.1 as compared to JAM17. The same qualitative
behaviour appears in the polarised charm PDF.

All of these remarks indicate that the bulk of the PDF
dependence of polarised structure functions and asymme-
tries, both inclusive and charm-tagged, will be related to dif-
ferences at the level of the gluon and charm polarised PDFs.

2.3.2 Q2 dependence

Figures 2 and 3 display respectively the inclusive and charm
polarised structure functions, g1(x, Q2) and gc1(x, Q

2), for
three fixed values of x (x = 10−3, 10−2, and 0.1) as a func-
tion of Q2. The central value of the NNPDFpol1.1 NLO
polarised PDF set is used as input. From top to bottom, we

display results corresponding to the FONLL-A, -B, and -C.
By construction, the first two are accurate to NLO (O (αs)-
accurate), while the last is accurate to NNLO (O (

α2
s

)
-

accurate). In each plot, we also display results obtained in
the ZM-VFN (only for Q2 ≥ m2

c) and massive 3FN schemes.
The vertical grey line indicates the value of m2

c at which the
3FN and 4FN schemes are matched.

From these comparisons, one verifies that the FONLL cal-
culation interpolates between the massive calculation at low
Q2 (close to the charm mass) and the massless calculation
valid for large Q2 � m2

c . For both g1 and gc1, charm mass
effects can be significant at a scale close to the value of the
charm quark mass. For g1, at x ∼ 10−3 and Q2 = m2

c ,
the massless NLO (NNLO) calculation overestimates the
matched FONLL calculation by up to 15% (25%). For gc1,
mass effects cannot be neglected until relatively large Q2,
given that only for Q2 ∼> 50 GeV2 the FONLL calculation
converges to the massless one. Interestingly, this holds true
also for relatively large x values, such as x = 0.1, though in
this region gc1 is relatively small in absolute terms. From Fig. 3
one also notes that, depending on the value of x and on the
perturbative order, the matched FONLL calculation deviates
from the 3FN scheme calculation already for moderate val-
ues of Q2, indicating how a purely massive calculation will in
general be inadequate to describe data unless close to thresh-
old. The behaviour of this near-threshold region exhibits in
general a very mild dependence on the choice made for the
damping of subleading terms, see Sect. 2.2.

Overall, we conclude that in the kinematic region defined
by Q2 ∼< 30 GeV2 charm quark mass effects cannot be
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Fig. 2 The inclusive polarised structure function g1(x, Q2) at three
fixed values of x (x = 10−3, 10−2, and 0.1) as a function of Q2.
The central value of the NNPDFpol1.1 NLO polarised PDF set is used
as input. From top to bottom, we display results corresponding to the

FONLL-A, -B, and -C calculations. In each plot, we also display results
obtained in the ZM-VFN and massive 3FN schemes. The vertical grey
line indicates the value of m2

c at which the 3FN and 4FN schemes are
matched

neglected in the computation of either the inclusive or charm
structure functions. For larger Q2 ∼> 30 GeV2 values,
instead, the massless and FONLL calculations coincide. This
said, it is important to emphasise that a partial cancellations
of charm mass effects may occur if the polarised structure
functions are normalised to their unpolarised counterparts,
as happens in the definition of the experimentally measured
spin asymmetries. We will revisit this issue in Sect. 3, where
we will compare heavy quark mass effects in inclusive and
charm-tagged spin asymmetries to the projected precision of
EIC and EicC pseudodata.

2.3.3 Perturbative stability and PDF dependence

The FONLL structure functions displayed in Figs. 3 and 2
exhibit a clear dependence on the perturbative accuracy of
the calculation. To showcase these differences in a more
direct manner, Figs. 4 and 5 display a comparison between

the FONLL-A (NLO) and FONLL-C (NNLO) calculations
for the inclusive g1(x, Q2) and charm-tagged gc1(x, Q

2)

polarised structure functions, respectively, for three differ-
ent values of Q2 near the matching scale. In both cases, the
top and bottom panels show the predictions using, respec-
tively, the NNPDFpol1.1 and JAM17 polarised PDF sets as
input. Error bands correspond to 68% CL PDF uncertainties.

