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 12 

ABSTRACT 13 

Current automated driving technology cannot cope in numerous conditions that are basic daily 14 

driving situations for human drivers. Previous studies show that profound understanding of human 15 

drivers’ capability to interpret and anticipate traffic situations is required in order to provide similar 16 

capacities for automated driving technologies. There is currently not enough a priori understanding 17 

of these anticipatory capacities for safe driving applicable to any given driving situation. To enable 18 



 2 

the development of safer, more economical, and more comfortable automated driving experience, 1 

expert drivers’ anticipations and related uncertainties were studied on public roads. First, driving 2 

instructors’ expertise in anticipating traffic situations was validated with a hazard prediction test. 3 

Then, selected driving instructors drove in real traffic while thinking aloud anticipations of unfolding 4 

events. The results indicate sources of uncertainty and related adaptive and social behaviors in 5 

specific traffic situations and environments. In addition, the applicability of these anticipatory 6 

capabilities to current automated driving technology is discussed. The presented method and 7 

results can be utilized to enhance automated driving technologies by indicating their potential 8 

limitations and may enable improved situation awareness for automated vehicles. Furthermore, the 9 

produced data can be utilized for recognizing such upcoming situations, in which the human should 10 

take over the vehicle, to enable timely take-over requests.  11 

Keywords 12 

Automated driving; expert driver; prospective thinking-aloud; traffic safety; uncertainty; 13 

anticipation 14 

1 INTRODUCTION 15 

Automated driving solutions (i.e., autopilot technologies) are becoming increasingly common in 16 

commercial vehicles. The aim of automated driving technology is to substantially decrease accidents 17 

and increase driving comfort (Hubmann et al., 2018). Automated driving technologies are 18 

sometimes claimed to be safer than human drivers (e.g., McGoogan, 2016; Associated Press, 2018; 19 

Teoh & Kidd, 2017), and in many respects they may be superior to a human driver. They are able, 20 

for instance, to monitor surrounding objects continuously – automated driving technologies do not 21 

get tired or bored during monotonous driving as human drivers tend to do (Horne and Reyner, 1995; 22 

Schmidt et al., 2009; Thiffault and Bergeron, 2003; Ting et al., 2008). 23 



 3 

One major manufacturer of automated driving technology is Tesla, Inc. and it has been estimated 1 

that Tesla’s autopilot has driven over 2.2 billion miles on public roads by January 2020 (Friedman, 2 

2020). Nonetheless, these successfully driven kilometers in limited driving scenarios may not be a 3 

sufficient indicator of the safety or superiority of these systems over human drivers – automated 4 

driving technologies still have some major weaknesses compared to human drivers. Up to now, little 5 

attention has been paid to these weaknesses and how human drivers manage in similar situations. 6 

The current traffic system is a social environment where other road users’ behavior determines how 7 

drivers interact with each other (Zaidel, 1992). Driving is not only a mechanical performance, it is 8 

also a “complex social activity” (Brown, 2017). Hence, the interaction between automated driving 9 

technology and other road users is gaining attention in the literature (e.g., Brown & Laurier, 2017; 10 

Rasouli & Tsotsos, 2019). Schwarting, Alonso-Mora, and Rus (2018) have stated that interaction 11 

between automated driving technologies and human road users is “an unsolved problem”. Previous 12 

research has identified these problems that automated driving technologies might come across in 13 

traffic while interacting with humans – such as lack of negotiation with human drivers (Chater et al., 14 

2018), social issues regarding lane changes and merging (Brown and Laurier, 2017), as well as lack 15 

of interaction and communication with pedestrians (Mahadevan et al., 2018). All these studies 16 

describing interaction problems between humans and automated driving technologies concluded 17 

that these technologies need more “human-like” features to overcome the found social issues. 18 

What could these “human-like” features be? What could explain the insufficiencies of Tesla’s 19 

autopilot and other self-driving cars compared to human drivers? Stahl, Donmez, and Jamieson 20 

(2013) suggested that we should better understand human drivers’ capability to interpret and 21 

predict traffic situations to facilitate drivers’ competence. Correspondingly, we suggest that one of 22 

these “human-like” features that state-of-the-art automated driving technologies lack is the skill of 23 
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anticipation of traffic events, and more specifically, the skill of recognizing uncertainties concerning 1 

the unfolding driving situation and adapting to these accordingly. With this knowledge, automated 2 

driving technologies could be trained to perform in a similar way than humans do – or even better. 3 

The aim of this paper is to investigate human experts’ uncertainties that rise in anticipatory driving 4 

and their related adaptive behaviors. This knowledge is important in order to improve today’s 5 

automated driving technologies to be safer, more economical, and more comfortable. The research 6 

questions are: 1) What are the context-dependent uncertainties that arise in anticipatory driving of 7 

expert drivers (here: driving instructors)? and 2) How expert drivers adapt their behavior in the 8 

identified driving situations in order to resolve the uncertainties? 9 

First, commercial hazard perception test video clips were analyzed for identifying the situations 10 

which may be efficiently anticipated by human drivers but which could cause problems to current 11 

automated driving technologies for numerous reasons, such as poor visibility, objects that are 12 

partially occluded, unexpected trajectories, or lack of understanding the world. The selected video 13 

clips were transformed into hazard prediction clips by ending them with an occlusion just after the 14 

hazardous situation started to unfold. These hazard prediction clips were used to test if there are 15 

differences between inexperienced, a mixed group of drivers, and driving instructors in anticipating 16 

unfolding hazards in traffic. With this experiment, the selected driving instructors’ expertise in 17 

hazard prediction ability was validated. After the expert sample validation, six of the experts drove 18 

a predefined route on public roads while thinking aloud prospectively what driving-task relevant 19 

they are anticipating to happen. The research process is illustrated in Figure 1. Based on the content 20 

analysis of the data, uncertainties, as well as related adaptive and social behaviors in specific traffic 21 

situations and environments, were identified. To our best knowledge, this paper is the first to 22 
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investigate human expert drivers’ anticipations and uncertainties on public roads with the 1 

prospective thinking-aloud method. 2 

 3 

Figure 1: Research process 4 

2 RELATED LITERATURE 5 

2.1 Automated driving taxonomy and situation awareness 6 

In order to provide understanding of current automated driving technologies and their abilities, the 7 

Society of Automotive Engineers (2019) has presented a taxonomy regarding levels of automated 8 

driving. Some of today’s automated driving technologies may be classified at the third level: 9 

automated driving technology can drive the vehicle under limited conditions, and when the system 10 

requires, the driver must take over the automated driving technology (SAE, 2019). However, in order 11 

to succeed in safe driving already at these levels, the driving task requires situation awareness 12 

(Matthews et al., 2001; Ward, 2000). 13 

According to Endsley (1995), situation awareness (SA) refers to understanding the environment’s 14 

state for succeeding in a task. SA has three levels: perception of the elements in the environment 15 

(Level 1), comprehension of the current situation (Level 2), and projection of its future status (Level 16 

3). All levels of driving task (operational, tactical, and strategic) require each level of situation 17 

awareness (Matthews et al., 2001). 18 
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It can be argued that today’s automated driving technology may reach the Level 1 of situation 1 

awareness: they recognize environment’s elements such as other vehicles, road curviness, and 2 

obstacles. But do automated driving technologies reach the Level 2 of situation awareness, 3 

comprehension of the current situation? According to Lake, Ullman, Tenenbaum, and Gershman 4 

(2017), automated driving technology algorithms can only recognize objects but cannot understand 5 

scenes, that is, comprehend the current situation. 6 

Situation awareness’ Level 3 requires anticipating the future status of the task environment. In the 7 

automotive context this means, for instance, predicting other road users’ behavior. Predicting other 8 

road users’ trajectories with different machine learning techniques is, indeed, a growing research 9 

area (e.g., lane changes: Chae, Lee, & Yi, 2017; Dong, Chen, & Dolan, 2019; Wissing, Nattermann, 10 

Glander, & Bertram, 2018). According to academic research, state-of-the-art automated driving 11 

algorithms may be able to predict trajectories of recognized moving objects when interacting with 12 

these objects, selecting optimal paths and speeds accordingly, for instance, in complex intersection 13 

scenarios (Hubmann et al., 2018). Meghjani et al. (2019) have developed decision-making 14 

algorithms that are able to utilize contextual information (e.g., map data of intersections and lanes 15 

ahead) in inferring intentions of the cars in front of the ego vehicle for optimizing lane changes and 16 

route planning under uncertainty. However, these fairly low-level and relatively short-term 17 

prediction abilities are not yet sufficient when compared to human expert drivers. Lake et al. (2017) 18 

point out that – compared to humans – automated driving technologies lack intuitive psychology to 19 

be able to anticipate other road users’ behavior and intentions. Furthermore, they are lacking in 20 

intuitive physics in order to reason about the stability and trajectories of objects that may be 21 

occluded momentarily by other objects in the environment. That said, it could be argued that 22 
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today’s autopilots have severe deficiencies at Levels 2 and 3 of situation awareness, which are 1 

crucial for safe and comfortable driving (e.g., Baumann & Krems, 2007; Stahl et al., 2013). 2 

2.2 Problems current automated driving technologies encounter on public roads  3 

The literature review on automated technology problems is focused on publications between 2015 4 

and 2020 as the technology is developing rapidly. There are numerous of YouTube videos available 5 

where one can see situations in which the driver needs to overtake the automated driving 6 

technology (e.g., https://tinyurl.com/yywtj4oo and https://tinyurl.com/y3kae45d). In these videos, 7 

Tesla autopilot owners have recorded their drives on public roads while enabling the autopilot. 8 

