
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY-NC-ND 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

Hypervisor memory acquisition for ARM

© 2021 Elsevier Ltd.

Accepted version (Final draft)

Ben Yehuda, Raz; Shlingbaum, Erez; Gershfeld, Yuval; Tayouri, Shaked;
Zaidenberg, Nezer Jacob

Ben Yehuda, R., Shlingbaum, E., Gershfeld, Y., Tayouri, S., & Zaidenberg, N. J. (2021). Hypervisor
memory acquisition for ARM. Forensic Science International: Digital Investigation, 37, Article
301106. https://doi.org/10.1016/j.fsidi.2020.301106

2021

Hypervisor Memory acquisition for ARM

Raz Ben Yehuda, Erez Shlingbaum, Shaked Tayouri, Yuval Gershfeld, Nezer Zaidenberg

Abstract
Cyber forensics use memory acquisition in advanced
forensics and malware analysis. We propose a hyper-
visor based memory acquisition tool. Our implementa-
tion extends the volatility memory forensics framework
by reducing the processor’s consumption, solves the in-
coherency problem in the memory snapshots and miti-
gates the pressure of the acquisition on the network and
the disk. We provide benchmarks and evaluation.

1 Introduction

A rootkit is a malware that hides itself along with the
malicious payload that it carries[8]. Rootkit research is a
cat a mouse game in all computing platforms.

Researchers develop better forensics to detect rootk-
its while others develop state-of-the-art rootkits. Our re-
search improves a volatile memory forensics. We de-
scribe a hypervisor-based forensics software that detects
stealthy rootkits under Linux. We enhanced LiME’s
[29] memory acquisition tool for Volatility [12] memory
forensics software.

We describe our the design and implementation of an
online memory forensics system. We also performed
a performance analysis of memory acquisition perfor-
mance figures on the online system. This paper outline
is as follows:

We start by describing the problem’s Background. We
then detail our Contribution and present an Evaluation.
We end with Related work and Conclusions.

2 Background

2.1 Rootkits and stealth malware

Two of the most famous rootkits of recent years were
stuxnet [16] and Sony BMG [19] rootkit. Stuxnet

purpose was to attack Iran’s nuclear enrichment pro-
gram. Countries and elite intelligence agencies devel-
oped Stuxnet for espionage and Sabotage purposes. Sony
BMG rootkit designed to install and hide DRM soft-
ware on end-user machines [13, 4]. These two exam-
ples demonstrate the rootkits are no longer ”hacker tools”
but rather tools employed by countries and top industrial
companies for national and business purposes.

Despite having completely different authors and pur-
poses, both software contained a similar concept of
masking its existence by hiding the malware files and
the running processes. Live memory acquisition is a tool
used by forensics researchers to reverse engineer the mal-
ware. Forensics researchers attempt to identify the au-
thors, their goals and any weakness in the malware itself.

Volatility [12, 9] is an open-source (GPLv2) frame-
work for analysing memory [5]. It is a forensics toolkit
used to analyze memory snapshots. Thus Volatility is of-
ten used to detect such hidden malware. [20]

2.2 Forensics and Volatility

Volatility is the state of the art RAM snapshot software.
It is available in Windows, Linux, Mac, and Android,
32bit and partially 64bit. Volatility is based on Python
[28]. which makes development in Volatility easy for
most analysts. Also, Python is available on many operat-
ing systems, including Android phones. Volatility avail-
ability on Android allows for local memory capture and
analysis, saving the need to transmit gigabytes of a RAM
snapshot over the network. Volatility API is extensible,
and forensics researchers can add plugins easily. Volatil-
ity’s developers use a reverse engineering approach to
understand the acquired memory. Thus, Volatility pro-
vides capabilities and information that are not usually
possible through standard tools. For example, examining
undocumented data structures in windows OS. Volatil-
ity supports various formats: crash dumps, hiberna-
tion files, VMware’s vmem, VMware’s saved state and

suspended files (.vmss/.vmsn), VirtualBox core dumps,
LiME (Linux Memory Extractor), expert witness (EWF),
and direct physical memory over Firewire. Volatility is
considered fast compared to other forensics tools. It anal-
yses the entire memory image file in a few seconds.

