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Abstract 

Machine learning has been used to accurately classify musical genre using features derived 

from audio signals. Musical genre, as well as lower-level audio features of music, have also been 

shown to have an influence on music induced movement, however the degree to which embodied 

responses to music are genre-specific has not been explored. The current paper addresses this using 

motion capture data from participants dancing freely to eight genres (Blues, Country, Dance, Jazz, 

Metal, Pop, Reggae and Rap). Using a Support Vector Machine (SVM) model, data were classified 

according to extracted kinematic features by genre, as well as by individual dancer. Against 

expectations, individual classification was notably more accurate than genre classification, although 

higher accuracy in classifying movements done to Metal and Jazz parallels some previously 

findings that these genres were more easily classified by audio signal. Results are discussed in 

terms of embodied cognition and culture.  
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1. Introduction 

The universality of music has almost certainly been overstated by well-intended optimists 

and poets, as well as by researchers who have focused exclusively on phenomena arising from 

Western musical traditions (Cross et al., 2001). Still, something that can be qualified as music 

appears to be engaged in by all cultures, and in many cases that something is the use of a regular or 

isochronous beat that affords synchronization (Nettl, 2000), making it possible that one of the most 

universal things about music is dance (Richter & Ostovar, 2016). One of the most salient features is 

its tendency to make us move; the majority of people respond to hearing music with some kind of 

movement, from simply clapping to a beat to engaging in complex dance movement (Lesaffre et al., 

2008). 

It seems reasonable to expect that such music-induced movement should be affected by the 

particular qualities of the music which is influencing the movement—surely one does not move the 

same way in response to a song by Rage Against the Machine as to one by Bob Dylan—and 

research has indeed shown that audio features extracted from the acoustic signal of music influence 

the quality of dancers’ movements. Van Dyck et al., (2013) showed that participants modified and 

increased their dance movements relative to volume of the bass drum. Burger, Thompson, Luck, 

Saarikallio, and Toiviainen (2013) extracted spectral features and rhythmic features from musical 

stimuli and compared them with kinematic features extracted from recorded movements of 

participants dancing to these stimuli. They found that low frequency activity, associated with the 

presence of kick drum and bass guitar, uniquely related to the speed of head movement, while high 

frequency activity and beat clarity were associated with a wider variety of movement features 

including hand distance, hand speed, shoulder wiggle and hip wiggle. These results can be 

compared to those earlier found by Luck, Saarikallio, Burger, Thompson, and Toiviainen (2010), 

who noted that Rock music was associated with greater head speed during dance while Jazz was 

associated with lesser head speed, while Techno, Latin and Metal music were all associated with 
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specific movement patterns. Such stereotypical movement patterns likely reflect not only audio 

features of the music, but cultural norms associated with specific genres; for example, there is a 

close association between Jazz music and swing dancing (Spring, 1997), and between Metal and 

headbanging (Hudson, 2015). However, such influence may be subject to dancers’ familiarity and 

degree of engagement with the musical culture in question.   

 Not only is movement a common response to music, some suggest that movement is even 

necessary to understanding and parsing musical sounds. Godøy, Song, Nymoen, Haugen, and 

Jensenius (2016) take evidence from studies of music performance, sound-tracing studies in which 

listeners are asked to ‘draw’ their impressions of audio stimuli, and dance movement studies, and 

propose that ‘any sound event entails an image and context of a body-motion event’ and that sound 

and motion can be considered two aspects of ‘the same phenomenon’ (p. 214). While this is a bold 

statement, it does conform with the growing interest among psychology researchers in embodied 

cognition; that is, the idea that human cognition is not only dependent on the perceptual information 

gained through the body’s sensing of the outside world and of itself, but that cognition and bodily 

experiences are essentially inseparable (Shapiro, 2007; Wilson & Golonka, 2013).  

Embodied cognition, from which embodied music cognition is derived, is a debated idea not 

so much regarding its validity but regarding how it should be defined, what it means, and how we 

can best understand and use it in our attempts to understand human nature. To put it in deceptively 

simple terms, embodied cognition refers to the idea that invisible aspects of human experience, 

namely cognition and emotion, arise from and are characterized by the forms and functions of the 

human body. Leman (2008) has defined embodied music cognition as direct, rather than symbolic, 

musical experience, where music is considered to be comprised of moving sonic forms which the 

listener parses through a process of corporeal imitation, either internally or externally. Lakoff and 

Johnson (1999) provide examples of how our bodily experiences of spatial relationships form 

understanding, such as the idea that up equates with ‘more’ and down equates with ‘less,’ which we 
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experience as part of our sensorimotor reality. Bodily experiences pervade our ability to understand 

and communicate everything from these most basic concepts to our common metaphors for making 

sense of our lives as well as, notably in this context, our experiences of music. We rise to the 

occasion; music rises in pitch or volume; we fall off the band wagon; the melody drops to the bass; 

life is a journey; that song takes us back; and we dance to the beat of our own drum. For Leman and 

others, such embodied processes define our responses to and ability to understand the acoustic 

signals which we can imitate with our bodies and thereby experience and understand.  

