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Abstract
In this work, we extend classical results for subgraphs of functions of bounded variation in
R
n×R to the setting of X×R, where X is an RCD(K , N )metric measure space. In particular,

we give the precise expression of the push-forward onto X of the perimeter measure of the
subgraph in X×R of a BV function on X. Moreover, in properly chosen good coordinates, we
write the precise expression of the normal to the boundary of the subgraph of a BV function
f with respect to the polar vector of f , and we prove change-of-variable formulas.

Keywords Function of bounded variation · RCD space · Cartesian surface · Subgraph ·
Splitting map

Mathematics Subject Classification 53C23 · 26A45 · 49Q15 · 28A75

1 Introduction

This short note is about the study of functions of bounded variation in the setting of RCD
spaces. The study of analytic and geometric properties of RCD metric measure spaces
(X,d,m) flourished in the last decade, see the account in [3] and the references [5, 6, 10, 20,
29, 32, 38, 43, 44]. The geometric structure of these spaces up tom-negligible sets is pretty
well understood after the works [19, 25, 34, 36, 42]. Recently, the research on these spaces
has been focusing also on the study of structure results for sets of (locally) finite perimeter,
and of fine properties of functions of (locally) bounded variation, see [4, 15, 17, 18].
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We stress that this theory has recently found interesting applications in the study of the
isoperimetric problem on non-compact smooth Riemannian manifolds with Ricci curvature
bounded from below, see [14], and in the proof of the rank-one theorem in this low regularity
setting [13]. We refer the reader to Sect. 2.2 for more details.

We fix from now on an RCD(K , N ) metric measure space (X,d,m). Here K ∈ R plays
the role of (synthetic) lower bound on the Ricci curvature, and N ∈ [1,∞) plays the role
of synthetic upper bound on the dimension. Given a function of locally bounded variation
f ∈ BVloc(X) (see Sect. 2.1.1), we consider in X × R the subgraph

G f := {(x, t) ∈ X × R : t < f (x)}.

Notice that, under the sole assumption of f being measurable, f ∈ BVloc(X) if and only if
G f is of locally finite perimeter, see the first part of the main Theorem 3. In this note, we
are concerned with studying the relation of the measure |DχG f | on X × R with the measure
|D f | on X. We will denote with π1 : X × R → X the projection map onto X, and with
π2 : X × R → R the projection map onto R.

In the Euclidean setting, this study can be dated back at least to [40]. There, the author was
concerned with the study of Cartesian surfaces, i.e., subsets of R

n × R that can be written
as {(x, t) ∈ R

n × R : x ∈ �, t = f (x)}, where � ⊆ R
n is open, and f ∈ BVloc(�).

A systematic study of Cartesian surfaces and subgraphs of functions of locally bounded
variation in Euclidean spaces can be found in [31, Section 4.1.5]. In fact, our results are the
generalizationof the results contained in [31, Section4.1.5] to the setting offinite-dimensional
RCD spaces.

The results of [31, Section 4.1.5] have been used in the short proof of the rank-one theorem
in the Euclidean setting of [39]. Moreover, outside the Euclidean setting, they have also been
recently generalized in the setting of arbitrary Carnot groups in [28, Theorem 1.3, Theorem
4.2, and Theorem 4.3]. The latter generalization has been exploited to prove the rank-one
theorem for a subclass of Carnot groups, see [28, Theorem 1.1 and Theorem 1.2].

We aim now at stating the main results of this note. We recall some terminology and
notation. We refer the reader to Definition 11 and Definition 12 for more details. Given
f ∈ BVloc(X), we can define in a natural way (see Definition 11) the approximate lower
and upper limits f ∧(x), f ∨(x) of f (x) at x ∈ X, and the precise representative f̄ (x) :=
( f ∧(x) + f ∨(x))/2. The set of points x ∈ X where f ∧(x) < f ∨(x) is called the jump set
J f . In the setting of finite-dimensional RCD spaces it always holdsm(J f ) = 0.

We can write |D f | as |D f |a + |D f |s , where |D f |a � m and |D f |s ⊥ m. We also have
|D f |s = |D f | j + |D f |c, where the jump part is given by |D f | j := |D f | J f , while the
Cantor part is given by |D f |c := |D f |s (X \ J f ), so that we can write |D f |c = |D f | C f

with m(C f ) = 0. Finally, we call g f the Borel function such that |D f |a = g fm.
We stress that in the low regularity setting of finite-dimensional RCD spaces we cannot

give a pointwise meaning to D f for a function f of locally bounded variation. This also
prevents us from proving the verbatim analogues of the results in [31, Section 4.1.5] in our
setting. Nevertheless, with theCalculus developed in theRCD setting, one can give ameaning
to the polar vector ν f , that in the classical setting is D f /|D f | ( [15], after [18]). This ν f

belongs to the capacitary module L0
Cap(TX) (see [26]), and it is defined through a divergence

theorem with sufficiently smooth test vector fields, see Theorem 25. When f = χ E for a
locally finite perimeter set E , we denote νχ E =: νE .

In the non-smooth setting of finite-dimensional RCD spaces, there are no canonical local
coordinates. Anyway, in a lot of situations, one can use the so-called splitting maps, see
Definition 28. Roughly speaking, a splitting map is a vector-valued harmonic map whose
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Jacobian matrix is close to be the identity in an integral sense and whose Hessian matrix
is close to be null in an integral sense. Splitting maps have been used to detect geometric
properties of spaces with Ricci lower bounds since the seminal works [22, 23]. They have
also been used in the recent [16–19, 24]. We also used the splitting maps in the proof of the
rank-one theorem in finite-dimensional RCD spaces [13]. The next definition is borrowed
and inspired from the studies in [13, 17] and gives a good notion of local chart. Notice that
as a consequence of Proposition 6 every function f of locally bounded variation has total
variation that is supported on the countable union of domains of good splitting maps.

Definition 1 (Good splitting map) Let (X,d,m) be an RCD(K , N ) space of essential dimen-
sion n. Take η ∈ (0, n−1). Fix y ∈ X and ry > 0. We say that an n-tuple of harmonic
CK ,N -Lipschitz maps u = (u1, . . . , un) : B2ry (y) → R

n is a good η-splitting map on
D ⊆ Bry (y) if for every x ∈ D and s ∈ (0, ry), u is an η-splitting map on Bs(x). We simply
write good splitting map if the value of η ∈ (0, n−1) is not important.

For the notion of essential dimension, we refer the reader to Sect. 2.2. Given a good splitting
map, following [13, Definition 3.6], we give the following definition. We are essentially
reading the normals ν f and νG f in charts.

Definition 2 Let (X,d,m) be an RCD(K , N ) space of essential dimension n, and let u be a
good splitting map on D ⊆ Bry (y). Let f ∈ BVloc(X). Then we define

(1) the |D f |-measurable map νuf defined at |D f |-a.e. x ∈ B2ry (y) as

νuf (x) := ((ν f · ∇u1)(x), . . . , (ν f · ∇un)(x)),

(2) the |DχG f |-measurable map νuG f
defined at |DχG f |-a.e. p := (x, t) ∈ B2ry (y) × R as

νuG f
(p) := ((νG f · ∇u1)(p), . . . , (νG f · ∇un)(p), (νG f · ∇π2)(p)).

We are now ready to state the main theorems of this note. In the first result, we explicitly
compute π1∗ |DχG f | in X in terms of |D f |. Theorem 3 is the generalization in the setting of
finite-dimensional RCD spaces of [31, Theorem 1 in Section 4.1.5].

Theorem 3 Let K ∈ R and N < ∞. Let (X,d,m) be an RCD(K , N ) space, and let f ∈
L0(m). Then the following are equivalent:

• f ∈ BVloc(X),
• G f has finite perimeter on cylinders.

If this is the case, then

π1∗ |DχG f | =
√
g2f + 1m + |D f | (C f ∪ J f ).

In Theorem 4, we explicitly compute the normal to the boundary of the subgraph νuG f
in

coordinates, with respect to the polar vector νuf in coordinates, and the density g f of |D f |a
with respect tom. For the sake of reference, the analogous result in the non-Euclidean setting
of Carnot groups is obtained in [28, Theorem 4.3].

Theorem 4 Let K ∈ R and N < ∞. Let (X,d,m) be an RCD(K , N ) space, and let f ∈
BVloc(X). Let u be a good splitting map on D ⊆ Bry (y), where y ∈ X and ry > 0.

Then, for |DχG f |-a.e. (x, t) ∈ D × R, it holds that

νuG f
(x, t) =

⎧
⎨
⎩

(√
1

1+g2f
g f ν

u
f ,−

√
1

1+g2f

)
(x) if x ∈ D \ (J f ∪ C f ),

(νuf , 0)(x) if x ∈ D ∩ (J f ∪ C f ).
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In Theorem 5, we extend [31, Theorem 2 and Theorem 3 in Section 4.1.5] in the setting of
finite-dimensional RCD spaces.

Theorem 5 Let K ∈ R and N < ∞. Let (X,d,m) be an RCD(K , N ) space of essential
dimension n, and let f ∈ BVloc(X). Let u be a good splitting map on D ⊆ Bry (y), where
y ∈ X and ry > 0. Let also ϕ : D × R → R be a bounded Borel function. Then

(i) for every i = 1, . . . , n,
∫

(D\J f )×R

ϕ(x, t)
(
νuG f

(x, t)
)
id|DχG f |(x, t)

=
∫

D\J f
ϕ(x, f̄ (x))

(
νuf (x)

)
id|D f |(x),

(ii) it holds
∫

(D\J f )×R

ϕ(x, t)
(
νuG f

(x, t)
)
n+1d|DχG f |(x, t)

= −
∫

D\J f
ϕ(x, f̄ (x))dm(x),

(iii) for every i = 1, . . . , n,
∫

(D∩J f )×R

ϕ(x, t)
(
νuG f

(x, t)
)
id|DχG f |(x, t)

=
∫

D∩J f

∫ f ∨(x)

f ∧(x)
ϕ(x, t) dt

(
νuf (x)

)
i�n(m, x)dHn−1(x),

where we set �n(m, x) := limr→0 m(Br (x))/rn,
(iv) it holds

∫

(D∩J f )×R

ϕ(x, t)
(
νuG f

(x, t)
)
n+1d|DχG f |(x, t) = 0.