2.3 LiME

LiME (Linux Memory Extractor) is a Linux kernel mod-
ule that performs acquisition of volatile memory on
Linux distributions and Linux kernel-based devices [11],
such as Android. Since LiME is a Linux kernel mod-
ule, it does not require any user-space tools to perform
memory captures. Therefore, LiME memory captures
are considered sounder than other memory acquisition
tools. Also, since LiME is a pure kernel module, it is
easy to use it on Android devices and embedded Linux
devices in general.

2.4 ARM permission model

ARM has a unique approach to security and privilege
levels [22] that is crucial to the implementation of our
microvisor. In ARMv7, ARM introduced the concept of
secured and non-secured worlds through the implemen-
tation of TrustZone [30]. ARM architecture includes
four exceptions (permission) levels as follows.
Exception Level 0 (EL0) Refers to the user-space.
Exception Level 0 is analogous to ”ring 3” on the x86
platform.
Exception Level 1 (EL1) Refers to the operating
system. Exception Level 1 is analogous to ”ring 0” on
the x86 platform.
Exception Level 2 (EL2) Refers to the hypervisor (HYP
mode). Exception Level 2 is analogous to ”ring -1” or
”real mode” on the x86 platform.
Exception Level 3 (EL3) Refers to the TrustZone as
a special security mode that can monitor the ARM
processor and may run a real-time security OS. There
are no direct analogous modes, but related concepts in
x86 are Intel’s ME or SMM.

Each exception level provides its own set of special-
purpose registers and can access these registers of the
lower levels, but not higher levels. The general-purpose
registers are shared. Thus, moving to a different excep-
tion level on the ARM architecture does not require the
expensive context switch that is associated with the x86
architecture.
In the context of the paper, we use EL2 microvisor to
extend LiME.

3 Contribution

3.1 High level design
We use Volatility [26] and LiME to analyse the memory
to detect an irregular state. Our contribution focuses on
reducing CPU consumption and heat when using LiME.
Our memory acquisition microvisor also provides con-
sistent memory images. Also, ported parts of Volatility
to support 64bit ARM Linux kernels.

3.2 ARM systems
Volatility currently supports ARMv7 systems. One
key difference between ARMv7 and ARMv8 regarding
memory acquisition is that ARMv8 usually runs 64bit
kernels while ARMv7 runs 32bit. Our microvisor envi-
ronment does not support ARMv7; therefore, we ported
Volatility to ARM64 bit kernels partially and contributed
our modifications to the Volatility community. This ap-
proach is important because most Phones and Android
devices today use ARMv8-a and a 64bit Linux kernel.

3.3 Microvised LiME
Our contribution concentrates in LiME. LiME creates
a reflection of the computer’s RAM by accessing each
physical page and writing it to the disk or the network
(Algorithm 1). LiME scans the RAM sequentially and
allocates an auxiliary page for each page and copies the
page’s contents to it. The auxiliary page is transmitted
(or written to disk) and then released.

Algorithm 1: LiME Main Transmission

while not end of RAM do
Map the current physical page the to kernel
memory

Allocate an auxiliary page
Copy Physical Page to the auxiliary page
Transmit the auxiliary Page
Free auxiliary page
Unmap the Physical Page

end

This paper contribution focuses on solving two disad-
vantages of LiME:

• The snapshot image in-coherency

• The processor’s high utilisation while the acquisi-
tion takes place.

• LiME is unable to predetermine the chances of an
in-coherent memory snapshot.

