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Abstract. Statistical shape models (SSMs) are widely used in medical image 

segmentation. However, traditional SSM methods suffer from the High-

Dimension-Low-Sample-Size (HDLSS) problem in modelling. In this work, we 

extend the state-of-the-art multi-resultion SSM approach from two dimension 

(2D) to three dimension (3D) and from single organ to multiple organs. Then 

we proposed a multi-resolution multi-organ 3D SSM method that uses a 

downsampling-and-interpolation strategy to overcome HDLSS problem. We al-

so use an inter-surface-point distance thresholding scheme to achieve multi-

resolution modelling effect. Our method is tested on the modelling of multiple 

mouse abdominal organs from mouse micro-CT images in three different reso-

lution levels, including multi-organ level, single organ level and local structure 

level. The minimum specificity error and generalization error of this method are 

less than 0.3 mm, which are close to the pixel resolution of mouse CT images 

(0.2 mm) and better than traditional principal component analysis (PCA) meth-

od. 

Keywords: Multi-resolution multi-organ SSM, PCA, HDLSS, Mouse micro-

CT image, Liver, Spleen, Left kidney, Right kidney, Geodesic distance, Euclid-

ean distance. 

1 Introduction 

In the last three decades, SSM approaches have been used as one of the most im-

portant methods to segment and register organs for medical image analysis [4]. The 

applications of SSMs includes but not limit to the following fields: 1) Medical image 

segmentation and registration [2, 3, 7]. 2) Clinical diagnosis and treatment [1, 11]. 3) 

Analysis of organ contraction [10].  

Due to the complexity of medical images, SSMs of 3D organs are playing an in-

creasingly important role in medical image segmentation. To represent 3D organ 

shapes, landmarks are sampled from the organ surface. However, a challenging prob-

lem of 3D SSM construction is that the number of training samples is small while the 
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number of landmarks is large [12]. To fully capture the great variability of 3D shape, 

the traditional PCA modelling method needs to provide a large number of representa-

tive training samples to achieve a good modelling effect, which usually requires a lot 

of labor and is even impossible to complete. This problem is later called High-

Dimension-Low-Sample-Size (HDLSS) problem, which leads to insufficient and 

inaccurate expression of the model. 

In order to solve the HDLSS problem, Wilms et al. [16] proposed a multi-

resolution statistical shape model with the traditional PCA method based on local 

distance constraints in 2017, and they used this method to construct a 2D multi-

resolution SSM of human hand shape and cardiopulmonary shape. The method is an 

important extension of the traditional SSM method, which can be used to obtain sta-

tistical deformation models of objects at different resolution levels. In addition, it 

makes the resulting models achieve better generalization and specificity based on 

fewer training samples. However, one limitation of this method is that it takes up a lot 

of memory and is not suitable for cases where there are many sampling points. There-

fore, Wilms et al. only modelled simple 2D shapes in their study. Unfortunately, the 

3D shape vectors of multiple organs usually contain thousands or even tens of thou-

sands of sampling points. Moreover, since multiple organ shape modelling usually 

requires more sampling points than single organ, this method is not applicable to mul-

ti-organ modelling as well. These drawbacks limit the application of this method to 

multi-organ 3D shape modelling. 

In this article, we propose a solution to extend the multi-resolution SSM approach 

to 3D shape modelling of multiple organs with large number of surface points. Our 

methods combines 3D object surface downsampling with Laplace diffusion equation 

to construct multi-resolution multi-organ 3D SSM. We obtain deformation compo-

nents in three resolution levels, which are the "multi-organ level", "single organ level" 

and "local structure level". The models obtained from the above three resolution lev-

els are compared quantitatively with the traditional PCA modelling methods in terms 

of model generalization and specific performance, and we obtain better modelling 

performance than the traditional methods. 

2 Materials and Methods 

2.1 Description of Mouse Micro-CT Data 

The multi-organ shape training samples of mouse micro-CT images are taken from 

the Molecular Imaging Centre of the University of California, Los Angeles [14, 15]. 