All of this does seem to support the idea that different music should elicit different 

movement patterns from listeners. However, testing this idea is more complex than it appears on the 

surface, in part because the idea of what constitutes ‘similar’ and ‘different’ in contemporary 

Western music is a question with no clear-cut answer. With the rise of recording technology, which 

transformed music in the Western world from an activity into purchasable commodity, came the 

need to label music effectively so that listeners would know what to buy, a task for which the notion 

of genre is often employed. Mace, Wagoner, Teachout, and Hodges (2011) have shown that 

individuals can distinguish between Classical, Jazz, Country, Metal and HipHop with more than 

50% accuracy from clips as short as 125 milliseconds. However, while genre labels such as ‘Pop’ or 

‘Rock’ are commonly used to categorize music, exact boundaries between these categories are 

unclear, and used inconsistently across listening platforms (Aucouturier & Pachet, 2003; Pachet & 

Cazaly, 2000). With the advent of the digital age, access to vast libraries of recorded music as both 

eased and complicated music consumption, as the need for a meaningful method of organizing and 

labeling millions of digital recordings has increased exponentially. It can be noted here that our 

ideas of categorization are also influenced by embodied concepts, as we understand and describe 

categories in terms of physical containers into which we can put appropriate items; Lakoff and 

Johnson (1999) note this as one of the fundamental ways in which physical reality underlies our 

cognitive experiences.  
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Some have sought to enlist  computational algorithms in the task of properly categorizing a 

song into a genre based on information extracted from its audio signal. Tzanetakis and Cook (2002) 

were among the first to introduce this idea, and have provided a clear framework for the process 

which many have followed since. First, relevant features must be extracted from the audio signal; 

various spectral features relating to timbre have been employed in a number of studies (Hartmann, 

Saari, Toiviainen, & Lartillot, 2013; Holzapfel & Stylianou, 2006), as well as rhythmic features 

(Genussov & Cohen, 2010; Tzanetakis & Cook, 2002), and pitch features (Tolonen, Member, & 

Karjalainen, 2000). Once features have been chosen and computed, a method of evaluation should 

be chosen, such as methods of statistical pattern recognition, linear classifiers, and non-parametric 

classifiers based on data clustering and nearest neighbors (Tzanetakis & Cook, 2002).  

Computational classification of genre based on audio signal is an attractive method for 

managing the large databases of recorded music. However, the factors that differentiate one genre 

from another are composed of more than acoustic features; Tzanetakis and Cook (2002) note that 

genres ‘arise through complex interaction between the public, marketing, historical and cultural 

factors,’ (p. 293). Evidence from attempts to classify genre based on acoustic signals, exploration of 

genre as a socially determined phenomenon via analysis of social-tagging data, and manual 

attempts at creating genre taxonomies suggest that some genres are more acoustically distinctive 

than others (Aucouturier & Pachet, 2003; Carlson, Saari, Burger, & Toiviainen, 2017; Hartmann et 

al., 2013; Holzapfel & Stylianou, 2006; Scaringella, Zoia, & Mlynek, 2006; Sordo, Celma, Blech, 

& Guaus, 2008). What this means in terms of embodied responses to music of different genres is 

still an open question. Although there is, as described above, evidence of some commonality 

between individuals in response to acoustic signals (e.g., Burger et al., 2013; Godøy et al., 2016), 

there is also evidence that human individual differences, as in differences in personality, influence 

the characteristics of these embodied responses to music (Carlson, Burger, London, Thompson, & 

Toiviainen, 2016; Carlson, Burger, & Toiviainen, 2018; Luck et al., 2010). In fact, individuality of 
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movement patterns was among the first topics studied after Johansson demonstrated that humans 

can perceive human movement from video in which only lights placed on key joints were visible 

(see Figure 1) (Johansson, 1973), Cutting and Kozlowski (1977) demonstrating that friends could 

recognize each other from their walk with only such point-light (or stick figure) displays of 

movement, without the need for other distinguishing features. 

Subsequent research has shown that humans have a surprisingly robust ability for 

recognizing individuals based on their movements (as from point-light animations, see Methods 

section), absent any information about other physical characteristics such as size, shape, clothing or 

facial features (Bläsing & Sauzet, 2018; Swedish & Troje, 2007; Troje, Westhoff, & Lavrov, 2005), 

as well as more abstract characteristics such as the walker’s mood (Michalak et al., 2009), 

personality (Satchell et al., 2017), and even vulnerability to physical attack (Gunns, Johnston, & 

Hudson, 2002). Troje and Chang (2013) explored the underlying mechanisms of this by 

manipulating point-light animations of multiple individuals walking such that all size, shape, and 

gait frequency information was removed, and further decomposed stimuli systematically into 

harmonic components. They found that, while participants’ accuracy in identifying individuals from 

these manipulated stimuli decreased as more harmonic information was removed, participants were 

still able to correctly identify individuals well above chance level when the first harmonic was 

removed, despite this harmonic accounting for 91% percept of the variance in walking patterns (p. 

246). The individuality of movement extends to more complex activities than walking; Sevdalis and 

Keller (2009) showed that individuals were able to recognize their own motion-captured 

movements of not only walking, but also of clapping to a beat and dancing. Bläsing and Sauzet 

(2018) expanded on this idea and found that, when participants were asked to identify dance 

movements they had either created themselves while blindfolded, a learned movement, or 

movements they had merely watched, participants better recognized and were more likely to 
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associate themselves with movements they had created, even in the absence of visual memory of 

the movement. 

Just as with musical genre, the identification of individuals is these days the purview of both 

man and machine. Readers familiar with large social media sites will be familiar with the 

application of face-recognition technology, which has been successfully used to analyze 

relationships between facial features (Guo et al., 2000). Other work has focused on identifying 

human actions such as running, kicking, or throwing across large samples of different recordings 

(Guo, Li, & Chan, 2000). However, while humans are able to recognize individuals from whole 

body movement without the need for other information, computer vision approaches often include  

analysis of color and shape, which in turn leads to difficulties re-identifying individuals who may, 

for example, be wearing different clothing from one day to the next (Poppe, 2010). 

