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ON THE HAUSDORFF DIMENSION OF FURSTENBERG SETS AND
ORTHOGONAL PROJECTIONS IN THE PLANE

TUOMAS ORPONEN AND PABLO SHMERKIN

ABSTRACT. Let 0 ď s ď 1 and 0 ď t ď 2. An ps, tq-Furstenberg set
is a set K Ă R2 with the following property: there exists a line set L of
Hausdorff dimension dimH L ě t such that dimHpKXℓq ě s for all ℓ P L.
We prove that for s P p0, 1q, and t P ps, 2s, the Hausdorff dimension of
ps, tq-Furstenberg sets in R2 is no smaller than 2s`ϵ, where ϵ ą 0 depends
only on s and t. For s ą 1{2 and t “ 1, this is an ϵ-improvement over a
result of Wolff from 1999.

The same method also yields an ϵ-improvement to Kaufman’s projec-
tion theorem from 1968. We show that if s P p0, 1q, t P ps, 2s and K Ă R2

is an analytic set with dimH K “ t, then

dimHte P S1 : dimH πepKq ď su ď s ´ ϵ,

where ϵ ą 0 only depends on s and t. Here πe is the orthogonal projection
to the line in direction e.
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1. INTRODUCTION

1.1. Main results. The purpose of this paper is to prove the following two
closely related theorems:

Theorem 1.1. For every s P p0, 1q and t P ps, 2s, there exists ϵ “ ϵps, tq ą 0 such
that the following holds. Let K Ă R2, let L be a family of lines with dimH L ě t,
and assume that dimHpK X ℓq ě s for all ℓ P L. Then dimHK ě 2s ` ϵ.

The notation "dimH" stands for Hausdorff dimension. The Hausdorff
dimension of line families is defined via point-line duality, see Section 2 for
details. No measurability is assumed on either L or K.

In the next theorem, πe : R2 Ñ R, e P S1, stands for the orthogonal pro-
jection to the line spanpeq, identified with R. In other words, πepxq :“ x ¨ e
for x P R2.

Theorem 1.2. For every s P p0, 1q and t P ps, 2s, there exists a constant ϵ “

ϵps, tq ą 0 such that the following holds. If K Ă R2 be an analytic set with
dimHK “ t, then

dimHte P S1 : dimH πepKq ď su ď s ´ ϵ.

Theorems 1.1 and 1.2 are so closely related that they can be both deduced
from a single δ-discretised statement, as follows:

Theorem 1.3. For s P p0, 1q and t P ps, 2s, there exists ϵps, tq ą 0 such that the
following holds for all small enough δ P 2´N, depending only on s and t. Let P Ă
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Dδ be a pδ, t, δ´ϵq-set with YP Ă r0, 1q2, and let T Ă T δ be a family of dyadic
δ-tubes. Assume that for every p P P , there exists a pδ, s, δ´ϵq-set T ppq Ă T such
that T X p ‰ H for all T P T ppq. Then |T | ě δ´2s´ϵ.

For the definitions of the concepts appearing in Theorem 1.3, see Section
2. Theorems 1.1 and 1.2 will be reduced to Theorem 1.3 in Section 3. See
also Theorem 3.2 for a dual formulation of Theorem 1.3.

Remark 1.4. In all three theorems stated above, the positive constant ϵps, tq
can be taken uniform in any compact subset of tps, tq : 0 ă s ă minp1, tq ă

2u. This follows since in Theorem 1.3, if ϵ ą 0 works for a fixed pair ps, tq,
then ϵ{2 works in the ϵ{2-neighbourhood of ps, tq.

Remark 1.5. The assumptions that YP Ă r0, 1q2 and the tubes are dyadic
can be relaxed, see Theorem 3.1 for the details.

1.2. Background on Furstenberg sets. In 1999, T. Wolff [31] introduced
what has become known as the Furstenberg set problem. Given a parame-
ter s P p0, 1q, an s-Furstenberg set K is a compact planar set such that for all
directions e P S1 there is a line ℓe in direction e such that dimHpK X ℓeq ě s.
The s-Furstenberg set problem asks for the smallest possible Hausdorff di-
mension of an s-Furstenberg set. This problem has several motivations. It
is related to investigations of H. Furstenberg [10] on intersections of Cantor
sets defined in terms of expansions to bases 2, 3 (the conjecture that mo-
tivated this connection has since been resolved by the second author [27]
and, independently, by M. Wu [32]). The Furstenberg set problem is also a
“fractal” version of the Kakeya problem, and finally a “discretized” analog
of point-line incidence problems in geometric combinatorics, related to the
Szemerédi-Trotter theorem.

Using elementary arguments, Wolff showed that if K is an s-Furstenberg
set, then

dimHpKq ě maxp12 ` s, 2sq, (1.1)

and constructed a s-Furstenberg sets of dimension 1
2 ` 3s

2 , for s P p0, 1s. It is
worth noting that the bounds (1.1) agree, and equal 1, for s “ 1

2 . Soon after
Wolff’s work, N. Katz and T. Tao [17] connected the 1

2 -Furstenberg set prob-
lem to two other outstanding problems in geometric measure theory: the
Falconer distance set problem and the (discretized) ring conjecture. In 2003,
J. Bourgain [2] solved the discretized ring conjecture which, in conjunction
with the work of Katz-Tao, established that 1

2 -Furstenberg sets have Haus-
dorff dimension at least 1 ` ϵ for a small universal ϵ ą 0. A formal conse-
quence of this result is also an ϵ-improvement over Wolff’s bounds for the
p12 ` ϵq-Furstenberg set problem.

For s ą 1
2 `ϵ, Wolff’s bounds (1.1) remained the strongest results in the s-

Furstenberg set problem, until now. As an immediate corollary to Theorem
1.1, we obtain the following ϵ-improvement for all s P p1{2, 1q:
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Corollary 1.6. For every s P p12 , 1q there exists ϵ “ ϵpsq ą 0 such that the
Hausdorff dimension of every s-Furstenberg set is at least 2s ` ϵ.

We remark that, previously, the first author had shown in [25] that the
packing dimension of an s-Furstenberg sets is at least 2s ` ϵ, for s P p12 , 1q.
This result, or more precisely a δ-discretised version of it, plays an impor-
tant role in this article. A similar improvement for the packing dimension
of Furstenberg sets in the regime s P p0, 12q was obtained by the second au-
thor [29]. Unfortunately, the methods of this article do not appear to be suf-
ficient to obtain a similar Hausdorff dimension improvement for s P p0, 12q.

1.2.1. ps, tq-Furstenberg sets. Theorem 1.1 concerns a generalised notion of
Furstenberg sets, in which the family of lines is arbitrary, and its Hausdorff
dimension, typically denoted "t" in this paper, is an additional parameter.
The study of such generalised Furstenberg sets was initiated by U. Molter
and E. Rela [24]. See [14, 15, 20, 29] for other results in this direction. To be
precise, let us say that K Ă R2 is an ps, tq-Furstenberg set if it satisfies the
assumptions of Theorem 1.1. With this terminology, an ps, 1q-Furstenberg
set is a (mild) generalisation of an s-Furstenberg set, in the sense of Wolff.

An argument similar to Wolff’s proof of the bound dimHpKq ě 2s for
s-Furstenberg sets (see [16, Appendix A]) shows that dimHpKq ě 2s for
every ps, sq-Furstenberg set K. It is also easy to see using a “Cantor target”
construction that this is sharp. Thus, in Wolff’s statement that every s-
Furstenberg has dimension ě 2s, it is not necessary to use the full force of
the assumption: it suffices that there exists a subset S Ă S1 of dimension
dimH S ě s such that dimHrK X ℓes ě s for some line ℓe parallel to every
vector e P S.

It is natural to expect a stronger lower bound as soon as the assumption
dimHpSq ě s is upgraded to dimHpSq ě t for some t ą s. Until now, how-
ever, this has only been known for t ě 2s. For s “ 1

2 , this follows from
the works of Bourgain [2] and Katz-Tao [17], already discussed above. For
general s P p0, 1q, it was shown more recently by K. Héra, the second au-
thor, and A. Yavicoli [16] that every ps, 2sq-Furstenberg set K Ă R2 has
dimHpKq ě 2s` ϵpsq. The value of the constant ϵpsq was quantified very re-
cently by D. Di Benedetto and J. Zahl [1]: for example, it follows from their
results that a classical 1{2-Furstenberg set has Hausdorff dimension at least
1 ` 1{4536. The case ps, 2sq of the Furstenberg set problem is special due to
its close connection with the δ-discretized version of the Erdős-Szemerédi
sum-product problem, see [1] for more information.

With this background, we may emphasise the key novelty of Theorem
1.1: for any t ą s, it gives an ϵ-improvement over "elementary" bounds,
whereas earlier works only accomplished this for t “ 2s. Equivalently, if t P

p0, 2q is fixed, earlier works only gave an ϵ-improvement over elementary
bounds if s “ t{2: the case t “ 1 is particularly relevant for Corollary 1.6.
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Finally, we mention other recent results related to the Furstenberg set
problem. R. Zhang [33] completely resolved a discrete analog of the prob-
lem. More recently, L. Guth, N. Solomon and H. Wang [12] proved inci-
dence theorems for "well spaced" tubes. These can be seen to imply very
strong bounds for the size of δ-discretised Furstenberg-type sets, where
lines are replaced by "well-spaced" δ-tubes. Some further developments
took place after a preprint of this article was first posted to the arXiv. In
the article [4], D. Dąbrowski, the first author and M. Villa obtained a new
explicit bound for ps, tq-Furstenberg sets for t ą 1, namely dimHK ě 2s `

pt´ 1qp1´ sq, which improves the bound in Theorem 1.1 when t ą 1` ϵ for
some absolute ϵ ą 0. This bound was further superseded by Y. Fu-K. Ren
[9], who proved that dimHK ě mint2s ` t ´ 1, 1 ` su. The paper [8] of
Y. Fu-S. Gan-K. Ren also studies a closely related problem. The results and
techniques in these works are very different from the ones in this article.
Roughly speaking, the dimensional or spacing assumptions in [4, 8, 9, 12]
are such that the discretised sum-product problem (or approximate Borel
sub-ring obstruction) is not relevant. This, in particular, allows for more
quantitative estimates for ps, tq-Furstenberg sets for t ą 1.

1.3. Background on projections. The study of the effect of projections on
dimension is one of the oldest and most intensively studied problems in
fractal geometry. See the surveys [5, 23] for an introduction to this vast area.
J. Marstrand’s celebrated projection theorem [21] asserts that if K Ă R2 is
an analytic set of dimension s ď 1, then dimH πepKq “ s for H1 almost
all e P S1. In 1968, R. Kaufman [18] found a simple proof of Marstrand’s
theorem that also gave the following sharpening: if the analytic set K Ă R2

has Hausdorff dimension s P r0, 1s, then

dimHpte P S1 : dimH πepKq ă suq ď s. (1.2)

It is natural to ask whether the right-hand side can be improved if one
assumes, instead, that dimHpKq “ t for some t ą s. Kaufman’s method is
not able to exploit this “extra largeness” of the set K. This is similar (not
coincidentally) to the phenomenon we described for ps, tq-Furstenberg sets.
A different argument that can be perhaps considered “folklore” shows that
for a planar analytic set K with dimHpKq “ t P p0, 2s,

dimHpte P S1 : dimH πepKq ď suq “ 0, 0 ď s ă t
2 . (1.3)

Thus, Kaufman’s bound (1.2) is far from sharp for s ă t{2. An influential
result of J. Bourgain [2, 3] extends (1.3) to the case s “ t{2, and even gives
the following information for s ą t{2 "close" to t{2: for every t P p0, 2q and
ϵ ą 0, there is κ “ κpϵ, tq ą 0 such that

dimHpte P S1 : dimH πepKq ă t{2 ` κuq ď ϵ.

Taking ϵ ă s, we see that Kaufman’s estimate is also not sharp for s ď

t{2 ` κpϵ, tq. Theorem 1.2 provides the first improvement over Kaufman’s
bound for arbitrary values of s ă t. This is new for example in the case
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t “ 1, s “ 3{4. A variant of Theorem 1.2 for packing dimension, in the case
t “ 1, was proved in [25].

While Theorem 1.2 has been stated for t P ps, 2s, it is only news for t P

ps, 1 ` ϵpsqs. For larger "t", the following estimate due to K. Falconer [6]
(case s “ 1) and Y. Peres-W. Schlag [26], which can be obtained by a Fourier
analytic method, is stronger than Theorem 1.2:

dimHte P S1 : dimH πepKq ă su ď maxt0, 1 ` s ´ tu. (1.4)

Theorem 1.2 also provides a new improvement over the estimate (1.4) for
s P p0, 1q and t P r1, 1 ` ϵpsqs.

1.4. Connections with other problems in geometric measure theory. Be-
yond their intrinsic interest, a further motivation for the results in this pa-
per lies in their application to other problems in geometric measure theory.
Even though the "ϵ" from our results is not explicit, and in any case would
be very small, the second author and H. Wang [30] used a bootstrapping
mechanism based on Theorem 1.3 to obtain new explicit estimates in the
Falconer distance set problem [30, Theorems 1.1–1.4] and the dimension of
radial projections [30, Theorems 1.6 and 1.7]. In particular, they obtained
a full resolution of the Falconer distance set conjecture for Ahlfors-regular
sets (and more generally, sets of equal Hausdorff and packing dimension).
While the proofs in [30] involve several old and new ideas, Theorem 1.3 is
a crucial ingredient in all the proofs.

1.5. Proof strategy. We discuss some of the ideas involved in the proof
of Theorem 1.3. As mentioned already, it follows by combining results
of Katz-Tao [17] and Bourgain [2] that s-Furstenberg sets have Hausdorff
dimension at least 1 ` ϵ for s "very close" to 1

2 . This assumption on s is
essential for the approach, as it forces a rather rigid “product structure”
for the Furstenberg set (after projective transformation), that enables the
application of Bourgain’s discretized sum-product theorem.

Our proof also ultimately relies on Bourgain’s theorem, but it follows
a rather different path. The starting point is the main technical result of
[25] (it is there that Bourgain’s projection theorem gets used). In the setting
of Theorem 1.3, it states that if s P p0, 1q, t P ps, 2s, and additionally P is
t-regular (in a fairly weak sense, see Definition 6.1), then either

|T | ě δ´2s´ϵ or |T |δ1{2 ě δ´s´ϵ. (1.5)

Here |T |δ1{2 denotes the number of dyadic δ1{2-tubes required to cover T .
Thus, if P is t-regular, then one gets a gain in the size of T on (at least) one
of the scales δ1{2, δ.

It turns out that the alternative (1.5) is not necessary: under the t-regularity
assumption on P , one always gets |T | ě δ´2s´ϵ, and thus Theorem 1.3 is
established for t-regular sets P . For the details, see Theorem 6.2. The re-
duction from Theorem 6.2 to (1.5) is based on a new “induction on scales”
scheme for incidence counting, see Proposition 5.2, which is crucial also in a
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later part of the argument. Roughly speaking, under certain assumptions,
Proposition 5.2 bounds incidences at scale δ in terms of incidences at the
coarser scales ∆ and δ{∆, where ∆ P pδ, 1s is a free parameter. Moreover,
the families of squares and tubes arising at the coarser scales are related in
a natural way to the original families.

A technical hurdle in the proof of Theorem 6.2 is that (1.5) was only
stated in [25] in the case t “ 1: the general case t P ps, 2s is fairly similar,
but requires sufficiently many changes to merit writing up in Appendix A
(the proof given in the appendix is also streamlined compared to [25]).

A general pδ, t, δ´ϵq-set P can fail to be t-regular, and hence additional
arguments are needed to complete the proof of Theorem 1.3. A key inno-
vation is a multi-scale decomposition of an arbitrary pδ, t, δ´ϵq-set P that
enables us to exploit the gain for t-regular sets, see Proposition 8.1. This
proposition provides a sequence of scales δ “ ∆n ă ∆n´1 ă . . . ă ∆0 “ 1
(depending on P) such that, roughly speaking, one of the following three
alternatives holds for each j P t1, . . . , nu:

‚ P is s-dimensional between scales ∆j and ∆j´1.
‚ P is tj-regular between scales ∆j and ∆j´1 for some tj ě s.
‚ (The “bad” case.) No information on P between scales ∆j and ∆j´1

is available.

The bad scales form a "negligible" proportion of all scales, so we ignore
them here. If the first alternative occurs, we use elementary bounds (see
Corollary 2.14). No gain is achieved, but also there is no loss. If the second
alternative occurs for some tj ą s ` η, then the special case of tj-regular
sets, discussed above, yields an ϵ-gain (depending on η). The fact that P
is a pδ, t, δ´ϵq-set is finally used to show that a positive proportion of the
indices j P t1, . . . , nu satisfy the second alternative, with tj ą s ` η for
some η ą 0 depending only on s and t.

The estimates from different scales are eventually combined via the “in-
duction on scales” Proposition 5.2. The details are contained in Proposition
7.5. All these ingredients are put together in Section 9, where the proof of
Theorem 1.3 is concluded.

The multiscale decomposition is inspired by similar ones in [19] and,
especially, [28], although the details differ. The main difference to these
papers is not in the multiscale decomposition itself, but rather in the way
it is applied. The results of [19, 28] concern projections, and the informa-
tion from different scales is put together by means of entropy. The use of
entropy seems challenging in the context of incidence counting, as in Theo-
rem 1.3. Thus, Proposition 5.2 can be seen as a substitute for the multiscale
entropy formulas that are a key element in many recent papers in the area.

Finally, we mention that induction-on-scales arguments have certainly
been used before in problems involving incidence counting (see L. Guth’s
proof of the multilinear Kakeya inequality [11] for a very clean example).
One novelty in this paper is that the scales in the inductive process are not
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arbitrary, but are chosen carefully in terms of the geometry of the set under
consideration. A second novelty is that the "dimensions" s, t of the families
T ,P are baked into the induction in a way which we have not seen before.

We close the introduction by a summary of the structure of the paper.
Section 2 contains preliminaries on point-line duality, and "classical" inci-
dence bounds that do not require sum-product theory. Section 3 contains
reductions of our main results, Theorems 1.1 and 1.2, to their (common) δ-
discretised counterpart, Theorem 1.3. Section 4 consists of an auxiliary re-
sult, Proposition 4.1, whose motivation is thoroughly discussed at the head
of Section 4. Section 5 contains a key technical result, Proposition 5.2, which
is needed to recombine estimates from various "scale blocks" r∆j ,∆j´1s, as
explained above. Section 6 contains a special case of Theorem 1.3 where the
set P is assumed to be t-regular. To be precise, Section 6 only contains (the
new) part of the proof, while a bulk of the work, heavily based on [25], is
postponed to Appendix A.

Section 7 contains Proposition 7.5, which is an application Proposition
5.2. Both Proposition 5.2 and Proposition 7.5 have the flair of "combin-
ing estimates from different scales", but Proposition 7.5 does this in a way
directly applicable in the proof of Theorem 1.3. The hypotheses of Propo-
sition 7.5 accommodate data about P "looking s-dimensional" or "looking
tj-regular" between the scales ∆j´1 and ∆j . Proposition 7.5 can be applied
to any pδ, tq-set with such a structure: one has a priori information that P
"looks s-dimensional" or "looks tj-regular" between the scales ∆j´1 and ∆j .
In Section 8, the main task is to verify that a (rather) general pδ, tq-set has
such a structure if the lengths of the blocks r∆j ,∆j´1s are chosen appropri-
ately. This idea of "finding good scale block decompositions for pδ, tq-sets"
stems from previous work of the second author [19, 28]. Finally, Section 9
puts all the pieces together to prove Theorem 1.3.

Acknowledgements. We are grateful to the reviewers for reading the man-
uscript carefully, and for making a large number of helpful suggestions.

2. PRELIMINARIES AND ELEMENTARY INCIDENCE ESTIMATES

2.1. Notation. We adopt some standard notational conventions. If A,B ą

0, we use the notation A ≲ B to mean A ď CB for some universal C ą 0.
Likewise, A „ B is a shortcut for A ≲ B ≲ A. Sometimes the implicit
constant C will be allowed to depend on certain parameters; these will be
denoted by subscripts. Occasionally we will use the notation A “ OpBq for
A ≲ B (and likewise with subscripts).

We will sometimes use the notation A ⪅ B, A « B. The specific meaning
will be specified each time, but it will generally be used to “hide” slowly
growing functions of a small scale δ, such as logp1{δq, or δ´ϵ.

Given a dyadic number δ P 2´N, we denote the family of half-open
dyadic sub-cubes of Rd of side-length δ by DδpRdq. More generally, if A Ă

Rd, then we denote DδpAq “ tp P DδpRdq : p X A ‰ Hu. We will very often
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take A “ r0, 1q2; in this case we simply write Dδ “ Dδpr0, 1q2q. We also
write |A|δ :“ |DδpAq|.

We finally extend the previous notations from subsets of Rd to sub-families
of DδpRdq, where δ P 2´N. For P Ă DδpRdq and ∆ P 2´N with ∆ ě δ, we
write D∆pPq :“ D∆pP q, where P :“ YP is the union of the elements in P .
With the same notation, we also write |P|∆ :“ |P |∆.

2.2. pδ, sq-sets. Even though the main results of this paper concern "infin-
itesimal" quantities like Hausdorff dimension, the proofs will be effective.
Most of the technical and auxiliary results below will be phrased in terms
of the following notion of pδ, s, Cq-sets, which are a kind of discretization
of s-dimensional sets at scale δ.

Definition 2.1 (pδ, s, Cq-set). Let P Ă Rd be a bounded nonempty set, d ě 1.
Let δ ą 0 be a dyadic number, and let 0 ď s ď d and C ą 0. We say that P
is a pδ, s, Cq-set if

|P X Q|δ ď C ¨ |P |δ ¨ rs, Q P DrpRdq, δ ď r ď 1. (2.1)

We emphasize that this definition differs from related ones in e.g. [17,
25], notably in that they have δ´s in the right-hand side of (2.1) in place of
|P |δ. The ambient dimension d will be clear from context; in this article, d
will always be either 1 or 2.

Definition 2.2 (Families of δ-cubes). We extend the definition of pδ, s, Cq-
sets to subsets of DδpRdq: a finite family P Ă Dδ is called a pδ, s, Cq-set if
P :“ YP satisfies (2.1).

When the constant C is not too important or assumed to be small, we
will drop it from the notation and speak of pδ, sq-sets.

Remark 2.3. We will often use the following (easy) observations without
further remark:

‚ If P is a pδ, s, Cq-set and P 1 Ă P has |P 1|δ ě K´1|P |δ, then P 1 is a
pδ, s, CKq-set.

‚ If P Ă Rd is a pδ, s, Cq-set, we have the lower bound |P |δ ě C´1 ¨δ´s.
This follows from applying (2.1) to Q P DδpRdq such that PXQ ‰ H.

The following proposition is often useful for finding pδ, s, Cq-sets. Let
Hs

8 denote Hausdorff content, that is,

Hs
8pBq “ inf

#

ÿ

i

diampBiq
s : B Ă

ď

i

Bi

+

.

Proposition 2.4. Let δ P 2´N, and let B Ă r´2, 2sd be a set with Hs
8pBq “:

κ ą 0. Then, there exists a δ-separated pδ, s, C{κq-set P Ă B, where C ě 1 is an
absolute constant. Moreover, one can choose P so that |P | ď δ´s.

