
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Reinforcement Learning for Attack Mitigation in SDN-enabled Networks

© IEEE 2020

Accepted version (Final draft)

Zolotukhin, Mikhail; Kumar, Sanjay; Hämäläinen, Timo

Zolotukhin, M., Kumar, S., & Hämäläinen, T. (2020). Reinforcement Learning for Attack
Mitigation in SDN-enabled Networks. In F. De Turck, P. Chemouil, T. Wauters, M. Faten Zhani,
W. Cerroni, R. Pasquini, & Z. Zhu (Eds.), NetSoft 2020 : Proceedings of the 2020 IEEE Conference
on Network Softwarization. Bridging the Gap Between
AI and Network Softwarization (pp. 282-286). IEEE.
https://doi.org/10.1109/NetSoft48620.2020.9165383

2020

Reinforcement Learning for Attack Mitigation in
SDN-enabled Networks

Mikhail Zolotukhin
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

mizolotu@jyu.fi

Sanjay Kumar
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

sanjay.k.kumar@jyu.fi

Timo Hämäläinen
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

timoh@jyu.fi

Abstract—With the recent progress in the development of
low-budget sensors and machine-to-machine communication, the
Internet-of-Things has attracted considerable attention. Unfor-
tunately, many of today’s smart devices are rushed to market
with little consideration for basic security and privacy protection
making them easy targets for various attacks. Unfortunately,
organizations and network providers use mostly manual work-
flows to address malware-related incidents and therefore they
are able to prevent neither attack damage nor potential attacks
in the future. Thus, there is a need for a defense system that
would not only detect an intrusion on time, but also would
make the most optimal real-time crisis-action decision on how the
network security policy should be modified in order to mitigate
the threat. In this study, we are aiming to reach this goal relying
on advanced technologies that have recently emerged in the area
of cloud computing and network virtualization. We are proposing
an intelligent defense system implemented as a reinforcement
machine learning agent that processes current network state
and takes a set of necessary actions in form of software-defined
networking flows to redirect certain network traffic to virtual
appliances. We also implement a proof-of-concept of the system
and evaluate a couple of state-of-art reinforcement learning
algorithms for mitigating three basic network attacks against
a small realistic network environment.

Index Terms—network security, machine learning, reinforce-
ment learning, software-defined networking, network function
virtualization

I. INTRODUCTION

Increasing computing and connectivity capabilities of smart
devices in conjunction with users and organizations priori-
tizing access convenience over security makes such devices
valuable asset for cyber criminals. The intrusion detection on
IoT is limited due to lack of efficient malware signatures
caused by diversity of processor architectures employed by
different vendors [1]. In addition to that, owners use mostly
manual workflows to address malware-related incidents and
therefore they are able to prevent neither attack damage
nor potential attacks in the future. Furthermore, since not
all devices support over-the-air security updates, or updates
without downtime, they might need to be physically accessed
or temporarily pulled from production. Thus, many connected
smart devices may remain vulnerable and potentially infected
for long time resulting in a material loss of revenue and
significant costs incurred by not only device owners, but also

users and organizations targeted by the attackers as well as
network operators and service providers.

In this study, we investigate a possibility to overcome the
aforementioned challenges by employing recent advances in
reinforcement machine learning to evaluate risks related to an
intrusion and make the most optimal real-time crisis-action
decision on the network security policy. The actions are then
implemented in the form of software-defined network (SDN)
flows which are pushed to the corresponding forwarding ele-
ments of the network under protection. Reinforcement learning
(RL) is a machine learning paradigm in which software agents
automatically determine the ideal behavior within a specific
context by continually making value judgments to select good
actions over bad. Reinforcement learning algorithms can be
used to solve very complex problems that cannot be solved
by conventional techniques as they aim to achieve long-
term results correcting the errors occurred during the training
process.