Based on the real-life footage, human intervene is needed, for instance, in situations where lane 9 

markings are not clear, when road is too narrow, when ramp is too curvy, or when there are unusual 10 

objects on the road. 11 

The lack of scene understanding and future status anticipation may be some of the reasons that 12 

have led automated driving technologies to encounter these problems on public roads. One 13 

additional component of scene understanding could be the understanding of the social side of 14 

traffic. Brown and Laurier (2017) analyzed YouTube video clips of self-driving cars recorded by 15 

drivers and documented social challenges that automated driving technologies confront in real 16 

traffic. They noticed, for instance, how automated driving technology’s lane-changing behavior can 17 

be interpreted as rude, how automated driving technology maintaining speed and following traffic 18 

lines in merging cause a hazardous situation, and when automated driving technology is not 19 

“creeping” in the four-way stop intersection it gets “cut-up” and causes sudden braking. All these 20 

actions risk safe, economical, and comfortable traffic flow. 21 
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Endsley (2017) studied (based on her own experiences) Tesla’s autopilot for a six-month period in 1 

2017. During the period, Tesla’s autopilot had problems with sharp turns, curves, merging lanes, 2 

and intersections without lane markings. Similarly, Dikmen and Burns (2016) found out in their 3 

survey that Tesla’s autopilot’s lane detection failures caused problems to drivers: the autopilot tried 4 

to take an exit ramp and cross lanes for no reason, for example. Endsley (2017) also noticed that 5 

while parking, avoiding an obstacle on Tesla’s way also led the autopilot into a strange turning angle 6 

in a tight place. 7 

According to Dikmen and Burns (2016), one of the current automated driving technologies’ major 8 

problems is sudden changes in speed. Sudden braking and uncomfortable accelerations and 9 

decelerations were brought up in the survey they conducted – these were problems especially in 10 

heavy traffic conditions. Naturally, even if not safety-critical, these sudden speed changes are 11 

diminishing driving comfort. 12 

Lv et al. (2018) studied automated driving technology manufacturers’ reports that summarize 13 

incidents when either the technology itself disengaged the autopilot, or the autopilot was disabled 14 

by the driver. The latter is called “active disengagement” and means that the automated driving 15 

technology does not detect any problem, but the driver notices some unfolding event that makes 16 

the driver to take over the control of the car. Active disengagements happened, for instance, when 17 

there were too many vehicles and other road users in an intersection; when the automated driving 18 

technology did not slow down when a vehicle in front stopped; when the automated driving 19 

technology did not recognize a vehicle pulling out from a parking lot; when there was an emergency 20 

vehicle on the road or an accident; when other drivers’ behavior was unexpected or reckless; and 21 

when extra space for a cyclist was needed. All these examples can be considered as situations that 22 
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diminish safe driving and causes uncertainty of the automated driving technologies’ behavior for 1 

the driver or passengers. 2 

The reasons causing drivers to disable the automated driving technology have also been studied in 3 

a driving simulator. van Huysduynen, Terken, and Eggen (2018) noticed in their driving simulator 4 

study that the automated driving technology was disabled, for instance, in situations where the 5 

technology was perceived as conservative. This means that it reduced speed before passing, and 6 

after passing it constantly tried to return to the right lane even if there were slower traffic ahead. 7 

Therefore, one recognized reason to disable the automated driving technology was to maintain the 8 

traffic flow when changing lanes. Another reason to disable the automated driving technology was 9 

due to unpredictability of other road users – drivers did not trust that the technology would cope in 10 

those situations. Again, maintaining the traffic flow and coping in uncertain situations are linked to 11 

safer, more economical, and more comfortable driving.  12 

In addition, an increasing number of studies have investigated the interaction between automated 13 

driving technologies and pedestrians in urban environments. For example, Mahadevan et al. (2018) 14 

focused on communication and interaction between automated driving technologies and humans. 15 

They emphasized the importance of the communication that the vehicle is aware of pedestrians. 16 

This kind of interaction is easy for human drivers (e.g., Schneemann & Gohl, 2016), but the way how 17 

automated driving technologies could communicate their intentions to pedestrians still remains as 18 

a question. A number of studies have examined how this communication could be enabled by 19 

technical means (e.g., Ackermann, Beggiato, Schubert, & Krems, 2019; Chang, Toda, Sakamoto, & 20 

Igarashi, 2017; de Clercq, Dietrich, Núñez Velasco, de Winter, & Happee, 2019; Habibovic et al., 21 

2018; Lee et al., 2019; Li, Dikmen, Hussein, Wang, & Burns, 2018; Mirnig, Perterer, Stollnberger, & 22 

Tscheligi, 2017). However, the communication should be efficient also to the other direction: the 23 
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vehicle should be able to recognize the intentions of the pedestrians and other vulnerable road 1 

users (Rasouli and Tsotsos, 2019; Schwarting et al., 2019). 2 

Based on the literature, problems automated driving technologies are encountering on roads are 3 

linked to safe, economical, and comfortable driving. Hence, what could be done to solve these 4 

problems? 5 

2.3 Cognitive mimetics 6 

Brown and Laurier (2017) as well as Chater et al. (2018) have concluded that human-computer 7 

interaction (HCI) and cognitive science could aid in designing better self-driving cars. One of the 8 

relevant paradigms could be cognitive mimetics (Kujala and Saariluoma, 2018; Saariluoma et al., 9 

2018). This way of design thinking suggests that mimicking expert human drivers’ information 10 

processing and thinking could be utilized for designing safer, more economical, and more 11 

comfortable automated driving technologies. The idea of design mimetics, that is, imitating physical 12 

and biological structures in nature for technology design, has been known since the fifties (Bar-13 

Cohen, 2006). The core idea of cognitive mimetics is that instead of imitating these structures of 14 

nature, designers should focus on human experts’ information processes and thinking when 15 

searching for model solutions (Kujala and Saariluoma, 2018; Saariluoma et al., 2018). 16 

Thanks to its internal and information processing focus, cognitive mimetics differs from 17 

ethnographic approaches. Vinkhuyzen and Cefkin (2016), for example, studied how people behave 18 

in traffic and how this information could be utilized when developing and improving current 19 

automated driving technologies. They observed pedestrians and their behavior in order to teach 20 

automated driving technology to behave in “socially appropriate ways”. However, in cognitive 21 

mimetics it is essential to pay attention also to the contents of experts’ information processes (i.e., 22 
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mental contents) (Newell and Simon, 1972). Recently, researchers in the field have started to realize 1 

the importance of examining human road users’ behavior and its modeling in order to develop 2 

better automated driving technologies (e.g., Domeyer et al., 2019; Markkula et al., 2020, 2018; 3 

Merat et al., 2019). Due to the importance of anticipation of traffic events for successful driving 4 

(Stahl et al., 2013), the goal for investigating expert drivers’ behavior here is to get a clearer idea of 5 

the information contents relevant in anticipatory driving. 6 

2.4 Anticipatory driving and uncertainty 7 

According to Pollatsek, Narayanaan, Pradhan, and Fisher (2006), novice drivers’ fatality rate is eight 8 

times higher than the rate of highly experienced drivers. One causing factor is novice drivers’ 9 

incapability to anticipate safety-relevant traffic events. Therefore, the anticipation of traffic 10 

situations is a critical component of driver competence, which allows drivers to maintain sufficient 11 

safety margins (Stahl et al., 2016). According to Tanida and Pöppel (2006), if the driving situation is 12 

perceived as familiar, drivers are able to anticipate what is going to happen next and to act 13 

accordingly. Conversely, if the driving situation is unfamiliar, drivers need to react to events. With 14 

human drivers, traffic flow, safety, and economical driving can be improved by moving from 15 

reactionary driving to anticipatory driving (Stahl et al., 2013).  16 

Human experts’ anticipatory skills (Clark, 2013) and the ability to focus processing situationally on 17 

task-relevant targets may be some of the key differences that separate human and machine 18 

intelligence.  Based on neurological evidence, it has been proposed that the human brain is an 19 

advanced prediction machine (Clark, 2013). According to these accounts, its basic function is to 20 

continuously predict and anticipate the upcoming events and assess the uncertainty of the 21 

predictions. This framework of cognition stresses the importance of predictive uncertainty and its 22 
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resolution in human attention allocation and behavior. In line with these ideas, it has been recently 1 

shown that experienced drivers’ perceived uncertainty of upcoming traffic events on a freeway is a 2 

major factor in their visual information sampling (Kircher et al., 2019). In a similar vein, for instance, 3 

Meghjani et al. (2019) and Hubmann et al. (2018) stress the importance of modeling uncertainty in 4 

the development of decision-making for automated driving. Therefore, the analysis of the 5 

information contents of the expert drivers’ anticipatory driving in this study was focused on 6 

uncertainties they recognize and resolve related to the unfolding traffic events. 7 

3 STUDY 1 – EXPERT SAMPLE VALIDATION: HAZARD PREDICTION TEST 8 

3.1 Method 9 

In Study 1, the expert sample validation with a hazard prediction test was done in order to verify 10 

that the selected driving instructors are able to anticipate unfolding hazardous traffic events by a 11 

better rate than inexperienced or a mixed group of non-instructor drivers. While driving instructors 12 

teach their students, they anticipate possibly hazardous events and therefore are more prepared to 13 

act if it seems that the student driver cannot manage the situation. Furthermore, driving instructors 14 

are experienced in verbalizing their anticipations during driving lessons. Thus, we argue that driving 15 

instructors are well-trained experts in anticipating unfolding safety-relevant driving situations. In 16 

addition, the intention was to validate that the selected experts are able to anticipate such events 17 

that may currently be highly challenging for automated driving technologies. 18 

3.1.1 Stimuli 19 

Eighty driving clips, provided by a commercial UK company that provides hazard perception tests 20 

for learner drivers, were reviewed to select clips for the experiment. For evaluating the clips, 21 

knowledge of the previously reviewed challenges of the current automated driving technologies and 22 



 13 

the analyses by Hubmann et al. (2018), Lake et al. (2017), Lv et al. (2018), Rasouli and Tsotsos (2019), 1 

and Schwarting et al. (2019) on differences between human cognition and automated driving 2 

algorithms were utilized. Based on the evaluation, each selected clip was required to contain an 3 

unfolding hazardous event that human drivers should be able to anticipate – if they spot the 4 

relevant visual cue(s) – and which automated driving technologies perhaps would not be able to 5 

detect or anticipate. This could cause the automated driving technology to brake suddenly or even 6 

cause an accident. 7 

Eventually, after reaching mutual understanding by two researchers, 28 out of 80 (35 %) clips were 8 

chosen that met the set requirements (see Table 1). The original clips were filmed in the UK and 9 

therefore were mirrored to respond to right-hand traffic, more familiar to Finland where the 10 

research was conducted. To transform the hazard perception clips into hazard prediction clips, each 11 

clip was edited to end to a black screen just after the hazardous event started to unfold, following 12 

the method by Crundall (2016), Jackson, Chapman, and Crundall (2009) and Ventsislavova et al. 13 

(2019). Effectively, each selected clip contained a situation that would potentially develop into 14 

hazardous event if neglected, such as a truck blocking driver’s view, a ball flying over a street, or a 15 

street being too narrow for two cars to travel side by side. Hazard prediction test was chosen over 16 

hazard perception test since it can better discriminate between experts and novices (Crundall, 2016; 17 

Jackson et al., 2009). 18 
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Uncertainty Situation(s) and 

environment(s) 

on parenthesis 

Visual cue Plausible difference in behavior – human driver vs. automated 

driving technology 

# of 

clips 

Is the road too 

narrow to 

accommodate the 

driver’s own car and 

oncoming cars? 