The details can be found in [7, Lemma 3.13].
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Remark 2.5. We remark that a pδ, s, Cq-set P Ă Rd need not be a finite set,
so one may not replace the left hand side of the defining inequality (2.1)
by the cardinality of P X Q. In fact, our sets will often be the collections,
or unions, of squares in Dδ. However, if P Ă Rd is a pδ, s, Cq-set then
every, equivalently any, maximal δ-separated subset Pδ Ă P satisfies the
cardinality estimate

|Pδ X Bpx, rq| ≲d C ¨ |Pδ| ¨ rs, x P Rd, δ ď r ď 1. (2.2)

Indeed, it is easy to check that if x P Rd and δ ď r ď 1, then there exists
a dyadic square "Q" of side-length „ r with the property |Pδ X Bpx, rq| „d

|P X Q|δ, and this implies (2.2) when combined with the pδ, s, Cq-property
of P . The converse implication also holds and is easy to check, but we will
not need it, so we omit the details.

Remark 2.6. Let P Ă Rd be a pδ, s, Cq-set. If we define

µ “ |P |
´1
δ δ´d

ÿ

QPDδpP q

Ld|Q,

where Ld|Q is the restriction of Lebesgue measure to the cube Q, then it is
easy to check that

µpBpx, rqq ≲ Crs (2.3)
for all x P Rd and r P p0, 1s. For r P rδ, 1s this follows from the fact that
P is a pδ, s, Cq-set, and for r ă δ an even better estimate follows from the
fact that inside δ-cubes µ is a multiple of Lebesgue measure. Conversely,
if P Ă Rd is bounded and µ defined as above satisfies (2.3), then P is a
pδ, s, OpCqq-set.

A consequence of (2.3) is that if P Ă Rd is a pδ, s, Cq-set, and Pδ “

YDδpP q, then Hs
8pPδq ≳ C´1, since for each cover pBiqi of Pδ we can apply

(2.3) to a ball of radius diampBiq containing Bi. Therefore, by Proposition
2.4, the set Pδ contains a δ-separated pδ, s, OpCqq-set P 1

δ with |P 1
δ| ď δ´s.

By picking a point of P from each Q P DδpP 1
δq, we arrive at the following

lemma.

Lemma 2.7. Let P Ă r´2, 2sd be a pδ, s, Cq-set. Then P contains a δ-separated
pδ, s, OdpCqq-subset P 1 with |P 1| ď δ´s.

2.3. Duality and pδ, sq-sets of lines. In addition to pδ, sq-sets of points, we
also wish to talk about pδ, sq-sets of lines. These will be defined as the im-
ages of pδ, sq-sets of points under the following "duality" map:

Definition 2.8 (Dual sets). For pa, bq P R2, define the dual line

Dpa, bq :“ tpx, yq P R2 : y “ ax ` bu.

Then D is a one-to-one map between the points in R2, and the non-vertical
lines in R2. If P Ă R2 is a set, we write

DpP q :“ tDpa, bq : pa, bq P P u.
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Thus DpP q is defined as a collection of lines, but we will often abuse no-
tation by identifying DpP q with its union. If P Ă R2 is a bounded set, we
say that a collection of lines DpP q is a pδ, s, Cq-set if P is a pδ, s, Cq-set in the
sense of Definition 2.1.

If L is a collection of non-vertical lines, then L “ DpP q for a unique set
P Ă R2, and hence it is well-defined to ask whether L is a pδ, s, Cq-set of
lines. The duality map D also allows us to define

|L|δ :“ |DpP q|δ :“ |P |δ.

Definition 2.9 (Slope set). The slope of a non-vertical line ℓ “ Dpa, bq is
defined to be the number a P R; we will write σpℓq :“ a. More generally,
the slope set of a line family L “ DpP q is defined as σpLq :“ π1pP q, where
π1pa, bq “ a.

Definition 2.10 (Dyadic δ-tubes). Let δ P 2´N. A dyadic δ-tube is a set of the
form T “ YDppq, where p P Dδpr´1, 1q ˆ Rq. In this context, we abbreviate
Dppq :“ YDppq. The collection of all dyadic δ-tubes is denoted

T δ :“ tDppq : p P Dδpr´1, 1q ˆ Rqu.

A finite collection of dyadic δ-tubes tDppqupPP is called a pδ, s, Cq-set if P is
a pδ, s, Cq-set in the sense of Definition 2.1.

We remark that a dyadic δ-tube is not a tube in the usual sense (a δ-
neighbourhood of some line). However, T 1 :“ Dpra, a ` δs ˆ rb, b ` δsq X

r´1, 1q2 satisfies

tpx, yq P r´1, 1q2 :|y ´ pax ` bq| P r0, δsu Ă T 1

Ă tpx, yq P r´1, 1q2 : |y ´ pax ` bq| P r´δ, 2δsu.

Since for the most part we will only care about what happens inside r´1, 1q2,
it is safe to think of a dyadic δ-tube as comparable to a tube of width „ δ.
We also note that if p,Q are dyadic cubes (of possibly different sizes), then
p Ă Q if and only if Dppq Ă DpQq. However, unlike dyadic cubes, different
tubes in T δ may intersect.

If T “ Dppq is a dyadic δ-tube, we define the slope σpT q as the left end-
point of the interval π1ppq P Dδpr´1, 1qq. Thus σpT q P pδ ¨Zq X r´1, 1q. (This
notation is slightly inconsistent with Definition 2.9, but we will make sure
that this will not cause confusion.) If T is a collection of dyadic δ-tubes, we
often write σpT q :“ tσpT q : T P T u Ă δ ¨ Z.

The choice of the rectangle r´1, 1q ˆ R is somewhat arbitrary: the main
purpose is to avoid dealing with "nearly vertical" tubes. We have now de-
fined all the concepts appearing in our δ-discretised main result, Theorem
1.3. The precise choices of parameters for dyadic δ-squares and δ-tubes
play no role for the validity of Theorem 1.3, even if such normalisations are
convenient in the proofs. This fact will be formalised in Theorem 3.1.
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We then make some further notational conventions. From now on, sets
of “points” will typically be subsets of r0, 1q2 while, as explained, dyadic δ-
tubes will be of the form Dppq with p P Dδpr´1, 1q ˆ Rq. As above, squares
in DδpR2q are often denoted by the letter "p", and we remind the reader that
Dδ :“ Dδpr0, 1q2q. Our slightly non-standard use of "p" leaves the notation
"Q" applicable for squares in D∆pR2q, with δ ă ∆ ď 1.

As stated, T δ will denote the family of all dyadic δ-tubes. In contrast,
"specific" families of δ-tubes are denoted T , Tδ, T∆. The notation T ppq will
always denote a collection of dyadic tubes in T δ intersecting the dyadic
square p P DδpR2q. When dealing with two dyadic scales δ ă ∆, as will
often be the case, we will denote “thin” δ-tubes by T, Tj , and “thick” ∆-
tubes by T,Tj .

In general, a collection "T " of dyadic δ-tubes can have very different sep-
aration properties from that of its slope set "σpT q", but if all the tubes in T
intersect a common square p P Dδ, things are different:

Lemma 2.11. Let p P Dδ, and let T ppq Ă T δ be a collection of dyadic δ-tubes,
all of which intersect p. Then the map T ÞÑ σpT q is at most 10-to-1 on T ppq. In
particular,

|tT P T ppq : σpT q P Iu| ď 10|σpT ppqq X I|, I Ă R. (2.4)

Proof. Let a P σpT ppqq be a fixed slope, and assume that Tj “ Dpra, a `

δq ˆ rbj , bj ` δqq P T ppq for j P t1, 2u, so in particular there exist points
px1, y1q P T1 X p and px2, y2q P T2 X p. This implies that there exist numbers
a1, a2, b1

1, b
2
2 with maxt|a1 ´ a|, |a2 ´ a|, |b1

1 ´ b1|, |b2
2 ´ b2|u ă δ such that

y1 “ a1x1 ` b1
1 and y2 “ a2x2 ` b2

2.

Using |y1´y2|, |x1´x2| ď δ, and |a1|, |x2| ď 1 (since p Ă r0, 1q2, and T P T δ),
it follows from the triangle inequality that

|b1 ´ b2| ď |b1
1 ´ b2

2| ` 2δ “ |py1 ´ a1x1q ´ py2 ´ a2x2q| ` 2δ ď 5δ.

This implies the claim. □

Corollary 2.12. Let p0 P Dδ, and let T Ă T δ be a collection of dyadic δ-tubes,
all of which intersect p0. If the slope set σpT q is a pδ, s, Cq-set for some s ě 0 and
C ą 0, then also T is a pδ, s, 10Cq-set. Conversely, if T is a pδ, s, Cq-set, then
σpT q is a pδ, s, C 1q-set for some C 1 „ C.

Proof. Write T “ tDppqupPP , where P Ă Dδ. Fix a square Qr P Dr with
δ ď r ď 1, and note that whenever p Ă Qr, the slope σpT q lies on the
interval I :“ π1pQrq P DrpRq of length r ě δ. Therefore,

|tp P P : p Ă Qru| ď |tT P T : σpT q P Iu|
(2.4)
ď 10|σpT qXI| ď 10C ¨ |σpT q| ¨rs.

Since clearly |σpT q| ď |P| “ |T |, we have now shown that T is a pδ, s, 10Cq-
set.

For the converse implication, we first observe that |T | ď 10|σpT q| by
(2.4) applied with I “ R. So, it suffices to show that if I P Dr, δ ď r ď 1,
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then |σpT q X I| ≲ C ¨ |T | ¨ rs. To this end, fix I P Dr as above, and write
ta1, . . . , aMu :“ σpT q X I . Since aj P σpT q, there is at least one correspond-
ing number bj P δ ¨ Z such that

raj , aj ` δq ˆ rbj , bj ` δq P P.

(If there are several, just pick one.) We claim that all such numbers "bj"
lie on a single interval J Ă R of length |J | „ |I|, determined by I and
the square p0. To see this, recall that Dpraj , aj ` δq ˆ rbj , bj ` δqq intersects
p0 P Dδ. Spelling out what this means, for every 1 ď j ď M there exist
pxj , yjq P p0, a1

j P rajaj ` δq, and b1
j P rbj , bj ` δq satisfying yj “ a1

jxj ` b1
j .

The numbers a1
j here range in the δ-neighbourhood of the interval I , and

the numbers xj , yj lie at distance δ from x0, y0, the coordinates of the left
corner of p0. Therefore, the numbers bj range in the Cδ-neighbourhood of
y0 ´ I ¨ x0, which is an interval of length ≲ |I|. This establishes the claim.

Consequently, we may pick an interval I 1 P DrpRq such that

|σpT qXI| “ M ≲ |t1 ď j ď M : raj , aj`δqˆrbj , bj`δq Ă IˆI 1u| ď C ¨|T |¨rs.

This completes the proof. □

2.4. An elementary incidence bound. We next record an elementary inci-
dence estimate, which is reminiscent of Theorem 1.3, but without the "ϵ"-
gain (the parallel is even clearer in Corollary 2.14). In this section, the no-
tation A ⪅δ B will mean that there exists an absolute constant C ě 1 such
that

A ď C ¨ log
`

1
δ

˘C
B.

Proposition 2.13. Let 0 ď s ď t ď 1, and let CP , CT ě 1. Let P Ă Dδ

be a pδ, t, CP q-set. Assume that for every p P P there exists a pδ, s, CT q-family
T ppq Ă T δ of dyadic δ-tubes with the property that T X p ‰ H for all T P T ppq,
and |T ppq| “ M for some M ě 1.

Let T Ă T δ be arbitrary, and define IpP, T q :“ tpp, T q P P ˆ T : T P T ppqu.
Then

|IpP, T q| ⪅δ max
!

a

CPCT ¨ pMδsqθ{2 ¨ |T |1{2|P|, |T |

)

, (2.5)

where θ “ θps, tq :“ p1 ´ tq{p1 ´ sq P r0, 1s. (If s “ t “ 1, then θps, tq :“ 0.)

Proof. Using Cauchy-Schwarz, we first estimate as follows:

|IpP, T q| “
ÿ

TPT
|tp P P : T P T ppqu|

ď |T |1{2
ˇ

ˇtpT, P, P 1q : T P T ppq X T pp1qu
ˇ

ˇ

1{2

ď |T |1{2

˜

|IpP, T q| `
ÿ

p‰p1

|T ppq X T pp1q|

¸1{2

.

Assume first that |IpP, T q| ě 2
ř

p‰p1 |T ppq X T pp1q|. Then

|IpP, T q| ď |T |1{2
a

3{2 ¨ |IpP, T q|1{2 ùñ |IpP, T q| ď 3
2 |T |. (2.6)
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To make progress in the opposite case, we will interpolate between the fol-
lowing upper bounds for |T ppq X T pp1q|:

|T ppq X T pp1q| ≲ min
!

CT ¨ M ¨

´

δ
dpp,p1q

¯s
, 1
dpp,p1q

)

, (2.7)

where dpp, p1q stands for the distance of the midpoints of p and p1. Both
bounds in (2.7) follow by observing that if T P T ppq X T pp1q, then in par-
ticular T X p ‰ H ‰ T X p1, which forces σpT q to lie on a certain interval
I Ă r´1, 1q of length |I| ≲ δ{dpp, p1q, and of course also in σpT ppqq. There-
fore,

|T ppq X T pp1q| ď |tT P T ppq : σpT q P Iu|
(2.4)
≲ |σpT ppqq X I|.

Now (2.7) follows from Corollary 2.12, and the fact that σpT ppqq is a δ-
separated pδ, s, OpCT qq-set of cardinality ď M . Write θ :“ θps, tq :“ p1 ´

tq{p1 ´ sq P r0, 1s. (If s “ t “ 1, we set θ :“ 0.) The parameter θ is chosen so
that t “ sθ` p1´θq. Then (2.7) and the inequality minta, bu ď aθb1´θ imply
that

|T ppq X T pp1q| ≲ pCTMδsqθ ¨ dpp, p1q´t.

By the pδ, t, CP q-hypothesis of P , for fixed p P P we have
ÿ

p1‰p

dpp, p1q´t ≲
ÿ

?
2¨δď2´jď

?
2

2tj |tp1 P P : dpp, p1q ď 2´ju| ⪅δ CP ¨ |P|.

We deduce that
ÿ

p‰p1

|T ppq X T pp1q| ≲ pCTMδsqθ
ÿ

p‰p1

dpp, p1q´t ⪅δ CP pCTMδsqθ ¨ |P|2.

Therefore, in the case |IpP, T q| ă 2
ř

p‰p1 |T ppq X T pp1q|, we obtain

|IpP, T q| ⪅δ C
1{2
P pCTMδsqθ{2 ¨ |T |1{2|P| ď

a

CPCT ¨ pMδsqθ{2 ¨ |T |1{2|P|.

Combining this estimate with (2.6) completes the proof. □

We record a corollary, which is the form we will use.

Corollary 2.14. Let 0 ď s ď t ď 1, and let CP , CT ě 1. Let P Ă Dδ be a
pδ, t, CP q-set. Assume that for every p P P there exists a pδ, s, CT q-set T ppq Ă T δ

of dyadic δ-tubes with the properties that T X p ‰ H for all T P T ppq, and
|T ppq| „ M for some M ě 1. Then,

|T | ⪆δ pCPCT q´1 ¨ Mδ´s ¨ pMδsq
t´s
1´s , (2.8)

where T “
Ť

pPP T ppq. (If s “ t “ 1, we interpret pt ´ sq{p1 ´ sq “ 1).

Proof. Write IpP, T q “ tpp, T q P P ˆ T : T P T ppqu, as before. Under the
current hypotheses, |IpP, T q| „ M |P|, and on the other hand (2.5) implies
that

|IpP, T q| ⪅δ maxt
a

CPCT ¨ pMδsqθ{2 ¨ |T |1{2|P|, |T |u, (2.9)
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where θ “ p1 ´ tq{p1 ´ sq. If the second term dominates, then

|T | ⪆δ |IpP, T q| „ M |P| ě M ¨ C´1
P ¨ δ´t.

If the first term on the right of (2.9) dominates, then

|T | ⪆δ |IpP, T q|2 ¨ |P|´2 ¨

´

CPCT ¨ pMδsqθ
¯´1

„ pCPCT q´1 ¨ Mδ´s ¨ pMδsq
t´s
1´s .

A calculation using that M ≲ δ´1 shows that the second lower bound is
smaller. □

3. DISCRETISING THE MAIN RESULTS

We start the section by formulating a superficially stronger version of
Theorem 1.3, which is more comfortable to apply, but can be easily reduced
to Theorem 1.3. Only for this statement and proof, we set

T δ
R :“ tDppq : p P Dδpr´R,Rq ˆ Rqu.

Theorem 3.1. Let R P 2N. For s P p0, 1q and t P ps, 2s, there exists ϵps, tq ą 0
such that the following holds for all small enough δ P 2´N, depending only on
s, t, R. Let P Ă Dδpr´R,Rq2q be a pδ, t, δ´ϵq-set, and let T Ă T δ

R . Assume that
for every p P P , there exists a pδ, s, δ´ϵq-set T ppq Ă T such that T X p̄ ‰ H for
all T P T ppq. Then |T | ě δ´2s´ϵ.

Proof. Let ϵ :“ ϵ1{2, where ϵ1ps, tq ą 0 is the constant of Theorem 1.3. Let

Spx, yq :“ p12 ,
1
2q ` p x

4R ,
y

p4Rq2
q, px, yq P R2.

The map S evidently sends r´R,Rq2 inside r14 ,
3
4q2 Ă r0, 1q2, but it also

reduces the slopes of tubes T P T δ
R by a factor of 4R. Indeed, it is easy to

check that if ℓ “ Dpzq with z P r´R,RsˆR, then σpSpℓqq P r´1{4, 1{4s. One
can also check that if T P T δ

R , then SpT q can be covered by a family SpT q Ă

T δ of (standard) dyadic δ-tubes with |SpT q| „ 1. For every p P DδprR,Rq2q,
we also choose a collection Sppq Ă Dδ of (standard) dyadic δ-squares such
that Spp̄q Ă YSppq, and |Sppq| „ 1.

Now the following facts need a little checking, which we leave to the
reader:

‚ P 1 :“
Ť

pPP Sppq Ă Dδ is a pδ, t, Cδ´ϵq-set with C „R 1.
‚ T 1 :“

Ť

TPT SpT q Ă T δ satisfies |T 1| „R |T |.
‚ The sets SpT ppqq :“

Ť

TPT ppq SpT q are pδ, s, Cδ´ϵq-sets for p P P ,
with C „R 1.

As we will see in a moment, the pair pP 1, T 1q "almost" satisfies the hy-
potheses of Theorem 1.3, and hence |T | „R |T 1| ≳ δ´2s´ϵ1 . Recalling that
ϵ “ ϵ1{2, this will conclude the proof.
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The word "almost" still calls for an explanation. Recall that for all p P P
and T P T ppq, we are assuming that TXp̄ ‰ H. Consequently SpT qXSpp̄q ‰

H. Since

Spp̄q Ă YSppq and SpT q Ă YSpT q Ă YSpT ppqq,

for each pair pp, T q P P ˆ T ppq we may choose a representative pp1, T 1q P

pSppq,SpT ppqqq such that T 1 X p1 ‰ H. Here both p1, T 1 depend on p, T , but
there are only „ 1 different choices of pp1, T 1q for each pp, T q. In particular,
for p P P fixed, we may choose p2 P Sppq in such a way that T 1 X p2 ‰ H

for „ |T ppq| choices of T 1 P SpT ppqq.
Now we reduce P 1 to the subset P2 of squares p2 obtained by the pigeon-

holing procedure above. Evidently P2 remains a pδ, t, Cδ´ϵq-set. Also, for
every p2 P P2, there exists a pδ, s, Cδ´ϵq-subset of SpT ppqq Ă T 1, all tubes in
which intersect p2. Therefore pP2, T 1q satisfies the assumptions of Theorem
1.3, taking δ ą 0 so small that C ď δ´ϵ “ δ´ϵ1{2. Now the proof of Theorem
3.1 can be completed as discussed above. □

We then proceed to show how to reduce the proofs of Theorems 1.1 and
1.2 to the statement above.

3.1. Discretising Furstenberg sets. This section contains the proof of The-
orem 1.1.

We formulate a dual version of Theorem 1.3, which is more suited for the
application to Furstenberg sets:

Theorem 3.2. For every s P p0, 1q and t P ps, 2s, there exists ϵ “ ϵps, tq ą 0 such
that the following holds for all small enough δ P 2´N depending only on s, t. Let
T Ă T δ be a pδ, t, δ´ϵq-set of dyadic δ-tubes. Assume that for every T P T , there
exists a pδ, s, δ´ϵq-set PpT q Ă Dδ such that T X p ‰ H for all p P PpT q. Then
|P| ě δ´2s´ϵ, where P :“

Ť

TPT PpT q.

Theorem 3.2 follows from Theorem 1.3, or rather from the generalised
version in Theorem 3.1, by swapping the roles of dyadic squares and dyadic
tubes. More precisely, let T and tPpT quTPT be the families specified in
Theorem 3.2. We define the map "D˚" on T δ as follows: if T “ Dppq P T δ,
then

D˚pT q :“ tp´a, bq : pa, bq P pu.

Now we let P˚ :“ tD˚pT q : T P T u, and T ˚ :“ YtDpPpT qq : T P T u. First,
note that P˚ is a collection of squares of side-length δ. These squares are
“almost dyadic”, except that they are not half-open in the standard way.
Without changing notation, we rearrange the boundaries of the squares in
P˚ so that they become dyadic. Note that P˚ Ă r´1, 1sˆR by definition. In
fact this can be sharpened: since every tube T “ Dppq P T intersects r0, 1q2

by assumption, one has p Ă r´1, 1q ˆ r´1, 2q, and consequently YP˚ Ă

r´2, 2s2. Further, YP˚ is a pδ, t, δ´ϵq-set, since T is.
Second, notice that T ˚ contains a pδ, s, δ´ϵq-set T ˚pp˚q :“ DpPpT qq for

each p˚ :“ D˚pT q P P˚. We will check in Lemma 3.3 below that the T ˚ X
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p˚ ‰ H for all T ˚ P T ˚pp˚q. It follows that the pair pP˚, T ˚q satisfies the
hypotheses of Theorem 3.1 with R “ 2, and the conclusion of Theorem 3.2
follows.

It remains to check that every square p˚ P P˚ satisfies T ˚ Xp˚ ‰ H for all
T ˚ P T ˚pp˚q. This follows from the next lemma, which explains our need
to introduce the map "D˚":

Lemma 3.3. Let p P Dδ and T P T δ with T Xp ‰ H. Then DppqXD˚pT q ‰ H.

Proof. Since T P T δ, we may write T “ DppT q for some pT P Dδpr0, 1q ˆ

r´1, 2qq. Let pc, dq P T X p. Since pc, dq P T , we have d “ ac ` b for some
pa, bq P pT . Equivalently b “ cp´aq ` d, which implies that p´a, bq P Dppq.
Also, p´a, bq P D˚pT q by definition, so p´a, bq P Dppq X D˚pT q. □

To obtain the lower bound for the Hausdorff dimension of Furstenberg
sets claimed in Theorem 1.1, we appeal to the following auxiliary result,
which is Lemma 3.3 from [16].

Lemma 3.4. Assume that every discretised pδ, C, s, tq-Furstenberg set has Lebesgue
measure ≳C δ2´u, for some u ě 0. Then every ps, tq-Furstenberg set has Haus-
dorff dimension at least u.