However, deep RL has thus far not seen wide adoption in
network security frameworks due to several practical obsta-
cles. Probably, the biggest obstacle of applying reinforcement
learning algorithms in real-life environments is its low sample
efficiency. Even though, recent progress in developing better
RL algorithms has led to significantly better sample efficiency,
even in dynamically complicated tasks [2], [3], it still remains
a challenge. Another major, often underappreciated, obstacle
is reward function specification. Most of the time it is carefully
shaped [4] which can be a significant challenge, as one must
additionally build a perception system that allows computing
dense rewards on state representations. Shaping a reward
function so that an agent can learn from it is also a manual
process that requires considerable manual effort. An ideal RL
system would learn from rewards that are natural and easy
to specify. These two obstacles can be partially eliminated by
designing a realistic simulation software to emulate the real
world environments such that the RL agents can be trained in
simulations. Even if such software is real-time, we can solve
the sample efficiency challenge by running several simulations
in parallel. Most of the state-of-art reinforcement learning
algorithms are capable to learn from many environments at
once by design. The reward shaping challenge can also be
solved in the simulated environment as we can construct any978-1-7281-5684-2/20/$31.00 ©2020 IEEE

sort of dense or sparse reward function using data obtained
from the real world model used in the simulator.

To the best of our knowledge, there are not many studies that
focus on the application of RL in network security. Speaking
of software-defined networks, RL algorithms have been mostly
employed for intelligent route selection [5]. Other security
applications of RL include malware samples detection [6],
DoS attacks prevention [7], evaluation of anti-malware engines
[8] and intelligent honeypot construction [9]. There are also
studies focusing on attack detection by routing certain network
traffic through a particular set of security middle boxes. For
example, ASD and NAD functions proposed in [11] for 5G
networks employ deep learning approach for both anomaly
symptom detection (ASD) and network anomaly detection
(NAD). We aim to improve this approach by enabling the
AI agent to learn an optimal ensemble of security service
functions for each particular state of the network environment
to allow for a more accurate and resource-efficient anomaly
detection. PSI, Precise Security Instrumentation, described
in [10] translates high-level security posture into per-device
intents, which are further enforced by launching virtual se-
curity appliances and tunneling each devices traffic through
a particular set of such middle-boxes. PSI requires an ad-
ministrator to manually enter a security policy according to
which the system configures security appliances and forwards
traffic between them. Furthermore, PSI does not enable more
advanced attack detection rather focusing on isolation and
flexibility. The framework described in our proposal addresses
both of these issues.

The main purpose of this study is to investigate how deep
reinforcement learning can be applied for real-time attack
mitigation in SDN-enabled networks and evaluate several
of its state-of-art algorithms by mitigating realistic attacks
in a small network environment. The rest of the paper is
organized as follows. The system implementation is outlined in
Section II. Section III presents performance results of several
RL algorithms for mitigating several basic attacks against a
small virtual environment. Section IV concludes the paper and
outlines future work.

II. SYSTEM IMPLEMENTATION

As briefly mentioned in the introduction, the key idea of
the defense framework proposed in this study is relies on
an RL agent that pushes flows to the SDN controller in
order to affect certain connections depending on the state of
the network environment. The agent’s actions may result in
redirecting traffic to a set of security middle boxes, dropping
suspicious connections or allowing the traffic which was
blocked previously to pass. Security appliances reside on cloud
compute servers and they may include intrusion detection
systems, honeypots, firewalls, and proxies. Building security
middle boxes that share commodity hardware allows us to
reduce the costs significantly as one commodity server can
support up to hundreds of such appliances. SDN capabilities
that include global visibility of the network state and run-time
manipulation of traffic forwarding rules allow one to forward

traffic from the network under protection to these appliances
as well as connect the appliances to each other.

In order to train the RL agent, virtual copy of the network
under consideration is supposed to be created using the frame-
work’s cloud computing resources. These copies are expected
to run the same applications as IoT devices in the target
network (Figure 1). The biggest drawback of the reinforcement
learning approach is its hunger for data: RL methods require
to interact with the environment at each new training iteration.
Furthermore, the stability of the RL methods can be increased
by increasing the number of environments in which the agent
is trained in parallel. Therefore, in order to train the RL-
based intelligent agent that is able to control SDN flows in
reasonable amount of time, multiple copies of the network
environment under consideration, at least its key components,
have to be created in such virtual gym. During the training
phase, the agent then observes states of each such virtualized
environment, takes necessary actions, and learns impact of
each action taken in the state given simultaneously.