Narrowing road 

(Street) 

Narrowing road 

ahead with 

oncoming traffic 

Human driver is able to anticipate that the road ahead is too narrow 

for all vehicles and therefore waits for the oncoming vehicle to pass 

or adjusts speed or lane position. Automated driving technology 

could continue driving without decelerating, causing sudden 

emergency braking or an accident. Possible problem: lack of scene 

understanding (Lake et al., 2017). 

6 

Is there occluded 

traffic crossing or 

merging? 

Poor visibility 

(Street) 

Stationary objects 

occluding moving 

vehicles 

Human driver is able to notice the moving vehicle behind the 

stationary object and anticipate that the vehicle might turn towards 

and therefore decelerates gently. Automated driving technology 

may not be able the recognize the moving vehicle behind the 

occluding object, causing sudden emergency braking or even an 

accident. Possible problem: occlusion and lack of intuitive physics 

(Hubmann et al., 2018; Lake et al., 2017). 

5 

Is there oncoming 

traffic behind the 

vehicle that is to be 

passed? 

Passing, curvy 

road, poor 

visibility 

(Highway, Street) 

Passing required 

with poor visibility 

ahead (e.g., curvy 

road ahead, truck 

blocking part of the 

road) 

Human driver can realize that due to poor visibility of the road ahead 

it is not possible to see if there is oncoming traffic approaching 

behind the vehicle that is to be passed. Human driver is able to 

anticipate that oncoming traffic is a possible scenario and therefore 

slows down. Automated driving technology could continue driving 

with the same speed resulting in sudden emergency braking or an 

accident in case of oncoming traffic. Possible problem: lack of scene 

understanding and intuitive physics (Hubmann et al., 2018; Lake et 

al., 2017). 

4 

Are the vehicles on 

parallel side road 

going to merge in 

front? 

End of a parallel 

road, traffic 

merging (Street) 

Vehicles driving on 

ending parallel side 

road 

Human driver is able to anticipate that the adjacent side road is 

ending and vehicles on the road may join the main road ahead and 

therefore adjusts speed accordingly. Automated driving technology 

may not detect an ending side road and anticipate that the traffic will 

soon merge, causing a possible sudden emergency braking or even 

3 
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Uncertainty Situation(s) and 

environment(s) 

on parenthesis 

Visual cue Plausible difference in behavior – human driver vs. automated 

driving technology 

# of 

clips 

an accident. Possible problem: lack of scene understanding and 

psychological reasoning (Lake et al., 2017). 

Is the faster vehicle 

in front going to 

change lanes? 

Slower traffic 

ahead, faster 

vehicle on the 

adjacent lane 

(Freeway) 

Vehicles having 

speed differences on 

a two-lane road 

(e.g., faster vehicle 

approaching slower 

vehicle on the 

adjacent lane) 

Human driver is able to anticipate that the faster vehicle may pass 

slower traffic ahead and move into the driver’s lane. Due to the 

prediction, human driver is able to be prepared and adjust speed 

more gently than automated driving technology and even avoid an 

accident. Possible problems: lane change in heavy traffic (Lv et al., 

2018) and lack of psychological reasoning (Lake et al., 2017). 

2 

Is the road/lane too 

narrow to 

accommodate 

driver’s own car and 

oncoming vehicles 

that are passing? 

Slower traffic 

ahead, passing 

(Freeway, Street) 

Oncoming vehicles 

or vehicles in front 

passing slower 

traffic (e.g., cyclists, 

motorcyclists) far 

ahead 

Human driver is able to anticipate that the road is too narrow for all 

the vehicles to travel parallel and is, therefore, able to slow down 

and/or adjust the lateral position of the car. Automated driving 

technology may not be able to detect the trajectory deviation of the 

passing car and is therefore unable to adjust its own speed and lane 

position causing possibly a sudden emergency braking or an 

accident. Possible problem: lack of scene understanding (Lake et al., 

2017). 

2 

Is there someone 

stepping out of the 

parked car? 

Parked cars 

(Street) 

Parked car’s door 

opening / person 

inside a parked car 

 

The sudden opening of parked car’s door or seeing a person inside 

a parked car are cues to a human driver that the door may open 

entirely and blocking the driveway. Due to the anticipation, human 

driver is able to be prepared, yield, and decelerate more gently in 

advance than automated driving technology might. Possible 

problems: driving too close to a parked car (Lv et al., 2018) as well 

as lack of scene understanding and psychological reasoning (Lake 

et al., 2017). 

2 



 16 

Uncertainty Situation(s) and 

environment(s) 

on parenthesis 

Visual cue Plausible difference in behavior – human driver vs. automated 

driving technology 

# of 

clips 

Is the pedestrian 

going to cross the 

street in front? 

Pedestrian 

planning to cross 

the road (Street) 

Pedestrians showing 

intentions to cross 

the road 

Human driver is able to anticipate the trajectories of the pedestrians 

based on their behavior (e.g., looking both ways) or position even if 

they are stationary and, therefore, is cautious. Automated driving 

technology may not be able to recognize pedestrians’ intentions 

since they are still on the walkway and not yet crossing. Sudden 

crossing could cause sudden emergency braking or an accident for 

automated driving technology. Possible problems: lack of 

understanding social cues (Rasouli and Tsotsos, 2019; Schwarting 

et al., 2019) and psychological reasoning (Lake et al., 2017). 

2 

Is the occluded 

pedestrian going to 

re-appear behind the 

object and cross the 

road in front? 

Occluded 

pedestrian (Street) 

Stationary object 

occluding walking 

pedestrian 

momentarily 

Human driver is able to anticipate that the pedestrian may re-appear 

behind the van and cross the road and therefore decelerate 

accordingly. Automated driving technology may not able the 

recognize the existence of the pedestrian behind the van, causing 

sudden emergency braking or accident. Possible problem: 

momentary occlusion and lack of intuitive physics (Hubmann et al., 

2018; Lake et al., 2017). 

1 

Is emergency 

vehicle approaching 

and yielding 

needed? 

Emergency 

vehicle 

approaching 

(Street) 

Emergency 

vehicle’s blue lights 

are approaching 

Human driver is able to notice well in advance the blue lights and 

anticipate that yielding maneuvers may have to be made. For 

automated driving technology, the emergency vehicle may be 

detected as a crossing object to be avoided like any other, but it may 

not have an understanding that yielding well in advance is 

compulsory. Possible problem: identifying emergency situations 

(Lv et al., 2018). 

1 

Are kids going to 

run onto the street 

after the ball? 

Kids playing 

(Street) 

Ball flying over the 

street 

Human driver is able to anticipate that a ball flying over the street 

indicates playing kids ahead and decelerates in advance accordingly. 

The ball does not indicate playing kids to automated driving 

technology, which might lead to sudden emergency braking or even 

1 
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Uncertainty Situation(s) and 

environment(s) 

on parenthesis 

Visual cue Plausible difference in behavior – human driver vs. automated 

driving technology 

# of 

clips 

an accident. Possible problem: lack of psychological reasoning 

(Lake et al., 2017). 

Is the cyclist going 

to yield? 

Cyclist in a traffic 

circle (Street) 

Cyclist slowing 

down and 

approaching a traffic 

circle 

The cyclist in the traffic circle tries to maintain momentum and, as 

a result, does not stop but signals the driver of yielding by entering 

the traffic circle with a slower speed. Human driver can anticipate 

the yielding of the cyclist. Since the cyclist is not stopping before 

entering the traffic circle, automated driving technology could 

perform sudden braking. Possible problems: lack of understanding 

social cues (Rasouli and Tsotsos, 2019; Schwarting et al., 2019), 

lack of psychological reasoning and intuitive physics (Lake et al., 

2017). 