Let us explain the terminology. In the language of [16], an ps, tq-Furstenberg
set is a set K Ă R2 with the property that there exists a line set L Ă R2

with HtpLq ą 0 such that HspK X ℓq ą 0 for all ℓ P L. Evidently, to
prove Theorem 1.1, it suffices to show that if 0 ă s ă t ď 2, then every
ps, tq-Furstenberg set K Ă R2 satisfies dimHK ě 2s ` ϵ, where ϵ ą 0 only
depends on s, t and is bounded away from 0 in a small neighborhood of
ps, tq.

A discretised pδ, C, s, tq-Furstenberg set, on the other hand, is a set F Ă

Bp2q of the following kind. The set F can be expressed as

F “
ď

ℓPL
F pℓq,

where L is a pδ, t, Cq-set of lines, and for each ℓ P L, the set F pℓq is a pδ, s, Cq-
set of the form F pℓq “ YPpℓq, where

Ppℓq Ă Dδ and F pℓq Ă ℓ2δ “ tx P R2 : distpx, ℓq ă 2δu.

According to Lemma 3.4, our main theorem on Furstenberg sets, Theorem
1.1, will follow once we manage to show that every pδ, C, s, tq-Furstenberg
set has Lebesgue measure ≳C δ2´p2s`ϵq, for some ϵ “ ϵps, tq ą 0 which is
bounded away from 0 in a neighborhood of s, t (this robustness is needed
in order to replace “Hausdorff dimension u” by “positive u-dimensional
measure” for u P ts, tu). Equivalently, |P| ≳C δ´2s´ϵ, where P “

Ť

ℓPL Ppℓq.
This claim easily follows from Theorem 3.2. Indeed, for every ℓ P L, one

first selects a representative dyadic δ-tube T “ T pℓq P T δ with the property

|tp P Ppℓq : T X p ‰ Hu| „ |Ppℓq|.
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This can be done, because YPpℓq Ă ℓ2δ XBp2q can be covered by „ 1 dyadic
δ-tubes. (To be precise, for this we need to assume that the lines ℓ P L
all have slope between p0, 1q, and they intersect the x-axis on the segment
t0uˆp0, 1q. It is easy to reduce the study of general Furstenberg sets to ones
with these constraints.) Then, the pδ, t, Cq-property of L translates into the
pδ, t, C 1q-set property of T “ tT pℓq : ℓ P Lu, and the families PpT q :“
tp P Ppℓq : T X p ‰ Hu are pδ, s, C 1q-sets, for some C 1 „ C. Therefore,
Theorem 3.2 implies that |P| ě δ´2s´ϵ, as desired. While this argument was
detailed for a specific pair ps, tq, using that a pδ, u, δ´ϵq-set is automatically a
pδ, u´ϵ{2, δ´ϵ{2q-set, we see that in Theorem 3.2 the value of "ϵ" can be taken
uniform in a neighborhood of ps, tq. The proof of Theorem 1.1 is complete.

3.2. Discretising projections. This section contains the proof of Theorem
1.2. We start with some standard reductions. It is enough to consider di-
rections e “ pe1, e2q in a given π{4 arc; after a suitable rotation, we may
furthermore assume that e1 P p´1, 0s. Since scaling does not change di-
mension, we may thus redefine the family of projections as πσ : R2 Ñ R,
σ P p´1, 0s, where πσpx, yq “ σx ` y. Likewise, we may assume that the set
K in question is contained in r0, 1q2, at the cost of weakening the assump-
tion to dimHpKq ą t ´ ϵ{2, where ϵ ą 0 is arbitrarily small.

Fix, then, s P p0, 1q and t P ps, 2s and an analytic set K Ă r0, 1q2 with
dimHpKq ą t ´ ϵ{2. Our re-defined goal is then to show that

dimHtσ P p´1, 0s : dimH πσpKq ď su ď s ´ ϵ, (3.1)

where ϵ “ ϵps, tq ą 0. This is equivalent to showing that

dimHtσ P p´1, 0s : dimH πσpKq ă su ď s ´ ϵ. (3.2)

To be precise, to deduce (3.1) from (3.2), we need to know that the value of
the constant "ϵps, tq ą 0" is bounded away from zero in a neighbourhood of
s. This will follow from the application of Theorem 1.3, in moment, where
the analogous constant "ϵps, tq ą 0" has this property.

Use Frostman’s lemma to find a probability measure µ with sptµ Ă K,
which satisfies µpBpx, rqq ≲ rt´ϵ for all x P R2 and r ą 0. To reach a
contradiction, assume that (3.2) fails: thus Hs´ϵpΣq ą 0, where

Σ :“ tσ P p´1, 0s : dimH πσpKq ă su,

and ϵ ą 0 is a parameter to be fixed at the end of the argument. The value
of ϵ will only depend on s, t. Let µσ “ πσµ be the push-down of µ under πσ.
Since µσ is supported on πσpKq, we have Hspsptµσq “ 0. Therefore, given
any threshold δ0 P 2´N, there exists a collection Iσ of dyadic intervals of R
such that |I| ď δ0 for all I P Iσ,

ÿ

IPIσ

µσpIq “ 1 and
ÿ

IPIσ

|I|s ď 1.

By the pigeonhole principle, we can then find a dyadic number δσ “ 2´jpσq,
jpσq ě 0, such that δσ ď δ0 and, denoting Iσpδσq :“ tI P I : |I| “ δσu, we
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have
ÿ

IPIσpδσq

µσpIq ě c{j2 “ c ¨ rlogp1{δσqs´2 and |Iσpδσq| ď δ´s
σ . (3.3)

The choice of "jpσq" depends on σ P Σ, but this dependence can be essen-
tially eliminated by another application of the pigeonhole principle: recall-
ing that Hs´ϵpΣq ą 0, there exists a fixed index j0 ě 0, and a subset Σ Ă Σ

with Hs´ϵpΣq ≳ 1{j20 , such that

δσ “ 2´jpσq “ 2´j0 “: δ, σ P Σ.

At this point, we discretise everything at the scale δ ą 0 we located above.
In particular, by the lower bound Hs´ϵ

8 pΣq ≳ 1{j20 “ rlogp1{δqs´2, there
exists by Lemma 2.4 a pδ, s ´ ϵ, C ¨ rlogp1{δqs2q-set

Σ1 Ă pδ ¨ Zq X Σpδq with |Σ1| ď δ´s`ϵ.

The notation Σpδq refers to the δ-neighbourhood of Σ. For every σ P Σ1, it
follows from (3.3) that a certain fairly large subset of sptµ may be covered
by ≲ δ´s dyadic tubes with common slope ´σ P pδ ¨ Zq X r0, 1q (it is easy
to check that the pre-images π´1

σ tru, r P R, are lines with slope ´σ P r0, 1q.)
More precisely, for every σ P Σ1, there exists a family of dyadic tubes Tσ
with the properties

|Tσ| ≲ δ´s and µpYTσq ≳ rlogp1{δqs´2.

We write T :“
Ť

σPΣ1 Tσ, and we record that |T | ≲ δ´2s`ϵ, since |Σ1| ď

δ´s`ϵ. Let Pσ Ă Dδ be the collection of dyadic sub-squares of r0, 1q2 which
have non-empty intersection with at least one of the tubes from Tσ. We note
that µpYPσq ě µpYTσq, hence
ÿ

pPDδ

µppq ¨ |tσ P Σ1 : p P Pσu| “
ÿ

σPΣ1

µpYPσq ≳ |Σ1| ¨ rlogp1{δqs´2 ⪆δ δ
´s`ϵ,

also recalling that Σ1 is a pδ, s´ϵ, C ¨rlogp1{δqs2q-set. Since on the other hand

|tσ P Σ1 : p P Pσu| ď |Σ1| ď δ´s`ϵ

for all p P Dδ, and µ is a probability measure, we may infer the existence of
a family P Ă Dδ with the following properties:

µpYPq «δ 1 and |tσ P Σ1 : p P Pσu| «δ δ
´s`ϵ for all p P P. (3.4)

Since sptµ Ă K Ă r0, 1q2, we may also assume that YP Ă r0, 1q2. The
family P may not be a pδ, tq-set, but since µpYPq «δ 1, and µ is a pt ´ ϵq-
dimensional Frostman measure, we have Ht´ϵ

8 pYPq «δ 1. Therefore, by
another application of Lemma 2.4, there exists a pδ, t ´ ϵ, Cq-set (and thus
also a pδ, t, Cδ´ϵq-set) P Ă P with C «δ 1. For every p P P , we recall from
(3.4) that there correspond «δ δ

´s`ϵ choices of σ P Σ1 such that at least one
tube from Tσ intersects p. Since Σ1 is a pδ, s´ ϵ, Cq-set, also with C «δ 1, the
family of these tubes forms a pδ, s, Cδ´ϵq-set T ppq Ă T .
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Therefore, we have now constructed a pδ, t, Cδ´ϵq-set P Ă Dδ, and for
every p P P a pδ, s, Cδ´ϵq-set T ppq of dyadic δ-tubes, all intersecting p. By
Theorem 1.3, these facts should imply that |T | ě δ´2s´ϵ, assuming that
ϵ “ ϵps, tq ą 0 was chosen small enough. However, in fact |T | ď |Σ1| ¨

maxσPΣ1 |Tσ| ≲ δ´2s`ϵ, and a contradiction ensues for δ ą 0 small enough.
This completes the proof of Theorem 1.2.

4. COVERING THIN TUBES WITH THICK TUBES WITHOUT LOSING
SEPARATION

Before formulating the main result in this section, let us briefly explain
what it achieves. Let 0 ă δ ď ∆ ď 1 be dyadic numbers. Let Q P D∆, and
let P Ă DδpQq be a family of sub-squares of Q. Assume that for every p P P ,
there is a pδ, sq-set T ppq Ă T δ such that T X p ‰ H for all T P T ppq. Then
all the δ-tubes in the family T “

Ť

pPP T ppq intersect Q. Now, suppose that
we cover YT by some minimal collection of dyadic ∆-tubes, say T∆pQq.
Then all the tubes in T∆pQq intersect Q. Is T∆pQq a p∆, sq-set? Certainly
not: even a fixed family T ppq need not be a p∆, sq-set. What is worse, the
families T ppq can be so different from each other that T∆pQq may not enjoy
any properties of the individual families T ppq. Regardless: Proposition 4.1
will imply that after refining both P and the families T ppq appropriately,
the minimal cover T∆pQq is, in fact, a p∆, sq-set. In fact, Proposition 4.1
will not make any reference to the fixed square "Q", but in practice, we will
apply it in situations as described above.

In Proposition 4.1, the notation A ⪅∆ B means that there exists an abso-
lute constant C ě 1 such that A ď C ¨ rlogp1{∆qsCB.

Proposition 4.1. Let 0 ă δ ď ∆ ď 1 be dyadic numbers, and let C1,M ě 1. Let
P be a finite set, and assume that for every p P P , there is an associated pδ, s, C1q-
set T ppq Ă T δ with M

2 ă |T ppq| ď M , and such that T X r0, 1q2 ‰ H for all
T P T ppq and all p P P .

Then, there exist a subset P Ă P of cardinality |P| «∆ |P|, and a collection
T ∆ Ă T ∆ of dyadic ∆-tubes intersecting r0, 1q2 with the following properties:

(1) T ∆ is a p∆, s, C2q-set with C2 ⪅∆ C1,
(2) There exists a constant H «∆ M ¨ |P|{|T ∆| such that

|tpp, T q P P ˆ T δ : T P T ppq and T Ă Tu| ≳ H, T P T ∆.

Remark 4.2. To understand the numerology, note that
1

|T ∆|

ÿ

TPT ∆

|tpp, T q P P ˆ T δ : T P T ppq and T Ă Tu|

ď
|tpp, T q P P ˆ T δ : T P T ppqu|

|T ∆|
ď

M ¨ |P|

|T ∆|
«∆ H,

so the uniform lower bound in (2) essentially matches the upper bound for
the average.
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Remark 4.3. In our concrete applications of Proposition 4.1, P will be a col-
lection of δ-sub-squares of a ∆-square Q, but this plays no role in the proof
so we chose to state it for an arbitrary finite set indexing a collection of
pδ, s, C1q-sets of dyadic δ-tubes.

Proof of Proposition 4.1. Let T∆ be a minimal cover of T :“
Ť

pPP T ppq by
dyadic ∆-tubes. Then each tube in T∆ intersects r0, 1q2, hence |T∆| ď 100∆´2.
For p P P fixed, different tubes in T∆ may contain different numbers of
tubes from T ppq, and we need to perform an initial pigeonholing to fix this.
Let

T∆,jppq :“ tT P T∆ : 2j´1 ă |tT P T ppq : T Ă Tu| ď 2ju,

and note that

M „ |T ppq| ď
ÿ

2jďM

2j ¨ |T∆,jppq|.

Since |T∆| ď 100∆´2, the sum over those indices j ě 0 with 2j ď M∆2{200
cannot dominate the left hand side. Thus,

M ≲
ÿ

M∆2{200ď2jďM

2j ¨ |T∆,jppq|.

Now, the number of terms in the sum is bounded by ⪅∆ 1, so there exists
an index j “ jppq such that 2j ¨ |T∆,jppq| «∆ M . We write

m1ppq :“ 2jppq, T∆ppq :“ T∆,jppqppq, and m2ppq :“ 2´jppq¨M «∆ |T∆ppq|.
(4.1)

Thus |tT P T ppq : T Ă Tu| „ m1ppq for all T P T∆ppq, and the union of the
tubes in T∆ppq contains «∆ M distinct tubes from T ppq.

The next trouble is that m1ppq,m2ppq depend on p P P , and another pi-
geonholing is needed to fix that. Noting that there are ⪅∆ 1 possible choices
for the pair pm1ppq,m2ppqq (which is in fact determined by m2ppq ⪅∆ 1
alone), there exists a fixed pair pm1,m2q such that

|tp P P : pm1ppq,m2ppqq “ pm1,m2qu| «∆ |P|.

We let P be the subset of P defined above. For p P P , we let

T ppq :“ tT P T ppq : T Ă T for some T P T∆ppqu.

Then |T ppq| «∆ M by the choice of T∆ppq in (4.1). After these initial re-
ductions, the tube families T ppq have gained a small amount of uniformity:
each T ppq, p P P , is covered by the «∆ m2 dyadic ∆-tubes in T∆ppq, and

|tT P T ppq : T Ă Tu| „

#

m1, if T P T∆ppq,

0, if T P T∆ z T∆ppq.
(4.2)
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We continue the proof by calculating that

M ¨ |P| «∆

ÿ

pPP

ÿ

TPT∆ppq

|tT P T ppq : T Ă Tu|

„ m1

ÿ

TPT∆

|tp P P : T P T∆ppqu| „ m1

ÿ

2jď|P|

2j ¨ |T∆,j |,
(4.3)

where
T∆,j :“ tT P T∆ : 2j´1 ă |tp P P : T P T∆ppqu| ď 2ju. (4.4)

In fact, the sum on the right hand side of (4.3) can be restricted to those
j ě 0 with 2j ě c|P|∆2 for some c «∆ 1, since m1 ď M and |T∆,j | ď |T∆| ď

100∆´2, and consequently the sum over 2j ă c|P|∆2 cannot dominate the
left hand side of (4.3). This observation is used to infer that there are only
«∆ 1 choices of "j" one needs to consider. From (4.3), one may now deduce
the existence of

c|P|∆ ď 2j ď |P| such that 2j ¨ |T∆,j | «∆
M ¨ |P|

m1
“ m2 ¨ |P|. (4.5)

We then define T ∆ :“ T∆,j for the index "j" located above. We record that,
by the definition of T∆,j in (4.4), we have

|tp P P : T P T∆ppqu| „ 2j «∆ |T ∆|´1 ¨ m2 ¨ |P|, T P T ∆. (4.6)

It remains to verify the properties (1)-(2). We claim that (2) is valid with the
constant H :“ 2j ¨ m1, which indeed satisfies H «∆ M ¨ |P|{|T ∆| by (4.5),
and |P| «∆ |P|. To prove (2) with this choice of "H", fix T P T ∆, and note
that

|tpp, T q P P ˆ T δ : T P T ppq and T Ă Tu| “
ÿ

pPP

|tT P T ppq : T Ă Tu|.

Recalling (4.2), one has |tT P T ppq : T Ă Tu| ≳ m1 for all T P T∆ppq.
Therefore,

|tpp, T q P P ˆ T δ : T P T ppq and T Ă Tu| ≳ m1 ¨ |tp P P : T P T∆ppqu|.

In combination with (4.6), this shows that |tpp, T q P PˆT δ : T P T ppq and T Ă

Tu| ≳ 2j ¨ m1 “ H , as claimed.
To prove the claim (1), fix a dyadic tube Tr P T r with r ě ∆. Write

T ∆pTrq :“ tT P T ∆ : T Ă Tru.

To finish the proof, we must show that |T ∆pTrq| ⪅∆ C1 ¨ |T ∆| ¨ rs. Start by
observing that

|T ∆pTrq| ¨ |T ∆|´1 ¨ m2 ¨ |P|
(4.6)
«∆

ÿ

TPT ∆pTrq

|tp P P : T P T∆ppqu|

“
ÿ

pPP

|T ∆pTrq X T∆ppq|.
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Dividing by |P|, we find that there exists p0 P P with

|T ∆pTrq X T∆pp0q| ⪆∆ |T ∆pTrq| ¨ |T ∆|´1 ¨ m2.

Recall from (4.2) that |tT P T pp0q : T Ă Tu| ≳ m1 for T P T∆pp0q. Conse-
quently,

|tT P T pp0q : T Ă Tru| ≳ m1 ¨ |T ∆pTrq XT∆pp0q| ⪆∆ |T ∆pTrq| ¨ |T ∆|´1 ¨M.

Finally, using the pδ, s, C1q-set property of T pp0q, and recalling |T pp0q| „ M ,
we deduce that

|T ∆pTrq| ⪅∆ |T ∆| ¨ M´1 ¨ |tT P T pp0q : T Ă Tru| ≲ C1 ¨ |T ∆| ¨ rs.

This completes the proof of the proposition. □

5. AN INDUCTION ON SCALES SCHEME FOR INCIDENCE COUNTING

The main result of this section is Proposition 5.2. Roughly speaking, this
proposition will allow us to prove incidence estimates at scale δ in terms
of incidence estimates at coarser scales, so it can be seen as an induction
on scales mechanism for incidence counting. It will be a crucial step in
the proof of Theorem 1.3. The proof relies on Proposition 4.1 and careful
pigeonholing.

Fix two dyadic scales 0 ă δ ă ∆ ď 1 and families P0 Ă Dδ and T0 Ă T δ.
For Q P D∆ and T P T ∆, we denote

P0 X Q “ tp P P0 : p Ă Qu and T0 X T :“ tT P T0 : T Ă Tu.

We also write

D∆pP0q “ tQ P D∆ : P0XQ ‰ Hu and T ∆pT0q :“ tT P T ∆ : T0XT ‰ Hu.

Finally, if S : R2 Ñ R2 is a map, we let SpP0q “ tSppq : p P P0u and
SpT0q “ tSpT q : T P T0u.

Definition 5.1. Fix δ P 2´N, s P r0, 1s, C ą 0, M P N. We say that a pair
pP0, T0q Ă Dδ ˆ T δ s a pδ, s, C,Mq-nice configuration if for every p P P0 there
exists a pδ, s, Cq-set T ppq Ă T0 with |T ppq| “ M and such that T X p ‰ H

for all T P T ppq.

We make some remarks on this definition:
(a) No non-concentration assumptions are made on P - only on the fami-

lies T ppq.
(b) In practice, we often have |T ppq| „ M rather than |T ppq| “ M . How-

ever, we can easily get a nice configuration by trimming each family
T ppq to M 1 „ M elements - this will only incur an innocuous con-
stant loss in the parameter "C". So we will not distinguish between
|T ppq| „ M and |T ppq| “ M in the sequel.

(c) Finally, we point out that |T ppq| ě δ´s{C by virtue of being a pδ, s, Cq-
set, but M is allowed to be much larger than δ´s.
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In the next proposition, for ∆ P 2´N and Q P D∆, the map SQ : R2 Ñ

R2 is the homothety that maps Q to the square r0, 1q2. Also, the notation
A ⪅δ B means that there exists an absolute constant C ě 1 such that A ď

C ¨ rlogp1{δqsCB.

Proposition 5.2. Let δ,∆ P 2´N with δ ď ∆. Let pP0, T0q be a pδ, s, C1,Mq-nice
configuration. Then there exist sets P Ă P0 and T ppq Ă T0ppq, p P P , such that
denoting T “

Ť

pPP T ppq the following hold:
(i) |D∆pPq| «δ |D∆pP0q| and |P X Q| «δ |P0 X Q| for all Q P D∆pPq.

(ii) |T ppq| ⪆δ |T0ppq| “ M for p P P .
(iii) There are T∆ Ă T ∆, C∆ «δ C1 and M∆ ě 1 such that pD∆pPq, T∆q is a

p∆, s, C∆,M∆q-nice configuration. Moreover, the associated families T∆pQq

satisfy

YT ppq Ă YT∆pQq, p P P X Q, Q P D∆pPq. (5.1)

(iv) For each Q P D∆pPq there exist CQ «δ C1, MQ ě 1, and a family of tubes
TQ Ă T δ{∆ such that pSQpPXQq, TQq is pδ{∆, s, CQ,MQq-nice. Moreover,

Dδ{∆ rσ pTQpSQppqqqs “ Dδ{∆rσpT ppqqs, p P P X Q. (5.2)

Furthermore, the families T∆, TQ can be chosen so that

|T0|

M
⪆δ

|T∆|

M∆
¨

ˆ

max
QPD∆pPq

|TQ|

MQ

˙

. (5.3)

Thanks to Proposition 5.2, the problem of finding lower bounds for |T0|

is reduced to finding lower bounds for the cardinalities of the families of
∆-tubes T∆ and pδ{∆q-tubes TQ. This is the induction on scales mechanism
described at the beginning of this section.

Remark 5.3. Note that C∆, CQ «δ C1 instead of C∆ «∆ C1 and CQ «δ{∆«

C1. So, for the proposition to be useful in practice one needs

logp1{∆q, logp∆{δq „ logp1{δq.

Remark 5.4. We also point out that no guarantees are made that |P| «δ |P0|.
However, it follows from Claim (i) that if the sets P0XQ , Q P D∆pP0q, have
comparable cardinalities to begin with, then the cardinalities of P and P0

are also roughly comparable - this will be the case in our applications.

Remark 5.5. The following extra property can be added to the requirements
of the families T∆pQq, Q P D∆pPq (we will point out in Remark 5.6 the small
extra step which needs to be taken). Fix ∆̄ P r∆, 1s X 2´N. Then, the map

T ÞÑ |T X T∆pQq|, T P T ∆̄pT∆pQqq, Q P D∆pPq,

is constant (independent of Q).

Proof of Proposition 5.2. Fix Q P D∆pP0q. By applying Proposition 4.1 to the
set P0 X Q, we may find a subset PQ Ă P0 X Q of cardinality |PQ| «∆

|P0 X Q|, and a family of dyadic ∆-tubes T ∆pQq intersecting Q such that
the following properties hold:
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(T1) T ∆pQq is a p∆, s, C∆q-set for some C∆ «∆ C1.
(T2) There exists a constant HQ «∆ M ¨ |PQ|{|T ∆pQq| such that

|tpp, T q P PQ ˆ T δ : T P T0ppq and T Ă Tu| ≳ HQ, T P T ∆pQq.

Note that, even though C∆ a priori depends on Q, the implicit constant in
C∆ «∆ C1 is independent of Q and so we can indeed take a uniform value
over all Q P D∆pP0q.