Figures 5 and 4 indicate that NNLO corrections to both
g1(x, Q2) and gc1(x, Q

2) are moderate for x ∼> 0.1 and
sizeable for x ∼< 0.05, irrespective of the PDF set used.
Concerning the inclusive structure function g1, the NNLO
(FONLL-C) computation leads to a suppression of the struc-
ture function with respect to its NLO (FONLL-A) coun-
terpart. Concerning the charm structure function gc1, the
NNLO (FONLL-C) computation leads to a negative and large
(in absolute value) structure function in the near-threshold
region, whereas the NLO (FONLL-A) computation leaves it
slightly positive in the same region. Interestingly, NNPDF-
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Fig. 3 Same as Fig. 2 for the charm polarised structure function gc1

pol1.1 PDF uncertainties are sufficiently large to encompass
these large differences for x ∼< 0.005.

The sensitivity of g1(x, Q2) and gc1(x, Q
2) on the input

PDF set is generally mild: the aforementioned features qual-
itatively hold when either the NNPDFpol1.1 or JAM17 PDF
sets are used as input. Small differences are observed, e.g.
the shift between FONLL-A and FONLL-C predictions is
larger in JAM17 than in NNPDFpol1.1. Given that for the
sake of the comparison the PDFs have been kept fixed in
both the FONLL-A and -C calculations, one expects that the
observed differences may be reduced once the PDFs are refit-
ted to NNLO accuracy and in the presence of the constraints
provided by future electron-proton colliders.

3 Charm mass effects in polarised DIS at electron-ion
colliders

In this section we quantify the impact of charm mass effects
on polarised DIS measurements at future polarised electron-
ion colliders, in particular at the EIC and the EicC. We discuss

first the observables and pseudodata sets considered, then
the computation of the corresponding theoretical predictions,
and finally the comparison between the two. In particular, we
assess the significance of charm mass corrections in compar-
ison to the size of the projected experimental uncertainties
and of the higher-order QCD corrections.

3.1 Observables and pseudodata sets

We consider pseudodata sets for the double-spin asymmetry
A‖ forecast at the EIC, and for the polarised charm asymme-
try Ac

1 forecast at the EIC and EicC. The double-spin asym-
metry A‖ is defined as the ratio of the polarised to unpolarised
differential cross sections,

A‖(x, Q2) = d2�σ(x, Q2)

d2σ(x, Q2)
= d2σ→⇒ − d2σ→⇐

d2σ→⇒ + d2σ→⇐ , (3.1)

where the numerator (denominator) is the difference between
(sum of) differential cross sections for which the nucleon is
polarised along (⇒) or opposite (⇐) the polarisation direc-
tion of the lepton beam (→). Neglecting target mass cor-
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Fig. 4 Comparison between the FONLL-A and FONLL-C calcula-
tions of the inclusive polarised structure function g1(x, Q2). We display
results for NNPDFpol1.1 (top panels) and JAM17 (bottom panels) as a

function of x for three different values of Q2. Error bands correspond
to 68% CL PDF uncertainties

Fig. 5 Same as Fig. 4 for the charm structure function gc1(x, Q
2)
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Fig. 6 The inclusive longitudinal double spin asymmetry A||, defined
in Eq. (3.2), computed at NNLO accuracy with either the ZM-VFN or
the FONLL-C schemes using the NNPDFpol1.1 [14], JAM17 [17], and
DSSV14 [15,16] polarised PDF sets. Points correspond to a subset of

the pseudodata discussed in Sect. 3.1, specifically to the low-Q2 bins
of the EIC electron-proton beam energy configuration 10⊗100 GeV.
Error bars, indicated on top of the FONLL-C result, correspond to the
projected experimental uncertainties

rections, O(m2
N/Q2), which are expected to be immaterial

for EIC and EicC kinematics,2 the asymmetry A‖ becomes
proportional to the virtual photo-absorption asymmetry A1,