1 

Table 1: Clips for hazard prediction test 1 

3.1.2 Participants and experimental design 2 

Participants were recruited via different mailing lists and by contacting driving schools directly. In 3 

total, 36 participants completed the experiment. The participants were divided into three groups: 4 

inexperienced (no driving experience, n = 12), mixed (varying driving experience, n = 12), and expert 5 

drivers (driving instructors, n = 12). The inexperienced group was included in order to test if hazard 6 

prediction ability comes with driving experience. A mixed group was included to represent large 7 

variation in cumulative driving experience, that is, to represent the driver population and to enable 8 

correlative analysis (experience vs. score). The driving instructor group was included to test if the 9 

formal training provides greater anticipation skills compared to a random sample from the driver 10 

population. Each participant had normal or corrected-to-normal vision. The demographics of the 11 

three participant groups can be seen in Table 2. It should be noted that the reported lifetime driving 12 
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experiences in kilometers are estimations of the participants and they only include kilometers 1 

driven with cars. Since the kilometers are self-reported, the accuracy of estimations may vary 2 

between participants.  3 
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 Inexperienced group Mixed group Expert group 

Age range 21–36 21–35 27–62 

Mean age M = 27.1, SD = 4.9 M = 27.1 SD = 4.8 M = 46.3, SD = 11.4 

Gender 7 females, 4 males, 2 not 

disclosing gender 

3 females, 9 males 3 females, 9 males 

Range of driving experience in 

years 

0 0.5 – 17 9.5 – 44 

Mean driving experience in years 0 M = 8.4, SD = 5.2 M = 28.4, SD = 11.2 

Range of self-estimated lifetime 

driving experience in kilometers 

0 km 200 km – 1 000 000 km 280 000 km – 2 000 000 km 

Mean self-estimated lifetime 

driving experience in kilometers 

0 km M = 202 475, SD = 331 317 M = 798 222, SD = 548 996 

Table 2: Demographics of the participant in hazard prediction test 1 

In order to study if the hazard prediction ability is a skill achieved with experience or if it can be 2 

rapidly learned with scenario-specific declarative knowledge (Rasmussen, 1983, 1982), half of the 3 

participants in each group (inexperienced, mixed, and experts) were primed with generic written 4 

examples of possible hazards presented in the video clips (e.g., the door of the parked car suddenly 5 

opens). None or weak effect of briefing would stress the importance of using experts as the source 6 

of information in the subsequent study. Thus, the experimental design was 2 x 3 (briefing x group). 7 



 20 

3.1.3 Materials and apparatus 1 

The duration of the hazard prediction test clips varied in length from 4 to 43 seconds. Dell laptop 2 

computer with an external 22” screen was used to display the hazard prediction clips to the 3 

participants. The clips were presented in a randomized order with SMI Experiment Center 3.0 4 

(SensoMotoric Instruments GmbH). SMI RED 500 remote binocular eye-tracking system (sampling 5 

rate 500 Hz) was utilized to track participants’ eye movements (data not reported here). Sony HDR-6 

XR500 video camera was used to record the participants’ answers. IBM SPSS Statistics 24 was used 7 

for data analysis. The experimental setup is illustrated in Figure 2. 8 

 9 

Figure 2: The experimental setup 10 

3.1.4 Procedure 11 

Upon arrival, participants read and signed the informed consent form. After that, participants were 12 

seated 60 cm from the screen. Before the actual experiment, each participant practiced with 13 

watching four videos which ended with a black screen just after the hazardous event started to 14 

unfold, similar to the actual videos, and answering to following questions after each clip: 1) What 15 
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was the risk factor?, 2) What was the location of the risk factor?, 3) What happens next?, and 4) 1 

How would you proceed in the situation? Participants were instructed to evaluate the unfolding 2 

situation at the end of the clip and give an answer to each question as they feel is the correct answer 3 

regarding the unfolding situation. The same questions were asked for the videos in the actual 4 

experiment with the same instructions. If the answers were insufficient, instructions were repeated. 5 

Each participant group (inexperienced, mixed, and experts) received the same general instructions. 6 

After the practice, the participants belonging in the briefing subgroups were told that similar 7 

hazards were repeating in the videos presented, and before the experiment started, they were given 8 

out a written hazard list to familiarize themselves with. The participants belonging to the no briefing 9 

group were instructed to look for a risk factor at the end of the video, with no information about 10 

the risk types or their recurrence. 11 

In the actual experiment, participants watched 28 hazard prediction video clips in randomized 12 

order, which ended with a black screen just after the hazardous event started to unfold. After each 13 

video, participants were asked to answer four questions as they previously practiced. A small break 14 

after every 10 videos was offered to each participant. During the experiment, participants’ oral 15 

answers were recorded with a video camera. The experiment took approximately 1.5 hours, and 16 

after the experiment, each participant received a gift card (15 €).  17 

After the experiment, participants’ verbal reports were analyzed and rated by two researchers. They 18 

were given 0–3 points for one video in total, depending on whether the participant had explicitly 19 

recognized the risk factor and its location and anticipated the development of the situation 20 

correctly. Correct answers were also accepted if the participant recognized several risk factors, of 21 

which one was the correct answer for the video. The fourth question (How would you proceed?) 22 
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was not rated and the results are not reported here. Therefore, the maximum score for the videos 1 

was 84 points (3 x 28). 2 

3.2 Results 3 

Since the hazard prediction test scores and overall driving experience in kilometers were non-4 

Gaussian, medians are reported here instead of means. The hazard prediction test scores (N = 36, 5 

interquartile range in parentheses) ranged from 12 to 48 points, and the overall median was 29 6 

points (15). The median scores per group were: inexperienced 20.5 (11.0), mixed 30.0 (15.0), and 7 

experts 34.0 (10.0). The mean scores per group are illustrated in Figure 3. 8 

 9 

Figure 3: Hazard prediction test score per group (mean, n =12). Bars: 95% CI. 10 

 A factorial 2 x 3 ANOVA was conducted to investigate the interaction effects of briefing and group 11 

on hazard prediction test scores. There was no significant interaction between the factors (p = .490). 12 

Significant main effect of group was found on hazard prediction test scores: F(2, 30) = 10.15, p = < 13 
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.001, ηp
2 = .404 (large effect). Due to the non-gaussian hazard prediction test score distribution in 1 

the inexperienced group, pairwise comparisons between groups were conducted with 2 

nonparametric tests. Similar to ANOVA, Kruskall-Wallis H test indicated that there were significant 3 

differences in hazard prediction test scores between the different groups, χ2(2) = 13.632, p = .001. 4 

According to Mann-Whitney U test, there were significant differences between novices and mixed 5 

group, mixed group scoring higher (U = 30.50, p = .016, d = 1.11 [large effect size]) and between 6 

novices and experts, experts scoring higher (U = 12.50, p = .001, d = 2.01 [large effect size]). The 7 

effect size of the difference between mixed group and experts was moderate (d = 0.71), but the 8 

difference was not significant with this sample size (U = 43.50, p = .099, n = 12). 9 

For testing the association between lifetime driving experience in kilometers and hazard prediction 10 

test scores, Spearman’s rank-order correlation was used. For the analysis, the group of novices was 11 

omitted since they do not have any driving experience, and therefore here N = 24. A moderate 12 

association between driving experience and hazard prediction test scores was found (see Figure 4): 13 

ρ = .425, p = .038. However, even though the association between age and driving experience was 14 

strong (ρ = .834, p < .001), there was no significant association between age and hazard prediction 15 

scores (ρ = .241, p = .256). 16 
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 1 

Figure 4: Hazard prediction test score per lifetime driving experience (N = 24). 2 

3.3 Discussion 3 

Based on the results, the driving instructors can be considered as experts compared to the 4 

inexperienced and also at least a subsample of them compared to the mixed group of non-instructor 5 

drivers. A moderate association between driving experience and hazard prediction test scores was 6 

found, which suggests driving experience can explain some of the variance in the scores. This is 7 

consistent with previous studies (e.g., Crundall, 2016; Jackson et al., 2009; Stahl et al., 2016; 8 

Ventsislavova & Crundall, 2018) and implies that the ability to anticipate traffic situations evolves 9 

with experience. It should be noted that the lifetime driving experience in kilometers was self-10 

estimated and there could be differences between individuals how accurately they can estimate 11 

their experience. However, the correlation between age and experience and insignificant 12 
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correlation between age and test score suggest general validity of the self-reported driving 1 

experience measurement, even if there might be inaccuracies in individual reports. 2 

However, the driving experience does not alone explain the drivers’ hazard prediction test scores. 3 

Further, since novices were also able to score in hazard prediction test above chance, anticipating 4 

hazardous situations is something that humans may be able to do at some level regardless of driving 5 

experience – perhaps with the help of intuitive psychology and intuitive physics, causal reasoning, 6 

and utilizing previous experiences in other domains (Lake et al., 2017). However, priming of 7 

participants with declarative knowledge about possible hazardous scenarios did not affect the 8 

scores. This may be due to a number of factors but suggests that the anticipation skills cannot be 9 

acquired based on written examples, at least in the short time provided to study the model 10 

scenarios. This finding stresses the importance of using domain experts as the source of situational 11 

information in studies such as our following on-road study. 12 

4 STUDY 2 – FIELD STUDY WITH EXPERTS: ANTICIPATION IN REAL TRAFFIC WITH 13 

PROSPECTIVE THINKING-ALOUD 14 

4.1 Method 15 

In Study 2, six experts – validated with the hazard prediction test – took part in the field study 16 

where they were prospectively thinking aloud of unfolding traffic situations while driving on public 17 

roads. The purpose of the field study was to examine what driving-task relevant the experts are 18 

anticipating to happen. 19 

4.1.1 Participants 20 

The ages of the participants ranged from 36 to 56 (M = 47.5, SD = 10.5), lifetime driving experience 21 

from 280 000 to 2 000 000 kilometers (M = 696 667, Mdn = 525 000, SD = 649 821) and teaching 22 
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experience from 5 to 38 years (M = 10.8, Mdn = 9.0, SD = 14.1). Their mean score in the hazard 1 

prediction test was 34.5 points (SD = 10.7). Three of them belonged to the no-briefing group and 2 

three of them to the briefing group in the validation experiment. 3 

The ethical review board was inquired about the requirement of ethical approval and the study was 4 

allowed to take place after installation of a secondary brake pedal for the experimenter for the case 5 

of emergencies. 6 

4.1.2 Materials and apparatus 7 

The length of the predefined route was 57.2 kilometers (see Figure 5) and driving the route took 8 

approximately one hour and ten minutes. The route was selected to contain a representative 9 

sample of local road environments: freeways (with controlled access), two-way highways, as well as 10 

suburban and city streets, and a parking lot. 11 

 12 
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Figure 5: The predefined route used in the study. 1 

Toyota Prius (2009) with an extra brake pedal was used in the experiment. For recording the road 2 

scene and thinking-aloud data, MoviePro application for iPhone 8 and an external microphone was 3 

used. Google Maps application, running on 10.5” iPad Pro, was used for providing route guidance 4 