The above literature review raises some interesting questions about musical genre and its 

relationship to music-induced movement, as well as about the relationship between individuals’ 

apparently unique movement patterns and the effects of distinct musical stimuli. While there is 

evidence that both audio features and the genre category of a song can influence how it is embodied 

by listeners, only a limited number of specific genres has been studied in this regard. For example, 

Luck et al. (2010) examined the influence of Jazz, Techno, Latin, Funk, Pop and Rock, using only 

non-vocal excerpts, while Solberg & Jensenius (2017) focused exclusively on Electronic Dance 

Music (EDM), and Burger and Toiviainen (2018) examined participants’ movements in response to 

EDM compared to Latin, Funk and Jazz. The aim of the current study, therefore, is to explore the 

distinctions between common Western musical genres in terms of how they are embodied by 

participants within a free dance movement setting, in which participants are allowed to move as 

they desire without pre-choreographed constraints. As a comparatively large body of work exists 

using machine learning to differentiate between genres, the current study will similarly employ 

machine learning to explore the degree to which genre can be distinguished from the bodily 
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movements of participants. As previous work also highlights bodily moment as a robust means by 

which humans can distinguish between others based on movement, this study will also explore the 

degree to which such individuality of movement is present in individuals’ movements across 

multiple genres.  

Within a framework of embodied music cognition, and in light of previous research has 

shown both that audio features and genre influence music-induced movement (Burger, Thompson, 

Saarikallio, Luck, & Toiviainen, 2010; Luck et al., 2010) and that genre can be distinguished to a 

large degree by analysis of audio signals (Genussov & Cohen, 2010; Tzanetakis & Cook, 2002), we 

hypothesized that machine learning analysis of kinematic features extracted from music-induced 

movement could be used to identify the genre of the heard musical stimulus. Given strong evidence 

for the presence of individually identifiable movement features in both music and non-music 

settings (Karkavitsas & Tsihrintzis, 2011; Nanni, Costa, Lumini, Kim, & Baek, 2016), we also 

hypothesized that identification of individuals through machine learning analysis of kinematic 

features would be possible. As previous research has shown that some genres are easier than others 

to distinguish using machine learning, we further expect that there will be variation between genres 

in the accuracy of both genre and individual identification.  

2. Methods 

2.1 Motion Capture Study 

A motion capture study was designed to collect free dance movement data from participants using 

naturalistic (commercially available) musical stimuli representing different genres (see section 

2.1.4).   

2.1.1 Participants 

A total of 73 participants (54 females) completed the motion capture experiment. Participants 

ranged in age from 19 to 40 years (M = 25.74, SD = 4.72). Thirty held Bachelor’s degrees while 16 

held Master’s degrees. Thirty-three reported having received some formal musical training; five 
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reported one to three years, ten reported seven to ten years, while 16 reported ten or more years of 

training. Seventeen participants reported having received some formal dance training; ten reported 

one to three years, five reported four to six years, while two reported seven to ten. Participants were 

of 24 different nationalities, with Finland, the United States and Vietnam being the most frequently 

represented. For attending the experiment, participants received two movie ticket vouchers each. 

All participants spoke and received instructions in English.  

2.1.2 Apparatus 

Participants’ movements were recorded using a twelve-camera optical motion capture system 

(Qualisys Oqus 5+), tracking at a frame rate of 120 Hz, the three-dimensional positions of 21 

reflective markers attached to each participant. Markers were located as follows (L = left, R = right, 

F = front, B = back) 1: LF head; 2: RF head; 3: B head; 4: L shoulder; 5: R shoulder; 6: sternum; 7: 

stomach; 8: LB hip; 9: RB hip; 10: L elbow; 11: R elbow; 12: L wrist; 13: R wrist; 14: L middle 

finger; 15: R middle finger; 16: L knee; 17: R knee; 18: L ankle; 19: R ankle; 20: L toe; 21: R tow, 

visible in Figure 1A. The musical stimuli were played in a random order via four Genelec 8030A 

loudspeakers and a sub-woofer. The direct (line-in) audio signal of the playback and the 

synchronization pulse transmitted by the Qualisys cameras when recording were recorded using 

ProTools software so as to synchronize the motion capture data with the musical stimulus 

afterwards. 

[Insert Figure 1 about here] 

2.1.3 Stimulus selection 

The 35-second stimuli for the experiment were selected using a computational process based on 

social-tagging and acoustic data. Social tags are defined as “free text labels that are applied to items 

such as artists, albums and songs” (Lamere, 2008, pp 101), the possibility of which is provided by 

music-listening platforms such as Last.fm. The selection pipeline was designed to select naturalistic 

stimuli that were uncontroversially representative of their respective genres, which would also be 
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appropriate to use in a dance setting. A total of 2407 tracks were collected from Last.fm which also 

were tagged by users with one and only one genre label (e.g. ‘Country’ or ‘Jazz’); these labels were 

derived from the revised version of the Short Test of Music Preferences, or STOMP-R (Bläsing & 

Sauzet, 2018; Troje & Chang, 2013). Tracks were also required to have been tagged by Last.fm 

users with at least one dance-related term, such as ‘danceable,’ ‘dancing,’ ‘head banging,’ or 

‘headbanging,’ and were retained only if they had a non-zero danceability score according to Echo 

Nest (which is determined by computational analysis of a given track’s acoustic features including 

beat strength, tempo and loudness), and only if the track’s tempo fell between 118-132 BPM. Four 

randomly selected excerpts from each genre were checked for tempo and stylistic consistency by 

the researchers, leaving 16 stimuli from 8 genres: Blues, Country, Dance, Jazz, Metal, Pop, Rap, 

and Reggae. The details of the stimuli are given in Table 1: 

[Insert Table 1 about here] 

For a complete description of this stimuli-selection methodology, see Carlson et al. (2017).  