A||(x, Q2) = D(y)A1(x, Q
2), (3.2)

where D(y) = [y(2 − y)]/[y2 + 2(1 − y)] is the photon de-
polarisation factor, and y is the inelasticity. Within the same
kinematic approximation, the photo-absorption asymmetry

2 See Appendix B for the discussion of TMCs.

A1 reads

A1(x, Q
2) = g1(x, Q2)

F1(x, Q2)
, (3.3)

where F1 is the unpolarised structure function correspond-
ing to g1. Likewise, we define the charm photo-absorption
asymmetry as

Ac
1(x, Q

2) = gc1(x, Q
2)

Fc
1 (x, Q2)

. (3.4)

For the inclusive double-spin asymmetry A|| at the EIC,
we use the projections obtained in [41]. These were recently
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Fig. 7 The charm longitudinal asymmetry Ac
1, defined in Eq. (3.4)

computed at NLO accuracy with either the ZM-VFN or the FONLL-A
schemes using the NNPDFpol1.1 [14] (left) and JAM17 [17] (right)
polarised PDF sets. Points correspond to the pseudodata discussed in

Sect. 3.1, at different values of x and Q2. Error bars, indicated on top of
the FONLL-C result, correspond to the projected experimental uncer-
tainties

produced in the context of the performance study of the
ATHENA detector, now integrated into the ePIC detector
which will be installed at interaction point IP6 of the EIC.
These projections consider five different beam energy con-
figurations for electron-proton scattering, each one assuming
one year of running: 5⊗41 GeV, 5⊗100 GeV, 10⊗100 GeV,
10 ⊗ 275 GeV, and 18 ⊗ 275 GeV, where the first (second)
number indicates the electron (proton) energy. These five
scenarios correspond, respectively, to centre-of-mass ener-
gies of

√
s = 29, 45, 63, 105 and 140 GeV, and to integrated

luminosities of L = 4.4, 61, 79, 100, and 15.4 fb−1. In all
cases, the kinematic coverage considered is Q2 ≥ 1 GeV2

and 0.01 < y < 0.95. The systematic uncertainties include a
point-by-point uncorrelated systematic uncertainty (1.5%), a
normalisation uncertainty (5%), and a systematic uncertainty
of 10−4 due to the relative luminosity. Electron and proton
beam polarisations between 70% and 80% are assumed.

For the charm photo-absorption asymmetry Ac
1, Eq. (3.4),

at the EIC and at the EicC, we use projections from [42] and
[43], respectively. In the case of the EIC, these projections
correspond to three different beam energy configurations:
5⊗41 GeV, 5⊗100 GeV, and 18⊗275 GeV. The correspond-
ing centre-of-mass energies are

√
s = 43, 67, and 211 GeV.

An integrated luminosity of L = 100 fb−1 is assumed for all
three configurations. Electron and proton beam polarisations
are of 80% and 70%, respectively. In the case of the EicC,
projections correspond to two different beam energy config-
urations: 3.5⊗20 GeV, and 5⊗25 GeV. The corresponding
centre-of-mass energy is

√
s = 15 GeV and 22 GeV, and

the integrated luminosity is L = 100 fb−1. For both the EIC
and the EicC, the total experimental uncertainties provided in
[42,43] include statistical, systematic, and luminosity uncer-
tainties added in quadrature.

In all cases, we ignore the central values of the afore-
mentioned pseudodata sets as provided in Refs. [41–43].
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Fig. 8 Same as Fig. 7 at NNLO

We retain instead only their projections for the experimen-
tal uncertainties as a function of each bin in x and Q. The
projected central values of the pseudodata are then replaced
with our own theoretical predictions, obtained as described
next.