2

3.4 Memory In-coherency

The main memory is likely to change during the acqui-
sition. For example, Figure 1 demonstrates a browser
launch during LiME memory acquisition, and a few sec-
onds after the browser immediately exits. The opera-
tion changes the operating system’s processes table af-
ter LiME already transmitted it. Therefore, starting and
stopping Firefox creates memory in-coherency. Memory
in-coherence is a result of processes that exist in mem-
ory but not on the process table, pages that belong to a
process that does not exist in the table, etc.

Firefox Launches here in
RAM

LiME

Processes
Table

System RAM

Firefox exitsLiME

System RAM

Processes
Table

Figure 1: LiME transmission

Andrew et al. [9] describe other in-coherency rea-
sons, such as multiples cores, the increasing amount of
RAM and the kernel heuristics, and point the increasing
amount of RAM as the reason for page smearing. In this
paper context, [9] mention two techniques to deal with
page smearing:

• Leveraging virtual machine hardware exten-
sions Use various virtualization techniques, such as
blue pill, to acquire the memory.

• Smear-aware acquisition tools. Provide the acqui-
sition tool awareness to changes in page tables.

Our technology utilizes virtualization to acquire mem-
ory, but without freezing the operating system (hiberna-
tion).

To emphasise how versatile the RAM (and page
smearing) while LiME transmits, we recorded the first
500 page faults positions while LiME works. Table 1
presents the distance (in pages) between two consequent
pages. The total number of pages is 242000. We per-
formed the test above while the system was idle.

Avg Min Max Std dev
426 -236990 236921 44837

Table 1: Page faults distribution in pages

The pages’ positions distribution is vast. Therefore,
we expected to find inconsistencies in the memory image
snapshot.

Thus, this paper offers a technique to solve the incon-
sistency. We wrap the GPOS (General Purpose Oper-
ating System) by a minimal virtual machine (VM), and
during the acquisition, we record and copy the faulting
page content before it is transmitted. In virtual machines,
when a guest accesses a page, the Memory Management
Unit (MMU) traps it to a secondary page table managed
by the hosting machine. This mechanism is referred to
as a stage 2 fault. In ARM, the second (stage 2) memory
table is called the Intermediate Physical Addresses (IPA)
[23].

First Page trap

Second Page trap

PagexStage 1

Stage 2 Pagex

Figure 2: Virtual Machine dual stage memory trap

Thus, to achieve coherency, we set all stage 2 tables
to read-only before the memory acquisition starts. This
way any write access to any page is trapped to the micro-
visor. We then execute LiME to acquire the computer’s
RAM; at this point, any page that traps to the microvisor
is copied to a pages pool and the real page permissions
are set to read-write. Therefore each page can trap to the
microvisor at most once.

In addition to our microvisor, our solution includes a
modification to the LiME driver. LiME, using our tech-
nique, linearly scans the memory, and in each cycle it
checks the pages pool to verify that the current page did
not already fault. If the page is resident in the pool, LiME
transmits the copied page and releases it back to the mi-
crovisor’s pool for re-use. Algorithm 2 describes LiME’s
new implementation while using our microvisor. We re-
fer in this paper to this technique as a linear acquisition.

3

Algorithm 2: Linear Acquisition: Transmission with
a microvisor

while not end of RAM do
Allocate an auxiliary page
if the physical page has an old version in the

pool then
Remove the page from pages pool
Copy the page from the pool to the auxiliary

page
Place back the page to the pool
else

Map Physical Page
Copy physical page to the auxiliary page
Unmap Physical Page

end
end
Transmit auxiliary Page
Free auxiliary page

end

3.5 CPU consumption

Linear acquisition has a flaw. As we show later in the
evaluation section, the performance cost of linear acqui-
sition is very high. To reduce the processor consumption,
we modified LiME’s main transmission routine to be less
CPU intense. In this approach, LiME does not scan the
memory linearly. Instead LiME removes pages from the
pool as long as there are pages in it. If there are no pages,
it linearly sends pages as before, but it sleeps for a few
milliseconds in each transmission cycle. We refer to this
solution as a non linear acquisition.