2.1.4 Procedure 

Groups of three or four dancers at a time attended the experiment and were instructed to move 

freely to the randomized musical stimuli, as they might in a dance club or party setting. They 

moved first individually (without seeing any other dancers) and in dyads, although only individual 

data is considered in the current analysis. In each condition (individual and all possible dyads), all 

16 stimuli were heard in randomized order. Participants were asked to listen to the music and move 

freely as they desired, staying within the marked capture space. The aim of these instructions was to 

create a naturalistic paradigm, such that participants would feel free to behave as they might in the 

real world. To limit the effects of fatigue, participants were informed that they were free to ask for a 

break or stop the experiment at any time, and were additionally offered water, juice and biscuits as 

light refreshment.  

2.1.5 Preprocessing Mocap Data 
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Using the Motion Capture (MoCap) Toolbox (Burger & Toiviainen, 2013) in MATLAB, movement 

data of the 21 markers were first trimmed to match the duration of the musical excerpts. Due to 

small recording errors (i.e., the mocap recorded being stopped too quickly), several files were 33-

seconds in length while the majority were 35-seconds. Gaps in the data were linearly filled. 

Following this, the data were transformed into a set of 20 secondary markers – subsequently 

referred to as joints. The locations of these 20 joints are depicted in Figure 1B. The locations of 

joints B, C, D, E, F, G, H, I, M, N, O, P, Q, R, S, and T are identical to the locations of one of the 

original markers, while the locations of the remaining joints were obtained by averaging the 

locations of two or more markers; Joint A: midpoint of the two back hip markers; J: midpoint the 

shoulder and hip markers; K: midpoint of shoulder markers; and L: midpoint of the three head 

markers. The instantaneous velocity of each marker in each direction was calculated Instantaneous 

velocity was estimated by time differentiation followed by the application of a 2nd-order 

Butterworth filter with a cutoff frequency of 24 Hz for all participants for all 16 stimuli (see 

Toiviainen and Burger, 2013). Subsequently, the data were converted into local coordinate system, 

in which the root marker (Figure 1B, marker A) is defined as the origin and the line connecting the 

hip markers the mediolateral axis, to allow for comparison between individuals who may have been 

oriented differently in the capture space. 

Full details of the experiment can be found in Carlson, Burger and Toiviainen (2018).  

2.2. Machine Learning Analysis 

A machine learning model involving feature extraction, feature selection, and classification was 

employed and evaluated using cross validation. Two classification tasks were undertaken: 

participant classification and genre classification.  

The classification method employed for the current analysis is that of Support Vector 

Machines (SVM), which has become popular over the early 2000s. This method is based on the 

relatively straightforward idea that, given two classes of data (for example, half the points represent 
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Mozart String Quartets and the other half songs by Metallica, see Figure 2) graphed onto some two-

dimensional space based on some of their identifiable features (number of electric instruments and 

average amount of head banging during performances), there are theoretically infinite lines that 

could be drawn to divide the data. However, there is only one line that optimally divides the two 

classes such that the introduction of new data is most likely to be classified correctly. SVM is used 

to identify the line that best divides as the one that is maximally distant from the nearest data point 

of each classes, providing, essentially, the largest possible buffer space between the two classes; 

this buffer space defines the Optimal Separating Hyperplane, or OSH.  Not only does the OSH 

separate the classes of data, but it minimizes the risk that new data would be incorrectly classified 

(G. Guo et al., 2000; Mamonne, Turchi, & Cristianini, 2009).  

[Insert Figure 2 about here] 

A small tweak to the above example should easily convince the reader of the importance of 

feature selection. If instead of graphing our data based on electronic instruments or crowd head-

banging behavior, the features we used were number of musicians performing and number of 

musicians wearing black, it would be virtually impossible for our algorithm to distinguish between 

performances of Mozart string quartets and performances by Metallica. The problem of 

classification becomes more serious and more abstract when the features available for analysis are 

limited to the recorded acoustic signals themselves, or indeed to dancers’ movements. It should be 

noted that SVM is not limited to two or even three-dimensional space, nor to linearly-separable 

classes, so real-world attempts to distinguish genres based on multiple extracted audio features can 

become highly complex and more challenging to interpret (for a more formal overview of SVM, see 

Estes, 1962, or Mamonne, Turchi, & Cristianini, 2009).  