In Theorem 4 and Theorem 5, we compare νuG f
and νuf only for a single good splitting map u,

on its domain D. This, however, still allows us to have a complete picture (i.e., the comparison
for |DχG f |-a.e. (x, t)), thanks to the following result, taken from [13, Lemma 2.28], which,
in turn, is inspired by the techniques introduced in [18]. The last part of the forthcoming
statement is not explicitly written in [13], but it is a direct consequence of (12).

Proposition 6 Let K ∈ R and N < ∞. Let (X,d,m) be an RCD(K , N ) space of essential
dimension n. Let also η ∈ (0, n−1). Then there exists a family uη = {uη,k}k∈N, where, for
every k ∈ N, uη,k is a good η-splitting map on Dk ⊆ Brk (xk), for some xk ∈ X and rk > 0,
and moreover,

|D f |
(
X \

⋃
k

Dk

)
= 0, for every f ∈ BVloc(X).

In particular, it holds that

|DχG f |
((

X \
⋃
k

Dk

)
× R

)
= 0, for every f ∈ BVloc(X).
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We spend a few lines about the strategy of the proof of Theorem 4, as once it is obtained,
Theorem 5 follows quite easily. The classical strategy of [31] seems not suitable for our
context, as we do not have a canonical way to decompose the distributional derivatives D f
and DχG f along different directions. This also causes the need to define the ‘components’(
νuf

)
i

(
νuG f

)
i exploiting maps that look like charts. The drawback is that these charts are

defined only on Borel subsets; hence, it is not clear the distributional nature of the objects(
νuf

)
i and

(
νuG f

)
i . Nevertheless, in our main result we compare

(
νuf

)
i with

(
νuG f

)
i . In order

to do so, a new strategy has to be exploited, and we therefore employ a blow-up procedure,
which is more compatible with the use of geometric measure theory results and does not need
the distributional meaning of such objects. This strategy is in Sect. 3, after Sect. 2 in which
some preliminary facts are discussed.

2 Preliminaries

Given n ∈ N and non-empty sets X1, . . . ,Xn , for any i = 1, . . . , n we will denote by π i the
projection of the Cartesian product X1 × · · · × Xn onto its i th factor:

π i : X1 × · · · × Xn → Xi , (x1, . . . , xn) �→ xi .

2.1 Metric measure spaces

We say that a metric measure space (X,d,m) is uniformly locally doubling if for every radius
R > 0 there exists a constant CD > 0 such that

m(B2r (x)) ≤ CDm(Br (x)), for every x ∈ X and r ∈ (0, R).

Moreover, we say that (X,d,m) supports a weak local (1, 1)-Poincaré inequality if there
exists a constant λ ≥ 1 for which the following property holds: Given any R > 0, there
exists a constant CP > 0 such that for any function f ∈ LIPloc(X) it holds that

−
∫

Br (x)

∣∣∣∣ f − −
∫

Br (x)
f dm

∣∣∣∣ dm ≤ CPr−
∫

Bλr (x)
lip f dm, for every x ∈ X and r ∈ (0, R),

where, for every x ∈ X,

lip f (x) := lim
y→x

| f (x) − f (y)|
d(x, y)

,

which has to be understood as 0 if x is isolated.
Uniformly locally doubling spaces supporting a weak local (1, 1)-Poincaré inequality are

usually called PI spaces.

2.1.1 BV calculus

We recall the notions of function of bounded variation and of finite perimeter set in the metric
measure setting following [41].

Definition 7 (Function of bounded variation) Let (X,d,m) be a metric measure space. Let
f ∈ L1

loc(X,m) be given. Then we define

|D f |(�) := inf

{
lim
i→∞

∫

�

lip fi dm

∣∣∣∣ ( fi )i∈N ⊆ LIPloc(�), fi → f in L1
loc(�,m)

}
,
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for any open set � ⊆ X. We declare that a function f ∈ L1
loc(X,m) is of local bounded

variation, briefly f ∈ BVloc(X), if |D f |(�) < +∞ for every � ⊆ X open bounded. In
this case, it is well known that |D f | extends to a locally finite measure on X. Moreover,
a function f ∈ L1(m) is said to belong to the space of functions of bounded variation
BV(X) = BV(X,d,m) if |D f |(X) < +∞.

Definition 8 (Set of finite perimeter) Let (X,d,m) be a metric measure space. Let E ⊆ X be
a Borel set and � ⊆ X an open set. Then we define the perimeter of E in � as

P(E,�) := inf

{
lim
i→∞

∫

�

lip fi dm

∣∣∣∣ ( fi )i∈N ⊆ LIPloc(�), ui → χ E in L1
loc(�,m)

}
;

in other words, P(E,�) := |Dχ E |(�). We say that E has locally finite perimeter if
P(E,�) < +∞ for every � ⊆ X open bounded. Moreover, we say that E has finite
perimeter if P(E,X) < +∞.

The following coarea formula is taken from [41].

Theorem 9 (Coarea) Let (X,d,m) be a metric measure space. Let f ∈ L1
loc(m) be given.

Then for any open set � ⊆ X, it holds that R � t �→ P({ f > t},�) ∈ [0,+∞] is Borel
measurable and

|D f |(�) =
∫

R

P({ f > t},�) dt . (1)

In particular, if f ∈ L1(m), then f ∈ BV(X) if and only if { f > t} is a set of finite perimeter
for a.e. t ∈ R and the function t �→ P({ f > t},X) belongs to L1(R). In this case, we have
that R � t �→ P({ f > t}, E) is Borel and |D f |(E) = ∫

R
P({ f > t}, E) dt for every Borel

set E ⊆ X.

The Borel measurability of R � t �→ P({ f > t},�) ∈ [0,+∞] follows from the
observation that t �→ χ { f >t} ∈ L1

loc(m) is right-continuous and L1
loc(m) � g �→ |Dg|(�) is

lower semicontinuous.
We remark that the weak local (1, 1)-Poincaré inequality of PI spaces holds for BVloc(X)

functions f in the following form: For every bounded open set � ⊆ X and every R > 0,

−
∫

Br (x)

∣∣∣∣ f − −
∫

Br (x)
f dm

∣∣∣∣ dm

≤ CP (N , K ,�, R)r
|D f |(Bλr (x))

m(Bλr (x))
, for every x ∈ � and r ∈ (0, R).

In the particular case of sets of (locally) finite perimeter, the (1, 1)-Poincaré inequality reads
as a local isoperimetric inequality, as can be shown with classical computations:

min
{
m(Br (x) ∩ E),m(Br (x) \ E)

}

≤ 2CPr |Dχ E |(Bλr (x)), for every x ∈ � and r ∈ (0, R). (2)

The following proposition summarizes results about sets of finite perimeter that are now
well known in the context of PI spaces and are proved in [2, 30], see also [1].

Proposition 10 Let (X,d,m) be a PI space and let E ⊆ X be a set of locally finite perimeter.
Then, for |Dχ E |-a.e. x ∈ X the following hold:
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(i) E is asymptotically minimal at x, i.e., there exist rx > 0 and a function ωx : (0, rx ) →
(0,∞) with limr↘0 ωx (r) = 0 satisfying

|Dχ E |(Br (x)) ≤ (1 + ωx (r))|Dχ E ′ |(Br (x)), if r ∈ (0, rx ) and E ′�E � Br (x),

(ii) |Dχ E | is asymptotically doubling at x, i.e.,

lim sup
r↘0

|Dχ E |(B2r (x))

|Dχ E |(Br (x)) < ∞,

(iii) we have the following estimates:

0 < lim inf
r↘0

r |Dχ E |(Br (x))
m(Br (x))

≤ lim sup
r↘0

r |Dχ E |(Br (x))
m(Br (x))

< ∞,

(iv) the following holds:

lim inf
r↘0

min

{
m(Br (x) ∩ E)

m(Br (x))
,
m(Br (x) \ E)

m(Br (x))

}
> 0.

We recall the following classical definition.

Definition 11 (Precise representative) Let (X,d,m) be a metric measure space, and let
f : X → R be a Borel function. Then we set the approximate lower and upper limits to
be

f ∧(x) := ap limy→x f (y) := sup

{
t ∈ R̄ : lim

r↘0

m(Br (x) ∩ { f < t})
m(Br (x))

= 0

}
,

f ∨(x) := ap limy→x f (y) := inf

{
t ∈ R̄ : lim

r↘0

m(Br (x) ∩ { f > t})
m(Br (x))

= 0

}
,

for every x ∈ X. Here we are assuming by convention that

inf ∅ = +∞ and sup∅ = −∞.

Moreover, we define the precise representative f̄ : X → R̄ of f as

f̄ (x) := f ∧(x) + f ∨(x)

2
, for every x ∈ X,

where we declare that +∞ − ∞ = 0.

We define the jump set J f ⊆ X of the function f as the Borel set

J f := {
x ∈ X : f ∧(x) < f ∨(x)

}
.

