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Abstract 

Delineation of major torso organs is a key step of mouse micro-CT image analysis. This task 

is challenging due to low soft tissue contrast and high image noise, therefore anatomical prior 

knowledge is needed for accurate prediction of organ regions. In this work, we develop a deeply 

supervised fully convolutional network which uses the organ anatomy prior learned from 

independently acquired contrast-enhanced micro-CT images to assist the segmentation of non-

enhanced images. The network is designed with a two-stage workflow which firstly predicts the 

rough regions of multiple organs and then refines the accuracy of each organ in local regions. The 

network is trained and evaluated with 40 mouse micro-CT images. The volumetric prediction 

accuracy (Dice score) varies from 0.57 for the spleen to 0.95 for the heart. Compared to a 

conventional atlas registration method, our method dramatically improves the Dice of the abdominal 

organs by 18~26%. Moreover, the incorporation of anatomical prior leads to more accurate results 

for small-sized low-contrast organs (e.g. the spleen and kidneys). We also find that the localized 

stage of the network has better accuracy than the global stage, indicating that localized single organ 

prediction is more accurate than global multiple organ prediction. With this work, the accuracy and 

efficiency of mouse micro-CT image analysis are greatly improved and the need for using contrast 

agent and high X-ray dose is potentially reduced.  
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organ segmentation 

Introduction 

As a mammal model whose genome has 85 percent of protein-coding regions identical to the 

human genome, mice are commonly used in preclinical studies of drug development, 

pharmacokinetic analysis and tumor target identification (Kagadis et al., 2010). In vivo mouse 



imaging is of great importance for observing the phenotype and cancerous changes in the body. In 

the field of medical physics, micro-CT is a widely used preclinical imaging modality for observing 

internal organ structures (Badea et al., 2011; Burk et al., 2012; Guo et al., 2011; Holbrook et al., 

2018) and for providing anatomical reference to functional signal (Zhang et al., 2014). As a post-

processing step, delineating important organ regions from mouse preclinical image is important for 

monitoring organ morphometry changes (Kockelkorn et al., 2014), quantifying organ molecular 

tracer uptake (Maroy et al., 2010; Cheng and Qi, 2010; Wang et al., 2012a), assisting functional 

image reconstruction (Joshi et al., 2010), measuring radiation dosimetry (Welch et al., 2015), and 

etc.  

To alleviate human operator burden, and to reduce subjectivity of image analysis in small 

animal imaging centers, automated mouse image analysis is preferred. However, soft tissues in non-

enhanced micro-CT images always suffer from poor intensity contrast (as shown in Fig.1), making 

automated delineation a challenging problem. To enhance soft tissue contrast, X-ray attenuating 

agents can be used, leading to more complicated experiment procedures and higher experimental 

expenditures (Yan et al., 2017). Therefore, most small animal micro-CT scans are still acquired 

without contrast agent to maintain high throughput and low cost. Using advanced software 

algorithms to predict organ regions from low-contrast micro-CT images offers a practical solution 

to this problem. Such an algorithm should be able to use prior anatomical knowledge to compensate 

for the lack of localizing features in the low-contrast image. 

  To this day, mainstream methods of mouse organ localization in low-contrast micro-CT images 

are based on atlas registration. By registering a digital mouse atlas with the target subject image, the 

pre-defined organ regions in the atlas are non-rigidly warped into the subject image, giving an 

estimation of the organ locations. Representative methods of this type include the articulated 

skeleton guided atlas registration by Baiker et al. (Baiker et al., 2010; Khmelinskii et al., 2011; 

Snoeks et al., 2012; Baiker et al., 2011; Kok et al., 2010; Snoeks et al., 2011), the statistical organ 

shape model approach by Wang et al. (Wang et al., 2012b) and the multi-atlas registration method 

by Ren et al. (Ren et al., 2016). Atlas-based approaches utilize the prior anatomical knowledge 

defined in the atlas to compensate for the lack of features of the low-contrast organs. In addition to 

atlas-based methods, there are also studies using multi-modality imaging strategy to compensate for 

the missing organ information in micro-CT images (Akselrod et al., 2016), as well as using 

dedicated animal shuttles to improve segmentation accuracy by constraining the body position 

(Klose and Paragas, 2018). However, the use of additional imaging modalities or special animal 

holders further complicates the imaging procedure.  