Openflo-enabled switches

Anomaly
detection

Deep packet
inspection

Exfiltration
detection

Scan detection

Honeypot

Copy real infrastructure
Copy real infrastructure

SDN controllerNVF orchestration

RL agent

Fig. 1. The defense framework deployment.

The main purpose of the SDN controller in our defense
framework is to transform the security intent of the AI core
to SDN rules (flows) and push them to the switches. Such
functionality can be implemented either as a separate module
for the controller or an external application that uses RESTful
APIs exposed by one or more plugins existing in the controller
framework. Concerning the virtual security functions, there are
many open-source intrusion detection and packet inspection
software available that can be implemented as security middle
boxes for timely signature-based attack detection and mitiga-
tion. Anomaly detection based functions can be implemented
on top of existing packet sniffers or flow collectors. Such

implementations require implementing modules to extract the
most relevant features from the traffic under processing, build
a model of normal user or application behavior during the
training stage and classify new packets or flows as either
normal or an outlier during the inference stage.

There are two possible options how the security functions
can communicate with the rest of the defense framework:
reactive and proactive. In the reactive case, the security
middle-boxes require an application interface in order to send
a statistics report to the AI core and process commands
received from it. Once the RL agent has received such report,
it makes a decision on what actions should be applied to
this flow and sends required reconfiguration commands to the
corresponding security functions for optimal threat mitigation.
With proactive approach, the security functions require to label
the flows under interest using for example flow tagging [12].
Proactive implementation requires the flow rules pushed by the
controller to account for these flow tags in order to forward
the packets to the destination or the next-hop virtual network
function (VNF). In this case, the AI core is responsible for
predicting the next possible states of the network environment
enabling the SDN controller to modify flow tables in order to
account for all possible tags assigned by the running VNFs.
Even though the proactive approach may needlessly increase
computing and storage resource consumption, it would be
able to decrease the latency caused by pushing additional
SDN flows to the switches and security downtime during the
reconfiguration of security appliances.

The RL agent requires to select a set of countermeasures
to mitigate the attack detected automatically. Most of the
research studies aiming at dynamic attack countermeasure
selection formulate selections of countermeasures into a multi-
objective optimization problem that are not designed to adapt
to constantly changing state of the network struggling to
perform online resource scheduling and decision making [13],
[14]. In theory, reinforcement learning approach should be
capable to solve the problem of dynamic security appliance
chaining as the RL agent takes into account state of each node
in the network. The RL agent can also be trained to react to
the ongoing attack by launching additional security appliances,
however, in this study, we assume that all security appliances
implemented are constantly active and there is no need to
launch additional ones. Thus, the computing and network
resources are used as a constraint the solution must satisfy
when maximizing the reward function. Speaking of the reward,
there are three key metrics that can be used to implement
this function, namely attack damage cost, countermeasure
positive effect and countermeasure negative impact [14]. The
resulting RL agent is supposed to be trained to maximize
the security performance and minimize the security impact
on service quality. In our attack model, we assume that
an attacker can be located either outside or inside of the
network under protection. The external attacker’s primary goal
is to exploit and compromise vulnerable devices, whereas the
internal attacker focuses on using infected devices as a tool
to attack other services. Thus, the security performance is

supposed to account for both the number of compromised
devices and servers as well as volumes of malicious traffic
sent towards external services. The security impact on service
quality can be estimated by counting dropped connections and
measuring jitter and latency in the network environment.

III. EXPERIMENTAL RESULTS

First, we implemented the attack mitigation system pro-
posed in this study in open-source software platform for
cloud computing Openstack integrated with SDN controller
Opendaylight, as shown in Figure 2. Both virtualized devices
and security VNFs are created as appliances in the resulting
cloud and connected to each other via Openflow-enabled
OpenVSwitches. Later, however, we switched to Docker con-
tainers since all appliances used in the experiments had the
same x86 64 architecture. This allows us to run more virtual
copies of the network environment using the same amount of
computing and storage resources. As a result, each copy of the
environment is deployed in a dedicated virtual machine with
applications belonging to different devices running in different
containers.