It is known that if (X,d,m) is a PI space and f ∈ BV(X), thenm(J f ) = 0, see [9, Proposition
5.2]. Moreover, as proved in [37, Lemma 3.2], it holds that

|D f |(X \ X f ) = 0, where X f := {
x ∈ X

∣∣ − ∞ < f ∧(x) ≤ f ∨(x) < +∞}
,

thus in particular −∞ < f̄ (x) < +∞ holds for |D f |-a.e. x ∈ X.

Definition 12 (Decomposition of the total variation measure) Let (X,d,m) be a PI space and
let f ∈ BVloc(X). We write |D f | as |D f |a + |D f |s , where |D f |a � m and |D f |s ⊥ m. We
can decompose the singular part |D f |s as |D f | j + |D f |c, where the jump part is given by
|D f | j := |D f | J f , while the Cantor part is given by |D f |c := |D f |s (X \ J f ), so that
we can write |D f |c = |D f | C f with m(C f ) = 0. Finally, we write |D f |a = g fm.
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We recall the definition of subgraph and [13, Lemma 2.11].

Definition 13 Let (X,d,m) be a metric measure space and let f : X → R be Borel. Then
we define the subgraph of f as the Borel set G f ⊆ X × R given by

G f := {
(x, t) ∈ X × R : t < f (x)

}
.

Before stating the next result, we remind that the essential boundary ∂∗E of E ⊆ X Borel
is

∂∗E :=
{
x ∈ X

∣∣∣∣ lim sup
r↘0

m(Br (x) ∩ E)

m(Br (x))
> 0, lim sup

r↘0

m(Br (x) \ E)

m(Br (x))
> 0

}
.

Lemma 14 Let (X,d,m) be a uniformly locally doubling metric measure space and f ∈
BVloc(X). Then it holds that

(x, t) ∈ ∂∗G f ⇒ t ∈ [ f ∧(x), f ∨(x)],
t ∈ ( f ∧(x), f ∨(x)) ⇒ (x, t) ∈ ∂∗G f .

In particular, if x ∈ X f \ J f , then it holds that ∂∗G f ∩ ({x} × R) ⊆ {(x, f̄ (x))}.

2.2 RCD spaces

We assume the reader is familiar with the theory of RCD(K , N ) spaces. Recall that an
RCD(K , N ) space is an infinitesimally Hilbertian metric measure space verifying the curva-
ture dimension condition CD(K , N ), in the sense of Lott–Villani–Sturm, for some K ∈ R

and N ∈ [1,∞]. In this paper, we only consider finite-dimensional RCD(K , N ) spaces;
namely, we assume N < ∞. Finite-dimensional RCD spaces are PI. If not otherwise stated,
through this note we will work in the setting of finite-dimensional RCD spaces.

2.2.1 Pointed measured Gromov–Hausdorff convergence and tangents

Let us recall some classical facts about pointed measured Gromov–Hausdorff convergence
and tangents in the setting of RCD(K , N ) spaces. The exposition here is equivalent to the
classical one in more general settings (see, e.g., [33]), due to the result in [8, Theorem 4.1].
See also the introduction given in [13, Section 2.1.2].

Definition 15 (PointedmeasuredGromov–Hausdorff convergence)Let (X,d,m, p), (Xi ,di ,
mi , pi ), for i ∈ N, be RCD(K , N ) spaces with K ∈ R and N < ∞. Then we say that
(Xi ,di ,mi , pi ) → (X,d,m, p) in thepointedmeasuredGromov–Hausdorff sense (briefly, in
the pmGHsense) provided there exist a propermetric space (Z,dZ) and isometric embeddings
ι : X → Z and ιi : Xi → Z for i ∈ N such that ιi (pi ) → ι(p) and (ιi )∗mi⇀ι∗m in duality
with Cbs(Z), meaning that

∫
f ◦ ιi dmi → ∫

f ◦ ι dm for every f ∈ Cbs(Z). The space Z is
called a realization of the pmGH convergence (Xi ,di ,mi , pi ) → (X,d,m, p).

For brevity, we will identify (ιi )∗mi with mi itself. It is possible to construct a distance
dpmGH on the collection (of equivalence classes) of RCD(K , N ) spaces whose converging
sequences are exactly those converging in the pointed measured Gromov–Hausdorff sense.
Moreover, the class of RCD(K , N )metric measure spaces is compact in the pmGH topology.
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Definition 16 (pmGH tangent) Let (X,d,m) be an RCD(K , N ) metric measure space. For
every r > 0 and every x ∈ X, we define

mr
x := m(Br (x))

−1m.

Then, for every p ∈ X,

Tanp(X,d,m) :=
{
(Y,dY,mY, q)

∣∣∣∣ ∃ ri ↘ 0 : (X, r−1
i d,mri

p , p)
pmGH−→ (Y,dY,mY, q)

}
.

It is known that Tanp(X,d,m) is (well defined and) non-empty.

2.2.2 Structure results for RCD spaces

Let us recall the definition of the regular set and some well-known structure results in the
setting of RCD spaces.

Definition 17 (Regular set) Let n ∈ N be given. Let de stand for the Euclidean distance
de(x, y) := |x − y| on R

n , while Ln is the normalized measure Ln = n+1
ωn

Ln , where ωn is
the volume of the unit ball in R

n . Then the set of n-regular points of an RCD(K , N ) space
(X,d,m) is defined as

Rn = Rn(X) :=
{
x ∈ X

∣∣∣ Tanx (X,d,m) = {
(Rn,de,Ln, 0)

}}
.

A Borel set A ⊆ X is said to be (m, n)-rectifiable for some n ∈ N if there exist Borel
subsets (Ai )i∈N of A such that each Ai is bi-Lipschitz equivalent to a subset of R

n and
m(A \⋃

i Ai ) = 0. As proved in [19, 25, 34, 36, 42], the following structure theorem holds.

Theorem 18 Let (X,d,m) be an RCD(K , N ) space. Then there exists a (unique) number
n ∈ Nwith 1 ≤ n ≤ N, called the essential dimension of (X,d,m), such thatm(X\Rn) = 0.
Moreover, the regular set Rn is (m, n)-rectifiable and it holds thatm � Hn.

More precisely, it is proved in [42] thatRk is (m, k)-rectifiable for every k ∈ N with k ≤ N
and that m(X\ ⋃

k≤N Rk) = 0. The fact that m Rk � Hk holds for every k ≤ N was
shown in [25, 34, 36], independently. Finally, the existence of a number n ≤ N satisfying
m(X \ Rn) = 0 is proved in [19].

Definition 19 Let (X,d,m) be an RCD(K , N ) space having essential dimension n. Then we
define the set R∗

n = R∗
n(X) ⊆ Rn as

R∗
n :=

{
x ∈ Rn

∣∣∣∣ ∃�n(m, x) := lim
r→0

m(Br (x))

ωnrn
∈ (0,+∞)

}
.

Notice that the setR∗
n is Borel, see [13, Remark 2.5]. As shown in [8, Theorem 4.1], it holds

thatm(X \ R∗
n) = 0.

2.2.3 Structure results for sets of finite perimeter in RCD spaces

Let us now recall some structure results for sets of finite perimeter in RCD(K , N ) spaces.
We assume the reader to be familiar with [4, 15, 17, 18].

Definition 20 (Tangents to a set of finite perimeter) Let (X,d,m, p) be a pointedRCD(K , N )

space, E ⊆ X a set of locally finite perimeter. Then we define Tanp(X,d,m, E) as the family
of all quintuplets (Y,dY,mY, q, F) that verify the following two conditions:
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i) (Y,dY,mY, q) ∈ Tanp(X,d,m),
ii) F ⊆ Y is a set of locally finite perimeter with mY(F) > 0 for which the following

property holds: Along a sequence ri ↘ 0 such that (X, r−1
i d,mri

p , p) → (Y,dY,mY, q)

in the pmGH sense, with realization Z, it holds that Ei → F in L1
loc (cf. with [4,

Definition 3.1]), where Ei is intended in the rescaled space (X, r−1
i d). If this is the case,

we write

(X, r−1
i d,mri

p , p, E) → (Y,dY,mY, q, F).

Definition 21 (Reduced boundary) Let (X,d,m) be an RCD(K , N ) space. Let E ⊆ X be a
set of locally finite perimeter. Then we define the reduced boundary FE ⊆ ∂∗E of E as the
set of all those points x ∈ R∗

n satisfying all the four conclusions of Proposition 10 and such
that

Tanx (X,d,m, E) = {
(Rn,de,Ln, 0, {xn > 0})}, (3)

where n ∈ N, n ≤ N stands for the essential dimension of (X,d,m). We recall that the set
of all points x ∈ X that satisfy (3) was denoted by Fn E in [4].

We recall here, for the reader’s convenience, [13, Remark 2.22].

Remark 22 By the proof of [4, Corollary 4.10], by [4, Corollary 3.4], and by the membership
to R∗

n , we see that for any x ∈ FE the following hold.

(i) If ri ↘ 0 is such that

(X, r−1
i d,mri

x , x) → (Rn,de,Ln, 0) (4)

in a realization (Z,dZ), then, up to not relabeled subsequences and a change of coordi-
nates in R

n ,

(X, r−1
i d,mri

x , x, E) → (Rn,de,Ln, 0, {xn > 0}),
in the same realization (Z,dZ). Notice that, given a sequence ri ↘ 0, it is always
possible to find a subsequence satisfying (4).

(ii) If ri ↘ 0 is such that

(X, r−1
i d,mri

x , x, E) → (Rn,de,Ln, 0, {xn > 0})
in a realization (Z,dZ), then |Dχ E | weakly converges to |Dχ {xn>0}| in duality with
Cbs(Z).