During the imaging process, mice are injected with liver contrast agent Fenestra LC 

(ART, Montreal, QC, Canada) for clear imaging of abdominal organs. The weights of 

the tested mice range from 15 to 30 grams, and the data are selected according to the 

following principles for modelling: (1) Boundaries of the abdominal organs of the 

mouse: livers, spleens, and kidneys are clear. (2) There are no motion artefacts in the 

CT images of mice. (3) There are no cases where the livers, spleens and kidneys of 

the mice deviate from the normal shape. Mice are imaged in a multi-mode indoor 



prone position that provides anesthesia and heating [13]. Although the imaging room 

limits the possible postures of the mice, these postures are not strictly normalized. The 

random body bending postures in the left, right, and backward directions are included 

in the data set. The imaging system is MicroCAT II Small Animal CT (Siemens Pre-

clinical Solutions, Knoxville, TN). Equipment acquisition parameters for imaging: 

exposure setting 70 kVp, 500 mAs, 500 ms and 360 step rotation, 2.0 mm aluminum 

filter. In the image acquisition process, an improved Feld Kamp process is used to 

reconstruct the image so that the isotropic voxel size is 0.2 mm, the image matrix size 

is 256 × 256 × 496, and the pixel resolution is 0.2 mm. 

In this study, 98 mouse micro-CT images are collected as training samples for 

model construction. Small animal imaging experts are invited to segment the 3D re-

gions of livers, spleens, left kidneys, and right kidneys from the images, and then use 

the moving cube algorithm [6] to convert the segmented label maps to mesh surfaces. 

On this basis, one of the 98 sample surfaces is selected as the template surface, and 

the point cloud registration algorithm [8, 9] is used to register the template to all other 

training samples, so that different samples have the same number of mesh vertices, 

and each vertex corresponds to the same anatomical position in different samples, 

thus completing the preparation of all training data. Fig.1 illustrates the entire training 

data preparation process. 

 

Fig. 1. The construction process for preparing the training data of the mouse multi-organ shape 

model 

2.2 Description of Algorithms 

The Construction of Multi-Resolution SSM.  

1. Given  N d (d = 3) dimensional mouse abdominal multi-organ training mod-

els  {𝐒𝐢}1
N, where  𝐒𝐢 = {𝐗𝟏,𝐢, … , 𝐗𝐣,𝐢, … , 𝐗𝐌,𝐢} contains M points, each point 

𝐗j,i=(xj,i, yj,i, zj,i)
T

 is distributed on the surface of the training model. Then calcu-



late the average model of the training models, the calculation formula is shown in 

formula (1): 

 �⃗⃗� =
𝟏

N
∑ 𝐒i

N
i=1  (1) 

2. After normalization, the covariance matrix of the coordinates of different dimen-

sional points is calculated, and the calculation formula is shown in formula (2): 

 C =
1

N−1
∑ (𝐒i − �⃗⃗� )(𝐒i − �⃗⃗� )TN

i=1                    (2) 

3. Calculate the point-to-point geodesic distance dgeo(𝐗𝐢, 𝐗𝐣) on each model surface, 

and use rule (3) to set the values of the two sides of the covariance matrix C sym-

metrical to 0: 

 𝛒i,j = {

cov(Xi,Xj)

σiσj
 if  dgeo(𝐗𝐢, 𝐗𝐣) ≤ 𝛕 

0        else                      
  (3) 

where σi and σj are the standard deviations of the i-th and j-th dimensions, respec-

tively, and 𝛕 is the threshold given in the experiment according to the relevant rules, 

so that a simplified symmetric matrix R1 = (

𝛒1,1 ⋯ 𝛒1,M

⋮ ⋱ ⋮
𝛒M,1 ⋯ 𝛒M,𝐌

). 

4. Since R1 is not positive semi-definite and cannot be implemented eigenvalue de-

composition, it is necessary to use the approximation method [5] to find an approx-

imate positive semi-definite matrix R2 replacing R1 with formula (4): 

R2 = min
A

‖A − R1‖F 

 det(A) ≥ 0                                    (4) 

 diag(A) = 1 

5. Calculate the eigenvector matrix Uτ of R2 and the corresponding eigenvalue ma-

trix Λτ, as shown in formula (5):   

 (
σ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ σdM

)R2 (
σ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ σdM

) = UτΛτUτ
T (5) 

     where the eigenvector set included in Uτ is represented as 𝐏, and the eigenvalue 

vector on the diagonal of Λτ is represented as λ⃗ . 
6. When different values of distance threshold 𝝉 are selected in equation (3), the mod-

el will show different deformation capabilities locally; when𝛕 ≥ maxi,jdgeo(x⃗ i, y⃗ i), 

the constructed model is the traditional SSM; when 𝝉 = 0, the physical coordinate 

points on all training samples lose their relevance, and the constructed model can-

not be deformed, which has no practical significance. By defining a series of 

thresholds 𝝉𝟏 > 𝝉𝟐 > ⋯ > 𝝉𝑳, a multi-resolution scheme is defined to obtain a set 

of shape models {�⃗⃗� , 𝐏1, … , 𝐏L, λ⃗ 1, … , λ⃗ L} that vary from global to local. However, 

these models are highly dependent and redundant, and do not constitute a single 

shape space. Therefore, it is necessary to retain global information to combine 



them into a subspace, so that the feature vectors provided by the local SSM can op-

timally represent more local information. Based on step 1 to 5, the algorithm for 

constructing a multi-resolution shape model is derived as follows: 