Deep learning methods have achieved remarkable success in the classification, diagnosis, 

segmentation and registration of clinical medical images (Litjens et al., 2017). For organ 

segmentation, deep convolutional neural network (CNN) and its variants (Ronneberger et al., 2015; 

Milletari et al., 2016; Shelhamer et al., 2017)) significantly outperformed conventional 

segmentation methods in terms of segmentation accuracy and computation speed. For example, 

Kearney et al. present a deeply supervised network (Kearney et al., 2019), which combined attention 

gates (AGs) and channel boosting to improve the convergence of the model, increasing the numbers 

of learned features. Li et al. propose the H-DenseUNet to extract intra-slice and inter-slice features 

effectively in order to avoid heavy computational cost, instead of training 3D networks directly (Li 

et al., 2018). Gibson et al. use Dense V-networks to segment multi-organ of abdominal CT 

automatically (Gibson et al., 2018). Aided by modern graphics process units (GPU), a CNN 



typically takes less than one minute to segment a volumetric image, while conventional atlas-based 

methods may take minutes or even hours. Considering the merits of deep learning approaches, it is 

worthy to apply the CNN-based methods to the segmentation of mouse micro-CT images. However, 

to the best of our knowledge, such applications are still rare, probably due to the following reasons. 

i. Most existing CNN methods are developed to segment high-contrast organs with clear 

boundaries. These methods may fail to segment the low contrast organs which are almost 

indistinguishable from the surrounding tissues. 

ii. Due to the low boundary contrast, even human operators cannot give accurate annotation. 

Therefore, the network training is hampered by the lack of label annotations. 

iii. Considering the lack of enough image contrast, anatomical priors should be used to aid organ 

prediction. Although there have been studies introducing anatomical priors to CNN 

(Krizhevsky et al., 2012), these studies were mostly focused on high-contrast organs rather 

than low-contrast organs.  

In summary, organ prediction in low-contrast images is a different problem from organ 

segmentation in high-contrast images. In many applications of preclinical image analysis, prediction 

of organ region is used for quantifying tracer uptake (Maroy et al., 2008). In such cases, only a 

region of interest (ROI) is required to be drawn in the organ center, while complete segmentation of 

the entire organ is not necessary. If the algorithm can guarantee that the core part of the predicted 

region lies inside the target organ, a reliable ROI can be created to provide accurate tracer 

quantification. Therefore, the objective of organ prediction is to ensure the major part of the 

predicted region overlaps with the ground truth region, rather than to accurately delineate the organ 

boundary. The network meeting this objective ought to infer the organ regions from very week 

contrast appearance. To achieve such inference ability, the memory of organ locations should be 

deeply implanted into the network architecture. We’ve made the following efforts to address these 

issues.  

i. To solve the problem of missing training labels, we created pseudo low-contrast micro-CT 

images from contrast-enhanced micro-CT images. The pseudo low-contrast images were used 

to train the network, and the training labels come from human annotations of the original 

contrast-enhanced images. The trained network was then evaluated on real low-contrast images 

and its effectiveness was validated. 

ii. To implant the memory of organ locations into the network, we adopt the mechanism of deep 

supervision for network training (Dou et al., 2017). The term ‘deep supervision’ means to use 

ground truth segmentation labels to supervise the learning process of the intermediate network 

layers. In contrast, the networks without deep supervision only use the ground truth labels to 

supervise the last output layer. In this paper, the labels coming from contrast-enhanced images 

were used as anatomical priors to supervise the training of intermediate network layers so that 

the network outputs anatomically plausible results even when the organ contrast is low. 

iii. The labels coming from contrast-enhanced images were used as anatomical priors to supervise 

the training of intermediate network layers so that the network outputs anatomically plausible 

results even when the organ contrast is low. 

iv. To ensure that the major part of the predicted region overlaps with the ground truth region, we 

design a two-stage network structure in which the first stage localizes rough organ regions from 

the whole-body image, and the second stage gives more accurate prediction of every organ 

region. We found that the localized prediction of each single organ is more accurate than the 



globalized prediction of multiple organs. 