All the tubes in T ∆pQq intersect r0, 1q2, so |T ∆pQq| ď 100∆´2. By the
pigeonhole principle, we may find M∆ ě 1, and a subset Q Ă D∆pP0q

with cardinality |Q| «∆ |D∆pP0q|, such that M∆ ď |T ∆pQq| ď 2M∆ for all
Q P Q.

Write
T ∆ :“

ď

QPQ

T ∆pQq.

We will next perform another pigeonholing to ensure that |T0XT| is roughly
constant for all tubes T in a substantial subset of T ∆. To this end, we define

IpQ, T ∆q :“ tpQ,Tq P Q ˆ T ∆ : T P T ∆pQqu.

Note that |IpQ, T ∆q| „ |Q| ¨ M∆. For j ě 1, let

T ∆,j :“ tT P T ∆ : 2j´1 ă |T0 X T| ď 2ju.

Since |T δ X T| ď p∆{δq2 ď δ´2 for all T P T ∆, we have

|Q| ¨ M∆ „ |IpQ, T ∆q| “
ÿ

2jďδ´2

|tpQ,Tq P Q ˆ T ∆,j : T P T ∆pQqu|.

Therefore, we may pick j P t1, . . . , 2 logp1{δqu such that, writing

T∆ :“ T ∆,j , T∆pQq :“ T∆ X T ∆pQq, Q P Q,

we have
ÿ

QPQ

|T∆pQq| “ |tpQ,Tq P Q ˆ T∆ : T P T∆pQqu| «δ |Q| ¨ M∆. (5.4)

We write N∆ :“ 2j for this index "j", so

|T0 X T| „ N∆, T P T∆pQq Ă T∆. (5.5)

Since M∆ „ |T ∆pQq| ě |T∆pQq| for Q P Q, we infer from (5.4) that there
exists a further subset of Q Ă Q of cardinality |Q| «δ |Q| such that

|T∆pQq| «δ M∆ „ |T ∆pQq|, Q P Q. (5.6)

Remark 5.6. At this point, if we desire the extra property in Remark 5.5,
small additional refinements are needed. Recall that ∆̄ P r∆, 1s X 2´N, and
we desire that every T P T ∆̄pT∆pQqq contains a common number of ele-
ments from T∆pQq. If Q-dependence is allowed, this is a matter of very
straightforward pigeonholing: the only cost is that the cardinality of T∆pQq

will decrease by a factor of «∆ 1, and in particular (5.5)-(5.6) are not af-
fected.
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After this step has been accomplished individually for every Q P Q,
we first reduce Q to a further subset Q1 with |Q1| «∆ |Q| so that T ÞÑ

|TX T∆pQq| only varies within a factor of 2 for Q P Q. After this, we finally
discard a few tubes from each intersection TXT∆pQq to achieve the desired
precise constancy.

To comply with the definition of "niceness" in Claim (iii), we reduce the
families T∆pQq so that they have common cardinality

M∆ :“ mint|T∆pQq| : Q P Qu «δ M∆.

(If we know and want that T ÞÑ |T X T∆pQq| is constant in the sense of
Remark 5.5, this reduction has to be performed by deleting "blocks" of the
form T X T∆pQq.) Since T ∆pQq was a p∆, s, C∆q-set by (T1), also T∆pQq

remains a p∆, s, C∆q-set, with constant C∆ «δ C1. We now define

T∆ :“
ď

QPQ
T∆pQq.

This finalises the definition of the family T∆ appearing in Claim (iii).
We next begin processing the families T0ppq towards the families T ppq.

For Q P Q fixed, let

T ppq :“
ď

TPT∆pQq

pT0ppq X Tq, p P PQ. (5.7)

Now, it is clear that (5.1) holds, so the proof of Claim (iii) is complete – at
least when we declare that the final families T ppq (to be finalised in Section
5.1) will be subfamilies of T ppq. To be precise, we also need to know that
Q “ D∆pPq - this will indeed be the case, see (5.9) below.

The first issue with definition (5.7) is that it is not guaranteed that |T ppq| «δ

M for all p P PQ (the second issue is that to attain (5.2), we will need to re-
fine T ppq further; we will return to this in Section 5.1). Recall from (5.6) that
|T∆pQq| «δ |T ∆pQq| for Q P Q. Since also HQ «∆ M ¨ |PQ|{|T ∆pQq| by (T2),
we record that

ÿ

pPPQ

|T ppq|
(5.7)
“

ÿ

pPPQ

ÿ

TPT∆pQq

|T0ppq X T|

“
ÿ

TPT∆pQq

|tpp, T q P PQ ˆ T δ : T P T0ppq and T Ă Tu|

⪆δ |T∆pQq| ¨ HQ «δ M ¨ |PQ|.

Since |T ppq| ď |T0ppq| “ M for all p P PQ Ă P0, this implies the existence of
a subset PQ Ă PQ of cardinality |PQ| «δ |PQ| such that

|T ppq| «δ M, p P PQ. (5.8)

We now define
P :“

ď

QPQ
PQ and T :“

ď

pPP
T ppq, (5.9)
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and we note, thanks to (5.8), that Claim (ii) is satisfied for p P P , and for the
families T ppq defined in (5.7). Since T ppq will be refined once more in the
sequel into T ppq, we remark that Claim (ii) remains valid as long |T ppq| «δ

|T ppq|, and we will make sure that this is the case. Similarly, Claim (i) is
clearly satisfied by the set P . In the sequel, the family D∆pPq “ Q will
remain intact, but the sets PQ will be refined once more while maintaining
|PQ| «δ |P0 X Q|. Clearly this will not influence the validity of Claim (i).

We start proving Claim (iv) and, concurrently, the lower bound (5.3) on
|T0|. We first note that

|T0| ě |T∆| ¨ min
TPT∆

|T0 X T|
(5.5)
„ |T∆| ¨ N∆. (5.10)

We fix Q P Q for the rest of the argument, and define the collection of δ-
tubes

T pQq :“
ď

pPPQ

T ppq.

We next observe, using |T∆pQq| “ M∆ and, recalling (5.7), that

|T pQq| ď
ÿ

TPT∆pQq

|T0 X T|
(5.5)
≲ M∆ ¨ N∆. (5.11)

We adopt the notation PQ :“ SQpPQq “ SQpP X Qq Ă Dδ{∆pr0, 1q2q. Dur-
ing the remainder of the proof, we will construct a family TQ of pδ{∆q-tubes
such that (after a final refinement of PQ) the pair pPQ, TQq is a pδ{∆, s, CQ,MQq-
nice configuration, for some CQ,MQ ě 1, satisfying Claim (iv), in particular
(5.2). We will also show that

|T pQq| ⪆δ
|TQ|

MQ
¨ M. (5.12)

This will finish the proof, since combining (5.10), (5.11), and (5.12) yields
(5.3).

5.1. Construction of TQ and proof of (5.12). We abbreviate δ̄ “ δ{∆. The
main task remaining is to define the family TQ Ă T δ̄. We know that each
square p P PQ intersects each δ-tube in the pδ, s, Cq-set T ppq defined in (5.7),
with C «δ C1. However, the separation of these tubes is of the order "δ",
not "δ{∆", and this causes a need for further processing.

Fix p P PQ. If Tδ̄ P T δ̄ with Tδ̄ X p ‰ H, the family T ppq X Tδ̄ is called a
tube packet. A generic tube packet is denoted Ξppq, thus Ξppq “ T ppqXTδ̄ for
some Tδ̄ P T δ̄. Since the tubes in a fixed tube packet Ξppq have a common
ancestor in T δ̄, the slope set σpΞppqq is contained in a dyadic interval of
length δ̄, determined by Tδ̄.

Every tube in T ppq lies in precisely one tube packet, and every tube
packet Ξppq satisfies |Ξppq| P t0, . . . , δ´2u. Therefore, we may find dyadic
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numbers mppq P t1, . . . , δ´2u and Mppq P t1, . . . , |T ppq|u, and a collection of
tube packets

Ξ1ppq, . . . ,ΞMppqppq Ă T ppq

such that

|Ξjppq| „ mppq, 1 ď j ď Mppq, and mppq ¨ Mppq «δ |T ppq|
(5.8)
«δ M.

By pigeonholing again, we may find a number MQ P N, and a subset of PQ

of cardinality «δ |PQ| (we keep the notation PQ) such that Mppq „ MQ for
all p P PQ. For p P PQ, we finally define

T ppq :“

Mppq
ď

j“1

Ξjppq. (5.13)

Note that this (final) family T ppq still satisfies |T ppq| «δ M , so Claim (ii)
was not violated. After this point, the family PQ will no longer be refined,
so the final definition of P is now given by (5.9), with the current definition
of PQ.

With these conventions, |PQ| «δ |P0 X Q|, and

|Ξjppq| «δ |T ppq|{MQ «δ M{MQ “: mQ «δ mppq, p P PQ, 1 ď j ď MQ.
(5.14)

We adopt the notational convention that squares in PQ “ SQpPQq Ă Dδ̄ are
denoted "q". We now intend to cook up pδ̄, sq-sets of tubes TQpqq incident to
the squares q P PQ. For q “ SQppq, with p P PQ, the most obvious attempt
might be to define TQpqq :“ SQpT ppqq, since all the sets SQpT q, T P T ppq,
intersect q “ SQppq. The worst way in which this fails is that the slopes of
the tubes in T ppq are δ-separated, whereas we desire that the slopes of TQpqq

are δ̄-separated; applying the homothety SQ does not rescue the situation,
as homotheties preserve slopes.

To fix the issue, we start by performing a "thinning" procedure to the
families T ppq. Namely, for every p P PQ, we define a new tube family
T 1ppq with the heuristic idea to select a single tube from each tube packet
Ξ1ppq, . . . ,ΞMQ

ppq. A slightly different technical implementation is more
tractable. Fix a tube packet Ξ “ Ξjppq, 1 ď j ď MQ, and let Tj P T δ̄ be the
dyadic ancestor of the tubes in Ξ. Let Tj P T δ be a tube with the properties

Tj X p ‰ H, Tj Ă Tj , and σpTjq “ σpTjq P pδ̄ ¨ Zq X r´1, 1q. (5.15)

Thus, Tj may, or may not, be an element of Ξ; we will only need that Tj

has the same ancestor in T δ̄ as all the tubes in Ξjppq. We say that the tube
packet Ξjppq is represented by Tj . Letting 1 ď j ď MQ vary, we thus obtain
a collection T 1ppq of dyadic δ-tubes, whose slopes are δ̄-separated, and in
fact

σppq :“ σpT 1ppqq Ă pδ̄ ¨ Zq X r´1, 1q, p P PQ. (5.16)
Another useful property, needed to establish (5.2), is that all the slopes of
the tubes in T ppq are contained in the δ̄-intervals around the slopes of T 1ppq.
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In fact, more precisely, the slope set σppq consists exactly of the left end-
points of those dyadic δ̄-intervals which contain at least one slope from
σpT ppqq Ă δ ¨ Z. In symbols,

Dδ̄ rσppqs “ Dδ̄ rσpT ppqqs , p P PQ. (5.17)

Note the resemblance with (5.2).
For p P PQ fixed, we claim that the slope set σppq is a pδ̄, s, CQq-set with

CQ «δ C1. To see this, fix a dyadic interval I Ă R of length |I| ě δ̄, and
let I1, . . . , Ik Ă I be an enumeration of those dyadic δ̄-intervals which have
non-empty intersection with I X σppq. Since each Ii intersects σppq at some
point σpTjq P δ̄ ¨Z, with Tj P T 1ppq, we see that Ii “ rσpTjq, σpTjq` δ̄q, and Ii
contains all the slopes of the tube packet Ξjppq represented by Tj : in other
words σpΞjppqq Ă Ii. Since |σpΞjppqq| „ |Ξjppq| «δ mQ by (5.14) (and since
all the tubes in Ξjppq are incident to p, see Lemma 2.11), we may use the
knowledge that σpT ppqq is a pδ, s, Cq-set of cardinality «δ M for C «δ C1 as
follows:

|I Xσppq| «δ
1

mQ
¨ |I XσpT ppqq| ⪅δ

1
mQ

¨C ¨M ¨ |I|s
(5.14)
“ C ¨MQ ¨ |I|s. (5.18)

Since |σppq| „ MQ, we infer from (5.18) that σppq is a pδ̄, s, CQq-set with
CQ «δ C1.

Now that the slopes between the tubes in T 1ppq are δ̄-separated, there
is hope that the sets "TQpqq :“ SQpT 1ppqq" are, roughly speaking, pδ̄, sq-
sets of dyadic δ̄-tubes intersecting q “ SQppq. A minor issue is that the
homothetic image of a dyadic tube is not exactly a dyadic tube. Instead, the
following holds, as can be verified by straightforward computation: write
Q “ rx0, x0 `∆q ˆ ry0, y0 `∆q, and let T “ DpI ˆJq P T δ be arbitrary, with
|I|, |J | “ δ, I ˆ J Ă r´1, 1q ˆ R. Then,

SQpT q Ă D
´

I ˆ
x0I`J´y0

∆

¯

.

Here J “ px0I ` J ´ y0q{∆ is an interval of length |J| „ δ{∆ “ δ̄. It follows
that SQpT q may be covered by a family SQpT q consisting of |SQpT q| „ 1
sets of the form DpI ˆ J1q, where J1 P Dδ̄pRq. The sets DpI ˆ J1q are not
quite elements of T δ̄, because I R Dδ̄pRq.

We specialise the discussion to the situation where T P T 1ppq for some
p P PQ. Then σpT q P σppq Ă pδ̄ ¨ Zq X r´1, 1q. Therefore, if T “ DpI ˆ Jq,
with I “ rσ, σ ` δq, we have I “ rσ, σ ` δ̄q P Dδ̄. It follows that the sets
DpI ˆ J1q P SQpT q, defined above, are individually covered by the dyadic
tubes DpI ˆ J1q P T δ̄. Now, the collection SQpT q, formed by the sets DpI ˆ

J1q, consists of „ 1 elements of T δ̄, and its union covers SQpT q. Moreover,

σpSQpT qq “ tσu “ tσpT qu, T P T 1ppq. (5.19)

Now we are prepared to define the family TQ. We write

T 1 :“
ď

pPPQ

T 1ppq and TQ :“ YtSQpT q : T P T 1u.
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We also define the following sub-families TQpqq Ă TQ, for q “ SQppq P PQ.
By (5.15), the sets SQpT q, T P T 1ppq, intersect q. Consequently, at least one
of the dyadic δ̄-tubes in SQpT q also intersects q, and we include this tube
in TQpqq. The pδ̄, s, Cq-set property of TQpqq then follows from (5.18), (5.19)
and Corollary 2.12.

We now finish the proof of (5.2). Fix p P PQ “ P X Q. By the definition
of TQpSQppqq just above, the slope set σrTQpSQppqqs Ă δ̄ ¨ Z coincides with
σpT 1ppqq “ σppq. Therefore, (5.2) is a consequence of (5.17).

It remains to show that (5.12) holds. Note that every tube T 1 P T 1 repre-
sents at least one tube packet ΞpT 1q Ă T pQq with |ΞpT 1q| «δ mQ, recalling
(5.14). If we knew that the tube packets represented by distinct tubes in T 1

are disjoint (this turns out to be "true enough"), we could easily complete
our estimate as follows:

|T pQq| ≳
ÿ

T 1PT 1

|ΞpT 1q|
(5.14)
⪆δ |T 1| ¨

M

MQ
≳ |TQ| ¨

M

MQ
, (5.20)

as desired in (5.12).
What is literally true, and still sufficient for the estimate above, is that

there exists a subset T 2 Ă T 1 of cardinality |T 2| „ |T 1| such that the tube
packets represented by the elements in T 2 are disjoint. The proof of the
whole proposition is completed by justifying this statement.

Fix p P P and T 1 P T 1ppq, and write ΞpT 1q P tΞ1ppq, . . . ,ΞMQ
ppqu for the

tube packet represented by T 1. Then, note that all the tubes from ΞpT 1q have
roughly the same intersection with Q, and this intersection roughly agrees
with T 1 X Q. More precisely, there exists an absolute constant C ě 1 such
that, denoting the δ-neighborhood of a set A by Aδ, the following holds:

p P PQ and T 1 P T 1ppq ùñ T2δ X Q Ă T 1
Cδ for all T P ΞpT 1q. (5.21)

Indeed, this follows from the facts that T, T 1 are δ-tubes intersecting p and
their slopes are pδ{∆q-close. This observation yields a criterion for checking
that two tube packets are disjoint. With the constant "C" as in (5.21), we
define that two tubes T, T 1 P T δ are separated if

σpT q ‰ σpT 1q or TCδ X T 1
Cδ X r0, 1q2 “ H.

Lemma 5.7. If T 1
1, T

1
2 P T 1 are separated, then ΞpT 1

1q X ΞpT 1
2q “ H.

Proof. If T 1
1, T

1
2 are separated for the reason that σpT 1

1q ‰ σpT 1
2q, then the

slopes of all the tubes in ΞpT 1
1q are distinct from all the slopes in ΞpT 1

2q: this
follows from σpT 1

1q, σpT 1
2q P δ̄¨Z (recall (5.16)), and σpΞpT 1

jqq Ă rσpT 1
jq, σpT 1

jq`

δ̄q for j P t1, 2u.
Let us then assume that σpT 1

1q “ σpT 1
2q, but the second separation con-

dition holds. Since T 1
1, T

1
2 P T 1, one may find squares p1, p2 P PQ such that

T 1
j P T 1ppjq for j P t1, 2u. If T P ΞpT 1

1q X ΞpT 1
2q, then T X p1 ‰ H ‰ T X p2,

since T P T pp1q X T pp2q. Thus,

p1, p2 Ă T2δ X Q Ă pT 1
1qCδ X pT 1

2qCδ X r0, 1q2.
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by (5.21). This violates the assumption that T 1
1, T

1
2 are separated. Hence

ΞpT 1
1q X ΞpT 1

2q “ H also in this case. □

It remains to find a separated collection T 2 Ă T 1 of cardinality |T 2| „

|T 1|:

Lemma 5.8. The family T 1 contains a sub-collection of comparable cardinality
whose elements are separated.

Proof. Recall that σpT 1q Ă δ̄ ¨ Z by (5.16). By the definition of "separation" it
suffices to prove the following claim for any fixed σ P δ̄ ¨ Z: the collection
T 1pσq :“ tT 1 P T 1 : σpT 1q “ σu contains a separated set of cardinality
„ |T 1pσq|. We leave the algebra to the reader, but the idea is the following:
one verifies that if T 1

j “ Dprσ, σ`δqˆrbj , bj `δqq P T 1pσq, j P t1, 2u, are two
tubes with pT 1

1qCδ X pT 1
2qCδ X r0, 1q2 ‰ H, then |b1 ´ b2| ď C 1δ for some C 1 „

C. Consequently, a separated subset of T 1pσq can be found by choosing a
pC 1δq-separated subset of tb P δ ¨ Z : Dprσ, σ ` δq ˆ rb, b ` δqq P T 1pσqu. □

As we discussed around (5.20), the proof of (5.12), and hence the proof
of the proposition, is now complete. □

6. AN IMPROVED INCIDENCE ESTIMATE FOR REGULAR SETS

Definition 6.1. Let δ P 2´N be a dyadic number such that also δ1{2 P 2´N.
Let C,K ą 0, and let 0 ď s ď d. A non-empty set P Ă Dδ is called
pδ, s, C,Kq-regular if P is a pδ, s, Cq-set, and moreover

|P|δ1{2 ď K ¨ δ´s{2.

Theorem 6.2. Given s P p0, 1q and t P ps, 2s, there exists ϵ “ ϵps, tq ą 0 such
that the following holds for small enough δ P 2´N, depending only on s, t. Let
P Ă Dδ be a pδ, t, δ´ϵ, δ´ϵq-regular set. Assume that for every p P P , there exists
a pδ, s, δ´ϵq-set of dyadic tubes T ppq Ă T δ such that T X p ‰ H for all T P T ppq.
Then,

|T | ě δ´2s´ϵ, (6.1)
where T “

Ť

pPP T ppq.

This theorem is a variant of [25, Theorem 3.12], with two essential changes.
The first one is that in [25, Theorem 3.12], the conclusion (6.1) is replaced
by the following alternative: either

|T | ě δ´2s´ϵ or |T |δ1{2 ě δ´s´ϵ. (6.2)

It turns out that this superficially weaker statement can be used to deduce
the stronger one given in Theorem 6.2: this is the content of the present
section. The second essential difference is that [25, Theorem 3.12] only con-
siders the case t “ 1. While the changes required in the proof are not diffi-
cult, they still affect the argument so substantially that we have decided to
provide all the details in Appendix A, see Theorem A.1.
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During the proof of Theorem 6.2, will write "A ⪅ B" if A ď Cδ´CϵB,
where C ě 1 is an absolute constant, and "ϵ" is a sufficiently small constant
to be determined (it will end up being the one from the statement of The-
orem 6.2). The notation A « B means that A ⪅ B ⪅ A. Factors which are
logarithmic in δ will also be hidden by the "⪅" notation: A ď B¨plog 1

δ qC will
be abbreviated to A ⪅ B. We will also abbreviate the terms "p∆, u, δ´Cϵq-
set" and "p∆, u, δ´Cϵ, δ´Cϵq-regular set" to "p∆, uq-set" and "p∆, uq-regular
set", respectively, for ∆ P tδ, δ1{2u and u P ts, tu.

Proof of Theorem 6.2. Since we aim to use Proposition 5.2, we will denote
P0 :“ P and T0 :“ T , reserving P, T for the objects provided by the propo-
sition. By Lemma 2.7, we may assume that |T0ppq| « δ´s for all p P P .
Pigeonholing and passing to a subset P 1

0 Ă P0 with |P 1
0| « |P0| (which we

continue to denote by P0), we may further assume that |T0ppq| “ M « δ´s

for all p P P0. By another application of Lemma 2.7, we may reduce to the
case where |P0| « δ´t (passing to subsets will not break any upper bound
on |P0|δ1{2 , so we can also retain the pδ, t, δ´ϵ, δ´ϵq-regularity of P0).

Then the statement looks very much like Theorem A.1: the only differ-
ence is that, according to Theorem A.1, either (6.1) holds, or then

|T0|δ1{2 ě δ´s´ϵ.

The plan is to use Proposition 5.2, applied to a suitable refinement of P0,
to show that either of the alternatives presented by Theorem A.1 can be
parlayed into the claim of Theorem 6.2.

Let Q0 :“ Dδ1{2pP0q (the minimal cover of P0 by dyadic δ1{2-squares).
Then |Q0| ď δ´t{2´ϵ by the assumption that P0 is pδ, t, δ´ϵ, δ´ϵq-regular.
We call a square Q P Q0 light if |tp P P0 : p Ă Qu| ď δ´t{2`5ϵ. From
|Q0| ď δ´t{2´ϵ and |P0| ě δ´t`ϵ, it follows that ď 1

2 ¨ |P0| squares in P0 are
covered by the union of the light squares in Q0. We now discard the light
squares from Q0, and also their contents from P0. We keep the notation
P0 and Q0 for the remaining squares. Then, by definition, the (remaining)
squares in Q0 are heavy: |tp P P0 : p Ă Qu| ⪆ δ´t{2 for all Q P Q0.