    Suppose that there are N training model data matrices 𝐗 = (𝐬𝟏⃗⃗  ⃗│𝐬𝟐⃗⃗  ⃗ ∙∙∙ │𝐬𝐍⃗⃗⃗⃗ )𝛜𝐑
m×N, 

the thresholds of geodesic distance on each model surface are 𝝉𝟏 > 𝝉𝟐 > ⋯ > 𝝉𝑳 . 

Calculate the average model  �⃗⃗� =
𝟏

N
∑ 𝐬𝐢⃗⃗  

N
𝐢=𝟏  of the training models. And define the 

distance matrix dgeo on the average model. Assuming that the iteration index r ranges 

from 1 to 𝐿 in the calculation process, where r represents the number of models, the 

deformation coefficient of the local SSM is defined as 𝜆𝜏𝑟
⃗⃗ ⃗⃗  ⃗ , and the deformation com-

ponent corresponding to the coefficient is defined as 𝐏τr
. 

When r = 1, it means that there is only one shape model space, and the multi-

organ statistical shape model can be obtained by directly using the traditional PCA 

method; when r > 1, it means that there are multiple shape model spaces, and these 

model spaces need to be combined for singular value decomposition. The decomposi-

tion process is as follows: 

 𝐔(cos θ)𝐕T ← svd(𝐏MR
T 𝐏τr

)                           (6) 

 𝐒 = (

𝐜𝐨𝐬 𝛉𝐤×𝐤 ⋯ 0
⋮ . ⋮
0 ⋯ 𝐈(𝐥−𝐤)×(𝐥−𝐤)

) (7) 

where svd() represents singular value decomposition and calculates the transform 

base  �̂� ,  �̂� = 𝐏τr
𝐕𝐒T . Then, calculate the covariance matrix after spatial transfor-

mation: 

 �̂�τMR
= (σi,j

τMR) = 𝐔T (

λτMR,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ λτMR,k

)𝐔 (8) 

 �̂�τr
= (σi,j

τr) = 𝐕T (

λτr,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ λτr,l

)𝐕 (9) 

�̂�MR,r = (σi,j
τMR,τr) , where  σi,j

τMR,τr = {

σi,j
τMR   if   i, j ∈ [1, k]    

σi,j
τr      if     i, j ∈ [k + 1, l]

0           else

, finally calculate the 

uncorrelated basis vectors and the corresponding feature values: 

 [PMR, λ̂MR] ← eig(�̂��̂�MR,r�̂�
T) (10) 

where eig() represents eigenvalue decomposition. And the multi-resolution multi-

organ SSM 𝛍 is represented as follows: 

 𝛍 = �⃗⃗� + λ̂MRPMR                                     (11) 



Multi-Resolution Multi-Organ SSM.  

In order to extend this method to the construction of 3D multi-organ models with a 

large number of sample points, the idea adopted in this study is to first downsample 

the vertices on the model surface. Then we extend the method of Wilms et al. to train 

the down-sampled 3D point sets to obtain a multi-resolution model shape. Finally, we 

interpolate the deformation vectors of the down-sampled vertices to generate defor-

mation vectors of all vertices on the entire surface. 