3.2 Theoretical predictions

We compute theoretical predictions for the inclusive and
charm spin asymmetries corresponding to the pseudodata
sets discussed above by using alternately the ZM-VFN or
the FONLL schemes, specifically FONLL-A at NLO and
FONLL-C at NNLO, see Sect. 2 for details. We neglect a
possible polarised intrinsic charm component in the pro-
ton, TMCs, electroweak corrections, and corrections due to
hadronisation of charm quarks into D mesons. These correc-
tions are expected to be of similar size in unpolarised and
polarised scattering, therefore they will almost completely
cancel in the relevant asymmetries. The renormalisation and
factorisation scales, μR and μF , are set equal to the DIS vir-

tuality, μR = μF = Q. The same theoretical settings are
adopted consistently in the computation of both the unpo-
larised and polarised structure functions entering the asym-
metry.

We use the following sets of polarised PDFs: NNPDF-
pol1.1 [14], DSSV14 [15,16], and JAM17 [17] for the
computation of inclusive asymmetries; NNPDFpol1.1 and
JAM17 for the computation of charm asymmetries. In the
latter case, we do not use the DSSV14 PDF set because the
polarised charm quark and anti-quark PDFs are identically
set to zero in the released LHAPDF grid.3 By varying the input
PDF set one can verify that, whereas predictions change con-
sistently with Fig. 1, our assessment of the impact of charm-
quark mass corrections does not depend on the specific choice
of polarised PDF set. In all cases, we take the NNLO unpo-
larised PDF set from the NNPDF4.0 determination [9] to
evaluate the denominator of the spin asymmetries.

3 The DSSV14 fit itself adopts a ZM-VFN scheme with n(max)
f = 5

neglecting charm and bottom mass effects.
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Fig. 9 Same as Fig. 7 for the EicC

We consider these settings suitable to quantify the role
of charm quark mass effects in EIC spin asymmetries. They
may not necessarily correspond to the optimal settings that
one would adopt to include actual EIC measurements in a
global fit of helicity-dependent PDFs.

3.3 Comparisons with EIC and EicC projections

We now compare the accuracy of theoretical predictions
obtained in the ZM-VFN and FONLL schemes against the
expected precision of the pseudodata sets discussed above.
In particular, we investigate whether differences in the for-
mer are larger than the latter. We discuss in turn the inclu-
sive longitudinal double-spin asymmetry A|| and the charm
photo-absorption asymmetry Ac

1.

3.3.1 Inclusive double-spin asymmetry

Figure 6 shows the inclusive longitudinal double spin asym-
metry A||, Eq. (3.2), computed at NNLO accuracy with either
the ZM-VFN or the FONLL-C schemes. The three afore-
mentioned PDF sets are used. Error bars, indicated on top of
the FONLL-C result, correspond to the projected experimen-
tal uncertainties, see Sect. 3.1. We display only pseudodata
points corresponding to the low-Q2 bins of the EIC electron-
proton dataset associated to the beam energy configuration
10⊗100 GeV. For these bins and this beam energy configura-
tion, quark mass effects are the largest. We explicitly checked
that, at higher values of Q2 or for different beam energy con-

figurations, the FONLL-C calculation smoothly reduces to
the ZM-VFN.

From Fig. 6 one observes that predictions obtained with
either the ZM-VFN or the FONLL-C schemes may differ sig-
nificantly, especially in the bins with the lowest values of Q2.
Predictions obtained with the former typically undershoot
the ones obtained with the latter. Whereas the magnitude of
the predictions depend on the input polarised PDF set, espe-
cially in the small-x region beyond the coverage of available
data, the impact of charm mass effects is much larger than
the projected experimental uncertainties. As expected, as Q2

increases, the difference between predictions obtained with
the ZM-VFN or the FONLL-C schemes becomes negligi-
ble. We therefore conclude that the inclusion of charm mass
corrections in the computation of the inclusive double-spin
asymmetry is essential to properly match the forecast EIC
measurements within their precision and robustly interpret
them in terms of the underlying spin decomposition of the
proton [44].