3.6 Refraining from incoherent images

As we’ve shown, LiME produces in-coherent memory
dumps. Our microvised LiME solution offers a tech-
nique that produces cohesive memory images; However,
in cases where there are too many page faults, it is not
possible to create a coherent memory image, because the
pages pool is overloaded. In this case, it is easy to disable
the acquisition and starts again later.

3.7 Microvisor memory model TEE

Here we explain the trusted execution environment(TEE)
model. ARMv8-a hypervisor (EL2) memory table is not
accessible to lower exception levels; meaning, it is not
possible for code running in EL2 to access another ex-
ception level memory without premature mappings (Fig-
ure 3).

EL1mmu EL2mmu

Figure 3: Memory Table access

For instance, to access memory in EL1 from EL2,
EL1’s pages must be pre-mapped (Figure 4) to EL2.

EL1mmu EL2mmu

EL2 table descriptors

Figure 4: Memory Table access for hyplets

However, during the acquisition, each page accessed
in EL1 or in EL0 traps to EL2 (stage 2), and therefore,
must be copied to a page in the microvisor pages pool,
while in the EL2 trap. So it is essential to map this page
to microvisor as done in KVM for ARM [10].
Our hypervisor page trap needs to access both virtual
userspace and virtual kernel space addresses. Unfortu-
nately, ARMv8-a hypervisor MMU is capable of han-
dling only user-space addresses (the upper 16 bits are ze-
roes) and does not support kernel virtual addresses (up-
per 16 bits are ones) at all. So instead of handling virtual
addresses, we decided to handle physical addresses. We
rely on the following ARM property. When a page traps
to EL2, in addition to the virtual address of the faulting
page, the physical address of the page is also reported in
a special register.

Therefore, we map the entire physical memory to the
hypervisor (Figure 5) as-is, meaning, we map each ad-
dress without any offset. This way, the code, and some
data are mapped in a certain part of the address space,
represented by a very high number; while the entire Sys-
tem’s RAM resides in address starting from address 0
(the lowest physical address). To summarise, we have
two distinct mappings techniques:

• General Mappings

hypervisor map(kernel addr) = address + offset

These mappings are used to execute code and access
general management data from both the kernel and
the hypervisor.

4

• Physical mappings

hypervisor map2(physical address) = physical ad-
dress

These mappings are used only in the page trap func-
tion of the microvisor. The trap copies the data to
be used later by LiME.

General
Mapping

Physical RAM
Mapping

Microvisor address space

0
End Physical
Mem

Figure 5: Microvisded LiME’s Memory layout

All the pages in the General Mapping are mapped in
the physical mapping as well. We note that some of these
pages owned to the microvisor and never accessed by
EL1/EL0 and therefore never trap to EL2 (Our micro-
visor traps from EL1 and EL0).

3.8 Acquisition Resources Consideration
This section discusses the memory resources required for
the acquisition. Figure 6 demonstrates the fluctuations in
the number of pages accessed in each processor in our
hardware. It is evident that there is a burst in the number
of pages as LiME starts and when the acquisition ends.

Figure 6: #pages accessed to the microvisor. X axis is #sam-
ples

In our hardware, nearly 600 pages are accessed as the
acquisition starts. So, we expect our pool to be in this
magnitude. Let us examine the overhead of 1000 pages
assigned to the pool in the hardware of 242000 pages
(PI3 - our evaluation hardware, has 940 MB of RAM).

Thus the pages pool requires less than half per cent of
the total RAM:

1000
242000

∼ 0.4%

To summarise this section, our acquisition algorithm
incurs a temporary negligible overhead of RAM.

4 Evaluation

Our evaluation measures the IPA overhead, offers a per-
formance comparison between the current implemen-
tation of LiME to the microvised implementation and
demonstrates how RAM in-coherency is solved by our
technology.