Fig.2 shows the idea of this improved method, where Fig.2 (a) shows the down-

sampled vertices (marked in red) on the surface of the organ. There are a total of 3759 

vertices in four kinds of organs (livers, spleens, left kidneys, right kidneys) in this 

study, and 375 vertices are obtained after 10 times down sampling, which can be used 

to construct a model in a computer with 16G memory. Fig.2 (b) shows the defor-

mation vectors (represented by black arrows) on the down-sampled vertices of this 

model, and Fig.2 (c) shows the deformation vectors on all vertices by interpolating the 

deformation vectors of down-sampled vertices over the entire model surface, The 

interpolation method used is the Laplace iteration diffusion algorithm of the surface: 

 X⃗⃗ i(n+1)
= X⃗⃗ in +

λ

M
∑ (X⃗⃗ jn − X⃗⃗ in)

M
j=0   (12) 

where n represents the number of iterations, i is the vertex index, x⃗ in  represents the 

deformation vector of the i-th vertex coordinate at the n-th iteration, j =
0,1, … ,M represents M + 1 indexes of neighbor vertices around vertex i, λ represents 

the smooth intensity coefficient. At the beginning of the iteration (n = 0), first set the 

deformation vector  x⃗ i0 of the down-sampled vertices to the modeled feature vec-

tor PMR, and set the deformation vector of the other vertices to 0; during the iteration 

process, keep the deformation vectors of down-sampled vertices always to be PMR, 

and the deformation vectors of other vertices are calculated by formula (12). In order 

to obtain the desirable interpolation effect, through repeated testing, the maximum 

number of iterations is set to 1000, and the value of  λ is set to 0.8. It can be seen from 

Fig.2 (c) that after interpolation, the deformation vectors on a small number of down-

sampled points smoothly spread to the entire model surface. According to this meth-

od, the whole deformation components of the shape model are obtained by interpolat-

ing all vertices on the model surface, and the overall deformation of the model is fur-

ther realized according to the interpolation results. It should be noted that although the 

deformation vectors are obtained by interpolation instead of by training all vertices, in 

the case of limited memory, this method can obtain reasonable deformation vectors 

for a large number of vertices of multiple organs. After observation and quantitative 

measurement (see this in Results section), the modelling results are better than the 

traditional global shape model. 

     In addition to the interpolation algorithm described above, the selection of the 

resolution in Wilms et al. method is also improved in this study to make it more ap-

plicable to multiple organs. Because the original algorithm of Wilms et al. did not 

specifically consider the problem of modelling multiple organs, but only imposed 

geodesic distance constraints on the range of the local deformation to generate multi-

resolution models under different distance constraints. However, in the case of multi-



organ modelling, a simple geodesic distance cannot properly describe the distance 

relationship between two points belonging to different organs. For example, if the 

Euclidean distance between a point at the bottom of a lung and another point at the 

top of the liver is very close, these two points should have strong correlation in terms 

of common deformation because of the bottom of the lung and the top of the liver 

always coincide with each other. But according to the principle of the geodesic dis-

tance constraint in the Wilms et al. Algorithm, these two points belong to different 

organs, and the geodesic distance will be farther, so that the correlation between them 

in a model becomes smaller and does not meet the deformation regulation of adjacent 

organs. Based on the above considerations, this study uses Euclidean distance instead 

of geodesic distance as a constraint. The approach is as follows: 

      Based on the local deformed multi-organ SSM constructed in steps 1 to 6, the 

distances of surface vertices are calculated by combining the modified Euclidean 

distance between different organs with the geodesic distance expressed in equation 

(3). This article specifies that the geodesic distance of points on different organ mod-

els is infinite, and the Euclidean distance of points on different organ models can be 

calculated. Given a model vector  s  containing  O target calibration points, and s =

(x⃗ 1,1
T , … , x⃗ 1,M1

T , x⃗ 2,1
T , … , x⃗ 2,M2

T , … , x⃗ O,1
T , … , , x⃗ O,MO

T )
T
, where Mi represents the number of 

landmarks of the i-th model, i ∈ {1, … , O}. Define the undirected graphGg(V, Eg), V =

{x⃗ i,j│i ∈ {1, … , O}, j ∈ {1, … ,Mi}} represents the vertices of the undirected graph,Eg =

{(x⃗ i,j, x⃗ i,k)|i ∈ {1, … , O}, j ∈ {1, … ,Mi}, k ∈ Ν(x⃗ i,j)} , Ν(x⃗ i,j)  is the direct neighbour-

hood of point x⃗ i,j on target i. The weight wi,j,k
g

 of edge (x⃗ i,j, x⃗ i,k) is represented by the 

Euclidean distance between two points: 

 𝑤𝑖,𝑗,𝑘
𝑔

= ‖x⃗ i,j − x⃗ i,k‖  (13) 

    The geodesic distance dgeo(x⃗ , y⃗ ) between two points on the target surface can be 

estimated by the shortest path in Gg . There is no connection relationship between 

different targets in Gg, so the distance between points on different targets is infinite. 