(iii) We have

lim
r↘0

m(Br (x))

rn
= ωn�n(m, x) ∈ (0,+∞),

lim
r↘0

|Dχ E |(Br (x))
rn−1 = ωn−1�n(m, x).

(5)

��
We now recall [13, Theorem 3.3], which follows along the techniques of [17] and builds
upon [27].

Theorem 23 Let (X,d,m) be an RCD(K , N ) space having essential dimension n. Then

|D f |(X \ R∗
n) = 0, for every f ∈ BVloc(X).
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The following is [13, Theorem 3.4].

Theorem 24 (Representation formula for the perimeter) Let (X,d,m) be an RCD(K , N )

space having essential dimension n. Let E ⊆ X be a set of locally finite perimeter. Then

|Dχ E | = �n(m, ·)Hn−1 FE . (6)

In particular, it holds that �n−1(|Dχ E |, x) = �n(m, x) for Hn−1-a.e. x ∈ FE.

2.2.4 Good coordinates and good splitting maps

In this section, we recall the notion of good coordinates studied in [17] and good splitting
maps introduced in [13]. First, we recall the following, which comes from [15, Theorem
4.13], see also [18, Theorem 2.4]. We assume the reader to be familiar with the Sobolev
calculus on RCD spaces and with the notion of capacitary tangent module L0

Cap(T X). We
refer to [13, Section 2.2.1] and references therein.

Theorem 25 Let (X,d,m) be an RCD(K , N ) space and let f ∈ BV(X). Then there exists a
unique, up to |D f |-a.e. equality, element ν f ∈ L0

Cap(TX) such that |ν f | = 1 |D f |-a.e. and
∫

X
f div(v) dm = −

∫

X
π|D f |(v) · ν f d|D f |, for every v ∈ TestV(X).

In particular, if E is a set of locally finite perimeter, we naturally have a unique, up to
|Dχ E |-a.e. equality, element νE ∈ L0

Cap(TX), where we understand νE = νχ E by locality.

Definition 26 (Good coordinates) Let (X,d,m) be an RCD(K , N ) space of essential dimen-
sion n. Let E ⊆ X be a set of locally finite perimeter and let y ∈ FE be given. Then we say
that an n-tuple u = (u1, . . . , un) of harmonic functions ui : Bry (y) → R is a system of good
coordinates for E at y provided the following properties are satisfied:

(i) For any i, j = 1, . . . , n, it holds that

lim
r↘0

−
∫

Br (y)
|∇ui · ∇u j − δi j | dm = lim

r↘0
−
∫

Br (y)
|∇ui · ∇u j − δi j | d|Dχ E | = 0. (7)

(ii) For any i = 1, . . . , n, it holds that

∃ νi (y) := lim
r↘0

−
∫

Br (y)
νE · ∇ui d|Dχ E |, lim

r↘0
−
∫

Br (y)
|νi (y) − νE · ∇ui | d|Dχ E | = 0.

(8)

(iii) The resulting vector ν(y) := (ν1(y), . . . , νn(y)) ∈ R
n satisfies |ν(y)| = 1.

It follows from [17, Proposition 3.6] that good coordinates exist at |Dχ E |-a.e. y ∈ FE .

Remark 27 Let (X,d,m) be an RCD(K , N ) space of essential dimension n, let x ∈ X and
let u = (u1, . . . , un) be an n-tuple of harmonic functions satisfying

lim
r↘0

−
∫

Br (x)
|∇ui · ∇u j − δi j | dm = 0.

Given a sequence of radii ri ↘ 0 such that

(X, r−1
i d,mri

x , x) → (Rn,de,Ln, 0)
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and fixed a realization of such convergence, it follows from the results recalled in [18, Section
1.2.3] (see the references therein, see also [18, (1.22)], consequence of the improved Bochner
inequality in [35]) that, up to extracting a not relabeled subsequence, the functions in

{r−1
i (u j − u j (x))}i for j = 1, . . . , n

converge locally uniformly to orthogonal coordinate functions (y j ) of R
n . If in addition

E ⊆ X is a set of locally finite perimeter, x ∈ FE and u is a system of good coordinates for
E at x , then the blow-up of E at x coincides with H = {y ∈ R

n | y · ν(x) ≥ 0}, where we
are denoting by

ν(x) :=
(
lim
r↘0

−
∫

Br (x)
νE · ∇u j d|Dχ E |

)

j=1,...,n
∈ R

n

the vector given by (8). See [17, Proposition 4.8] for a proof of this last claim. ��
Let us now recall the notionof δ-splittingmap.We follow thepresentation in [18,Definition

3.4], see also [13, Section 2.2.3].

Definition 28 (Splitting map) Let (X,d,m) be an RCD(K , N ) space. Let y ∈ X, k ∈ N, and
ry, δ > 0 be given. Then a map u = (u1, . . . , uk) : Bry (y) → R

k is a δ-splitting map if the
following three properties hold:

(i) ui is harmonic, meaning that, for every i = 1, . . . , k, ui ∈ D(�, Bry (y)) and�ui = 0;
and moreover ui is CK ,N -Lipschitz for every i = 1, . . . , k,

(ii) r2y−
∫
Bry (y) |Hess(ui )|2 dm ≤ δ for every i = 1, . . . , k,

(iii) −
∫
Bry (y) |∇ui · ∇u j − δi j | dm ≤ δ for every i, j = 1, . . . , k.

For what follows, recall the definition of good splitting map, compare with [13, Definition
2.29] and Definition 1.

Remark 29 Let u be a good splitting map on D ⊆ Bry (y). Due to [17, Remark 2.10], for
every x ∈ Bry (y) there exists a Borel matrix M(x) = {M(x)i, j }i, j=1,...,n ∈ R

n×n satisfying

lim
s↘0

−
∫

Bs (x)
|∇ui · ∇u j − M(x)i, j | dm = 0 for every i, j = 1, . . . , n. (9)

Then, from item iii) of Definition 28 and since η < n−1, we have that for every x ∈ D

|M(x)i, j − δi j | ≤ η < n−1. (10)

Hence, by applying the Gram–Schmidt orthogonalization algorithm to {∇ui (x)}i=1,...,n for
every x ∈ D, we find a matrix-valued function A ∈ L∞(D; R

n×n) such that, for every
x ∈ D,

A(x)M(x)A(x)T = Id. (11)

The membership A ∈ L∞(D; R
n×n) is due to (10). ��

Let (X,d,m) be anRCD(K , N ) space of essential dimension n, and let f ∈ BV(X). Recall
that [11, Theorem 5.1] and its proof (compare with [9, Proposition 4.2] and [13, Proposition
2.13]) yield that G f has locally finite perimeter and

|D f | ≤ π1∗ |DχG f | ≤ |D f | + m. (12)

123



Annals of Global Analysis and Geometry            (2024) 65:14 Page 13 of 26    14 

Also, by [13, Theorem 3.4], it holds that

Hn ∂∗G f � |DχG f |, (13)

so that, taking into account Lemma 14 and Theorem 18, we see that

m � Hn Rn � π1∗ |DχG f |. (14)

Before going on, we stress a couple of remarks.

Remark 30 Taking into account Definition 2, it holds that νuG f
is well defined at (x, f̄ (x)) for

|D f |-a.e. x ∈ D\J f andm-a.e. x ∈ D\J f , as a consequence of (12) and (14), respectively,
together with Lemma 14. ��
Remark 31 We isolate here an argument which will frequently appear during the paper, and
that is essentially contained in [17, Proposition 3.6]. Let (X,d,m) be an RCD(K , N ) space
of essential dimension n, and let E ⊆ X be a set of locally finite perimeter.

Let u : B2ry (y) → R
n be a good splitting map on D ⊆ Bry (y). We claim that, for |Dχ E |-

almost every point x ∈ FE ∩ D, the function v := A(x)u : B2ry (y) → R
n is a system of

good coordinates for E at x , where the matrix-valued function A is defined as in (11). In
addition, if νuE : B2ry (y) → R

n is the |Dχ E |-measurable map

νuE (x) := ((νE · ∇u1)(x), . . . , (νE · ∇un)(x)),

then the normal νv
E associated with the system of good coordinates v for E at x (see item ii)

of Definition 26) is

νv
E = A(x)νuE .

Indeed, let us fix x ∈ FE ∩ D that is, for every i, j = 1, . . . , n, a Lebesgue point of
all the functions ∇ui · ∇u j , νE · A∇ui , νE · ∇ui , and A, with respect to the asymptotically
doubling measure |Dχ E |. Let us denote vi := A(x)ui . We aim at showing that (vi )i=1,...,n :
B2ry (y) → R

n are good coordinates for E at x .
First, vi are harmonic. Second, by the very definition of A and M , see (11) and (9), and

by the fact that x is a Lebesgue point of ∇ui · ∇u j with respect to |Dχ E |, we have the two
equalities in (7) at x with vi . Third, by denoting ai (x) the Lebesgue value of νE · ∇(Au)i

at x with respect to |Dχ E |, and since by definition ∇(Aui ) · ∇(Au j ) = δi j everywhere on
D, we conclude that νE = ∑n

i=1 ai∇(Aui ) holds |Dχ E |-almost everywhere on D. Now,
since |νE | = 1 in L2

E (TX), and since ∇(Aui ) are pointwise orthonormal on D, we conclude
that the vector (ai )i=1,...,n has norm 1. Hence, by finally taking into account that x is also a
Lebesgue point of νE · ∇ui and A with respect to |Dχ E |, (8) and item ii) in Definition 26
hold. How the normal transforms is clear from (8). Thus, the claim is proved. ��

3 Main results

In this section, we are going to prove the main results of this note, i.e., Theorem 4 and
Theorem 5. First, we start with some auxiliary results.