2.2.1 Kinematic Feature Extraction  

The kinematic feature used in this analysis was the covariances of velocity between all the marker 

time series in each direction (X, Y and Z) within each participant for each stimulus; that is, the 
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degree to which the movement of any two of a participants’ markers covaried with each other 

across the entire stimulus in any of the three dimensions, resulting in a marker by marker 

covariance matrix for each participant. Such covariance features have been previously yielded high 

performance in classification tasks with reasonable computational complexity (Ergezer & 

Leblebicioğlu, 2018; K. Guo, Ishwar, & Konrad, 2009; Tuzel, Porikli, & Meer, 2008). Furthermore, 

such relationships between markers were suggested by Troje et al. (2005) to play at least some role 

in human perceptual identification of individuals. In addition to using linear covariance, however, 

we also tested a nonlinear measure of covariance, defined using a Radial Basis Function (RBF) 

kernel (that is, a specific mathematical algorithm used to transform data into the desired form) in 

the covariance computation, which was normalized according to the time-series length (denoted by 

d) to facilitate different lengths of some stimuli. This measure, also referred to as the correntropy 

between time series 𝑥𝑖 and 𝑥𝑗 (Liu, Member, Pokharel, & Principe, 2007), was computed as 

follows: 

𝐾(𝒙𝑖, 𝒙𝑗) = 𝑒
−‖𝒙𝑖−𝒙𝑗‖2

2
/(2𝜎2𝑇2)

 

where ‖𝒙𝑖 − 𝒙𝑗‖2 =
√∑ |𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)|

2𝑇
𝑡=1  is the L2 norm, also referred to as the Euclidian norm 

as it is calculated as the Euclidian distance from the origin. This yielded for each participant per 

stimulus a symmetric covariance matrix whose lower triangular part was subsequently vectorized to 

produce a feature vector of length 1596.  Correntropy calculated using an RBF kernel provides an 

alternate measure of similarity compared to linear covariance, in which similarity decays as a 

function of the distance between two vectors (data vectors in this case representing marker 

movement in a given dimension), in the shape of a bell-curve (e.g., a Gaussian distribution) rather 

than a straight line. The degree to which two markers covary are quite literally ‘graded on the 

curve,’ with a steeper curve resulting in highly covarying pairs being marked as even higher than 

they would be in a linear measure, and vice versa for low covarying pairs.  
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The steepness of the curve in the above computation is determined by the value of the sigma 

parameter, as this affects the distribution of the produced features, where high values yield 

negatively skewed feature value distribution, and vise-versa for low values. Thus, the data 

discriminability with respect to the feature values can be low if a sigma value that is either too high 

or too low is used. Because of this, it was necessary to include RBF-kernel optimization within our 

machine learning model, such that the features used to discriminate between classes were useful for 

the relevant tasks. Our solution for determining an appropriate value for sigma was to optimize the 

sigma value by minimizing the skewness of each feature separately using the downhill simplex 

algorithm. Each of these kernel-optimized features were normalized into zero mean and unit 

standard deviation. For comparison, data were also analyzed using linear covariances.  

2.2.2 Feature Selection 

After the RBV covariance matrix was extracted for each participant, distinguishing features (that is, 

pairs of markers) were further selected for analysis using SVM. In machine learning, models are 

regularized through the use of a penalty term, which is applied in feature selection to control the 

model complexity and prevent overfitting (that is, the creation of a model with so many features as 

to be impractical to generalize beyond the current classification problem). Simply put, 

regularization limits the number of features used within a model to those of sufficient importance 

such that the model does not become too specific.  In this case, an SVM classifier using the linear 

kernel and L1 norm as the penalty was used for feature selection (also known as LASSO penalty) 

(Zhu, Rosset, Hastie, & Tibshirani, 2003). The L1 norm of the feature weights, that is, the sum of 

the feature weights, is used in this model as a regularizer. The difference between L1 and L2 norms 

is best imagined visually; given a point in two-dimensional space, the L2 norm is the diagonal 

distance from the origin to that point, while the L1 norm is the distance from the origin as drawn by 

two perpendicular lines two perpendicular lines aligned with the coordinate axes. For this reason, 

the L1 norm is sometimes referred to as a Manhattan or Taxicab norm, as a competent taxi driver 
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would, one hopes, follow straight roads to a destination rather than barreling a Euclidian diagonal, 

(or via any random pair of perpendicular line) through parks and buildings, no matter how much 

shorter that route.   

The linear SVM is defined to solve the following optimization problem consisting of the 

penalty and loss terms (Zhu, Rosset, Hastie, & Tibshirani, 2003): 

min
𝑤

1

2
‖𝒘‖𝑛 + 𝐶∑𝑙𝑜𝑠𝑠(𝑦𝑖, 𝑓𝑤(𝒙𝑖))

𝑚

𝑖=1

 

where 𝒘 ∈ ℝ𝑑 is the feature weight vector (normal of the separating hyperplane), ‖∗‖𝑛 is the norm 

used, C is a cost parameter controlling the effect of the error term, {𝒙𝑖, 𝑦𝑖} ∈ ℝ𝑑are the m training 

examples and their binary labels, respectively, and 𝑓𝑤(𝒙𝑖) = 𝑤 ∙ 𝒙𝑖 is the classifier that is learnt. In 

this paper we use the hinge loss, max(0,1 − 𝑦 ∗ 𝑓(𝒙))𝑛, as the loss function. 

The L1 norm SVM, as opposed to the standard L2 norm SVM, (i.e., using ‖𝒘‖1 for 

regularization in the above formula) tends to yield sparse features (many feature weights close to 

zero), which makes it applicable for feature selection. The L1 norm SVM is also able to handle a 

larger number of irrelevant features than the L2 norm SVM without overfitting (Ng, 2004). Here we 

used a multiclass one-versus-all strategy for classification, which yields a feature weight matrix 

with a value for each class/feature. Typically, to determine which features are selected, the L1 norm 

is computed across the classes, and features with norm higher than a specified threshold, are 

retained. However, instead of using a norm threshold as a parameter, here we used the number of 

features to retain as the parameter to select features having the highest norm. The optimal sigma 

values, when optimized over all RBF 3D velocity features and samples ranged from 0.41 to 12.1, 

(mean=5.05, std=2.15). The free model parameters of all stages were optimized based on each 

training fold in the cross-validation, independently from the respective test folds. 