 

Materials 

Because the network is designed to process low contrast micro-CT images, the training images 

should present low soft tissue contrast. However, accurately annotating organ regions in low contrast 

images is difficult even for human experts. To tackle this problem, we use contrast-enhanced micro-

CT images to provide accurate label annotations, and then simulate pseudo low contrast images 

using the high contrast images to generate the training data. Moreover, we use real low-contrast 

micro-CT images to further prove the effectiveness of our method on real-world data.  

Forty contrast-enhanced whole-body mouse micro-CT images were randomly selected from 

the database of small animal images at the Crump Institute of UCLA (Stout et al., 2005). These 

images were acquired for mouse subjects injected with the Fenestra LC contrast agent (ART, 

Montreal, QC, Canada) which enhances the intensities of the liver, spleen and kidneys. The 

reconstructed voxel size was 0.20 mm and the image array size was 256×256×496, the exposure 

settings were 70 kVp, 500 mAs with 2.0 mm aluminum filtration. The scanner was MicroCAT II 

small animal CT system (Siemens Preclinical Solutions, Knoxville, TN, USA). From the contrast-

enhanced images, target organ regions were manually segmented by a human expert of mouse 

anatomy, and the label image of multiple organ regions were created from the expert labels.  

Within the expert-segmented regions of the liver, spleen and kidneys, the voxel intensity was 

substracted with an intensity offset 𝜇 ∈ (200, 800)  to create the pseudo low contrast image. 

Because the enhanced organ intensities were inconsistent between the different organs and different 

subjects, the values of 𝜇 were manually adjusted for each organ of each subject. Fig.1 shows a 

pseudo low-contrast image compared with the contrast-enhanced image and the real low-contrast 

image of the same mouse subject. It can be observed that the pseudo low-contrast (PLC) image 

visually resembles the real low-contrast image. 

 

 

Fig.1.  A contrast-enhanced mouse micro-CT image (left), the low-contrast CT image of the same mouse subject (middle) and the 

pseudo low-contrast (PLC) image generated from the contrast-enhanced image (right).  

 

To reduce the computational overhead and the training time, torso regions were cropped from 

the pseudo low contrast images and their corresponding label images. The cropped images were 

resampled to the size of 96×96×96 and their grayscales were normalized to the range of [0,1]. 



Method 

Fig.2 illustrates the training and inference workflow of the proposed two-stage deeply 

supervised network (TS-DSN). The network takes a volumetric micro-CT image of mouse torso as 

the input, it outputs a same-sized label image of multiple organs including the heart, lungs, liver, 

spleen, left kidney and right kidney. These organs are important for preclinical biodistribution and 

tracer metabolism studies. As shown by Fig.2(a), the training workflow includes two stages. The 

first stage generates pseudo low-contrast (PLC) images from high-contrast images and then use the 

generated images to train a rough prediction network. The second stage crops out the local image of 

each organ and trains multiple prediction networks for different organs. For inference, the first stage 

network is used to localize the rough organ regions, then the second stage network of each organ is 

used for more accurate region prediction (Fig.2(b)). Each step of the training and inference 

workflows is elaborated in detail as below.  

A. The First-Stage Network Training 

The first stage network is designed with a deep supervision architecture as illustrated in Fig.3. 

We adopt the idea of deep supervision (Dou et al., 2017) to incorporate anatomical priors into the 

network, as well as to prevent the gradient vanishing problem of training deep 3D networks. 

The network contains 12 layers and the convolution kernel size was set to 3×3×3 for a good 

receptive field. The sampling stride was set to 2 to produce a double size down-scaling convolution 

map. Each convolution layer contains a batch normalization layer and uses the rectified linear unit 

(ReLU) as an activation function. The ReLU function was defined as F(x) = x for x>0 and 0 

otherwise. 