(see Figure 6). Speedometer application was placed next to the route guidance for enabling 5 

recording the GPS speed on the video. Participants’ eye movements were recorded with head-6 

mounted Ergoneers’ Dikablis Professional eye-tracking system (data not reported here). 7 

Transcription of the thinking-aloud data was done using Noldus Observer XT 12 software. 8 

 9 

Figure 6: Backseat view from a video. 10 

4.1.3 Procedure 11 

After informed consent and before the experiment started, each participant watched two training 12 

videos (1.40 minutes and 0.28 minutes) that were recorded on the same roads they were about to 13 
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drive. While they watched the videos, they were instructed to anticipate aloud what driving-task 1 

relevant is going to happen next in the traffic and how it affects their behavior and maneuvering. As 2 

for the feedback during the training videos, we encouraged the participants to verbalize more 3 

actively the unfolding traffic situations, if necessary, which is typical for the thinking-aloud method. 4 

After they were familiar with the prospective thinking-aloud method, they received the instructions 5 

for the drive. They were asked to obey traffic rules and follow the predefined route. During the drive 6 

they would be prospectively thinking aloud as they had practiced earlier. Theoretical models of 7 

multitasking performance, such as Wickens' (2008) Multiple Resources Theory, suggest that 8 

concurrent verbal-vocal tasks during visual-manual tasks (e.g., driving) do not interfere severely 9 

with each other. Further, according to Drews et al. (2008), when the topic of the conversation while 10 

driving is the surrounding traffic, it helps the driver to share situation awareness with the passenger. 11 

In our study, the experts were talking about the prevailing traffic and driving situations, and 12 

therefore we suggest that the think-aloud protocol did not distract them. In addition, the driving 13 

instructors are used to verbalizing driving situations to their students.  14 

Further, Drews at el. (2008) propose that if the driving condition is demanding, the complexity of 15 

the conversation decreases. Before the on-road study, we gave instructions to our experts that if 16 

the driving situation needs their full attention, they can communicate it after the situation is under 17 

control. There were occasions where the drivers used this opportunity and the confronted 18 

uncertainty was communicated after the situation had cleared. 19 

All participants completed the same route approximately at the same time in the afternoon close 20 

to rush hours in order to have more potential interactions with other traffic (with one exception: 21 
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noon). The visibility during the trials was normal, although there was a light rain shower during the 1 

drives of two participants. After completing the route, the expert drivers received a gift card (15 €). 2 

4.1.4 Data analysis 3 

The prospective thinking-aloud data consists of six audio-visual recordings in real traffic. On average, 4 

one recording lasted for 1 hour and 10 minutes (time range from 65 to 75 minutes). The prospective 5 

thinking-aloud data from the videos were transcribed into textual format, resulting in 1277 6 

utterances. The utterances were transcribed according to the start and the end of a comment. In 7 

addition, driving speed when the comment started and the speed when the comment ended were 8 

coded based on the GPS speed visible in the videos. On average, one participant produced 212 9 

utterances (range: 80–408). In total, 124 utterances were excluded from the analysis, as their 10 

contents were not notions of uncertainty, such as “The pavement has been repaired a bit” and “That 11 

is good”. Thus, individual notions of uncertainty were analyzed from a total of 1152 utterances. It 12 

should be noted that one utterance could include more than one uncertainty notion. Through this 13 

analysis, 1881 individual notions of uncertainty were listed. On average, one participant produced 14 

313 individual notions of uncertainty (range: 150–684). 15 

A conceptual framework was developed to aid qualitative content analysis of the prospective 16 

thinking-aloud data. The framework provides a theoretical lens to guide the analysis, but not in a 17 

restricting or excluding manner. Thus, contents outside of the conceptual framework are analyzed 18 

with inductive content analysis (Mayring, 2000), if relevant to the research problem. A conceptual 19 

framework explicates the focus of the analysis by constructs, key factors or variables, and possibly 20 

the presumed relations among them (Miles and Huberman, 1994). Here, the focus was on examining 21 

driving-relevant uncertainties. Therefore, the conceptual framework consists of the following 22 

factors: uncertainty, environment, and goal. 23 
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The first factor, uncertainty, is defined as the unpredictability of a task-relevant event state (Clark, 1 

2013) and is a central factor in the conceptual framework guiding the analysis. Contents of 2 

uncertainties were analyzed from the data with inductive content analysis (Mayring, 2000). The 3 

second factor, environment, consists of components that are defined according to the selected 4 

driving route. These components are freeway (with controlled access), highway (with two opposite 5 

lanes and crossings), street, traffic circle, and parking lot. The third factor of the framework, goal, 6 

consists of safety, economy, comfort, and wayfinding. Safety, economy, and comfort were selected 7 

based on the reviewed literature representing higher-level goals in driving and indicating these 8 

three as the main goals of improvement in automated driving technology. Wayfinding is an 9 

additional goal that is typical at the strategic level of driving (Matthews et al., 2001). 10 

The conceptual framework also assumes relationships between the factors (Miles and Huberman, 11 

1994). Here, the factors are related to each other in a context-dependent manner. The focus of the 12 

analysis was to understand what kind of uncertainties are expressed in what kind of contexts and 13 

to what kind of goals these uncertainties relate to. 14 

Qualitative content analysis was conducted with the aid of the conceptual framework. Qualitative 15 

content analysis is utilized in systematic text analysis. The goal is to categorize information contents, 16 

usually with an inductive approach (Mayring, 2000). A central benefit in conducting inductive 17 

content analysis is its ability in detecting and developing categories with rich descriptions through 18 

analysis iterations of the information contents under analysis. In the iterative development process 19 

of the descriptive categories, overlapping categories were re-analyzed to be merged (Mayring, 20 

2000). The analysis of the prospective thinking-aloud data for enabling cognitive mimetic design of 21 

automated driving solutions followed this procedure.  22 
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First, the environments were coded from the transcriptions and from the video recordings to ensure 1 

correct coding. All the videos were transcribed by two independent transcribers in sequential order, 2 

to diminish the possibility of rater factor to occur (see e.g., Gwet, 2014). Second, by further 3 

familiarization of the data, a category of situations was inductively developed as one independent 4 

entity. Situations were defined based on the transcribed sentences together with the synchronized 5 

videos as temporary issues and conditions occurring in specific environments. The descriptive 6 

subcategories of situations (e.g., traffic lights, road construction, traffic sign, exit ramp, intersection, 7 

congestion) were created through inductive content analysis. After this, two coders, who were 8 

present during the original drives, analyzed the data. Coder 1 sorted all the data in Excel according 9 

to environment and situations in order to begin the context-dependent extraction of expressed 10 

uncertainties. If the uncertainty notions were difficult to understand due to the context-dependent 11 

sorting, the original sorting of the data by timestamp was displayed to ensure correct categorization 12 

of the uncertainty notions by the sentences preceding or following the sentence in question. The 13 

final uncertainty category consists of 83 descriptive subcategories that were written in the form of 14 

a question in order to illustrate the uncertainty related to the specific situation (cf. Table 1). 15 

The category titled as action was developed to illustrate context-dependent uncertainty-related 16 

adaptive actions. The category of actions was analyzed by Coder 1 from the sentences if action-17 

related notions were made. All notions did not include actions to be carried out. Uncertainty 18 

categories were iterated to develop a final set of subcategories to represent different uncertainty 19 

notions. After this, the data was further synthesized by analyzing goal (safety, economy, comfort, 20 

wayfinding) for each of the uncertainty subcategory. After Coder 1 had extracted the uncertainty 21 

notions and categorized these into subcategories, Coder 2 went through these coded uncertainties 22 

and possible divergent interpretations were discussed and resolved. After this, the number of 23 
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notions and participants per notion for each uncertainty subcategory was calculated as presented 1 

in Tables 3 and 4. Finally, Coder 2 translated all the categories and selected example quotations into 2 

English and Coder 1 went through the translations to inspect that that there were no details lost 3 

during the translation process. Due to the nature of the process, we were not able evaluate inter-4 

rater reliability numerically but these was a high level of agreement among the two coders in each 5 

step. 6 

4.2 Results 7 

The most important of the final uncertainty subcategories (83) that were related to safe, 8 

economical, and/or comfortable driving are listed in Tables 3 and 4. However, there were some 9 

subcategories that were excluded from the results. Six subcategories related to wayfinding (e.g., 10 

Are we on the route?; To which direction should we continue now?) were found – these are omitted 11 

from the results, as navigation should not be a challenge to current automated driving technologies. 12 

Some of the uncertainties are highly relevant for a human driver (e.g., What is the current speed of 13 

the car?; Is someone approaching in the blind spot?) but irrelevant for automated driving 14 

technology and were left out from the data. The rest of the excluded subcategories are relevant also 15 

for automated driving technologies but should be easily resolved by the current level of technology 16 

(e.g., Are there oncoming cars or pedestrians ahead?; What is the speed limit?; Are there cars beside 17 

or behind our car?; Is it slippery?). All of these mentioned uncertainties (20) were excluded from 18 

this report. These excluded uncertainties include the only uncertainty notion that was related to the 19 

operational level of control of the vehicle (i.e., Can I hold the control of the car?) –  all the other 20 

uncertainties were related to tactical or strategic level situation awareness (Matthews et al., 2001). 21 
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First, Table 3 presents uncertainties (34, 54%) of other road users’ behaviors, awareness and/or 1 

intentions. Then, Table 4 lists all the uncertainties (29, 46%) that are not (directly) related to 2 

behaviors, awareness or intentions of other road users. Both tables also include those uncertainties 3 

that were related only to a few notions, as these may be important even if the traffic conditions did 4 

not lead to these kinds of situations for all the participants. The Goal category can relate to one’s 5 

own as well as other road users’ safety, comfort and/or economy.6 
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 1 

Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions 

(n) 

Are other road users 

aware of my 

intentions? 