3.1 Auxiliary results

In this section, we fix an RCD(K , N ) space of essential dimension n (X,d,m) and f ∈
BV(X). We fix also u, a good splitting map on D ⊆ Brx (x) for some x ∈ X and rx > 0.
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The following proposition can be proved exactly as [13, Proposition 3.7]. Recall the
definition of the reduced boundary in use in this note, see Definition 21.

Proposition 32 In the above setting, there exists a Borel set D f ⊆ D satisfying the following
properties:

(i) |D f |c(D\D f ) = 0 and m(D\D f ) = 0.
(ii) |DχG f |((D \ (D f ∪ J f )) × R) = 0.
(iii) D f ⊆ R∗

n(X)\J f and FG f ∩ (D f × R) = (idX, f̄ )(D f ).
(iv) Given any x ∈ D f , for A(x) ∈ R

n×n as in (11), we have that (A(x)u, π2) is a system
of good coordinates for G f at (x, f̄ (x)).

(v) If v = (v1, . . . , vn+1) : Brx (x, f̄ (x)) → R
n+1 is a system of good coordinates forG f at

(x, f̄ (x)) for some x ∈ D f and the coordinates (xi ) on the (Euclidean) tangent space
to X×R at (x, f̄ (x)) are chosen so that the maps (vi ) converge to (xi ) : R

n+1 → R
n+1

(when properly rescaled, see Remark 27), then the blow-up of G f at (x, f̄ (x)) can be
written as

H := {
y ∈ R

n+1
∣∣ y · ν(x, f̄ (x)) ≥ 0

}
,

where the unit vector ν(x, f̄ (x)) := (
ν1(x, f̄ (x)), . . . , νn+1(x, f̄ (x))

)
is given by (8)

for v.

Proof The proof follows along the lines of [13, Proposition 3.7]. We need some auxiliary
sets:

• WedefineD as the set of all those points (x, t) ∈ (D×R)∩FG f of density 1 with respect
to |DχG f |. The Lebesgue differentiation theorem ensures that |DχG f |((D×R)\D) = 0.

• We defineA as the set of all (x, t) ∈ X× R where item v) of the statement holds. Notice
that |DχG f |((X × R) \ A) = 0 thanks to the final part of Remark 27.

• We define T as the set of all those (x, t) ∈ (D × R) ∩ FG f such that (A(x)u, π2) is a
system of good coordinates for G f at (x, t). Notice that |DχG f |((X × R) \ T ) = 0 by
Remark 31.

Let us now define the set D f ⊆ D as

D f := D ∩ X f ∩ (R∗
n(X) \ J f ) ∩ π1(FG f ∩ D ∩ A ∩ T ).

By exploiting (12) and (14), one can then prove that D f fulfills all the required properties. ��
Even though by definition D f ∩ J f = ∅, we sometimes consider D f \ J f to remind this

fact. In our proofs, we will implicitly take as a representative of νuG f
(see Definition 2) its

Lebesgue representative with respect to the asymptotically doubling measure |DχG f |. This
will not make any difference in the end, due to the nature of the statements, but will allow us
to exploit item v) of Proposition 32.

Lemma 33 The set C f (see Definition 12) such that |D f |c = |D f | C f and m(C f ) = 0
can be taken as follows:

C f :=
{
x ∈ D f \ J f : (

νuG f
(x, f̄ (x))

)
n+1 = 0

}
. (15)

Proof In this proof, we let C f be the set defined as in the right-hand side of (15). Let us first
prove m(C f ) = 0. By Theorem 18, we only have to show that (Hn Rn)(C f ) = 0. Then,
by [12, Theorem 2.4.3] it is enough to show that

lim inf
r↘0

|D f |(Br (x))
rn

= +∞
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for Hn-a.e. x ∈ C f . Therefore, by (12), and by taking into account that D f ⊆ R∗
n , it is

enough to show that

lim inf
r↘0

|DχG f |(Br (x) × R)

rn
= +∞ (16)

forHn-a.e. x ∈ C f . The conclusion then follows from a blow-up argument. Now we follow
the first part of the proof of [13, Theorem 3.8], and we sketch the argument. Take x ∈ C f ,
let p := (x, f̄ (x)), and take a sequence {ri }i ⊆ (0,∞), ri ↘ 0. We use repeatedly the
membership p ∈ FG f and the implied properties as in Remark 22. We have that, up to
subsequences,

(X, r−1
i d,mri

x , x) → (Rn,de,Ln, 0), in the pmGH topology.

Let (Z,dZ) be a realization of such convergence. Then (Z × R,dZ × de) is a realization of
(
X × R, r−1

i (d × de), (m ⊗ L1)rip , p,G f
) → (Rn+1,de,Ln+1, 0, H), (17)

where H ⊆ R
n+1 is a half-space, and where we took a non-relabeled subsequence. We

also know, as p ∈ FG f , that the rescaled perimeters |DχG f | weakly converge, up to some
dimensional constant, toHn ∂H in duality with Cbs(Z×R). Moreover, by the definition of
C f together with the item v) of Proposition 32, and the fact that the last coordinates of νuG f

and νv
G f

are equal— where v = (A(x)u, π2)—we have that H can be written as H ′ × R,

for some H ′ ⊆ R
n half-space. Then the claim follows from weak convergence of measures,

taking into account also item iii) of Remark 22.
We give the details of the last conclusion, i.e., how the weak convergence of measures

yields (16). Denote by |DiχG f | the perimeter measure associated with G f in the rescaled
space as in (17). By weak convergence of measures (i.e., item ii) of Remark 22)), we have
that |DiχG f | weakly converges to |DχH |. We can compute

|DχG f |(Bri (x) × R)

ri n
= (m ⊗ L1)(Bri (p))

rn+1
i

|DiχG f |(B1(x) × R),

so that, by weak convergence,

lim inf
i

|DχG f |(Bri (x) × R)

ri n
≥ ωn+1�n(m, x)|DχH |(BR

n

1 (0) × R) = +∞,

where the last equality follows from H = H ′ × R. Then, being the sequence {ri }i arbitrary,
(16) follows.

Finally, as a direct consequence of [13, Theorem 3.8], and item i) of Proposition 32, we
have that |D f |c is concentrated on C f , so that |D f |c = |D f | C f . ��

Lemma 34 It holds that

(
νuG f

(x, f̄ (x))
)
1,...,n =

√
1 −

(
νuG f

(x, f̄ (x))
)2
n+1

νuf (x), for |D f |-a.e. x ∈ D \ J f

and
(
νuG f

(x, f̄ (x))
)
n+1 ≤ 0, for |D f |-a.e. x ∈ D \ J f .
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Proof The proof follows the lines of the proof of [13, Lemma 3.9], but the conclusion is
slightly different. We sketch here the argument.

For a.e. t ∈ R, we have that Et := { f > t} is a set of finite perimeter (by Theorem 9) and
that νuf (x) = νuEt

(x) for Hn−1-a.e. x ∈ D ∩ FEt (by (6) and [15, Lemma 4.27]). Recalling

also Proposition 32, proving the statement amounts to showing forHn−1-a.e. x ∈ D f ∩FEt

that

(
νuG f

(x, f̄ (x))
)
1,...,n =

√
1 −

(
νuG f

(x, f̄ (x))
)2
n+1

νuEt
(x),

(
νuG f

(x, f̄ (x))
)
n+1 ≤ 0.

(18)

In view of Remark 31 and Proposition 32 iv), for Hn−1-a.e. x ∈ D f ∩ FEt the following
hold:

• A(x)u is a system of good coordinates for Et at x . Moreover, the unit vector ν = ν(x) ∈
R
n associated with A(x)u and Et as in (8) satisfies ν = A(x)νuEt

(x).

• (A(x)u, π2) is a system of good coordinates for G f at p := (x, f̄ (x)). Moreover, the
unit vector μ = μ(p) ∈ R

n+1 associated with (A(x)u, π2) and G f as in (8) satisfies

μ =
(
A(x)

(
νuG f

(p)
)
1,...,n,

(
νuG f

(p)
)
n+1

)
. (19)

Now choose coordinates (yi ) on R
n such that the maps (A(x)ui ) converge to (yi ) (when

properly rescaled, see Remark 27). We then deduce from the last part of Remark 27 and
from Proposition 32 v) that the blow-up of Et at x and of G f at (x, f̄ (x)) can be written
as H ′ := {y ∈ R

n | y · ν ≥ 0} and H := {(y, s) ∈ R
n × R | (y, s) · μ ≥ 0}, respectively.

Arguing exactly as in the proof of [13, Lemma 3.9], we thus obtain that

H ′ × (−∞, 0) ⊆ H ∩ {(y, s) ∈ R
n × R | s < 0}.

This forces the inequalityμn+1 ≤ 0 and the identity (μ1, . . . , μn) = αν for some α ∈ [0, 1].
Given that μn+1 = (νuG f

(p))n+1 by (19), the second formula in (18) is proved. Moreover,
we have that

1 = |μ|2 = |(αν, μn+1)|2 = α2|ν|2 + μ2
n+1 = α2 + μ2

n+1,

so that α =
√
1 − (νuG f

(p))2n+1. Therefore, since the matrix A(x) is invertible, we conclude

that also the first formula in (18) holds. ��
Lemma 35 It holds that

dπ1∗ |DχG f |
dm

= −(
(νuG f

)n+1(x, f̄ (x))
)−1

, form -a.e. x ∈ D \ (J f ∪ C f ).