We name the encoding and decoding parts of the network as the main network. The hidden 

deconvolutional layers in the dotted-lined box of Fig.3 are named as the auxiliary network. The 

main network performs the image segmentation as the conventional fully convolutional network 

(FCN), while the auxiliary network compares the intermediate layer feature maps with the down-

sampled ground truth label map. The loss function of the entire network incorporates both losses of 

the main network and the auxiliary network. In this way, the anatomical priors from the ground truth 

labels are used to deeply supervise the training of each intermediate layer. In the main network, the 

main loss function ℒ is defined as  

ℒ(𝒳, 𝒴; 𝑊) =  ∑ −𝑙𝑜𝑔𝑝(𝑦𝑖|𝑥𝑖; 𝑊)𝑥𝑖∈𝒳                         (1) 

where 𝑥𝑖 means the voxel and 𝑦𝑖 means the label of 𝑥𝑖. 𝑊 is the weight of the main network. 

𝑝(𝑦𝑖|𝑥𝑖; 𝑊) means the probability of 𝑥𝑖  belonging to the class of 𝑦𝑖. In the auxiliary network, the 

auxiliary loss ℒ𝑢 is defined as 

ℒ𝑢(𝒳, 𝒴; 𝑊𝑢) =  ∑ −𝑙𝑜𝑔𝑝(𝑦𝑖|𝑥𝑖; 𝑊𝑢)𝑥𝑖∈𝒳                         (2) 

where 𝑊𝑢  means the weights of the auxiliary network. Therefore, the loss function of the deeply 

supervised network is defined as 

ℒ =  ℒ(𝒳, 𝒴; 𝑊) + ∑ 𝛼𝑢ℒ𝑢(𝒳, 𝒴; 𝑊𝑢)𝑢∈𝒰 + 𝜇(‖𝑊‖2 + ∑ ‖𝑊𝑢‖2
𝑢∈𝒰 )             (3) 



where 𝒳  means the training set and 𝒴  means the label. (𝒳, 𝒴 ) consists the training dataset 

pair, 𝒲 is the weight of the main network, 𝑊𝑢 is the weight of the auxiliary network, which is 

shown in Fig 3.  𝜇 is the hyperparameter of the L2 regularization, 𝛼𝑢 is the weight of ℒ𝑢. The first 

term is the main loss, the second term comes from deeply supervised auxiliary loss, and the third 

term means L2 regularizations. The hidden layer deconvolves the intermediate feature maps until 

the input and output sizes are the same. The lower-level feature maps obtained via the deconvolution 

were then used to calculate the loss using the softmax layer.  

B. The Second-Stage Network Training 

The purpose of the second stage network is to further improve the organ region prediction  

 
Fig.3. Structure of the deeply supervised network. 

 

 

 

 

Fig.2. The workflows of network training and inference. (a). The workflow of the first training stage and the second training 

stage. (b). The inference workflow. 



 

accuracy based on the first-stage result. The first-stage network takes the whole-torso image as input 

and predicts multiple organs simultaneously. It is difficult to train such a global network to produce 

accurate results for multiple organs, therefore we train separated local networks for individual 

organs in the second stage. 

Based on the organ regions obtained from the first-stage result, the largest connected region of 

each organ is extracted, and the 3D bounding box of extracted region is obtained. Using the 

bounding box, the local image of each organ and its corresponding label image are cropped from 

the whole-torso micro-CT and label images. The cropped local images are used to train the specific 

networks for each organ. As a result, we trained six organ-specific networks for the six target organs. 

The network structure and training configurations of the second stage were the same as the first 

stage.  

C. The Inference Workflow 

After the two-stage training processes, one global network and six organ-specific local 

networks are obtained. For inference, the global network is used to generate rough predictions from 

the whole-torso micro-CT image, then the local organ images are cropped in the same manner as of 

the second-stage training. The cropped images are input to the organ-specific networks to generate 

the local label image of each organ. Finally, the local label images are combined into a whole-torso 

multi-label image as the final output of the two-stage workflow. 