Turn, lane change, exit ramp, merge, 

traffic circle exit, parking  

Street, traffic circle, 

freeway, highway, 

parking lot 

Safety, comfort “Slowly we drop our speed and now turn 

signal on to indicate that we are turning – 

let’s tell that to others too. Well, well, there 

is a friendly co-driver, and this is how it 

goes.” 

Use of turn signal in advance, alignment, 

soft deceleration, creeping, way giving, turn 

signal off, eye contact 

101 (6) 

Is there going to be a 

rear-end collision? 

Traffic lights, intersection, exit ramp, 

driving in traffic queue, bus travelling 

behind, animal transport travelling 

behind  

Freeway, street, traffic 

circle, highway 

Safety “That red car behind us is quite close. But no 

worries, we are keeping good following 

distance and we are not going to do anything 

sudden.” 

Distance, decelerating slowly, checking rear-

view mirror, avoiding sudden braking, 

anticipatory deceleration, alignment, use of 

turn signal in advance 

78 (6) 

Who is obligated to 

yield? 

Traffic lights, 4-way intersection, 

intersection with yield sign, crosswalk, 

turning, stationary bus, entrance ramp  

Street, traffic circle Safety “Arrow light, there shouldn’t be anyone we 

should yield. Then equal crossroads – cars 

approaching from the right-hand side and 

from ahead, but those are so far that they 

will not disturb us.” 

 69 (6) 

Are others obeying 

traffic rules? 

Traffic lights, driving order in 

intersections, obligation to yield, turn, 

crosswalk, entrance ramp, speed limit, 

pedestrians not using crosswalk for 

crossing, drivers don't know how to 

drive in a two-lane traffic circle  

Street, traffic circle, 

freeway, highway 

Safety “We have a green arrow light, therefore 

there shouldn’t be any pedestrians ahead but 

still there is a chance that someone comes 

behind the yield sign.” 

Deceleration, way giving, eye contact, 

yielding, being adaptable, checking rear-

view mirror, distance, creeping, pulling 

away slowly in traffic lights 

63 (6) 
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Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions 

(n) 

Is the vehicle’s 

following distance 

sufficient (behind us)? 

Driving in traffic queue  Freeway Safety “The car behind us is not keeping safe 

following distance to us and that’s why we 

need to keep extra distance to the car in front 

of us.” 

Checking rear-view mirror, avoiding sudden 

movements, keeping steady speed 

25 (6) 

Do other drivers need 

a lane change? 

Lane change, entrance ramp  Street, freeway Safety, comfort “Then we are reducing the speed and keep 

distance to the car in front of us if someone 

on the parallel lane wants to change lanes.” 

Deceleration, distance, way giving 15 (5) 

How is the traffic far 

ahead on the route? 

Exit ramp, end of freeway, curve, 

congestion, entrance ramp  

Traffic circle, freeway, 

highway, street 

Safety, economy “At this time, there must be a traffic 

congestion.” 

Deceleration 13 (6) 

Is parked car’s door 

going to open? 

Road construction, rain, parked cars, 

narrow streets  

Street, parking lot Safety “We shouldn’t drive (too close to the parked 

cars) in a way that our side mirrors bang – 

there is a chance that the parked car’s door 

will open suddenly.” 

Distance between own and parked cars 11 (4) 

Is other traffic keeping 

safe following 

distances? 

Driving in traffic queue  Highway, freeway Safety “I can see brake lights. That black car is too 

close to that other car.” 

Distance, steady speed 10 (5) 

What are the intentions 

of other road users? 

Turn, lane change, merge, intersection, 

pedestrian  

Street, highway Safety, comfort “Interesting to see what that white car is 

planning to do.” 

Deceleration 10 (4) 

Do other drivers need 

a last minute’s lane 

change? 

End of lane, end of freeway  Highway, freeway Safety, comfort “The parallel lane is ending so we should 

observe the left-hand side mirror in case 

there is still someone rushing to our lane.” 

Checking rear-view mirror 9 (3) 
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Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions 

(n) 

Are other vehicles able 

to enter the freeway? 

Entrance ramp  Freeway Safety, comfort, 

economy  

“The main thing is not to brake suddenly in 

these kind of situations [others entering the 

freeway] but releasing throttling usually 

helps co-drivers to accelerate enough.” 

Way giving, slowing down, checking 

mirrors, distance 

9 (3) 

Is there an emergency 

vehicle approaching? 

Chance of emergency vehicles  Street, parking lot, 

highway 

Safety “There’s green arrow light but still it’s good 

to check that there are no emergency 

vehicles approaching.” 

Checking rear-view mirror 9 (3) 

How is the traffic 

queue moving? 

Driving in traffic queue, traffic lights, 

intersection, heavy traffic  

Street, highway Safety, comfort, 

economy 

“Traffic lights change to green but there’s a 

big truck in front, so the queue is not moving 

fast. That means that there’s no rush to move 

forward and I’ll show that to my co-drivers 

too. 

Looking far ahead, checking rear-view 

mirror, use of turn signal, driving in neutral 

gear  

8 (3) 

Is there a train 

approaching? 

Crossing train tracks  Street, railroad 

crossing 

Safety “Everyone should remember to pay attention 

when crossing train tracks. You never know 

what happens there.” 

Deceleration 7 (6) 

Is oncoming traffic 

passing (two lanes)?  

Passing  Highway Safety, comfort “This road is changing into two-lane road. It 

means that now we have to observe 

oncoming traffic and their possible passing.” 

Deceleration, way giving 6 (4) 

Is someone in front 

going to change lanes? 

End of lane, intersection, traffic lights  Street Safety, comfort “Then the parallel lane is ending but no one 

is there.” 

Deceleration, distance 6 (3) 
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Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions 

(n) 

Is the traffic queue 

moving? 

Traffic lights  Street Comfort “Let’s make sure that the queue is moving 

nicely and no one’s engine shuts off or 

something like that.” 

Driving in neutral gear, slow speed 6 (2) 

Why is the traffic 

queue slowing down/ 

stopping/congested? 

Driving in traffic queue, intersection, 

oncoming traffic  

Street, highway Safety, comfort “I bet there is a big truck ahead making a 

wide turn.” 

Deceleration 5 (3) 

Are there children on 

sidewalk/behind 

parked cars? 

Turning, children crossing sign, daycare 

nearby, parked cars  

Street Safety “Well, are there small pedestrians behind the 

car?” 

 5 (3) 

Can others see my 

vehicle? 

Rain, distracted drivers, pedestrian 

crossing street  

Highway, parking lot, 

street 

Safety “I’ll check that the headlights are on because 

I’m not sure if they work automatically. Due 

to rain, I want to make sure that I’m visible 

to others.” 

Head lights, eye contact 4 (4) 

Are we approaching an 

intersection at the 

same time (merging)? 

Merging, curve, end of lane  Freeway Safety, comfort “There’s a curve ahead, we are not yet going 

to accelerate and we need to keep safe 

following distance so we all aren’t in the 

intersection at the same time – you never 

know what kind of drivers there are going to 

be.”  

Distance, monitoring other traffic 4 (3) 

Is other road users’ 

visibility sufficient? 

Large vehicles  Freeway, highway Safety, comfort “There is a car approaching on the entrance 

ramp. Since it’s a van, it can’t necessarily 

see us.”  

Distance, deceleration 4 (2) 
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Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions 

(n) 

Is the car in front 

rolling to my car’s 

nose? 

Traffic lights  Street, highway Safety “If we drive close to the car that is in front of 

us, there’s always the risk that it will roll to 

our nose.” 

Distance 3 (3) 

Is the passing vehicle 

able to pass? 

Passing  Freeway Safety, comfort “There’s a car passing us, let’s release the 

throttle a bit and it will be able to pass us 

smoothly.” 

Deceleration, checking mirrors 3 (2) 

Is someone cutting in? Exit ramp  Freeway Safety, comfort “Now someone started passing behind us. 

But it doesn’t bother us because I don’t think 

that it will cut in.” 

 3 (2) 

Is the bus merging in 

front of my car? 

Bus merging from bus stop  Highway Safety “Okay, that bus is merging from the bus 

stop, well, and there it is – in front of us.” 

 2 (2) 

Is the truck with a 

trailer able to change 

lanes? 

Lane change of truck with trailer, short 

entrance ramp  

Freeway Safety, comfort “There is a green truck with a trailer in the 

intersection. Let’s see when it will join the 

traffic.”  

 2 (2) 

Are there vehicles 

turning behind the 

bus? 

Intersection, turning  Street Safety “Well, it seems that no one is approaching 

behind the bus, I can turn now.” 

 2 (1) 

Is someone 

approaching behind 

parked cars? 

Parked cars, on-street parking  Street Safety “There are parked cars on the right-hand 

side, let’s pay attention if someone is coming 

behind them.” 

 1 (1) 
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Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions 

(n) 

Is a truck going to 

cause rear-end 

collision behind?  

Line and truck behind keeping short 

following distances  

Freeway Safety “I’m checking the queue behind, there’s a 

truck really close to other cars. Now it’s 

really important that we don’t brake 

suddenly because the queue behind is so 

tight – so to speak.” 

Avoiding sudden braking  1 (1) 

Is someone passing in 

front of my car in the 

same lane? 

Driving in traffic queue Highway Safety, comfort “If someone in front starts passing, we have 

to act along if it looks that the passing car is 

unable to return to its own lane in time – we 

will not start to compete, we rather slow 

down and help.” 

Deceleration, way giving 1 (1) 

Are other vehicles able 

to change lanes safely? 

Entrance ramp  Freeway Safety, comfort “Here we have to pay attention to traffic 

merging from right – sometimes you see 

quite interesting lane changes there.” 

 1 (1) 

Will driver behind 

notice if her/his car 

starts to nose? 

Traffic lights, driver behind is reaching 

something from the floor  

Street Safety “The driver behind us has lost something 

and is trying to find it from the floor. Hope 

he has hand brake on and won’t nose and 

cause a head-on collision.” 

 1 (1) 

Table 3: Uncertainties of other road users’ behaviors, awareness and/or intentions (sorted by number of notions, n) 1 



 40 

Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions (n) 

What is the proper approach 

speed? 