SDN	controller

States	and
actions

VNFs

Cloud	controller
Environment	Model

RL-agent

States	and	
actions

RL-agent RL-agent

States	and	
actions

VNF
log
collector

Flow
collector

SDN	instructions
VNF	commands

Fig. 2. The RL agent training ground.

Concerning security appliances, we launch several types
of appliances: traditional signature-based IDS Snort, custom
machine learning based anomaly detection IDS and honeypots
that are essentially virtual machines with open SSH and Telnet
ports and several user accounts with very easy-to-guess pass-
words. For each VNF, we implemented simple web interface
that allows one to request their logs over TCP protocol.

Signature-based IDS. First, we launch Snort appliance that
uses the latest sets of community rules. However, it turns
out, that those sets do not include rules for some basic
intrusions, e.g. SSH password brute force attack and DNS
tunneling. For this reason, we implemented a simple set of
custom rules by analyzing legitimate network traffic generated
in the network environment under consideration. We find the
maximum amount of packets of a particular type sent to a
particular host per second and generate a list of rules that
throw an alert if one of such thresholds is exceeded. This turns
Snort into a basic anomaly-based detection system, since its
rules are configured based on the normal behavior patterns.
We implement two types of Snort middle boxes: one uses
community rules and another relies on our custom rules.

Anomaly-based IDS. In order to detect anomalous payloads,
we rely on centroid-based clustering. A small set of the normal

traffic collected in advance before the RL agent training starts
is used to divide 2-grams of the packet payloads into several
clusters. During the inference phase, we evaluate resulting
clusters using a mixed set of normal and malicious traffic.
If the distance between a new sample and its nearest cluster
centroid exceeds the expected value, the sample is marked as
anomalous. The clustering algorithms we have tested include
k-means, partitioning around medoids, fuzzy c-means, grow-
ing neural gas, and self-organizing maps (SOM). In our case,
SOM have outperformed its analogues in detection of both
anomalous DNS queries and HTTP requests. For this reason,
we implement two types of anomaly detection middle boxes
for DNS and HTTP traffic separately with the clusters being
constructed with SOM algorithm [15].

Honeypot. We launch a standard Linux box, install SSH
and Telnet server on it and add several users with default
name-password combinations used by Mirai botnet [16]. Other
services that connect to the network are disabled. Thus, if the
honeypot appliance attempts to establish a connection with an
external host, we mark this host as suspicious.

Firewall. We use SDN flows to block suspicious connections
by installing rules to drop packets from a particular source
host to a particular destination socket that use a particular IP
protocol. We push these SDN flows to the switches with two
different timeout values: zero, i.e. no timeout constraint, and
one, i.e. the rule lasts only one second to block the connection
in the current time window. We also implement pass rule that
removes all SDN flows that affect certain network traffic from
the controller storage.

We initialize flow tables of each SDN switch with one single
flow that forwards packets to the next table, until the last table
is reached. SDN flows to drop packets or redirect them to a
particular security appliance are pushed to the dedicated flow
table with priority higher than default forwarding rule. The
last table outputs packet to the physical port of its destination
as well as mirrors packet to a special patch port, on which
we run a flow collector. For each network activity from a
particular source host to a particular destination socket we
extract a set of features that include destination port, packet
size, TCP flag counts, and several others. Furthermore, security
alerts are requested from the corresponding appliances and
added to the feature vectors. The full list of features is shown
in Table I.

TABLE I
ENVIRONMENT STATE FEATURES.