D.  Implementation Details 

The proposed network was implemented with 3D CAFFE (Dou et al., 2017) on a server with 

three NVIDIA P40 GPUs and 128G RAM. Each session took about 30h to train. For inference, the 

two stages in Fig.2(b) totally took less than two seconds for one test image. The training process 

uses a stochastic gradient dependent (SGD) optimizer (Bottou, 2010) with cross-entropy loss. The 

initial learning rate, which influences the rate of the model converge, was set to 0.01. It is also 

decreased along a polynomial curve with power 0.9. The weight decay was set to 0.005 and the 

momentum was 0.9 to get rid of local optima. Due to the limitation of memory size of GPU, the 

batch size was set to 1. The deep supervision weights 𝛼1 and 𝛼2 were initialized as 0.3 and 0.4 

and then decayed as training goes on. The network parameters were initiated with random Gaussian 

 
Fig.3. Structure of the deeply supervised network. 



distribution and trained to stop after 30000 iterations. The last layer of the network outputs the 

probability map of each organ. A threshold of 0.01 was used to generate the binary label maps. Due 

to limited training data and high-dimension network, data argumentation strategy was used to avoid 

overfitting. The augmented data was obtained by shifting the original image along three dimensions 

by 1, 3, 5, -1, -3, -5 and 0 voxels. It should be noted that all the above training parameters were 

empirically fine-tuned for the training images of this study therefore were specific for the low-

contrast micro-CT images. In case the same methodology strategy is used for other small animal 

imaging modalities (e.g. MR and PET), the training parameters should be optimized otherwise. The 

network models of TS-DSN have been opened on GitHub website 

(https://github.com/DlutMedimgGroup/MouseCTSegmentation). 

The evaluation of pseudo data was performed using a cross-validation strategy. Each time we 

used 5 of the 40 pseudo images as the testing data and used the remaining 35 images for network 

training. Such a test was repeated eight times and the results of all the eight folds were collected for 

accuracy validation.  

E.  Evaluation of the segmentation accuracy 

We used four metrics to evaluate the prediction accuracy, including Dice coefficient (Dice), 

recovery coefficient (RC) of organ volume, precision and recall. The ground truth organ regions 

come from human expert labels based on the contrast-enhanced images. The metrics are defined as 

follows, 

Dice = 2
|𝑅𝑝∩𝑅𝑔|

|𝑅𝑝|+|𝑅𝑔|
,                              (4) 

 RC =
|𝑅𝑝|

|𝑅𝑔|
,                                 (5) 

Precision =
|𝑅𝑝∩𝑅𝑔|

|𝑅𝑝|
,                             (6) 

Recall =
|𝑅𝑝∩𝑅𝑔|

|𝑅𝑔|
,                              (7) 

where Rp and Rg represent the predicted and ground truth organ regions.   denotes the number of 

voxels, ∩indicates overlapping between two regions; The Dice score reflects prediction accuracy; 

RC reflect the prediction accuracy of organ volume, it is important for the applications of preclinical 

biodistribution studies which requires a good estimation of organ volume. Precision reflects the ratio 

of true positive voxels versus all predicted voxels, while recall reflects the ratio of true positive 

voxels versus all ground truth voxels. Precision and recall are essential indices for molecular tracer 

uptake quantification which requires that most of the predicted voxels lie inside the ground truth 

region. 

Results 

A.  Pseudo Low-Contrast Image Results 

The proposed two-stage deeply supervised network (TS-DSN) was compared with two 

baseline methods, i.e. the conventional FCN without deep supervision mechanism (Shelhamer et al., 

https://github.com/DlutMedimgGroup/MouseCTSegmentation


2017) and the deeply-supervised FCN (DSN) without two-stage architecture (Dou et al., 2017). The 

purpose of this comparison was to reveal the advantages of the deep supervision scheme and the 

two-stage strategy. Fig. 4 displays representative segmentation results of FCN, DSN and TS-DSN 

for different organs. The ground truth contours come from the human expert segmentation of the 

contrast-enhanced images used for generating the pseudo low contrast images. It can be visually 

inspected that all the three methods accurately segmented the high contrast organ boundaries like 

the lung boundary and the upper liver boundary. However, for the low contrast organ boundaries 