In the following evaluation, we repeat each test 10
times; We usually provide results in Idle mode and then
Busy mode. Idle mode means that we did not apply any
artificial stress on the operating system. A busy mode is
when we applied the stress tool stress [1], while LiME
was executing, as follows:

stress --VM bytes 128M --timeout 80s --VM 4

To measure memory speed, we used RAMspeed [?].

4.1 IPA

In Figure 3 we attempted to simulate more closely real-
world computing load through the use of RAMspeed. A,
B and C are locations in the memory. M in SCALE is a
constant.

SCALE A = m*B
ADD A + B = C
COPY A=B

Table 2: IPA Tests explained

Test COPY SCALE ADD
Single Stage 2.76 1.52 2.60
Dual Stage 2.74 1.52 2.53

Table 3: Real World Load GB/s

There is no difference when using a two-stage trans-
lation to a single-stage translation. We have shown that
IPA does not influence memory access performance.

5

4.2 Image in-coherency

We first demonstrate the in-coherency of RAM dumps
when using LiME without a microvisor. We also
show that the microvised LiME provides coherent RAM
dumps. We perform the following test. We acquire mem-
ory while issuing the executing the ”sleep 1” command
50 times sequentially for 1 second. A consistent snap-
shot should have a single instance of the sleep process
in the process table. Figures 8 and Figure 7 are snip-
pets of Volatility memory analysis of the processes ta-
bles. Figure 7 presents the processes tables when the
non-microvised LiME is used, while Figure 8 is when
using the microvised LiME. In Figure 7 we can see 27 in-
stances of ”sleep” process while in Figure 8 there is a sin-
gle instance of ”sleep”. This means that LiME recorded
the memory while the process table was changing. In
Figure 7 we can see that some of the ”sleep” process ids
are successive, which means that no other processes were
launched in at least 1 second. This strengthens the claim
that even in an Idle system, in-coherency is possible.

Offset Name Pid PPid

------------------ ------------

0x2fc58000 sleep 641 -

0x308f8000 sleep 600 -

0x308f9d00 sleep 601 -

0x308fba00 sleep 602 -

0x308fd700 sleep 603 -

0x30918000 insmod 700 -

0x30919d00 sudo 708 -

0x30948000 swapoff 738 -

0x30978000 sleep 637 -

0x30979d00 sleep 638 -

0x3097ba00 sleep 639 -

0x3097d700 sleep 640 -

0x30980000 sleep 592 -

0x30981d00 sleep 593 -

0x30983a00 sleep 594 -

0x30985700 sleep 595 -

0x309c8000 sleep 596 -

0x309c9d00 sleep 597 -

0x309cba00 sleep 598 -

0x309cd700 sleep 599 -

0x30a10000 sleep 604 -

0x30a11d00 sleep 605 -

0x30a13a00 sleep 606 -

0x30a15700 sleep 607 -

0x30a38000 wpasupplicant 759 -

0x30a39d00 wireless-tools 753 -

0x30ac0000 swapon 735 -

0x30ac1d00 grep 736 -

0x30ac3a00 cut 737 -

0x30b98000 start-stop-daem 731 -

0x30ba8000 sleep 629 -

0x30ba9d00 sleep 634 -

0x30baba00 sleep 635 -

0x30bad700 sleep 636 -

....

Figure 7: Non-Microvised Lime

Offset Name Pid PPid

------------------ ----- -------

0x2fc58000 sleep 641 -

0x3000fa00 318 -

0x3001e700 btuart 319 -

0x30035700 modprobe 508 -

0x30051000 ksoftirqd/0 9 -

x30053700 ksoftirqd/1 17 -

0x3007f000 ksoftirqd/2 22 -

0x304e0000 bash 527 - 0 -

0x304e1d00 top 530 - 0 -

..

Figure 8: Microvised LiME

Now, we want to have some measures for the possible
in-coherency while LiME executes. So, we examine the
number of EL2 page faults (Table 4) in Busy mode and
Idle mode.