After these initial refinements we apply Proposition 5.2 to the pδ, s, δ´ϵ,Mq-
nice configuration pP0, T0q, at the scale ∆ “ δ1{2. Let

P Ă P0, T Ă T0, Tδ1{2 Ă T δ1{2
, M :“ Mδ1{2 ě 1, C :“ Cδ1{2 « 1

be provided by the proposition, and write Q :“ Dδ1{2pPq. We remark that
by Proposition 5.2(i), we have |Q| « |Q0| and |P X Q| « |P0 X Q| « δ´t{2.
Thus, the cardinality of Q0 was not substantially reduced when passing to
Q, and the remaining squares in Q remain (essentially) as heavy relative to
P as those in Q0 were relative to P0.

By Claim (iii) in Proposition 5.2, pQ, Tδ1{2q is a pδ1{2, s,C,Mq-nice config-
uration. This means, by definition, that for every Q P Q, there exists a non-
empty pδ1{2, s,Cq-set Tδ1{2pQq Ă Tδ1{2 of cardinality M “ |Tδ1{2pQq| ⪆ δ´s{2
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such that T X Q ‰ H for all T P Tδ1{2pQq. Thus, by Corollary 2.14 applied
at scale δ1{2, we obtain

|Tδ1{2 | ⪆ Mδ´s{2 ¨ pMδs{2q
t´s
1´s . (6.3)

Next, for Q P Q, let TQ,MQ, CQ be the objects in Proposition 5.2, Claim (iv).
In other words, for the homothety SQ : Q Ñ r0, 1q2, the set pSQpP XQq, TQq

is a pδ1{2, s, CQ,MQq-nice configuration, where CQ «δ 1, and

SQpP X Qq “ tSQppq : p P P, p Ă Qu Ă Dδ1{2 .

Since |P X Q| « |P0 X Q| « δ´t{2 for all Q P Q, as we already observed
above, one can check that SQpP X Qq is a pδ1{2, tq-set. Therefore, Corollary
2.14 implies that

|TQ| ⪆ MQ ¨ δ´s{2. (6.4)
After these preliminaries, we apply Theorem A.1, or (6.2) to the family

P , and the pδ, sq-sets T ppq, for p P P , produced by Claim (ii) in Proposition
5.2. Note that since only heavy squares were retained in Q0, it follows from
Claim (i) in Proposition 5.2 that |P| ⪆δ |P0| and hence P is a pδ, tq-regular
set. Let C be a large constant, depending on s and t, to be determined in a
moment. Provided ϵ is small enough in terms of s, t and C, Theorem A.1,
or (6.2), implies that either

|T0| ě |T | ě δ´2s´Cϵ or |Tδ1{2 | “ |T |δ1{2 ě δ´s´Cϵ.

The first alternative is what we seek to prove, so suppose that the second
alternative holds. If M ě δ´s{2´Cϵ{2, then we get from (6.3) that there is
C1 ≳s,t C such that

|Tδ1{2 | ě Mδ´s{2´C1ϵ. (6.5)

If, on the other hand, M ă δ´s{2´Cϵ{2, then (6.5) also holds by the assump-
tion |Tδ1{2 | ě δ´s´Cϵ.

We finally deduce from (5.3), (6.4), and (6.5) that, for any Q P Q,

|T0| ⪆
|Tδ1{2 |

M
¨

|TQ|

MQ
¨ M ⪆ M ¨ δ´s´C1ϵ.

Since M ⪆ δ´s, we conclude that if C (and therefore C1) is taken sufficiently
large in terms of s, t only, then |T0| ě δ´2s´ϵ. The proof of Theorem 6.2 is
complete. □

7. COMBINING INCIDENCE ESTIMATES FROM MULTIPLE SCALES

Recall the notation D∆pP q “ tQ P D∆ : P X Q ‰ Hu for P Ă r0, 1q2 and
∆ P 2´N, and SQ for the homothety mapping Q to r0, 1q2.

Definition 7.1. Let 0 ă δ ă ∆ ď 1 be dyadic numbers, and P Ă r0, 1q2. Let
also 0 ď s ď 2 and C ą 0.

(1) We say that P is an ps, Cq-set between the scales δ and ∆ if SQpP XQq Ă

r0, 1q2 is a pδ{∆, s, Cq-set for all Q P D∆pP q.
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(2) We say that P is ps, C,Kq-regular between the scales δ and ∆ if SQpP X

Qq is a pδ{∆, s, Cq-set such that

|SQpP X Qq|pδ{∆q1{2 ď Kpδ{∆q´s{2

for all Q P D∆pP q.

Definition 7.2. Let n ě 1, and let

δ “ ∆n ă ∆n´1 ă . . . ă ∆1 ď ∆0 “ 1

be a sequence of dyadic scales. We say that a set P Ă r0, 1q2 is p∆jq
n
j“1-

uniform if there is a sequence pNjq
n
j“1 such that |P X Q|∆j “ Nj for all

j P t1, . . . , nu and all Q P D∆j´1pP q. As usual, we extend this definition to
P Ă Dδ by applying it to YP .

Lemma 7.3. Given P Ă r0, 1q2 and a sequence δ “ ∆n ă ∆n´1 ă . . . ă ∆1 ď

∆0 “ 1 of dyadic numbers, n ě 1, there is a p∆jq
n
j“1-uniform set P 1 Ă P such

that
|P 1|δ ě

`

4n´1 logp1{δq
˘´n

|P |δ. (7.1)

Proof. This is a standard “bottom-to-top” pigeonholing argument, but since
we have not seen this particular statement in the literature we provide the
details. Pigeonholing, we can locate a dyadic number Nn P r1, p∆n´1{∆nq2s

such that
ÿ

␣

|PXQ|δ : Q P D∆n´1 , |PXQ|∆n P rNn, 2Nnq
(

ě p2 logp∆n´1{∆nqq
´1

|P |δ.

We can then obtain a set Pn Ă P such that |Pn X Q|∆n “ Nn whenever
|P X Q|∆n P rNn, 2Nnq, Q P D∆n´1 , and Pn X Q “ H otherwise. Then

|Pn|δ ě p4 logp∆n´1{∆nqq
´1

|P |δ.

We continue inductively. Suppose Pn Ą Pn´1 ¨ ¨ ¨ Ą Pi`1 have been con-
structed for some i ě 0 with the property that |Pi`1 X Q|∆j P t0, Nju for
all j P ti ` 1, . . . , nu and all Q P D∆j´1 . If i “ 0, the construction termi-
nates, and we set P 1 :“ P1. Otherwise, proceeding as above (replacing "P "
by "Pi`1"), there exist a dyadic number Ni P r1, p∆i´1{∆iq

2s and a subset
Pi Ă Pi`1 such that the following holds:

(1) Pi X Q P tH, Pi`1 X Qu for all Q P D∆i .
(2) |Pi X Q|∆i P t0, Niu for all Q P D∆i´1 .
(3) |Pi|δ ě p4 logp∆i´1{∆iqq

´1
|Pi`1|δ.

It follows from properties (1)–(2) and the inductive hypothesis that |Pi X

Q|∆j P t0, Nju for all j P ti, . . . , nu and Q P D∆j´1 .
The set P 1 :“ P1 is p∆jq

n
j“1-uniform by construction, and the lower

bound (7.1) follows at once from property (3) and the geometric mean-
arithmetic mean inequality. □

Lemma 7.4 (Uniformisation lemma). Let

δ “ ∆n ă ∆n´1 ă . . . ă ∆1 ď ∆0 “ 1
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be a sequence of dyadic scales, and let J1, J2 Ă t1, . . . , nu. Let P Ă r0, 1q2 be
p∆jq

n
j“1-uniform. Assume further that

‚ P is a psj , Cq-set between the scales ∆j and ∆j´1 for all j P J1, and
‚ P is ptj , C,Kq-regular between the scales ∆j and ∆j´1 for all j P J2.

Let P 1 Ă P satisfy |P 1|δ ě L´1|P |δ, and write M “ Mpn,L, δq “ L¨r4 logp1{δqsn.
Then there is a p∆jq

n
j“1-uniform subset P 2 Ă P 1 such that |P 2| ě M´1|P | and,

furthermore, P 2 is an psj ,MCq-set between the scales ∆j and ∆j´1 for all j P J1,
and P 2 is ptj ,MC,Kq-regular between the scales ∆j and ∆j´1 for all j P J2.
Finally, if P 1 is a union of δ-squares to begin with, then the same property remains
true for P 2.

Proof. By assumption, there is a sequence pNjq
n
j“1 such that |P XQ|∆j “ Nj

for all j P t1, . . . , nu and all Q P D∆j´1pP q. Let P 2 be the set obtained by
applying Lemma 7.3 to P 1; let N2

j be the corresponding cardinalities. Note
that N2

j ď Nj for all j P t1, . . . , nu and that |P 2|δ ě M´1|P |δ. Since

|P 2|δ “

n
ź

j“1

N2
j , |P |δ “

n
ź

j“1

Nj ,

we must have N2
j ě M´1Nj for all j P t1, . . . , nu. It follows that

|P 2 X Q|∆j ě M´1|P X Q|∆j for all j P t1, . . . , nu, Q P D∆j´1pP 2q.

This is easily seen to imply the claim. □

Proposition 7.5. Given s P p0, 1q, t ą s, τ P p0, 1q, n ě 1, if ϵG, η ą 0 are
taken small enough in terms of s and t only, λ is taken small enough in terms of
s, t, τ and n, and 0 ă ϵN ď ϵG, then the following holds for all CP ě 1, and
0 ă δ ď δ0 “ δ0ps, t, ϵN , τ, n, CP , λq ď 1.

Let pP, T q Ă Dδ ˆ T δ be a pδ, s, δ´λ,Mq-nice configuration for some M ě 1.
Let

δ “ ∆n ă ∆n´1 ă . . . ă ∆1 ď ∆0 “ 1

be a sequence of dyadic scales, and assume that P is p∆jq
n
j“1-uniform. We assume

that the scale indices t1, . . . , nu are partitioned into normal scales, good scales,
and bad scales, denoted N ,G, and B, respectively. We assume that

∆j{∆j´1 ď δτ , j P N Y G. (7.2)

Moreover, the family P has the following structure at the normal and good scales:

‚ If j P N , then P is an ps, rlogp1{δqsCP ¨ p∆j´1{∆jq
ϵN q-set between the

scales ∆j and ∆j´1.
‚ If j P G, there exists a number tj ě t such that P is

ptj , rlogp1{δqsCP ¨ p∆j´1{∆jq
ϵG , rlogp1{δqsCP ¨ p∆j´1{∆jq

ϵGq-regular

between the scales ∆j and ∆j´1.
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If j P B, there is no information about the distribution of P between the scales ∆j

and ∆j´1.
Then, there exist constants C “ Cpn, s, τ, CP q ą 0 and C 1 “ C 1pn, τq ą 0

such that

|T | ě
“

log
`

1
δ

˘‰´C
¨ M ¨ δC

1λ ¨ δ´s`ϵN ¨
ź

jPG

´

∆j´1

∆j

¯η
¨
ź

jPB

∆j

∆j´1
. (7.3)

Remark 7.6. Earlier in the paper we defined the notation A ⪅δ B, which
meant that there exists an absolute constant C ě 1 such that

A ď C ¨
“

log
`

1
δ

˘‰C
¨ B. (7.4)

Now, the constants "CP , n, s, τ " appearing in the statement of Proposition
7.5 will be regarded as "absolute" in the sense that the "⪅δ" notation may
also hide constants depending on CP , n, s, τ . Therefore, the inequality (7.3)
could be abbreviated to

|T | ⪆δ M ¨ δC
1λ ¨ δ´s`ϵN ¨

ź

jPG

´

∆j´1

∆j

¯η
¨
ź

jPB

∆j

∆j´1
.

In most occurrences of "⪅δ" below, the constant "C" in (7.4) will in fact be
absolute, but we do not differentiate this in the notation. Even more waste-
fully, the notation "⪅δ" will be used in situations where "logp1{δq" in (7.4)
could be improved to "logp∆j´1{∆jq".

Proof of Proposition 7.5. The proof will proceed by induction on the number
"n" in t∆ju

n
j“1. More precisely, we will prove the case n “ 1 separately

below in a moment, whereas for n ą 1, we use Proposition 5.2 to reduce
the proof of the main estimate (7.3) to the case n ´ 1, applied with new
constants C 1

P , λ
1 of the form C 1

P “ CP ` Cn and λ1 “ Opτ´1qλ.
While proving (7.3), we may assume that various powers of logp1{δq,

whose magnitude depends only on n, s, τ, CP , are tiny compared to δ´ϵN τ ,
thus

plogp1{δqqOpn,s,τ,CP q ď δ´ϵN τ “ δ´mintϵG,ϵN uτ . (7.5)
This is because the upper bound δ0 for δ is allowed to depend on s, t, ϵN , τ, CP ,
and ϵN ď ϵG. This smallness of "δ" will be assumed without further remark.

Recall that pP, T q is assumed to be a pδ, s, δ´λ,Mq-nice configuration.
By definition, this means that for every p P P , there exists a pδ, s, δ´λq-set
T ppq Ă T of cardinality |T ppq| “ M such that T X p ‰ H for all p P T ppq.

7.1. Case n “ 1. If 1 P B, then |T | ě |T ppq| “ M , where p P P is arbitrary;
this yields (7.3) in the case 1 P B, since s ă 1. If 1 P N , Corollary 2.14
applied with t “ s, CT “ δ´λ and CP ⪅δ δ

´ϵN shows that

|T | ⪆δ M ¨ δλ ¨ δ´s`ϵN , (7.6)

which yields (7.3). Finally, if 1 P G, then P is

pδ, t̄, rlogp1{δqsCP ¨ δ´ϵG , rlogp1{δqsCP ¨ δ´ϵGq-regular
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between the scales δ and 1 for some t̄ ě t. We claim that if ϵG, η ą 0 are
sufficiently small, depending on s and t alone, then (7.6) can be upgraded
to

|T | ě M ¨ δ´s´η, (7.7)
which is better than needed.

Since t̄ ě t, in particular P is a pδ, t, rlogp1{δqsCP ¨ δ´ϵGq-set. By Corollary
2.14, this implies

|T | ⪆δ δ
ϵG ¨ Mδ´s ¨ pMδsq

t´s
1´s . (7.8)

If it happens that M ě δ´s´γ , where

γ “
pη ` 2ϵGqp1 ´ sq

pt ´ sq
, (7.9)

then (7.7) follows immediately from (7.8), since ϵN ď ϵG. On the other
hand, if M ď δ´s´γ , we use Theorem 6.2 instead. Let ϵ0 “ ϵ0ps, tq ą 0
be the constant given by the theorem. We assume that ϵG, η and λ in the
current proposition are taken sufficiently small in terms of s, t, ϵ0: then P
is a pδ, t̄, δ´ϵ0 , δ´ϵ0q-regular set and the families T ppq, p P P , are pδ, s, δ´ϵ0q-
sets for δ ą 0 small enough. This implies (7.7), since |T | ě δ´2s´ϵ0 ě

M ¨ δ´s´ϵ0`γ ě M ¨ δ´s´η, again taking η and ϵG small enough in terms of
ϵ0 only. Since ϵ0 depends on s, t, we conclude that ultimately η, ϵG and λ
need to be taken small in terms of s, t only.

7.2. Case n ě 2. We assume that the claim has already been established for
indices strictly smaller than some given n ě 2. We abbreviate

∆ :“ ∆1, δ̄ :“
δ

∆
“

δ

∆1
.

We are going to apply Proposition 5.2; this is permissible since pP, T q is
a pδ, s, C1,Mq-nice configuration with C1 :“ δ´λ. Let P 1, T 1 be the sets
provided by the proposition, and let

P∆ “ D∆pP 1q and T∆ Ă T ∆, (7.10)

be the objects appearing in Claim (iii) of Proposition 5.2. Thus pP∆, T∆q is
a p∆, s, C∆,M∆q-nice configuration for some C∆ «δ δ

´λ and M∆ ě 1.
Fix any Q P P∆ for the rest of the proof. Let us write PQ “ SQpP 1 X Qq

and TQ for the families appearing in Claim (iv) of Proposition 5.2. Thus
pPQ, TQq is a pδ̄, s, Cδ̄,Mδ̄q-nice configuration for some Cδ̄ :“ CQ «δ δ´λ,
and Mδ̄ :“ MQ ě 1. Our goal is to bound |T∆| and |TQ| from below in such
a way that the desired conclusion will follow from (5.3). The lower bound
for |TQ| will rely on the induction hypothesis.

We start by bounding |T∆| from below. If 1 P B, then we use the trivial
bound

|T∆| ě M∆. (7.11)
Assume then that 1 P N , so P is an ps, rlogp1{δqsCP ¨ ∆´ϵN q-set between
the scales ∆ “ ∆1 and 1 “ ∆0. It follows from (i) in Proposition 5.2 that



38 TUOMAS ORPONEN AND PABLO SHMERKIN

P∆ is a p∆, s, log p1{δq
CP `C

¨ ∆´ϵN q-set for some C „ 1. Since 1 P N , the
factor rlogp1{δqsCP `C is small compared to ∆´ϵN by (7.2) and (7.5). Since
pP∆, T∆q is a p∆, s, C∆,M∆q-nice configuration with C∆ « δ´λ, it follows
from Corollary 2.14 applied with t “ s, CT «δ δ

´λ and CP ⪅δ ∆
´ϵN that

|T∆| ⪆δ M∆ ¨ δλ ¨ ∆´s`ϵN . (7.12)

Finally, if 1 P G, hence P is pt1, rlogp1{δqsCP ¨ ∆´ϵG , rlogp1{δqsCP ¨ ∆´ϵGq-
regular with t1 ě 1, then (7.12) can be upgraded as follows:

|T∆| ě M∆ ¨ ∆´s´η. (7.13)

This requires an application of Corollary 2.14 and Theorem 6.2, and a simi-
lar case chase between the options "M∆ ě ∆´s´γ" and "M∆ ă ∆´s´γ" for a
suitable γ as we recorded below (7.7); the details are so similar that we omit
them here. In particular, at this point we need to know that rlogp1{δqsCP is
small compared to ∆´ϵG . This is true by (7.2), (7.5).

We move to estimating |TQ| from below. This will rely on the induction
hypothesis, except in one special case, which we treat immediately. This is
the case where t2, . . . , nu Ă B. Then we use the trivial bound |TQ| ě MQ to
deduce from (5.3) that

|T | ⪆δ M ¨ M´1
∆ ¨ |T∆|.

Together with our earlier estimates for |T∆|, (7.11)–(7.13), this gives the de-
sired claim (7.3) since, telescoping,

n
ź

j“2

∆j

∆j´1
“

∆n

∆1
“

δ

∆
ď

ˆ

δ

∆

˙s´ϵN

.

In the sequel, we may therefore assume that there exists j P t2, . . . , nu X

rN Y Gs ‰ H, and in particular

δ̄ “
δ

∆
ď

∆j

∆j´1

(7.2)
ď δτ . (7.14)

The short story is that, thanks to (i) in Proposition 5.2 the set PQ “

SQpP 1 X Qq satisfies roughly the same hypotheses as P for the scale se-
quence t∆̄ju

n´1
j“0 :“ t∆j{∆unj“1. So, the induction hypothesis may (roughly

speaking) be applied to PQ. The main technical hurdle is that the set PQ

should be uniform, and a priori it does not need to be: all we know about
P 1 X Q Ă P X Q is that |P 1 X Q| «δ |P X Q|. We resolve this by appealing
to the Uniformisation lemma, Lemma 7.4. We proceed to the details. As
indicated, we write

∆̄j´1 :“ ∆j{∆, j P t1, . . . , nu.

By the hypothesis of the proposition, SQpP X Qq is p∆̄jq
n´1
j“1 -uniform, and

additionally an ps, rlogp1{δqsCP ¨ p∆̄j´1{∆̄jq
ϵN q-set between the scales ∆̄j

and ∆̄j´1 for all j P N̄ :“ pN ´ 1q z t0u, and finally a ptj , rlogp1{δqsCP ¨

p∆̄j´1{∆̄jq
ϵG , rlogp1{δqsCP ¨ p∆̄j´1{∆̄jq

ϵGq-regular set between the scales ∆̄j
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and ∆̄j´1 for all j P Ḡ :“ pG ´ 1q z t0u. Further, we know from Proposition
5.2(i) that |PQ| «δ |P X Q|.

We then apply the Uniformisation lemma, Lemma 7.4: there exists a fur-
ther subset of PQ, which we keep denoting with the same letter, with the
following properties:

(P1) PQ is p∆̄jq
n´1
j“1 -uniform, and |PQ| «δ |P X Q| (recall that the "«δ"

notation also tolerates the constants depending on "n", which arise
from Lemma 7.4),

(P2) PQ is an ps, rlogp1{δqsCP `Cn ¨ p∆̄j´1{∆̄jq
ϵN q-set between the scales

∆̄j and ∆̄j´1 for all j P N̄ , where Cn ě 1 only depends on n,
(P3) PQ is ptj , rlogp1{δqsCP `Cn ¨p∆̄j´1{∆̄jq

ϵG , rlogp1{δqsCP `Cn ¨p∆̄j´1{∆̄jq
ϵGq-

regular between the scales ∆̄j and ∆̄j´1 for all j P Ḡ.

In order to apply the inductive hypothesis to the set PQ, it will be important
to note that the multiplicative factors rlogp1{δqsCP `Cn in (P2)-(P3) can be
further bounded from above by rlogp1{δ̄qsCP `Cn , for a – say – twice larger
constant Cn. This follows from (7.14):

rlogp1{δqsCP `Cn ď
`

1
τ

˘CP `Cn
¨ rlogp1{δ̄qsCP `Cn ď rlogp1{δ̄qsCP `2Cn , (7.15)

assuming that δ, and hence δ̄, is chosen small enough in terms of τ, CP . The
same argument, together with the bound Cδ̄ “ CQ ⪅δ δ

´λ given by Propo-
sition 5.2(iv), shows that TQpqq can be assumed to be a pδ̄, s, pδ̄q´2τ´1λq-
set for all q P PQ. Here TQpqq Ă TQ is the pδ̄, s, Cδ̄q-set of tubes in TQ,
all elements of which intersect q, whose existence is guaranteed by the
pδ̄, s, Cδ̄,Mδ̄q-niceness of pPQ, TQq.

We have now verified that, provided δ is taken small enough, PQ, TQ,
δ̄ and p∆̄jq

n´1
j“0 satisfy all the assumptions of the current proposition, with

(new) constants C 1
P , λ

1 that depend only on the original ones, and n; in
particular, λ1 “ 2τ´1λ, so that λ1 can be taken sufficiently small in terms of
s, t, τ, n ´ 1. Writing B̄ :“ pB ´ 1q z t0u, the inductive hypothesis yields

|TQ| ⪆δ̄ Mδ̄ ¨ δ̄C
1λ ¨ δ̄´s`ϵN ¨

ź

jPḠ

´

∆̄j´1

∆̄j

¯η
¨
ź

jPB̄

∆̄j

∆̄j´1

ě Mδ̄ ¨ δC
1λ ¨

`

∆
δ

˘s´ϵN
¨

ź

jPG z t1u

´

∆j´1

∆j

¯η
¨

ź

jPB z t1u

∆j

∆j´1
.

(7.16)

To clarify, the implicit constant in (7.16) is of the form rlogp1{δ̄qs´Op1q, where
"Op1q" depends on the constants of the sets PQ. As we have observed, these
constants ultimately depend only on the original constant CP , and on n.
Also, C 1 depends only on τ and n ´ 1. Furthermore, (7.16) holds if δ is
sufficiently small in terms of CP , λ, t, ϵN , n, s, τ so that δ̄ is also sufficiently
small, recall (7.14), to apply the inductive hypothesis.