(e.g., the spleen and kidney boundaries and the lower liver boundary) which are almost 

indistinguishable in the image, the two deeply supervised networks (DSN and TS-DSN) yielded 

more precise contours than FCN, implying that the deep supervision scheme helps to generate 

anatomically plausible boundary using the prior shape knowledge. Moreover, as we further compare 

between the two deeply supervised networks, TS-DSN produces results closer to the ground truth 

than DSN (as indicated by the arrows in Fig. 4). For the small low-contrast organs like spleen and 

kidneys which are almost invisible in the image, TS-DSN produced less false-positive predictions 

outside the ground truth regions, proving the effectiveness of localized organ segmentation strategy 

(i.e., the second stage of the proposed workflow). 

To give a quantitative comparison between different methods, Fig.5 shows the box plots of 

Dice, RC, Precision and Recall between FCN, DSN and TS-DSN. TS-DSN yielded increased 

median Dice compared to FCN and DSN. TS-DSN also has narrower Dice range than FCN and 

 
Fig.4. Representative segmentation results of the compared methods. (a)-(f) show the segmentation results of the lungs, heart, 

liver, spleen, left kidney, and right kidney, respectively. The red, green, yellow and blue contours indicate the ground truth and 

FCN, DSN, TS-DSN results, respectively. In each sub-figure, the right part shows a zoom-in view of the left part. The arrows 

points to locations where TS-DSN yielded more accurate results than DSN. 



DSN, meaning that the two-stage strategy lead to more stable results across different test data. The 

RC of TS-DSN is closer to 1 than FCN and DSN, revealing better volume recovering ability of TS-

DSN. From Fig.5(c) and (d), it seems that FCN and DSN have higher recall but much lower 

precision than TS-DSN, implying that FCN and DSN make more false positive predictions than TS-

DSN. This finding is also supported by the RC result (Fig.5(b)) where FCN and DSN tends to 

overestimate (i.e., RC>1) the organ volume. In contrast, TS-DSN is more conservative in positive 

prediction. TS-DSN has RC close to 1, it also has high precision and moderate recall values, 

meaning that its segmentation results mostly lie inside the ground truth organ region.  

 

B.  Comparison with the state-of-the-art method 

Among the published methods of low-contrast mouse micro-CT organ segmentation, our 

previous approach based on statistical shape model (SSM) (Wang et al., 2012b) achieved higher 

accuracy than most existing studies. Besides, the recently developed Dense V-net (Gibson et al., 

2018) also demonstrated good performance on human CT multi-organ segmentation but was not 

evaluated on mouse CT images. Therefore, we compare our TS-DSN with the SSM approach and 

the Dense V-net method. Table 1 reports the Dice scores of the three methods based on the same test 

dataset. It can be seen that both TS-DSN and SSM have similar Dice scores for the lungs, heart and 

right kidney. TS-DSN has higher scores for all the organs than SSM. Especially, the mean Dice 

improvements for the left kidney and spleen are as high as 18% and 26%, respectively. TS-DSN has 

higher scores for the lungs, heart, liver and kidneys than Dense V-net, the improvements vary from 

1% (right kidney) to 9% (liver). The advantage of TS-DSN over Dense V-net should be attributed 

to the mechanism of deep supervision. As for the computation efficiency, the SSM method took 

4~5min to process one image, which is much slower than the two deep learning methods (TS-DSN 

 

Fig.5. Box-plots of Dice, RC of organ volume, precision and recall of FCN (green), DSN (yellow) and TS-DSN (blue). 



and Dense V-net) which both took less than two seconds per 3D image. 

 

TABLE 1. DICE SCORES OF THE PROPOSED METHOD AND THE STATE-OF-THE-ART METHODS. 