Curve, exit ramp, entrance ramp, 

traffic lights, speed limit signs, 

keeping safe following distance, 

turning, acceleration, traffic queue 

ahead, speed limit change ahead  

Street, traffic 

circle, freeway, 

highway, parking 

lot 

Safety, comfort, 

economy 

“Traffic circle ahead, I’ll let the speed 

drop slowly, 20 km per hour is an 

optimal speed in this traffic circle.” 

Deceleration, driving in neutral gear, 

Accelerating, increasing following distance, 

forcing others to decelerate near crosswalks, 

way giving, checking rear-view mirror, 

avoiding sudden braking 

120 (6) 

Is the following distance 

sufficient? 

Traffic lights, speed limit, congestion, 

rain, passing, entrance ramp, entrance 

ramp (others), road construction  

Street, freeway, 

highway 

Safety “I will release the throttle a little bit – in 

case that car will merge in front of us. 

That way we will keep safe following 

distance.”  

Distance, checking mirrors, deceleration, way 

giving 

69 (6) 

What is a safe gap to merge? Intersection, entrance ramp, traffic 

circle entrance  

Street, traffic 

circle, freeway 

Safety “And then there is a good gap for us to 

merge, yes that yellow car is so far away 

that it is save to merge.” 

Use of turn signal, deceleration, driving in 

neutral gear, alignment, way giving, speed 

adjusting, checking blind spot 

67 (6) 

Is stopping in the traffic lights 

needed? 

Traffic lights  Street, highway Safety, comfort, 

economy 

“And the journey continues, those traffic 

lights seem to be red so there’s no rush 

to get there just to wait in traffic lights.” 

Driving in neutral gear, deceleration, checking 

traffic lights of crossing traffic, checking rear-

view mirror 

61 (6) 

When is changing lanes safe? Lane change, traffic lights, entrance 

ramp  

Street, traffic 

circle, highway, 

freeway 

Safety “There comes a van, I have turn signal 

on – then it’s our turn to merge.” 

Way giving, use of turn signal, checking 

mirrors, checking rear-view mirror, checking 

blind spot, deceleration, accelerating, strong 

accelerating 

47 (6) 
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Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions (n) 

Is the visibility sufficient? Turning, intersection, crosswalk, exit 

ramp, other cars in entrance ramp, 

weather, traffic in front, rain  

Street, traffic 

circle, freeway, 

highway, parking 

lot 

Safety “In this situation, let’s devote to keeping 

sufficient following distance. There is a 

big truck in front of us, we don’t want to 

drive too close to the truck since it 

makes it hard to see what is happening 

in front of it.” 

Distance, deceleration, creeping, distance, 

driving slowly 

45 (6) 

Is stopping needed? Turning (car in front), braking (car in 

front), congestion, congestion in 

traffic circle  

Street, traffic 

circle, highway, 

freeway 

Safety, comfort, 

economy 

“That car in front of us is going to turn. 

So, let’s release the throttle.” 

Distance, deceleration, driving in neutral gear  35 (6) 

Is the road/lane too narrow? Narrow street, parked cars, turning on 

highway, alignment  

Street, highway, 

parking lot 

Safety “Again, the street is narrow and there is 

an oncoming car. Let’s wait here until 

the car passes us and then we have more 

space to turn.” 

Deceleration, alignment, way giving, checking 

mirrors 

25 (6) 

Are the road constructions 

causing exceptions in traffic 

arrangements? 

Construction work sign  Street, freeway Safety “Construction work zone. There are no 

contemporary speed limit signs but still 

it’s reasonable to be cautious if there are 

construction workers present.” 

Alignment to the right, way giving, 

deceleration, driving in neutral gear, changing 

lanes, use of turn signal in advance 

23 (6) 

Is braking needed? Slower traffic ahead, exit ramp, road 

construction, moose warning  

Highway, freeway Safety, comfort, 

economy 

“We are catching up the car in front of 

us. Let’s release throttle and see to what 

speed that car is adjusting to.” 

Checking shoulders, deceleration, checking 

rear-view mirror, passing, engine braking 

17 (5) 

When can I start moving again? Traffic lights, intersection, queue  Street, highway Comfort, economy “And slowly the queue starts to move 

forward.” 

Checking traffic lights of crossing traffic, 

‘sliding’ 

14 (4) 
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Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions (n) 

When are the traffic lights 

going to change? 

Traffic lights, intersection, driving 

order  

Street, highway Comfort “The traffic lights on left changed to 

yellow. That indicates that ours are 

going to change to green soon. And 

that’s exactly what happened.” 

Deceleration, checking traffic lights of 

crossing traffic, ‘sliding’ 

13 (4) 

Is there time to cross the 

intersection before the traffic 

lights change into red? 

Traffic lights  Street Safety, comfort “I will pay attention to traffic lights and 

check if we have time to turn before the 

light turns into red, I’m not just 

following the traffic.” 

Creeping, way giving 13 (4) 

Are the traffic lights going to 

change? 

Approaching traffic lights  Street, highway Safety, comfort “Is the light going to change to red? 

No.” 

Deceleration 11 (5) 

Is braking needed in curve? Exit ramp, entrance ramp  Street, freeway Safety, comfort, 

economy 

“The curve is quite sharp before the 

acceleration lane and that’s why we 

shouldn’t drive too fast.” 

Deceleration, driving in neutral gear 11 (4) 

What is the proper pace to slow 

down? 

Driving in traffic queue, speed limit 

sign, traffic lights  

Street, freeway, 

highway 

Comfort, economy “Slowly we brake and that way we don’t 

scare drivers in front of us or behind 

us.” 

Deceleration, driving in neutral gear, 

checking rear-view mirror, deceleration 

efficiently but safely 

9 (2) 

Is passing needed? Slower traffic ahead, 100 km/h speed 

limit  

Freeway Safety, comfort, 

economy 

“There’s going to be 80 km per hour 

speed limit soon so it’s not reasonable to 

pass that guy – when our cars are side 

by side, the 80 km per hour zone starts.” 

Deceleration 8 (4) 
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Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions (n) 

Do I hit a pothole/object on the 

road? 

Pothole on pavement, (small) object 

on the road, roadkill  

Street, highway Comfort “Let’s avoid those potholes on the 

pavement – that way it’s more 

comfortable to drive.” 

Yielding, continue driving without yielding 7 (4) 

When is the proper time to slow 

down? 

Entering exit ramp  Freeway, highway Safety, comfort, 

economy 

“The car behind is really close to us. 

That’s why I’m not going to brake 

strongly, more like throttling back so 

there is no surprise to the driver behind.” 

Use of turn signal in advance, checking 

rear-view mirror, deceleration at the exit 

ramp 

7 (2) 

If needed, is there space to 

yield to the adjacent lane? 

Traffic merging, entrance ramp  Freeway Safety, comfort “There’s an entrance ramp so it’s good 

to check the left-side mirror and make 

sure that there is not a tight situation 

forcing us to yield – that’s the last 

straw.” 

Checking left mirror, staying on own lane, 

way giving 

5 (3) 

Do I block the sidewalk? Intersection, crosswalk  Street Safety, comfort “There is still enough space behind the 

car for pedestrians to cross.” 

Distance, alignment 4 (3) 

Do I cause a rear-end collision? Car in front, traffic lights  Street Safety, comfort “There’s turning car in front, let’s give 

proper time for the driver to turn.” 

Distance 4 (1) 

Is sudden braking needed? Driving in traffic queue  Traffic circle, 

highway 

Safety, comfort, 

economy 

“We have time to steadily slow down 

before the traffic circle and then we 

observe if sudden braking is needed.”  

Deceleration, use of turn signal, distance 3 (2) 

Where can I park (safely)? Parking  Parking lot Safety “In here the risks are these other cars 

starting off – at least there, that one on 

the left. And then we reverse.” 

Deceleration 2 (1) 
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Uncertainty Situation(s) Environment(s) Goal Expert’s example quotation indicating 

uncertainty 

Action(s) Notions (n) 

Are there equal intersections 

ahead? 

Speed limit sign, intersection  Street Safety “40 km per hour zone starts here, which 

indicates that there could be equal 

intersections ahead.” 

 2 (1) 

Is there enough space to pass? Traffic lights  Highway Safety, comfort “There should be proper distance 

between us and the car in front of us – if 

that car breaks down, we can still pass 

by going around the car and we don’t 

have to reverse.” 

Distance, deceleration 2 (1) 

What is the safest driving line? Traffic queue  Freeway, highway Safety “And certainly, we should drive [on the 

lane] as right as possible, and actually – 

there is a mention in the law that one 

should drive as right as possible.” 

Alignment 2 (1) 

Is the entrance ramp long 

enough for merging? 

Merging  Freeway Safety, comfort “No one is coming, then the entrance 

ramp – which is short – and then we 

speed up strongly and check again that 

no one is coming.”  

 Accelerating with force 1 (1) 

Is it possible to drive uphill at a 

steady speed? 

Hilly road  Highway Comfort, economy “Now we start to accelerate because 

there is an uphill and we don’t want our 

speed to drop.” 