Proof Recalling Proposition 32, we can reduce ourselves to show the conclusion only for
m-a.e. x ∈ D f \(C f ∪ J f ).

By Lemma 33, we know that

(νuG f
)n+1(x, f̄ (x)) �= 0, form−a.e. x ∈ D f \ (C f ∪ J f ). (20)

We prove now that in fact

(νuG f
)n+1(x, f̄ (x)) < 0, form -a.e. x ∈ D f \ (C f ∪ J f ). (21)
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Fix x ∈ D f \ C f satisfying (20), let p := (x, f̄ (x)) and take {ri }i ⊆ (0,∞) with ri ↘ 0.
Up to subsequences, we have that

(
X × R, r−1

i (d × de), (m ⊗ L1)rip , p,G f
) → (Rn+1,de,Ln+1, 0, H),

in a realization (Z × R,dZ×R), for some half-space H . Arguing as in the proof of Lemma
34, it holds that H = {z ∈ R

n+1 : z · μ ≥ 0}, for
μ =

(
A(x)

(
νuG f

(x, f̄ (x))
)
1,...,n,

(
νuG f

(x, f̄ (x))
)
n+1

)
.

Let±Bε := BZ
ε (0Rn )× BR

ε (±1R) ⊆ Z×R. Take ε > 0 small enough so that (±Bε)∩∂H �=
∅. Such ε exists by (20). Now we compute, by convergence in L1

loc,

Ln+1(H ∩ (−Bε)) − Ln+1(H ∩ Bε)

= lim
i→+∞

(
(m ⊗ L1)rip (G f ∩ (−Bε)) − (m ⊗ L1)rip (G f ∩ Bε)

)
.

By Fubini’s theorem,

(m ⊗ L1)rip (G f ∩ (−Bε)) − (m ⊗ L1)rip (G f ∩ Bε)

= 1

(m ⊗ L1)(Bri (p))

∫

BZ
ε (0Rn )

(
H1(({x} × (−ri − ε,−ri + ε)) ∩ G f

)

− H1(({x} × (ri − ε, ri + ε)) ∩ G f
))

dm(x) ≥ 0,

where at the second member we have the image measure of m corresponding to the i th

rescaling. Therefore, Ln+1(H ∩ (−Bε)) − Ln+1(H ∩ Bε) ≥ 0, so that (21) follows, taking
into account also (20) and the defining expression for H .

Fix a ball B̄ ⊆ X. Define Cγ (x, t) := {
(y, s) ∈ X × R : γ d(y, x) ≥ |s − t |} for every

γ > 0.We claim that for any ε > 0 there exist γ = γ (ε) > 0, r0 = r0(ε) > 0 and Fε ⊆ FG f

Borel such that:

i) |DχG f |
((

((B̄ ∩ D f ) \ C f ) × R
) \ Fε

)
< ε.

ii) Fε ∩ (Br (x) × R) ⊆ C2γ (x, f̄ (x)) for every (x, f̄ (x)) ∈ Fε and r < r0.

The proof of this claim follows along the lines of [13, Theorem 3.8]. First, we define F̃k
ε as

F̃k
ε := {

(x, f̄ (x))
∣∣ x ∈ (B̄ ∩ D f ) \ C f , (νuG f

)n+1(x, f̄ (x)) ≤ −1/k
} ⊆ FG f , for every k ∈ N.

Since ((B̄ ∩ D f )\C f ) × R = ⋃
k∈N F̃k

ε up to |DχG f |-null sets by (21), we can take k0 ∈ N

large enough so that F̃ε := F̃k0
ε satisfies |DχG f |

((
((B̄ ∩ D f )\C f ) × R

)\F̃ε

)
< ε/2.

Denote α := 1/k0. Up to discarding a |DχG f |-null set from F̃ε, we can also assume that

�n(|DχG f | F̃ε, p) = �n+1(m ⊗ L1, p) for all p ∈ F̃ε; it follows from the Lebesgue
differentiation theorem applied to |DχG f |, the second formula in (5) and �n(m, x) =
�n+1(m ⊗ L1, (x, f̄ (x))). Next we show that, denoting β := √

1 − α2,

lim
r↘0

|DχG f |
(
(F̃ε ∩ Br (p)) \ (X × Bβr ( f̄ (x)))

)

rn
= 0, for every p = (x, f̄ (x)) ∈ F̃ε.

(22)

The verification of (22) is a via a blow-up argument: if the half-space H ⊆ R
n+1 is the

blow-up of G f at p ∈ F̃ε in some realization, then Proposition 32 v) and (νuG f
)n+1(p) ≤ −α
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imply that ∂H ∩ B1(0) ⊆ B1(0) × Bβ(0), whence (22) follows. Denote γ :=
√

1+β
1−β

> 1.
We now claim that

lim
r↘0

|DχG f |((F̃ε ∩ Br (p)) \ Cγ (p))

rn
= 0, for every p ∈ F̃ε. (23)

Indeed, for any δ > 0 we know from (22) that supr<r̄ r
−n |DχG f |

(
(F̃ε ∩ Br (p)) \ (X ×

Bβr ( f̄ (x)))
) ≤ δ for some r̄ > 0. Letting θ := β

√
(γ 2 + 1)/γ 2 < 1, we have that

Br̄ (p) \ Cγ (p) ⊆
⋃
j∈N

Bθ j r̄ (p) \ (
X × Bβθ j r̄ ( f̄ (x))

)
, for every p = (x, f̄ (x)) ∈ F̃ε,

whence it follows, letting σ := ∑
j∈N θ jn < +∞, that for every p = (x, f̄ (x)) ∈ F̃ε it

holds that

|DχG f |((F̃ε ∩ Br̄ (p)) \ Cγ (p))

r̄ n

≤
∑
j∈N

θ jn |DχG f |((F̃ε ∩ Bθ j r̄ (p)) \ (
X × Bβθ j r̄ ( f̄ (x))))

(θ j r̄)n
≤ σδ.

This proves (23). Now choose δ̃ > 0 with δ̃ < (1 − δ̃)
ηn

(1+η)n
, where η := sin(arctan(2γ ) −

arctan(γ )). Applying Lusin’s theorem and Egorov’s theorem, we obtain a compact set Fε ⊆
F̃ε and r1 ∈ (0, 1) such that |DχG f |(F̃ε\Fε) < ε/2 (whence i) follows), f̄ is (uniformly)
continuous on π1(Fε) and

|DχG f |(Fε ∩ Br (p))

�n+1(m ⊗ L1, p)ωnrn
≥ 1 − δ̃,

|DχG f |((Fε ∩ Br (p)) \ Cγ (p))

�n+1(m ⊗ L1, p)ωnrn
≤ δ̃ (24)

for every p ∈ Fε and r < 2r1; here, we exploited �n(|DχG f | Fε, p) = �n+1(m⊗L1, p)
and (23). Next, we aim to show

Fε ∩ Br1(p) ⊆ C2γ (p), for every p = (x, f̄ (x)) ∈ Fε. (25)

To prove it, we argue by contradiction: Suppose there exists q = (y, f̄ (y)) ∈ (Fε ∩
Br1(p))\C2γ (p). Then Bd̃(p,q)η

(q) ⊆ Bd̃(p,q)(1+η)
(p)\Cγ (p), where we denote d̃(p, q) :=(

d(x, y)2 + | f̄ (x) − f̄ (y)|2)1/2. Combining this inclusion with (24), we deduce that

δ̃ ≥ (1 − δ̃)
ηn

(1+η)n
, leading to a contradiction with our choice of δ̃. Hence, (25) is proved.

The uniform continuity of f̄ |π1(Fε)
ensures that there exists r0 ∈ (0, r1/

√
2) such that

| f̄ (y) − f̄ (x)| < r1/
√
2 for all x ∈ π1(Fε) and y ∈ π1(Fε) ∩ Br0(x). By (25), we get

Fε ∩ (Br0(x) × R) ⊆ Fε ∩ Br1(p) ⊆ C2γ (p) for all p = (x, f̄ (x)) ∈ Fε , proving ii).
We are now in a position to conclude the proof. We can and will assume that Fε is made

of points of density 1 with respect to |DχG f |. This will ensure that for p ∈ Fε, the rescaled

measures |DχG f | Fε and |DχG f | around p have the sameweak limit. Let F̂ε := π1(Fε). By

a blow-up argument (taking into account Remark 22), form-a.e. x ∈ (
(B̄ ∩ D f )\C f

) ∩ F̂ε,

lim
r↘0

(|DχG f | Fε)(Br (x) × R)

rn
= ωn�n(m, x)

∣∣(νuG f
(x, f̄ (x))

)
n+1

∣∣−1
.
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Here we exploited ii) and �n(m, x) = �n+1(m ⊗ L1, (x, t)). Notice that the left-hand side
reads as

d(π1∗ |DχG f |) F̂ε

dm
ωn�n(m, x)

and, by (21), the right-hand side reads as

ωn�n(m, x)
( − νuG f

(x, f̄ (x))
)−1
n+1.

Now we conclude recalling (14) and the arbitrariness of B̄. ��
The first part of the following lemma can be proved also exploiting [11, Theorem 5.1].

Nevertheless, we give a different proof, tailored to this setting and more in the spirit of this
paper.

Lemma 36 (Area formula) It holds that

dπ1∗ |DχG f |
dm

=
√
g f (x)2 + 1, form−a.e. x ∈ D \ (C f ∪ J f ).