Combining (7.16) with (7.11) and the trivial estimate ∆s´ϵN ě ∆ in the
case 1 P B, (7.12) in the case 1 P N and, finally, (7.13) in the case 1 P G, we
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deduce that, in any case,

|T∆| ¨ |TQ| ⪆δ M∆ ¨ Mδ̄ ¨ δpC1`2qλ ¨ δ´s`ϵN ¨
ź

jPG

´

∆j´1

∆j

¯η
¨
ź

jPB

∆j

∆j´1
. (7.17)

To conclude the proof, recall from (5.3) (with current notation, see below
(7.10)) that

|T | ⪆δ M ¨
|T∆| ¨ |TQ|

M∆ ¨ Mδ̄

.

Along with (7.17), this shows that (7.3) holds, finishing the proof of Propo-
sition 7.5. □

8. CHOOSING GOOD MULTISCALE DECOMPOSITIONS OF UNIFORM SETS

The goal of this section is to obtain a multiscale decomposition p∆iq
n
i“1

of a uniform pδ, t, δ´ϵq-set P such the hypotheses of Proposition 7.5 hold.
More precisely, we will prove the following result:

Proposition 8.1. Given s P p0, 1q, t P ps, 2s, ∆ P 2´N and ϵ ą 0 there is
τ “ τpϵ, s, tq P p0, ϵs such that the following holds for m sufficiently large in
terms of s, t,∆, ϵ.

Let δ “ ∆m. Let P Ă r0, 1q2 be a p∆iqmi“1-uniform pδ, t, δ´ϵq-set. Then there
are numbers tj P rs, 2s, 1 ď j ď n, and scales

δ “ ∆n ă ∆n´1 ă . . . ă ∆1 ă ∆0 “ 1,

with each ∆j an integer power of ∆, and a partition t1, . . . , nu “ S Y B ("struc-
tured" and "bad" indices) such that the following properties hold:

(i) ∆j´1{∆j ě δ´τ for all j P S, and
ś

jPBp∆j´1{∆jq ď δ´ϵ.
(ii) For each j P S, the set P is a ptj , p∆j´1{∆jq

ϵq-set between the scales ∆j and
∆j´1. Moreover, if tj ą s, then P is ptj , p∆j´1{∆jq

ϵ, p∆j´1{∆jq
ϵq-regular

between the scales ∆j and ∆j´1.
(iii)

ś

jPSp∆j´1{∆jq
tj ě δϵ´t.

(iv) If j P B, then j ` 1 R B for all j P t1, . . . , n ´ 1u.

Let P be as in the statement of this proposition. By definition of p∆iqmi“1-
uniformity, there is a sequence pNiq

m
i“1 of numbers in r1,∆´2s such that

|P X Q|∆i “ Ni for all Q P D∆i´1 , P X Q ‰ H,

for all i P t1, . . . ,mu. We define a function f “ fP : r0,ms Ñ r0, 2ms,
depending on the sequence pNiq

m
i“1, by setting fp0q “ 0,

fpjq “

j
ÿ

i“1

logpNiq

logp1{∆q
, 1 ď j ď m, (8.1)

and interpolating linearly. This function encodes the “branching structure”
of the set P , and it is convenient to study the multiscale geometry of P via
the function f .
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Definition 8.2. Given a function f : ra, bs Ñ R, we let

sf pa, bq “
fpbq ´ fpaq

b ´ a

be the slope of the affine function Lf,a,b that agrees with f on a and b,
namely

Lf,a,bpxq :“ fpaq ` sf pa, bqpx ´ aq, x P R.
We say that pf, a, bq is ϵ-linear or f is ϵ-linear on ra, bs if

ˇ

ˇfpxq ´ Lf,a,bpxq
ˇ

ˇ ď ϵ|b ´ a|, x P ra, bs.

Likewise, we say that pf, a, bq is ϵ-superlinear or f is ϵ-superlinear on ra, bs if

fpxq ě Lf,a,bpxq ´ ϵ|b ´ a|, x P ra, bs.

The following lemma provides a dictionary between properties of the
Lipschitz function fP and properties of the set P .

Lemma 8.3. Let P be a p∆iqmi“1-uniform set with associated function f “ fP and
let δ “ ∆m.

(1) If f is ϵ-superlinear on r0,ms, then P is a pδ, sf p0,mq, O∆p1qδ´ϵq- set.
(2) If f is ϵ-linear on r0,ms then P is psf p0,mq, O∆p1qδ´ϵ, O∆p1qδ´ϵq-regular

between scales δ and 1.

Proof. Let Q P D∆j pP q, with 0 ď j ă m. By the uniformity of P , the
definition of f , and the assumption that f is ϵ-superlinear,

|P X Q|δ “ Nj`1 ¨ ¨ ¨Nm “
|P |

N1 ¨ ¨ ¨Nj

“ |P | ¨ ∆fpjq ď δ´ϵm ¨ |P | ¨ p∆jqsf p0,mq.

If Q P DrpP q for a dyadic r ě δ, then Q Ă pQ for some pQ P D∆j pP q with
∆j ď ∆´1r, so we get the same bound up to a O∆p1q factor.

Now suppose f is ϵ-linear. By the p∆iqmi“1uniformity of P ,

|P |δ1{2 ď N1 ¨ ¨ ¨Nrm{2s “ ∆fprm{2sq

ď δ´ϵ ¨ ∆rm{2s¨sf p0,mq ď ∆´1{2δ´ϵ ¨ δ´sf p0,mq{2.

This completes the proof. □

The following lemma is [28, Lemma 4.4]:

Lemma 8.4. For every ϵ ą 0 there is τ ą 0 such that the following holds: for
any 1-Lipschitz function f : ra, bs Ñ R there exists a family of non-overlapping
intervals trcj , djsu

M
j“1 such that:

(i) pf, cj , djq is ϵ-linear for all j.
(ii) dj ´ cj ě τpb ´ aq for all j.

(iii)
ˇ

ˇra, bs z
Ť

jrcj , djs
ˇ

ˇ ď ϵpb ´ aq.

In fact, by considering f{2 instead of f , Lemma 8.4 also holds for 2-
Lipschitz functions.
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Lemma 8.5. Fix s P p0, 1q and t P ps, 2s. For every ϵ ą 0 there is τ ą 0 such that
the following holds: for any 2-Lipschitz function f : r0,ms Ñ R with fp0q “ 0
such that

fpxq ě tx ´ ϵm for all x P r0,ms,

there exists a family of non-overlapping intervals trcj , djsu
n
j“1 contained in r0,ms

such that:
(i) For each j, at least one of the following alternatives holds:

(a) pf, cj , djq is ϵ-linear with sf pcj , djq ě s.
(b) pf, cj , djq is ϵ-superlinear with sf pcj , djq “ s.

(ii) dj ´ cj ě τm for all j.
(iii)

ˇ

ˇr0,ms z
Ť

jrcj , djs
ˇ

ˇ ≲s,t ϵm.

Remark 8.6. We briefly discuss the difference between Lemmas 8.4 and 8.5.
Lemma 8.4 is simply a quantified version of Rademacher’s theorem: a Lip-
schitz function is approximated by affine functions almost everywhere. A
priori, we cannot expect any lower bounds on the slopes of these affine
functions. Lemma 8.5 yields such lower bounds under the extra assump-
tion fpxq ě tx ´ ϵm. This hypothesis is far too weak to guarantee that the
slopes of each affine function would exceed t – or even some fixed s ă t.
However, it guarantees that we can combine the "intervals of affinity" in a
useful way. Roughly speaking, we leave those intervals untouched where
the slope of the affine function exceeds "s" to begin with. Then, we combine
those intervals together where the slope of the affine function is initially
smaller than "s". As a consequence, we lose the affine approximation on
the compound intervals ra, bs, but – and this is the key point – we are able
to retain the property that f is ϵ-superlinear on ra, bs with slope sf pa, bq “ s.

Why could we simply not combine all the intervals together? After all,
the initial hypothesis fpxq ě tx´ϵm (almost) says that f is ϵ-superlinear on
r0, ts with slope ě t. This kind of information would not be useful: in fact,
the upper bound sf pcj , djq ď s in part (b) is just as crucial as the (matching)
lower bound. Since t ą s, and fpxq ě tx´ϵm for all x P r0,ms, it will imply
that alternative (b) cannot occur "all the time". In other words, the total
length of intervals satisfying alternative (a) is not negligible, quantitatively.
This is, at the end of the day, where all our "gains" stem from, see (9.1).

Proof of Lemma 8.5. Let trcj , djsu
M
j“1 be the decomposition provided by Lemma

8.4 applied with ϵ2 in place of ϵ, with the cj in increasing order. Let τ “

τpϵ2q be the number provided by Lemma 8.4. We will denote the intervals
in the decomposition we are seeking by trrci, rdisui.

If sf pcj , djq ě s for all j there is nothing to do. Otherwise, let k satisfy
sf pck, dkq ă s and be largest with this property. If dk ď ϵm{pt ´ sq, then we
remove all intervals rci, dis with i ď k and we are done. Otherwise, note
that

sf p0, dkq “
fpdkq

dk
ě

tdk ´ ϵm

dk
ą s,
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see Figure 1. Since sf pck, dkq ă s and f is piecewise affine, there is a largest
c1 P p0, ckq such that sf pc1, dkq “ s.

 

sf pc1, dkq “ s

c1 ck dk0 m

f

x ÞÑ tx

sf p0, dkq ą s

FIGURE 1. Selecting the interval pc1, dkq.

Fix x P pc1, ckq. Since sf pc1, dkq “ s is a convex combination of sf pc1, xq

and sf px, dkq ă s (by the maximality of c1), we have fpxq ą fpc1q`spx´c1q.
On the other hand, if x P rck, dks then, since pf, ck, dkq is ϵ2-superlinear and
sf pc1, dkq “ s, sf pck, dkq ă s,

fpxq ě fpdkq ´ sf pck, dkqpdk ´ xq ´ ϵ2pdk ´ ckq

ą fpc1q ` pdk ´ c1qs ´ spdk ´ xq ´ ϵ2pdk ´ c1q

“ fpc1q ` spx ´ c1q ´ ϵ2pdk ´ c1q.

We conclude that pf, c1, dkq is ϵ2-superlinear. We define rrci, rdis “ rci, dis for
i ą k, and rrck, rdks “ rc1, dks. To continue the construction, consider several
cases:

‚ If c1 R Yjrcj , djs, then let ℓ be the largest index with dℓ ă c1 and re-
peat the procedure by selecting a largest k1 ď ℓ such that sf pck1 , dk1q ă

s (if c1 ă c1 or no such k1 exists, we stop).
‚ If c1 P rcℓ, dℓs and pc1 ´ cℓq ď ϵpdℓ ´ cℓq, we discard the piece rcℓ, c

1s

and repeat the process for the intervals up to rcℓ´1, dℓ´1s (if ℓ “ 1,
we stop).

‚ If c1 P rcℓ, dℓs and pc1 ´ cℓq ą ϵpdℓ ´ cℓq, we replace the interval
by rcℓ, dℓs by rcℓ, c

1s and repeat the procedure of the first point after
this substitution. Note that pf, cℓ, c

1q is Opϵq-linear (this is the reason
why we applied Lemma 8.4 with ϵ2 in place of ϵ).

By construction, the process must finish in ď τ´1 steps and all resulting
intervals satisfy one of the alternatives in (i). All the resulting intervals have
length ě ϵτpb´aq, since they contain at least a proportion ϵ of some rcj , djs.
Finally, the sum of their lengths is at least p1 ´ Os,tpϵqqm since a proportion
at least p1 ´ ϵq of each interval rcj , djs with dj ≳s,t ϵm is contained in some
rrci, rdis. This yields the claim, with ϵτ in place of τ . □
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We can now conclude the proof of Proposition 8.1.

Proof of Proposition 8.1. Let pNiq
m
i“1 be the sequence associated to the p∆iqmi“1-

uniformity of P . Note that, since P is a pδ, t, δ´ϵq-set, if Q P D∆i´1pP q, then

Ni ¨ ¨ ¨Nm “ |P X Q|δ ď δ´ϵ∆pi´1qt|P |δ “ δ´ϵ∆pi´1qtN1 ¨ ¨ ¨Nm.

Hence
śi´1

j“1Nj ě ∆p1´iqtδϵ “ ∆p1´iqt`ϵm for all i P t1, . . . ,mu, and evi-
dently also

śm
j“1Nj “ |P |δ ě δ´t`ϵ “ ∆´mt`ϵm. Translated into the func-

tion f “ fP from (8.1), this implies that fpiq ě ti´ϵm for all i P t0, 1, . . . ,mu

and therefore, by piecewise linearity, fpxq ě tx´ ϵm for all x P r0,ms. Then
we can apply Lemma 8.5 to f ; let prai, bisq

n̄
i“1 be the resulting intervals. By

perturbing the endpoints a little, we may assume that ai and bi are integers
(these perturbations can be absorbed into any ϵ-terms or τ -terms by taking
m sufficiently large in terms of ϵ and adjusting the values of ϵ, τ slightly).
Then, we define the scale sequence

δ “ ∆n ă ∆n´1 ă . . . ă ∆1 ă ∆0 “ 1

as the unique sequence "spanned" by the intervals r∆bi ,∆ais, 1 ď i ď n̄.
This means that every interval r∆j ,∆j´1s, 1 ď j ď n, has one of the follow-
ing types (a)-(c):

(a) r∆j ,∆j´1s P tr∆bi ,∆ais : 1 ď i ď n̄u, or
(b) r∆j ,∆j´1s “ r∆ai`1 ,∆bis for some 1 ď i ď n̄ ´ 1, or
(c) r∆j ,∆j´1s P tr∆a1 , 1s, rδ,∆bn̄su.

We let
S :“ t1 ď j ď n : r∆j ,∆j´1s has type (a)u,

and B :“ t1, . . . , nu zS. Claim (i) is now immediate from Lemma 8.5. To
prove Claim (ii), fix j P S, so r∆j ,∆j´1s “ r∆bi ,∆ais for some 1 ď i ď n̄.
Let tj “ sf pai, biq. It follows at once from the assumed p∆iqmi“1-uniformity
of P (see Definition 7.2) that if Q P D∆ai , then SQpP X Qq is p∆jq

bi´ai
j“1 -

uniform. In this case Claim (ii) is a consequence of Lemma 8.3 and Lemma
8.5(i) (with Opϵq in place of ϵ - to get ϵ one simply applies the argument to
ϵ{C for a suitable C).

To prove Claim (iii), recall that pbi ´ aiqti “ fpbiq ´ fpaiq, and the union
of the intervals rai, bis covers r0,ms up to measure ≲s,t ϵm. Since f is 2-
Lipschitz, fp0q “ 0, and fpmq ě mpt ´ ϵq as we saw earlier, we get

n̄
ÿ

i“1

pbi ´ aiqti “

n̄
ÿ

i“1

fpbiq ´ fpaiq

ě pfpmq ´ fp0qq ´ 2

ˇ

ˇ

ˇ

ˇ

ˇ

r0,ms z

n̄
ď

i“1

rai, bis

ˇ

ˇ

ˇ

ˇ

ˇ

ě mpt ´ Os,tpϵqq.
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It follows that

ź

jPS
p∆j´1{∆jq

tj “

n̄
ź

i“1

∆´pbi´aiqti ě ∆´mpt´Os,tpϵqq “ δ´t`Os,tpϵq.

This implies Claim (iii) with constant "Os,tpϵq" in place of "ϵ". To remove the
dependence on s, t, simply run the previous argument with ϵ1 :“ ϵ{Cs,t in
place of ϵ. This makes the choice of "τ " also dependent on s, t, as stated in
Proposition 8.1. Finally, Claim (iv) is clear from construction. The proof of
Proposition 8.1 is complete. □

9. PROOF OF THEOREM 1.3

We have now all the ingredients needed to prove Theorem 1.3 whose
statement we repeat here:

Theorem 9.1. For s P p0, 1q and t P ps, 2s, there exists ϵps, tq ą 0 such that the
following holds for all small enough δ P 2´N, depending only on s and t. Let P Ă

Dδ be a pδ, t, δ´ϵq-set with YP Ă r0, 1q2, and let T Ă T δ be a family of dyadic
δ-tubes. Assume that for every p P P , there exists a pδ, s, δ´ϵq-set T ppq Ă T such
that T X p ‰ H for all T P T ppq. Then |T | ě δ´2s´ϵ.

Proof. We may assume without loss of generality that the given dyadic
number δ ą 0 has the form δ “ ∆m, where ∆ P 2´N is another dyadic
number, small in a manner depending only on ϵ. Indeed, we can apply
this case to a scale δ satisfying ∆m`1 ă δ ď ∆m; this reduction will gen-
erate several constants depending on ∆ that can be absorbed into a δ´ϵ{2

term if δ is small enough. As another reduction, we may assume that the
families T ppq have constant cardinality |T ppq| “: M ě 1, and that they are
pδ, s, δ´λq-sets, where λ ą 0 depends on ϵ in addition to s and t. Since the
statement of the theorem is preserved by making each of the "ϵ" smaller,
this is a formally equivalent statement.

The proof will involve a large number of positive quantities, some of
which have already been mentioned, that ultimately depend on s and t. To
convince the reader (and the authors!) that there is no circular reasoning,
these are their dependencies: ϵG “ ϵGps, tq, η “ ηps, tq, ϵ “ ϵpϵG, ηq, ∆ “

∆pϵq, τ “ τpϵ, s, tq, n ď n0pτq, ϵN “ ϵN pϵq, C “ Cps, n, τq, C 1 “ C 1pn, τq,
λ “ λps, t, τ, n, ϵG, η, C

1q. Since there are only n0pτq possible values for n,
any quantity depending on it effectively depends on τ . Thus ultimately all
parameters depend on s, t only.

We start by applying Lemma 7.3 to P (which as usual we identify with
YP) and the sequence of scales ∆0 ą ∆1 ą . . . ą ∆m “ δ. The product is a
p∆iqmi“1-uniform subset P 1 Ă P Ă Dδ with

|P 1| ě p4m´1 logp1{δqq´m ¨ |P| “ δ
log 4`log logp1{∆q

logp1{∆q ¨ |P|.
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In particular, if ∆ P 2´N is chosen small enough, depending on ϵ ą 0 only,
then P 1 is a pδ, t, δ´2ϵq-set. Performing such a reduction, we simplify nota-
tion by assuming, to begin with, that P is a p∆iqmi“1-uniform pδ, t, δ´ϵq-set.

Next, we apply Proposition 8.1 to the set P , with the parameters ∆ P 2´N

and s P p0, tq fixed above, and of course the parameter ϵ ą 0 in the state-
ment of the theorem; we are free to choose ϵ small in a manner depending
on s and t, and we will exercise this freedom a little later. At this point,
the application of Proposition 8.1 produces a number τ “ τpϵ, s, tq ą 0, a
sequence of scales

δ “ ∆n ă ∆n´1 ă . . . ă ∆1 ă ∆0 “ 1,

with n ď m, each of the form ∆j “ ∆ij for some ij P t0, . . . ,mu, and a
partition of t1, . . . , nu into the structured and bad indices S and B. Since P
is p∆iqmi“0-uniform and the ∆j are integer powers of ∆, we deduce that P
is p∆iq

n
i“0-uniform. It follows from Claims (i),(iv) in Proposition 8.1 that

n ď n0pτq :“ 2tτ´1u ` 1.
The next step will be to apply Proposition 7.5 to the set P , and the se-

quence of scales t∆ju
n
j“1 located above. Before doing this, we further split

the structured indices S into normal and good indices N and G. In doing
this, one has to pay great attention to the various small parameters in-
volved. Namely, Proposition 7.5 promises certain conclusions if ϵG, η are
chosen small enough in terms of s and t only, and λ is chosen small enough
in terms of s, t, τ and n. While ϵG and η will remain henceforth fixed (with
many other parameters, notably ϵ, depending on them), we will later make
λ even smaller in terms of other parameters.

With this notation, a scale index j P S is declared good, hence placed in G,
in case P is ptj , p∆j´1{∆jq

ϵG , p∆j´1{∆jq
ϵGq-regular between the scales ∆j

and ∆j´1 for some tj ě t. Otherwise, j P S is declared normal, and placed
in N .

Are there any good indices with this definition? Yes, there are, if ϵ ą 0 is
now chosen small enough in terms of ϵG. Indeed, recall from Proposition
8.1(ii) that P is a ptj , p∆j´1{∆jq

ϵq-set for a certain index tj P rs, 2s, and if
tj ą s, then moreover P is ptj , p∆j´1{∆jq

ϵ, p∆j´1{∆jq
ϵq-regular between

the scales ∆j and ∆j´1.
Now, if

tj ě t ´ ϵG{2 ą s and ϵ ď ϵG{2,

then it is a formal consequence of ptj , p∆j´1{∆jq
ϵ, p∆j´1{∆jq

ϵq-regularity
that the set P is also pt, p∆j´1{∆jq

ϵG , p∆j´1{∆jq
ϵGq-regular between the

scales ∆j and ∆j´1. In summary,

tj ě t ´ ϵG{2 ùñ j P G.

Equivalently, if j P N “ S zG, then tj ă t ´ ϵG{2. Next, one will wonder if
it ever happens that tj ě t´ ϵG{2, and again the answer is affirmative. This
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follows from Proposition 8.1(iii), which stated that
ź

jPS

´

∆j´1

∆j

¯tj
ě δ´t`ϵ.

Since tj ď 2 uniformly, and tj ď t ´ ϵG{2 for j P N , it follows that

δ´t`ϵ ď
ź

jPG

´

∆j´1

∆j

¯2
¨
ź

jPN

´

∆j´1

∆j

¯t´ϵG{2
ď

«

ź

jPG

´

∆j´1

∆j

¯

ff2

¨ δ´t`ϵG{2,

so indeed
ź

jPG

´

∆j´1

∆j

¯

ě δϵ{2´ϵG{4 ě δ´ϵG{8, (9.1)

assuming here that ϵ ď ϵG{4.
Now we are finally in a position to apply Proposition 7.5, or more pre-

cisely the conclusion (7.3). We remark that since tj ě s for all j P S,
in particular for j P N , we know from Proposition 8.1(ii) that P is an
ps, p∆j´1{∆jq

ϵN q-set between the scales ∆j and ∆j´1 for all j P N , with
ϵN “ ϵ ď ϵG. Also, from Proposition 8.1(i) we know that

ś

jPBp∆j{∆j´1q ě

δϵ. Inserting all this information into the estimate (7.3) yields

|T | ě
“

log
`

1
δ

˘‰´C
¨ M ¨ δC

1λ ¨ δ´s`ϵN ¨
ź

jPG

´

∆j´1

∆j

¯η
¨
ź

jPB

∆j

∆j´1

(9.1)
ě

“

log
`

1
δ

˘‰´C
¨ M ¨ δC

1λ ¨ δ´s`ϵN ¨ δ´ϵGη{8 ¨ δϵ.