 Lungs Heart Liver Spleen Left Kidney Right Kidney 

TS-DSN 0.92±0.02 0.95±0.01 0.88±0.02 0.57±0.18 0.85±0.09 0.86±0.06 

SSM 0.90±0.02 0.90±0.02 0.79±0.03 0.45±0.18 0.70±0.12 0.80±0.07 

Dense V-net 0.89±0.02 0.91±0.02 0.81±0.02 0.60±0.08 0.80±0.05 0.85±0.03 

 

C.  Real Low-Contrast Image Results 

Since the proposed TS-DSN was trained using pseudo low-contrast data, it is necessary to test 

its performance on real low-contrast datasets. We randomly selected 10 low contrast images from 

the database of small animal images at the Crump Institute of UCLA. These images were acquired 

with the same device settings as the contrast-enhanced images mentioned in the method section, 

except that no contrast agent was used. Fig.6 displays the typical results of different organs. It can 

be seen that the TS-DSN trained on pseudo data yield visually acceptable results on real-world data. 

The predicted organ regions overlap with the core regions of the target organs, ensuring reliable ROI 

delineation for preclinical molecular uptake quantifications. It is worth noting that Fig.6(b) presents 

a mouse subject with a large tumor xenograft on the shoulder. Our method yielded reasonable 

segmentation results even when this tumor is presented.  

To further illustrate the segmentation accuracy on real low contrast image, we took pre- and 

post-contrast scans for the same subject in the same posture. We use the TS-DSN method to segment 

the pre-contrast image (i.e. low contrast image) and superimpose the results on both the pre- and 

post-contrast images, as shown in Fig.6(d) and (e), respectively. Moreover, the images of fig.6(d) 

and (e) were acquired with a different CT scan configuration (0.13 mm voxel size, 50 kVp voltage, 

20.2 mAs exposure, 1.0 mm aluminum filtration with a homemade micro-CT system) from the 

configurations of Fig.6(a)-(c) (0.20 mm voxel size, 70 kVp voltage, 500 mAs exposure, 2.0 mm 

aluminum filtration with Siemens MicroCAT II CT system). It can be observed that our method 

yielded reasonable prediction of the organ regions for the test images with different scanner 

configurations, the predicted regions using the pre-contrast image (Fig.6(d)) agree well with the 

organ regions in the post-contrast image (Fig.6(e)). 

Discussion 

Due to the trade-off between the radiation dose and image quality for CT acquisition, low-

contrast images are widely used in preclinical research. We use a deeply supervised network to cope 

with the problem of imperfect organ contrasts. Unlike most deep segmentation networks whose 

objective functions penalize the differences between the network output and the annotation labels, 

the deeply supervised network use the labels to supervise the training of intermediate network layers. 

With this approach, the intermediate layers are forced to memorize the correct organ locations and 

shapes. When the input image presents poor organ contrast, the implanted memories will help the 

network to output plausible organ locations and shapes. As revealed by Fig.4 and Fig.5, the deeply 

supervised networks yielded more accurate results than the FCN without deep supervision, 

especially for the low-contrast soft-tissue organs like the spleen and kidneys. 



 

Another advantage of the deep supervision architecture is that it helps the training process to 

avoid gradient vanishing. Three-dimensional networks contain more layers and parameters than 2D 

networks. As the numbers of layers and parameters increase, the gradient disappearance becomes 

more serious(Glorot and Bengio, 2010). Moreover, the absence of high contrast image features 

makes it more difficult to find the optimal gradient direction. The deep supervision mechanism 

introduces anatomical priors to guide the training of intermediate layers. By performing loss 

calculation on multiple intermediate layers, the problem of gradient disappearance can be reduced 

effectively. This mechanism is especially beneficial to the training of shallow layers which is prone 

to the gradient vanishing issue. The deeply supervised network produces more accurate 

segmentation than the network without deep supervision. This result means that deep supervision 

leads to better optimization of the shallow network layers which is related to the local features of 

the resultant image. 