2.2.3 Classification 
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Linear SVM with L2 (Euclidian norm) penalty was used to classify the data based on the selected 

features. The L2 norm SVM, in which the regularizer term is calculated as the square root of the 

sum of squares, is generally more efficient at handling a data where feature redundancy is not of 

concern (Ng, 2004).  

For participant classification, a leave-one-genre-out cross validation was employed. This enables us 

to see how well the model learns participant-specific, idiosyncratic movement patterns that 

generalize to new musical genres. For genre classification, an 8-fold cross validation was employed 

to have an equal number of folds as in the participant classification (as there were eight genres). 

Here at each fold, the data was split so that the participants in the respective training and test sets 

were not overlapping. This enabled us to see how well the model learns genre-typical movement 

patterns that generalize to new participants 

3. Results 

3.1 Model Classification Accuracy  

The cost parameter was set to the default value 1.0, and the number of features retained varied 

exponentially between 1 and 256. For genres, using the linear covariance features, the highest 

accuracy of 23.5% was reached at 26 features, and adding more features sets into 20% accuracy 

level. For an 8-class classification problem, chance level accuracy is 12.5%. While our model did 

provide accuracy above chance level, this accuracy is low compared to classification of genre based 

on audio signal (Holzapfel & Stylianou, 2006; Kujala et al., 2009; Tzanetakis & Cook, 2002). For 

participants, the highest obtained accuracies are at the 80-85% range, well above the 1.37% chance 

accuracy for a 73-class classification task.  

When using the RBF covariance features the machine learning pipeline was identical, except for the 

addition of the kernel optimization stage. For genres, results were the same as for linear covariance.  

For participants, the results using Correntropy (RBV) matrixes show that adding more features 

improves the results until convergence after 107 features at a notably high 94-95% level. At 107 
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features, the accuracy of classification was 94.1%, approximately 10% higher than the accuracy 

found for linear covariance features. It is notable how much better our model performed when 

classifying individuals rather than the genres to which they were moving, especially given the 

comparatively higher level of chance-accuracy for the genre problem (12.5% compared to 1.37%). 

These results are shown in Figure 3.  

[Insert Figure 3 about here] 

3.2 Evaluation of Model Feature Selection by Comparison to PCA 

In further analysis only correntropy matrixes were used due to their better performance over linear 

features. To confirm the feasibility of the L1 (Taxicab)-norm SVM-based feature selection, a cross-

validation experiment was conducted replacing the feature selection stage by Principal Components 

Analysis (PCA), where the correntropy matrixes were projected to its principal components. The 

range of number of components used was the same as that for the number of selected features in the 

experiment above. The results, shown in Figure 4, show that the PCA projection yields lower or 

similar accuracies than feature selection. The main benefit of the feature selection is the easier 

interpretability of classifier model features. 

[Insert Figure 4 about here] 

3.3 Evaluation of Model Cost (C) Parameter 

The cost parameter C in SVM controls the cost of misclassification (by weighting the error term, 

and consequently down-weighting the regularization), and therefore lower C values may lead to 

more complex models which cannot  then be easily generalized to other sets of data (i.e., the OSH 

would too narrowly conform around the individual data points specific to this set). The C parameter 

was in our initial analysis set to the default value C=1.0. In a typical machine learning scenario, the 

C parameter is optimized with respect to model accuracy using a hyper parameter optimization 

strategy such as grid search (varying the values) in an inner cross-validation loop. To see how the C 

value affects the participant classification results, the value was varied from 0.01 to 1000. As shown 
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by the results, which can be seen in Figure 5, the value has only minor effect on the results, and the 

default value is close to the optimal. This shows that a model with medium complexity is feasible 

for the classification task. 

[Insert Figure 5 about here] 

In summary, as shown by the various trials with different model parameters and the 

comparisons to other feature sets, the results demonstrate the high robustness of the kernel 

covariance features at representing dance move patterns for participant classification, and the 

feasibility of the classification pipeline employed. 

3.4 Accuracy by Participants and Genres 

If a participant's dance moves are idiosyncratic, the patterns of their movements should be 

invariable across genres, and therefore should yield high individual classification accuracy for that 

participant. Conversely, such non-genre-specific movement patterns would likely result in low 

genre classification accuracy for that participant. To examine this relationship between the 

participant and genre classification accuracies, we computed correlation between the participant-

wise accuracies of participant and genre classification. The correlations are significantly negative, 

as expected, r= -.31, p<.01. 

Correspondingly, if a specific genre elicits genre-typical movement patterns, this should 

yield high genre classification accuracies of that genre, and conversely, low participant 

classification accuracies of that genre. This is demonstrated by the genre-wise participant and genre 

classification accuracies, where Metal and Jazz were found to elicit the most genre-typical dance 

moves, and vice versa for Dance, Pop, and Blues, the results of which can be seen in Figure 6. 