3.3.2 Charm photo-absorption longitudinal asymmetry

Figures 7 and 8 show the charm longitudinal asymmetry Ac
1,

Eq. (3.4), computed at NLO and NNLO accuracy, respec-
tively. Predictions are obtained either with the ZM-VFN or
the appropriate FONLL schemes (FONLL-A at NLO and
FONLL-C at NNLO). They correspond to the EIC pseudo-
data discussed in Sect. 3.1. The NNPDFpol1.1 and JAM17
PDF sets are used. Error bars, indicated on top of the FONLL-
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Fig. 10 Same as Fig. 9 at NNLO

C result, correspond to the projected experimental uncertain-
ties. Figures 9 and 10 are as Figs. 7 and 8 for the EicC pseu-
dodata. In all of these figures, each point corresponds to a dif-
ferent bin in x and Q2; due to the DIS kinematics, increasing
values of x correlate with increasing values of Q2.

As in the case of the inclusive double spin asymmetry, we
remark that predictions obtained with either the ZM-VFN of
the FONLL schemes, given a perturbative order, may differ
significantly. Differences, as expected, are generally larger
when Q2 is smaller. As in the case of the inclusive double-
spin asymmetry, these are fairly independent from the input
PDF set, and can be larger than the projected experimental
uncertainty. We therefore conclude, also in this case, that the
inclusion of charm mass corrections is essential to correctly
interpret future collider data.

We finally note that, for both the EIC and EicC, there
are marked differences in predictions obtained at NLO and
NNLO. These can be traced back to the large perturbative
corrections that affect the polarised charm structure function
gc1 at low Q2, and, albeit to a lesser extent, also its unpolarised
counterpart Fc

1 . For instance, at x ∼ 0.01 and Q2 ∼ 5 GeV2,
one has (using NNPDFpol1.1 as input) that gc1 ∼ 0.004 with
FONLL-A but gc1 ∼ −0.05 with FONLL-C (Fig. 5): not
only a change of an order of magnitude in size but also a
change of sign. These large perturbative corrections to charm
production in polarised electron-proton collisions are also
relevant for the inclusive structure function, which is reduced
from g1 ∼ 0.47 at NLO to ∼ 0.23 at NNLO (Fig. 4), again
considering x ∼ 0.01 and Q2 ∼ 5 GeV2.

In light of all of these considerations, we generally remark
that the intermediate-to-large-Q2, large-x region, especially
for the higher energy beam configurations, are the most
promising to measure a non-vanishing polarised charm asym-
metry, which may be as large as a few percent. Such a size-
able asymmetry will provide valuable information on both
the mechanisms of heavy quark production in polarised DIS,
as well as on the underlying distribution of the proton spin
among its partonic constituents.

4 Summary

In this work we have presented a comprehensive framework
enabling the calculation of polarised structure functions and
asymmetries in deep-inelastic scattering up to O (

α2
s

)
and

accounting for charm quark mass effects. This framework
mirrors state-of-the-art theory calculations in polarised DIS
and is implemented in the open-sourceEKO andYADISM soft-
ware. We have shown that FONLL structure functions suc-
cessfully match the massless and massive calculations, and
that they display good perturbative convergence. By compar-
ing our predictions with projected pseudodata corresponding
to the upcoming US- and China-based electron-ion colliders,
we have found that charm mass effects are significant and
must be accounted for to achieve a robust description of both
inclusive and charm-tagged polarised asymmetries at these
future facilities.
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Our results constitute the first step towards a new global
determination of polarised PDFs accurate to NNLO within
the NNPDF framework. This will possibly include not only
polarised DIS measurements, but also W gauge boson pro-
duction and semi-inclusive DIS measurements, for which
NNLO computations have been completed recently [45–
47]. Aside from this goal, our results represent an important
ingredient for the precision phenomenology program at the
upcoming EIC, making it possible to robustly access pre-
cious information on the spin structure of the proton from
the interpretation of its inclusive and charm-tagged polarised
structure function measurements.
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A Polarised DGLAP evolution

Helicity-dependent PDFs obey DGLAP evolution equations,
which, in x space, read as

d

d ln Q2 � fi (x, Q
2) =

∑

k

∫ 1

x

dz

z
�Pik

(
x

z
, αs(Q

2)

)

×� fk(x, Q
2) (A.1)

with �Pik(x, αs) being the polarised splitting functions and
i, k partonic flavour indexes running over all active quark
flavours and the gluon. DGLAP equations can, for conve-
nience, be expressed in Mellin space

d

d ln Q2 � fi (N , Q2)