Proof Recall that byLemma35, form-a.e. x ∈ D f \(J f ∪C f ) it holds that
(
νuG f

(x, f̄ (x))
)
n+1

< 0.
We start from the case f ∈ BV(X) ∩ LIP(X). First, recall [7, Proposition 6.3] and [21],

which imply that |D f | = (lip f )m. Also, by Proposition 32, we reduce ourselves to show the
claim form-a.e. x ∈ D f \(C f ∪ J f ). Take then x ∈ D f \(C f ∪ J f ) such that p := (x, f (x))
is a Lebesgue point for νuG f

with respect to |DχG f |. This choice can be madem-a.e. by (14).
We take {xi } ⊆ X with xi → x and

lim
i→+∞

f (xi ) − f (x)

d(xi , x)
= ±lip f (x).

Set ri := d(x, xi ), and notice that we can, and will, assume that ri ↘ 0. Therefore, up to
subsequences, we have that

(
X × R, r−1

i (d × de), (m ⊗ L1)rip , p,G f
) → (Rn+1,de,Ln+1, 0, H),

where H is the half-space

H := {
y ∈ R

n+1 : y · νv
G f

(p) ≥ 0
}
,

for v := (A(x)u, π2), see Proposition 32 and Remark 31. We assume that this convergence
is realized in a proper metric space (Z × R,dZ×R) and, up to taking a non-relabeled subse-
quence, we assume that the rescaled perimeters |DχG f | weakly converge to 1

ωn+1
Hn ∂H

in duality with Cbs(Z × R). Therefore, identifying (xi , f (xi )) with the corresponding point
with respect to the i th isometric embedding, we have that, up to a non-relabeled subsequence,
(xi , f (xi )) → q̄ := (z̄,±lip f (x)) ∈ R

n+1 with respect to dZ×R, where de(z̄, 0) = 1. There-
fore, if we show that q̄ ∈ ∂H , it will follow that

( − νuG f
(x, f̄ (x)

)−1
n+1 ≥

√
lip f (x)2 + 1. (26)

Take q̄ ′ = (z̄, t) such that q̄ ′ ∈ ∂H . The claim will be proved by showing that q̄ = q̄ ′. By
weak convergence of measures and Lemma 14, we find a sequence of points {(x ′

i , f (x ′
i ))}i

with (x ′
i , f (x ′

i )) → q̄ ′ in Z×R, where we identified (x ′
i , f (x ′

i ))with the corresponding point
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with respect to the i th isometric embedding. Now we compute, if L is the global Lipschitz
constant of f ,

| ± lip f (x) − t | = lim
i→+∞

| f (xi ) − f (x ′
i )|

ri
≤ lim sup

i→+∞
L
d(xi , x ′

i )

ri
= lim sup

i→+∞
LdZ(xi , x ′

i )

≤ lim sup
i→+∞

L(dZ(xi , z̄) + dZ(x ′
i , z̄)) = 0.

Now we show the reverse inequality in (26). Take q̄ := (z̄, t) ∈ ∂H with de(z̄, 0) = 1.
As before, we find (xi , f (xi )) → q̄ in Z × R. But then

|t | = lim
i→+∞

| f (xi ) − f (x)|
ri

= lim
i→+∞

| f (xi ) − f (x)|
d(xi , x)

d(xi , x)

ri

≤ lim sup
i→+∞

| f (xi ) − f (x)|
d(xi , x)

lim sup
i→+∞

dZ(xi , x) ≤ lip f (x)de(z̄, 0) = lip f (x).

This easily implies, by the arbitrariness of q̄ , that

( − νuG f
(x, f̄ (x))

)−1
n+1 ≤

√
lip f (x)2 + 1.

Now we pass to the general case. Take ε > 0 and, by [37, Proposition 4.3], take h ∈
BV(X)∩LIP(X)withm({h �= f }) < ε. Recall Proposition 32 and call Dε := (D f ∩Dh∩{h =
f })\C f . Itwill be enough toprove the claim form-a.e. x ∈ Dε.Notice that by [37, Proposition
3.7], |D( f − h)|(Dε) = 0, in particular, g f = liph m-a.e. on Dε .

Now notice that for m-a.e. x ∈ Dε , it holds that X \ ∂∗G f is of n-density 0 for |DχGh | at
(x, h(x)), by (12). Indeed,

|DχGh |(Br (x, h(x)) \ ∂∗G f )

rn
= |DχGh |

({(y, t) ∈ Br (x, h(x)) : h(y) �= f̄ (y)})
rn

≤ (π1∗ |DχGh |)(Br (x) ∩ {h �= f̄ })
rn

≤ (|Dh| + m)(Br (x) ∩ {h �= f })
rn

,

whence the conclusion at density 0 points of {h �= f } follows, taking into account |Dh| � m
and the fact that m is concentrated on R∗

n . At such points, |DχGh | and |DχG f | ∧ |DχGh |,
properly rescaled, have the same weak limit. Hence, for m-a.e. x ∈ Dε , the blow-ups of G f

and Gh coincide at (x, h(x)), by a monotonicity argument (use also the last conclusion of
Lemma 34). Now we use item v) of Proposition 32 together with Remark 31 to deduce that
νuGh

(x, h(x)) = νuG f
(x, f̄ (x)) holds for m-a.e. x ∈ Dε . Now, the claim follows from what

proved in the first part of the proof. ��
Lemma 37 It holds that

Hn({(x, t) : x ∈ J f , t = f ∨(x)
}) = Hn({(x, t) : x ∈ J f , t = f ∧(x)

}) = 0.

Proof We only prove that

Hn({(x, t) : x ∈ J f , t = f ∨(x)}) = 0,

the other statement being analogous. Also, we can reduce ourselves to prove that

Hn({(x, t) : x ∈ K , t = f ∨(x)
}) = 0,
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where K ⊆ J f is a compact set with Hn−1(K ) < ∞ and f ∨|K : K → R is uniformly
continuous. Indeed, notice first that Hn is σ -finite on

{(x, t) : x ∈ J f , t = f ∨(x)} ⊆ J f × R,

as Hn−1 is σ -finite on J f . Then we can reduce ourselves to consider Hn K̃ with K̃ ⊆
{(x, t) : x ∈ J f , t = f ∨(x)} compact such that K := π1(K̃ ) satisfies Hn−1(K ) < ∞. The
continuity of f ∨|K comes from the fact that it is the inverse of the continuous map π1 defined
on a compact set into a Hausdorff space.

Now we conclude with a covering argument. Let ε > 0. Let also δ ∈ (0, ε) be such that
| f ∨(x)− f ∨(y)| < ε if x, y ∈ K are such that d(x, y) < δ. Now we find a sequence of balls
{Bri (xi )}i with ri < δ, K ⊆ ⋃

i Bri (xi ) and
∑

i ωn−1ri n−1 ≤ Hn−1(K ) + ε. Now notice
that K̃ ∩ (Bri (xi ) × R) ⊆ Bri (xi ) × ( f ∨(xi ) − ε, f ∨(xi ) + ε). It is easy to show that, as
ri < δ,

Hn√
2δ

(
Bri (xi ) × ( f ∨(xi ) − ε, f ∨(xi ) + ε)

) ≤ ωn(
√
2ri )

n(2ε/ri + 1).

Therefore, if C denotes a constant that may vary from line to line,

Hn√
2δ

(K̃ ) ≤ C
∑
i∈N

(
√
2ri )

n(ε/(
√
2ri ) + 1) ≤ C

∑
i∈N

(
εrn−1

i + rni
) ≤ C(ε + δ)

∑
i∈N

rn−1
i

≤ C(ε + δ)(Hn−1(K ) + ε).

The conclusion follows letting ε ↘ 0. ��
Lemma 38 It holds that

νuG f
(x, t) = (νuf (x), 0), for |DχG f |−a.e. (x, t) ∈ (D ∩ J f ) × R.

Proof Notice that, by (12), (π1∗ |DχG f |) J f = |D f | J f . Then, by Theorem 9, it suffices
to show the claim for x ∈ D ∩ J f ∩ F{ f > s}, for some s ∈ R. By Lemma 37, we
can use a partitioning argument to reduce ourselves to prove the claim on K × I , where
K ⊆ D ∩ J f ∩ F{ f > s} is compact with Hn−1(K ) < ∞ and I = (a, b) ⊆ R is an open
interval such that for every x ∈ K , Ī ⊆ ( f ∧(x), f ∨(x)) and s ∈ I . We can also assume, by
[15, Lemma 4.27], that νuf = νu{ f >s} on K .

By a suitable modification of Remark 31, we see that for |DχG f |-a.e. (x, t) with x ∈ D,
it holds that v := (A(x)u, π2) is a system of good coordinates for G f at (x, t). Also, for
|DχG f |-a.e. (x, t) the conclusion of [17, Proposition 4.8] holds at (x, t). Also, for |Dχ { f >s}|-
a.e. x the analogous conclusions for { f > s} are in place at x . Take a point p = (x, t) ∈ FG f

of density 1 for K × I with respect to |DχG f | such that x is of density 1 for K with respect
to |Dχ { f >s}| and satisfying the above conclusions. Then for some sequence {ri }i , ri ↘ 0,

(
X × R, r−1

i (d × de), (m ⊗ L1)rip , p,G f
) → (Rn+1,de,Ln+1, 0, H),

in a realization (Z × R,dZ×R), where

H := {
y ∈ R

n+1
∣∣ y · ν(x, t) ≥ 0

}
,

where ν(x, t) is given by (8) for v. Also, we have that
(
X, r−1

i d,mri
x , x, { f > s}) → (Rn,de,Ln, 0, H ′),

where H ′ is given by

H ′ := {
y ∈ R

n
∣∣ y · μ(x) ≥ 0

}
,
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where μ(x) is given by (8) for A(x)u. Our aim is then to show that

ν(x, t)1,...,n = μ(x, t) and ν(x, t)n+1 = 0, (27)

which will yield the conclusion. Indeed, at Lebesgue points,

ν = (
A(x)

(
νuG f

(x, t)
)
1,...,n, ν

u
G f

(x, t)n+1
)

and μ = A(x)νu{ f >s}(x)

and the matrix A(x) is invertible. Up to taking a non-relabeled subsequence, we assume that
|DχG f |weakly converges to 1

ωn+1
Hn ∂H in duality withCbs(Z×R) and |Dχ { f >s}|weakly

converges to 1
ωn

Hn−1 ∂H ′ in duality with Cbs(Z). We can now use the representation

formula of Theorem 24 to combine the information Hn (K × R) = (Hn−1 K ) ⊗ H1

(which we will prove below) together with the just mentioned convergences

|DχG f |⇀
1

ωn+1
Hn ∂H and |Dχ{ f >s}| ⊗ H1⇀

1

ωn
(Hn−1 ∂H ′)

⊗H1 = 1

ωn
Hn ∂(H ′ × R)

in order to obtain that

Hn ∂H = Hn ∂(H ′ × R).