[Insert Figure 6 about here] 

3.5 Importance of Features 

To further explore the unexpectedly accurate classification of individual participants, we chose to 

examine which features optimally classify participants. The participant classification model pipeline 
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with the 107 selected kernel covariance features was run on the full data set, and the feature 

importance scores were computed as the L2 norms of the L2 norm SVM classifier feature weights 

over the classes (participants). The results can be seen in Figure 7: 

[Insert Figure 7 about here] 

The results show a very general pattern of relationships between medio-lateral (ML) and 

anterior-posterior (AP) movement across various markers as distinguishing features between 

dancers, while marker movement in the vertical (V) direction was distinguishable more often in 

relation to other vertical movement. The markers/dimensions which were overall most important for 

classification of individuals, calculated by taking the mean over feature matrix columns, are shown 

in Table 2: 

 

[Insert Table 2 about here] 

4. Discussion 

The current paper employed a novel approach to exploring the relationship between musical genre 

and music-induced movement. Participants’ free, improvised dance movements were captured 

while dancing to musical stimuli representing eight genres selected using a data-driven, social-

tagging method. Both linear covariance and non-linear correntropy were calculated from dancers’ 

whole-body movements for each stimulus, and an established machine learning algorithm was 

applied with the aim of classifying the correct genre to which the movement was generated and the 

correct participant who generated the movement. Contrary to our expectations, person classification 

was notably more accurate than genre classification, despite chance level being much lower for 

person classification (1.37% compared to 12.5%). However, some genres were also more 

recognizable than others from dancers’ movements. To the authors’ knowledge, this is the first 

study to attempt to classify genres or individuals in the context of free dance movement.  
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 Greater classification accuracy was achieved using correntropy, calculated using an RBF 

kernel, than when using the linear covariance as a movement feature. This suggests that nonlinear 

features are particularly able to capture relevant identifying characteristics of movement. In this 

context, we can interpret the correntropy measure as being defined more by similarities between 

markers than by dissimilarities; that is, when markers are moving dissimilarly, it is of little 

consequence exactly how much their two time-series differ. If, for instance, the RBF kernel used is 

very narrow (that is, the curve represents a steep decay), correntropy can be thought of as 

measuring the proportion of time for which the two time-series are very similar to each other.  

Human capacity to identify individuals from point light displays of movement has been 

explored in the literature (Swedish & Troje, 2007; Troje & Chang, 2013; Troje et al., 2005; Ueda, 

Yamamoto, & Watanabe, 2018), as have kinematic features that commonly characterize traits such 

as gender, mood, and personality in human movement (Bhowmik, Ghosh, Debsinha, Kajal, & 

Professor, 2016; Røislien et al., 2009; Troje et al., 2005). However, computational classification of 

individuals based on movement features has largely been studied in relation to practical 

applications, such as security surveillance, where video data is more commonly used than three-

dimensional motion capture data, necessitating the inclusion of shape and color features (Bhowmik 

et al., 2016; Moeslund, Hilton, & Krüger, 2006). The current study is the first known to the authors 

to classify individuals using only movement-related features derived from a free dance movement 

setting. The surprisingly accurate results suggest that individuality is partly encoded into the 

covariance between the three-dimensional movement of certain body parts. 

The model achieved its best fit at 107 features, most of which were related to the head and 

limbs. Analysis of the chosen features revealed that head, shoulder and knees were important 

markers in distinguishing between individuals, and that discriminative features often occurred 

between adjacent joints (e.g. the right wrist and right elbow) within the same dimension and 

between key left and right markers such as the shoulders and knees. Although the complexity of this 
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model creates challenges for interpretation, the general picture that emerges is a mathematically and 

mechanically reasonable explanation but still a surprisingly telling one in actuality. Of course, in 

theory, different individuals’ movements may covary differently between any markers in any 

dimensions, but as it is highly unlikely that participant’ were consciously controlling these aspects 

of their movements, the fact that these movement features could be used to accurately classify 

individuals across various musical stimuli suggests that we each have our own ‘motoric fingerprint’ 

which is evidenced in our free dance movements, regardless of what music is playing.  

Just what genre of music was playing was, against our expectations, not classified very 

accurately. Although our model did manage to perform better than chance for an 8-class 

classification problem, at best its overall accuracy rate was less than 25%, well below accuracy 

rates for most models which classify genre from acoustic signals, which often have accuracy rates 

of more than 80% (e.g., Holzapfel & Stylianou, 2006; Nanni et al., 2016). The results suggest that 

an individual’s motoric fingerprint has a stronger influence on her dance movement than the 

specific music to which she is dancing. This results is supported by previous work, for example that 

of  Troje & Chang (2013), showing that there are highly individual characteristics of biological 

movement, and also by work showing a large degree of consistency of individual movement 

strategy in skilled drummers across conditions (Dahl, 2011; Danielsen, Waadeland, Sundt, & 

Witek, 2015)  However, these results do not necessarily indicate that the body is not involved in 

parsing sound or genre. Rather, comparison of the current results with previous work involving 

classification of genre from audio signals reveal some interesting parallels that can be interpreted 

through a lens of embodied music cognition.  

The results show that some genres were more successfully classified by examining dancers’ 

movements than others, namely Metal (53% accuracy) and Jazz (35% accuracy). This is in line with 

previous audio-based classification studies, which have routinely shown differences between genres 

in ease of classification. Tzanetakis and Cook (2002), for example, found that Jazz was classified 
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noticeably better than other genres. Holzapfel and Stylianou (2006) report the highest classification 

rate for Metal, as do Wülfing and Riedmiller (2012). Metal and Jazz (along with Classical) were 

also classified most accurately by Hartmann et al. (2013). These similarities arise despite 

differences in the acoustic features and classification methods used, corroborating the evidence that 

there is indeed something particularly ‘genre-like’ about these genres, especially compared to 

genres that have regularly proven more difficult to classify, such as Rock and Pop.  One 

interpretation, in keeping with a framework of embodied music cognition as conceptualized in the 

works of Leman (2008) and Godøy et al. (2016) is that these genres tend to supply listeners with 

perceptually distinctive audio stimuli than that of some other genres, naturally eliciting different 

movement patterns that distinguish the results from the less differentiable Pop and Dance. Jazz 

music tends to feature a fairly unique set of instruments—keyboard, drums, bass, and saxophone are 

archetypal to jazz—while Metal, though sharing the guitar, drums, bass and vocals of many Rock-

related styles, is characterized by noisiness and spectral rolloff the audio signal (Ajoodha, Klein, & 