= −
∑

k

�γik(N , αs(Q
2))� fk(N , Q2) , (A.2)

where convolutions are replaced by products. The quantities
�γik , called polarised anomalous dimensions, are defined by

�γik(N , αs(Q
2)) = −

∫ 1

0
dx xN−1�Pik(x, αs(Q

2)),

(A.3)

and likewise for the Mellin space PDFs �qk(N , Q2). Solving
the coupled system of Eqs. (A.1) or (A.2) is most efficiently
done by rotating to a convenient flavour basis. Specifically,
one defines the polarised total quark singlet PDF as

��(x, Q2) =
n f∑

i=1

�q+
i (x, Q2) =

n f∑

i=1

(
�qi (x, Q

2)

+�q̄i (x, Q
2)

)
, (A.4)

which evolves coupled with the polarised gluon �g, while
all other quark combinations evolve independently in terms
of non-singlet evolution equations.

The polarised splitting functions �Pik can be evaluated
in perturbative QCD,

�Pik(x, αs(Q
2)) =

m∑

n=0

αn+1
s (Q2)�P(n)

ik (x) . (A.5)

The complete set of �Pik has been computed at NLO in
[48] and then at NNLO in [49–51]. At leading order, the
polarised quark-to-quark splitting function is identical to its
unpolarised counterpart, �P(0)

qq = P(0)
qq . Symmetry consid-

erations imply that polarised non-singlet splitting functions
coincide with the spin-averaged ones to all orders after they
are swapped as follows:

�P(n)
NS,±(x) = P(n)

NS,∓(x) ∀ n . (A.6)

Furthermore, helicity conservation implies that the first
moment of the gluon-to-quark splitting function vanishes

∫ 1

0
x�Pqg(x, αs(Q

2))dx = 0 , (A.7)

to all orders in perturbation theory.
As in the case of unpolarised DGLAP evolution, one also

has to account for the fact that the number of active quark
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Fig. 11 The percentage difference with respect to the Les Houches
polarised PDF evolution benchmark tables for the EKO and PEGASUS
predictions, obtained by evolving polarised PDFs from Q2 = 2 GeV2

to Q2 = 104 GeV2. Evolution is carried out at NLO (the highest accu-

racy at which the polarized LH tables are available) in a VFNS with
n(max)
f = 5 active quark flavours. We show results for the evolution

benchmarks corresponding to the polarised quark singlet ��(x, Q2)

(left) and gluon �g(x, Q2) PDFs (right)

flavours n f depends on the scale Q2. In a VFN scheme,
ignoring intrinsic heavy quark contributions, heavy flavour
polarised PDFs are entirely generated at the scale μh from
matching conditions relating schemes with n f and n f + 1
active quarks. At the scale Q2 = μ2

h , these matching relations
take the general form

� f
[n f +1]
i (x, μ2

h) =
∫ 1

x

dz

z

∑

j=g,q,q̄

� f
[n f ]
j

(
x

z
, μ2

h

)
�Ki j

×
(

z, α
[n f +1]
s (μ2

h),
μ2
h

m2
h

)

, (A.8)

where the sum over j includes only the n f light quark
flavours. The polarised operator matrix elements �Ki j have
been computed up to O (

α2
s

)
(NNLO) accuracy [34]. Equa-

tion (A.8) can be generalized to the case of intrinsic heavy
quarks being present at scales Q2 < μ2

h .
Helicity-dependent QCD calculations performed in dimen-

sional regularisation have to address the issue of the defini-
tion of the γ5 Dirac matrix in d �= 4 space-time dimensions,
which enters through the helicity projection operators. Usu-
ally, an ad-hoc renormalisation scheme, called Larin scheme,
is defined for convenience and then quantities are mapped to
the M-scheme by means of finite transformation. This tech-
nical point becomes relevant for higher-order QCD calcula-
tions involving polarised partons.