Hence H = ±H ′ × R (with −H ′ we mean the image of H ′ through the map R
n � z �→

−z ∈ R
n).

We want to show that indeed H = H ′ × R, so that (27) will follow by the definitions
of H and H ′. There are two possible cases: either s ≥ t or s < t . In the former, { f ≥
s} × (−∞, t] ⊆ G f , and in the latter, { f < s} × [t,+∞) ⊆ (X × R) \ G f . Thanks to
stability with respect to L1

loc convergence (cf. the proof of [13, Lemma 3.9]), we obtain the
monotonicity relations: H ′ × (−∞, 0] ⊆ H in the first case, −H ′ × [0,∞) ⊆ −H , in the
second. This is enough to conclude.

Nowwe prove the coarea formula claimed in the above paragraph exploiting the rectifiabil-
ity result of [18] and the fact that K ⊆ F{ f > s}. Take E a set of finite perimeter. Fix ε > 0.
We use [18, Theorem 4.1] (see also [18, Remark 4.3]) to write, up toHn−1-negligible subsets,
FE = ⋃

k Ek , where Ek are pairwise disjoint Borel subsets of FE such that, for every k,
Ek is (1 + ε)-bi-Lipschitz to some Borel subset of R

n−1. Say that, for every k, there exists
gk : Ek → R

n−1 (1 + ε)-bi-Lipschitz with its image. Call also fk : Ek × R → R
n−1 × R

the map (x, t) �→ (gk(x), t). We have that, if ψ : X × R → [0, 1] is Borel, then
∫

FE×R

ψ(x, t) dHn(x, t) =
∑
k∈N

∫

Ek×R

ψ(x, t) dHn(x, t)

=
∑
k∈N

∫

gk (Ek )×R

ψ(g−1
k (y), t) d(( fk)∗Hn)(y, t),

where we used that if N ⊆ FE is Hn−1-negligible, then N × R is Hn-negligible, thanks to
a simple covering argument. Now notice that, as gk is (1+ ε)-bi-Lipschitz, we have that, on
their natural domains,

(
1

1 + ε

)n−1

Hn−1 ≤ (gk)∗Hn−1 ≤
(

1

1 − ε

)n−1

Hn−1
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and
(

1

1 + ε

)n

Hn ≤ ( fk)∗Hn ≤
(

1

1 − ε

)n

Hn .

Therefore, using Fubini’s theorem in R
n , setting ψ̃(y, t) := ψ(g−1

k (y), t) and denoting Cε

a constant, that may vary from line to line but that depends only on ε and n and such that
Cε → 1 as ε ↘ 0,

∫

gk (Ek )×R

ψ̃(y, t) d(( fk)∗Hn)(y, t) ≤ Cε

∫

gk (Ek )×R

ψ̃(y, t) dHn(y, t)

= Cε

∫

gk (Ek )

∫

R

ψ̃(y, t) dH1(t) dHn−1(y)

≤ Cε

∫

gk (Ek )

∫

R

ψ̃(y, t) dH1(t) d((gk)∗Hn−1)(y)

= Cε

∫

Ek

∫

R

ψ(x, t) dH1(t) dHn−1(x).

All in all,
∫

FE×R

ψ(x, t) dHn(x, t) ≤
∑
k

Cε

∫

Ek

∫

R

ψ(x, t) dH1(t) dHn−1(x)

= Cε

∫

FE

∫

R

ψ(x, t) dH1(t) dHn−1(x).

As ε > 0 was arbitrary, we obtain that
∫

FE×R

ψ(x, t) dHn(x, t) ≤
∫

FE

∫

R

ψ(x, t) dH1(t) dHn−1(x).

The opposite inequality is obtained similarly. ��

3.2 Proof of themain results

We are now ready to prove the main theorems of this note.

Proof of Theorem 3 If f ∈ BVloc(X), then G f has locally finite perimeter thanks to the proof
of item (a) in [11, Theorem 5.1]. Conversely, assume that G f has locally finite perimeter.
Then, the argument in the proof of item (b) of [11, Theorem 5.1] yields that for any x ∈ X
and r > 0,

∫

R

|Dχ { f >t}|(B2r (x)) dt < ∞.

Now we take t0 ∈ (0,∞) big enough so that m({ f > t0} ∩ Br (x)) ≤ min{1,m({ f ≤
t0}∩ Br (x))} andm({ f < −t0}∩ Br (x)) ≤ min{1,m({ f ≥ −t0}∩ Br (x))}. This is possible
as f ∈ L0(m). Thus, taking into account that forL1-a.e. t , |Dχ { f >t}| = |Dχ { f <t}|, we obtain
from the relative isoperimetric inequality (2) (that holds with λ = 1 on finite-dimensional
RCD spaces) that

∫ ∞

t0
m({ f > t} ∩ Br (x)) dt < ∞ and

∫ −t0

−∞
m({ f < t} ∩ Br (x)) dt < ∞.
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This implies f ∈ L1
loc(X) by Fubini’s theorem. By Theorem 9, it also follows that f ∈

BVloc(X).
The last conclusion is an immediate consequence of Lemma 36 and Proposition 6, for

what concerns the absolutely continuous part. For what concerns the equality on the jump
part and the Cantor part, it directly follows from (12). ��
Proof of Theorem 4 We first show that

νuG f
(x, t)

=
(√

1

1 + g2f
g f ν

u
f ,−

√
1

1 + g2f

)
(x), for |DχG f |-a.e. (x, t) ∈ (D \ (J f ∪ C f )) × R.

Recall that (12) and Proposition 32 imply that we can reduce ourselves to show the claim for
|DχG f |-a.e. (x, t) ∈ (D f \(C f ∪ J f )) × R.

For |DχG f |-a.e. (x, t) ∈ ({g f = 0} ∩ (D f \(C f ∪ J f ))
) × R, by Lemma 36, Lemma

35 and (12) it holds that (νuG f
(x, f̄ (x)))n+1 = −1. The claim is then proved at |DχG f |-a.e.

(x, t) ∈ ({g f = 0} ∩ (D f \C f )
) × R by the following fact. By Proposition 32, for x ∈ D f ,

at (x, f̄ (x)), v := (A(x)u, π2) is a system of good coordinates for G f , see also Remark 31.
Also, if ν(x, f̄ (x)) is computed as in item v) of Proposition 32, it holds that

ν(p) = (
A(x)(νuG f

(p))1,...,n, (ν
u
G f

(p))n+1
)
, for |DχG f |−a.e. p = (x, t) ∈ D f × R,

and that |ν(p)| = 1. Recall that A(x) is invertible, whence the conclusion follows.
Now we show the claim at |DχG f |-a.e. (x, t) with x ∈ {g f > 0} ∩ (

D f \ (C f ∪ J f )
)
.

Notice that on {g f > 0} ∩ (
D f \ (C f ∪ J f )

)
it holds that m � |D f | � m. Therefore, by

Lemma 34, taking into account Lemma 36, Lemma 35 and (12), we have the claim.
The fact that

νuG f
(x, t) = (

νuf (x), 0
)
, for |DχG f |-a.e. (x, t) ∈ (D ∩ (J f ∪ C f )) × R

is Lemma 38 together with [13, Theorem 3.8 and Lemma 3.9]. ��
Proof of Theorem 5 Items (i) and (ii) can be proved using Theorem 4, Theorem 3, and Lemma
14. Item (iv) follows from Lemma 38.

We show now item (iii). By the representation formula, we write
∫

(D∩J f )×R

ϕ(x, t)
(
νuG f

(x, t)
)
id|DχG f |(x, t)

=
∫

(D∩J f )×R

ϕ(x, t)
(
νuf (x)

)
i
χ∂∗G f (x, t)�n(m, x) dHn(x, t),

where we used that �n(m, x) = �n+1
(
m ⊗ H1, (x, t)

)
and Lemma 38. Now notice that if

N ⊆ J f is such that Hn−1(N ) = 0, then Hn(N × R) = 0. This can be proved with an easy
covering argument.

Therefore, taking into account also Lemma 14 and Theorem 9, we reduce ourselves to
prove that for every ψ : D × R → [0, 1] Borel, we have that for H1-a.e. s ∈ R

∫

(D∩FEs∩J f )×R

ψ(x, t) dHn(x, t) =
∫

D∩FEs∩J f

∫

R

ψ(x, t) dt dHn−1(x),

where Es := { f > s}. Fix s such that Es has finite perimeter. The claim is equivalent to
Hn (FEs × R) = (Hn−1 FEs) ⊗ H1, which has been proved at the end of the proof of
Lemma 38. ��
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