     Define the second fully connected undirected graph  Ge(V, Ee) , and the edge 

weights represent the Euclidean distances of the scaled translation: 

 wi,j,l,k
e = η‖x⃗ i,j − x⃗ i,k‖ + δ,   η, δϵR  (14) 

     Use de(x,⃗⃗ y⃗ ), x,⃗⃗ y⃗ ∈ V represents the shortest distance in Ge. Combine equation (13) 

with (14), It can be seen from the two equations that on the same target, when η ≤

1, δ = 0 , de(x,⃗⃗ y⃗ ) ≤ dgeo(x⃗ , y⃗ ) ; when  η ≥ 1, δ ≥ max [dgeo(x⃗ i,j, x⃗ i,k)] , de(x,⃗⃗ y⃗ ) >

dgeo(x⃗ , y⃗ ) . On the same target surface, assumed that the energy required from 

point x⃗  to point y⃗  is equal to dgeo(x⃗ , y⃗ ), and the coefficient η represents the energy 

ratio of  moving the same distance in the embedding space Rd , which also means the 

relative viscosity of the space, δ represents the energy required to overcome the adhe-

sion force to leave the target surface. No matter moving on the target surface or mov-

ing in the embedding space, the merged distance d(x⃗ , y⃗ ) of two points x⃗ , y⃗  in V is a 

path with minimum energy. Therefore, the shortest path d(x⃗ , y⃗ ) of the combined fully 

connected graph G(V, E) can be obtained with edge weights equation (15): 



 wi,j,l,k = {
min (wi,j,k

g
, wi,j,l,k

e )   if   (x⃗ i,j, x⃗ l,k) ∈ Ee

wi,j,l,k
e             else           

 (15) 

We set the ratio σ of the distance threshold 𝛕 to 0.99 and 0.5 respectively, and we can 

get two shape models with different resolutions. Since the geodesic distance between 

organs is defined as infinity, σ = 0.99 retains the deformation of a single organ very 

well, and each deformation component in the obtained model corresponds to a certain 

deformation mode of a single organ. On the other hand, based on the definition of 

Euclidean distance, when σ = 0.5, the common deformation between vertices is lim-

ited to local areas of the organ, and the deformation components of the obtained mod-

el correspond to deformation modes of the local area of the organ. 

In summary, we combine the traditional global model (σ = 1, the traditional 

PCA modeling method), the single organ level model (σ = 0.99) and the local organ 

level model (σ = 0.5) with formulas (6)-(11). A 3D SSM based on prior knowledge is 

obtained which is suitable for modelling multiple organs, and the deformation com-

ponents contained in this model divided into three resolution levels, that is, global 

level(multi-organ level), single organ level and local structure level. This modelling 

method well reflects the different levels of deformation in a multi-organ combination 

system and describes the deformation of multiple organs better than traditional global 

models. 

 

Fig. 2. Schematic diagram of improved method based on downsampling training and defor-

mation vectors interpolation. (a) Down-sampled vertices; (b) Deformation of the down-sampled 

vertices; (c) The interpolated deformation vectors of all vertices on the surface. 

3 Results 

Fig.3 shows the modelling effect of the deformation components of the multi-

resolution multi-organ shape model constructed by the method in this article. Due to 

the limited space of this article, the model of each resolution level only shows the 

results of the first three deformation components on the average shape model. Defor-

mation components are denoted by PC1, PC2 and PC3, respectively. λ1, λ2, λ3 are the 

corresponding eigenvalues, and  α1 ,  α2 ,  α3, the shape coefficients of the multi-

resolution multi-organ SSM, are set as the weights of model deformation. For each 



resolution level, the first row show the average models (the average models of the 

three resolution levels are the same), and the second to fourth rows show the defor-

mation results of the average model with the first three deformation components. Fig. 

3 (a), 3 (b) and 3 (c) show the different shapes when the shape coefficient of a com-

ponent takes different values, and the parts with obvious deformation are circled in 

the right column. From Fig.3 (a), we can see that the organ deformations reflected by 

different components all occur together among multiple organs. For example,  PC1 re-

flects the change in the distance between the left lower lobe of the liver and the 

spleen, which is most likely caused by the size change of the stomach between 

them. PC2 reflects the closeness between the anterior half of the spleen and the left 

kidney, and PC3 reflects the change in the distance between the liver and the two kid-

neys. Fig.3 (b) reflects the deformation of a single organ level, in which 

 PC1 ,  PC2 and  PC3 correspond to the deformation of the livers, left kidneys and 

spleens, respectively. Fig.3 (c) Reflects the local deformation of each organ, such 

as PC1 reflects the deformation of the left lower lobe of the liver, PC2 reflects the de-

formation of the anterior half of the spleen, PC3 reflects changes in the anterior curva-

ture of the right kidney. When local deformation is performed, other parts of the same 

organ keep unchanged. These results show that the method in this study can effective-

ly model the deformation of organs at different resolution levels. 