The calculation of polarised structure functions discussed
in Sect. 2 requires polarised PDFs evolved up to NNLO.

For this reason, polarised DGLAP evolution up to this accu-
racy has been implemented in EKO [21]. The necessary VFN
scheme matching conditions, which were computed only
very recently, are implemented in a public piece of software
for the first time in this work.

We have benchmarked our implementation of polarised
evolution in EKO with other public codes, in particular with
PEGASUS [23] and APFEL [37], and with the Les Houches
(LH) evolution benchmark tables [52], finding good agree-
ment in all cases considered. Depending on the case, the
benchmark is restricted to the NLO VFN scheme or to NNLO
in the FFN scheme. In Fig. 11 we show the percentage dif-
ference between the results of polarised PDFs evolved from
Q2 = 2 GeV2 to Q2 = 104 GeV2 with EKO, PEGASUS,
or the LH tables. Polarised DGLAP evolution is carried out
at NLO (the highest accuracy at which the LH tables are
available) in a VFNS with n(max)

f = 5 active quark flavours.
We show results corresponding to the polarised quark singlet
��(x, Q2) and gluon �g(x, Q2) PDFs. Excellent agree-
ment between the EKO evolution, the reference LH tables,
and PEGASUS is found, with differences at theO(10−5) level.
A similar agreement is achieved for other quark flavour com-
binations not shown here.

We finally assess the perturbative convergence of DGLAP
evolution for a fixed boundary condition up to this accuracy.
In Fig. 12 we display the results of evolving the LH polarised
toy PDFs [52] between Q2 = 2 GeV2 and Q2 = 104 GeV2

with EKO in the VFNS scheme with up to n(max)
f = 5. We
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Fig. 12 Results of evolving the Les Houches benchmark polarised toy
PDFs [52] between Q2 = 2 GeV2 and Q2 = 104 GeV2 withEKO in the
VFNS scheme with up to n f = 5. We compare the results of polarised

evolution at three different perturbative orders, LO, NLO, and NNLO,
for the same fixed input PDF

compare polarised evolution at three different perturbative
orders, LO, NLO, and NNLO, in all cases with the same input
PDF. We note that the LH toy PDF set assumes �ū = �d̄,
while polarised evolution induces a breaking of this relation
at NLO and beyond.

From this comparison, one observes how the perturbative
series converges. Differences between NNLO and NLO are
smaller than those between NLO and LO for all values of
x and flavour combinations. NLO corrections are large, for
instance up to a factor 2 for the small-x gluon and sea quarks
and up to a 50% for the sea quarks in the intermediate x
region. NNLO corrections are much smaller, at the few per-
cent level at most. Although small, these corrections are of the
same size or larger as the projected experimental uncertain-
ties of the forthcoming EIC and EicC measurements. There-
fore, NNLO corrections to polarised PDF evolution must be
included in theoretical predictions entering the interpretation
of the data at these future facilities.

B Target mass corrections in polarised DIS

In this Appendix, we discuss the implementation of tar-
get mass corrections (TMCs) to the computation of the
polarised structure functions g1 in YADISM. We also study
their numerical impact in comparison to charm quark correc-
tions accounted for in the FONLL scheme.

The leading-twist definition of the polarised structure
function g1, Eq. (2.4), is valid in the Bjorken-scaling limit
where Q2 → ∞ and x is fixed. At low Q2 values, power-

suppressed (highest-twist) corrections to the spin-dependent
structure functions can have large effects in some kinematic
regions. A subset of the total higher-twist contribution can
be evaluated in terms of closed-form expressions using the
Operator Product Expansion (OPE). The complete TMC
expressions for polarised structure functions arising from
twist-2 and twist-3 operators have been derived in [53]. Equa-
tion (2.4) is then modified as

g̃1

(
x, Q2

)
= 1

(
1 + γ 2

)3/2

x

ξ
g1(ξ, Q2)

+ γ 2

(
1 + γ 2

)2

∫ 1

ξ

dv

v

[
x + ξ

ξ

+ γ 2 − 2

2
√

1 + γ 2
log

(
v

ξ

)]

g1(v, Q2) , (B.1)

in terms of the so-called Nachtmann variable,

ξ = 2x

1 + √
1 + γ 2

with γ 2 = 4x2 m
2
N

Q2 . (B.2)

It is clear from Eq. (B.1) that in the asymptotic limit, Q2 →
∞, one has that ξ = x and γ = 0 so that the leading-twist
expression is recovered.