Avg Max Min Std dev
Idle Mode 130 129 132 1.17
Busy mode 128212 135891 122771 3493

Table 4: Total number of page faults during LiME

Table 4 was produced by the average and other statisti-
cal measures of 10 runs. We note again that for a pool of
1000 pages the in-coherency should be less than 0.4%.
In Idle mode:

130
242000

∼ 0.00005

but in Busy mode:

128212
242000

∼ 0.52

The amount of in-coherency in the extreme case is ap-
proximately 50%. So our model can be 1000/130 ∼
7.5 busier than the Idle mode presented here, and
1000/128212 ∼ 0.0008 times smaller than Busy mode.
It is more efficient to run LiME when the system is Idle.

4.3 Microvised LiME vs LiME
We compare the performance of microvisied LiME to the
non-microvised LiME. We measure the duration in sec-
onds, in Idle mode and Busy mode, and the processor
consumption in Idle mode. In the tests presented in ta-
bles 5 and 6 we used linear acquisition.

Avg Min Max Std dev
No microvisor 74 72 76 1.4
With a microvisor 80 74 96 7.68

Table 5: Duration of the memory dump, Idle mode

6

LiME Avg Min Max Std dev
No microvisor 84 83 85 0.7
With a microvisor 83 81 85 0.9

Table 6: Duration of the memory dump, Busy Mode

From tables 5 and 6 it is evident there is an overhead
of 8% when using the microvised LiME. The reason is
that for each page faulting to the microvisor, we scan the
pool.
Lastly, we measure processor utilisation with and with-
out a microvisor.

LiME Avg Min Max Std dev
no microvisor 52 50 53 1
With a microvisor 48.8 39 52 4.5

Table 7: Processor utilisation in Idle mode

Table 7 presents the overhead of the processor utilisa-
tion when LiME acquires memory. There is little differ-
ence between, so it is evident that even the linear version
of microvised LiME does not incur any significant per-
formance risks.

4.4 Non-Linear acquisition

Here we demonstrate the processor’s consumption and
the time it takes to perform a nonlinear acquisition. The
variable we change in tables 8 and 9 is the delay duration
in each cycle. We provide measures of the processor’s
consumption and the duration of the entire acquisition.

Test Duration
Conf
10 ms 4860 secs
20 ms 6600 secs
50 ms 14520 secs

Table 8: Duration of non linear acquisition

Test Avg Processor
Conf consumption
10 ms 17 %
20 ms 12%
50 ms 5%

Table 9: Processor utilization in Idle mode - Non Linear

Tables 8 and 9 prove that it is possible to perform an
acquisition with very little processor consumption. The
trade-off is a considerably long acquisition duration, in
some cases over an hour. An additional benefit of this
technique is that it has a low I/O load. The method does
not congest the disk, or in the network case, mild network
traffic. Thus it is possible to run the acquisition over a
cellular medium.

5 Related work

In recent years it was proposed to use hypervisors for
many security purposes such as machine introspection
and debugging [32]. The introspection of virtual ma-
chines by the hypervisor was researched heavily. Libvmi
[21] is a library that provides such introspection services
under KVM. It provides VM based snapshots and has an
integrated volatility plugin. It was also suggested to use
Lguest[27] or Xen[6] for detection of kernel bugs[14],
profiling[18], Hypertracing [7], security issues [31], and
access the guest’s memory through a thin hypervisor for
remote attestation as suggested by Kiperberg et al. [15].
Forenvisor [25] uses the hypervisor to grab and store
forensics data on the cloud for later inspection. Kiper-
berg et al. [15] provided a system for atomic memory
acquisition and guaranteed atomic access.
Andrew et al. [9] discuss page swapping and demand
paging as another obstacle to complete the acquisition of
memory. Our technique does not acquire swap space or
fetches pages of incomplete processes. At this stage, it is
not clear whether the Volatility framework is capable to
incorporate swap space and on-demand pages.
In Microsoft Windows operating systems, projects, like
Powershell Empire [3], exploit Windows PowerShell.
Powershell Empire does not execute the PowerShell exe-
cutable file from the file-system but runs directly from
the memory. Empire provides keylogging, credential
theft, and more. As a result, memory forensics tools fail
to detect the execution of PowerShell and forced to rely
on pattern matching and search for side-effects of Pow-
erShell post-execution. Another challenge is the Win-
dows .NET framework. .NET runtime is embedded in
the process’s address space and, therefore, can execute
an injected malware [24, 9]. At the moment there is no
available technology that can detect this malware. Addi-
tionally, .NET supports function overriding; a technique
that malware can manipulate by replacing callbacks with
malicious functions.
In Android, a large effort is in the analysis of the Dalvik
engine. Researchers created forensics tools [17] for
Dalvik. Unfortunately, Dalvik was replaced by ART
(Android Runtime). Unlike Dalvik which is based on
JIT (Just in Time compilation), ART [2] produces ELF
binaries. To the day of writing, there is no published