Rosman, 2017). One might question whether these characteristic timbral features are necessarily 

processed by listeners through different movements than others. It is also worth asking whether the 

sonic forms afforded by Jazz and Metal are particularly distinctive from those of other genres, 

making the empathic imitation of them similarly more distinctive? 

Although the unique musical features of Metal and Jazz undoubtedly do play a role in 

influencing movement, it is important to mention the obvious extramusical factors that may also 

have affected participants responses to these genres. Some genres have been previously associated 

with stereotypical movements; Luck et al. (2010), for example, found evidence that Techno, Latin 

and Metal were all associated with specific movement patterns, the latter with recognizable 

‘headbanging’ patterns. Although this could again relate to the acoustic qualities of the heard music, 

the role of culture in driving such stereotypes must be considered in interpreting the current results. 

Musical genres often exist as part of a culture that includes visual elements, such as clothing or 
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makeup, and associated dance movements (e.g., Jaimangal-Jones, Pritchard, & Morgan, 2015). 

Familiarity with these visual elements of culture is likely to have influenced participants’ embodied 

responses to some genres.  

Metal seems to be a central piece of a definite subculture, which has been analyzed from 

various sociological perspectives (Bryson, 1996; Lacourse, Claes, & Villeneuve, 2001; Straw, 

1984). Snell and Hodgetts (2007) explored the formation of identity within the social context of 

Metal music scenes, and found a close association between stereotypical movements such as 

headbanging and participants’ sense of communal bonding and shared experience. They refer to 

‘the sharing of [Metal] music through dance as a way of reaffirming a sense of belonging, shared 

experience and support’ (p. 434). The current results suggest that, while dancing to Metal, 

participants moved in more similar ways to one another, allowing for more accurate classification, 

possibly supporting the idea of stereotypical dance in Metal serving identification with a group. 

Jazz, which has its origins in its own subculture, has been historically associated with a number of 

distinctive dance movements, such as the Charleston and other types of swing dancing, which 

through revivals and specific efforts at cultural preservation are not unlikely to be at least cursorily 

familiar to Western listeners today (Monaghan, 2002; Lena & Peterson, 2008). These influences 

may be less prominent in responses to genres that are more mainstream, such as Pop, Hip-Hop and 

Dance, which may account for the differences in identification accuracy of these genres compared 

to Metal and Jazz.  

Given these cultural characteristics, it is possible that participants’ movements were affected 

by familiarity with norms specific to the subcultures invoked by these two musical genres, quite 

possibly even if they themselves did not identify with that culture. Familiarity may arise, for 

example, through exposure to music videos, films, and other types of visual media, as well as 

through direct engagement with others in the cultural context. This does not need to be considered a 

conflicting interpretation to the idea that particular acoustic features were embodied by participants 
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while listening to these genres, in line with a framework of embodied music cognition. It does, 

however, invite consideration of the idea that an embodied response to music—that is, the use of 

bodily movement to process and parse the incoming audio signals—means, in naturalistic settings 

at least, the embodiment of music on many levels of abstraction higher than sound. Previous work 

has shown that emotion, mood, and personality are embodied by our music-induced movements 

(Camurri, Lagerlöf, & Volpe, 2003; Dyck, Maes, Hargreaves, Lesaffre, & Leman, 2013; Luck et 

al., 2010), as well as our own cultures (Himberg & Thompson, 2011). It is not a very far leap, then, 

to expect that cultural information embedded into musical genre is also embodied. Viewed in this 

light, the process of dancing to a song is not only the process of interaction between a complex 

acoustic signal and an even more complex human nervous and muscular system; it is 

simultaneously the interaction of a unique person and their memories, beliefs, and preferences with 

a culturally-defined set of extramusical associations and expectations (Shevy, 2008). Finnish 

participants, who comprised a majority of the current study’s participants,  may be particularly 

familiar with, and therefore predisposed to enjoy, Metal music (Carlson et al., 2017), which could 

have yielded a more prominent embodied manifestation of Metal culture in the current results than 

would be found elsewhere in the world.  

The current results suggest that the unique role of the individual and the role not only the 

participants’ culture, but the cultural affordance of the music itself, should be taken into 

consideration in designing and interpreting studies related to embodied music cognition. These 

results also show that, while analysis focused on identifying group means and general tendencies 

are a common approach for such studies, there are both quantitative and theoretical insights to be 

gained from the application of analysis methods which highlight individual differences. The notable 

individuality of movement patterns shown here should be explored with further research, for 

example by using stimulus manipulations other than genre, or considering individual differences at 

the level of personality or culture. Future research is also necessary to examine genres and their 
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associated dance movements at the level of sub-genre, to explore the relationships between genre 

preferences and movement patterns, and to explore embodied responses to audio excerpts that are 

ambiguous or multi-faceted in terms of genre. The current results regarding genre also merit further 

research, particularly of the influences of music preference, culture, and familiarity with a given 

genre and its extramusical associations.  
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