During the methodology development, we found that the multi-organ prediction from a whole-

torso image is less accurate than the single-organ prediction from a local image region. This finding 

 

Fig.6 Organ prediction results of typical real low-contrast micro-CT images. The red, light blue, blue, brown, purple and green 

contours indicate the heart, lung, liver, spleen, left and right kidney, respectively. The first to the fourth row presents the results 

in transverse, sagittal, coronal and surface rendering views. Each column presents a different test subject. Columns (a)-(c) show 

the segmentation results of low-contrast images with the same acquisition configurations as the training data. Column (d) shows 

the segmentation result of the a low-contrast image acquired with different scanner configurations from (a)-(c). Column (e) 

superimposes the segmentation result of (d) on the post-contrast image of (d) to give a visual evaluation of the segmentation 

accuracy. 



is reflected from the inaccurate organ locations and noisy false positive predictions (see the 3D-

DSN results in Fig.4). Interestingly, a similar finding was also presented in a recent study for multi-

vertebrae segmentation (Lessmann et al., 2019). Therefore, we designed the second stage network 

for single organ prediction to improve accuracy. As reflected from Fig.5, The TS-DSN has larger 

median Dice and Precision values of Dice for most organs. The organ volume RC of TS-DSN is 

also better than the compared methods. The improvement on RC of organ volume is important for 

preclinical biodistribution studies which use the organ volumes for organ exposure dose calculation. 

The increase of precision is also good for the quantifications of molecular tracer uptake since these 

applications require that most of the organ ROI lies inside the ground truth region, i.e., the ratio of 

true positive voxels over all predicted voxels should be high. 

As compared to FCN, DSN and the traditional atlas registration method, the most remarkable 

accuracy improvements happen to the spleen and kidneys. These organs have small sizes and 

unstable positions. The small organ sizes cause imbalances of positive and negative voxel samples, 

posing challenges to the neural network training. The unstable position makes it difficult for the 

atlas registration method to get a good match. With the deep supervision and two-stage architecture, 

our TS-DSN method significantly improves the accuracy of these problematic organs. Moreover, 

the computation speed of the proposed method is much faster than the SSM method (a few seconds 

vs. a few minutes), the improvement on computation efficiency is quite significant. 

One limitation of this study is reflected from the real world low-contrast image results. 

Although the prediction results in Fig.6 look reasonably good, it is still not as accurate as the pseudo 

CT results in Fig.4. Fortunately, the predicted regions mostly lie inside the target organ region, 

therefore the applications such as molecular tracer quantification are not handicapped. Another 

concern may arise from the generalizability of the method. In real-world situations, the CT scanners 

and configurations often vary. In the experiment, we use different CT devices and different scanner 

configurations to acquire real low-contrast images. As Fig.6 shows, our method performed well on 

different acquisition parameters or scanners. However, our pseudo CT training images could not 

resemble all the unknown cases of test images acquired with various protocols, animal sizes and/or 

body postures. This generalization concern is also a major limitation of current deep learning 

approaches. For the next step, we will enlarge our training set to enhance the generalizability of our 

method. We will consider simulating different pseudo training images with our previously 

developed deformable mouse phantom (Wang et al., 2012b) or the MOBY phantom (Segars et al., 

2004) using different scanner configurations. Alternatively, we may also acquire both non-contrast 

and contrast-enhanced images of the same mouse subject to avoid the generation of pseudo low-

contrast images. To do so, we will need to take care of the inter-scan motion of the mice and use 

non-rigid image registration to establish the organ label correspondences between the non-contrast 

and contrast-enhanced images. 

Conclusion 

In this study, we developed a deep learning method to estimate the regions of soft-tissue organs 

in low-contrast mouse micro-CT images. The deep supervision mechanism is used to impose 

anatomical priors to the network training, and a rough-to-fine two-stage workflow is designed to 

improve the prediction accuracy. Our method outperforms the state-of-the-art atlas registration 

method in both accuracy and efficiency, it enhances the role of deep learning in preclinical image 



analysis. For future work, we will investigate more advanced methods of using anatomical priors to 

further improve the organ prediction accuracy in low-contrast micro-CT images. 
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