      In addition to the above qualitative observation of model deformation modes, two 

quantitative indicators of generalization and specificity [4] are also used to evaluate 

the accuracy of model construction in the study. 

      The generalization of the model is used to measure the model's ability to represent 

new shapes (that is, shapes not included in the training samples). Generalization can 

be measured by using Leave-One-Out (LOO) method: assuming there are N training 

samples, one sample is left as the test sample Sj, and the other N − 1 samples {Si|i =

1,2, … , N, i ≠ j} are used to train the model 𝐌∗, and then fit Sj through the deformation 

of 𝐌∗, and calculate the average distance between the fitting result and Sj as the fit-

ting error ej. This process is repeated N times (ie j=1,2, … , N), and then set the aver-

age error  eg =
∑ ej

N
j=1

N
 of N  times as a measure of model generalization ability, the 

smaller the value of eg is, the better the model generalization ability is. 

       The specificity of the model is used to measure the model's ability to represent its 

own training samples. The specificity of the SSM can be tested by randomly generat-

ing shape samples: when we get the model based on N training samples, the shape 

coefficient vectors {α⃗⃗ j|j = 1,2, … , K} of K group models is randomly generated based 

on the normal distribution, where the mean value of the normal distribution is 0, and 

the standard deviation is the standard deviation obtained by eigenvalue decomposition 

of PCA method. Based on each randomly generated coefficient α⃗⃗ 𝑗, generate its corre-

sponding 3D shape, and find a sample whose surface distance is closest to this shape 

in the training sample set, and set this surface distance as the error ej of the jth random 

sample. Then calculate the average error es =
∑ ej

K
j=1

K
 of K random samples as a meas-

ure of model specificity, the smaller the value of es is, the better the model specificity 

ability is. 



 

Fig. 3. Deformation components in multi-resolution multi-statistical shape model. (a) Defor-

mation components at the global resolution level; (b) Deformation components at the single-

organ resolution level; (c) Deformation components at the local structure level of the organ.  

 

Fig. 4. Quantitative performance evaluation of multi-resolution multi-organ model (a) General-

ization error; (b) Specificity error 

      In order to reflect the improvement effect of the multi-resolution model on the 

generalization error eg and the specificity error es, this experiment calculates the re-

sults of eg and es at different resolution levels, as shown in Fig.4. Both for generaliza-

tion error and specificity error, the mean value and standard deviation of the three 



model errors from global resolution level to local structure resolution level are within 

1.0 mm. When the model changes from global level to local structure level, the mean 

value and variance of the errors are gradually decreasing, which indicates that the 

multi-organ model with local structure level is more accurate for the boundary regis-

tration. This means that the multi-resolution multi-organ model constructed in this 

paper has better generalization and specificity than the global model constructed by 

traditional PCA method. Encouragingly, even for generalization errors, the minimum 

mean value of the multi-resolution multi-organ model has reached about 0.3 mm, 

which is close to the minimum mean value of the specificity error of 0.25 mm. More 

importantly, it is also close to the pixel resolution of mouse CT images of 0.2 mm, 

and is lower than the average specificity error of the traditional global model of 0.31 

mm. 

4 Conclusion 

This article proposes a multi-resolution multi-organ shape prior knowledge model 

construction method and uses it to model multiple abdominal organs of mouse micro-

CT images. Compared to the recently proposed state-of-the-art 2D multi-resolution 

SSM method by Wilms et al., our method solves the shortcomings of memory occu-

pation and thus extend the method to 3D space. On the other hand, this work extend 

the method to multi-organ modelling and can be used for modelling the inter-subject 

shape changes of multi-organ, single organ and local structure levels. This method 

surpasses the traditional PCA modelling method in terms of both generalization and 

specificity. It should be pointed out that although this work builds a model based on 

the abdominal organs of mouse, the method in this study is also applicable to the mul-

ti-organ modelling of human or other animal bodies. The model constructed in this 

work lays the foundation of shape prior knowledge for further multi-organ image 

segmentation. 
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