Traffic data Features
Port Number of unique source ports, destination port
Packet counts Number of requests, number of replies
Packet size Minimal, maximal and average size
TCP flags Number of FIN, SYN, RST, PSH and ACK flags
Protocol IP protocol number
Security alerts Number of alerts generated by different appliances in the

recent time window
Security logs Number of alerts generated by different appliances during

the entire length of the experiment
SDN flows Number of rules pushed to the SDN controller that affect

the traffic flow

In order to evaluate the framework proposed, we designed

a simple Python application that runs on each IoT device and
sends a random sequence of alphanumeric symbols to one of
the external data servers. In addition, every arbitrary amount
of time each device connects to a randomly selected update
server and requests several files from it. Furthermore, some
devices are accessed via SSH by external entities imitating
the administration process. DNS queries are resolved with
the help of the internal DNS server. To generate malicious
traffic, we implemented a simple Mirai-like malware with
three attack capabilities. First, the malware scans its local
network looking for open SSH server ports and, in case such
server is found, it attempts to login to the server using a
predefined list of user-password combinations. If the correct
password has been found, the malware initiates download of
its copy to the compromised device from an external server.
When the download is complete, the malware initiates a HTTP
connection to its C&C server to inform that the attack has been
successful. The second attack type performed by the malware
uses DNS tunneling to exfiltrate a randomly selected file found
on the device to the attacker server using scheme similar to
the C&C channel. The DNS server is configured in advance to
forward such queries to the domain that belongs to the attacker.
Finally, once multiple devices are infected with the malware,
the attacker performs an application-based slow DDoS attack
Slowloris against one of the data servers used by the legitimate
application by sending never ending HTTP requests.

To train RL agent, we use OpenAI gym [17] to implement
the front-end for the virtualized environment. We run 4 copies
of the environment in parallel. The training process is divided
into 1000 episodes. Each episode lasts 15 seconds, during
which one of the attacks mentioned above is performed. The
RL agent is implemented using OpenAI baselines [18]. The
state returned to the agent is essentially the list of active and
blocked flows with feature vectors described in Table I. The
agent selects one of the actions for each flow that are sent to
the environment back-end where they are transformed to SDN
rules. The reward for the action is proportional to the number
of packets transferred during the most recent time window
and it is calculated for each flow separately. The proportion
coefficients are positive for legitimate traffic and negative for
the malicious one. The exact values of the coefficients are
estimated by running the attack without the agent and counting
the average number of packets that are sent by the application
and the attacker. The coefficients are then calculated as such
a way, that the total reward without the agent’s intervention is
equal to zero.

We test two state-of-art RL algorithms: deep Q-network
(DQN) [19] and proximal policy optimization (PPO) [20]
using multi-layer perceptron (MLP) as both policy and value
function. The MLP consists of two layers each of which in-
cludes 512 neurons. In case of DQN, first 80 % of the episodes
are used for ε-greedy exploration with ε value decreasing from
one to zero. For PPO, we collect data from entire episode to
calculate cumulative rewards and advantages for each unique
host-to-socket tuple, before dividing the resulting dataset to
mini-batches which are used to train both the critic and the

0 2k 4k 6k 8k 10k 12k 14k

−4

−2

0

2

4

Steps

Re
w
ar
d

(a) SSH password brute-force

0 2k 4k 6k 8k 10k 12k 14k

0

1

2

3

4

Steps

Re
w
ar
d

(b) DNS tunneling

0 2k 4k 6k 8k 10k 12k 14k
−6

−4

−2

0

2

4

6

8

10

Steps

Re
w
ar
d

(c) Slowloris DDoS

Fig. 3. DQN (red) and PPO (blue) performance for three different network attacks. Green line corresponds to ”do nothing” policy.

actor network. With DQN, for each such tuple, we store the
state vector, the action taken by the agent, the reward and
the feature vector of the same tuple in the next time window,
only if there is still active connection. Otherwise, the state
is marked as the terminate for this particular tuple. Figure
3 shows the evolution of the reward function throughout the
training episodes for both DQN and PPO in case of three
attacks mentioned. As one can notice, both algorithms are
able to identify and block malicious connections reducing
the number of malicious flows to minimum and subsequently
increasing the reward value.

IV. CONCLUSION

The main contribution of this research is developing a proof-
of-concept of an intelligent network defense system which
allows customers to detect and mitigate attacks performed
against their smart devices by letting an artificial intelligent
agent control network security policy. We evaluated two state-
of-art reinforcement learning algorithms for mitigating three
basic network attacks against a small virtual network environ-
ment. The results show that such approach can be employed
to decrease impact of the attacks in a small private network,
however further investigation is required in order to estimate
viability of the method in big production environments. In the
future, we are planning to enhance our solution by developing
more efficient and flexible reinforcement learning algorithms.
We are also aiming to improve the scalability of the framework
proposed and evaluate the system performance for bigger net-
work environments. Finally, we are going to experiment with
applications and real malware samples in order to evaluate the
defense system capabilities in realistic attack scenarios.