Here C “ Cpn, s, τq and C 1 “ C 1pn, τq. We also know that M “ |T ppq| ě

δ´s`λ for all p P P . Therefore, choosing ϵN “ ϵ ď ϵGη{100, then choosing
λ ď ϵGη{p100C 1q, and then taking δ ą 0 sufficiently small in terms of all
previous parameters, we find that |T | ě δ´2s´ϵGη{16. This completes the
proof of Theorem 1.3. □

APPENDIX A. A GENERALISED INCIDENCE ESTIMATE

In this section, we record the details of the incidence theorem needed as
a black box to prove Theorem 6.2. Here is the precise statement:

Theorem A.1. Given s P p0, 1q and t P ps, 2s, there exists an ϵ “ ϵps, tq ą 0
such that the following holds for small enough δ P 2´N, depending only on s and
t. Assume that P Ă Dδ is a pδ, t, δ´ϵq-set, and that

|P |δ1{2 ď δ´t{2´ϵ. (A.1)

Assume that T Ă T δ is a collection of dyadic δ-tubes such that for every p P P ,
there exists a pδ, s, δ´ϵq-subset T ppq Ă T with the property that T X p ‰ H for
all T P T ppq. Then either

|T | ě δ´2s´ϵ or |T |δ1{2 ě δ´s´ϵ. (A.2)
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A.1. Preliminaries. In the appendix, it will be slightly more convenient to
use the following variant of point-line duality:

Definition A.2 (Point-line duality revisited). In the appendix, let

D : pa, bq ÞÑ tx “ ay ` b : y P Ru. (A.3)

Earlier in the paper, D mapped pa, bq ÞÑ ty “ ax ` b : x P Ru. Dyadic
tubes are defined, formally as before, T δ “ tDppq : p P Dδpr´1, 1qˆRqu, and
the slope of a dyadic δ-tube T “ Dpra, a ` δq ˆ rb, b ` δqq remains defined
as σpT q :“ a. Earlier in the paper σpT q “ 0 meant that T is a roughly
horizontal tube, whereas under the new notation T is roughly vertical. The
choice of duality plays no role in the validity of Theorem A.1: the map
Jpx, yq :“ py, xq sends "horizontal" dyadic tubes to "vertical" ones, and vice
versa, and also preserves the properties of P .

We repeat here the contents of Corollary 2.12:

Lemma A.3. Let p P Dδ, and let T be a collection of dyadic δ-tubes, all of which
intersect p. If the slope set σpT q is a pδ, s, Cq-set for some s ě 0 and C ą 0,
then also T is a pδ, s, 10Cq-set. Conversely, if T is a pδ, s, Cq-set, then σpT q is a
pδ, s, C 1q-set for some C 1 „ C. Moreover, the map T ÞÑ σpT q is at most 10-to-1,
and |σpT q| ď |T | ď 10|σpT q|.

Lemma A.3 has the following corollary:

Corollary A.4. Assume that 0 ă δ ď ∆ ď 1 are dyadic numbers, p P Dδ, and
T “ DpI ˆ Jq P T ∆. Further, assume that T ppq is a pδ, s, Cq-set of dyadic
δ-tubes T , all of which intersect p. Then |T ppq X T| ≲ C ¨ |T ppq| ¨ ∆s.

Proof. All the tubes T P T ppqXT satisfy σpT q P I P D∆pr´1, 1qq. By Lemma
A.3,

|T ppq X T| ď 10|σpT ppqq X I| ≲ C ¨ |σpT ppqq| ¨ ∆s ď C ¨ |T ppq| ¨ ∆s,

as desired. □

Other results from the main text, which will also be used below, are
Proposition 4.1, which is too long to restate here, and Corollary 2.14. Propo-
sition 4.1 was not needed in [25] to prove the case t “ 1 of Theorem A.1,
and incorporating this additional information to the argument from [25] is
one of the technical novelties in the appendix.

With respect to Corollary 2.14, we will only need the following slightly
weaker version. Below, A ⪅δ B stands for A ď C ¨ log

`

1
δ

˘C
B, where C ě 1

is universal, and likewise for A ⪆δ B, A « B.

Lemma A.5. Let 0 ă s ď t ď 1, and M,CP , CT ě 1. Assume that P Ă Dδ is a
pδ, t, CP q-set, and T Ă T δ. Assume that for all p P P , there exists a pδ, s, CT q-set
T ppq Ă T such that T X p ‰ H for all T P T , and such that M

2 ă |T ppq| ď M .
Then

|T | ⪆δ pCPCT q´1 ¨ Mδ´s.
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A.2. Proof of Theorem A.1. Recall the objects P , pT ppqqpPP , and ϵ ą 0,
from the statement of Theorem A.1. It will be useful to make the cardinali-
ties of the families T ppq almost constant, say |T ppq| „ M for all p P P . This
can be achieved by pigeonholing, replacing P by a subset P of cardinality
|P| «δ |P|. Several "refinements" of similar nature will be seen below. Note
that M „ |T ppq| ě δ´s`ϵ, since T ppq was assumed to be a pδ, s, δ´ϵq-set of
dyadic δ-tubes.

Another harmless assumption is that

|P| ď δ´t. (A.4)

Indeed, by Lemma 2.7, every pδ, t, Cq-set contained in r´2, 2s2 contains a
pδ, t, OpCqq-set of cardinality ď δ´t. After these initial reductions, it is time
to make a counter assumption:

δ´2s`3ϵ ≲ δ´s`2ϵ ¨ M ⪅δ |T | ď δ´2s´ϵ and |T |δ1{2 ď δ´s´ϵ. (A.5)

The lower bound for |T | is not part of the counter assumption, but simply
a consequence of Lemma A.5. Together with the (counter) assumed upper
bound, it implies that

M ⪅δ δ
´s´3ϵ. (A.6)

In the sequel, we will use the notation A ⪅ B to signify that A ď Cϵδ
´CϵB,

where ϵ ą 0 is the counter assumption parameter from (A.5), and C ě 1 is
an absolute constant. The value of the constant Cϵ may depend on ϵ. The
notation A ⪅δ B will no longer be used. It is also convenient to define that
a set P Ă Dδ, is a pδ, uq-set, if it is a pδ, u, Cϵδ

´Cϵq-set for constants C,Cϵ ě 1

as above, and likewise with δ1{2 in place of δ.
A sketch of the upcoming proof is the following: if the counter assump-

tion (A.5) is true, then it is possible to construct a set Z Ă R2 with “product
structure” in the following sense: Z “

Ť

yPY Xy ˆ tyu, and an associated
family T pZq Ă T δ, with the following properties:

(1) Y is a pδ, t ´ sq-set, and Xy is a pδ, sq-set for each y P Y.
(2) T pZq contains a pδ, sq-set Tz for all z P Z.
(3) |T pZq| ⪅ δ´2s.

Thus, Z, T pZq satisfy hypotheses similar to those of P, T , but Z has the
additional “product structure”. Under this extra information, Proposition
A.7 below (quoted from [25]) implies that |T pZq| ě δ´2s´ηps,tq for some
ηps, tq ą 0 depending only on s, t. Consequently (3), hence (A.5), cannot
hold for arbitrarily small ϵ ą 0, the threshold depending only on s, t. The-
orem A.1 follows.

A.3. Considerations at scale δ1{2. To make notation prettier, write ∆ :“

δ1{2. Let Q :“ D∆pPq be the collection of dyadic ∆-squares containing at
least one element of P . Then |Q| ⪅ ∆´t by the assumption (A.1), but also
|Q| ⪆ ∆´t, since P is a pδ, tq-set. Hence

|Q| « ∆´t. (A.7)
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Write P X Q :“ tp P P : p Ă Qu, for Q P Q. Since |P X Q| ⪅ |P| ¨ ∆t ď ∆´t

for every Q P Q by the pδ, tq-set assumption, combined with (A.4), one sees
that a subset P 1 Ă P of the form P 1 “

Ť

QPQ1 P X Q with |P 1| « δ´t is
covered by "heavy" squares Q P Q1 with

|P X Q| « ∆´t. (A.8)

Since P 1 satisfies all the same assumptions as P , with slightly worse con-
stants, we may assume that P 1 “ P ; thus, we assume that (A.8) holds for
all squares Q P Q. Now (A.8) implies that Q is a p∆, tq-set: if Qr P Dr with
∆ ď r ď 1, then

|Q X Qr|∆
(A.8)
« ∆t ¨ |P X Qr| ⪅ ∆t ¨ |P| ¨ rt « |Q| ¨ rt.

Now, let T∆ :“ T ∆pT q be a minimal cover of T by dyadic ∆-tubes. By
(A.5),

|T∆| “ |T |∆ ⪅ δ´s. (A.9)
We next claim that for each Q P Q, the family T∆ contains a p∆, sq-set all
of whose tubes intersect Q. This is virtually the same argument we saw
during the proof of Proposition 5.2, but we repeat the details. Fix Q P Q. By
applying Proposition 4.1 at scale ∆ “ δ1{2, and to the family P XQ in place
of P , we find a subset PQ Ă P X Q of cardinality |PQ| « |P X Q| « ∆´t,
and a family of dyadic ∆-tubes T∆pQq Ă T∆ intersecting Q such that the
following properties hold:

(H1) T∆pQq is a p∆, sq-set.
(H2) There exists a constant HQ « M ¨ |PQ|{|T∆pQq| « δ´s´t{2{|T∆pQq|,

such that

|tpp, T q P PQ ˆ T : T P T ppq X Tu| ≳ HQ, T P T∆pQq.

All the tubes in T∆pQq intersect Q, so |T∆pQq| P t1, . . . , 100∆´1u. By the
pigeonhole principle, we may find M ě 1, and a subset Q Ă Q with the
properties

|Q| « |Q| and |T∆pQq| „ M for Q P Q. (A.10)
In analogy with the bound M ⪅ δ´s for M „ |T ppq| (recall (A.6)), we now
record that

|T∆pQq| „ M ⪅ ∆´s, Q P Q. (A.11)

Indeed, since T∆pQq is a p∆, sq-set for all Q P Q, with cardinality „ M,
and Q is a p∆, tq-set, a combination of Lemma A.5 (applied to Q and the
families T∆pQq) and the counter assumption (A.5) imply that

M ¨ ∆´s ⪅ |T∆| “ |T |∆ ⪅ δ´s.

This implies (A.11). Of course the fact that T∆pQq is a p∆, sq-set, by (H1),
alone implies that M ⪆ ∆´s, and hence |T∆| ⪆ δ´s by the previous inequal-
ity. We record these observations for future use:

|T∆pQq| „ M « ∆´s for Q P Q and |T∆| « δ´s. (A.12)
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In the sequel, there will be no difference between the collections Q and Q
(since already the squares in Q cover « |P| squares in P), so we rename Q
to Q for now; the notation will be recycled soon enough. Further, in order
to avoid having to remember the difference of PQ and P X Q, we redefine
P :“

Ť

QPQ PQ. Thus

PQ “ P X Q “ tp P P : p Ă Qu, Q P Q. (A.13)

Then P remains a pδ, tq-set, the squares Q P Q remain "heavy" in the sense
(A.8), and the property (H2) above holds with P X Q in place of PQ.

Different tubes T P T∆ may a priori contain different numbers of tubes
from T . It will be advantageous to "freeze" the cardinality of T X T “ tT P

T : T Ă Tu, T P T∆, by further piegonholing. This can be carried out by
refining the families Q and T∆pQq slightly – in such a way that (H1)-(H2)
and (A.12) persist. First define

IpQ, T∆q :“ tpQ,Tq P Q ˆ T∆ : T P T∆pQqu.

Then (recall (A.10)), one has

|IpQ, T∆q| « |Q| ¨ M
(A.7)`(A.12)

« ∆´s´t.

Let
T∆,j :“ tT P T∆ : 2j´1 ă |T X T| ď 2ju.

Since |T X T| ď δ´1 for all T P T∆, one has

∆´s´t « |IpQ, T∆q| “
ÿ

2jďδ´1

|tpQ,Tq P Q ˆ T∆,j : T P T∆pQqu|.

Therefore, one may pick j ď log δ´1 such that, writing

T ∆ :“ T∆,j , T ∆pQq :“ T ∆ X T∆pQq, Q P Q,

one has
ÿ

QPQ
|T ∆pQq| “ |tpQ,Tq P Q ˆ T ∆ : T P T ∆pQqu| « ∆´s´t.

Write N :“ 2j for this index "j", so |T X T| „ N for all T P T ∆. Since
one has |T ∆pQq| ď |T∆pQq| « ∆´s uniformly in Q P Q by (A.12), and
|Q| « ∆´t, one may pick a subset Q Ă Q of cardinality |Q| « |Q| such
that |T ∆pQq| « ∆´s for all Q P Q. Since T∆pQq was a p∆, sq-set of dyadic
∆-tubes intersecting Q, the same remains true for T ∆pQq. Thus, the family
T ∆ contains a p∆, sq-set of ∆-tubes incident to every square in the p∆, tq-set
Q. Lemma A.5 therefore implies

∆´2s ⪅ |T ∆| ď |T∆|
(A.5)
⪅ ∆´2s. (A.14)

Based on this, we claim that

|T X T| „ N ⪅ δ´s, T P T ∆. (A.15)
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Indeed, by the disjointness of the families T X T Ă T , for T P T ∆, one has

δ´2s
(A.5)
⪆ |T | ě

ÿ

TPT ∆

|T X T| „ |T ∆| ¨ N
(A.14)

« ∆´2s ¨ N,

and (A.15) follows. We pause for a moment to record the achievements so
far:

(G1) Q Ă Q satisfies |Q| « ∆´t, and |P X Q| « ∆´t for all Q P Q.
(G2) Every tube T P T ∆ satisfies |T X T| „ N ⪅ δ´s.
(G3) For every square Q P Q, there corresponds a p∆, sq-set T ∆pQq Ă T ∆

of cardinality « M « ∆´s such that T X Q ‰ H for all T P T ∆pQq.
(G4) |T | « δ´2s and |T ∆| « ∆´2s.

At this point, we simplify writing by dropping all the "overlines" from the
notation for the families Q, T ∆pQq, and T ∆. These families satisfy the same
properties as Q, T∆pQq, and T∆, up to worse constants, and additionally
(G2) holds for all T P T ∆. (One thing which ceases to hold after these
notational changes is that every tube in T , or T ppq, is contained in one of
the tubes from T∆ “ T ∆. This information will not be used. It will follow
from (H2) that the tubes in T ∆ contain "sufficiently" many tubes from T .)

A.4. Refining the families T∆pQq further. Fix Q P Q, and write

σpQq :“ tσpTq : T P T∆pQqu Ă p∆ ¨ Zq X r´1, 1q

for the slope set of the family T∆pQq. Then σpT q is a p∆, sq-set by Lemma
A.3. For σ “ σpTq P σpQq, write πσpx, yq :“ x ´ σy for the orthogonal pro-
jection (up to rescaling) to the direction "perpendicular" to T. Informally,
the next lemma says that "in at least half of the directions σ P σpQq, the
family πσpYpP X Qqq, and all its reasonably large subsets, contain a pδ, sq-
set". This is not literally true, since diampπσpYpP X Qqqq ≲ ∆, and with our
definition of pδ, sq-sets, no short interval can contain a pδ, sq-set. The more
precise conclusion, therefore, is that a ∆´1-rescaled version πσpYpP X Qqq

contains a p∆, sq-set.
To make the statement precise, it will be useful to write out that σpQq is

a p∆, s,∆´Aϵq-set, and the ∆´1-rescaled copy of P X Q is a p∆, t, δ´Aϵq-set,
where A ě 1 is the absolute constant lurking behind the "«"-notation. As
before, we write SQ for the homothety Q Ñ r0, 1q2.

Lemma A.6. There exists a subset Σ “ ΣpQq Ă σpQq with |Σ| ě 1
2 |σpQq| such

that the following holds for all σ P Σ: if PQ Ă P X Q is an arbitrary subset of
cardinality |PQ| ě δBϵ|P X Q|, for some B ě 1, then πσpYSQpPQqq contains a
p∆, s, δ´CpA`Bqϵq-set, where C ě 1 is absolute.

Proof. The proof is a variation of the standard "potential theoretic" argu-
ment, invented by Kaufman [18]. Let PQ

:“ tSQppq : p P P X Qu Ă D∆.
Since P is a pδ, tq-set and all the squares Q are "heavy" in the sense of (A.8)
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(which continues to hold after all refinements), we see that PQ is a p∆, tq-
set with |PQ

| « ∆´t. We denote elements of PQ by "q". Let Ld denote
Lebesgue measure on Rd, and consider the probability measures

µ :“
1

|PQ
|

ÿ

qPPQ

L2|q

∆2
and ν :“

1

|σpQq|

ÿ

σPσpQq

L1|rσ,σ`∆q

∆
.

It is not hard to check (cf. Remark 2.6) that µpBpx, rqq ⪅ rt and νpBpx, rqq ⪅
rs for all r P p0, 1s. Let Is denote the s-dimensional Riesz energy, that is, for
a finite Borel measure ρ on Rd,

Ispρq “

ż

|x ´ y|´s dρpxq dρpyq.

By a standard argument going back to [18],
ż 1

´1
Ispπσµq dνpσq “

¨ „
ż 1

´1

dνpσq

|πσpxq ´ πσpyq|s

ȷ

dµpxq dµpyq ⪅ 1.

Indeed, the inner integral can be estimated by ⪅ 1{|x´y|s by the s-dimensional
Frostman property of ν. Then

ż 1

´1
Ispπσµq dνpσq ⪅

ż
„
ż

dµpxq

|x ´ y|s

ȷ

dµpyq ⪅ 1,

since the inner integral is again bounded by ⪅ 1 for every y P R2, recall-
ing that µ satisfies a t-dimensional Frostman condition, and t ą s. The
implicit constants here are of the form δ´C1Aϵ for some absolute C1 ě 1.
Consequently, by Chebyshev’s inequality,

νptσ P r´1, 1s : Ispπσµq ě δ´2C1Aϵuq ď 1
2 ,

provided δ ą 0 is small enough. Let Σ1 :“ tσ P r´1, 1s : Ispπσµq ď

δ´2C1Aϵu. Then one needs ě 1
2 |σpQq| intervals of the form rσ, σ ` ∆q,

σ P σpQq, to cover Σ1. The left end-points of these intervals form a set
Σ Ă σpQq with |Σ| ě 1

2 |σpQq|. We claim Σ satisfies the statement of Lemma
A.6.

For every σ P Σ, by definition, there exists a point σ1 P rσ, σ ` ∆q with¨
dµpxq dµpyq

|πσ1pxq ´ πσ1pyq|s
“ Ispπσ1µq ď δ´2C1Aϵ. (A.16)

Now, if PQ Ă P X Q is a subset of cardinality |PQ| ě δBϵ|P X Q|, as
in the statement, then the probability measure µ̄, defined in the obvious
way by restricting and re-normalising µ to the subset SQpPQq Ă PQ, still
satisfies (A.16), up to multiplying the right hand side by δ´2Bϵ. It fol-
lows that Hs

8pπσ1pspt µ̄qq ≳ δ2pC1A`Bqϵ (see e.g. [22, pp. 109–112] for
the standard argument), and hence πσ1pspt µ̄q “ πσ1pYSQpPQqq contains
a p∆, s, δ´2pC1A`Bqϵq-set by Proposition 2.4. Finally, using |σ ´ σ1| ď ∆, the
conclusion remains valid for πσpYSQpPQqq. This proves the lemma. □
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Define

T π
∆ pQq :“ tT P T∆pQq : σpTq P ΣpQqu, Q P Q, (A.17)

where ΣpQq Ă σpQq is the set of good directions of cardinality |ΣpQq| ě
1
2 |σpQq| „ |T∆pQq| indicated by Lemma A.6 (the relation |σpQq| „ |T∆pQq|

follows from Lemma A.3). Then the families T π
∆ pQq, Q P Q, remain p∆, sq-

sets of cardinality « ∆´s, and the properties (G1)-(G4) remain valid if
T∆pQq gets replaced by T π

∆ pQq (only (G3) is affected). This completes the
first refinement of T∆pQq. The conclusion is that the sets P XQ, Q P Q, and
their large subsets, have "s-dimensional" projections in every direction per-
pendicular to the tubes T P T π

∆ pQq. The symbol "π" will stay as a reminder
of this fact.

Next: a further refinement of T π
∆ pQq. This refinement is concerned with

the distribution of the squares in the family tQ P Q : T P T π
∆ pQqu, for

a fixed tube T P T∆. Roughly speaking, we claim that "without loss of
generality", these sets are p∆, t ´ sq-sets.

To formalise such thoughts, write dpQ,Q1q for the distance between the
midpoints of Q,Q1, and consider the following inequality (see explanations
below):

ÿ

TPT∆

ÿ

Q,Q1PQ
Q‰Q1

1T π
∆ pQqXT π

∆ pQ1qpTq

dpQ,Q1qt´s
“

ÿ

Q,Q1PQ
Q‰Q1

|T π
∆ pQq X T π

∆ pQ1q|

dpQ,Q1qt´s

⪅
ÿ

Q,Q1PQ
Q‰Q1

1

dpQ,Q1qt
⪅ ∆´2t.

(A.18)

The first "⪅"-inequality uses the fact that T π
∆ pQq is a p∆, sq-set of tubes with

|T π
∆ pQq| « ∆´s: since T P T π

∆ pQq X T π
∆ pQ1q implies that Q X T ‰ H ‰

Q1 X T, this can only hold for ⪅ 1{dpQ,Q1qs choices of T P T∆pQq. The
second "⪅"-inequality in (A.18) follows from the fact that Q is a p∆, tq-set
with |Q| « ∆´t, by considering for each Q and dyadic number ∆ P r∆, 1s

those Q1 with dpQ,Q1q „ ∆.
Fix a large but absolute constant C ě 1. It follows from (A.18) and

Chebyshev’s inequality that

ÿ

Q,Q1PQ
Q‰Q1

1T π
∆ pQqXT π

∆ pQ1qpTq

dpQ,Q1qt´s
ě ∆´Cϵ`2ps´tq (A.19)

can only hold for ⪅ ∆Cϵ´2s tubes T P T∆. Recalling that |T∆| « ∆´2s

by (G4), this roughly says that the tubes satisfying (A.19) are exceptional.
We need a more accurate statement: we claim that there exists a subset
Q Ă Q with |Q| ě 1

2 |Q| such that for all Q0 P Q, at most half of the tubes
T P T π

∆ pQ0q satisfy (A.19), if C ě 1 is chosen large enough.
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Assume the converse: for at least half of the squares Q0 P Q, say those
in Qbad, at least 1

2 |T π
∆ pQ0q| tubes T P T π

∆ pQ0q satisfy (A.19). Then Lemma
A.5 can be applied at scale ∆, with the p∆, tq-set Qbad, and the bad parts of
T π
∆ pQ0q, which are evidently still p∆, sq-sets. The conclusion is that the total

number of tubes in T∆ satisfying (A.19) is ⪆ ∆´2s. On the other hand, it was
noted above that the number of tubes in T∆ satisfying (A.19) is ⪅ ∆Cϵ´2s. If
C ě 1 is sufficiently large, depending on the constants in the "«" notation,
and δ ą 0 is small enough, a contradiction ensues. The size of C ě 1 in
this argument is an absolute constant, so we may abbreviate A ď δ´CϵB to
A ⪅ B in the sequel.

Summarizing, assuming that C ě 1 is sufficiently large, and δ ą 0 is
sufficiently small, the converse of (A.19) holds for all Q0 P Q, where |Q| ě
1
2 |Q|, and for ě 1

2 |T π
∆ pQ0q| tubes in T π

∆ pQ0q. We replace Q by Q, and the
families T π

∆ pQq by their good subsets, without altering notation. All the
properties (G1)-(G4) remain valid. With the new notation,

ÿ

Q,Q1PQ
Q‰Q1

1T π
∆ pQqXT π

∆ pQ1qpTq

dpQ,Q1qt´s
⪅ ∆2ps´tq, T P T π

∆ pQ0q, Q0 P Q. (A.20)

(The careful reader will notice that the converse of (A.19) would be a stronger
statement than (A.20): the families Q and T π

∆ pQq in (A.20) have already
been reduced to subsets.)