Accelerating in advance before uphill 1 (1) 

Table 4: Uncertainties not (directly) related to the behaviors, awareness, or intentions of other road users (sorted by the number of notions, n) 1 

 2 
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4.3 Discussion 1 

Most of the expressed uncertainties related directly to the behaviors, awareness, or intentions of 2 

other road users (54%, Table 3). These uncertainties include, for instance, recognizing other road 3 

users’ intentions, signaling own intentions to them, other road users’ lane changing actions, and 4 

other’s situation awareness (e.g., Is other traffic keeping safe following distance?; Is other road 5 

users’ visibility sufficient?). A notable uncertainty in Table 3 is related to the possibility – or even 6 

expectation – that others will not obey traffic rules. Central actions related to resolving these 7 

uncertainties are deceleration (slowly), giving way to others, increasing following distance, giving 8 

turn signals well ahead, and eye contact. Some of the uncertainties related to social behavior in 9 

traffic that have also been raised in previous studies (e.g., Brown & Laurier, 2017; Chater et al., 2018; 10 

Mahadevan et al., 2018; Rasouli & Tsotsos, 2019; Vinkhuyzen & Cefkin, 2016). 11 

However, there were also a number of other types of uncertainties that are not, at least directly, 12 

related to the behaviors of other road users (46%, Table 4). Many of these uncertainties relate to 13 

one’s own behavior, for example, what is the proper speed and safe deceleration/acceleration rate, 14 

is the headway distance sufficient, when there is a sufficient gap to merge or change lanes, and is 15 

the alignment of the car on the lane such that there is sufficient space for other road users (if 16 

needed). Some relate to one’s own situation awareness, such as visibility ahead, and interactions 17 

with traffic lights and other cars standing in these. Central actions to resolve these uncertainties 18 

were similar to those in Table 3, for instance, keeping distance, driving with a steady speed, 19 

decelerating slowly, accelerating slowly or with force when required, and alignment.  20 

Whereas one could argue that many of the uncertainties in Table 4 are due, in the end, also to the 21 

necessity to interact with other road users, these are more related to uncertainties of what are the 22 

optimal ways to control one’s own vehicle in the arising situation to increase safety, fluency, 23 
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comfort, and economy in the traffic system, instead of uncertainties related directly to social 1 

behaviors. It is worthwhile to stress that the uncertainties expressed by the human expert drivers 2 

did not only focus on ensuring one’s own, but also other road users’ safety, comfort, and economy. 3 

Most of the listed goals were related to safety. There are only six uncertainties that are not directly 4 

related to safety, and only one of these is under the uncertainties related to social behaviors in Table 5 

3. 6 

The method of the field study was similar to the methodology used by Kircher and Ahlström (2018). 7 

However, the emphasis was here on the prospective thinking-aloud and the focus of analysis on the 8 

anticipations and uncertainties of the expert drivers, as justified in related literature, whereas 9 

Kircher and Ahlström (2018) focused on evaluating the utility of various methods to assess driver’s 10 

attentional state. They found and stressed the importance of taking into account the intentions of 11 

the driver for this analysis, and that thinking-aloud was an appropriate tool to gain insight into the 12 

driver’s actual situational mental representations. Kircher and Ahlström (2017; 2018) argue that 13 

there is currently not enough a priori understanding of the minimum attentional requirements for 14 

safe driving applicable to any given driving situation. They suggest that prototypical situations and 15 

maneuvers in traffic as well as the situationally relevant information targets and agents in these 16 

should be defined to accumulate this understanding. The prospective thinking-aloud method seems 17 

to serve also for this purpose, and in particular, of studying the minimum information requirements 18 

related to the sufficient Level 3 situation awareness in real-world scenarios (Endsley, 1995). 19 

Most of the found uncertainties relate to dynamic and temporal goal-relevant variabilities in the 20 

driving situation, and in particular the ones related to interactions with other traffic. There are only 21 

a few uncertainties that are spatial and/or more static by nature, such as those related to prevailing 22 

speed limit, nature of the intersections (equal or not), holes or objects on the road, traffic lights, 23 
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optimal driving lines, lengths of entrance ramps, and the sufficiency of space on the road to fit 1 

passing vehicles. The dynamic uncertainties represent time-critical information requirements in 2 

driving whereas the static uncertainties are related to information requirements of the 3 

infrastructure of the traffic system (Kircher and Ahlström, 2017). The data suggests that most of 4 

these requirements in driving may be dynamic and time-critical, which is understandable for a 5 

dynamic visual-spatial tracking task. 6 

From a methodical perspective, it is important to notice that anticipation is always a mental content. 7 

It is possible to anticipate only if people are able to represent the present and the possible future 8 

states of the situation in their minds. Chess players, for example, simulate possible future states in 9 

their minds when they search for the best move (Saariluoma, 1995). They generate and relate 10 

moves that are not present in their perceptual field, and thus, they can anticipate the possible 11 

courses of actions in their mental representations. The contents of their thoughts explain why they 12 

can represent future state of affairs and anticipate what will happen. Similarly, in the presented 13 

thinking-aloud protocol drivers generate future state of affairs and anticipate possible future 14 

courses of actions and the uncertainties of these. They mentally simulate what can happen and how 15 

they should act in a given situation to avoid negative outcomes of actions. The human ability to 16 

represent mental contents – that are often conceptual or qualitative – is decisive for the human way 17 

of anticipating possible future courses of events and to adapt their present actions to avoid 18 

accidents. How to enable this kind of generic capacity for automated vehicles without introducing 19 

computationally heavy world models is a challenging question. However, it seems that in order to 20 

improve the safety of automated driving to a human expert level – or beyond, this capacity is a 21 

requirement. 22 
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4.3.1 Limitations and future work 1 

According to Lake et al. (2017), due to nonexistent world models, automated driving technologies 2 

cannot raise, for instance, the uncertainty about recognizing other road users’ intentions or 3 

sufficient visibility. Based on the assumption of non-existing world models, the reviewed literature 4 

and the information publicly available online (e.g., https://www.tesla.com), some of the 5 

uncertainties in Tables 3 and 4 may be impossible to be recognized by current automated driving 6 

technologies. These uncertainties may remain out of reach of automated driving technologies for 7 

the distant future unless there are major advances made towards general artificial intelligence 8 

(Kujala and Saariluoma, 2018). However, the details of the state-of-the-art and developing 9 

commercial technologies outside academic knowledge are hard to find due to trade secrets. The 10 

authors are not experts in the engineering of automated driving technologies, and will not speculate 11 

which of the found uncertainties could or could not be recognized and/or resolved with current 12 

technology.  We will leave this analysis for the domain experts and as a topic for further research. 13 

However, we believe this data is valuable for the developers in assessing the limitations of current 14 

state-of-the-art technology and in finding ways to improve situation awareness of future automated 15 

driving solutions. The introduced method and produced data can be utilized also for making 16 

automated vehicles to recognize such upcoming situations, in which the human should take over 17 

the vehicle, to enable timely take-over requests before safety-critical situations realize (Hecker et 18 

al., 2018). 19 

On the other hand, many of the found uncertainties are probably not recognized by current 20 

automated driving technologies but could perhaps be recognized and resolved by the existing 21 

technologies. From a mimetic design perspective (Kujala and Saariluoma, 2018; Saariluoma et al., 22 

2018), these are the most interesting uncertainties. With improved map data (e.g., Are road 23 

constructions causing exceptions in traffic arrangements?), machine vision (e.g., Do I hit the 24 
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pothole/object on the road?), vehicle-to-vehicle and vehicle-to-infrastructure communications 1 

(e.g., Are traffic lights going to change?), and data fusion (e.g., If needed, is there space to yield to 2 

the adjacent lane?), many of these anticipatory capacities may possibly be implemented in today’s 3 

or tomorrow’s automated driving technologies. Further research should take each one of these 4 

uncertainties and create means for automated driving technologies to recognize and resolve these 5 

– if not yet being implemented.  6 

The sample of driving instructors was quite small, although it seemed there was a saturation of data 7 

for the selected routes. As there was no direct control over the traffic conditions that is possible in 8 

a driving simulator, some of the situations were rare but still safety-relevant. With a larger sample, 9 

more of these events and possibly also other types of uncertainties could have been observed. 10 

Intuitively, all the found uncertainties seem to be such that these could be relevant across various 11 

traffic environments and cultures. However, the route was relatively short (57.2 km) and 12 

represented only the uncertainties relevant in the selected local traffic conditions and time of day, 13 

and therefore uncertainties relevant in other traffic environments, conditions and times of day (e.g., 14 

night) could be missing. In further research, the method should be applied to various traffic 15 

environments and cultures in order to reveal all the possible relevant uncertainty subcategories that 16 

are not handled by automated driving solutions. 17 

In future studies, utilizing eye-tracking and vehicle data together with the prospective thinking-18 

aloud method could enable more detailed quantitative analyses of the adaptive actions to the 19 

expressed uncertainties, such as speed and headway adaptations (cf. Kircher and Ahlström, 2018). 20 

This level of analysis might enable computational models of human expert drivers’ decision-making 21 

and adaptations in situations with the recognized uncertainties (cf. Hubmann et al., 2018; Meghjani 22 
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et al., 2019; Portouli et al., 2019) that may be useful for implementing these in automated driving 1 

algorithms. 2 

5 CONCLUSIONS 3 

We have introduced the prospective thinking-aloud method for analyzing how expert drivers 4 

(driving instructors) think as well as the anticipations and uncertainties of expert drivers related to 5 

safe, economical, and comfortable driving. The expertise of the driving instructors was validated 6 

with a hazard prediction test. As expected, driving instructors were able to anticipate unfolding 7 

hazardous traffic situations by a better rate than the other participant groups and it seems that this 8 

prediction ability evolves with practice. 9 

The results of the field study indicate that there may be uncertainties in traffic that are perhaps not 10 

recognized or resolved with current automated driving technology solutions. It remains unclear if a 11 

great number of training data and great processing power are sufficient for overcoming these 12 

challenges. If the ultimate goal of this development is to create a fully autonomous vehicle that can 13 

cope in any complex driving situation with human road users, especially the social side of automated 14 

driving should be better understood. 15 

However, the method also revealed a number of significant uncertainties that may not be 16 

considered in the development of automated driving technologies, but which may be recognized 17 

and resolved with existing technologies. Further, the introduced method may serve in enabling 18 

automated driving technologies to predict its probable failure, in order to alert the driver to take 19 

control well ahead of the failure (Hecker et al., 2018). 20 
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These findings and methodical contributions can be utilized when studying expert drivers’ 1 

anticipations in different contexts, prototypical traffic situations and maneuvers and their 2 

information requirements for safe driving (Kircher and Ahlström, 2017; 2018), and for developing 3 

better automated driving technology by indicating automated vehicles’ potential limitations as 4 

compared to expert human drivers. 5 
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