7

forensics technology for ART.
There have been multiple suggestions for memory in-
spection and acquisition through dedicated firmware.
[33] et al. describe such memory acquisition through
RDMA. In this paper, we assume that such hardware is
not available.

6 Conclusions

We have shown that it is possible to perform a memory
acquisition without saturating the processor. Despite the
intense processor usage, our memory dumps remain co-
herent. We also showed that the acquisition is possible
without overwhelming the disk or the network, and there-
fore it is possible to perform it over wireless embedded
devices, mainly mobile phones. Our code footprint is
considerably low, about 2200 lines of microvisor code.

References

[1] Stress-ng [pts/stress-ng]. (n.d.), 2019.

[2] Android, 2016. art and dalvik., 2020.

[3] Bpowershell empire. (n.d.)., 2020.

[4] En.wikipedia.org. (2019). rootkit.

[5] Amer Aljaedi, Dale Lindskog, Pavol Zavarsky, Ron
Ruhl, and Fares Almari. Comparative analysis of
volatile memory forensics: live response vs. mem-
ory imaging. In 2011 IEEE Third International
Conference on Privacy, Security, Risk and Trust
and 2011 IEEE Third International Conference on
Social Computing, pages 1253–1258. IEEE, 2011.

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of vir-
tualization. In ACM SIGOPS operating systems re-
view, volume 37, pages 164–177. ACM, 2003.

[7] Abderrahmane Benbachir and Michel R Dagenais.
Hypertracing: Tracing through virtualization lay-
ers. IEEE Transactions on Cloud Computing, 2018.

[8] Bill Blunden. The Rootkit arsenal: Escape and eva-
sion in the dark corners of the system. Jones &
Bartlett Publishers, 2012.

[9] Andrew Case and Golden G Richard III. Memory
forensics: The path forward. Digital Investigation,
20:23–33, 2017.

[10] Christoffer Dall and Jason Nieh. Kvm/arm: The
design and implementation of the linux arm hyper-
visor. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14,
pages 333–348, New York, NY, USA, 2014. ACM.

[11] Rushita Dave, Nilay R Mistry, and MS Dahiya.
Volatile memory based forensic artifacts & analy-
sis. Int J Res Appl Sci Eng Technol, 2(1):120–124,
2014.

[12] Dan Farmer and Wietse Venema. Forensic discov-
ery. Addison-Wesley Professional, 2009.

[13] Greg Hoglund and James Butler. Rootkits: sub-
verting the Windows kernel. Addison-Wesley Pro-
fessional, 2006.

[14] Eviatar Khen, Nezer J Zaidenberg, Amir Averbuch,
and Evgeny Fraimovitch. Lgdb 2.0: Using lguest
for kernel profiling, code coverage and simulation.
In 2013 International Symposium on Performance
Evaluation of Computer and Telecommunication
Systems (SPECTS), pages 78–85. IEEE, 2013.