The target mass corrected structure function in Eq. B.1
involves integrals, k1 = ∫

dv/vg1(v) and k2 = ∫
dv/v

log(v/ξ)g1(v), which can be numerically difficult to eval-
uate. As done in the case of unpolarised TMCs [54], upper
bounds for the size of these integrals can be computed. Given
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Fig. 13 Comparisons of the exact implementation of TMCs in g1(x, Q2), Eq. (B.1) with the approximated implementation of Eq. (B.3) for different
values of Q2. The polarised structure functions are computed using FONLL-C using NNPDFpol1.1 as input PDF set

Fig. 14 The impact of TMCs on the g1(x, Q2) structure function evaluated with FONLL-A as a function of x for fixed Q2 (upper panels) and as
a function of Q2 for fixed x (lower panels), normalised to the calculation without TMCs, using the NNPDFpol1.1 polarised PDF set as input

that the non-leading terms k1 and k2 constitute a small cor-
rection to the leading term and that g1(v) decreases as a
function of v, we can evaluate the terms at the lower inte-
gration limit. That is, the two integrals have as upper bounds
k1 < g1

∫
dv/v and k2 < g1

∫
dv/v log(v/ξ). By analyt-

ically evaluating these two integrals, one arrives at the fol-
lowing approximation:

g̃approx
1

(
x, Q2

)

= g1(ξ, Q2)

[
1

(
1 + γ 2

)3/2

x

ξ
+ γ 2

(
1 + γ 2

)2

×
(
x + ξ

ξ
(1 − ξ) + γ 2 − 2

4
√

1 + γ 2
log2

(
1

ξ

))]

, (B.3)

with the key benefit that the dependence on the leading-twist
structure function is now factorised.

Figure 13 compares the TMC-corrected structure func-
tion g̃1(x, Q2) using the FONLL-C scheme evaluated with
the exact, Eq. (B.1), and with the approximated, Eq. (B.3),
implementations. These comparisons show that the differ-
ence between the exact and approximated expressions is
larger at small Q2, reaching up to 25% for Q2 = 2 GeV2, but
it decreases as Q2 increases. Therefore, the target-mass cor-
rected expression given by Eq. B.3 is a good approximation
at high momentum scale.

The impact of TMCs on the g1(x, Q2) polarised struc-
ture function is displayed in Fig. 14 (with FONLL-A) and
in Fig. 15 (with FONLL-C), where the target-mass corrected
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Fig. 15 Same as Fig. 14 in the case where structure functions are evaluated with FONLL-C

structure function is normalised to its leading-twist counter-
part. The NNPDFpol1.1 polarised PDF set is used as input.
As can be seen, the ratio is close to unity at small x and
large Q2, while it quickly increases at large x and large Q2.
For instance, at x = 0.5, the impact of TMCs on the struc-
ture function g1 can grow from about 5% at Q2 = 5 GeV2

to about 15% at Q2 = 2 GeV2. As expected, these effects
decrease as x decreases (2-3% at x = 0.25) but they increase
dramatically as x increases (30% at x=0.75). In general,
TMCs depend only moderately on the perturbative order.

The results of Figs. 14 and 15 highlight how TMCs are
in general also required to achieve an accurate description
of polarised DIS structure functions, especially for measure-
ments sensitive to the large-x , small-Q2 kinematic region.
This region is not primarily probed by the EIC and the EicC.
Furthermore, owing to the fact that TMCs for the unpolarised
structure function F1 and the polarised g1 structure function
have similar structure, TMCs mostly cancel in the asymme-
try A1 [55]. For these reasons, TMCs are not included in the
results presented in Sects. 2 and 3.
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