REFERENCES

[1] M. Alhanahnah, Q. Lin, Q. Yan, N. Zhang, and Z. Chen. Efficient
signature generation for classifying cross-architecture IoT malware.
Proc. of IEEE Conf. on Communications and Network Security, pp.
1–9, 2018.

[2] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor, Proc. of ICML, 2018.

[3] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver. Rainbow: Combining
improvements in deep reinforcement learning. Proc. of AAAI, 2018.

[4] I. Popov, N.M. Heess, T.P. Lillicrap, R. Hafner, G. Barth-Maron, M.
Vecerı́k, T. Lampe, Y. Tassa, T. Erez, and M.A. Riedmiller. Data-
efficient Deep Reinforcement Learning for Dexterous Manipulation.
ArXiv, abs/1704.03073, 2018.

[5] S.-C. Lin, I. F. Akyildiz, P. Wang, M. Luo, Qos-aware adaptive routing
in multi-layer hierarchical software defined networks: a reinforcement
learning approach. Proc. of IEEE Int. Conf. on Services Computing, pp.
25–33, 2016.

[6] X. Xu, Adaptive intrusion detection based on machine learning: feature
extraction, classifier construction and sequential pattern prediction, In-
ternational Journal of Web Services Practices 2 (1–2), pp. 49–58, 2006.

[7] Servin, D. Kudenko, Multi-agent reinforcement learning for intrusion
detection, in: Adaptive Agents and Multi-Agent Systems III. Adaptation
and Multi-Agent Learning, Springer, 2008, pp. 211–223.

[8] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou and H. Huang. Evading Anti-
malware Engines with Deep Reinforcement Learning. IEEE Access,
2019.

[9] T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang. Iot candy jar : Towards
an intelligent-interaction honeypot for iot devices. Proc. of Black Hat,
2017.

[10] T. Yu, S. Fayaz, M. Collins, V. Sekar, and S. Seshan. Psi: Precise security
instrumentation for enterprise networks. Proc. of the 24th Network and
Distributed System Security Symposium, 2017.

[11] L. Fernandez Maimo, L. Perales Gomez, F. J. Garcia Clemente, et al.
A Self-Adaptive Deep Learning-Based System for Anomaly Detection
in 5G Networks. IEEE Access, vol. 6, pp. 7700–7712, 2018.

[12] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing network-wide policies in the presence of dynamic middlebox
actions using FlowTags. Proc. of NSDI, pp. 533–546, 2014.

[13] C. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang. Nice: Network
intrusion detection and countermeasure selec-tion in virtual network
systems. IEEE transactions on dependable and secure computing, vol.
10, no. 4, pp. 198–211,2013.

[14] A. S. Sendi, H. Louafi, W. He, and M. Cheriet. Dynamic optimal coun-
termeasure selection for intrusion response system. IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 5, pp. 755–770,
2016.

[15] M. Zolotukhin, T. Hämäläinen, A. Juvonen. Growing Hierarchical Self-
organising Maps for Online Anomaly Detection by using Network Logs.
Proc. of WEBIST, pp. 633–642, 2012.

[16] M. Antonakakis, T. April, M. Bailey, et al. Understanding the mirai
botnet. Proc. of the 26th USENIX Conference on Security Symposium
(SEC). pp. 1093–1110, 2017.

[17] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang and Wojciech Zaremba. OpenAI Gym.arXiv:1606.01540, 2016.

[18] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J.
Schulman, S. Sidor, Y. Wu, and P. Zhokhov. OpenAI Baselines. GitHub,
https://github.com/openai/baselines, 2017.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra and Martin Riedmiller. Playing Atari with Deep Reinforcement
Learning. arXiv:1312.5602, 2013.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