[15] Michael Kiperberg, Roee Leon, Amit Resh, Asaf
Algawi, and Nezer Zaidenberg. Hypervisor-
assisted atomic memory acquisition in modern sys-
tems. In International Conference on Information
Systems Security and Privacy. SCITEPRESS Sci-
ence And Technology Publications, 2019.

[16] Ralph Langner. Stuxnet: Dissecting a cyberwar-
fare weapon. IEEE Security & Privacy, 9(3):49–51,
2011.

[17] H Macht. Dalvikvm support for volatility, 2012.

[18] Aravind Menon, Jose Renato Santos, Yoshio
Turner, G John Janakiraman, and Willy
Zwaenepoel. Diagnosing performance over-
heads in the xen virtual machine environment. In
Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environments,
pages 13–23. ACM, 2005.

[19] Deirde K Mulligan and Aaron K Perzanowski. The
magnificence of the disaster: Reconstructing the
sony bmg rootkit incident. Berkeley Tech. LJ,
22:1157, 2007.

[20] Digit Oktavianto and Iqbal Muhardianto. Cuckoo
malware analysis. Packt Publishing Ltd, 2013.

[21] Bryan D Payne. Simplifying virtual machine intro-
spection using libvmi. Sandia report, pages 43–44,
2012.

8

[22] Niels Penneman, Danielius Kudinskas, Alasdair
Rawsthorne, Bjorn De Sutter, and Koen De Boss-
chere. Formal virtualization requirements for the
arm architecture. Journal of Systems Architecture,
59(3):144–154, 2013.

[23] Niels Penneman, Danielius Kudinskas, Alasdair
Rawsthorne, Bjorn De Sutter, and Koen De Boss-
chere. Formal virtualization requirements for the
arm architecture. Journal of Systems Architecture,
59(3):144–154, 2013.

[24] Santiago M Pontiroli and F Roberto Martinez. The
tao of .net and powershell malware analysis. In
Virus Bulletin Conference, 2015.

[25] Zhengwei Qi, Chengcheng Xiang, Ruhui Ma, Jian
Li, Haibing Guan, and David SL Wei. Forenvisor:
A tool for acquiring and preserving reliable data in
cloud live forensics. IEEE Transactions on Cloud
Computing, 5(3):443–456, 2016.

[26] Eric D Rotvold, Donald R Lattimer, Michael J
Green, Robert J Karschnia, and Marcos AV Peluso.
Interface module for use with a modbus device net-
work and a fieldbus device network, July 17 2007.
US Patent 7,246,193.

[27] Rusty Russel. lguest: Implementing the little linux
hypervisor. OLS, 7:173–178, 2007.

[28] Michel F Sanner et al. Python: a programming lan-
guage for software integration and development. J
Mol Graph Model, 17(1):57–61, 1999.

[29] Joe Sylve. Android mind reading: Memory ac-
quisition and analysis with dmd and volatility. In
Shmoocon 2012, 2012.

[30] Johannes Winter. Trusted computing building
blocks for embedded linux-based arm trustzone
platforms. In Proceedings of the 3rd ACM work-
shop on Scalable trusted computing, pages 21–30.
ACM, 2008.

[31] Nezer J Zaidenberg and Eviatar Khen. Detect-
ing kernel vulnerabilities during the development
phase. In 2015 IEEE 2nd International Conference
on Cyber Security and Cloud Computing, pages
224–230. IEEE, 2015.

[32] Nezer Jacob ZAIDENBERG. Hardware rooted se-
curity in industry 4.0 systems. Cyber Defence in
Industry 4.0 Systems and Related Logistics and IT
Infrastructures, 51:135, 2018.

[33] Lei Zhang, Lianhai Wang, Ruichao Zhang, Shuhui
Zhang, and Yang Zhou. Live memory acquisition

through firewire. In International Conference on
Forensics in Telecommunications, Information, and
Multimedia, pages 159–167. Springer, 2010.

9

View publication stats

https://www.researchgate.net/publication/350312655