The next aim is to find a fixed tube T0 P T∆ with the property

|T0pQq| :“ |tQ P Q : T0 P T π
∆ pQqu| ⪆ ∆s´t. (A.21)

This is easy, using |T∆| « ∆´2s, |Q| « ∆´t, and |T π
∆ pQq| « ∆´s for Q P Q:

1

|T∆|

ÿ

TPT∆

|tQ P Q : T P T π
∆ pQqu| “

1

|T∆|

ÿ

QPQ
|T π

∆ pQq| «
|Q| ¨ ∆´s

∆´2s
« ∆s´t.

Therefore, the average tube T0 P T∆ satisfies (A.21).
We now claim that, as a corollary of (A.20) and (A.21), the family T0pQq Ă

tQ P Q : Q X T0 ‰ Hu contains a p∆, t ´ sq-set. Indeed, (A.20) yields
ÿ

Q,Q1PT0pQq

Q‰Q1

1

dpQ,Q1qt´s
⪅ ∆2ps´tq.

Let

T1
0pQq “

!

Q P T0pQq :
ÿ

Q1PT0pQqztQu

dpQ,Q1qs´t ď ∆s´t´Cϵ
)

.

By Chebyshev’s inequality and (A.21), if the constant C is chosen large
enough, then |T1

0pQq| ě 1
2 |T0pQq| ⪆ ∆s´t. Considering, for each Q P

T1
0pQq and each dyadic number ∆ P r∆, 1s, those Q1 P T1

0pQq with dpQ,Q1q „

∆, we see that T1
0pQq is a p∆, t ´ sq-set, as desired. From now on, we sim-

plify notation by denoting the p∆, t´sq-set T1
0pQq Ă T0pQq again by T0pQq.
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Note that since T0 P T∆, which at the time of writing (G2) was known as
T ∆, one has

|T X T0| ⪅ δ´s “ ∆´2s. (A.22)
Second, every square Q P T0pQq satisfies T0 P T π

∆ pQq by definition. The
family T π

∆ pQq is a subset of the family T∆pQq originally defined in (H2), so
the conclusion of (H2) holds for T0:

|tpp, T q P pP X Qq ˆ T : T P T ppq X T0u| ⪆ ∆´s´t, Q P T0pQq. (A.23)

We used (G3) to estimate the constant HQ from (H2). Here one should recall
that P was redefined above (A.13) in such a way that P X Q “ PQ, where
PQ is the subset from (H2). It is also important to note that the families
P, T , T ppq have not undergone further refinements which might influence
the validity of (A.23).

Fix Q P T0pQq. Since |P X Q| « ∆´t by (G1), and |T ppq X T0| ⪅ ∆´s for
every p P P by Corollary A.4, we may infer from (A.23) the existence of a
subset PQ Ă P X Q with the properties

|PQ| « |P X Q| « ∆´t and |T ppq X T0| « ∆´s for all p P PQ. (A.24)

A.5. Reduction to T0 “ Dpr0,∆q2q. The purpose of this short section is
to show that, without loss of generality, T0 “ Dpr0,∆q2q. (Recall that in
the appendix we are using the modified duality map given by (A.3).) This
means that T0 is a "vertical" tube containing the origin. (If our results were
formulated in terms of "ordinary" tubes in place of dyadic tubes, such re-
ductions could be trivially performed by rotations and translations. The
technicalities for dyadic tubes are more painful. A reader who is willing to
believe that the difference between dyadic and "ordinary" tubes is not too
critical is encouraged to skip this section.) Write σ0 :“ σpT0q P r´1, 1q,
so T0 “ Dprσ0, σ0 ` ∆q ˆ rh0, h0 ` ∆qq for some h0 P R. Then it is
straightforward to compute that the affine map F px, yq :“ Fσ0,h0px, yq :“
px ´ σ0y ´ h0, yq satisfies F pDpa, bqq “ Dpa ´ σ0, b ´ h0q, and hence trans-
forms dyadic tubes into other dyadic tubes in the following manner:

F pDprσ1, σ1 ` rq ˆ rh1, h1 ` rqqq “ Dprσ1´σ0, σ1´σ0`rqˆrh1´h0, h1´h0`rqq,

for all σ1, h1 P R and r P 2´N. Applying the formula with pσ1, h1q “ pσ0, h0q

and r “ ∆ first shows that

F pT0q “ Dpr0,∆q2q.

Second, the formula shows that F maps dyadic δ-tubes contained in T0 to
dyadic δ-tubes contained in Dpr0,∆q2q. The map F does not quite preserve
dyadic squares: if Q P T0pQq, then F pQq is a quadrilateral of diameter
„ ∆. The same is true for p P PpQq: the images F ppq are quadrilaterals of
diameter „ δ, contained in F pQq. It is also easy to check that the p∆, t ´ sq-
set property of T0pQq is preserved under the map F . We also record that
for πpx, yq :“ π0px, yq “ x, we have

π ˝ F “ πσ0 “ πσpT0q. (A.25)
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Thus, if T0 ‰ Dpr0,∆q2q to begin with, then F pT0q “ Dpr0,∆q2q, and we
roughly speaking redefine the collections T0pQq, PQ for Q P T0pQq, T , and
T ppq X T0 as images under F . We write "roughly speaking" here, because
it will be convenient in the sequel to know that the collections T0pQq and
PQ still consist of dyadic squares, and this property is not quite preserved
under F . Here is the more precise construction. Write T0 :“ F pT0q “

Dpr0,∆q2q and T :“ F pT q. Then the property (A.22) remains valid in the
form |T X T0| ⪅ δ´s. For Q P T0pQq and p P PQ fixed, we use (A.24) to
deduce that

|F pT ppqq X T0| “ |T ppq X T0| « ∆´s.

Now, each dyadic tube T P F pT ppqq Ă T intersects F ppq, a quadrilateral
of diameter „ δ which can be covered by „ 1 dyadic δ-squares. Since each
tube T P F pT ppqq X T0 meets at least one of these squares, we can fix one
of them, say p̄, such that the collection

T pp̄q :“ tT P F pT ppqq : T X p̄ ‰ Hu satisfies |T pp̄q X T0| « ∆´s.

There is an additional technicality: while p P PQ implies p Ă Q, hence
F ppq Ă F pQq, it is not necessarily true that p̄ Ă F pQq. Also, F pQq is not
a dyadic ∆-square. To fix these issues, we associate to F pQq a dyadic ∆-
square Q which contains the largest possible number of the δ-squares p̄,
p P PQ: in particular, Q contains p̄ for all p P P 1

Q Ă PQ, where |P 1
Q| „ |PQ|.

For this choice Q, we set PQ :“ tp̄ : p̄ Ă Qu. We record that

|PQ| „ |PQ| « ∆´t and |T pp̄q X T0| « ∆´s for all p̄ P PQ, (A.26)

and, for a suitable absolute constant C ą 0,
´

YPQ

¯

Cδ
Ą F

`

YP 1
Q

˘

. (A.27)

The properties (A.26) are the precise analogues of (A.24), whereas (A.27)
ensures that

π
´

`

YPQ̄

˘

Cδ

¯ (A.25)
Ą πσ0pT0qpYP 1

Qq. (A.28)

This inclusion is useful, because when Q P T0pQq, as above, then T0 P

T π
∆ pQq, which meant that σpT0q P ΣpQq, and therefore πσ0pT0qpYSQpP 1

Qqq

contains a p∆, sq-set, according to Lemma A.6. From the inclusion (A.28),
we may infer that also

πpYSQpPQqq contains a p∆, sq-set. (A.29)

The square "Q" in this discussion was chosen from T0pQq, a collection
known for its properties of being a p∆, t ´ sq-set of cardinality |T0pQq| ⪆
∆s´t, see (A.21) and below. We define T0pQq as the collection of dyadic
∆-squares Q, derived from Q P T0pQq. Then T0pQq retains the separa-
tion and cardinality properties stated above, and moreover Q X T0 ‰ H

for all Q P T0pQq: this is because there exist (many) squares p̄ Ă Q with
T pp̄q X T0 ‰ H, so in particular Q X T0 Ą p̄ X T0 ‰ H.
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From this point on, we "drop the bars", and rename the collections T0pQq,
PQ̄ for Q P T0pQq, T , and T pp̄q for p̄ P PQ, as T0pQq,PQ, T , T ppq. For all
practical purposes we are back to the notation above the present section,
with the sole difference that T0 is now the vertical tube T0 “ Dpr0,∆q2q.
One thing that has changed is that the new squares Q and p do not need
to be entirely contained in r0, 1q2; this can be easily dealt with by slightly
enlarging the reference square r0, 1q2, but to avoid overloading the notation
we will continue to work inside r0, 1q2 in the sequel. Also, Lemma A.6 is
not literally true in the new setting, but all we will use from now on is that
(A.29) holds.

A.6. Finding a product-like structure. Assume then that T0 “ Dpr0,∆q2q.
Since σpT0q “ 0, the projection πσpT0qpx, yq “ x “: πpx, yq is simply the
projection to the first coordinate.

Recall, now, the sets PQ Ă P X Q, defined above (A.24) for Q P T0pQq.
They had cardinality |PQ| ě ∆Bϵ|P X Q| for some constant B ě 1, which
makes visible the constant behind the "«"-notation in (A.24). The plan is to
apply Lemma A.6, with this B, to the sets PQ Ă P XQ, for each Q P T0pQq.

By definition, Q P T0pQq implies T0 P T π
∆ pQq, hence 0 “ σpT0q P ΣpQq,

recall (A.17). Here ΣpQq was the family of good directions from Lemma
A.6. For the set PQ defined above, let PQ “ tSQppq : p P PQu. With
this notation, it follows from Lemma A.6 (or to be precise (A.29), in case
T0 ‰ Dpr0,∆q2q to begin with) that πpYPQq contains a p∆, s, δ´Cϵq-set ΠQ,
where C “ CpA ` Bq is the constant from Lemma A.6. Thus, there exists a
set PQ

Ă PQ such that
ΠQ “ πpYPQ

q.

Since πpYPQ
q Ă r0, 1q is a union of dyadic ∆-intervals, we may identify

ΠQ with the left end-points of these intervals. In particular,

ΠQ Ă p∆ ¨ Zq X r0, 1q.

The set ΠQ is not a very natural object, and we will be more interested in
ΠQ, which is the "version of ΠQ before the rescaling". Let us define this set
more carefully. if

Q “ rxQ,xQ ` ∆q ˆ ryQ,yQ ` ∆q,

then S´1
Q px, yq “ p∆x ` xQ,∆y ` yQq, and consequently

ΠQ “ ∆ ¨ ΠQ ` xQ :“ t∆x ` xQ : x P ΠQu. (A.30)

We also write PQ “ tS´1
Q q : q P PQ

u Ă PQ for the rescaled version of PQ.
With this notation, ΠQ “ txp : p P PQu, where πp “ rxp,xp ` δq.

Note that since Q X T0 ‰ H, Q Ă r0, 1q2, and T0 “ Dpr0,∆q2q, one has
xQ P r0, 2∆s for all Q P T0pQq. Moreover, the p∆, t ´ sq-set property of
T0pQq implies that

Y :“ tyQ : Q P T0pQqu Ă p∆ ¨ Zq X r0, 1q is a p∆, t ´ sq-set.
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pxp,yQq P Z

QPQ

Z

yQ

Q1

T

yQ1

T0

PQ1

FIGURE 2. The tube T0 drawn with a green outline, and two
squares Q,Q1 P T0pQq. Part of the set Z is also visible as the
union of the small red circles on the lower boundaries of the
squares Q,Q1 P T0pQq.

Every point y P Y can correspond to only „ 1 squares Q P T0pQq, and by
removing a few excess squares from T0pQq, we assume that the map Q ÞÑ

yQ is injective. Then for y P Y we can unambiguously define Πy “ ΠQ,
Πy “ ΠQ if y “ yQ. With these definitions in hand, consider the sets

Z :“
ď

yPY

Πy ˆ tyu and Z :“
ď

yPY

p∆´1Πyq ˆ tyu. (A.31)

For a depiction of the set Z, and related concepts, see Figure 2. Thus Z,Z
are finite, discrete, sets, whose projections to the y-axis are the p∆, t´ sq-set
Y. Their projections to the x-axis are the unions of the sets Πy or ∆´1Πy,
respectively, for y P Y. Let xy “ xQ for y “ yQ. The sets

∆´1Πy
(A.30)

“ Πy `
xy

∆ Ă r0, 3s (A.32)

are p∆, sq-sets. The second inclusion follows from xy P r0, 2∆s. Therefore,
the set Z looks somewhat like the product of a p∆, sq-set and a p∆, t´sq-set;
this would be precisely true if the various sets ∆´1Πy were all the same.

For every z P Z, we will next construct a p∆, sq-set of dyadic ∆-tubes
Tpzq Ă T ∆ with the following properties:

(1) z P T for all T P T pzq,
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(2) the union T pZq “
Ť

zPZ T pzq satisfies |T pZq| ⪅ ∆´2s.
To accomplish this, fix

z “ p∆´1xp,yQq P Z,

where Q P T0pQq, and xp is the left end-point of some interval πppq “

rxp,xp ` δq P Dδpr0, 1qq, with p P PQ Ă PQ. Thus pxp,yQq P Z. Then, since
p P PQ, we recall from (A.24) that |T ppq XT0| « ∆´s. The idea is to modify
(essentially dilate horizontally) the tubes from T ppq X T0 to generate the
family T pzq. To this end, fix T “ DprσT , σT ` δq ˆ rhT , hT ` δqq P T ppq XT0

(this would be the red tube in Figure 2). Then

T X p ‰ H and rσT , σT ` δq ˆ rhT , hT ` δq Ă r0,∆q2.

Fix also an arbitrary point px, yq P T X p Ă T X Q. Then x P rxp,xp ` δq

and y P ryQ,yQ ` ∆q, and since px, yq P T , the coordinates x, y satisfy the
relation

x “ σ1y ` h1 for some pσ1, h1q P rσT , σT ` δq ˆ rhT , hT ` δq Ă r0,∆q2.
(A.33)

By manipulating the equation (A.33), one finds that

xp “ σ1yQ ` h1 ` rpxp ´ xq ` σ1py ´ yQqs. (A.34)

Here 0 ď pxp ´ xq ` σ1py ´ yQq ď δ ` ∆2 “ 2δ, so (A.33)-(A.34) imply that

pxp,yQq P DprσT , σT ` δq ˆ rhT , hT ` 3δqq. (A.35)

Before proceeding, we record that the affine map Apx, yq :“ p∆´1x, yq acts
on dual sets of lines in the following way: ADpI ˆ Jq “ Dpp∆´1Iq ˆ

p∆´1Jqq. Combining this straightforward fact with (A.35), we find that

z “ p∆´1xp,yQq P Dpr∆´1σT ,∆
´1σT ` ∆q ˆ r∆´1hT ,∆

´1hT ` 3∆qq.
(A.36)

The set on the right can be covered by 3 dyadic ∆-tubes with slope ∆´1σT P

∆ ¨ Z X r0, 1q (note also that hT P r0,∆q, so ∆´1hT P r0, 1q). One of these
tubes contains the point z by (A.36), and one adds this tube to Tz.

The tube T P T ppq X T0 was a "free parameter" in the argument above.
Therefore, we may add to T pzq one tube for each choice of T P T ppq X T0.
Then, by (A.36), the slope set σpT pzqq satisfies

σpT pzqq “ ∆´1 ¨ σpT ppq X T0q.

It follows that |T pzq| „ |σpT pzqq| „ |T ppq X T0| « ∆´s by (A.24) and
Lemma A.3. The latter lemma also implies that σpT ppqq is a pδ, sq-set, and
therefore if I P Dr, r ě ∆, then

|σpT pzqqXI|∆ ď |σpT ppqqX∆I|δ ⪅ |T ppq|¨p∆rqs
(A.6)
« ∆´s¨rs « |σpT pzqq|¨rs.

Another application of Lemma A.3 concludes the proof that T pzq is a p∆, sq-
set.

It remains to show that |T pZq| ⪅ ∆´2s. This follows from (A.22), which
stated that |T X T0| ⪅ ∆´2s. In particular, every tube T P T ppq X T0 Ă
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T X T0 mentioned above lies in this universal collection T X T0. More
precisely, every tube T P T pZq has the form

Dpr∆´1σT ,∆
´1σT ` ∆q ˆ r∆´1hT ` ρ,∆´1hT ` ρ ` ∆qq,

where DprσT , σT `δqˆrhT , hT `δqq P T XT0, and ρ P t0,∆, 2∆u. Therefore
|T pZq| ď 3|T X T0| « ∆´2s, as desired.

A.7. Concluding the proof of Theorem A.1.

Proposition A.7. Given 0 ă s ă 1 and τ ą 0, there exists a number η “

ηps, τq ą 0 such that the following holds for all δ ą 0 small enough, depending
on s, τ . Let Y Ă pδ ¨ Zq X r0, 1q be a pδ, τ, δ´ηq-set, and for each y P Y, assume
that Xy Ă pδ ¨ Zq X r0, 1q is a pδ, s, δ´ηq-set. Let

Z :“
ď

yPY

Xy ˆ tyu.

For every z P Z, assume that T pzq Ă T δ is a pδ, s, δ´ηq-set of dyadic δ-tubes such
that z P T for all T P T pzq. Then |T | ě δ´2s´η, where T “

Ť

zPZ T pzq.

This proposition is essentially [25, Proposition 4.36]. For the sake of self-
containedness, we provide a proof, which is much shorter than that of [25,
Proposition 4.36]. The decrease in length is partially due to the fact that
whereas [25] derived Proposition A.7 from a sum-product theorem of Bour-
gain [3], we now reduce matters to a slightly stronger, and newer, version
of Bourgain’s theorem, due to He [13].

Proof of Proposition A.7. In this proof only, we use the notation A ⪅ B to
denote A ď Cδ´CηB for some absolute constant C ě 1, and similarly for
A ⪆ B, A « B. Likewise, a pδ, uq-set stands for a pδ, u, Cδ´Cηq-set.

We argue by contradiction: suppose |T | ď δ´2s´η. By Lemma 2.7, with-
out loss of generality we may assume that |Xy| ď δ´s for y P Y and
|T pzq| ď δ´s for z P Z.

Fix y P Y. We claim that

T pyq :“
ď

xPXy

T px,yq

is a pδ, 2sq-set. First, since z P T for T P T pzq and the tubes in T are far from
horizontal, the union in the definition of T pyq has bounded overlap, and
therefore |T pyq| ⪆ δ´2s, using that Xy, T px,yq are pδ, sq-sets.

We write πypa, bq :“ ay ` b (this differs from the previous convention in
the appendix, but these projections are most useful now). We identify T “

Dpra, a ` δq ˆ rb, b ` δqq with pa, bq in the sequel. Under this identification,
T Ă pδ ¨ Z2q X r´1, 2q2. Using that px,yq P T for T P T px,yq, we will next
see that the pδ, sq-set T px,yq (under the identification above) satisfies

πypT px,yqq Ă Bpx, 2δq, y P Y, x P Xy. (A.37)
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Indeed, if px,yq P Dpa1, b1q with pa1, b1q P ra, a`δqˆrb, b`δq, then x “ a1y`

b1, recalling (A.3), and consequently |πypa, bq ´ x| “ |πypa, bq ´ πypa1, b1q| ď

2δ. This proves (A.37). As an immediate corollary of (A.37),

πypT pyqq Ă Xyp2δq, y P Y. (A.38)

Finally, to show the pδ, 2sq-set property of T pyq, fix an r-square R Ă r0, 1q2,
r P rδ, 1s. Then πypRq is an interval of length ≲ r, and we let I be the p2δq-
neighbourhood of πypRq. From (A.37) we see that if x P Xy is such that
T px,yqXR ‰ H, then Bpx, 2δqXπypRq ‰ H, and consequently x P Xy XI .
Thus, using that Xy and T px,yq are both pδ, sq-sets of cardinality ď δ´s,

|T pyq X R| “

ˇ

ˇ

ˇ

ˇ

ď

xPXyXI

T px,yq X R

ˇ

ˇ

ˇ

ˇ

ď |Xy X I| ¨ max
xPXy

|T px,yq X R|

⪅ r2sδ´2s ⪅ r2s|T pyq|.

The idea in the remainder of the argument is the following. The pδ, 2sq-
set T pyq has the property (A.38), which in particular implies |πypT pyqq|δ ≲
δ´s. Since we (counter-)assumed that |T | ⪅ δ´2s, this means that for each
y P Y, the set T has a "substantial" subset T pyq Ă T whose πy-projection
has only 1

2 the dimension of T . This would immediately contradict a pro-
jection theorem of Bourgain [3] if we knew that T is a pδ, 2sq-set. This is
true after to passing to a suitable refinement T , defined next.

Since |T pyq| « |T |, y P Y, there is a set T Ă T such that |T | « |T |

and each T P T belongs to « |Y| of the sets T pyq. This implies that T is a
pδ, 2sq-set: indeed, if R is an r-square, r P rδ, 1s, then

|T XR| «
ÿ

TPT XR

1

|Y|

ÿ

yPY

1T pyqpT q ď
1

|Y|

ÿ

yPY

|T pyqXR| ⪅ r2sδ´2s ⪅ r2s|T |,

using that T pyq is a pδ, 2sq-set for each y P Y.
Now, since

ř

yPY |T X T pyq| “
ř

TPT |ty P Y : T P T pyqu| « |T ||Y|,
there is a subset Y Ă Y such that |Y| « |Y| and

|T pyq| :“ |T X T pyq| « δ´2s « |T |, y P Y.

Then Y is a pδ, τq-set, with the following property: for all y P Y, there is
a subset T pyq of the pδ, 2sq-set T , with comparable cardinality (in the «

sense), and such that

|πypT pyqq|δ ď |πypT pyqq|δ

(A.38)
≲ |Xy| ď δ´s.

However, these facts contradict Bourgain’s discretized projection theorem
[3], in the refined form presented by W. He [13, Theorem 1], if η is suffi-
ciently small in terms of τ, s only. More precisely, in our setting n “ 2,
m “ 1, A in [13, Theorem 1] corresponds to our T while the measure µ
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is |Y|´1
ř

yPY δ´1L1|ry,y`δq (and we identify πy with an orthogonal pro-
jection in the standard way). We conclude that the counter-assumption
|T | ď δ´2s´η cannot hold. □

To conclude the proof of Theorem A.1, we apply Proposition A.7 to the
set Z defined in (A.31), with τ :“ t ´ s ą 0, and at scale "∆" in place of
"δ". As noted in (A.32), the sets Xy “ ∆´1Πy are p∆, sq-subsets of r0, 3s,
and the difference between r0, 1s and r0, 3s is irrelevant. The hypotheses of
Proposition A.7 will be valid if the initial parameter ϵ “ ϵps, tq ą 0 from the
counter assumption (A.5) was chosen so small that Y is a p∆, t ´ s,∆´ηq-
set, each Xy is a p∆, s,∆´ηq-set, and the families T pzq constructed in the
previous section are p∆, s,∆´ηq-sets, with η “ ηps, t ´ sq ą 0. Then, the
conclusion of Proposition A.7 will contradict the upper bound |T pZq| ⪅
∆´2s, established at the end of the previous section, if ϵ ą 0 is sufficiently
small. This contradiction shows that our initial counter assumption (A.5)
has to fail for some ϵ “ ϵps, tq ą 0 sufficiently small, and the proof of
Theorem A.1 is complete.
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